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CONTROL VARIABLE METHODS IN THE SIUlATION OF A
MODEL OF A MULTIPROGRAItMIED CO-MPUFER SYSTM

W. dw=-,

sg:jw CUang

vw r:, -- ptlvau -4 %tcr Czibnm ana ni "A anr=4ti Uno 4-Mmt ani-
m ~ ~ ~ ~ ~ ~ frf 01 moi ---- m* woFt&1i

Man qnesnions f Itrstwhc rs in th:vluto o h pefformiance of nuipoane

techniques. One approach to testudy of such models involves the dev lprent ci Mote Carlo
Simulations-, and their strengthening by con11trol variable and concomitant variable nrthods. see'1

bu. tractable analytil 111"h; Ii goa -. toObtain uzrtju numerical results hy men =I which
systrro perfurmarw e an be judged.f-

This patter is concerned with the application offcontr~r v-nahlr nteo to simulation fia model
of a demand paging optrs-en hepri~a bew to "btain estimates ot Mi~stem ore-Ave-ad.

The computer whicdh we conidfer in this paper; t-i SrLS-*esstr sVye- I th tw-o-hevel mceory
which is rnuhin rmrnrnd ar-t oucinlet in" demand mpn- envirnm'ent. Schr systerms ar. described
in 1-. 5L The- foltlowiru ri'ef e--ussion sires the hackzrnmun-d nece-sany fibw an undemstndineg of the

modei sirn ro etin Ill

Int a pwg system A! icformation that is explicitl} atidresiale by the- enh-al ttrestoar =C-PU)

is divied anto units A- equal .ccalled pages. Thec main mem-on =.r exc' ion stove! is Cn-'ittl
divided into par-sizr mr-ruionft cafled pare-frames. In Such machines it Le nots-bl to exrecute a jwrram

by. suw'lving it with rink a few petge-framv-= of min ntemr- . IHaving ..adeC +-er pagge crta'ifi-g Ar

first exectuable instfrni4 ito 2 DMge-ttanr. cxefift.u) Lmphns an'- %I'p-util aniem US h-for-

mnatn etuoa no found In main memory. The- page vonlainir- the m"- mng int---ufnio" -hv

fethed ca owr~s apae cnenar n ainmemry IJFA s aentsnrr 't-s~hu e

ptanut informarion is. bro-ught in:". main mnemon- inly aIs a reSUl' 4- an al--ffll I. s I tt~ Iff
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436 U3. 1P (AV El AND) C. S.SHEL'tR

nat curre=li hrvin An instance urt thIns =rp tdinmanti fohr a nawtut otl til tei

termd -a page exeetwn. When dealingl %td 'l'r ;irmas- or in a nl-illrograin'aifla iflhne it. ilii

tn(e main flrizflflfl sh-ares! alnng.st setiera! rzrarni. It i- usually the cawe that wn.i another pre

hac to lur f ehed front auxilian niemn the main -tore: i- tid. Consequenli a chunce must- he rade

as I. wni.h paelae ite ==.tnm i o be .avnriten. The rule ttenn hi hieiI aldthe rrpleeeil a-gort!'nz It 6- usu-. the vas-e tha- tihe contzent of the pate-frame cho- en to
[he- Overwrittenl niu-t he- transferrrc t11 mlxt-ial Pnemotir 're the oerrwrtnng

The Eswnmial cuinnonurnts si oz-. k'hehrdwaer= coquigurt-~n17 which wu consilder ar Shcnn in Figure

1The main emon= lI rontainS. 4pa ranic- CCUI i- -n channel control unit, and A 6 an auxflflr

-I aedevice. We assume that w' all time - 11 2! pro ei prirran-m. Pi- P _ are- being

run in te Sy tim. A panr olf NJ is uIe as the rer~idene 4j sistem kcontrnt proigram- Of the -r''1'fla
'IN-framn leS -1f cnn mnots i-franur- are alkto-ated. ito problern HroaraniI Clearh be want

Vs, S'. a-nd if I. iS tLhe num-wr Ed panes- In rogram P

the ea~=e 'anteret is that

Undr thr mwltuprazmm *m -'surnifr nthr More thsan tnte pt ormr- dn in ak-c main
-ei X! ' 2). Fh- rtnn lue- .1411-es tleiwt nteptua! queue is

foremedl ',rI tv'trer sinrservie t % d- H * the cea-~ !IJTI4 e-ow ' 'nCP'U cErever- aprararn
11 r illn .47- a. lantr PL-'-n a=r iich t: w1 in main inemorn.

Srequles r diaota erc'rr irr = C4 L a.2ito - Tie rell-renced

pa- is ~-m'oved trr- ausrn-'- l n u aartaaElm---~ede -Ui
*1 toernder $11vcefltr ' 'the next M.aiab= -n-m A' Gaza trar~me-= -.- &*%e 1'=u-k'S~ of ar, ti of

r--ine. Ev=-=rol unit a an an -- t put e--~ -- at 'sium .-r a dik -~~cc w- =a ve a- '""hi-

~rtnarm nm.ther- wE -. ntmeair- :he at 'rag- -Ahe n-' H-=z ttaa-- -. -u-c r -if 'o -Jr2~
j £all -=-~tL -c- at -~- for- tz :ransfer vei nrted the dot nfe~r

prit ramUA Wioit the D A t-frrtir-g ;W..' I 'or- E4r m irtoManlie.e
rt t- n CM car be =.aetine !irrizg tu ~ n haf mat0 horwtr-is-et.tfia.ta prm-indcsn-'ia

hin rte1 CP U armish the isi:dn fr Tl ~ nrdr bu in' 1t-f tinh- o vsr-iand eraer-ut on

= PrEPaon= ehzr--=---=-. U op;--kf-- lig et fra - ari- -mar rqbei5 oe-- r

a' - = - -= re'- -no hio -""p-r- nn ee~u n
- ~ ~ ~ ~ h - ;tu- -M =ead-=-n a n"---rat- r=-t-, I-- u- - o n --z *hatil aE diL~li-

tic--.r-.-.tutfc= --- 1 Moe' il w-h"' c i" -h

I t -- rt 1 ~' d Mx tn. -- 1 a- tici jtzth- ar
19tiL- __--- 3 th---v dean f-- at- it-InKp" an- -he a -- ravinr trin~ in
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11. STRUCTURE OF THlE MODELS

-h~e modiUP we cc:= '4r Cil =-A. 0- Io -, . n-ial-agc!. the -age 3-1i thr ft -gle. --r rigur

2. TInc Sv~stc-m -eve constant number. N. of prm~i-msm P P. . P. 2N i2. -an off winrhu-

= t~l==~4.. Whhn =l- ae -v Wr~-~ Vcegie m= 4-E,. each v~=~ cer a -=rd

pg=,n - -- a in =-=- g a p-i r~nreci -- rca- thre =~r-= us=-, S..ce rd---:m

ce pagin- uor-=---=' =t.-err-c Ther -=-au'-n- -- t- a--- . and ~c:~rc
as svimv errtifll iuv:(f& netch thin ~k 1 euaspcking u-p tenext pri-am m.
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Sjiz1fle-i.n, irm ifte CjUeuI and- nr-ti, itS -_Achine state. W.=1 asmea=wih the activity required
ill: e wmchleslt dHP

II~~~~~~~~r '3tteahietaettteJirrm rfiieuishirw the CP1.-
mxerte thfe replaccmtu-nt akaq-iehm.

q.--nas-t'int tile Champ-- r-ie-anIhthe required aean

SIn- mrr a~it i .; , slu a-'y requirel1 't
Ix -=U--1t the next ma- t'Ae f

Te in th Ue and the termujano - cf the input-uttput operation .-- a r-rn -ith !13 a-isrt ~= PUn
-e~-r ~itl -it ndr . rH-- -ta1i.,. te raa- r -it-f e=u -t ity is the ta Ser lM

-~ ~ ~ ~~ b UM*nw- f- mm .. ' -i- r~ri a A.ngle CPUtn 3 Snzai DTU.. A A--. s-ervice can
'-b-n tnI-: ly the I1 i'--e -err-%nnt serviesacprwe.hibCUItsasme

'- p-= * =-r--= .- n A-itanenvit-v -nir jai jthe restriction Lhr, nonrnt~ri an nhe reme11l 11vsw(jrw-f T s rrttd~ a sce.. e. It is assumed that
-21 -r EE I==-ien r.fl;1Yt tn-taLnrI munn. tnhe Stt statin hiMv mE. th - P Pi Ill - _ -a _m m

in ~ ~ ~ ~ ~ ~ ~ u -i' Ins--= 
- -n'- 

nvou=- -ncetfi 1zal mcesaifin ton the-1 V H t='u Uc-Ln in thfe a--tac
-h --2-lt (CI' nod.. -I zr to if inr~ threom systemH

an*q i -tjj p CPUr.ndte ht-enTps n znuttenpim howeve-r.anmifltrT i-;1i=.of .i Senei-vursa- an. M-r twic ~r-e rnre by the D)~. h~~inch att whieh a 
- -rv -

--'m -.-. fl Wit i. 'm----. M" :cnmne tinI m-t lue~ wonfl M- znterruntsm. r1 s the-
ftrnin4 a: = - sr - the re-emptive =t- 'rk tfl

Al- an of cumpa-.i--n a--,.-rii a luh-fiterplun0 _at- $1-or Ie..ufCP cuvs-e ne m
_47=0-145tenujnionofae

Rlute of Priority Senier
al 1--eni a pfngra-= -----= - -i~.Iegsta 4..

n=a rora. -. _ - I. n h i hat -ram HI- -- r-ie is mot in pr'gressm
= -. =-- r sta srvcern~r-.4~ =--.--tj*~ a-se beginr=- ser-viee.

_-S! at t --s L cm- le _A-I-n pm-t-ire a: se.-e ru---4 t-le -l- -enlee-.
m I '4 -scr%-e "ena-= = - =Wf I e ith an. - t=

-U -f=a a U;n-c I -envin-. and i.-c 4111-3- at- he--ezn-uing of(the a-stag

rf :5u~ Made =5-=
hj~~.~-i-.--rf:=it is rule- #11; p-r on - dtjl_~ ~ - i r u assu nm ed o rm

-:ffie vrllier ,of --- n'-. when the m n t mp---- r';cdAfowa- .-

-TP' -"-.--;v rule is -k s~

t-ima'r stut both -1w -Pni-m ---. .-- tae and! the 'i-t-uri th -=--t are s-erved Under a

.~r-E- gfi. gnrf~ 5;aa-. 4.' r 6-sgp- %W'g D~t-iti-ng tatA- sen-ie whie

9 r-We. Sum -1ri a r -a na-r-cff-i!~a %cmitin n 4 .
WE -= -- ag.-l until a> 4 %r-- It- ,-.- -'- a fJ w ''fl r ha- Ie r- -rflJ wi-fore its at.-rdc

J-~qri. In 1="m-tterxrma n ue .j he cm: Fvh riot muneduntZ
mr~mud~ntt -A
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by (I). We select an approxinate mod-l f.,r I It ' it is possible to calenlatv iahtalyticallv or numerieally)

the expectation of IV*. [IPi']. relatively i-j-ilv. If lbeing the rusp n variable of the model approx-

imating that giving If. Although it is in nalt-icte likely that then disiributions of If" and 11" will b similar.

the basic requirement is univ that IT" and I[- - be well correlated. llav-ing clhuen a control. then Simulate

IV' and I' using the saine random numnlnrs R. That is. the inp utk aliues V are identical across re.liza-

tions to as grea a degree as possible. This implies that IV and Wf,7 will be c-rrelated. We then may

estimate EPW'] as follows. In the present ca-e. F(I''*] is obtained numerically from the thearettt Of
section IlI.

ci [~l=EIf* l- --: ! Fr E11I V-I"

I is easily verified that the estimaii unbiased. Further. 1e hale

(6) Var'E[W],} - 1 {VarfW] -r \ arflf 4] -2.,,[if.IJ11}.
'I

st that an improvement 4'ver -traightftrward simulation has been obtaintdl if If" has the property tihat

iarLU] 2

In Table I we -ive rsuhs of experiments for straightforward -ampling. i terms of idtich the

other mtethods can hir assessed. We display an estimate I* of \Var[if-] oitained from a set tit in ,: 20

independent observations of If" along ith 11 di- mean of the i ob.bervatinns. In one east- the resmtse

TABLE I. Assessment -if Straightfirward Sampling

CII t!ii14ll"1 lIt I

21 f ) .662 EMIri;; ) 1.2:8 2387S
t.tp 9I.P-) it."(5 ! 78.87" .1
Ma5O 'lA i~ P N2 t.r' it v1 119Q

variable It' is CPU utilizatin and in the other ease the respout-s ,ariablv If is DTU! utilizatiot. In built
cases, the system input variable N is the eximn.-ntiallv distributed t? st-rvire time. For p ..;itive inte-gral

c. CPU utilization L-IiI is defined by

x4It .
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whiere A, (t) is ther luidi antnu,,a Of timle that ate CPLj render., servie ur3 1  in 'wunterval (0. t,) . Lit -n ieepc i hnnte aea iil th ze 111 PiAfnt o ligte !.-
service. DTUJ nthlzatiiim t'c isr. (lf: w hu-

iWhere '1(,)is abw filial iluiltl tiane thai ii l)'! F illers ceri 'v - UaI'' jn. i

Al reut..r,..ayein 
th i' pijiwer are- fu~r Ihr v~ -- e rfJ ZIPiEiiIwtfn'n 

rofri n.' 
anwtPfrae~leiiT iElt'*4 'r~~Ie 

d,li-n~'iher hll, t hat oif Ific- 'l ervive Itwnshtah'. I'tll i- ae ' ''ll'' "mt. 3
#) iuai'j'f the d'liill' 'verlaeaal Weir f.I iul III,. dura. 41. _fr 1jLIni each realizati,at all c'=e4'mn;r art- Wte .' irO il i-l Litfih'vf1;-_ . l4 l I rI 1 I giturfiinaf Un 411" eadi n alwizani whell the tr - :fi -hln.r aai.ali lt(Pl=

value-s oif CPU1 aaxd -I!- a 'iiinwih irrI 01=sigltl.(un11 
i\'II!a titan interval tI- rAi-f - finsti realizail,. an h trtgat im) M iI~a......el/~ I,

Res-ults (if exitaerifilr fill on'he strap lit{ i n-1t1n are- given ii li 4. 1112 In we display re~uhtn- baiedfrit, a sie tliai, i h n i tildutI 'tiization,. respeeai~f. We 'a isplay ill Tlf. ' h lt, CIT (11itilti .IT t 'iuan
Mate I f ar jElf II . ainted frmln.ll 20) iliee .- ,Ii . ~ il 'CF1

iilh, of1 E lH 1c'it" -' fll tile -srv ti v4 
il.'-

PF-11iate 417 V r Uiv-jiIt abl u". -at-it InI h sI'i-i

Co m -tlta . arihaC i 
J t ft)iq.t1.

