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INTRODUCTION 

ATMOSPHERIC RADIATION 

The funds for the atmospheric radiation portion of the 

contract were exhausted as of the previous report; however, 

work has continued with other support.  A summary of the prog- 

ress made follows. 

Major effort was directed towards an extensive study 

of solar radiation fluxes in the presence of typical summer 

Arctic stratus clouds.  A paper on this subject was delivered 

by Dr. Warren J. Wiscombe at the 24th Alaskan Science Confer- 

ence in Fairbanks, Alaska (August 15-17, 1973).  A consider- 

ably extended and generalized version of this paper has been 

submi-ched for publication in the proceedings of that confer- 

ence. 

Massive code modifications were made in ATRAD (the 

atmospheric radiation computer model) which: 

(1) introduced a specular reflection option 

(important for calculations involving 

smooth or slightly roughened sea sur- 

faces) ; 

(2) allowed the use of a grey-body top 

boundary with arbitrary temperature and 

emissivity, so that, for example, long- 

'/ave (IR) calculations need not include 

 ■■ —■- —■■ -- - -■ 
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the whole atmosphere but may b^ termi- 

nated at a cloud base; 

(3) streamlined the basic Grant-Hunt al- 

gorithm computation significantly; 

(4) allowed the code to cycle over any one 

of the following parameters -- sun 

ai?glef surface reflectivity, surface 

temperature, top-boundary temperature. 

The cyclinc- feature in (4) is a tremendous aid in making ex- 

tensive parameter studies such as were required for the Arctic 

stratus problem, and was achieved with virtually no increase 

in computing time over previous calculations involving a 

single parameter.  This was possible because most of the 

calculations in ATRAD do not depend on a particular parameter, 

and thus it was possible to cycle only those pares of the 

calculation depending on the parameter in question.  Since any 

one of four parameters may be cycled, the code modifications 

were necessarily complex and time-consuming. 

Finally, a seminar "Comparisons of a Detailed Radia- 

tion Model with the Radiation Subroutine of the Mintz-Arakawa 

General Circulation Model" was prepared and presented as part 

of the weekly seminar series of the UCLA Meteorology Depart- 

ment. 

OROGRAPHIC EFFECTS ON GLOBAL CLIMATE 

The results reported below pertain to the continuation 

of numerical investigations of meso-scale momentum transfer 

in the atmosphere.  Investigations can be separated into two 

parts:  the transient and the steady-state. 

i ■ . 
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The steady-state part has culminated in the develop- 

ment of two- and three-spatial dimensional codes based on the 

formulation of Bretherton.    Additional analysis of the 

Bretherton equations is found in Section 2, and a 3-D study of 

the wave drag over the Sierra Nevada range of California is 

described in Section 3,  The steady-state computer code is 

divided into three parts to more efficiently conduct param- 

eterization studies.  This work is described in Section 4. 

Transient phenomena have been investigated with the 

2-D code HAIFA, and the 3-D code STUFF.  The latter has been 

optimized in terms of speed of execution and of fast storage 

requirements.  A complete description of the code optimization, 

along with a discussion of the numerical techniques employed 

by STUFF, is given in Part II of this report. 

During the next contract period major emphasis «il.1 be 

placed on application of the transient and steady-state codes 

to the development of heuristic expressions characterizing 

meso-scale momentum transfer processes induced by global 

topography. 
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1.  INTRODUCTION 

/ 

By the close of the last contract period, the devel- 

opment of a 3-D, linear, steady-state code based on the Brether- 

ton   formulation had been completed.  An outline of the code 

was also presented.  Since then, several subtle points of 

Bretherton's paper have been analyzed.  A discussion of these 

is presented in Section 2.  Section 3 presents the results of 

a 3-D steady-state study of the Sierra Nevada-Owen's Valley 

region of north-central California where lee-wave measurements 

have been carried out. 

Analysis of the 3-D code during this contract period 

has shown that it might be significantly optimized by reorga- 

nization and receding.  The results of this task are presented 

in Section 4.  A discussion of the numerical method is in- 

cluded.  Finally, a discussion of plans for future work is 

presented in Section 5. 

-■■ - - -..■-. ^ ^ —^-^^M*^- 
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2.  ADDITIONAL ANALYSIS OF THE BRETHERTON FORMULATION 

The Eq. (54) of Bretherton,   on which the 3-D steady- 

state evaluation of orographic gravity wave drag is based, was 

presented in his original paper substantially without deriva- 

tion.  Subsequently, several of the steps in the derivation 
[2] 

were presented in a recent progress report   on calculations 

usin  the Bretherton formulation.  Several points in the Bre- 

therton paper, however, which were not examined at that time, 

subsequently have been found to contain subtitles.  In addi- 

tion, errors in the text have been recognized and corrected. 

Consequently, we briefly record below the salient arguments 

required to complete the Bretherton formulation. 

2.1     CHOICE OF VERTICAL VELOCITY AT UPPER BOUNDARY 

The solution of the vertical velocity equation re- 

quires boundary conditions to be imposed both at the ground 

and at the top of the atmosphere.  In order to perform a 

marching calculation, a specific value of the complex vertical 

velocity is assigned at the top of the atmosphere.  The result- 

ing wave drag is independent of this value, a result which we 

wish to demonstrate below.  In order to do so, we evaluate the 

quantity F containing all of the vertical velocity terms. 

According to Bretherton, we must consider the two cases for 

which different boundary conditions at the top of the «..trnos- 

phere  z=H are prercribed. 

        ■ ——  -■- -     - --■■ 
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Before considering these two cases, however, we 

develop a general solution of the Scorer equation with which 

we can more easily consider the boundary conditions.  The real 

and imaginary parts of the vertical velocity each obey the 

same linear second order equation 

0+ U2-KMU = 0  . (1) 

A general srlut..^n of this equation contains two coef- 

ficients 

u = a^ + a2u2 (2) 

where u^^ and u2 are linearly independent.  We choose the 

functions u1 and u2 to be solutions of Eq. (1) having the 

following boundary conditions: 

VH) ml ' air   = 0 
').- 

du± 

(3) 
du, 

u2(H) =0        , £. 
).- 

As mentioned above, the real and imaginary parts of w , the 

vertical component of the perturbation velocity, each have the 

form of Eq. (2). 

We now discuss the simpler of the two cases in which 

<  > J. (H) , for which we have trapped wave solutions and the 

contributions to the Reynold's stress are discrete (as given by 

Eq. (61) of Bretherton).  The boundary condition at the top of 

the atmosphere z=H in this case, is Eq. (50a) of Bretherton: 

■   -  M 
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g = " /<2-^(H)w  . 

Assuming an initial value of w at z=H of ^(H) 
u
0 

+ ivo ,  the initial values of the derivatives are 

p2{H)uo  , 

dw v     /  
ir)n 

=" /<2-^(H)V0 

We can now determine the coefficients a,  and a- in 
Eq. (2): 

WR = Uo(ul " /<2-A2(H)U2)  , 

WI = Vo(ul " »
/
<
2
-
ä2
(H)U2)  . 

(4) 

Thus, we find that the real part of the velocity w- and the 

imaginary part Wj are proportional to each other at every 

altitude  z .  Consequently, it is only necessary to perform 

one integration of the Scorer equation to evaluate either one 
of them. 

It is now possible to construct the term  containing 

all of the velocity dependence of the Reynold's stress, given 
by Bretherton's Eq. (60); 

J F(<)dK   = 

|d*\      2 /dWR{0)\2        / 

/•H 2K ^H 
/     l^l2   dz I       (w^ + w^dz 

8 
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In terms of the expressions of  Eq. (4), we obtain 

/du,  du0
w 

yF(K)dK = i_ _^ :IJ_EZ!I . (5) 
I   (u1 - /K

2
-J1

2
(H)U2)

2
 dz 

The salient feature of Eq. (5) is that the valuer, cf 

u0 and vo do not appear; the trapped wave contribution to 

the Reynold's stress is independent of the assumed velocity 
amplitude at z=H . 

For the case of waves which leak into the stratosphere, 

conesponding to K
2
  <  ü2 (H) ,  the boundary condition (given 

by Eq. (50b) of Bretherton) is 

|| = + iA2(H)-K2 sgn(Un)w . 

Substituting the assumed boundary values at z=H 4.ne deriva- 

tive condition becomes 

dw 
R\ J  
-      = -  A2(Hy-K2  sgn(Un)vrt     , /H no 

—)    =   A2(H)-K2 

/H 
dz   I,        '*   ^'"^     s9n(u

n)u0     • 

The general solutions satisfying thes^ boundary conditions are 

"R = uluo ~ A2
(H)-K

2
 sgn(Un)u2v0  , 

  W 
Wj = u^ + /Jl2(H)-K2 sgn(ün)u2uo  . 
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In contrast to the first case, these two solutions are linearly 

independent and require that two integrations of the Scorer 

Equation be performed. 

In order to evaluate the terra containing all of the 

dependence on the vertical velrcity in the Reynold's stress, 

we corapute the quantity F  (see Bretherton's Eq. (52)): 

= iJÄ 2,i jdz    dz 0(0)0* (0) (7) 

where w* denotes the complex conjugate of w . The numerator 

of F is independent of altitude and can be evaluated at z=H 

from the boundary values given above.  The result is 

ir  \-A ^j I   ,   vaz(H)-Kz sgn(Un) 0(H) 0*(H) 

= A2
(H)-K

2
 ign(ÜJ (u*+v*)  . n' ' o o 

Using this result, and forming the denominator of Eq. (7) from 

the solutions of Eq. (6) evaluated at z=0 ,  we obtain for F 

F "= 
A2(H)-<2 sgn(Un) 

u2(0) + (e2(H)-<2)u2(0) 
(8) 

This expression is also independent of the assumed boundary 

values u0 and vo .  Consequently, we have shown that the 

Reynold's strebb does not depend en the chosen values of 

vertical velocity at the top of the atmosphere. 

