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INTRODUCTION

ATMOSPHERIC RADIATION

The funds for the atmospheric radiation portion of the
contract were exhausted as of the previous report; however,
work has continued with other support. A summary of the prog-
ress made follows.

Major effort was directed towards an extensive study
of solar radiation fluxes in the presence of typical summer
Arctic stratus clouds. A paper on this subject was delivered
by Dr. Warren J. Wiscombe at the 24th Alaskan Science Confer-
ence in Fairbanks, Alaska (August 15-17, 1973). A consider-
ably extended and generalized version of this paper has been
submitted for publication in the proceedings of that confer-
ence.

Massive code modifications were made in ATRAD (the

atmospheric radiation computer model) which:

(1) introduced a specular reflection option
(important for calculations involving
smooth or slightly roughcned sea sur-
faces);

allowed the use of a grey-body top

boundary with arbitrary temperature and
emissivity, so that, for example, long-
"7ave (IR) calculations need not include
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the whole atmosphere but may be termi-
nated at a cloud base;

(3) streamlined the basic Grant-Hunt al-
gorithm computation significantly;

(4) allowed the code to cycle over any one
of the following parameters -- sun
argle, surface reflectivity, surface
temperature, top-boundary temperature.

The cycling feature in (4) is a tremendous aid in making ex-
tensive parameter studies such as were required for the Arctic
stratus problem, and was achieved with virtually no increase

in computing time over previous calculations involving a
single parameter. This was possible because most of the
calculations in ATRAD do not depend on a particular parameter,
and thus it was possible to cycle only those parts of the
calculation depending on the parameter in question. Since any
one of four parameters may be cycled, the code modifications
were necessarily compler and time-consuming.

Finally, a seminar "Comparisons of a Detailed Radia-
tion Model with the Radiation Subroutine of the Mintz-Arakawa
General Circulation Model" was prepared and presented as part
of the weekly seminar series of the UCLA Meteorology Depart-
ment.

OROGRAPHIC EFFECTS ON GLOBAL CLIMATE

The results reported below pertain to the continuation
of numerical investigations of meso~-scale momentum transfer

in the atmosphere. Investigations can be separated into two
parts: the transient and the steady-state.

et Bl e L o o Jotm Lt L P T Lty o o i o SRR e o R L o e L
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The steady~state part has culminated in the develop-
ment of two- and three-spatial dimensional codes based on the

(1]

formulation of Bretherton. Additional analysis of the
Bretherton equations is found in Section 2, and a 3-D study of
the wave drag over the Sierra Nevada range of California is
described in Section 3. The steady-state computer code is
divided into three parts to more efficiently conduct param-

eterization studies. This work is described in Section 4.

Transient phenomena have been investigated with the
2-D code HAIFA, and the 3-D code STUFF. The latter has been

optimized in terms of speed of execution and of fast storage

requirements. A complete description of the code optimization,

along with a discussion of the numerical techniques employed
by STUFF, is given in Part II of this report.

During the next contract period major emphasis will be
placed on application of the transient and steady-state codes
to the development of heuristic expressions characterizing
meso-scale momentum transfer processes induced by global
topography.
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1. INTRODUCTIGN

{

By the close of the last contract period, the devel-
opment of a 3-D, linear, steady-state code based on the Brether-
ton[l] formulation had been completed. An outline of the code
was also presented. Since then, several subtle points of
Bretherton's paper have been analyzed. A discussion of these
is presented in Section 2. Section 3 presents the results of
a 3-D steady-state study of the Sierra Nevada-Owen's Valley
rejiun of north-central California where lee-wave measurements
have been carried out.

Analysis of the 3-D code during this contract period
has shown that it might be significantly cptimized by reorga-
nization and recoding. The results of this task are presented
in Section 4. A discussion of the numerical method is in-
cluded. Finally, a discussion of plans for future work is
presented in Section 5.
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2.  ADDITIONAL ANALYSIS OF THE BRETHERTON FORMULATION

The Eq. (54) of Bretherton}ll on which the 3-D steady-
state evaluation of orographic gravity wave drag is based, was
presented in his original paper substantially withcut deriva-
tion. Subsequently, several of the steps in the derivation

[2]

were presented in a recent progress report on calculations
usin the Bretherton formulation. JSeveral points in the Bre-

therton paper, however, which were not examined at that time,

subsequently have been found to contain subtlties. In addi-
tion, errors in the text have been recognized and corrected.
Consequently, we briefly record below the salient arguments
required to complete the Bretherton formulation.

2l CHOICE OF VERTICAL VELOCITY AT UPPER BOUNDARY

The solution cf the vertical velocity equation re-
quires boundary conditions to be imposed both at the ground
and at the top of the atmosphere. In order to perform a
marching calculation, a specific value of the complex vertical
velocity is essigned at the top of the atmosphere. The result-
ing wave drag is independent of this value, a result which we
wish to demonstrate below. In order to do so, we evaluate the
quantity F containing all of the vertical velocity terms.
According to Bretherton, we must consider the two cases for
which different boundary conditions at the top of the utmos-

phere 2z=H are prescribed.
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Before considering these two cases, however, we
develop a general solution of the Scorer'equation with which 2
we can more easily consider the boundary conditions. The real
and imaginary parts of the vertical velocity each obey the

| same linear second order equation

2
: S+ W=cHu=0 . (1) :

A general sclut_on of this equation contains two coef-
ficients

u = alu1 + aju, (2)

where Uy and u, are linearly independent. We choose the
functions uy and u, to be solutions of Eq. (1) having the
following boundary conditions:

du1
ul(H) =1 ’ a;—)n =0 '
(3)
du2
uz(H) =0 p 35_)3 =1 .

As mentioned above, the real and imaginary parts of w , the

vertical component of the perturbation velocity, each have the
form of Eq. (2).

We now discuss the simpler of the two cases in which
k2 > 22(H) , for which we have trapped wave solutions and the
contributions to the Reynold's stress are discrete (as given by
Fg. (61) of Bretherton). The boundary condition at the top of
the atmosphere 2=H in this case, is Eq. (50a) of Bretherton:
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dz = - K222 (H)e .

Assuming an initial value of @& at z=H of ®(H) =
u, + ivo » the initial values of the derivatives are

14

dw
R 5 = Joo_ga
a-z—)H = K2 I3 (H)uo

- /KZ—EZ(H)VO .