U ~J,

Lfmt

~ :s . ~%tr~j.he ('~.-e.=~V 7.t1; T I

19.600 s-~fS t. I
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TABLE 4. Assessment N-Stra-ivln Control

CPU Uuilizatiu-n DITU-tlza

j.00 6324 0.0149A 96 u03w9
1.M0 9.3.007 0.28M9Q 80609 QU6AM
0.- 99.615 0.01530 -46. nm (IC

ithstraight control estinat1 1. 2L Ol

20

The -onof -(4)-s s4 -ihothe tissibilifr for i Prso irdacrrctn

where $ is selecited to minimize the variance oftheestimatE(Wr. I uth pimn

is used.- the resulting tuptimail regression-iduse coto siaehsvariaace

(9) T {E (If rVar 1 (IT{1 (cr(. i

and ltherefore will, in theory. -always to an_ improvement- over simple! estimhates. Although- Vsr
is presumably known, the required covaniance will., not-Iem known and -must he estimated--from data.
The reilistic estimate uses an estimated optimum fl- and is -of the formn

010)EtIr 0 w pw ErIi
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I where S-n \;ar[Wt]

' 
--

it should be noted that the realistic estimate (10) may not be unbiased although the bias decreases
as the sample size n increases.

Results of experiments on this control and regression method are given in Tables 5. 6. and 7.
We again use the simplc cyclic queue model (Figure 4) as a control for the overhead model (Figure 2-.
We then compute a regression adjusted estimate of the form 110). where

TABLE 5. Rewession Adjusted Estimates CPU Utilization

F[f*1 A

".6 49AJu -0~9 1 i2.30 65523 laiil
1." ro 88- 1. 9'.0 93.19

Ain0 L9O9GM 0647 !

TABLE 6 Regrr-sin Adjusted Estimates DTU Utilization

A E[W] 41f

1.00 M."__ 0___ rM __ MOW_ W.019 -MTABLE. A ,qeto onrladRgeso
CPU i sfli : 'i lij .--.
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2. FORMULATION

constraints. The rules wvill be of the reMe Point. reorde4-r quantity, continuous review type. We

ass:ume that all demand wichl occurs when the on~hand stock IS zero is hackordered. As suggesed

sube~tto:fl)totl aerd-'einvs-Ine -Col ess M-an orequa to an iavtment limit. and fICH" tota
numbe ofodr-lae!pruit time less tha or equal to a ra-nder workload limit.

subjct:i)ttlaersTh specific form St th e in- delC- depends uP-- the assumptions about the item demand charcter-
isuics and the expresins5115 used fair die total avera= mrhn -nentor eettlnme fhe
pe u-nit time, and total-time-wed shortages per unit time. The firt- assumption is that thre disirti-
hution of lead time demand is nortoal fpl e a es. ThVo'wn oan i sdfioa

the paper. For the P~item let

pxinean leadidc jn
rri=Sfandanl deviaxti C4 I01n demand in -uniits:.

(I1,4jipruJ'anliy tha imr4tnu an-exceeds-r

( rrderqanh

=- nv. Rs~n limit in41 1aar-S. and

Viha continuous reiew inventory pofice- an inderi place aiter thedeadoQ lsoft&
f-Rme hexpce numbe -Y iwores- $lrrd Per unit Tie is AJl. For a mubi-ftem-nvcnori~vdh i itms.toae If: ected numbeaorgi pr ni t

Int~oy investmen p1 cd5u sawn-a

by Hladley and Whimi [51 with rantm _- ite expectedl on-hand iuniy (f) s plen by_

--here B(Q. r) is thre exwessiwti o the epcd*hw atany pitnuImeif letiedmn

isrmally d Abued at ran he shw[3 that

whee

(2) fifem) -. ![rtF-qrp 4 P a r f



r IIU JI4T J P~ ta~s453

I A.nd

41(r

Pert -pnd on-lund qnaa nxprssincan h- siminpievI by omittnthB temadW
:IV-r"Ni m - s if-th ris of tuw is n-t ou l rge t hei B-7 t 4 i e n n tibaih--ttpaper. With -bo- asslrption the isa irrwr invnin -el then gnL

anete hngvMb

iTt exilecird nlumhcr .f barkrders anyr pon M c tim maj Itexpb~i denid ntha ~ ~ ~ ~ zseady giate r -.baiitv distxb& fr negative net mlnr te --4evadWhItin - 3J ued-
tis aprh nndshoed hrhw nadtine deaandiha a nonnal dlsfibiou.the ricirihe

1<6 fur i1t ongsahrf- r ~ah the fi(tiq AM.iedn fr xen

htQw s-L-i and r=x rd TUCemidtiiteIn po--hi nmabiam Cn aw_
lrnnas:

min~t.fle 5'ZAqin)

subject to

(4) 0'f-~ir ~ O
a %

Q~=

3. SIMFIED MUL~TIIE-M MODEL
TUe basi. anhijicin. artimnt veriew forirdatim gien in the -n cinl. 555 ehem tha the irk, quainti.cswe dseerined frn ome ot-h aritetin,. Sefdiv the- assirmimao

imade tha order quarnw ame detewined fron the equatoi
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wldch is a form of the Wilson ccom-lot bultTeqatiyhsaeniahwih sasie
whe the samerforA ihemstFrom the rorder constninz and Euation 6).wethen rite

VAm

A;

Ile deteminazion of A then fixe the order rr,,s fromEutio fft- a1nd elintes mne se oUJed.

'- fle these order, qunte use~lbte lntn-niseh

g 8r) r Zxkpfl

II=

T-he muJH-em jrc lS with Elied order quffk ano -he -as:l

(8i mnimztr) V Z ivd _J

-S-

wher h is dnterminted fivm Equation (1) and n- unrestrced.
I-nderiviu~ a oftnio fujr the puhiem s tated in Equsisms 01and ftwe up the Lagnngizau

function

v ir r F

- v~
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Thkiug Panial denivnwies with respec to d-ie dision vazinhbles ad i hs psit qa to
zero wilds

-and

aL

Ths -the necessary conditior for opo-imalitr ar

and

ahcirL7jiwea -- u.rii- r-=inl&"MC- MSU~ ep-U

t~drxtiokaiwcx.now tha the -h

4 f 0 ft-all raluesf-,. thnXi oaZ ai--dmime u
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The conditions under whichi the sequeni'e (if unainstrained ininimization.s converges, to the --olutto
of the original problem are ghru by Fiacco and McCormick (2] p. 602). Applied to our probleni the
ba~sic thteorem states that if il) the feasible Suilution space is nontemupty. t2)- the objective function is
convex and the constraints are cinicave and both are twvice continuously differentiable. and f3) if the

Abhle probletti. The third condition fis Saitsfied if the second conudition is satisfied. Thtus everythng
hinges onl the convexity of-the fortnulation

Equation (4) is linear in Q and r and Eqimati;- I-A Is concave tit 0. Together these ceistraints 1-1111
a Convex reglion of feasible solutions. The ob)jective fngimi-n. Equation (3). h, convex if its Hessian is

1=positive sinidefinite. The Hessian of Z.-(Q,, ri) is

Q Q

where

Theeleent ofth flssini re onegziia fr 0 an a'r. The determinant 7x2Z 1 is evaluated as

wheref(r) =2P(r)4)(r) -u-(T) Thi- determian~t is nonnegative if 1(r is nomlegative.
Proceedin- in the manner snuge-sed by Brooks and# Lm 111. the derivative uf f(nm) is determined

to be

dflrd)

which is negative for all values if ri inet- flhr.) and dzr.4(; are positive for all finite values of r.* It
follows that f(ri) is nionincreasing for all r,- Further it can be seen that inaf(r,) =0. so this togetheriwith
the fact that f(r) is nonincreasing implies that fr) 0 ( for all ri. Thtus tle determinant eof 2~z; is
positive semidefinite and lte function ZiAQi. ra)is convex. It fudlows that lte objective futnction ZtQ_ r).
which is the sum of convex functions- is convecx.

The comtputational algorithm proceeds as follows. Begin with an initial feasible solution. IQ. rol-.
Select an initial pi-value, dependent upon {Qti. rj4. Minimnize the unconstrained P-function. Iterate on
p-values using p,,.I= p..-d. where d > L Terminate conlW tations if tlte bounds created by the primal
and dual solution values satisfy a preselected convergence criterion.

*Clearly 4bdri). lte nnrmal3 denity fun-iin.i i~ snurpati. The iiine-w.-igttril shonragri, term is by deinition nonneaive.
Ta show~ this. apply the itrrivaiiie-limit argument iwkee mrr. first vin t6e 2Ar) terM andt then on its derivative im) ~~~rlding
finally a 41.(r,) term hh-Ke *ir is 6 l-arlv n-.rnczn,~~-
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The basic mechanics of the alurithm are given in Reference 12, extensions and the use of extra-
polation for accelerating convergence are given in Reference 131, andcomputational experience is
prcsented in chap. 8 of Reference [41. A computer cnde called SUMT. Reference 17I, (Sequential Un-
(:oistriined Minimization Technique) is available for iBM 360 and CDC 6600 machines.

Example. We employ flue same three-item problem that was given in section 3. The difference
of cour-e, is that the problem was previously treated in a implified manner a'ingl fixed order quan-

tities while both tie order quantities and reorder points are decision variables in the present treatment

L i f the problem.

The problem was run on the Research Analysis Corporation CDC 6600 computer. Starting with the
feasible value Q,=600. r,=200. Q4=270. rte260. Q=300. and ri=400. the initial solution has

the value Z- 17.808 unit years of shortage per year. The sequence of iterations proceeded as follows:

- - |te~lratiwti ; ft t r- _ *_ t [ r
--" (t];

-ARM I I.24O 14.8m! S ! 1M. _.9 _G 416.53

. ? . i Otk ' i

.. 113.1337 22.11 _72 276.18 1286.57 435.13moOZXl U3tUt! 3.3.i 252..773 21i.9 25.1t 436.

n1.3.u I 33.I 1 25I2.7. 245.

- uti 5 1, j3 - -f 7F .M.-3.16 2 --2.7"8 M0 = . .01 . OA 1436.6
*The iteratitn. 'onverged rapidly and the computer time was small (1.6 se).

5..IMPLEMENtATION

Two models have been presented for multi-ifein inventory cttrol tinder continuous review. Both

nv'deis were formulated in terms of operational constraints thought to he realistic of actual operations
(at least in military supply systrms. A realistiv formulation is a necessary first step. but the models
must be capable of implementation by the inventory system which they seek to represenL A multi-
item inventory in that sy.teim could comprist anywhee from 3.000 to 70.000 items. Directly employng

either of the models presented with an inventory of 70.000 items is not anticipated. It is suggsed that
the inventory analyst tork with a sample of the items and the appropriately-st-IlrA values of the con-
straints. After obtaining a iolution of the 'sample problem, the results would he interpreted in some

way so as to produce stocking policies for all the items in the inventory system. Schemes for deterining
policies for every item in the inventory hased 'in the solution of a sample problem will be developed

for each modeL
The first model. presented in section 3. represented a simplified treatment of the general formula-

tion in that the order quantities were not optimzed. The nodel, because of its simplicity, is easily
implemented. First select a representative sample from the population of items. Item demand and unit

cost are probably the must imprtant chara'teristws to consider in deciding whether or not a given

sample is representative. The simplified model of-section 3 would then be solved using the sample
inventory and constraint value, sealed down in priportion to the sample size. The s iution ofthis problem
yields order quantities and reorder points for the sample items, but. more i'.portantly. yields values
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of the two constants needed to generate policies for all of the individual population items& The quantity
h, which is used to determine order quantities from Equation t6j. can be interpreted as the ratio of the
square root of twice the ordering cost to the inventory holding cost. as imputed by the reorder workl ad
constraint.

The other constant determined by solution by the sample problem is the Lagrange multiplier, v.
Reorder points for all of the items in the population are then determined ftom

zAd)=

which is a form of Equation (10). The Laorange multiplier, q. may he interpreted as the shortage
cost imputed by the investment constraint-

In sunmar. the solution of the sample problem determines the constants h and -q which are
used to determine (Q, r) policies for all items in the inventor" system from equations

(6) IA.
and

(13) in) Vlh/ : :

Solution of E qu tion fl3t requires numerical methods of the ortdescbed in sectionI Determination

of the appropriate sample ize is to some extent dependent on t quirements of the user. In general
sample siess' of between a and 10 percent should be satisfactory and shouldresult in feasible- z
cnmputation.

The m-re general model of section 4 alow-s for optimization of both the reorder points and reorder

quantities.. A priori, this more general model will yield better policies. butrequire more computational
effort- Successful implementation depends upon efficient computer programs for the sequential uncon'
strained sohion of the sample problem and the subsequent poliey calculations for nonsample items-
The determination of optimal inventory policies again begins with c sample problem, but with some
restriction on the item sample tenmple has been selected,
the SUMT program is utilized to solve the stiie problem yielding optimal reorder points and reorder
quantities for the sample items. It then remains to use the results of the sample problem to determine
policies for each item in the population of items which constitute the inventor- sstem. This step is
facilitated by the convergence criterion employed in the RAC SUMT program Reference [7].