10 
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2.2 REDUCTION OF DOMAIN OF INTEGRATION 

This result, which reduces the amount of calculation 

in forming the Reynold's stress components by a factor 2, is 

incorrectly justified by Bretherton.  in fact, as will be 

shown below, the simplification results from the integrand 

being the same at the wave numbers {k,!i)     and  (-k,-Jl)  rep- 

resenting a reflection in the origin of wave number space, 

rather than as stated by Bretherton that  (ic,4»)  is the same 
as  (K,-(|)) . 

Several factors enter in the Reynold's stress inte- 

grand; we examine the behavior of each of these when vhe 

transformation  (-k,-l) * (kfA)  is carried out.  First, we 

examine the differential equation for the vertical velocity 
and its boundary conditions. 

K2(-k,-)l) = k2+il2 = K2(k,£) 

ün(-k,-Ä) = ^i(uk+V£) = - Un(k,Ä) (9) 

, N2   d2U 

n   n 

i.e., the Scorer parameter, being an even function of U  . 
.    . n ' 

is mvanent under the transformation.  Consequently, the 

Scorer equation and its elementary solutions, depending only 

on  «,
2
-K

2
 ,  are also invarient.  Using this result, which 

establishes that u1 and u2 of Eq. (3) are invarient, and 

considering the transformation properties of Eq. (8) for F 
we find that 

F(-k,-fc) = - F(k,il) (10) 

11 
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We now consider the topographic factor of the Reynold's 

stress given by Eq. (47) of Bretherton. 

fi(-k,-t) = ^ JX    PhU^ e-i(^x-Äy) dxdy 

= fi*(k,£)  . 

Forming the spectrum function A = g- fi fi* ,  we obtain the 

transformation property 

A(-k,-l) = i^-h(-k,-il) h*(-k,-Ä) - A(k,Jl) 

These quantities can be combined to form the integrands of the 

two horizontal components of the Reynold's stress: 

'pUWj /COS(t)\ 

= PoU*(0) <2AF    ( = PoU^(0) <AF! 

pvw) (sin4)) 

The transformation {-kt-l)   + (k,£)  is seen to leave the inte- 

grand invarient: 

puw(-k/-Jl) = puw(k,)l) 

pvw(-k,-£) = pvw(k,£) 

Consequently,   the result given  in Bretherton's  Eq.    (54)   is 
confirmed;   namely that 

/•27T rv 
I        d<t> = 2   I      d4.   . 

Jo JO 

12 
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3.  COMPARISON OF TRANSIENT AMD STEADY-STATE WAVE DRAG 

3.1 INTRODUCTION 

At the jlose of the last contract period, two investi- 

gations of wave drag phenomena associated with the orography 

of the Sierra Nevada had been completed.  These were the 2-D 

transient study presented in the preceding report,t21 and the 

2-D linear steady-state study discussed in another report.^ 

In tha  transient study, atmospheric flow over the Sierra 

Nevadas was simulated, resulting in the time-dependence of 

wave drag values. Additionally, the effects of moisture on 

wave drag were evaluated.  A steady-state calculation was also 

performed, from which a small-scale parameterization using 

some of the important dynamic quantities was developed.  The 

results of this calculation, where applicable, were compared 
to the transient results. 

3.2 THREE-DIMENSIONAL  STEADY-STATE  STUDY 

After the completion of the 3-D steady-state code, two 

test problems were run.  The first investigated a generaliza- 

tion of the triangular mountain of the previous report^ by 

calculating a triangular ridge 128 km in length.  The second 

calculation was applied to the accual Sierra Nevada-Owen's 

Valley topography described below. 

The Sierra Nevada is a single unbroken range approxi- 

mately 400 miles in length and 50 to 80 miles wide.  At the • 

13 
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Owen's Valley we find the maxn crest running nearly North- 

South.  Elevations along the crest are around 12,000 ft. with 

numerous peaks rising above 14,000 ft.  The eastern scarp is 

abrupt and quite straight.  Owen's Valley is to the east at an 

average elevation of 4,000 ft. and ..J a nearly uniform width 

of approximately 15 miles.  The east wall of Owen's Valley is 

a fault block range called the Inyo Mountains to the south 

and the White Mountains to the north.  The elevation of the 

Inyo Mountains is 7,000-11,000 ft. while the White Mountains 
rival the Sierras in height. 

Figures 1 and 2 show the topography of the Owen's 

Valley region.  Figure 1 is a contour map of the data used in 

the second 3-D calculation.  Figure 2 shows three east-west 

transects at the indicated latitudes.  The asterisk indicates 

the position of Owen's Valley.  Both figures were made from 

data derived from the 5' * 5' topography tapes described in 
Section 4. 

The steudy-state runs utilized the wind and tempera- 

ture profile data obtained from the Merced weather station and 

employed in the previous studies. [2'3]  The calculations indi- 

cate a principal trapped wave having a wavelength of approxi- 

mately 19 km.  This agrees well with the value observed in the 

Owen's Valley under the same meteorological conditions of 

18-20 km.  The wave drag results are shown superimposed on the 

transient HAIFA results in Figure 3.  Two-dimensional steady- 

state calculation results utilizing the east-west transects of 

Figure 2 are also presented.  As can be seen, the results of 

the 3-D runs agree quite closely, revealing a possible insen- 
sitivity to the topography. 

. The 2-D runs, however, differ by as much as a factor 

of 3.  Since the real topography calculations and idealized 

topography 3-D calculations agree closely, one may assume that 

14 
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Figure 2  2-D cross-sections of Sierra topography from 120oW 
through 116o50,W longitude.  Asterisk indicates 
Owen's Valley. 
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the idealized topography is a good characterization of the 

real topography.  The differences between the 2-D and 3-D re- 

sults can thus be attributed to the sensitivity of Reynold's 

stress to the topographic variability exhibited in Figure 2. 

These results provide some indirect evidence of the 

accuracy with which topographic data must be represented.  The 

question of sensitivity to the representation of topographic 

data will be examined in greeter detail during the next con- 
tract period. 

It is of interest to examine the wavenumber dependence 

of the atmospheric factor F  (the spectral Reynold's stress 

corresponding to unit topographic spectrum function).  This 

quantity can indicate to us what, spectral regions are most 

significant in terms of both the continuous and trapped wave 

Reynold's stress contributions.  We examine below this quan- 

tity for the atmospheric parameters of the Merced problem. 

The distribution of the trapped waves is seen in Figure 4. 

The locus for a particular trapped wave is generated by exam- 

ining the solution of the Scorer equation for each of the 

plotted points.  The locus is then constructed by connecting 

points whose solutions have identical numbers of nodes.  Cur- 

rent A+fAtc values allow the identification of three trapped 

waves.  These waves are modest contributors to the drag for 

the Sierra Nevada problem.  Apparently, other waves which are 

not adequately resolved in the figure can be substantial con- 

tributors as well.  Some of the individual points not associ- 

ated with an established locus have been found to contribute 

more than those found on the loci.  It appears as though 

integrations having higher resolution in A<,A(j) are required 

to determine these trapped wave contributions more fully. 

One worrisome feature of the analytic expression for 

the trapped wave contribution to the drag is that waves whose 

18 
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Figure 4  Trapped wave distribution in K((J) space.  Points 
not falling on curves represent contributors to 
unresolved trapped waves.  N is the number of nodes. 
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loci are essentially radial in <,$     space may be inaccurately 

integrated in the wave drag calculation.  This is due to the 

fact: that an increment of A(J) may miss the trapped wave par- 

tially or even completely.  Some of the loci of the waves of 

Figure 4 exhibit quite nearly radial behavior and consequently 

some of the contribution may be lost.  A change to integrating 

over k,i     instead of ic 4» as independent variables might 

allpviate this since the spatial resolution would be more 

easily controlled at greater distances from the origin. 

Figure 5 is a contour plot of the continuous contribu- 

tion to the F distribution for the Sierra Nevada problem. 

Both the contiguous and the trapped waves exhibit symmetry 

about $=0°     in this case.  The reason for this can be seen in 

the symmetry -»f the Scorer parameter and the boundary condi- 

tion, which in turn implies symmetry in the solutions of the 

Scorer equation.  For the Sierra problem U  is given by 

Un = U(z) cos«) 

Since the symmetry of the Scorer parameter depends on the sym- 

metry properties of U , we see that the Scorer parameter 

will be symmetric about 4i=0o . 

The F values in Figure 5 remain large even for K 

values quite close to MH) .  In fact, for some 4» ,  the F 

values actually increase until ic ■ i(R) .  This behavior can 

be explained by examining the expression for F : 

F = 2/ll2(H)-K2 sgn(Un)/w*(0)w(0) 

One sees that the <-dependence of F is predominantly con- 

trolled by the denominator for ic << £(H) .  For values of  ic 

near MH) ,  however, the behavior of  F can be affected by 
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Figure 5  F distribution in  <,({) space. 