[oN)
N| £
-~
S ———"
o
1}

We can now determine the coefficients a, and a, in
Eq. (2):

-]
]

’

R = U, (uy - /Kz-lz(H)uz)

(4)

wp = v (u, - /KZ-RZ(H)uz) .

Thus, we find that the real part of the velocity wp and the
imaginary part w; are proportional to each other at every
altitude 2z . Consequently, it is only necessary to perform ‘

one integration of the Scorer equation to evaluate either one
of them.

It is now possible to construct the term containing
all of the velocity dependence of the Reynold's stress, given
aw

by Bretherton's Eq. (60);
2 2
ae\ |2 dwR(O) . de(O)
dz 0 dz dz

L — = I
jF(K)dK T 2k T 2¢ o \ :
j(; |@|? az j(; (Wi + wi)dz -
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In terms of the expressions of Eq. (4), we obtain

du ' du. \?
(dz1 - /=27 (H) dzz)
fF<.<)d.< - 2] (5)
2K H — *
f tdy = /Kz-saz(ﬂ)uz)2 dz
0

The salient feature of Eq. (5) is that the values cf
U and Vg do not appear; the trapped wave contribution to

the Reynold's stress is independent of the assumed velocity
amplitude at z=H .

For the case of waves which leak into the stratosphere,
corresponding to k% < 22(H) , the boundary condition (given
by Eq. (50b) of Bretherton) is

an _ + i/22(H)-k? sgn(Un)ﬁ

az

Substituting the assumed boundary values at z=H *he deriva-
tive condition becomes

dw
R
EE—)H = - /2% (H,-x? sgn(U v,
de
a_—) = /22 (H)-x? sgn(U_)u .
z Jy n’“o

The general solutions satisfying thes» boundary conditions are

= _‘/2 vy
WR T WY, 2°{H) =k sgn(Un)uzvo 5
(6)
& /o 2 -2 y e
Wp = ougv o+ 24 (H) =k sgn(dn)uzuo s
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In contrast to the first case, these two solutions are linearly
independent and require that two integrations of the Scorer
Equation be performed.

In order to evaluate the term containing all of the
dependence on the vertical veleccity in the Reynold's stress,
we compute the quantity F (see Bretherton's Eq. (52)):

1 {an an* .
F =357 (a?” - EE—-Q}/?(O\Q*(O) ; (7)

where w* denotes the complex conjugate of w . The numerator
of F is independent of altitude and can be evaluated at z=H
from the boundary values given above. The result is

V%2 (H) -k? Sgn(Un) w(H) ®* (H)
Y22 (H) -k? sgn(Un)(ué+vé) .

(|

Using this resuvlt, and forming the denominator of Eq. (7) from
the solutions of Eq. (6) evaluated at 2z=0 , we obtain for F

V%% (H) -k? sgn (U, )
F = . (8)
uf (0) + (&2 (H)-x*)ul (0)

This expreosion is also independent of the assumed boundary
values u, and Vo * Consequently, we have shown that the

Reynold's stress does not depend cn the chosen values of

vertical velocity at the top of the atmosphere.
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2.2 REDUCTION OF DOMAIN OF INTEGRATION

This result, which reduces the amount of calculation
in forming the Reynold's stress components by a factor 2, is
incorrectly justified by Bretherton. In fact, as will be
shown below, the simplification results from the integrand
being the same at the wave numbers (k,2) and (-k,=-2%) rep-
resenting a reflection in +the origin of wave number space,
rather than as stated by Bretherton that (k,9) 1is the same
as {(k,=-¢) .

Several factors enter in the Reynold's stress inte-
grand; we examine the behavior of each of these when 1Lhe
transformation (-k,-%) + (k,!%) is carried out. First, we
examine the differential equation for the vertical velocity
and its boundary conditions.

K2 (=k,-2) = k2422 = k2 (k,Q)
- =1 -
U (-k,-2) = —=(Uk+V8) = u_(k,2) (9)
2 2 - N2 dZUn oy 2
L°(=k,=2) = ﬁg - ﬁ;—azy = 2°(k,2) .

i.e., the Scorer parameter, being an even function of Un ’
is invarient under the transformation. Consequently, the
Scorer equation and its elementary solutions, depending only
on 22-k? , are also invarient. Using this result, which
establishes that uy and u, of Eq. (3) are invarient, and
considering the transformation properties of Eq. (8) for F ,

we find that

F(-k,-%2) = - F(k,!) (10)

11
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We now consider the topographic factor of the Reynold's
stress given by Eq. (47) of Brethertorn.

X Y :
A(-k,-2) = 7]1:17 f [ h(x,y® e-l(-kx_ly) éxdy
0 0
= h*(x,8) .
. : _ 4n? .
Forming the spectrum function A = ol h fi* , we obtain the

transformation property

472

A(-k,=2) = oo h(-k,-2) h*(-k,-2) = A(k,2) .

These quantities can be combined tc form the integrands of the
two horizontal components of the Reynold's stress:

DUW) cos¢ k
= 2 2 = 2

‘ ooUn(O) K “AF poUn(O) KAF .
VW sin¢ L

The transformation (-k,-2) + (k,2) is seen to leave the inte-
grand invarient:

puw (=k,=2) puw (k, 2)

pvw(-k,-%) = pvw(k,L) .

Consequently, the result given in Bretherton's Eq. (54) is
confirmed; namely that

2T
Jy
0
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3. COMPARISON OF TRANSIENT AND STEADY-STATE WAVE DRAG

3.1 INTRODI/CTION

At the close of the last contract period, two investi-
gations of wave drag phenomena asscciated with the orography
of the Sierra Nevada had been completed. These were the 2-D
transient study presented in the preceding report,[2] and the
2-D linear steady-state study discussed in another report.[3]
In the transient study, atmospheric flow over the Sierra
Nevadas was simulated, resulting in the time~dependence of
wave drag values. Additionally, the effects of moisture on
wave drag were evaluated. A steady-state calculation was also
performed, from which a small-scale parameterization using
some of the important dynamic quantities was developed. The
results of this calculation, where applicable, were compared
to the transient results.