Associated with the primal (triginal) problem there is a duaL The dual employed here is given
by Wolfe [9] and is sugested by the Kuhn-Tucker sufficiency conditions for convex programming
problems, if we write the primal problem as

win Z(Q. r)

subject to gIf. r) ? 0 j= 1. 2.

then the dual problem is

mit L(Q. r. u)=Z(Q. r)-Xiu_(Q. r)
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subj-c to VL(Q. r, i) =0

14 0.
! : Fiacco and McCormick 44. p. 602) show that it min Z(O, r)-Z* then

- ~L(QLP.), Yr (P-o), U(P-j)) -- Z* '-: z(Q(p.),(p).F The Laange multipliers u. are related to the SLI T solution of the primal problem by the equation

(P.) --p.sOn j)

It is therefore possible, at each iteration in the squential unconsrained minimization process, to corn-

pute the value of the dual The primal and dual solution values bound the quantity Z and may thus beemployed in a convergence criterion to terminate the SUMT minimization. The finad SUMt solution

yields the *-optimnaE multiplier values. These multipliers can then be used to determine policies for allofrthe nen-sample items in the inventory. To se this-we need only write the Lagangian funtidn forthe original problem fonulatin-given in s on 2 The Lagragian * be
5finiciu)-- rol he_ FA

L( y , U, [i~Ui

Qi- -K 4J
The first order conditions give the optimal reorder quantities and reorder points as

(14) Q_ [2(UA +Pi(r)1

and

(15) ad(, =a,cQ.

To tunmarize ther, the SUMT program is used to stlve the sample problem and vields optimal policiesfor the sample item and the optimal multipliers needed to determine optimal policies for the remainder
of the population of items.

It should be noted that the solution of Equations d4) and (15) requires iterative procedures. Beginby ignoring the 0(r) term in Equation (14) giving

. sic .I

Q() is then -used in Equation (-5)to determine F" this solution is itself by iterwiLon. The resultantvalue t is then used in Equation (4) to determine Qu1: this solution is straightiorwar&_ One continuesto iterate until sccesve. Q and r values fail to t4mnge significantly. Computational experience has
shown convergence to be very rapid_

A proof of convergence is developed as follo, ifplotted;, (r.Q) d es.Equationsg4)
and (15) would appear as shown in Fgure. 1. It mav be verfied t C< antI 0 for . a

ddr
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0

of r. for both Ev6m a14) and 115! Further, it is clear that Equatjm (147, is_ Mptotic to the WueQI a Wwhl-]qtio lw
of.~ A I t -Qu -0 a sso-,c, ,iat e Q . w it

__qrtiecn nL .I c a b 1,*w tha -vlu the - m asl r-- - ---ri <rOw . If wie tame termthat folre ' n re j: r -deQ -- 40us >0. tare ne cui rves tco".. O. Ik
e x i =< e ..k o f a t a i o n e s han as t S r , h t d f i fl) i n g r t e t h e s n o

of a- n solution Fro -be -oal in a t t or o im

for th of m 4 .T he s~ w r -.o , w h e ~ r ,te n an pn
miatn Pf -te Pm-am 11 Cn e ~sonti the limirt asw r- - x, ar grws a- .wht te r[ _P-ntrix ofmr the ra te 77twq or Ureoetve r-sl Qu -Qt, > 0.Tisablishes
mteistcao at leas one utneu is tne of decais (M an o5urthproteft now(he~o cons t oe auhe o - nwW sonlutionoblecus the coveilo th oerigiona plm hwhic . pe " " the Laruatiure fuctof inueutarnyI

FIQadiiosE L¥ d Pvisio( a d r41 t ae Neinaroi e if th e ocations a n3T swri~lfstio anquamtiiids-whe Fustherite isoler h deqaion 171; ix- ato oe iialne

wher Nis tonmbr of in them sampleale)ho

-Sie. o e lem items s tiW ThUuso i Is t the he gan ineri-in Ifle iat thE_,npa 1 reak m 1 th forpu red i aUe o wever . If we can sho w

that~~~~~~~~~~ for lastetoeF~~i Q - z .th ntw c r ge ut ndcatin V m she ip tence

h adsoltion- Frm quanons aeed i) the difeence 'rQ fw dbe writtct in the foMT

re postie oetnha It emc e shon th t ne probl the limi as r--, 0Mife mos aiahle, ho ld

her aticl th_ raS -ThsfrlrengtvF-lusQQ 
>.hietblhs

ossibilty of an dard t UAr o n nun ,lba soltion, bfease te10 overiy of e oiiapolm
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s o l t i n F u t h r , r o v d i g a r e l t i v l y g o o f l n t f e a s i l i l e s o l u i o n s h o u l d m i n i m i z e t h e t o t a l a m o u n t* of computation performed bySULffj
'We hate presented two mod els for continuous rve oto fmliie nwure.Tefnn

latioms emphasiz.ed opexations . monswraints rather than the classical variable t psuln tobassoiated with inventory operaionsm Either model can sucsful e implezientes- in veylIginvnroje~In closing we notethat the investment constraint could be replaced byj a limit on totalstock replenislhment funds, if in Some application this constraint wsmr prpits ogathe new constraint is conae in the decisio variables.prar. o ega
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increatsing its size. Herter P1 can be trinsformed into a Lotlenec asswnnn problem and solved
by the algorithm of [5] or [6]: however, such an approach would not be €uiputaionally attractive
sin- the size of the problem is increased connideaby..

.An extension of P1 i al s considered in []. This problem which we will refer to as M can be
stated as follows:

Le Z' he the value f an optimal solution to Pl From all optimal soluti to Pl. find a slution
that minimizes

Hammer [7] provides methods for solving P2 tand thus Pt). Correetins to [7] and a thorough
revew of the East European lierature are supplied in [9]_

In this papar we present two methods forsolving tP- The first can he viewed as a V"W-a method.
in that it generates a s quence of feasile t to P1. By solving an appropriaje (classical) tran-
paflalion problem at each iteration. a,-olution to P2 is found.

In the st method PI is solvd by a -hrshold' [2.5] algorithm. Then a soltion to 12 is
found by olvhi af apmpr ate ttansportatin priobl

2 PRIMAl ALCORflIM

In this sectin we present a primal alithmSi-r sAving PI2 It is tdihe approach of Ra-
mak in 181 The tepo are as giv heaw

F.Finds a nfeasib sohtinr Li TofP1. Thisa easily he doae. for exmple. by using
the well known -N h-Wa CAnr Rule-

2. Let S= iaz+ 4:- > 0'

and

f I <14 =Z -

C fitiziAilvlargif; >.

& S-olve the trats portation prblem using C 4-- . as the con m Tis can be done..w
enampe. by the u- r mthMd [ ] or the atof&iler method 414. Call this soluti" and p to Step 4

-- If the ojvcive function value is zer-_ ruto 4p 2 O. N'. is a,,ptima ou Pn f
it -s clear that kin *7 decreies at ca itexa Thns we n to - l a finite num

mare than the number of d entries in T= trqu of tnnsport-inn problrni and ocrequentl
the e is fiite-

-fli~ ! i

I
4T= ho S I ]i- fs +

4 9 a

*=I ________ aj;isi

a 3 4 7

____C
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SOME REMARKS ON THE TIME TRANSPORTATION PROBLEM*

The Uni2:1rZ7::1ofZWisni-iwuAee

I. INTRODUCZTION
One of the last issues of this journal contains a paper of P. L. Hammer r5] on the so-called Time

Transportation Problem (TTPJ. Since Ref. [5] does not reference the previous work on this particular
problem. t it may be worthwhile to ;dve a historical sketch i~f TIP. Here we shall do this in a way
that iat corrects or amend-- some of the deficiencies in [I] at the same time that we )algths
develuptuents %Vithi other parts of tht pertinent literature,

The Time Transportation Pro~blem (according to) the notations of [9j) is a problem of finding an
m X n matrix X lxujj which satisfies c-osditions

xij=ag iM

and imunizes

W2 i max i,.

where

Numbers at> 0. bj>O0,+ ty are given atid ai bi.

The TTP was posed and solved in 1959 by A. S. Barsow I1It The solution method was based on the
simplex method.

E_ P. Niestierow [71 solved this problem by an adaptation of Kantorowitch's linear programming
dual method. In [71 there is also Wven a method by 1. W_ Romanowski based (in the reduction of TI?

1Tim paper wa- prepart-4 Oiwn, the auth6.r v'a- a, tnmlor 4 the facuty -- ,ito 1rlt"# of Urban and Publie Affair-,.

M1W only two references m;inioned in 114.!.;1 4. nt actaly. deal %ith ihlw TTP itIef.
*14me autbor ass~usn a, -- 0. and bi 0 but equality a,= 0 auto~maically inplies,

for flizi. pafli--ular i. in %~hirl eae row i tmay he rrin,.ned

473
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to a classical transportation problem with a cost matrix changing in a course of the iterative solution
procedure. W. Crabowski [31 and [41t so,!ved the TTP by transforming the problem into a single classi-
cal transportation problem.

The author of this notte presented in [81 as well as in 191 a method based on the theory of graphs.
This method consists in finding a sequence of basic fieasible Solutions

(4) X,. X ..... lyt

where Xt is the optimal soilution of TTP.
The game autho~r propose~d a slight modification of tis metthod in 1101. According to thle modified

methd the corresponding sequence

satisfies conditions

(6) t~, t l  f4r each s= 1. 21.. k - 1.

S. I. Zukhovitsky and L 1. Avdejevajllj published two versions of a solution procedure where

the elements of (4) may be not basic solutitns (stme of them may have more than -r n - I poritive

Xij). Paper 191 contains a proof that the method from [81 produces an optimal solution in a finite number
of steps provided (6) holds. This is always the case when the problem is nondegenerate.

A. Janicki 16J set up a remarkably efficient computer program for the method given in [9. He
proved in [6] the finiteness of this method in any case (including the case when -6i docsn't hold). This

paper using some idea of 161 offers a new and simple proof that cycling in TP is impossible when
one solve- the TTP by the method from [10]). So there is no need of using perturbation technique for

the degenerate cases.

In 1969 P. L. Hammer [51 published a method which is equivalent top the method given in 181 and

191 in the sense that they produce the same sequence (4} of basic feasible solutions provided we start
with the same initial solution.'

The theory of the method fnrm [51 is based on three theorems.t One of the theorems which sup-

posed to be a justification ,,f the finiteness of the method is not true as will be shown in the next section.
Another theorem of [51 concerning the equivalency of a local and global optimum is true. but the proof
is incorrect. The correct proof of it where me followed the reasoming of the author of [5J is given in the

appendix.
This section contains an outline of the method from 18j.including the modification from 1101.

These are stated all necessary theorems. The protfs of Theorems I and 2 ran be found in 191 or 1101.

tTlr, rri-w of this papr apperd in Mattwhemakal Rietw. VAt. 32. Pan It. No. 9047 I.t_6
i"Andprnided we apply thr f L iwing trvi-r'-ultuep 2.1. from l5n.  7 1. In cae wtwn ttwre ares rrra tiJi with the

maximal to Ut.-m.nding O toi gso4tive basic vatiabtr- .. try to remiwv pnm tir Iasis th. prait %.,.
tOne of ihw thetorems i- artual| a v-tatemet but of gprat impsmnctce.
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whereas . Theorem 3 is proved in section 3. The method is illustrated by a numerical example.

t. S. Garfinkel and %I. R. Rao 121 proposed in this issue a solution method of TTP for the case when
a; and 4j are natural numbers for rational). tall previously discussed methods work for arbitrary positive

ai and b4). This method is based on the Ftird-Fulkerson labeling procedure of finding the maximal flow
in a network.

2. SOME REMARKS ON PAPER [51
The solution inethod of [51 is given as follows:
1. Determine a basic feasible solution.

2. Find an adjacent titer basic feasible solutin. [This step consists of 4 sub-steps. as indicated
bt-lm in substep- 2.1 to 2.4.]

3. Perform step 2 until tit, adjacent basic feasible s,,lution will be btter than the considered one.

Onit page 347 ff1 there is the folloning statemen!:
"Fr'm the fact that every time step 2 is arried out the value of p -: is reduced by at least 1. it

f,,lmi-s that the algorithn produces an optimal solution in a finite number of steps.-
The fulling two examphls- will show that the first part of this last statement is not true.

Consider the flloswing 4 x 4 TTP where

7= U, - =  " - "

I1t In 12

and where on and 1, are written.,r, the rigzht and blotw the matrix T.
The autior oif P!] allows us to start with any feasible basic solution. (see page 348-bottom in I5I)
Step 1. We start with the following basic feasible solution

s is

where {(i.I). (2.2). (2~.4. ( a t3-3 . (4.4)). According to (8) in [5] set N consists
of 63ols i3t. t4.31 (i.e.. cells with the max t( = 15).

Proceed to step 2.

Substep -2.L Find the greatest xq. si.jfN which iszn = 10.
Substep 2.2 Determine 5&.3 = {(2.1). t23I. (4.1)) (i.e.. the set of cells, except for (4.3), which are

at the intersection of arrows--ee next chapter.
Substep 2.3. Find the element ofS, with the minimal tfj.

This is u2.)- with t_-i 3
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Substep 2-4. Introduce (2.1) and according to the transprtzation technique remove !4.3). Thenew set&B becomes Bi-ir +{(2.1) } - f (43)-} and the adjacent solution is

X I .

Il

HoweverX_- is not better than X, since t=t,= 15 and t-.p-= 15 -l8=tp, 15 (10+8).Remrk .I bypedormng ubse -1 we chose x=--- 8 instead of xu = 10. where both 33an

43) belong to :N then step 2 will lead us from , to X- which has a smallerp 10 4 14 < 0 8 18.

i4

____ ___ 10 j 1

The next example will show that performing step 2 we may get even a worse solution.
Consider a 4 x 4 TP with the following data:

fin Z 4

I I 1

1 16

I ' I

4

10 0

Here N, Sa and (h. k.) are the same as in the previous example. Performing step 2 via substeps
2.12.2, 23, and 24. we obtain the following resuh:
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010

.Xx is worse titan XY, snce t:=-> t .= 15 and al-- wft 1-- 10=20i > t Is - (10481 270.
As we have slown step 2 dtmsn t Imply a decrease of the value p - t. This means that the cited

statement on page 347 of [5] cannot serve as a primf of the finitenrss of the s'iutihn procedure.
Remark 2. Let us return to th- second example. We may prevent the obiective function 2f from

increasing 1y rentning xl,=O from the basis. The new basic variable at will hr zsn and .1: =_.

This rule makes the only difference hetween the modified method in [10] and the original metiod in
[9].

Sequence i51 which satisfies !6- may. however. not Stricly decrease.

3. OUTIANE OF 1W METHOD*

Befire we start with our own stlutin proceedure, let us introduce me drfinitions.

Let X he a basie feasible solution where B is a set of ni) of all basic variahe sl; We will denote

such a s,lutin by XIB) = 1x4}. H is called a feasible basis.
Let (k. I) tO. Consider the set of crlls 8- (k. i). Link ever" two neart rels of this st wh

are on the same row : column by a segnent flink.