21 

  



SSS-R-74-2023 

both numerator and denominator.  If the denominator is not 

singular near K=£(il) 7    will decay monotonically to zero as 

K    approaches £(H) .  However, if the denominator has a zero 

near Ä(H) ,  a resonant behavior can occur in F. 

This behavior corresponds to the existence of a trap- 

ped wave near £(H) .  While this situation was not expected 

to c:cur very often, the Sierra Nevada calculations reveal 

several such cases as shown in Figure 6.  The methods used in 

the numerical integration currently do not take account of 

this occurrence accurately; an improved integration routine 

will be developed to deal with this case. 

Apparently, this near coincidence of a resonance with 

the locus of  £(H)  did not take place in the example calcu- 

lated by Bretherton.  As a consequence, he did not find it 

necessary to take special care with the integration routine 

in this region.  As additional examples are investigated it 

is to be expected that other special cases will be found 

which also will require special consideration. 
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4.  FURTHER CODE DEVELOPMENTS 

4.1 INTRODUCTION 

When the steady-state codes became operational, various 

test problems were run to determine their response to differ- 

ent problem configurations.  The comparison of the results of 
[21 

a 3-D run and the previously reported   HAIFA study of the 

Sierra Nevada problem were presented in Section 3.  They indi- 

cate that similar Reynold stress values are obtained by. these 

two markedly different codes. 

On completion of this comparison, work was begun to 

improve the efficiency of the steady-state code, preparatory 

to a large number of survey calculations.  This program is 

discussed more fully in Section 5.  In summary, the code is 

segmented such that the spectrum function, F factor and stress 

integrals are calculated independently of each other, but ex- 

change data through files established on mass storage devices. 

This procedure makes efficient use of fast core storage and 

decreases computer costs.  At the same time, much greater ef- 

ficiency is achieved in performing a matrix of calculations. 

Since this modulization has resulted in major design changes 

in the codes, a description of the new routines follows.  The 

topography data files have also undergone major modification 

and streamlining.  These are also discussed below. 
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4.2     TOPOGRAPHY 

Topography data were obtained from the Defense Mapping 

Agency (DMA) and are contained on two sets of magnetic tapes. 

The first set contains elevations area-averaged over aO'xao1 

rectangles for the entire globe.  The second set contains ele- 

vations area-averaged over S'xs» rectangles for most of North 
America and Europe. 

An examination of these tapes indicated that a re- 

structuring of the data format would allow much faster access 

to particular pieces of information.  As a result, the reading 

of all available 30' data now requires 30 seconds of CPU time 
as compared to 600 seconds previously. 

The new tapes, resulting from the above restructuring, 

are arranged in - common format for both the 30' and 5' data 

sets.  The 30' set requires two tapes, one for the northern 

hemisphere and one for the southern hemisphere.  The 5' set 

consists of one tape covering the northern hemisphere.  The 

data are written in logical records having 1444 word length 

for 30' data and 4324 words for 5' data.  Each logical record 

represents topographical data at a particular latitude for a 

full 360° of longitude.  These records are written on the 

tapes sequentially starting at the northernmost latitude of 

each hemisphere.  At the head of each logical record are writ- 

ten the starting latitude and longitude of the strip, where 

longitude is measured east of Greenwich.  Associated with each 

data point is a code number which contains information about 

the nature of the topography; i.e., whether sea bed, lake, all 

land, etc.  This coded information is the same as that in the 

DMA description of their tapes.  In addition to the code data, 

however, another indicator has been added to denote missing 

data.  It was found that occasional gaps in data occurred on 
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the DMA tapes. Since the Fourier transfom. routine requires 

complete data, a flag is set whenever the missing topography 

is encountered and the run is terminated. Usually, this re- 

quires obtaining the data from other sources and inserting it 

into the data tape. The case can then be rerun in the usual 
manner. 

4.3     THE SPECTRUM FUNCTION CODE 

4.3.1  The Equations 

The spectrum function code performs the primary task 

of determining a spectrum function distribution in wavenumber 

space associated with a Fourier representation of the hori- 

zontal dependence of the topography.  Brethertont11 defines a 
spectrum function, A; 

A(k,l) = ill fi* fi (1) 

where X and Y represent the spatial extent of the topo- 

graphic region in the east-west and north-south directions,  h 

is the Fourier transform of the surface height and the asterisk 

indicates conjugation.  The Fourier transform is defined as 

fc/u i.    1   rX /*y       -i(kx+ly) 
U'JJ " I?7 /  /  h(x,y)e        dxdy        (2) 

These two equations are solved in Module 1. 

4.3.2  Numerical Method 

The approach taken in Module 1 is as follows:  First, 

surface height data are obtained from the appropriate data 

tape.  Next, these data are Fourier transformed to obtain the 

spectrum.  Finally, the spectrum function distribution is cal- 
culated according to Eq. (1). 
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The topography dai.a are composed of mxn data "points" 

falling within the rectangle specified bv the user at problem 

generation time.  It must be remembered that each "point" is, 

in fact, an average value to be associated with a small rec- 

tangle about the point in question.  Thus, the surface height 

may be thought of as a step-function representation of the 

topography.  A sample 5x4 grid shown in Figure 7 demonstrates 

this more clearly.  Each of the numbers appearing within the 

cells represents the average height within the cell. 

The nature of the data representation has implications 

for the Fourier transform.  First, the discrete data can be 

represented by a discrete number of spectral components. 

Second, the resolution in spectral space is a function of the 

resolution in real space.  As mentioned in a previous report,t2] 

this lack of spectral resolution can affect the wave drag cal- 

culation through rendering A uncertain.  Particularly at 

trapped wavenumhers this uncertainty results in a corresponding 

uncertainty in the trapped wave drag contribution.  The use of 

5' data allows resolution of wavelengths of the order of 10 km, 

which are comparable with the wavelengths of the predominant 

trapped waves.  We propose to examine the desirability of using 
even more highly resolved data. 

The fact that the topography can be considered discrete 

is fortunate from a calculational point of view, however.  Cal- 

culation of the Fourier transform requires a large amount of 

time due to the large number of trigonometric evaluations and 

manipulations of the data.  The fast Fourier transform (FFT), 

which is an algorithm to optimize the direct calculation of the 

Fourier transform, is used to calculate the topography spectrum 

function.  The algorithm requires that the function be defined 

at a discrete set of points spaced at equal intervals in each 

dimension.  A FORTRAN subroutine based on the Cooley Tukey 
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Figure 7 A hypothetical topographical grid extending 25,x20,. 
The numbers represent mean values for the cell. Grid 
resolution is 5 minutes. 
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algorithm wac obtained from the University of California at 

San Diego and has been used satisfactorily in the applications 

described below. 

The finite Fourier transform requires some adaptation 

before it is applicable to the topography data.  This can be 

seen from the finite difference expression for the Fourier 

integral which is given by 

A l  v-^ v^* -MksAx+luAy) 
h(k,l) = 47T 2^ 2-r  h(sAx,uAy)e AxAy 

s=0 u=0 
(3) 

The FFT routine calculates 

rt  oui 

m-l n-1      ,w. (rs      tu\ 

Z E «.«•   Vn ^ 
s=0  u=0 

We see then that if we identify a   with the height function 

as follows 

Su - =%?^ hUix.uiy) (5) 

and define 

k = s »i' < 5 («> 

. _ 2TT(r-m) m <  r < m 
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1 " HÄ7 0 < t <§ (7) 

1 SEy I - t < n 

then the FFT routine will return the Fourier transform as de- 

fined in Eq. (2). The wavenumbers associated with the trans- 

foim are given by Eqs. (6) and (7). 

The DMA data tapes, however, do not contain values 

associated with boundary points of the area in question.  In- 

stead, the data,  are associated with averages over elementary 

rectangles ari lie in the interior of the area as illustrated 

by Figure 7.  It is also necessary that the number of data 

points along each spatial dimension be an integer power of 2. 

In order to take account of this displacement of the data from 

the boundary points, a redefinition of the Cooley-Tukey coeffi- 

cients is required: 

asu = m 4^ h[(s+»s)Ax, (u+MAy] (8) 

Following the calculation of the FFT coefficients a subsequent 

calculation to form the topography transform is carried out: 

-JjKkAx+lAy) 
hkil = art e (9) 

This transformation of terms allows one to approximate the 

integral of Eq. (2) without having to use boundary points. 

The steps of the spectrum function calculation, conse- 

quently, are as follows:  The topography data are interpolated 

to obtain new values corresponding to the next higher integer 

power of 2 equally spaced points in each direction.  These 

30 

           ■'~.~-~~~—~~^**~~~*-*—~~-<~^ L, ■—.—■   -^ -- _  



SSS-R-74-2023 

values are pre-processed according to Eq. (8).  The FFT is 

executed and the resulting array is then processed as in Eq. 

(9) to obtain the Fourier transform of the height.  The spec- 

trum function is then straightforwardly calculated according 
to Eq. (1/. 

The spectrum function, together with the associated 

kfl wavenumbers, is written into a file for future use.  The 

final task of Module 1 is to print a tabulation of A(k,l) . 

Contour maps of the topography and spectrum function are also 

plotted.  Additionally, a contour map of the log of the spec- 
trum function is made. 

4.4     SPECTRUM FUNCTION CALCULATIONS 

Since the spectrum function code was completed late in 

the last contract period, only a few example calculations of 

the topography function A have been completed.  The study 

consisted of an examination of ten geographic areas in the 

United States differing widely in topography and location. 