3.2 THREE-DIMENSIONAL STEADY-STATE STUDY

After the completion of the 3-D steady-state code, two
test problems were run. The first investigated a generaliza-
tion of the triangular mountain of the previous report[2] by
calculating a triangular ridge 128 km in length. The second
calculation was applied to the actual Sierra Nevada-Owen's
Valley topography described below.

The Sierra Nevada is a single unbroken range approxi-
mately 400 miles in length and 50 to 80 miles wide. At the-

13
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Owen's Valley we find the main crest running nearly North-
South. Elevations along the crest are around 12,000 ft. with
numerous peaks rising above 14,000 ft. The eastern scarp is
abrupt and quite straight. Owen's Valley is to the east at an
average elevation of 4,000 ft. and ..  a nearly uniform width
of approximately 15 miles. The east wall of Owen's Valley is
a2 fault block range called the Inyo Mountains to the south
and the White Mountains to the north. The elevation of the
Inyo Mountains is 7,000-11,000 ft. while the White Mountains
rival the Sierras in height.

Figures 1 and 2 show the topography of the Owen's
Valley region. Fiqgure 1 is a contour map of the data used in
the second 3-D calculation. Figure 2 shows three east-west
transects at the indicated latitudes. The asterisk indicates
the position of Owen's Valley. Both figures were made from

data derived from the 5' x5! topography tapes described in
Section 4.

The steady-state runs utilized the wind and tempera-
ture profile data obtained from the Merced weather station and
employed in the previous studies.[2’3] The calculations indi-
cate a principal trapped wave having a wavelength of approxi-
mately 19 km. This agrees well with the value okserved in the
Owen's Valley under the same meteorological corditions of
18-20 km. The wave drag results are shown superimposed on the
transient HAIFA results in Figure 3. Two-dimensional steady-
state calculation results utilizing the east-west transects of
Figure 2 are also presented. As can be seen, the results of
the 3-D runs agree quite closely, revealing a possible insen-
sitivity to the topography.

The 2-D runs, however, differ by as much as a factor
of 3. Since the real topography calculations and idealized
topography 3-D calculations agree closely, one may assume that

14
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Figure 2 2-D cross-sections of Sierra topography from 120°W
through 116°50'W longitude. Asterisk indicates
Owen's Valley.
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the idealized toprgraphy is a good characterization of the
real topography. The differences between the 2-D and 3-D re-
sults can thus be attributed to the sensitivity of Reynold's
stress to the topographic variability exhibited in Figure 2.

These results provide some indirect evidence of the
accuracy with which topographic data must be represented. The
question of sensitivity to the representation of topographic
data will be examined in greater detail during the next con-
tract period.

It is of interest to examine the wavenumber dependence
of the atmospheric factor F (the spectral Reynold's stress
corresponding to unit topographic spectrum function). This
quantity can indicate to us what spectral regions are most
significant in ‘erms of both the continuous and trapped wave
Reynold's stress contributions. We examine below this quan-
tity for the atmospheric parameters of the Merced problem.
The distribution of the trapped waves is seen in Figure 4.
The locus for a particular trapped wave is generated by exam-
ining the solution of the Scorer equation for each of the
plotted points. The locus is then constructed by connecting
points whose solutions have identical numbers of nodes. Cur-
rent A¢,Ak values allow the identification of three trapped
waves. These waves are modest contributors to the drag for
the Sierra Nevada problem. Apparently, other waves which are
not adequately resolved in the figure can be substantial con-
tributors as well. Some of the individual points not associ-
ated with an established locus have been found to contribute
more than those found on the loci. It appears as though
integrations having higher resolution in Axk,A¢ are required

to determine these trapped wave contributions more fully.

One worrisome feature of the analytic expression for
the trapped wave contribution to the drag is that waves whose

18
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ii: ;_

Figure 4 Trapped wave distribution in «k,¢ space. Points
not falling on curves represent contributors to .
unresolved trapped waves. N is the number of nodes.

19
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loci are essentially radial in «k,¢ space may be inaccurately
integrated in the wave drag calculation. This is due to the
fact that an increment of A¢ may miss the trapped wave par-
tially or even completely. Some of the loci of thec waves of
Figure 4 exhibit quite nearly radial behavior and consequently
some of the contribution may be lost. A change to integrating
over k,% instead of k ¢ as independent variables might
alleviate this since the spatial resolution would be more
easily contrclled at greater distances from the origin.

Figure 5 is a contour plot of the continuous contribu-
tion to the F distribution for the Sierra Nevada problem.
Both the conti~uous and the trapped waves exhibit symmetry
about ¢=0° 1in this case. The reason for this can be seen in
the symmetry ~f the Scorer parameter and the boundary condi-
tion, which in turn implies symmetry in the solutions of the

Scorer equation. For the Sierra problem v, is given by

Un = U(z) cosd .
Since the symmetry of the Scorer parameter depends on the sym-
metry properties of Un + We see that the Scorer parameter
will be symmetric about ¢=0° .

The F +values in Figure 5 remain large even for «
values quite close to &(H) . In fact, for some ¢ , the F
values actually increase until « = £(H) . This behavior can
be explained by examining the expression for F :

F = 2/22 (H)-k? sgn(U,) /w*(0)w(0) .

One sees that the kx-dependence of F is predominantly con-
trolled by the denominator for « << 2£(H) . For values of «
near £(H) , however, the behavior of F can be affected by

20
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2(H) (1/km)

Figure 5 F distribution in «,¢ space.
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both numerator and denominator. If the denominator is not
singular near «=2(H) T will decay monotonically to zero as
k approaches &(H) . Hcwever, if the denominator has a zero

near L(H) , a resonant behavior can occur in F.

This behavior corresponds to the existence of a trap-
ped wave near A#(H) . While this situation was not expected
to cocur very often, the Sierra Nevada calculations reveal
several such cases as shown in Figure 6. The methods used in
the numerical integration currently do not take account of
this occurrence accurately; an improved integration routine
will be developed to deal with this case.

Apparently, this near coincidence of a resonance with
the locus of #(H) did not take place in the example calcu-
lated by Bretherton. As a consequence, he did not find it
necessary to take special care with the integration routine
in this region. As additional examples are investigated it
is to be expected that other special cases will be found
which also will require special consideration.
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4,  FURTHER CODE DEVELOPMENTS

4.1 INTRODUCTION

When the steady-state codes became operational, various
test problems were run to determine their response to differ-
ent problem configurations. The comparison of the results of
a 3-D run and the previously reportedlz] HAIFA study of the
Sierra Nevada problem were presented in Section 3. They indi-
cate that similar Reynold str~ss values are obtained by-: these
two markedly different codes.