As known [91 this set will consist of two di..joint -ets fi t and 11:! ione of them may be empt'iv

such that no element of either set is linked with an elemen: of the other set.

By fi, we mean either an empty set if (. 1) is the only cell of B in column I or that set which rnu-

tains a cell in column I.
By It we denote the se of rows, and by J, the set of columns of a r X n rewtanrular table in which

the elements of fl. lie. In a similar war we ddfine the s.et of nws I: and the set oif columns J which

are determined by 11.

Let I be the st all rows and J the set af all clumnso ,f an m x n table. Further let

; 1-,. J -zJm r.

Let 4 be a set f all cellsof a m na rectangular matix We introduce the set' -. C 41

,r X = - (k. li.

Let F be any subse of 4).

By a B solution we mean each solution of TTP that =-atisfics conditions

___----x- 0 for all (z. j) H

S-r, [t]. (91. Inoh)

=Pi .6-a ih4 ijj
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Let X(B) be a basic solution where e is positive (then (k. 1) 4E B). Then following iliearem holds
(for proof see [9]. [10]).
THEOREM 2: If * C !I then there exist no 1 solution X= {xq} whose element XwO.t
This theorem serves. as an optimality criterion for the flPmethd.

We present the TTPmethod. which is as follows.
1. Find an initial basic solution X(It) by any of the known methods ffor example by the minimum

row methodi

2- Find t rw, %= tw Define H, as follows:

H , =--It . j) I . ii. j) 0 ilk. 1). tj tk,. 4j 0

and consider from now on l, solutions only.
3. Find the corresponding 4P. There are two cases:

a) P C H, Then X(B.) is the optimal solution of TTP.
This follows from Theorem 2

b) *11, 0 6-* Then proceed to 4.
4. Find min = tr., Apply the known transpotation technique to find a new adjacent basis by

introducing to X cell (p. q). There are two cases. The set of cells for which xb may increase
a; contains an element, say (u. r) of Hi.
bI) does not contain an element of 11.

In case 4!a the new set t =Bt+{p. qlj-{(u. r) and the new basic solutitin X(B_: IXdB-land
2 fl_ i,. In ,'ase 4-b) apply the usual transportation technique btaining a new set B-8, + ffy.q-

-(r. s). a new solution X(B). and a new set Ii where

11 = I, {U.j) j tt, ;s,- { (k. 12).

where t=rr. tif (k. i) e li then (k. I) = (k7. Is)).
5 Repeat steps 2-4 for B. by restricting to H. s.l4utims (lb is defined in step 41 and -ntinue the

iteration procedure until encountering in (41 a soutiom satisfying ctndfitio a frnm step 3. ATording to
Theorem 2. this solutiom is optimal.

In the course of the procedure apply the following rule. Cell (k. )-once a candidate for the
removal from basis B (see ep 21 and which was not removed from Xr will be the only candidate for
removal from Bi..

THEOREM 3: The solution method defined by steps 1-5 produces an optimal solution in a finite
number of iieratinS.

PROOF
Part I Preliminary remarks and notations
Note that the solution pr oedure itssesses the folwing properties
It It o, rders the basic solutions of M41 in such a fashion that

txtw i - tvkxw., i and It. C M.,.

0M an ptm2Uvr n itt 'nhrrvea: ift4C H dti" thte r nots l .4wtsA 'Id- Wh~r r4r-rTW la <X
i = U- ,.
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3e. Cell ~k. 1) ifrr step 2L. and Iu. v) Iffrom step 4a) once removed fo Bt canot belong to any

following basis B&. h > tIe

I I) Eflt:. whereas (u. v) : C ILt.

Definition 1. By a rute {(i.j)-* ti.)1I we mean a so -fccls-damXn reetangular table which

can be arraid in sequence of the following form:
Wij) (4i.j). (i,.j,). (/_.jd)..... (fj) I

(8) or

and where wj mre than two cells appear on mae line nrow. column!

As known to any pair of elements of ij). 14.j) * there e'dsts exacily one nute f iUt -. (1.)1 C B
(ie.. wh,-e all elent-r s e to HL

Definition 2x- Lt IZ. j Ibe an arbitrary node. By a distmance d([{i ) ] we mean the number

ofeements ofsequene Mj whose elements except of pos-sibly i.j belongt- .
Consider a fisk feasible sol X(B). Intreduce setr.

Definition 3. 0= )I i -j) * B .XR0O

Let (. 1)e B and zu= Tj. ene/i as follows:
Dfiition 4.C (i hel to i if (4 j) e IF and fi.j! the cleme of in the rote

{(j)- (.I)1 c R.

Part 11 Main Part oi the prOf
As known {e. f to ech feasible bazsi there corresponds exactly ve basic soanin. Therefore

if sequence 4) consisu of baic solutions where no basis appears twice then u4i ,and so the number of
iterations; is finite sinre the number of all bases is 6A than

~Mn

Assumption .4 Assume t the -ontrar. that (4) contains an sA-ctemen segment (w 3) which
we will for convenience denote hr

(9) X(B,) . . -).

where all bass . .. Br are different except of 8, =
Assumption A and properties i - and 2. immetiately imply

r , = I- =.. = H
4 al basic solutions of M am identicAl :
S' if rt .Virzi then r-o - . . - =

Conser an arbitrary cell t. i t is easy to see that

(10) d& [(i). (kJ)J=d(=omstanm for all t= 1.

,AnuAy -be Puwlrt a (ra.r b * WvJew tian



Thn-r are the ca-:"-: a! J is even: and It)4 is odd.

m ~In the fly.-I case fiji tarerding- to the jnnrreduwt ranin. Le m r fno A. in th 5_r-cuun emase
G'j s'a114 I rruarvd fItn A, cVafizt Cuter any Suhs"ret buz6. Witic h cntradilis t5aumjnltn K
Tin,- we have showi, tha t 4 Mm- I - -- -i --? f_-_.-

Where X 8, -n IX!!P is- defined as follows

(ii;-xi I o

Similarly we define a! and Matrix X;!B,) and .btain a sequc -if identind- matrwrs_

vpating th1- me plr.Kvdure smvral time-s we rraeh a --rqunce

Ui~i mc Cxfiqt of idrntkcai matriers nsit!, all hasie elerent5 j-iSh1tnr.

But theun R.: = /.= . .. =R 1u ih ecmradkrt. assnmtit' A that '9i'-and '10 cOn tain, a bas-ii Meffr

Therrfnrre m. hfa4- amrinani in 141 twie. QED.
Examople. Cxan-drz" a 4 Y5 TIP:

Th- nilflN-T a; and h', are on the ri~ht anid below the matrix T. rr-spresnvrWy Usinr12 :ir ntimum raw
- t-uiint we find the.nutsai basie SoIU*iI1IINIB,S
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Hem~ ~ ~ ~ tx. 6* ,-'

Circle A rE t6rsran h ba-zc nralules., Put the rabies af basic aaidr abv thecircles. Empty celis in- circles denote ekmeets 41 iec w.f IIIs circle whi2a aIn the

IF

H ere t' 1- -w i4.2-- -6~----- - - -w 1an m ka m -,d I

Wj -Inv

Iff

2 1 I7' 1-31

rrorst

I 12
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Noe that fl--
Determine .iL t3. 2fl and *fl: 113. .L Here, howeve, thre r. ss a cell (4.4) d12for which x. maw. in ~i 'this iteraon (s-tep 4. ease a- Terefe we ren'rove M 4. from & and

intiroduce ta. Z! since mi and 1 hu t-i 4 , ,

x I.B- =X%). a Id f=L

3 f

I I S

4--- - 7

_I!' 4.l,

We rlpeathde P--cedum from meqn 2-4 and obtain Xi&)_

.- I * i

'i H-

.

h -- 1 - -

i i i !

i1i i i !

whdl=Il.4Las L . Z adLuthrX'4)ule1

1

Q9 t
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thecorczpluin s 'r- 'Pc #fs is czjXi- isa pimal soukma.
Not tht ach5.solutio is optimal. Therefore N(S 4) is also an optimal souina elas the

gimrc-7Oen imow:

I - -

P~o~ofThere I fro ,-1'- 4

JH-RM :Afasg ha I mouk sIpitdd
I if mi Id f tL 4al

Rear 4eWextUw the prodn opmi ouio m aic olmsnuin n ubr fi 5

Beast 4: W Vt l in he rofesl wdh ol-s nuteuoliO whid n6me2 of fomula asnS)

an thr c-iae that there tes_-_ he outn basi onont LYE)whicisbchenr alist
Istruluce a m X n cu matix C= e) where

if tCII:t

CaideingXs and Xt a -soltiof a -con tawsmtio prinleo witha in-t fniorn
rw SrT- we have

E13 A=tg4=ph>0

amd

so- In~z I -Iwn bPII - -4i-fnt , ~r .~ nwf

a--M ,ffl ara*1 b~ 1 a -6 o P- wea
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- - -

wte have

th e'v~4 an if:ma 'hi.n. hecpttanprz&
tha tei e-i an- Atiamrns hi~- = 3 - - X fa.r which

I Ueirr 1. ueqak

&1~t~ tTc he

This in iwnim4 dr terAii ha whh inrti.heaupinshaN1~~~ P5. Zn-al ojchaat 
than~ rXtre~ 

which Wi-JJ~h- 
l

I A U. an. v.w ad lf- ea R.ar~~ Mawww i~ q p i in RwIan

WS.16.Jg M 3977po

:P.i( L ifuds.4~ Cn n~f ~ F r~ b ai ei wTh ) & i iP-r2 n r~ jS t~ t g

7---=--,-I

'in tin Pn3da

* inan. )a T ri ;- ti c sh ak a d Kt w t w i e r t t w~ Ara-
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drnte Vdag erln 1972-3(195'fin CtuaL iPmr"rdl -4 the Inzesnntiim Cfre

11W. Sz are- rTh 7Trmc Tramspmnzawfln problem.? iw ma maemnv It. 3 m-! 1%m
[I0] W. Szwarr. --ThV Thu T~MflPonasi-n Pmbtleuc Cuazum Scho fIdsla dminCanirj-Mrlln Li;mir mnnh c lvania. Technical KePt No 201We ra1970i.-S,] L Zukliidv and 1L.L Arderen-. Linear and Canrac Pnrrranmmn -Wi K anL Ca

Phuihdrlphiaz andj l 1ui 1%61 p. 160-169.
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Aml-at aticm af [4]),. N*> . A duly emcicd "-- an;m of the totidu Wm be giWA hbe

A-1Z_ The rmnmcrnmpkc of Gztirkd and Ra tshe finwina- csuwieYte time mfim

!a-ak 3. fl M1I. 21. Z M10

and With

:44

-within ofIs

haf 7 t



488 P. L. HAMMER

§ 3. What was wrong with my algorithm given in [4] ? The procedure enabled to reduce the amount

of an Xhk with (h. k)EN, overlooking the fact that it might happen that by introducing a new element

zq into the basis, as a side effect, the values of some ,,ther xh,I- (with (h'. k')eN) may increase (in the

above example X. 3 and x:. 4). Hence. a correct procedure must make sure that tij - t* and that

(h xhk+jXlj where l I--- I if tij t*. and ej=O if tq < t*)

decrease step by step.
§ 4. Correction. Let us define for an arbitrary i. j) 4 =11. and an arbitrary (h, k) 0 N. the values

u1.k(i) and vh.,kj) as in (17). (18) of (41 (where these values were denoted by u(i) and v(j). respectively).

Let us further put

Z.k(i.j) = Uh.k(i) + vt.k (j)'-.

The following two Lemmas have been proved in [11:

Lemma A. By introducing (i.j) into the basis, the value Xhk decreases if and only if ZA. k(4) =-1.
Lemma 8. By introdpcing (i.j) into the basis, the value xjj increases if and only if zh,.ki.j)= .

If we denote now by S *he set of those (i, j) it M. the introduction of which into the basis leads to

a better solution, we arrive at the following.

THEOREM. Iffor evety (i. ) f M. we put

fij= 0 if to < t*
1m+n ifto >t*

and

thegn

S={(i,j) I (i.j) M.Z(i.j) < 01

Hence. step 2) of the procedure given in [41 will have to be the following:

2-1) Determine S (by the above Theorem):
2-2) Determine i. j) eS for which the absolute value of Z(i. j) is maximal:

2-3) Introduce Ui.j) into the basis (as in the common transportation problem).

Remark. If 1 N 1 = 1. the algorithm is iMnticai with that of 141.

§ 5. As an example. consider the first solution of the Garfinkel-Rao counter example. Here.

N = f (2. 3). (3. 4). - 3. 5)}1.

and, we can easily find the values of the Zh. k (i. j) for (h. k) e N. (i. j) 0 M (in place of the elements

of M the corresponding level L, containing it was introduced):
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Tableau of z:!. :(iJ~

0 1~ 0

0 J

0! ~ -11 0

oi 0

Tableau of zj. 4 (i.Js

I L~0 7

1 0 0

0 1 -1 I -1 - sI

~0 0 0 0 1 1

Tableau of 3 d.i

$100

I I

0 ialv th 0ala of 0h eIz 0ti ii )eli
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10 !to -10 k 0 10.l.

Hence. the tableau of the Zi.j)'s for I s Pel. is

Io 1-- Nb Ijit

X9 9 ' , o

1 9 1010

I
Hence all ZU. j) are posii. showing that the first solution is optimal.

§ 6. The Editor of NRLQ has kindly brought to my attention the manuscript of [5].
Although I cannot agree with numerous statements of 15. 1 would like to stress its positive aspect.
I am happy to learn of the contributions of L I. Avdeyeva. A. S. Barsow. W. Crabowsky. A. Janicki.

E. P. Niesterow. W. Szware and S. L Zukhovitskiv to the time minimizing transportation problem.
§ 7. Finally. I would like to express m% appreciation to Prfes_ rs Garfinkel and Ran, for having

called my attention to the error contained in my paper. and to the Editor of NRLQ for having informed
me about Szwarc's paper .nd for the kind publication of this Letter.
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INThGER POINTS ON THfE GOMORY FRACTIONAL CUT (IIYPERPLANE)

Harvey M. Salkin and Patrice Breining-

Department aftOperatimn Rearrh
Case terrn Resentrrernitv~i

In ithiojer w sow itthmryfa-it21rttyep~erteinee rga

I; parte vof -i itt-e o ftin nfii e77jmb7 of die I e nosfar

I algorithm for the integer program. The inequality 1IJ. implied by the tonstraints of the integer program,
iobtained from a source row.

lean, and J~j) is the jth index (j= 1. . . ... uj in tile set of indices J corres-ponding to the current
t - unbasie variable-s. Also.> trq aj- fuji. where b]i is the largest integer smaller than or equal to Y.