Topography data from the DMA magnetic tapes having 5' resolution 

were used and the resulting spectrum functions were calculated. 

These same topographic data were then resolved to 10', by com- 

bining 5' values, and the spectrum functions were determined 

again.  The resulting set of data can be investigated to deter- 

mine the behavior of A as a function of differing topographies 

and also determine the sensitivity of A to topographical reso- 
lution. 

A representative sample of terrains was selected; these 

data consisted of contiguous rectangles within a strip of land 

across the U.S. from 34°20' to 37°ü' north latitude and from 

94«>20' to 121° west longitude.  This strip includes the rugged 

topography of the High Sierra and Rocky Mountains, the flat 

plains of the midwest, and the Appalachian mountains of the east. 
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The strip was composed of 10 contiguous topographical grids 

2o40, on a side (corresponding to 32x32 data points for each 

grid at 5' resolution).  This set of grids constitutes a pre- 

liminary cross-section of characteristic topographies. 

Since the study is still in progress, only a brief 

examination of a sample grid is currently available.  Figures 

8-11 show contour maps of one geographic area and its associ- 

ated spectrum function located in the rectangle 118°20' to 

121° west longitude, 34o20, to 37o0, latitude at both 5' and 

10' resolution.  This area corresponds to the first grid in 

the set of grids and encompasses portions of the San Joaquin 

Valley, Sierra-Nevada mountains and the coastal ranges of 

California.  Figure 8 presents the contour map at 51 resolu- 

tion and Figure 9 is the corresponding calculated spectrum 

function.. Figure 10 presents the contour map for the 10' 

resolution data.  Figure 11 is the corresponding spectrum 
function. 

The figures contain computer produced contours similar 

to those produced by thp HAIFA code in previous reports.t4' 

Actual contours could be constructed by connecting like numbers; 

the actual value  (h or A)  corresponding to the plotted 
numbers are given by the formula 

Vactual ■ Vmin + ^max^mi^ [ ^^ ^ ^10     ' 

The quantities Vmax, V^ refer to maximum arid minimum values 

of the variable and N is the plotted symbol.  The ±h    indi- 

cates the range in Vactual corresponding to a particular 

symbol.  The blank fields appearing in the plots correspond to 

contour levels intermediate between the symbols which are left 

blank for visual clarity.  A(0,0)  appearing on the spectrum 
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function plots is  the value of the spectrum function at    k=0, 
1=0   .     Due to its  large value  it has omitted in the contouring 
so that resolution could be  improved. 

The presence of the San Joaquin Valley   (having a pro- 
nounced north-west to south-east axis)   in the grid  introduced 
an  interesting asymmetry to the  topography.     Upon  examination 
of  the graph we find that  these regularities in the topography 
are reflected in the spectrum function.     The topography consists 
primarily of two ridges rising above a flat plain.     One  feature 
extends north-south near the right edge of the topography 
graph and the other crosses  the graph at approximately a  45° 
angle.     These two ridges  correspond to the two finger-like 
extensions  seen in the  spectrum function plot of Figures  8 
and   10.     The horizontal  extension corresponds mainly to the 
irregularities in the N-S  ridge while the diagonal arm reflects 
the diagonal ridge. 

Due to the  symmetry properties of    A,  the graphs exhibit 
a reflected symmetry through the origin.     (Note:     Due to the 
number of contour intervals and the slight displacement of the 
graphs of topography and  spectrum function,   exactly the same 
plot character may not appear in the reflected plot.)     We also 
see  the same characteristic  features appearing  in both    A 
plots.     The resolution of Figure   9 hampers  further comparisons 
between the  spectrum functions  corresponding to  5*   and  10' 
resolution.     Work is under way  to improve this. 

Examination of the other topographic regions of  the 
set reveals  that frequently a prominent topographical  feature 
will  be reflected in a clearly observable corresponding  feature 
of  the    A    distribution.     Further  investigation of  these data 
is  currently in progress. 
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4.5     COMPUTER CODE FOR REYNOLD'S STRESS CALCULATION 

4.5.1 The Equations 

The equations incorporated in the code are substantially 

those of 'jretherton. [11  A slight modification has been made to 

the trapped wave integrals, however. A factor of  <  in the 

numerator of the sums which was omitted by Bretherton, has been 
incorporated into the code. 

4.5.2 Numerical Method 

The numerical methods discussed in the previous re- 

port   have undergone considerable modification.  A faster, 

more accurate method of locating trapped waves was developed 

and incorporated.  It was felt that in some atmospheric situa- 

tions the code, in its present configuration, might miss a 

wave.  Another consideration was the optimization of the code 

such that a large scale survey study could be carried out more 

economically.  Calculations to date indicate that a reduction 

of the cost of a calculation by a factor of two or more has 

been achieved as a result of these steps.  Even greater savings 

are expected once the code modification program is completed. 

In addition, the calculation is considerably more self- 

contained and accurate.  The logic of the new version of the 

code is outlined in the flow chart of Figure 12.  Since the code 

is radically different in structure from the previous version, 

a detailed description is also presented in the following sec- 
tion. 

A trapezoidal integration scheme is currently being 

employed in the evaluation of the stress integrals.  The inte- 

gration uses a constant increment AK and Li    of     K    and ^ 

The integration over K  is currently carried out for each value 

of 4) , although the order of calculations will be changed for 
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o- I INITIALIZE K 
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ACCURATELY LOCATE THE 
TRAPPFD WAVE 

6 
Figure 12  General flow diagram of drag code. 
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Figure  12       contd. 
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the newly organized code.  First, the Scorer parameter profile 

is calculated for the current value of <f) . Values of tf are 

then successively calculated for all K-values.  The values at 

^=0 are then tested to determine whether there are nearby 

trapped waves.  If the test is negative and K _< ü,(H)  then 

the region is defined to be part of the continuous spectrum 

and the stress integrals are incremented using Bretherton's 

Eq. (54).  If the criterion for a trapped wave is met, a search 

to localize it more accurately is begun.  K-values between 

K-AK and K are searched until the denominator of the F 

expression is minimized to within a user-prescribed accuracy. 

If  K > £{H) , the trapped wave occurs at a K-value for which 

the perturbation velocity w at z=0 vanishes.  Since the 

real and imaginary parts of the solution for K > Jl (H)  are 

proportional to each other, they both must vanish together. 

This property simplifies the search scheme for the trapped 
wave coniiderably. 

Figure 13 depicts the typical ic-dependence of the 

Scorer equation solutions at  z=0 .  Let <.  be the K-value 

of the trapped wave. We also denote by Wj and w,  the real 

parts of the Scorer equation solution for K-AK and  K at 

z=0 .  An iterative search is performed which utilizes linear 

interpolation between w1 and w2 to obtain a more accurate 

guess at K. .  Using this value of K and its corresponding 

wR(0)  another linear interpolation is performed using the 

member of the old pair of w's of opposite sign tc the new 

value.  The search converges quite rapidly and usually requires 

only a few iterations.  The criterion for convergence of the 

search is a user-specified value of the permissible change in 

the "s" term of Bretherton's Eq. (61).  it was found to be 

superior to a test of wR(<,<{.)  compared with a small number 

which was found to be unreliable due to possible rounding errors 
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wR(0) 

K-AtC K+AK 

Figure 13  Typical dependence on wavenumber of the solution 
of the Scorer equation at z=0, wR(0) vs. <. 
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in w where the amplitude of w is very large.  Care must be 

taken in choosing the size of  AK since it might be possible 

for W(K:,(J))  to change sign twice within the interval and a 

trapped wave would be missed.  Present AK are very conserva- 

tive, and it is felt that this situation will not arise very 
often. 

For values of K <_ Ä(H) , the real and imaginary parts 

of the solution to Scorer's equation are linearly independent. 

Consequently, the real and imaginary parts will not simultane- 

ously vanish at z=0 for any K-value.  Both may simultaneously 

become quite small, however.  When this condition occurs, a 

peak in the F distribution will be present.  The height of 

the peak is a function of w*(0) w(0) , and its  "Q" , corre- 

sponding to the width of the peak, is a function of the depth 

of the region in which the solution of the Scorer equation 

undergoes exponential decrease.  A large value of "Q"  corre- 

sponds to trapped waves with a very slight upwards energy leak. 

Consequently, a trapped wave in the region of K <_ MH) 

must satisfy two conditions.  First, the value of w*(0) w(0) 

must have a local minimum.  And second, the peak in the value 

of F must be sharply localized.  Bretherton suggests that the 

first condition can be recognized by examining the quantity 

arg[w{ic,4)) ]  for sudden changes as a function of K .  This, in 

effect, requires either the real or the imaginary part of w 

at z=0 to change sign.  This is a necessary condition for a 

trapped wave to exist.  For < > MH)  it is also a sufficient 

condition.  However, for K  £ MH)  the second condition dis- 

cussed above must also be met.  A sharply localized peak o^ P 

requires that a resonant behavior of w occur.  This, in turn, 

calles for a sufficiently deep atmospheric layer in which 

gravity waves are reflected so that the leakage of energy into 

the stratosphere is small.  This condition can be quantitied in 
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terms of the quantity 

Jo 
(z) - <2 dz  , 

which is a measure of the exponential decrease of w due to 
wave reflection.  When 

/. 

H  .  
A2(z) - K2 dz > a 

0 

where a  is a user-specified number, the resonance in F  is 

judged to be sufficiently sharp to perform the integration over 

it analytically.  If the above condition is not met, the inte- 

gration is to be performed numerically.  In this case, the 

integrand changes sufficiently slowly that an accurate numeri- 

cal quadrature can be performed with a reasonable integration 
step AK . 