On completion of this comparison, work was begun to
improve the efficiency of the steady-state code, preparatory
to a large number of survey calculations. This program is
discussed more fully in Secticn 5. In summary, the code is
segmented such that the spectrum function, F factor and stress
integrals are calculated independently of each other, but ex-
change data through files established on mass storage devices.
This prrcedure makes efficient use of fast core storage and
decreases computer costs. At the same time, much greater ef-
ficiency is achieved in performing a matrix of calculations.
Since this modulization has resulted in major design changes
in the codes, a description of the new routines follows. The
topography data files have also undergone major modification
and streamlining. These are also discussed below.
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4.2 TOPOGRAPHY

Topography data were obtained from the Defense Mapping
Agency (DMA) and are contained on two sets of magnetic tapes.
The first set contains elevations area-averaged over 30'x30"
rectangles for the entire globe. The second set contains ele-
vations area-averaged over 5'x5' rectangles for most of North
America and Europe.

An examination of these tapes indicated that a re-
structuring of the data format would allow much faster access
to particular pieces of information. As a result, the reading
of all available 30' data now requires 30 seconds of CPU time
as compared to 600 seconds previously.

The new tapes, resulting from the above restructuring,
are arranged in - common format for both the 30' and 5' data
sets. The 30' set requires two tapes, one for the northern
hemisphere and one for the southern hemisphere. The 5' set
consists of one tape covering the northern hemisphere. The
data are written in logical records having 1444 word length
for 30' data and 4324 words for 5' data. Each logical record
represents topographical data at a particular latitude for a
full 360° of longitude. These records are written on the
tapes sequentially starting at the northernmost latitude of
each hemisphere. At the head of each logical record are writ-
ten the starting latitude and longitude of the strip, where
longitude is measured east of Greenwich. Associated with each
data point is a code number which contains information aboﬁt
the nature of the topography; i.e., whether sea bed, lake, all
land, etc. This coded information is the same as that in the
DMA description of their tapes. 1In addition to the code data,
however, another indicator has been added to denote missing

data. It was found that occasional gaps in data occurred on
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the DMA tapes. Since the Fourier transform routine requires
complete data, a flag is set whenever the missing topography
is encountered and the run is terminated. Usually, this re-
quires obtaining the data from other sources and inserting it

into the data tape. The case can then be rerun in the usual
manner.

4.3 THE SPECTRUM FUNCTION CODE

4.3.1 The Equations

The spectrum function code performs the primary task
of determining a spectrum function Aistribution in wavenumber
space associated with a Fourier representation of the hori-
zontal dependence of the topography. Bretherton[l] defines a
spectrum function, A;

2
A(k,1) = g7~ fi* £ (1)

where X and Y represent the spatial extent of the topo-
graphic region in the east-west and north-south directions. h
is the Fourier transform of the surface height and the asterisk

indicates conjugation. The Fourier transform is defined as
- 1 X y -i(kx+1ly)
o Jo

These two equations are solved in Module 1.

4.3.2 Numerical Method

The approach taken in Module 1 is as follows: First,
surface height data are obtained from the appropriate data
tape. Next, these data are Fourier transformed to obtain the
spectrum. Finally, the spectrum function distribution is cal-
culated according to Eq. (1). .
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The topography data are composed of mxn data "points"”
falling within the rectangle specified bv the user at problem
generation timec. It must be remembered that each "point" is,
in fact, an average value to be associated with a small rec-

tangle about the point in questior. Thus, the surface height

may be thought of as a step-function representation of the
topography. A sample 5%4 grid shown in Figure 7 denonstrates

this more clearly. Each of the numbers appearing within the

cells represents the averade height within the cell.

The nature of the data representation has implications

for the Fourier transform. First, the discrete data can be

represented by a discrete number of spectral components.
Second, the resolution in spectral space is a function of the
resolution in real space. As mentioned in a previous report,lzl
this lack of spectral resolution can affect the wave drag cal-
culation through rendering A uncertain. Particularly at
trapped wavenumkers this uncertainty results in a corresponding
uncertainty in the trapped wave drag contribution. The use of
5' data allows resolution of wavelengths of the order of 10 km,
which are comparable with the wavelengths of the predominant
trapped waves. We propose to examine the desirability of using
even more highly resolved data.

The fact that the topography can be considered discrete
is fortunate from a calculational point of view, however. Ccal-
culation of the Fourier transform requires a large amount of
time due to the large number of trigonometric evaluations and
manipulations of the data. The fast Fourier transform (FFT)),

which is an algorithm to optimize the direct calculation of the

Fourier transform, is used to calculate the topography spectrum
function. The algorithm requires that the function be defined
at a discrete set of points spaced at equal intervals in each
dimension. A FORTRAN subroutine based on the Cooley Tukey
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25500 255°25"

© 39°40°'

Figure 7 A hypothetical topographical grid extending 25'x20'.
The numbers represent mean values for the cell. Grid
resolution is 5 minutes.
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algorithm was obtained from the University of California at
San Diego and has been used satisfactorily in the applications
described below.

The finite Fourier transform requires some adaptation
before it is applicable to the topography data. This can be
seen from the finite difference expression for the Fourier
integral which is given Ly

| 1 Y =l -i (ksAx+ludy)
fhx,1) = vy z Z h(sAx,uly)e AxAy
s=0 u=0

(3)

The FFT routine calculates

3
!
[
3
!
[

-2ni(£% + %2)
ag,e (4)

2
n
5|~

rt

We see then that if we identify asy with the height function

as follows

mA A
agy, = —_%F%—x h (sAx,uly) (5)

and define
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1 = £ 0<t<3 (7)

- 2n(t-n)
ndy

n
-2—_§_t<n
then the FFT routine will return the Fourier transform as de-

fined in Eq. (2). The wavenumbers associated with the trans-
form are given by Egs. (6) and (7).