RESULT

A well known result is that every aj in (21 mnaybe writenas I'gBwhere I'isn-integLtrandj181
is the determinant of the, urrent basis. Als, as indicated in Reference [Ii. we have

f, =Ifr- lfa jj] B

where 4 (j= 1. .. ) is a nonnegative integer, 1. is a p ositive intcrer, and all 4j are smaller than
iS).- tMis follows since the original tableau is assumed to be integral. Hence. lD8)is an integer. Also.

it is the product of the pivot elements which is always poitive.) CoGnsequently, the inequality (hyper-
plane# Ill) may be written as

491
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We are now ready to present some useful properties.

"tHEOREM: Consider tIe hyperplane ,, - xJjcorresponding to a generated inequality

41). Then the hyperplane passes through at least one integer point tnot necessarily a feasible solution
to the integer program! if- and only if. the greatest common divisorigcdiof I,. Ldivides I.. More-
over. if it eontains one integer point it contains an infinite number of them.

PROOF: Supptse t 4... A, ) is an integer point. Then. for it t, be an the hyperplane we must

have = j. which means i. =I I, ky The entire assertion then follows from elementary re-
€ -- j~t! [.-t

suits in Number Thor (see. Reference 15]- Theorem 4-1.- p- 169 and Theorem 4-3. p. 176L

To illustrate, consider example 2of Reference 11- The integer propam is

maximize 3x,- x= x,

subject to 3r, 3
5-x, --4x:- <-10
2r,+ X?5_

and X,. X2 -- 0. integer

With nonnegative slacks x,. x.. and xs. the (first) optimal simpe tableau is

x.3017 517 3/7
x, 131'7 17 217 B+ 0

2  9/7 -/7 31 B(-3 -3 2)
XA 0 -1 0 -5 -2 -1'

z, 311- -3/7 22/ r =

1- 0 0 -1

Suppos'e 2z is the source row. That is. the cut is generated from 2r, =267--t7xa--4-x.s. Then

the derived inequality is

s-5R +272;+7x: a U.

Now. the and o2 and 4 is 2 which does not divide5. Hence. there cannot exist an integer point satis-
(ving s = 0. T,, explicitly -et this. transform the h)perplane to tx,. xz) space. The result is the hyper-

plane 3-2r = 0 which. of vfurse. ies not intersect any inteer point Isce Figure I I

Suppose now x; is used a. the source row. Then the generated inequality would be

s-67 + r J7xz + 2r7mt 0.

lier. the ged of I and 2 is 1 which divides 6. Hence. the hyperplane s'=0 passes through integer
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Ct30

: -i "il// '/ l

1514
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FESI r/ .,

poiints. To ee tbis wuite t l -0 in terms of , and x-. This yields the hperpl 2- 2xi -0 in (xi. x2)
snace. It intersects an infinite number of integer coordinates see Figure it

IMPROVING THE CIT
To complete the discsio consider the case where the hyperplane s0 is void of integer points.Then the inequality M can be improved if we can push its hviwpplaae into the feasible region umii itintersects the first integer point ton Figure 2. the inequality s' - 0 is vn than s ; O1 To do this,

rewrite inequality #3i as

13) +0 "I

Since there is no integer point salisfi s=0 we know that tle gal of..... 1.. say d. does not
divide 

o.

We can also write the inequality s 0 in terms of the original nonbasic variables X1,..... x,,.
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The resuh ser. Reference II is the all integer inequality

N0:4 s= n+ 4 n4 - 0.

Now. there is a l-to-I e mnspondence betwergn tile points .f the ;'easible region in (xxj. .
XFt j pa-e which is cntained in t;W fin: quadrant) and thowe in Lx, .... x) space (defined by

the ofi.-inal ctrait'nts, lt',r. the h~rpeplane t3) intersects the xiij- axis at the point A- (se4e Fig-ure
AL Therefore to "pusl- the ine-quatih s a 0 (Parallel to itelf# into the feasible region. or equivalently.

t- derive a stronger inequality. we mut inre, nse & b.mking at uVL we can change n. by I without
. . -~

cutting off any integer point: but int-reasim: - 4orfa by I iF the same as chan_-n- no by 1. Thus. we1iat

can increase by I without cutting off any integer point: or equivaletly. we ran increase I. by {.

Thi5 Yields the stronger inequality.

tat . .. I.

the N-ae a: 1- rann- he increased by any integer afm nUi
hw same line of icas.ing ran he applied :o the new inequality ihperptane) 45h that is. ifd twhidh has, rq changedi divides Ic. IL. we have the desired constrainL Otherwi e. we increase

Is=lc ifi by I!M and retst d. In rffer. the p"cess ks repeated until we find the smallest positive in-
legerK such th d dividesl, +K'S . Toclarfy the wtneedure we improve the first inequality in the
example presented earlier. We u-ed the aurwe r t.

The generated inequality thyperplane! was ifi'M 71

4at
F--8'--...it ~ E~fL ~ o~



HYPERPL-,E IEGER CL S 495

Or. in terms of the original nonbasic variables x, and x:

I-f)r s=3-2r, 2r.

Now. tihe god of 2 and 4 is 2-. which does not divide 5- Hence. add I to 5R7 in Of) and the new cut is

1 5)" s'=-l2'7-J(-x-)-47(-x ) 0

Its hyperplane intersects integer points (since 2 divides 12). Of course, increasing 5f7 by I in ()
amounted to reducing 3 by) in Or. Or.in terms ofx, and x2. t4) is

5 )" s 2-vi --0.

which clearly intersects an infinite number of integer points (see Figure I.

COMMENTS

1. Gomory 121 has shown that the integer program: max crjncsxx. subject to Bxn+NXr=b.

xI&. xx - 0 and integer, where B is a necurrenti optimal linear programming basis. without the condition
xzt-O. is equivalent to the group minimization problem: minimize (c.v-cPB'-,x.-. subject to

Xsz a x -- (xsui. .... x.n aO and integer, where the vector ,.j=O .. n is anee-

ment of the factor group JB-h1'HII and is the image af the nouba-c column ajjO) or bhj=ff #4.4) is
the set of vectors which can he written as an iterg linear combination of the columns of A and 1 is
an identity matrix.) Asl Hu indicates in rerence 4 the matrix g= (g*.. A .. r.. g can be found by

transforming each row ofB-'Ib. Ni to the raw vector representing the coefficients of the cmrresponding
Gomory cut. multiplying this matrix by W. antd premultiplying the resulting (integer) matrix by a uni-

modular (row trandormatim) matrix Q" That m. each equality inS g~xa =& has the form

Equivalenrly. , Ijxpf= I-.. Thus. it follows thai if . Comory cut passes through integer points then its

corresponding group equation also contiams integer sa4 utions and vice versa.
Another interesting thing is that the hyperpiane- defining the boundaries of the feasible reg n of

the group problem (referred to as facesl ) give the strongest cuts that can be generated from the
current tableau. (See Reference ti Thus, the faces must correspond to cuts whose hyperplanes
contain integer points.

Z Up to this time we have not mentioned integer points inside the feasible region. A gened
inequality (hyperplaneL such as 3L could be improved if we could replace it by the one whose

y hyperplane passes through the first integer s-oluion (In Fire 2 the hyperplane -0 defines the
strongest cut from s =0) The fleuhy ia. however. to determine whether the hyperplane passes tiug
an intrer solution and. if not, to obtain one that does. Precise conditions. as before. are not ava-
abl Nevertheless. a procedure might be to first obtain the hyperplase which passes through an
integer point. Then, test all integer points an it -near" the feasible region for soluions. If an integer

0solution cannot be found inrease f* by) and repeat the search. The problem with this approach is
that usually there are many integer points near the feasible region on the hyperplane. TLis *0 especially
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true whie n - 1. the dimensin of the hyperplane. is large. Thus, even if a sysemaic enumeratin

scheme could be developed it would ahnost surely be computauionaily unworthy.
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DETERMINING THE MOST VITAL LINK IN A FLOW NETWORKt

&. IL Lu&',

The~~H MIR 1C . tRJtO .iW ~ i

PittSc

m~' sk b ir tLw 4rw -r sw-u&A &.r aw ku- 1 . at
t MMW~d . K I' in ~ 'hr rf 

4 .wkw - & in ! It m-e-r11h INIROUU -f removing arc. and nudes from a net work is a pant of networkc alireq that ha-- many

iport=n and useful applicatins. One awlirawin Wuld hre a rtnlnsituation where their. is a
logiris or ct miatitWIF networkc widr arke A defemier -w iwr 4f die syflem must knowwhic
arc ar ws vital to him so that he can rrinf-amether, againsa anatt- while the wtarker. naturally.
was to dctany gbh are minor denaw, iion would 'nm4 affeet the r anr of:th system. Another
app~atiou would be in helpin;m the mnanr~s of a h4:bwaysstvo a transportation nnwetmak to de-
termine, air effet of diigvarious Rubk for re-pazn vtr.

Th Apolem a4iri hrti air srrred uith flini the mosct vizai fink in a sin*l
enuunoitv &-tw nerkw t I.:4 edrr n ntrrrwd. or mixe-dL- An arc trrncd is dectird to. he thet
moms vital fink if its valoren roty a at leass as lai W- diie talur Of -rv1 hraci aento h

vaune of arc (x.y) is definedS as the difference in the muaximal &ow values in networks .1V; .4) and
fY; ( ' z I betwee some sourre notdr anid sume sink node- Thus. rix.r)ri t i euto

in the maximal low antaintaltae if are x. ismoved from the neWrk
Woilmer (S31 has-- drrlnpTed an algorithmn ;67 dWr n.itir dhe Most vital uwork link Thi, 4og-

ritlon has been emipoyed byv Dud-in 11J us drrnii'h. 4nglW im criticA link inna high1641Them
The- following saruwrs of this paper bwrefy present Wnllw-Aine.mthe-d for fin~5nz the- via

RAn in a network and dnrelip an iniprnrcd aiiun fur solvin=e i nt ital link pnditem.z Anresample
usitz the improved method is indc&

WOLLMERS ALGORITM
Wdmrs akor-itbam for fzinn the =R7- vital lick ina wtw'-k toi-wc as a flrr urrnr 4th

P n .. r oc 4 % Cj it r ~mr& -' a hi &i A c - 4 w - a M r a i irti o G& .n 4 . ~ - ;
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folloing theora The proof of this theorem is ien in Reference 131.

Theorem (WoImer
Supp-se the netw-ork M A) has a maximal flow value of t*L while the network (IMP - (x. y)}J

has a maximal Bow value of tnF*ML Then. everr maima flow pattern of(N: A] has at least mrF*)
-rF 7tJ units of flow through the arc (x. y). Moreover. there is a maximal flow pattern of [N: .A]

.iita lo t m t t e -a d theorem m ie s.uc w th e m to o --of finling tha rik wh se
witha am u all maimal flow paterng is =eeL- Wolins iterative pocedmw ftw fin&=m

tl ink - as folui:
STE~rP a-

Find a maimal Low pattern I~ t* In th~e network [NC-, Al and lt in x. hj e the corres-ponding llw in
each arc (x. yv.
Set the east fLw of each arer. y). equal tof(x. y).

Le f*I. 9V =Am-xf*z y(p and q Lo toa
-'%FP1: Solve a Mamd Ron- problem for the ne r U---. 1=4- t-. q-)} Let the comm~pauff

maxtima L~wpattern hr desiredas F*t and wto STEPi

(a' Sn the capacity c(p. q) of arc (p. q) equal to tF*)-tF% and solve a
flow prbe fi this network fie.. the network j-V.- A] wit re. q)=F)-. €) CAR the

,wiamg pane l F. (Note F Is alo a waimal lw patern of [N; 4].)

_-hi if 0.Flae-n)leas d a arc y) (. qJ su rht the least Sow of (p, q) equals .

he~q toodee its.zl as valudiaatV t

%TE, d 3 . EP

THEOREP 1: A n r tion for an aIr (a. 6to be a m i lk ist for

in a minimal rn
The fo lemUma w e useful in the p tef of Ter i.e

LMlA i: ifc't. ti isia minmal cm conanate fa twhe m in a network [N: Av] and Ware
LX. fnliitn X eUltX,-th(eX ngw algrithm - -tii J - rutben tu-t [N:IA {-( x.a )a].
bePROOF OF LMA I: Sups hat (. T is a a cu in [N: (A- i. y)3] and that CT._
fHE <C OE :I-. e Nose that 1t. fi uz for has o be a vit ink ist for [-: A] and that
CI)'. f 1I X. rr CsXa buin..l ia minimalcnt feast twand (in anYU(x.y) is a o inening



hST VITAL WBK 499

safd[N:AjThusithrbeggrghjCgy f- .. nx adAe LX-ryh

minimal diraunratin set and thus a minimal cut in MN IA - U. Y), 1
IPROOFj OF THEOREM I: Let CX SI 1w a minimal cut in iK Al and awe tas by hygahe m-sam

t a. b-ha- a en ;uavial Rln Assume that f bzc<p -= max f * -. f i mxialS

nF* dined in IN: A).!: willteshawn thatnjL thisu~pm k- ta emnndknk .. ,
dBy Lecmma 1: rItF*brr)f ip k aszpiin i bi flpqs thrfurw

rFmthen. themreists a &lrnrpanemninV [ 7U-_ (61hiij with the vaue rt:'m rfFj ifhL
and hence. the maxima &w valis. rt.Fin& I- t hi) twin WaP vF~ -f-fI- 1.__. t- -- S -f4 (

(31 Caionim (1) and (21 haulth r" > rsF*!t n*-i leads te a cmnruinioahr hr
t- aumtila-b! isani vital uand hv the deiniia- en- vinalii5nkit &&wlmrsghat

AF I(L _ED.