Since the extent and strength of the region of exponen- 

tial decay in the solution to Scorer's equation increases with 

increasing < ,  the resonances (if any) lying below K=JI (H) 

will exhibit sharper and sharper peaks as K  increases.  Through 

the choice of a the user has control over the extent of the 

spectrum to be considered as continuum. A small value of a 

will require that rather broad lines are treated analytically, 

while a large value will treat quite sharp lines as continuous. 

Tests of this section of the code will be carried out 

for several choices of atmospheric parameters in order to 

determine an optimum value of a  for accuracy and speed of 
calculation. 
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5. FUTURE PLANS 

Now that the computer codes  for evaluating the  linear 
steady-state  Reynold's  stress are  essentially complete,   atten- 
tion will  be  turned to the calculation and parameterization 
phases.     A  full  scale survey study will involve several hundred 
topographical  areas and several dozen typical atmospheric con- 
ditions.     Since each combination of an atmosphere with a topo- 
graphic area constitutes a particular case,  it is seen that 
the total  number of cases under consideration is the product 
of the number of atmospheres and the number of topographies. 
This number may exceed several  thousand. 

In order to perform these calculations in an efficient 
manner,  we  have examined the time  requirements of the codes  and 
have considered  the organization of  the calculational  sequence. 
The linear  form of the equations   is  the key to the most ef- 
ficient organization,     m order to avoid duplicate calculation 
of topography factors and atmospheric factors,  it is desirable 
to modularize  the steady-state code.     Rather than calculating 
the topographic  factor,  atmospheric  factor,  and Reynold's  stress 
integral on  a case-by-case basis,   it  is desirable to  form and 
tabulate  the  topographic and atmospheric  factors  separately. 
The desired  stress integrals  can then be  found by combining the 
factors  in an  inexpensive numerical  integration.     This methoa 
results  in major savings   in computer cost. 
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The spectrum function for a typical 32x32 point topog- 

raphy requires a calculation on the UNIVAC 1108 of 10 seconds 

CPU time.  The calculation of a typical atmospheric factor F 

requires 1100 seconds on the same computer.  For the survey 

study of approximately 100 topographies and 10 atmospheres, 

the case-by-case calculation would require computer CPU time 

of approximately 106 seconds.  A modular approach would re- 

quire approximately lO" seconds for the atmospheres and 103 

seconds for the topographies.  Preliminary estimates are that 

the Reynold's stress integrations will also require approxi- 

mately 10^ seconds.  The total time would then be 'v 2 x io- 

seconds, of which only a ; nor part is required for the topog- 
raphy Fourier transforms. 

The modulization revisions are currently being made 

and will be completed shortly.  In more detail, the linear 

steady-state calculation is divided into three segments.  Com- 

munication between the segments is implemented through the use 

of information files on "fast" drums.  The first segment has 

been completed and calculates and stores the spectrum function 

distribution for a given grid.  This code is described more 

fully in Section 4.  The second segment calculates the topo- 

graphic factor, F, for a complete range of values of <,.},. 

The resulting distribution is stored on mass storage along 

with the corresponding discrete coordinate values.  This code 

is essentially complete and is substantially the same as the 

Reynold's stress code described in Section 4.  Finally, the 

third segment utilizes the results of the first two to perform 

the integration of the stress integrals.  Since all of the 

data are available simultaneously, a higher order quadrature 
scheme can be utilized. 

This organization of the calculation offers several 

advantages.  Only specifically desired cases need be integrated 
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and the files can be augmented with additional cases as de- 

sired.  The individual segments of the code can also be exe- 

cuted for a lower computing rate since a much smaller portion 

of core is required than for the code version in which all 

parts are unified.  The computer instructions for each segment 

require about 10,000 words of core storage.  The storage file 

for the spectrum function requires several thousand words per 

grid.  The F factor file requires around 10,000 words per 

atmosphere.  From these numbers it can be estimated that the 

mass storage requirements will not be expensive.  Computation 

times will be slightly longer due to accessing the drums, but 

overall rates will be cheaper on a case-by-case comparison. 

Greater flexibility is also achieved since additional atmos- 
pheres or topographies can be easily added. 

47 

 >.■-.■-,_. ^...^.--..^ .. ■.■■■.,■■■__.■.        -   ^   ^^ -^ -^.-    ... ,M|   ,    -^.^ -~^  ■■■■     _-.- M^-- .^ ■■ .^..     _.    _. 



r uH'^'iiwiimii^—. 

  

SSS-R-74-2023 

REFERENCES 

1. 

2. 

Bretherton, F.P., "Momentum Transport by Gravity Waves/ 
Qtrly. J. R. Met. Soc. (1969), 915, p.213. 

"The Effects of Meso-Scale and Small-Scale Interactions 
on Global Climate," Report No. SSS-R-73-1727, Contract 
No. DAHC04-73-C-0003 (15 June 1973), Systems, Science 
and Software, La Jolla, California. 

3. Sheridan, R.S., W.G. England, B.E. Freeman, and J.R. 
Taft, Systems, Science and Software, "A Computerized 
Simulation of Flow over the Sierra Nevadas," Summer Simu- 
lation Conference, Montreal, Quebec, Canada, 17-19 July 
T97T: ~  

4. "The Effects of Meso-Scale and Small-Scale Interactions 
on Global Climate," Report No. 3SR-1034, Contract No. 
DAHC04-71-C-0018 (31 March 1972), Systems, Science and 
Software, La Jolla, California. 

48 

——^^^^ ■MMMMMM 



ii    ^r^mmmmm 

.■ii hi. 

SYSTEMS,   SCIENCE  AND   SOFTWARE 

SSS-R-74-2023 

PART   II 

DEVELOPMENT OF TRANSIENT MODELING 

0 
P O    BOX   1620,   LA   JOLLA.   CALIFORNIA   92037,     TELEPHONE   (714)   4530060 

timmm ■  --    ■   ^■■■M—'   ^iM^fcii IIMIHI ii III m n i ■  ■-     ..-.^-—.             



■ I 

SSS-R-74-2023 

1. INTRODUCTION 

The previous project report111 presented the deriva- 

tion of the equations solved in the newly-developed 3-D 

Boussinesq approximation fluid dynamics computer code STUFF. 

Modeling capabilities were discussed and to some extent the 

numerical approach taken in STUFF was examined.  Since then, 

the code has undergone considerable modification.  Efforts 

have been primarily directed toward code optimization in exe- 

cution in order to increase computation speed.  However, some 

attention was given to reducing the core requirements of the 
instructions. 

The following discussion records the results of this 

modification program.  Also, a more detailed account of the 

numerical techniques now employed in STUFF is given.  This 

latest version of the computer code is designated as STUFF3. 
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2.  MODIFICATIONS TO THE STUFF3 CODE 

2.1     CODE OPTIMIZATION 

2.1.1 Introduction 

At the close of the last contract period, it was 

determined that several parts of the STUFF3 code might be 

significantly speeded up by more efficient programming.  Tim- 

ing runs had indicated that the major contributors to total 

execution time were the local macro-scale calculation and the 

particle buffering scheme.  As a result, the routines which 

transfer the particles to and from core were completely re- 

written.  The macro-scale calculation was more efficiently 

coded, and a scheme to selectively avoid the full macro-scale 

integration for some time steps was introduced.  The results 

of this program are presented below. 

2.1.2 Modifications - The Buffering Scheme 

To review, STUFF3 utilizes a particle buffering scheme 

such that only a small fraction of the Lagrangian particle 

properties occupy core storage at any one time.  The rest re- 

side on mass storage devices in distinct batches.  They are 

retrieved, when required, recalculated, and subsequently re- 

turned, to mass storage.  This method allows a certain degree 

of machine independence, since the core requirements of the 

code are reduced drastically.  Currently, STUFF3 has been 
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utilizing a particle density of eight particles per Eulerian 

cell.  This results in a requirement of 64,000 particles in a 

20x20x20 cell grid.  Since each particle requires six storage 

locations for position, density, contaminant and turbulent 

energy concentration, one sees that this amounts to 384,000 

required storage locations.  To keep such a large amount of 

information in core would be prohibitively expensive. 

With the advent of mass storage devices with high rates 

of information transfer, buffering schemes have become practi- 

cal, both from an economical and run time standpoint.  STUFFS 

stores the particle variables, associated with 500 particles, in 

core at one time.  As a result only 3000 core locations are 

required to handle the particle-based information.  Since most 

accounting systems utilized by computer installations heavily 

weight core utilization, this technique results in marked 

economies.  The penalty one pays is in the resultant increased 

run times and a high use of the I/O channels to the peripheral 

devices.  Both of these factors increase the cost of a calcula- 
tion. 

Timing runs were made which indicated that the buffer- 

ing scheme was, indeed, adding substantially to run costs.  As 

a result, an examination of the code was made to determine if 

the particles contained in core were being utilized to their 

maximum efficiency.  By alteration of the order of the particle 

calculation routines, it was found that the number of exchanges 

of particles between core and mass storage per time step could 

be reduced from 9.5 to 3.5.  The effect of this reduction has 

been to render run costs considerably less dependent on the 

buffering feature; the contribution currently is approximately 

15 percent.  The reason for this small value is that arithmetic 

calculations now dominate the time required to execute a time 

step.  Actual run time and cost have been reduced by more than 
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30 percent on an average basis.  Larger grids yield larger 
relative savings. 