The DMA data tapes, however, do not contain values
associated with boundary points of the area in question. In-
stead, the data are associated with averages over elementary
rectangles ari iie in the interior of the area as illustrated
by Figure 7. It is also necessary that the number of data
points along each spatial dimension be an integer power of 2.
In order to take account of this displacement of the data from
the boundary points, a redefinition of the Cooley-Tukey coeffi-
cients is required: |

2y = PR n[(s+h)ax, (uth)dy] (8)

Following the calculation of the FFT coefficients a subsequent
calculation to form the topography transform is carried out:

. . =bi(kAx+lay)
hy, = a., e (9)

This transformation of terms allows one to approximate the
integral of Eq. (2) without having to use boundary points.

The steps of the spectrum function calculation, conse-
quently, are as follows: The topography data are interpolated
to obtain new values corresponding to the next higher integer
power of 2 equally spaced points in each direction. These
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values are pre-processed according to Eq. (8). The FFT is
executed and the resulting array is then processed as in Eq.
(9) to obtain the Fourier transform of the height. The spec-

trum function is then straightforwardly c:alculated according
to Eq. (1).

The spectrum function, together with the associated
k,1 wavenumbers, is written into a file for future use. The
final task of Module 1 is to Print a tabulation of A(k,1)

Contour maps of the topography and spectrum function are also

plotted. Additionally, a contour map of the log of the spec-
trum function is made.

4.4 SPECTRUM FUNCTION CALCULATIONS

Since the spectrum function code was completed late in
the last contract period, only a few example calculations of
the topography function A have been completed. The study
consisted of an examination of ten geographic areas in the
United States differing widely in topography and location.
Topography data from the DMA magnetic tapes having 5' resolution
were used and the resulting spectrum functions were calculated.
These same topographic data were then resolved to 10°', by com-
bining 5' values, and the spectrum functions were determined
again. The resulting set of data can be investigated to deter-
mine the behavior of A as a function of differing topographies

and also determine the sensitivity of A to topographical reso-
lution.

A representative sample of terrains was selected; these
data consisted of contiguous rectangles within a strip of land
across the U.S. from 34°20' to 37°0' north latitude and from
94°20' to 121° west longitude. This strip includes the rugged
topography of the High Sierra and Rocky Mountains, the flat
plains of the midwest, and the Appalachian mountains of the east.
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The strip was composed of 10 contiguous topographical grids
2°40' on a side (corresponding to 32x32 data points for each
grid at 5' resolution). This set of grids constitutes a pre-
liminary cross-section of characteristic topographies.

Since the study is still in progress, only a brief
examination of a sample grid is currently available. Figures
8-11 show contour maps of one geographic area and its associ-
ated spectrum function located in the rectangle 118°20' to
121° west longitude, 34°20' to 37°0' latitude at both 5' and
10' resolution. This area corresponds to the first grid in
the set of grids and encompasses portions of the San Joaquin
Valley, Sierra-Nevada mountains and the coastal ranges of
California. Figure 8 presents the contour map at 5' resolu-
tion and Figure 9 is the corresponding calculated spectrum
function.. Figure 10 presents the contour map for the 10'
resolution data. Figure 1l is the corresponding spectrum
function.

The figures contain computer produced contours similar
to those produced by the HAIFA code in previous reports.[4]
Actual contours could be constructed by connecting like numbers;
the actual value (h or A) corresponding to the plotted
numbers are given by the formula

(v

max"Vmin) [ (M) £6)1/10 .

Vactual = Vmin L

The quantities Vmax’ Vmin

of the variable and N is the plotted symbol. The #% indi-
cates the range in V

refer to maximum and minimum values

corresponding to a particular

actual
symbol. The blank fields appearing in the plots correspond to

contour levels intermediate between the symbols which are left
blank for visual clarity. A(0,0) appearing on the spectrum
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function plots is the value of the spectrum function at k=0,
1=0 . Due to its large value it has omitted in the contouring
so that resolution could be improved.

The presence of the San Joaquin Valley (having a pro-
nounced north-west to south-east axis) in the grid introduced
an interesting asymmetry to the topography. Upon examination
of the graph we find that these regularities in the topography
are reflected in the spectrum function. The topography consists
primarily of two ridges rising above a flat plain. One feature
extends north-south near the right edge of the topography
graph and the other crosses the graph at approximately a 45°
angle. These two ridges correspond to the two finger-like
extensions seen in the spectrum function plot of Figures 8
and 10. The horizontal extension corresponds mainly to the
irregularities in the N-S ridge while the diagonal arm reflects
the diagonal ridge.

Due to the symmetry properties of A, the graphs exhibit
a reflected symmetry through the origin. (Note: Due to the
number of contour intervals and the slight displacement of the
graphs of topography and spectrum function, exactly the same
plot character may not appear in the reflected plot.) We also
see the same characteristic features appearing in both A
plots. The resolution of Figure 9 hampers further comparisons
between the spectrum functions corresponding to 5' and 10'
resolution. Work is under way to improve this.

Examination of the other topographic regions of the
set reveals that frequently a prominent topographical feature
will be reflected in a clearly observable corresponding feature
of the A distribution. Trurther investigation of these data
is currently in progress.
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4.5 COMPUTER CODE FOR REYNOLD'S STRESS CALCULATION

4.5.1 The Equations

The equations incorporated in the code are substantially
those of Bretherton.[l] A slight modification has been made to
the trapped wave integrals, however. A factor of «k in the
numerator of the sums which was omitted by Bretherton, has been
incorporated into the code.

4.5,2 Numerical Method

The numerical methods discussed in the previous re-
port[zl
more accurate method of locating trapped waves was developed

and incorporated. It was felt that in some atmospheric situa-

have undergone considerable modification. A faster,

tions the code, in its present configuration, might miss a
wave. Another consideration was the optimization of the code
such that a large scale survey study could be carried out more
economically. Calculations to date indicate that a reduction
of the cost of a calculation by a factor of two or more has
been achieved as a result of these steps. Even greater savings
are expected once the code modification program is completed.

In addition, the calculation is considerably more self-
contained and accurate. The logic of the new version of the
code is outlined in the flow chart of Figure 12. Since the code
is radically different in structure from the previous version,

a detailed description is also presented in the following sec-
tion.