IThearemn I guanees that those rr~w~ 176 fL- i less tha the !arrst flew dnvio a ar in a
m Cia un for -e Maxima SM peflan in [M 4) need sw he rgnsird a- camidanes, for te

A AIELING SSMEMIE

ma n te e Ji h&nfit_ 29pssnd tha tie isa maxima flu- pattnandaminboal

Lwsto aetaisfd thi-..or neai of Tn wnenl meIsupewh inderx is o laeld ± ami

ad e t nudeb xmuyw~d e am 8- & gr K5e ar and Ae olam amnh Un-

beLTe bbtitngdchddu--w
nt a= sin (.&Jjsh Fthatc ma he! thi s pn. ah the Sown [dW

is~~~~~~~~~ Iftipnfud nuds ha ar (.bvi epaetxrlwe~i

Thaing- ade w aalbli nt irlr isuh yI-e ial. errte ori r
'aM be-uczd.rwtI_ flspos.te
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-As Ford and Fu~xenn-n bave shown the labeling scheme must end in mne aoftto mentioned states:
hreakthnxsgh is ach e"e or bmektbrough is"no achievd. The iAllowing ratus.indice vwha canbe
deduced when either of these slttm 4cur at the end of the labeling pmocet-,

ThEOM 2
Let F* 9w a maxin& fl&w pattern in tIhe netwck (X$. Let fu.6) be an ar in f=N$J and use the

hlaelin scheme to label from nade a to node bs without using awe (*a,6 If breakthrough enies, the
value of ae tab) is kess than or equal to fl*a6) -*- If voobhreakxhroukz aicrs. the value ef w
wgAI is Cq4 tof*(ti.)-

PROOF: If bmekzkrrn=t occurs a ahemnate maximal Nlow pattern is found by mAkin an a
dunjie of flow in Ihe pith estblshed by the labeling and decreasing the &ow in Wi) by C Then

'aF% -) r fF-f*b) 4c and since-b rf.S) 4F) - r( Ff.e)! $fFt - fw(F')-f*u,.&)
-0 and e >0CLt follows ds 1il ~t~lefa .

Assume what son~breAkthrgh ocurs, !hen by the nature of the labeling unIes. no munma
nlow puaen exists in I w~j has lessa d.ff*t) units of flaw ov e r4() and. hence, by
Wulmeis Theorem d..b) 'r(a6). Qfl-

UUImUig thes results- S~ following algpiod can be emnwrd to locates moast vital link in a

i)Find a maimal feow pattern. tP. in the nevwork LX41 and Int (AS be a miwsI cCL Let
U*=maz c(zy)erhvandy.UI=m FxyL-

It)w Ne those arrs fry) #A for whilif *xjy) art and ae ib e na hs

foum the -eaddate set, £ For ech awe in this --a define a apr bound as Uz =*zj

Let I~b=mntfry) and seA~~~fj fir all ares is [v.3

U e Ld- lablres to labe fo node. to wide wkhousin are (e4.
STEP 3:

t* If bmklnhro* oatws. use 5w backtrackmn and flow dhanfgin ws replace ftt bw

0) Othenwie, replace Le~ 6) with ffa. 6) and i f. hi b) ma Cw Vy) terate a

(a. 4) is a nest vital limb. Odmhnis. rrplatf (r, y) withf(z. y) for A ft vie and go tSTE L
By the use of this algoiths. a waxnea flow panter is always maintained and ance nms-Irak

trob resets fir the wa- b). 61sd 6(ar, 6) at Lift, for all -a est f) Ubte caa&Iswe set S. the
am (a.6 b! cahe declred a man vital Ui. ic.. nomtbreakthmqhgl impfies thut i.. bwr~f(t 6)

=life. 6) andL thusw . b ) :-o Cty) -- tviz. Ai f 6r (z. y-16 and by Theorem I de o vital W of

E..4 s son nto

ify-) Tew Rw. and umm atihr &Sd a~ S wi I k a t SAd ar ether~n As~ SlAt' 2
at IS a knh vri.rTWIK t)baIn&w

fix



MOST MiAL WLK50

The otler a-specs of the metbod that must be considered (i i me methd fine aId rii
there a wayv to locate alteinative, optimal soinltions? The finitenvess 4 she procedure follows ince slant
can be only a fiase numibr of arcs in the c audijme sei aud there is a Iiae number ofiWeipts-h a n=

be made fr each ar of hIe st. Alerative optimal sohautsi are readily idetie s hows after as
,em solutio has been founad other candidate amc es:ist reapk. the aiprk to my am in the

aatde se- whos- uppe bound is equal to the valwe of'the mosat vial rnk (a. b). ire. *ae M--- = L--(. )
Sdelete are i e. ) from the cahe sset..=d reaply thie ahrifiLNupon reprc to rafu th w

skhm the moa vmia [ik hasa value equal to U% then an akentv s p 12 been fiad In die

latter caw- de algutha is reappied using a futher reduced candii~ae set and she procedre is two-

tinued unil A ahernative optimal sealtious haft been foctn.

Consider she &-w netwo& [..V, AJ shown in Fipare I-

iC

rumE L %mica ins #=a rnmw& wrh _.m a-&, sod AA =a

Aaurias-rd wish each air in the netwigi is aft orderedl pair o( mahers. The- fiwnumher coze-
spmnds to the capacty of the-cur and the second numbecr twrrcspmb to the amutat&ie r she
ar aia maxima Saow jutan

Thse hswrowd sh-igtsm will tr cmpl~yrw s t find a!l mint wisal kifks in the nnswk [& AJ..
STEP a=-

to node - The ki&idul axe nows we-

rts. a) =2a. c) 1.

) N w =l 1! 0 = =2.

Theconm i ftima rut whid, is Mque)t wiains sir ars ic)C 14. rI. sad I £4 . th Brc
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(b) The set of candidate arc-- is:

S((s. a), (c, t). (a. c)).

STEP 1. Start with arc (s, a) since Uts. a) =f* (s, a)= max U(x, y).

STEP 2: Labelng from node s to nude a without using arc (s. a) is possible over the path containing
the arcs (s. b). (to, d). and (a, d). The value of e=&

STEP 3:
(a) Since breakthrough occurred, the c units of flow are removed from arc is, a) and added to

- each arc in the path found in STEP 2. The revised maximal flow pattern is shown in Figure 2.

FIGURE 2. Revis-d maximal flow in sample network.

STEP 2: Starting with the maximal flow pattern of Figure 2.. it is not possible to label from node s
to node a and non-breakthrough has occurred.

STEP 3:
(b) Replace Us. a) with the flow f(s. a) =17. Since Us. a) max U(z. y) U(c. t), are

(s, a) is a most virali link. , PS

Since Or, n~ =Oz. a) =17. arc ic. ti may also be a most vital link. In order to test this hy-poth-

esis, arc (s. r 1 is dropped from the set S and the algorithm is reapplied starting with the maximal flow

pattern in Figure 2.

Employment of the labeling rules from node c to node t rusuhts in non-breakthrough, and arc (c. 1)

is an alternative most vital link.
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OPTIMAL LOCATION OF A SINGLE SERVICE CENTER OF CERTAIN
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ABSTACT

flakot has considered the probclm of finding an optimal location for a single ph c-
ornter such as a haspieW or a poice station. He ved a graph thceti model to rere-4nt the

region being rc The communitie are represened by the nodes while the road Tetwork
is represented by the arcs of the graph. In his wor the obj e i one of minimi nt thet
maximum of the enral des of the roblem and the slvce center. In the
present workr he regon being serviced is reneseed an gon and bsmru-
nities are spread over the entire region. Ile obetvu is to minimize the maximum of -

cliaim distthat the distane between toi t p lygon. Two ieios
of solution prpesened are i) a grometric mehod, ad ii) a quadratic programming form-
ulation. Of these. the geo metric methe~d is Ampter and mowe Aef-nt. It is seen that fur
a class of probWe's* the ge-metric method is well suited wnd ver effcient while the --aph

theoretic mehd. n general will give only appximat wdms in spite of theof
Sefrts involved. Hat. for a different class of problems. ih paph theoretic approach wil be

more appropriate ,bite the pr-ometric method wil provdeoly approximate.,ol-tions though
with eae inally. some feasible applications of importance ame outlined and a few mean

inttul extensunD are indicaed.

1. IN"RODUCTION

Hakimi 121 has considered a class of problems dealing with the determination of optimal location

of service centers. such as h-pials and police station, In his graph theoretic formulation of the
problem. the nodes and arcs represent. respectively- the communities and road network- The optimal
location obtained minimize-- the maximum of the shortest distances froon the service center to the ver-

:imes of the graph. A more general version of the problem has .been solved by Frank [I] using the idea
of a game defined on the graph. Subsequently Hakimi 131 has also considered the problem of determin-
in-- the in-'aimum number of poilicemen and their locations in a highway system s o that the distance
frp.m any pohm in the highway system to the near, st -kiliceman will not exceed a specified value.

In ths paper. a convex polyhedral region is conf-idered and et,mmunities are assumed to he spread
over the entire region. Further, it is asumed that the distance between two points in repn is the usual
Euclidian distance. These assumptions are realistic if the transportation medium follows a straight line

"TI& report w&, prepared ca ,,rt -- the adivith- of the thpsmen of Op-rtions Rese arch. School of Management.
Cas Western Reserve University -_undvr ro-ract Numbr- DAHC 19-63-C-00tri wh Poe I-L rpr-ourtifi in whole

or parn is p s.. icd for any purp- of the I 'niied States Govrrunrn.
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path as in the case of a helicopter. Further, this model is exact for determining the optimal location

for a radio transmitting station or a radar station. It is also a very good approximation when the road

network is highly developed and the simplicity of the solution method makes it attractive in these

cases as well. The objective here is one of minimizing the max:mum distance from the service center.

The two methods of solution presented are (i) a geometric method, and tii) a quadratic programming
formulation. The appropriateness of the formulation presented in this paper and that of Hakimi 121

is discussed and the results in a specific example are compared. In certain applications the geometric

method of solution is shown to be more appropriate and efficient than the graph theoretic method

of solution provided by Hakimi 121. In situations where Hakimi's solution is more appropriate, the

geometric solution will be only approximate. but with considerably less effort. Some feasible appli-

cations of importance are outlined and useful extensions are indicated.

2. STATEMENT OF THE PROBLEM

Let the convex polygon. P. under consideration have a finite number of comer points numbered

1. 2.... n. (It may be noted that a nonconvex polygon can be converted to a convex polygon by

joining some of the corer points.- Since the polygon. P. is convex the largest distance from a location
point. c. will be at one or more of the corer points. Define d(i. c) to be the distance between c and

corner point. i. Now the problem is to determine the location c so that max. d(i, c) is minimum.

3. PROPERTIES OF THE SOLUTION

In this section some inportant properties of the solution are established so that the geometric

method of solution presented in the next section will be clear.

The optimal solution to the problem can be characterized by the covering circle of the convex

polygon. The covering circle of a convex polygon is defined as the smallest circle that will cover the

polygon entirely. Obviously. the optimal location is at the center of the covering circle- Thus, the prob-

lem is one of determining the center c of the covering circle of the convex polygon. P-
THEOREM 1: The center of the covering circle of a convex polygon. P. is always within P.

PROOF: Consider a center c' outside P. Now find a point c in P. such that d(c. e ) is minimum.

Obviously. the point c is unique: it could be one of the comer points or a point on one of the sides of
P. Both these cases are illustrated in Figure 1. The radius of the smallest circle, with center c'. that

would cover P is d(k. c'), where k is the corner point farthest from c'. Similarly. the smallest circle.

with center c. that would cover P will have a radius of d(k. c). where k is the comer point farthest

from c. Since.

d(k. c*) < d(k'. c')
and

d(L. ci < d(k. c'),

it follows that

(11 d(k. c) < d(k'. c')

Inequality (1) shows that there is a smaller cc,e. whose center is within P. that would cover the entire
polygon This is a contradiction which completes the proof. This is illustrated in Figure 1.

THEOREM 2: The diameter of the covering circle of a convex polygon cannot be less than its

largest diagonal. The largest diagonal of a convex polygon is the straight line joining the two cower

points that are farthest from each other.) The proof of this theorem is obvious.
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THEOREMI 3: The covering circle of a convex polygon wI pass through two or more of its corner

points- and all such corner points cannot be "n less than half the perimeter of the circle.
The proof of this can be easily seen through contradiction. The theorem is illustrated in Figure 2.

4. METHODS OF SOLUION

In tbis section. first. a geometric method of solution is presented and illustrated. Also, a quad.
rutic program that solves the problem is provided. But no attempt is made to compare the two methods.
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rVsince, in all practical problems the geometric method will he done manually while the quadratic

program will be solved on a computer. When the two methods require such different means a com-

paristn of computation time is not meaningful. However, based on prior experience with quadratic
programs, the authors strongly believe that the geometric method will be more efficient. Further, it

is veq;- simple.

Geometric A|lethodl:
Step 1: Find the farthest corner points (r. A of P. (if there are more than one such pair take any

one (of the"L)
Step 4: Determine the smallest of the angles subtended by the diagonal r-s at the corner points

'in each side of r-s. Let these angles be 0, and Oz and the corresponding corner points

be v, and V-. respectively. If 0, + 0-. 18W go to Step 3: otherwise go to Step 4.

Step 3: The optimal location point r (i.e.. the center of the covering circle) is:

(i) the midpoint of the diagonal r-s if 0, ? 9W* and 0- t 900

iii) the circumcenter of the triangle rsr, if 0 < 90
iiii) the cireumeenter of the triangle rsrm if 0: < 90Y.

(Step 3 gives the solution and hence the algorithm terminates here.)
Step 1: Find the next largest diagonal and work through the above steps.
PROOF: The proof is given for each of the three cases of Step 3 considering the nature of the

solution obtained therein.
(i) The diagonal r-s is the lower bound on the diameter of the covering circle. Since 0, > 90 and

O: - 9W. the circle with center at the midpoint of r-s and diameter i-s covers P. and hemce it is the
required circle.
(ii) The circle circumscribing the nonobtuse triangle rsv, is the smallest circle that can cover rsv,
and this circle by construction cover all the corner points of P and this is therefore. the required

circle.

(iiii The same argument given for 1iij above holds godl.
It is of interest to note that the number of iterations in this method is finite since the number of

corner points n in P is finite. In fact the solution will he either the midpoint of the largest diagonal or

the circumeenter of one of the triangles which could be formed with the corner points of the polygon
such that the circumcenter radius of ea4 1. will not be less than d(r. s)f2. Therefiwe the number of

iterations is bounded by the number of such triangles thereby making the method very efficient. Solu-

tion ,fJan example is presented in Figures 3 and 4. showing the required iteratins..
.4 Quadratic Programming Formulation:

As stated in Section 2 above, the problem is to determine a point c such that max d(l. c) is mini-

mized. This can be formulated as a quadratic program as follows.
Let the cordinates of the corner tnintis of P be denoted by " .ti= 1. 2 ..... an and. those of

c by (X'. X:1 Also, define d= max thi. a Then.

d _ d(i. c)

or equivalently.