2*1-3  Modifications - The Macro-Scale Calculation 

Further optimization was centered around the calcula- 

tion of the local turbulent macro-scale length.  Since this 

requires three-dimensional integrations over all space and 

calculation of the components of the strain-rate tensor for 

every cell, a large fraction of the total run time can be at- 

tributed to it.  Two optimizing mechanisms were employed.  The 

first was a rather straightforward implementation of a sug- 

gestion presented in the last report,[13 namely, that the 

characteristics of the local mean flow are influenced primarily 

by the quantities in the neighborhood of the point in question, 

and less by quantities further away.  This scheme was incorpo- 

rated into the optimization program as a limitation on the 

number of surrounding cells to be included in the spatial inte- 

gration.  This limit is established by the user, as an input 
number. 

The second scheme is suggested by the fact that the 

code is used to study the evolution of fluid flow from a non- 

steady to steady-state configuration.  As the fluid progresses 

through the evolutionary sequence, one would expect that the 

local macro-scale also reach a steady-state since they are, 

in effect, dependent on the mean flow.  Also, we would not 

expect large changes in the eddy viscosity distribution unless 

the macro-scales have changed significantly.  The user speci- 

fies a value which he considers to represent a significant 

change from one time step to the next in the macro-scale dis- 

tribution.  If this value is exceeded on any time step, then a 

complete re-integration occurs.  If not, then the eddy viscosi- 

ties are boosted at a rate which corresponds to the rate of 

change of the average macro-scale.  This procedure has the  * 
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advantage of entirely eliminating the integration at late 

times resulting in correspondingly more rapid executions of 
each time step. 

2•1•4  Modifications - Reduced Instructions 

Secondary optimization focused on the reduction of the 

number of machine language instructions necessary to represent 

the FORTRAN coding.  To effect this, all routines were examined 

for FORTRAN structures which could be re-coded such that they 

would be translated by the compiler more efficiently.  This re- 

coding would lead to an overall reduction in the number of core 

locatxons necessary for code instructions,  upon completion of 

this task, the code was reduced by nearly 5000 words to 18,000 
words, a reduction of over 20 percent. 

2.2 

2.2.1 

NUMERICAL METHOD 

The Equations 

Before describing the numerical techniques employed in 

STUFF3, it is useful to surmnarize the set of equations presented 

m the previous report.  These are the fluid dynamic and turbu- 

lence equations governing the flow.  They are, however, in a 

somewhat awkward form for numerical solution.  A secondary set 

is, therefore, presented which corresponds to the approach 

incorporated into STUFF.  The generalized set is: 

hr <V ■ 0 
(i) 

lt(V + l^v ■ L. [ (v+aA/5E) 

8P        .     r. 33E7 + Qcji + s (2) 
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JtlE)   +  l3r(UiE)   =  aX/2Efi2   -   3(2E)7/6  J1/3 

+ i—(aYA/2E 15- 
9Xj\ 9XJ, 

-  ayX/2E g 9Q 
j   3XJ 

(3) 

^(Q,   + |_(UjQ)   , |_ (aXY/2E+D)   |S- 
9XJ 

+   TT, (4) 

Equations (1-3) represent conservation of mass, mean 

flow momentum, and turbulent kinetic energy, respectively.  The 

fourth equation represents the thermal energy transport equa- 

tion written in terms of a density variation.  Additionally, 

with a redefinition of Q and D , Eq. (4) provides for the 

tracing of an arbitrary passive contaminant.  All terms have 

been defined in the previous report.  The heuristic coeffici- 

ents =, 3, and y    are given by 

a =  0.065  1 + exp -M (5) 

•jr ■  3.7 |l + exp -(M: 
(6) 

Y =  1.4  -   0.4  exp -M (7) 

The local turbulent macro-scale is given by 

X2(x) = I2(x)/J2(x) (8) 
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I2(x) i All 
Space 

w(x,x')Jr(x')dv (9) 

J2(x) =   i w^x')^'(x1)]  dv» 
All 
Space 

(10) 

and w^x')  is a normalized Gaussian weighting function de- 
fined as 

exp (x-x1)   •   (x-x1) 

w(x.x   ) X2(x) 

^All 
Space 

tp 
(x-x*)   •   (x-x* 

L               X2(x) 
1 dv' 

(11) 

Additionally, 

n2 = i r. .r.. 2     13   iD 

(JT)2 =   On/3xi) Ofl/3xi) 

(12) 

(13) 

While Eg. (2) does, in fact, govern the evolution of momentum 

distribution in the system, it contains a pressure gradient 

term which is awkward to determine. As a result, many fluid 

dynamic computer codes use a formulation involving derived 

variables which eliminate the direct pressure calculation. 

Methods using the stream function, for example, require special 

care in applying boundary conditions, particularly at internal 
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boundaries.  A method of Chorin[21 is free of these difficul- 

ties while still avoiding the calculation of the pressure di- 

rectly.  The resultant set is expressed in terms of primitive 

variables, and, hence, allows straightforward application of 

boundary conditions.  Equations (1) and (2) are combined, and 

use is made of the assumption that a pressure field alone will 

not generate rotational flow.  The resulting momentum and mass 
conservation equations appear as: 

3     - a       •>• 2      ( /9U. 

^(ui) + fe:(üiV = % ^-^(jbT + 

+ Qgi + s (14) 

%<*> = - l^v (15) 

üi = Gi + l3rW   • us) 

With this modification, the equations are in the final form for 

computation.  It now remains to discuss the numerical method. 

2.2.2  Numerical Method — Overview 

STUFF3 is a mixed-mode hydrodynamics code in which both 

an Eulerian and Lagrangian matrix representation exist concur- 

rently.  In general, mixed-mode codes attempt to minimize the 

inadequacies of one representation by combining the best fea- 

tures of both.  This usually results in some or all of the 

field variables being carried in both representations (i.e., 

available in either particle or cell based quantities), with 
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one or the other being utilized as the solution progresses, to 

evaluate the various terms appearing in the differential equa- 

tions. At some point there must exist an excha-ge of data be- 

tween the two such that each may be able to exert a "correc- 

tive" function upon the other.  It is through this mechanism 

that distortions in the Lagrangian net, such as those due to 

high amplitude waves, can be minimized and that artificial 

diffusion in the Eulerian sense is greatly reduced. 

Before examining the data exchange routines of the 

STUFF code, a discussion of the allocation of the dynamic vari- 

ables between the two representations is in order. 

All of the scalar fields (density, contaminant concen- 

tration, and turbulent energy) are assigned to both represen- 

tations, while the vector fields (in our case this is just the 

velocity field) are associated with the Eulerian grid alone. 

All changes in the distribution of a scalar dynamic Vc.-iable 

are reflected in changes in the particle based values during 

a time step. At the completion of the evaluation of all dif- 

ferential terms, the Eulerian quantities are assigned the 

"average" of the values associated with particles contained 

within the cell.  This censusing of the particles is one of two 

exchanges of data in the STUFF code.  The purpose is primarily 

to replace the explicit Eulerian evaluation of the scalar 

advection terms with a more accurate Lagrangian one.  In this 

manner, the errors induced by artificial diffusion are avoided. 

This censusing procedure is defined more explicitly in Sec- 
tion 2.2.3. 

The second exchange of data takes place in the calcula- 

tion of the scalar diffusion terms. These terms use both 

particle and cell based values.  This procedure is also de- 
fined more explicitly in Section 2.2.3. 
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2.2.2      Numerical Method - A Closer Look 

Perhaps the best method to describe the numerical tech- 

niques of STUFF3 is to detail the steps of a typical cycle of 
calculation. 

Leaving the question of initialization to Section 2.2.A, 
we assume that sufficient data are available to begin a time 

step.  The calculational sequence is as follows: 

STEP 1   Calculate the local eddy viscosity. 

STEP 2   Evaluate source and diffusion terms in the 
scalar equations. 

STEP 3   Partially update particle-based scalar vari- 
ables by adding source and diffusion terms. 

STEP 4   Solve the momentum equations utilizing 
method of Chorin. 

STEP 5   Move the particles with the new velocity 
field and evaluate the scalar advection 
terms. 

STEP 6   Remove or add particles as needed to account 
for sources or sinks of momentum. 

STEP 7   Establish new cell-based values from a 
particle census. 

STEP 8   Advance the time. 

STEP 9   Honor output requests. 

STEP 1 - Calculation of the local eddy viscosity. 

The local eddy viscosity is calculated in routine 

EVMAKE.  Additionally, the turbulent energy source terms in- 

volving n and J are calculated and stored in temporary 

storage.  The diffusion-limited time step is also calculated. 

Finally, a "boofted" eddy viscosity is constructed for use in 

the momentum equations.  This quantity is the larger of the 
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true eddy viscosity and a "stability" viscosity.  The latter 

is the smallest viscosity needed to stabilize the weak insta- 

bility arising from the finite difference operator used in the 

momentum equation.  The sole purpose of this procedure is to 

insure computational stability. 