A trapezoidal integration scheme is currently being
employed in the evaluation of the stress integrals. The inte-
gration uses a constant increment Ax and 0 of «k and ¢ .
The integration over «k is currently carried out for each value
of ¢ , although the order of calculations will be changed for
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Figure 12 General flow diagram of drag code. .
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the newly organized code. First, the Scorer parameter profile

is calculated for the current valuve of ¢ . Values of ® are
then successively calculated for all kK=values. The values at
z=0 are then tested to determine whether there are nearby
trapped waves. If the test is negative and « < 2(H) then
the region is defined to be part of the continuous spectrum
and the stress integrals are incremented using Bretherton's

Eq. (54). 1If the criterion for a trapped wave is met, a search
to localize it more accurately is begun. «k-values between

k=Ak and «k are searched until the denominator of the F i

expression is minimized to within a user-prescribed accuracy.

If k > 2(H) , the trapped wave occurs at a k=value for which

the perturbation velocity w at z=0 vanishes. Since the
real and imaginary parts of the solution for «k > £ (H) are
proportional to each other, they both must vanish together.

This property simplifies the search scheme for the trapped
wave considerably.

Figure 13 depicts the typical k-dependence of the
Scorer equation solutions at 2z=0 . TLet Ky be the k=-value
of the trapped wave. We also denote by Wy and Wo the real
parts of the Scorer equation solution for k-Ak and & at

z=0 . An iterative search is performed which utilizes linear

interpolation between Wy and W, to obtain a more accurate

guess at Ky o Using this value of «k and its corresponding
wR(O) another linear interpolation is performed using the
member of the o0ld pair of w's of opposite sign tc the new

P Ry T —

value. The search converges quite rapidly and usually requires
only a few iterations. The criterion for convergence of the
search is a user-specified value of the permissible change in
the "s" term of Bretherton's Eq. (6l1l). It was found to be

superior to a test of wR(K,¢) compared with a small number
which was found to be unreliable due to possible rounding eirrors
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Figure 13 Typical dependence on wavenumber of the solution
of the Scorer equation at z=0, wR(O) VS. K.
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in W where the amplitude of W is very large. Care must be
taken in choosing the size of Ak since it might be possible
for Q(K,¢) to change sign twice within the interval and a
trapped wave wculd be missed. Present Ak are very conserva-
tive, and it is felt that this situation will not arise very
often.

For values of «k < %2(H) , the real and imaginary parts
of the solution to Scorer's equation are linearly independent.
Consequently, the real and imaginary parts will not simultane-
ously vanish at 2=0 for any k-value. Both may simultaneously
become quite small, however. When this condition occurs, a
peak in the F distribution will be present. The height of
the peak is a function of Ww*(0) w(0) , and its "Q" , corre-
sponding to the width of the peak, is a function of the depth
of the region in which the solution of the Scorer equation
undergoes exponential decrease. A large value of "Q" corre-
sponds to trapped waves with a very slight upwards energy leak.

Consequently, a trapped wave in the region of « < %(H)
must satisfy two conditions. First, the value of w*(0) w(0)
must have a local minimum. And second, the peak in the value
of F must be sharply localized. Bretherton suggests that the
first condition can be recognized by examining the quantity
arg{w(x,¢)] for sudden changes as a function of « . This, in
effect, requires either the real or the imaginary part of @
at 2z=0 to change sign. This is a necessary condition for a
trapped wave to exist. For «k > £(H) it is also a sufficient
condition. However, for « < 2(H) the second condition dis-
cussed above must also be met. A sharply localized peak of F
requires that a resonant behavior of W occur. This, in turn,
calles for a sufficiently deep atmospheric layer in which
gravity waves are reflected so that the leakage of energy into
the stratosphere is small. This condition can be quantitied in
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terms of the quantity
H
V2% (z) - k% az ,
0

which is a measure of the exponential decrease of due to

wave reflection. When
H
V2%(z) - k? dz > ¢
0

where o0 is a user-specified number, the resonance in F is
judged to be sufficiently sharp to perform the integration over
it analytically. If the above condition is not met, the inte-
gration is to be performed numerically. In this case, the
integrand changes sufficiently slowly that an accurate numeri-
cal quadrature can be performed with a reasonable integration
step Ak .

Since the extent and strength of the region of exponen-
tial decay in the solution to Scorer's equation increases with
increasing « , the resonances (if any) lying below k=% (H)
will exhibit sharper and sharper peaks as «k increases. Through
the choice of o0 the user has control over the extent of the
spectrum to be considered as continuum. A small value of o

will require that rather broad lines are treated analytically,
while a large value will treat quite sharp lines as continuous. j

Tests of this section of the code will be carried out
for several choices of atmospheric parameters in order to f
determine an optimum value of ¢ for accuracy and speed of
calculation.
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5. FUTURE PLANS

Now that the computer codes for evaluating the linear
steady-state Reynold's stress are essentially complete, atten-
tion will be turned to the calculation and parameterization
phases. A full scale survey study will involve several hundred
topographical areas and several dozen typical atmospheric con-
ditions. Since each combination of an atmosphere with a topo-
graphic area constitutes a particular case, it is seen that

the total number of cases under consideration is the product
of the number of atmospheres and the number of topographies.
This number may exceed several thousand.

In order to perform these calculations in an efficient
manner, we have examined the time requirements of the codes and
have considered the organization of the calculational sequence.
The linear form of the equations is the key to the most ef-
ficient organization. 1In order to avoid duplicate calculation
of topography factors and atmospheric factors, it is desirable
to modularize the steady-state code. Rather than calculating
the topographic factor, atmospheric factor, and Reynold's stress
integral on a case-by-case basis, it is desirable to form and
tabulate the topographic and atmospheric factors separately.
The desired stress integrals can then be found by combining the
factors in an inexpensive numerical integration. This method
results in major savings in computer cost.
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The spectrum function for a typical 32x32 point topog-
raphy requires a calculation on the UNIVAC 1108 of 10 seconds
CPU time. The calculation of a typical atmospheric factor F
requires 1100 seconds on the same computer. For the survey
study of approximately 100 topographies and 10 atmospheres,
the case-by-case calculation would require computer CPU time
of approximately 10°® seconds. A modular approach would re-
quire approximately 10" seconds for the atmospheres and 103
seconds for the topographies. Preliminary estimates are that
the Reynold's stress integrations will also require approxi-
mately 10" seconds. The “otal time would then be ~ 2 x 10"

seconds, of which only a: nor part is required for the topog-
raphy Fourier transforms.