:" 2) t=  x- (x ) - r,- V) i= L . . n.i2 d( = P+x .,f i1.2.......a

Now defining a new variable A=d-- ti - - WiF. the prob-m reduces t, the following quadratic

program.

-- -=---=.-:-----~
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various vertices of the graph which represents the regin- In the present work, the customers are
allowed to be spread over the entire convex polygon repres-enting the region. Therefore. it is clear
that the two problems are distinctly different: however. Hakimi's method can give a close approxima-
tion to the present prolem if a very large number of vertices are introduced in the graph or a finegrid is used. But such an approach will make his method less efficient from computational point of

view. For the same number of %ertires. in the graph. Franks method [1] will be a becer approxima-
tion since in this formulation customers are allowed to be also on the various branches of the graph.

From the above it can be concluded that for a certain class of service centers. such as radar
statios or radio transmitters, the geometric method of solution is exict and e ff icent while the
graph theoretic methods of Hakimi and Frank will provide only approximate solutions- Further, a
g ud approximation to e obtained, their methods would require considerably high leel of computa-
tional efforts. However, there may be certain location problems for which the graph theoretic methods
are well suited and in such case-. indeed, the geometric method will provide only approximate solu-
tions but with ease. However. it is conceivable that in some problems, the geometric method as well
as the graph theoretic method maw "he identical or close solutions: but this is a rare event dependent
upon the graphic abstraction for a given region for this to happen. Obviously one cannot base the
choice of method on such a rare event.

For illustrative purpose. a triangle is considered and the solutions obtained by all the three methods
are shown in Figure 3. While solving with the graph theoretic method the complete graph given by the
polygon is used: no additional vertex is introduced This approach has been suggested by one of the
referees. In the example. the complete graph is thereore the ves-v same triangle Frank's method
gives an infinite number of optimal solutions, namely. ever point on the sides including the vertices,
but the one which is nearest to the geometric solution is considered. The solutions obtained by the
geometri method. Frank's methd and Hakimi's method are denoted by G. F. and H. respectively,
in Figure 5. It is see that.

max dti. G): max dGi. F): max d(i. H) 1:1-5: v3"-

It should be noted that the only means of improving the solution in the graph theoretic method is
by approximating the region by a fine --rid. but this would involve a considerably larger amount of
computational effor..

/
/"

C-rr rtW. F-FtW-i 3ht& aid fl-IaktiSdd
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6. FEASIBLE APPLICATIONS

fi) Location of a Radar Station or a Radio Tran-minrn

The region to be scanned by a radar station c-uld be represented by a convex polygon. Then the
optimal location of the station wlcch would minimize the maximum distanr to he scanned is given by
the center of the covering circle of the convex polygon. The required power of the station is dictated
by the radius of the covering circle. Similar arguments will l.dld good in the case of a radio transmitting
station also. The geometric method of solution presented is well suited for this tpe of problem.

tii) Location of a Hospital for Emergency Cases:
In a combat area. t-- %ospitals have to be ltcated to provide emergency treatment of injured

r -onneL Normally the injured persmnnel will be brought by helicoptrs. Helicopter can be assumed
to follow the straight path to the hospitaL In this situation. the ge-metric method of solution is applicable.

Iiiia lbration of;. Police Station or a Fire Station:
Police and fi-- .. atua personnel normally us- road vehicles. Theref,,re, the solution given by the

geometric metliaa will be only approximate. However. this approximation will be a good one provided

the road network is well developed all over the reion.

7. DISCUSSION

The translation of the optimal location problem to one of findina. the covering circle of a convex
polygon is of theoretical novelty and the geometric method of silution presented is simple and efficienL
Solution by quadratic p.ranming may require considerable computational effort. The characterz-
tion of the covering circle may be of interest also. in ctmtxts other than lcation problems.

VTe geometric method is well suited in the case of sc-vice centers, such as radar stations or radio
trausmitting stations. In these cases, the graph theoretic model can give only approximate solutions
in spite of increased effort Further. if the road network is well developed, this method will give a good
approximation to the optimal location of service centers, such as a police station or a fire station.
Although the two methods may result in the same oir close hwations in some problems. it is not w

eraly true. Such a result is heavily dependent on the gphic abstraction of the region. But ther may
be certain problems for which only the graph thrbretic mo-del is capable of findingan accurate solutmion.
Thus there are distinct c6sses of protblems for which these methods mar be. respectively. applied.

In this paper only a single service center is conidert Generalizations of the methods for solvin
the problem of locating several identical service centers will be of theoretical novelty and practical
value. Further. the questio optimal addition of serce centers to a ystem already in operation is
meaningful and a metlhod for answering this questiom will he of immense valur.

& CONCLUSIONS

1. The optimal locaitin of a since servie (enter of certain types is at the crnter of the covering circle

of the convex polygon representing the rei'on to be served.
2. The properties of the covering circle are established and a finite geometic method of solution is

presented and illustrated. Also, it is shown that the problem could Ir sdv-ed by a quadratic pogam-

3& The appropriateness of the geometric mth,,d and the =zntph theoretic methods available in litera-

ture is discussed.
4. The geometric method of solution has distint applications where other methods are. in general.

inappropriate and les efficient.
5. here coumld he some eas where the geometric m-thod is inapproqpiate. but in -rne of these case,
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it may give approximate solutions with ease. However. if a high accuracy is desired is method

should not te u u ap t
should not be used unless appropriate.6. A few feasible applications are outlined besides indicating a few extmensions.
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SCHEDULING Win EARLIEST START AND
DUE DATE CONISTREMrI
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afr Prom,4= W times arnul %r v"MA-wd by time %nd isuuuf 4 inw mus 5e . omp-in-- teW iI 1 ... T a F.r doh M ktmaiz tWe r ir i to f-llplr A j ha tWe r-wf - n 4 nuitlz.. fnr d -ab. j..lra win _v-b T tr piattd and! us
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-eJ r14af theif t t mai u nappf d

We ronsider the sch-duling of n tass an a sinde resfourte mnachinX. The tasks eo.bs) become
available far proressing at times a, ". require A time units for pocesir, anal must be completed
h Wtime k.i i . a. . Theai is to determir whether there exist a feasible schrdule that satisfes
all coUnsrains and if so to fid the schedue that minimizes the total elapsed tim-e.

Several forms of this twohlem har ben treated earliern Ford and Fulkvrs-on [1. p- 65] discuss the
problem when there is no' i-b slack. L.. A -a- and give a muetboi far finding the minmmnm
of teso es to tomplete all tasks If the earliest start constraints are relx-d.ric if all the a are

rJarksn 12] has h wed that the maxuam t b lateness 'violation of its due date) is minimizedby ordering ir jofs in the order of nndera du daes li othe m t e . th ll
tasks mar be performed using .ne rinture and me" the due date constraints-

We shall present solution A=knilhms fair vtwo versions of this probl1em Fist we allow jub sphtinu.
Under this assumyting it is xmuir required toe complete d. units of work between j and A_ The sullent
unit of nrk is the time unit nmsidered. We show that this problem may he solved with a 'labellaC
type alaorthm and then gefralize. the vwdel to considerseveral resourcrs of the same Ewe. Thea we
Ionsider the problem when no ob sAi is allowed- We d up an implicit enumneratio alaih
that has wr sirn_ exclusion feat ores, to Mvbain the solutio of this version of the problem. Fnally
we shall consider several sehewduling situation whirlh arise in prcice where these mudels may apply.

2. JOB SPMrrNG !"ERNMIED
It is ronviegn to viscair this problem as folw.Consider the rectangular matrix that has a

column for each job an" a line for each unit of time availabl. There are Walh ines an~d a colun
In this matrix we -4-1" diilrmgj et wen adisiMr and :nndmssM cells. For -ri the cell 10- sAis admissible if a. -, . and inadmissible osherwis. In other words- the admssible- ells correspond

511
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to the timle Pernd-S where the task may he perred. -ime perid I stnr at time G and ends at time I.An example is illustrated in Figure 1.

~i al

2ji

6 t

2 : 2 2

'We assucwie with each row an availability oftone unit !of tintel and with each columa a nae
menjof i_ f "i j. b i rr-sced at timteI- aIt yar": in the adm64ssl ra el i.' ferrwrnts this

alltratwL it is casy. t. see n-w that this- prblem is equivalent tothat 4 finding a set -If flA placed in.
admis=1j-r cells such that column sumts satis-fy the rrqurnena & and each lie contains at uram a
single L. In network ternnnhw.- the prublems Ms that of finiding a feasible &w in a bipartite nen'wkA
thet has an an- fer #-a&+. admis~cihlrcell. ears4at mei.J I wit -4f flaw and s-ink-- ff d. unitse of flow-
See hir 2

3

N-%
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Thns la3beli ahkoithm. such as that utilizd to obtain a maximum flow on the admissible celsin the primal-dual algoithm for the transportation Kblem I- may be employed to obtain a .lution.A slight adapati fm _4this algorithm is useful sine each s h an arailability fat mos oneunit and each admisble cell may contain at most a smle I.
(1) Find an initial an ment of I's. If all the column demands are satisfied-STfOP- A feasibleschedule has been constmted, Otherwie continue to step 2
-2) L.anrin Rusinr: Label each lme that does not contain a i hr (-j. Next zslect a marked inei and label all unlabeled columns j. such that (i.j) is an admissible cell with label (i). Repeat for alllabeled rows. R the sacessive row and own labeling ui a column with an unsatisfied re-quirement is leled tbreakthrougah Co tep 3. Otherwise if a more laes may he a andno breakthrough occr the problem is infeasible.
(3) Chun-. o I S: In the aolum containing a I that has jus been labeled. assin a I in the ineindicated by its label. Consider next this row and remove the I in the column indicated b its label

repeat for all roumns and lines labeled.
If all demands are satisfiled- A feasible schedule has em cumnrargrd Otherwise return to s-ep 2.The form of the solution ahlgrithm allot-, the generalizati of the problem to multiple resoures.The availability #each ineis equal to the number ofrsrs a ln ever, eachacel may contain -ev a single L Furthernore. if the number of rsousce varies over the horiz-n of,he 'w lin problem each line may then have dilffrent avalaljlijm

3. Joe Srt17M Fr rlxmr
We shall approach this Problem by considering all :he possible orderings 'o tasks on a singleresource. There a a! sequences: however. Vanv of these are due to the volation of a duedate_ we prPoquse to* enumerate implicitly- all the possible, orderiurs by a branch, ecude and boundtype algorihm. We r and iy the algorithm in thefllm-winBpahif We enumerte the possible sequences by a tree type n strurimn. From the initial node-

Branchn: We - enmeo the -- il Se• bY - -gritl oor origm. of the tree we branch to a new nodes an the fist level of descendant node& Each of the-senodles rep,Ce,- the -asignmenA of task i. lzicn. to be the first in the seqn We associa: witheach node the tompletion time. 1. of the t i thi p , =ext we branch from each
t a s i'z l t o -l n t h ssf t i L e . ! == . . . .- Inode on the first level it - -nd on the second leel- Each of tese nodes represents the assign.meni of each of the (4 - unassined tasks to be second in the sequencr- As before we associatethe e senin nude the co-mplo time of the task t--. I! ma I.-r a.) +4.We cninue i~n~fashion, In geeqalou level k- I 1 k 1n. there ate (n-k+ Ai net nodes generated from each node.nthe preceding level. It is evdent that all then norderins ew meru ed in this war.Reconisa an awim ls~ti: S upps thata feasible souti-om has be generated. If thissmay be identified as an optimal s,-twiun then the computations mar be terminated unless one isintere-ted in all optimal -soauton To do this we ficus ow artem on certain groups of tasks in agiven ordering which we call bUlk.. A id is a group of jobs suc that the first job sarts at its earlieststart time and all the fo lwinrk-4o to the end the e processed without any delas.11w ength ofa block is the ' f the processing times of the task in the block A block may be flundhy scanning the feasible smlninn starting from the Las job mi the sequence and attempting to find agvup of tasks that si the d ion. If a block has- the npro y that the earliest mart times of anthe tasks in the blwk are rater than or equal g. the earfiest start time o[ the first task in the block



514 P- BATIEf. XL FLORLN N-D P. ROILLUD

tearliest start IWopenvL then the feasible soltion found is clearly opm Two particular optimal
sitions. if they are feasible. are the schedules of duration an+d. j where - max {al.or of durtio

I

X - min {ail. In the fist the bkock consists ithe job with the latest earhet start time and in the
scnnd the bock -- wsss of A the tasks to be performed.

If a block is found, but does not hare the earliest ar ropetty. one may -n the schedule for
the exiftence of a rwer block that may contain the Unks of the block found. Fmthemore. if the blockf ond does not hare the cariest stat Kp t y. the emimeration of all other wdains for the tasks in
the block mayr be exlue since the order of the block is the Lest subseqnce for these tks andone marV bcktrack to the level of the tree that corresponds to the fi t task in the block-E-Ctfsi -: C sie the (-n-k 1) new nodes greaed on level k of the tree constuction. If the
finish time t associated wth -.a ira oew f the nodes exceeds its due date ;hn all these nodes mar
L- excluded fr-m frther ronsideratio The juAffieation for this exclusion feature is fd w
if any o f these taks ererdss its due date in piin k of the ordesin it will certainl exceed this due
date if it i- ScheuI later- Sin all the other wdes repesent oderigu in which the task in qusiou
ischeduled later. they may be ta omitted.

exrtm i-d- OeA~pi; nodi means a-dA to cuti the enumrto of---uin is ts recgnz
that th~e prbli --pis du- to the earlt 4- wt rmaints. Consider lcw L -an sups we gnae

asfinh- time in this PMN-MA &- III. If el is les than tw eqa to the small st -wE timge of the
unien dued- "bs then 1he Pble decompt.s at & t and one need not Irr a e k-

The Proof of this snw exelsion Cture is the fn ninz 7h best s r for the remaini
ft - kjobs may not be staned prior in he smallest easiest sta t time a these jobs. 7Thus the rider

oftefirmt k jobs an affect the time requktd uo pr-eess al osWnS th stated cudntion aecmtISppose that a feasibl Aution h- been n and it is not olimaL its value is the
awuPletio time of the last task in the sequene. Let this value be U~. We d then lI tfe due dates
I- to be at most t- L This eL s that if other feasible sohains evit. oul thos that r bettr
than the r-tution at hand ae cemntedr

Ls th e the index oif the vel in the tier. ij-; hehe in& ofodes n level k nd Ithelist lewel
tham we need to backtr-k t - The demi-k-d stepsf the alpwhm are as follws:

(D k=o. 1=o

ten-air a Rar Jtw!4 ofMae

o if at 4 the in-k-- Il." ~ idedndiIf anl the nMe bare bee e1-m- nensed on tis 'r ce tol - Ge r a ewmeikgfor thre et

= G ~If the pr b e ,p b s as t hi level. st Ji= C 0 _X 0

If a bck ranbe f-wn that has the ear'wles 4at p-ryp-vSTOP- thr_ soluion is optima

(L wttha d r e t o 4 .
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little time. or else swnewliat ;nore time than the average.