The calculation of the eddy viscosity requires a know- 

ledge of the local macro-scale distribution.  Hence, EVMAKE 

calculates this as well.  At this point a feature of the pre- 

viously described code optimization is introduced.  A value is 

assigned by the user which is a measure of the error that will 

be tolerated in the eddy viscosity calculation.  The average 

macro-scale of the grid is calculated on each cycle.  In order 

for the local macro-scale to be spatially integrated, the cur- 

rent average macro-scale must differ from the previous one by the 

given significance level.  If the test fails, then the old 

local eddy viscosities are boosted by an amount corresponding 

to the rate of change in the average macro-scale.  This pro- 

cedure is found to give excellent results in practice, showing 

good agreement with the continuous integration procedure.  The 

largest deviation appears in regions of abrupt changes in the 

boundary, as would be expected. 

The user may also specify the maximum extent of the 

spatial integration of  I2  and J2 .  This allows substantial 

reduction in computing time with only a moderate loss in accu- 

racy since the integrands fall off rtrongly at larger distances. 

STEP 2 - Evaluation of scalar source and diffusion terms. 

In this calculation, the cell-based scalar field values 

and eddy viscosity distribution are utilized to construct the 

diffusion term contributions to the scalar equations.  To these 

terms are added any scalar source terms arising from sources or 

60 

, ..        n -—■■——   - ... -*.~*-~^~—_—-.  „■.,..   _. .     ■■ ^■i—^üMmi^f-         ii  II^II 



"■^^ 

SSS-R-74-2023 

sinks.  In the case of turbulent kinetic energy, the sources 

calculated in routine EVMAKE are included.  The result is to 

create an effective "source" rate for each of the cells.  This 

is stored temporarily for use in the next step. 

STEP 3 - Partial update of particle scalar auantifipS, 

Some difficulty is encountered in using the diffusion 

and source rates to update the particle s.alar quantities for 

a time At . The diffusion and source rates are cell-centered 

quantities. A first approximation would be to apply a single 

rate to all particles falling within the confines of one cell. 

This procedure leads to computational difficulties as seen in 
the figure below. 

The ordinate represents the local value of the scalar 

variable while the absissa is marked off in cellular intervals. 

The dashed lines represent cell-based values of the scalar 

whxle the solid line traces through the particle-based distri- 

bution.  The arrows represent the increase or decrease of 

<t>  _4  
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particle-based values when the net "source" rates are applied 

to the particles falling within each of the cells.  One sees 

that in many instances a universal application of cell-based 

rates to the internal particles could result in some particle- 

based values going negative.  As a result of thi*, a weighting 

technique was developed which drives the average particle value 

to what would be the new Eulerian value but also drives the 

particles which deviate most from the norm at the fastest rate. 

The effect is to smooth particle distributions such that large 

variations are damped and hence the Lagrangian distribution re- 

mains undistorted over longer integration times. 

STEP 4 - Solution of the momentum equations. 

Utilizing the boosted eddy viscosity calculated in 

Step 1 and the old velocity field, the subroutine MOMENT 

determines the resultant new field.  The procedure is to first 

calculate the diffusion terms and store these in temporary 

storage. Next, the advection terms are calculated and tempo- 

rarily stored.  Finally, the buoyancy term is determined. A 

resultant tentative velocity field is then determined by 

applying the calculated rates for a time At . This velocity 

field is then utilized in the Poisson equation solution for 

the corrector potential.  Finally, the resulting corrector 

potential is utilized to update the tentative velocities to the 

true new velocities as in Eq. (16).  In order to achieve a 

second order accurate time differencing scheme in the momentum 

equation solution, a second iteration on the above procedure is 

carried out with the "old" velocity field being replaced by an 

average of the true old velocity field and the one just calcu- 

lated,  it is found that this second iteration is not very 

costly in terms of increasing total cycle execution times. 

This is not obvious since the Poisson equation solution requires 
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an iterative procedure in its solution.  It turns out that an 

over-relaxed Gauss-Seidel procedure produces quite rapid con- 

vergence.  Additionally, a conservative value of the Courant 
number also aids in rapid convergence. 

STEP 5 - Move the particles. 

Once the new velocity field is determined, the evalu- 

ation of the scalar advection terms is carried out.  This is 

done by moving the particles at their local velocity for a 

time  At .  The local velocity is determined from two consid- 

erations:  first, the ime centered velocity field is used, 

and second, an interpolation scheme is used to determine the 

velocity.appropriate to the position of the particle. 

STEP 6 - Add or delete particles to account for sources of 
momentum.  ■  

Lagrangian marker particles must be added or removed 

as necessary from the calculation as the fluid element in 

which they reside is swept into or out of the computational 

mesh.  Additionally, the discrete representation of the veloc- 

ity field will sometimes result in particles being moved into 

internal obstacle cells accidently.  These conditions are 

handled in two ways depending on the boundary conditions. 

If the cyclic boundary option is specified, then 

particles swept out of the downstream side are reinserted at 

the upstream side and complete their movement for that time 

step.  Any particle accidentally being moved into an obstacle 

region is placed at the position it occupied before the move- 

ment.  This insures a constant number of particles within the 
fluid. 

If an a priori boundary condition is specified, then 

particles which are swept out of the downstream side are 
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flagged as deleted in their respective batches.  The vacant 

space then becomes available for the insertion of new particles 

generated by fluid entering on the upstream side, or from in- 

terior sources of momentum.  New particles are given scalar 

values characteristic of the source from which they emerged. 

Presently, the code deletes all particles which are acciden- 

tally moved into an interior obstacle when the a priori bound- 

ary condition is specified.  This tends to reduce the number 

of active particles slightly but produces little alteration 

of results when compared to the repositioning method. 

All of these calculations occur in routine PMOVE which 

also performs the search of the particle batches for particles 

flagged as deleted.  It then packs the batches eliminating the 

deleted particles and inserting any newly generated ones into 
the vacancies. 

STEP 7 - Establish new cell-based values. 

With the completion of the movement of the particles, 

the equations effectively have been solved at the new time. 

The task remains, however, to generate the new cell-based 

quantities.  These quantities are required in the calculation 

of additional time steps and are desired in the editing of 

problem results. 

The cell-based quantities are calculated in routine 

CENSUS which utilizes essentially the same procedure found in 

the MAC method.    Each particle is visualized to extend 

Ax^/N in each of the cellular dimensions and to have a scalar 

value throughout this volame equal to the value attributed to 

the particle.  N is the cube root of the particle density. 

The result is to smooth the distribution and to reduce the 

likelihood of large discontinuities arising from particle 

clumping.  The CENSUS routine determines the fraction each 
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particle donates to eaoh cell.  These contributions are su-ed 

and normali.ed to yield a resultant cell-based distribution. 

Finally, CENSUS checks to insure that no cell is empty of 

particles,  if any are found in this condition, then the cell 

value is given the averaged value of aU the adjacent cells. 

This rarely happens in runs „here the particle density is 
eight per cell or greater. 

STEP 8 - Advance the time. 

The tine is now advanced so that a new cycle can begin. 

Several stability criteria representing different terms in the 
equations limit the size of the time step. 

in order to avoid the problems associated with having 

to introduce more than one set of source particles per time 

step across any boundary of the domain, the stability number 
is restricted to values of f < i/N . This allows ^.^ 

able coding economy and does not restrict the allowable time 
steps too severely. 

The stability criterion in axplicit schemes requires 

a restrxction on At due to diffusion. This is calculated in 
routxne EVMAKE and has the following form: 

At < i- 1  

Ax2  Ay2   Az2 

where Ax, 4y, 4. „present cellular dimensions,  e is the 
ocal eddy viscosity, and f is a stability nuMber such that 

0 < f < 2 

An°ther "ability criterion incorporated into STUFF 
reflects the stability associated with the propagation of in- 

ternal waves,  m order to ensure stability in this case, we • 
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At  <  fAx/c 

where    Ax    is the smallest dimension of the cell,     f    a  stabil- 
ity number,   and    c    the  internal wave phase velocity given by 

c2  = g A_ AC 

where X  is the largest wavelength of the generated internal 

waves,  g the gravitational acceleration and A?  the maximum 

fractional variation in density across the cell interfaces. 

X , in effect, is a free parameter to be chosen a priori from 

past experience with waves arising in fluid flow problems. 

Its value is not critical for most cases. 

Finally, the stability condition for the advection 
scheme can be expressed as follows: 

At < 
U n+1 + Xu r+1 2 + 2fAx 8U n 

9t 
au 
9t 

n 

Account has been taken above of the possible increase in veloc- 

ity during the anticipated time step. 

The final resultant time step to be used in the next 

increment is chosen to be the most restrictive of the four in- 
equalities presented above. 

STEP 9 — Honor output requests. 

Requests for edits of output data can assume three 

forms:  (1) requests for a printer dump of all variables of 

interest Inclu^lnrr vector and scalar arrays, (2) requests for 
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printer plots of the velocity and scalar fields; an option is 

to be specified by the user of which particular variables are 

desired.  The plots are depicted as if one were looking down 

from the top onto the model and successively removing layers of 

cells.  Finally, (3) a tape dump may be made for the purposes 

of saving the variable, for later use, such as a restart. 

Other output features were mentioned in the previous report.[1] 

This completes a calculational cycle in STUFFS.  We 

next discuss the initialization of a problem.  The options 

available for starting a calculation are outlined below. 

2.2.4  Initialization 

The Velocity Field — Three methods are available to 

the user in specifying an initial configuration.  The first, 

which is of limited use, involves the determination of the in- 

ternal momentum distribution from potential flow and specified 

boundary flow.  This method requires the assumption that the 

boundary flow must be irrotational.  This corresponds to an 

input flow uniform in z with no differential cross flow, a 

condition not likely to be found in atmospheric studies. 