The modulization revisions are currently being made
and will be completed shortly. 1In more detail, the linear
steady-state calculation is divided into three segments. Com-
munication between the segments is implemented through the use
of information files on "fast" drums. The first segment has
been completed and calculates and stores the spectrum function
distribution for a given grid. This code is described more
fully in Section 4. The second segment calculates the topo-
graphic factor, F, for a complete range of values of Ked .
The resulting distribution is stored on mass storage along
with the corresponding discrete coordinate values. This code
is essentially complete and is substantially the same as the
Reynold's stress code described in Section 4. Finally, the
third segment utilizes the results of the first two to perform
the integration of the stress integrals. Since all of the

data are available simultaneously, a higher order quadrature
scheme can be utilized.

This organization of the calculation offers several
advantages. Only specifically desired cases need be integrated
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and the files can be augmented with additional cases as de-
sired. The individual segments of the code can also be exe-
cuted for a lower computing rate since a much smaller portion

of core is required than for the code version in which all

parts are unified. The computer instructions for each segment

require about 10,000 words of core storage. The storage file

for the spectrum function requires several thousand words per
grid. The F factor file requires around 10,000 words per
atmosphere. From these numbers it can be estimated that the
mass storage requirements will not be expensive. Computation

times will be slightly longer due to accessing the drums, but

overall rates will be cheaper on a case-by-case comparison.

Greater flexibility is also achieved since additional atmos-
pheres or topographies can be easily added.




TR SRy

SSS-R-74-2023

REFERENCES

Bretherton, F.P., "Momentum Transport by Gravity Waves,"
Qtrly. J. R. Met. Soc. (1969), 95, p.213.

"The Effects of Meso-Scale and Small-Scale Interactions
on Global Climate," Report No. SSS-R-73-1727, Contract
No. DAHC04-73-C-0003 (15 June 1973), Systems, Science
and Software, La Jolla, California.

Sheridan, R.S., W.G. England, B.E. Freeman, and J.R.
Taft, Systems, Science and Software, "A Computerized
Simulation of Flow over the Sierra Nevadas," Summer Simu-
lation Conference, Montreal, Quebec, Canada, 17-19 July

1973.

"The Effects of Meso-Scale and Small-Scale Interactions
on Global Climate," Report No. 3SR-1034, Contract No.
DAHC04-71-C-0018 (31 March 1972), Systems, Science and
Software, La Jolla, California.




SYSTEMS, SCIENCE AND SOFTWARE

SS5S-R~-74-2023

PART 11

DEVELOPMENT OF TRANSIENT MODELING

49

P.O. BOX 1620, LA JOLLA, CALIFORNIA 92037, TELEPHONE (714) 453.0060




SSS-R-74-2023

1. INTRODUCTION

The previous project reportll] presented the deriva-

tion of the equations solved in the newly-developed 3-D
Boussinesq approximation fluid dynamics computer code STUFF.
Modeling capabilities were discussed and to some extent the
numerical approach taken in STUFF was examined. Since then,
the code has undergone considerable modification. Efforts
have been primarily directed toward code optimization in exe-
cution in order to increase computation speed. However, some
attention was given to reducing the core requirements of the
instructions.

The following discussion records the results of this
modification program. Also, a more detailed account of the
numerical techniques now employed in STUFF is given. This
latest version of the computer code is designated as STUFF3.
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2, MODIFICATIONS TO THE STUFF3 CODE

2.1 CODE OPTIMIZATION

2.1.1 lntroduction

At the close of the last contract period, it was
determined that several parts of the STUFF3 code might be
significantly speeded up by more efficient programming. Tim-
ing runs had indicated that the major contributors to total
execution time were the local macro-scale calculation and the
particle buffering scheme. As a result, the routines which
transfer the particles to and from core were completely re-
written. The macro-scale calculation was more efficiently
coded, and a scheme to selectively avoid the full macro-scale
integration for some time steps was introduced. The results
of this program are presented below.

2,1.2 Modifications — The Buffering Scheme

To review, STUFF3 utilizes a particle buffering scheme
such that only a small fraction of the Lagrangian particle
properties occupy core storage at any one time. The rest re-
side on mass storage devices in distinct batches. They are
retrieved, when required, recalculated, and subsequently re-
turned, to mass storage. This method allows a certain degree
of machine independence, since the core requirements of the
code are reduced drastically. Cucrently, STUFF3 has been
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utilizing a particle density of eight particles per Eulerian

cell. This results in a requirement of 64,000 particles in a
20x20x20 cell grid.

Since each particle requires six storage
locations for position, density, contaminant and turbulent

energy concentration, one sees that this amounts to 384,000
required storage locations.

To keep such a large amount of
information in core would be prohibitively expensive.

With the advent of mass storage devices with high rates
of information transfer,

buffering schemes have become practi-
cal, both from an economical and run time standpoint. STUFF3
stores the particle variables, associated with 500 particles,
core at one time. As a result only 3000 core locations are
required to handle the particle-based information.

in

Since most
accounting systems utilized by computer installations heavily
weight

core utilization, this technique results in marked
economies. The penalty one pPays is in the resultant increased

run times and a high use of the I/0 channels to the peripheral
devices.

Both of these factors increase the cost of a calcula-
tion.

Timing runs were made which indicated that the buffer-

ing scheme was, indeed, adding substantially to run costs. As

a result, an examination of the code was made to determine if

the particles contained in core were being utilized to their
maximum efficiency. By alteration of the order of the particle
calculation routines, it was found that the number of exchanges

of particles between core and mass storage per time step could

be reduced from 9.5 to 3.5. The effect of this reduction has

been to render run costs considerably less dependent on the
buffering feature;

the contribution currently is approximately
|

The reason for this small value is that arithmetic

calculations now dominate the time required to execute a time

15 percent.

step. Actual run time and cost have been reduced by more than
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30 percent on an average basis. Larger grids yield larger
relative savings.

2.1.3 Modifications — The Macro-Scale Calculation

Further optimization was centered around the calcula-
tion of the local turbulent macro-scale length. Since this
requires three-dimensional integrations over all space and
calculation of the components of the strain-rate tensor for
every cell, a large fraction of the total run time can be at-
tributed to it. Two optimizing mechanisms were employed. The
first was a rather straightforward implementation of a sug-
gestion presented in the last report,ll] namely, that the
characteristics of the local mean flow are influenced primarily
by the quantities in the neighborhood of the point in question,
and less by quantities further away. This scheme was incorpo-
rated into the optimization program as a limitation on the
number of surrounding cells to be included in the spatial inte-
gration. This limit is established by the user, as an input
number.

The second scheme is suggested by the fact that the
code is used to study the evolution of fluid flow from a non-
steady to steady-state configuration. As the fluid progresses
through the evolutionary sequence, one would expect that the
local macro-scale also reach a steady-state since they are,
in effect, dependent on the mean flow. Also, we would not
expect large changes in the eddy viscosity distribution unless
the macro-scales have changed significantly. The user speci-
fies a value which he considers to represent a significant
change from one time step to the next in the macro-scale dis-
tribution. If this value is exceeded on any time step, then a
complete re-integration occurs. If not, then the eddy viscosi-
ties are boosted at a rate which corresponds to the rate of

change of the average macro-scale. This procedure has the
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advantage of entirely eliminating the integration at late

times resulting in correspondingly more rapid executions of
each time step.

2.1.4 Modifications — Reduced Instructions

Secondary optimization focused on the reduction of the

number of machine language instructions necessary to represent

the FORTRAN coding. To effect this, all routines were examined

for FORTRAN structures which could be re-coded such that they

would be translated by the compiler more efficiently. This re-
coding would lead to an overall reduction in the number of core
locations necessary for code instructions. Upon completion of

this task, the code was reduced by nearly 5000 words to 18,000
words, a reduction of over 20 percent.

2.2 NUMERICAL METHOD

252,11 The Equations

Before describing the numerical techniques employed in
STUFF3, it is useful to summarize the set of equations presented
in the previous report. These are the fluid dynamic and turbu-
lence equations governing the flow. They are, however, in a

somewhat awkward form for numerical solution. A secondary set

is, therefore, presented which corresponds to the approach
incorporated into STUFF. The generalized set is:

9 .
ax; (U3) =0 (1)
U, au,
d d _ 0 i
E(Ul) + 'éx—(UlUJ) = W[(\Ha}\/ﬁ) (K-. + H?-)}
J J J i ‘
2 |
oP
- 3% tQg; +s €2)
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Equations (1-3) represent conservation of mass, mean
flow momentum, and turbulent kinetic energy, respectively. The
fourth equation represents the thermal energy transport equa-
tion written in terms of a density variation. Additionally,
with a redefinition of Q and D , Eq. (4) provides for the
tracing of an arbitrary passive contaminant. All terms have
been defined in the previous report. The heuristic coeffici-
ents «, B, and y are given by

0.065{1 + exp[—(¥ - 1)2]} (5)

Q
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1.4 - 0.4 exp[- (X - 1) ] (7
The local turbulent macro-scale is given by

A2(X) = I2(x)/3I2(X) (8)
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where

I2(x) = f wix,x') 0" (X')av' (9)
All
Space
-> > > 2
I (%) =/ w(x,x')[QQ'(x')] av' (10)
All
Space

and w(x,x') 4is a normalized Gaussian weighting function de-

Additionally,

2 _ 1
Q° = 5 Fijrij (12)

R")? = (aQ/axi)(an/axi) . (13)

While Eq. (2) does, in fact, govern the evolution of momentum
distribution in the system, it contains a pressure gradient
term which is awkward to determine. As a result, many fluid
dynamic computer codes use a formulation involving derived
variables which eliminate the direct pressure calculation.
Methods using the stream function, for example, require special
care in applying boundary conditions, particularly at internal
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boundaries. A method of Chorinlz] is free of these difficul-
ties while still avoiding the calculation of the pressure di-
rectly. The resultant set is expressed in terms of primitive
variables, and, hence, allows straightforward application of
boundary conditions. Equations (1) and (2) are combined, and
use is made of the assumption that a pressure field alone will
not generate rotational flow. The resulting momentum and mass
conservation equations appear as:

2@ ) + 2—-(6 u,) =2 (V+=)\V2E) Y + EEi )
e * g 00y) = =,

5 j 9%, i
+ Qgi + S (14)
32 _ ~
EEAM T (15)
o d
Ui = Ui + 'éx_l(l])) . (16)

With this modification, the equations are in the final form for
computation. It now remains to discuss the numerical method.

2.2.2 Numerical Method — Overview

STUFF3 is a mixed-mode hydrodynamics code in which both
an Eulerian and Lagrangian matrix representation exist concur-

1 rently. In general, mixed-mode codes attempt to minimize the
inadequacies of one representation by combining the best fea-
tures of both. This usually results in some or all of the
field variables being carried in both representations (i.e.,
available in either particle or cell based quantities), with
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one or the other being utilized as the solution progresses, to
evaluate the various terms appearing in the differential equa-
tions. At some point there must exist an exchange of data be-
tween the two such that each may be able to exert a "correc-
tive" function upon the other. It is through this mechanism
that distortions in the Lagrangian net, such as those due to
high amplitude waves, can be minimized and that artificial
diffusion in the Eulerian sense is greatly reduced.

Before examining the data exchange routines of the
STUFF code, a discussion of the allocation of the dynamic vari-
ables between the two representations is in order.

All of the scalar fields (density, contaminant concen-
tration, and turbulent energy) are assigned to both represen-
tations, while the vector fields (in our case this is just the
velocity field) are associated with the Eulerian grid alone.
All changes in the distribution of a scalar dynamic ve.siable
are reflected in changes in the particle based values during
a time step. At the completion of the evaluation of all dif-
ferential terms, the Eulerian quantities are assigned the
"average" of the values associated with particles contained
within the cell. This censusing of the particles is one of two
exchanges of data in the STUFF code. The purpose is primarily
to replace the explicit Eulerian evaluation of the scalar
advection terms with a more accurate Lagrangian one. In this
manner, the errors induced by artificial diffusion are avoided.
This censusing procedure is defined more explicitly in Sec-
tion 2.2.3.

The second exchange of data takes place in the calcula-
tion of the scalar diffusion terms. These terms use both
particle and cell based values. This procedure is also de-
fined more explicitly in Section 2.2.3.
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