A second technique is to specify the velocity in the 

x-direction to be periodic and proceed as above.  This has the 

advantage of uniquely determining the flow. A proper boundary 

condition is also imposed at the downstream grid face which 

does not introduce flow disturbances.  However, this technique 

is of doubtful usefulness in 3-D codes since large numbers of 

downwind cells are required so that wrap around effects do not 

become significant.  This approach becomes prohibitively ex- 
pensive in realistic situations. 

The third method appears to be the most useful for 

mountain wave problems.  This involves the useage of the cor- 

rector potential-velocity relations expressed by Eqs. (15) and 
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(16).  The procedure is to use the best guess of the ambient 

field available.  This will be in considerable error near 

highly convoluted regions and the divergence will probably be 

non-zero.  This field is then utilized as a source term of 

the Poisson equation to derive a corrector potential which, 

when combined as in Eq. (15) with the guessed ambient field, 

will result in a field which is non-divergent and preserves 

the vorticity distribution of the original guess.  This pro- 

cedure gives realistic ambient fields, and although they are 

not unique, they have represented excellent starting fields 

for several test cases.  This method will allow the specifi- 

cation of essentially arbitrary z-dependent u-velocity pro- 

files.  Cross winds ere also allowed. 

The Scalar Fields — Initialization of the Eulerian- 

based values of the scalar fields was described in the pre- 

ceeding semiannual report. '     The particle-based values are 

initialized from the above Eulerian-defined distributions. 

Essentially, every particle which falls within a given cell 

is initialized with the values of the Eulerian-based quantities 

of density, contaminant concentration, and turbulent energy 
density. 
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3. CONCLUSIONS 

With the description of initialization procedures we 

have essentially completed our discussion of the Boussinesq 

hydro-code STUFF3.  Some additional detail regarding particular 

topics is presented in the appendices. 

STUFF3 represents one of the more advanced fluid dy- 

namics codes in use in atmospheric research study.  The mixed- 

mode structure and incorporation of a heuristic model of tur- 

bulence, both represent an excellent utilization of current 

state-of-the-art knowledge.  Machine requirements are not 

significantly greater than previous Eulerian codes and execu- 

tion times are comparable. 

Future use of the code is to be discussed in the 
"Future Plans" section. 
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H<    FUTURE PLANS 

The above discussion essentially completes the code 

development work on the 3-D transient model.  Its future ap- 

plication will be limited due to higher priority commitments, 

especially the wave drag parameterization study.  If time and 

funds permit, a limited 3-D transient wave drag study using 

STUFF3 will be conducted. 

The 2-D transient model HAIFA will be used as needed 

in the parameterization study to resolve questions regardinij 

transient effects.  STUFF3 will also be utilized for this pur- 

pose. 
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APPENDIX A 

THE GRID 

The grid utilized by STUFF3 is pictured below.  For 

computational efficiency and boundary condition application, 

the true grid is surrounded on all sides by a layer of border 

cells.  The velocities at the interior faces of these cells 

can be assigned to apply various boundary conditions on the 

flow.  Work is almost complete to incorporate outflow boundary 

conditions utilizing extrapolated internal values.  This pro- 

cedure is equivalent to the setting of the second derivative 

of the normal component to zero, thereby minimizing the dis- 

turbing effect of the boundary on the internal flow. 

Boundary cells and interior obstacle cells are flagged 

with a value of zero in the grid-defining array, FULL(I,J,K) . 

Any cell characterized by zero (meaning zero fluid) is assigned 

velocities associated with its interfaces at problem generation 

time.  This allows interior obstacle cells to act as ducts 

through which fluid can be removed from or injected into the 

system, i.e., these become sources or sinks of momentum. 

The particles are initially distributed within the grid 

at a specified density (in terms of number of particles (N) per 

cellular dimension).  Hence, a three-dimensional problem will 

have N3  particles per cell.  The initial spatial distribution 

within the fluid filled cells is seen in Figure A-2. 
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Figure A-l Cross-section of STUFF3 grid with interior and 
boundary obstacle cells.  One interior cell 
represents a source of momentum.  Flow has been 
specified to the right via the a priori imposed 
boundary flow.   
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T 
Ay/4 

Ax/4 -> Ax/2 

Ay/2 

Ax/4 

Ay/4 

Figure A-2 The distribution of particles within a given cell. 
The third dimension is not shown but exhibits the 
same symmetry.  N is 2. 
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APPENDIX B 

DEFINING GRID-BASED VARIABLES 

The indexing notation used to access the various scalar 

and vector quantities is shown for an arbitrary i,jfk cell in 

Figure B-l.  All scalar quantities are cell-centered with 

i,j,k raferring to the cell center coordinates.  Velocities 

are interface quantities with the u,v,w components of a cell 

being defined on the i+H,  j+H,   and k+h    faces, respectively. 
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i-'s/j/k 

Vi,j+*,k 

(e,Q,E).   .  . 
J- » J » K- 

^.j-'jrk 

-►u i+'sO/k 

Figure B-l Notation utilized by STUFF. An    xy cross-section 
is shown taken through the cell center.  Scalars 
are cell-centered quantities.  Vector components 
are Interface quantities. 
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APPENDIX C 

PROCEDURE IN UPDATING PARTICLE ARRAYS 

DUE TO SOURCE AND DIFFUSION TERMS 

In a purely Eulerian scheme the updating of the field 

variables due to diffusive contributions is straightforward. 

Utilizing the standard centered difference operator, the cell- 

based quantity tends with time to a value more in equilibrium 

with its neighbors.  Since STUFF utilizes the Eulerian-based 

diffusion rates to modify the particle-based values in the 

cell, it is possible, using an average rate, to force values 

associated with some of the particles, negative. While a sub- 

sequent census would yield a cell-based value in agreement 

with the purely Eulerian method, discontinuities may develop 

when these particles undergo subsequent advection.  For ex- 

ample, some of the negative particles might be moved into 

cells in which t.iey are the sole contributors.  A subsequent 

census would then yield negative cell-based quantities.  In 

order to avoid this problem a smootnLng function was developed 

which preferentially modifies particle values and reduces the 

variation from the expected Eulerian value. 

This function should be related to the local curvature 

in the field. Also, it should be functionally dependent on 

the strength of the diffusive coefficient and the time interval 

over which it can act.  After much experimentation, the follow- 

ing form was selected: 
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ePART   QCELL * (QPART  QCELL) e      + At|ä 

Where Q represents the field variable,  PANT and CELL refer 

to particle and cell-based values, respectively.  E represents 

the sum of the turbulent eddy viscosity and molecular diffusion 

poefficients, and S  is related to the field shape by: 

Where the summation range over all cells, and the derivatives 

#re approximated by standard cell centered finite difference 

operators.  The last term involving || repr.Mients the rate of 

phange due to diffusion and sources and is dctrrmined from all 

based quantities at t = tn as is the S factor. 
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APPENDIX D 

THE PARTICLE CENSUSING SCHEME 

Once the particles have been moved to their final 

positions for the current time step, a census is carried out 

to determine the resultant cell-based values so that a new 

time step may commence.  For ehe purposes of the census, ^nch 

particle is considered to fill a finite volume, whose dimen- 

sions are given by äxi  = AX^N .  Axi  is the particle dimen- 

sion in the ith direction,  AXi is the cell-dimension in (he 

ith direction, and N is the cube root of the particle den- 

sity per cell.  This description is defined graphically in 
Figure D^-l. 

The calculation of the cell-based quantities now In- 

comes a series of summations, whereby the value for a particu- 
lar cell is given by: 

z ̂PART. ' dvi 

*PELL 

I>i 

where ^ is the scalar variable with PART and CELL refer- 

ring to particle and cell-based values, respectively,  dv, 

is the part of the volume of particle i falling within the 

boundaries of the given cell. 
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Ax. 

Axi 

>;*; 

It 
Ax 

i 
2 = Ax2/2 

Axi = Axi/2 

Figure D-l A cross-section of Eulerian cells containing 
a particle "cube".  In this example, particle 
density is 8/cell, hence Ax. = Ax./2 . 
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APPENDIX E 

THE PARTICLE MOVEMENT SCHEME 

The scalar advection terms are calculated through the 

actual moving of the particles.  After the completion of this 

procedure a census is taken to establish the new cell-based 

values.  This results in an evaluation of the advection terms 

which is free of artificial diffusion. 

Some errors are introduced by this scheme, however. 

While they are much less significant than those found in the 

method they replace, they should be noted. 

Each particle in the fluid should be advected by the 

fluid.  In order for this to be the case, the instantaneous 

velocity of the particle must be the local velocity of the 

fluid.  A finite difference scheme can only approximate the 

velocity field at each space-time point.  As a result, the 

velocity which they experience is some interpolated value 

between locally defined values.  Once this value has been 

determined the particle is moved at this velocity for the 

time At . 

Two types of errors are introduced.  The first results 

from the fact that the calculated instantaneous velocity of 

the particle is an interpolated one.  The resulting error will 

be small if the Eulerian grid is of the proper resolution to 

81 

I        —MMUM «I—   I ■MBM MMM^M -- 



SSS-R-74-2023 

adequately resolve the problem.  A second error is introduced 

when the particle is moved at the constant velocity for a time 

At .  Actually, the local velocity is a function of t .  The 

magnitude of this error is still significantly less than the 

scheme being replaced, however. 

In order to insure that the scheme is second order 

accurate in time, the time jentered velocity field i;5 utilized 

for the particle movement. 
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