Table 1 suminarises sone of the experimental results obtained. The times quoted are in seconds,

measured on a CDC ,40 using the optimising Fortran compiler (FTN).

TAMfL I

Rlemining Prufltita

N umbexr --f Nuinter1 Outlir~iJ411 ill a s - of Time fur IMininmu Maximum i

Protblm T'als Slutitn Time fur Time for
_____ __ I_.__ lut,-n S.hltin im

200 i .5 io tio u 1.341 0.034 tus)0.19 -j iI o.129 i  +0 J

.1 : ' I I "I

14.943 1

,] 25 ~ . 2.l I Il 50 95 .80]0.I 0.0 :

23 flip-. 0.868ai+ I i . . .

S1.>43S,, -ZOO' Jo twi 2 '5 t I0:.l o u ss

"A I - 15 *>3191 ur9 - tt2O
I' :'In ,ueliai --.

Pnri~rm nut run to ce'mpltn-n.

In the worst vase, as (-an he s-een from the resuilts-, -'ve. tlere' is simply n" way oif avoiding a:le

enumneration oif very many possible schediules, but. in general. it -seems that the exclusin bounding.
and ;.rnhiem-division features oif lte algorithm enable it tit rope with problems involvinga. considerable
number of jobs. If one be.- 4 in mnd that the number of pssible orderings of 25jobs is about 1.5X 1015
and of 100 jobs about 9.3 x 10,57 thle surprising tact is not that the algorithm occasionally requires a

considerable time to find the solution of a rolitlem. but rather that it is sp often capable of finding the
solution quickl%.

We may tentativelv conclude from the above table that the chances of being able to solve a 25 or

5W job problem in a rt asonaLie time are giod. while about one third of the 100 job proble.m.'s will cause

trouble.

A FORTRAN code of the algorithm may be found in the appendix.

4. APPLI(:ATIONS

A typical situation, where a problem of 'his type 'wcrur!-. is in the operatiot, .n a data processing

installation. 1 here is only line cmnputer available to process the variom. tasks. The preparation of the



=~~~~ ~-mm =--==W *--=- =

SCtFEDULINW WITHl EARLIEST START 517

f data for each task is c npketed at t~me a.. the output mnust fie available by time hi. and each task re-

quite,. d, units of central processor. Typical tasks are the preparation of the payroll or the report on
accounts receivable. The problecm thien is tit select an order of the tasks that allows the completion of

M all task-, beft-re their due -lates . Solretzhes it is possible tot divide lte jobs into integral units of process-

i ing timne. Thepacxn of a job inay be interrupted and then restarted after the processing ( partial

or i tmpletel of a different jobl. This situation corresponds to lte assumption of section 2. that job split-IN ting is permitted.
A similar problem may arisr when it iq required to allocate a single resource to activities in a CPM-

PERT plan of a project- Suppo-ne that the earliest stirt and latest finish times of the activities have
been determined prior to the allocation of resources. Then. all jobsv- dhat are to be processed on a
In -ticuLi ..surt arc singled out and one must determine whezl'er all the jobs may be completed by
usintt onily one resour-e. In this problem. sine jobs mayv he technolo.gically ordered and there are

additional constraitsu that some jobs must be proceised in a given order relative to each other. This
L additional restriction may be easily ac(-ojlnted for in tile algorithm of section 3 by adding a check of

(;,-d~r feasibility at step 3. If zi-v of the (n-r-- 1) possible new nodes on level k violate the order
specified then all this level tf nodes may be eliminated. All the information related to the order con-

-traints mnust be stored fur the contputations, however this can be easily accomplished.

REFERENCES
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!PPI'NDIX

This appendix presents a FORTRAN code for lte resolution of the problemn discussed in section
3 aboIve, that is. for the case where job splitting is not permitted. The code has been tested on a CDIC
6400. and Is in fact the subroutine used to provide the timings given in Table 1. The followinrg retna..s-.

may be made:
1, As written, the largest problvim that can hec solved is tine with IO obs_ For larger problems

all the array-, must be redintensined appropriately.

2. Parameters are passed through the ct.mmon block. On entrv it, the subroutine the common
arrays .4. 8_ and VI should contain appropriate values (i.e.. .f I i holds n;~ and so forth). and the common
variable X should hold the number o~f jtvbs- to he considered. On exit from the bubroutine the common
variable, Min will hold the itimutn posSizile completion time for the schedule. and the :--oinion array
Job will hold the required -3rder of the jobs (i.e.. Job~l)--6 means that job 6 must ihe sc~eduled first,
and .no nt If the schedule iS infeasible. Min will hold - I tn exit, and in this case the vaies in JoL.
art- undefined.

3. The s-ubroutine exp,!cts nounegative value,- in .4. B. D. and V. bhut dJoes not check iho~ the
values promided are act-eptzible. The value.. in Bnlay be changed h'y the uboutine, and should th,-t_4'rre

ie saved prior tot tihe call if they are ihlpova
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SUBROUnNE SOLVE

Subroutine Solve
Common AtlOkloomo)l;t,,~~

DI e uinteg r 1A o O; N w . ? oitj g Return best value in M IN. best order in JOB
Loi~cal lnNe-wfrz
Min L.'-
Lfn=Toro 

Initialize

If (udD UT.Nw No =Ad

If t( otcG T.La sj11  N wfrv .= fs Ch ck f r os i il

Tot -TotTDd)Cwc efi& fidvda nt~-
If~Ne l(vol search.nt ReturnF 21-I

CGo To dojbi2n

3INeIrz.True. 
Trye sadnewSt yth a lev

IfC0 Q To 4

Df i10-' j= (TBJjG o 6I n fh= If (tEE)) A t Mnt Bji= in- 6: Neck solti
J4h C onte'-.faw, osblt f"lti WP.k

t hf best .M urk c a n o b e i m prnv e ddtheo bc h e d ule

13 Lq.)-o* If so..EA~l Rdattnte--eu

14 If f~ow.GT.AuI Now- i thewise d try t im p e the lis bl. 6 fndn

-O =Iewow Dil

I JoT ah l I t h e . an d r p it t thic level e s no e d6 TMti o- l = Last =lfr- 
prnnutati, 

-f 
earie j)s
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16 Now r NowtabiLi
Inb=.alse.

If tLLe. N) Go To II Try next alternative at the current level if there is
ot UOTo 9 one. otherwise hack up a level

End

I -

if



LARGE DEVIATION PROBABILITIES FOR ORDER STATISTICS

Stri'hri A. t-k

CaliMria State Callrre. Danninza-z Hills
i HrinHl. Ctifrhia

A~l~t~i fpr |ai,.,are f, mnd f.-Y tw W Jrviaiti#- lintmsliti- that theIad .2MrnP Inti:viri-dzzt :hrrZ7Z>n. T ;- pdaJtti a itztxrr:-i tt w

4 qf t irr dtaribti funsioan. and thn tbl- IWAJ th-rfrat 4 Bah!ur and Rana

Ra i i atrldi. re-t ulh i* then -hownt 1s, rwn- n!rnri. titan a htaarihri- Qatmrrnt in
a 1-%0 -jia31r gil' f &-a n= % ith the a3mtdai - 

rr-latilr efflictn-y stt i ,4u vamptr mn-dsjn

1. INTRODUCTION

if U,. .... is a sc-queence of independent rand-m variabls. uniformly distributed on ithe interval

[0. 1]. with order statistics Ufr .O<- 1. for eaclh positive integer n. we would like to find an asymp-
totio representation of the large deviation probabilities PiV0.. -8) for 8>u. ([y] is the gqratest
integer Cy Our result extends to random variables Xt.. z.. having arbitrary distribution F in
view tf the fact that PIXi.-V.t > tPiAVi, 5 Fil P1 , > FSIL- Tt. determine the a-ymlttotic

formula, we write the large friation trtbability for the order statistic in terms of a large deviation

trobabiliy for the empirical distribution function te.d-J. and we then applh the result of Bahadur and
Ranga Ra, Ii]. It will then remain only tt compute the values of the ct-inmmonents of the Bahadur-

Ranga Rao formula.

2. TIHE THEOREM

From elementary results otn order statistics anti the rt-presentatian -,f the l.d.f, as a binotmial
random 'ariahle. we obtain the fidhetting result:

I.EMMA 1: IfO< e < 3 - I and F.i6 the e.d.f. of the random variables 1%. V2. then

1) ~~Pt{; *, -..> 4)= PiF.1!-I -  A)

PROOF: We st n [n4-, In c to implify the notation. The result in [3] and changers of

% .riable show that

PIUI- a,>s94-- iUisl-P-i- >.

On the other hand demoting the indi-ator function of a srt 4 by It. tie have that

13) P(F.(1 -6i - t 1 -5) >0l = P(FiI - 5511 > I-5 _

=lba=tL > ntl- -- u

Comparing 121 and (3). we obtain ti L

frewilig Page WM 521
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Nt- we art- ready it, apply tile thrin elf iahladur and itanga I.,. in [1]. the tw" authors demon-

-tratd. for x 1) and f > the exi-tenere of a pasitive number ptx. 0 < I and a hounded sequenee

aaf ninilers hJ . f J. sen-I that

%here the synlnmal "-' means that tie ratio of the twit -ides tends ti. i as n " z Amang other things.

the authrs ab, gave methods foir explicitly computing ptx. el and hjsx. E). Combining Lemma 1

with the the-rem of Rlahadur and Ran:a Ra.- we -et:

COROLLARY 1: If, ei< 6_ 1.then

and (I;fr hnn ;77 >) 2= -i I --&8-a)b -.

where n - [nil - a) n ifnna is an integer, and n - - )] = [na] I if na is nt an inteer.

it remain- io vmnllte explicitly the numbers pi I -. A-a ) and h&f I -. 6-. ). which we !hall
alb' reviate asi 1 ansd I. frnii now ton.

L.EMMA 2: p = (8/a), t(( I - S)l I -a)t
PROMF (.I-) I-)aa=~ X, a,) where | l -l-)

Bahadur and Ranga Rai, Ato wed on 1). 101.5 of [I] that if iI(l is the moment-gencrating function

of Yi. then

p= infia exp(- (8-njgt) q:f1.

Here (:1b)=ep (-(1-),) (el(1--46 ) so that p=in&. exp (--)) (qI -8)+5)
a)° ((1-8)I(]-) )M - tihe minimum being auained at t= lg (6( -a 1 -6).

NOTE: Car-erud. in [2]. has determined the value of p by an entirely different method, due to Huber.

involving ti- minimization uaja e-rtain eonn-x function.

The method of finding h. in [I] is -mnsewhat -rnrre eaamplicated. and results in the next lemma:

LEMMA 3: b.= ( (1 -a)Ia)' (61(8-a)) (-a( -8 161 -a) )-l0I

PROOF: Acording tit the aigument of Ref. [1] alp- 1022-4) culminating in Equation (461 ton

p_ 1024). b. is nten bv the formula

d exi 1-d(nad--[nad'9]))

where d is the maximum span of the lattiet- variable Y, and af - (4C(ri-c(r)) - (8- uP is the variance

of the "as.rliatecd distribution introduced in Ref. [1] (bottom of p. 1016L Clearly d= 1. and we

ralrulate fronm ct) and =rlg (8(l-0i-a(1- 6)) that fI = a()-a 1. Inserting thee values for

d. -and ay into t-). we obtain the desired expression for b.

Ilaving found formnula-- fir fle quantities that appear in Corollar- 1. we are now ready tea write

dotn the asimt atie- r-pres--ntation of the arg- deviatian ,rtahabilit:es for order statistwrs:

TIHEORE: IfO < 1 - . then

,',l- V'1 45e1

I'1!* -8- :n ca - ) 6-i e-t
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PROOF: This is an immediate c-nsequence of Corolarv I and l-emmas 2 and 3.

3. APPLICATION TO THE MEDIAN TE ST
If F is a distribution function with a c-ntinuous symmetric density. such that F'uj >0. and

X.. Xj.... is a sequence of observations from F(x- l). then the median test can b-e used to test the
hypothesis H1:0= 0. against the alternative I1,:0 > 0.. After transforming to the uniform distributhon.
we reject the hypothesis if the median 1ti U. .. - > S for some 5> 0.. The probability P1l. >AI
under the hypothesis is the significance level of the test- and as n - the tests based on the statistics
M. improve in the sense that the significance levels tend tu tt

The Bahadur -exact slope- measures the rate of convergence in 0 of the significance levels of
the .estS. The exact slope here is 2r(A). where e(S) =-Jim n- hg PI.ll. > 5). Two tests of tlhe same
hypothesis may he compared by computing the ratio of their exact shpes. %hich is called the Bahadur
asymptotic relative efficiency.

In a dis-cussio .f the asymptotic reatite efficiency of the median test in Ref. [4] ip- 1914t. Sievers
shows that

(6) Jiiira ln h P(M > ) - hg 14 6-)

The theorem obtained in the previous section ields a more precise measure of the rate of convergence
to 0 of the significance levels of the tests.

As a particular ease of the theorem, consider the large deviation probability for the median. Here
a 112 and we a sume. as is customary in this situatiom, that n takes only odd values. Then na = nt2
is not an integer. so our method gives the large deviation probability for 1:;. -1 - =41- = XL. which
is the median. We have. setting a = 112 in the theorem:

COROLLARY 2: For 5 > 112 and nan o-dd integer.

I7) P1k >5' - -261n148(I -- 3))fh1 1/pZ(8-1I2)- .

The assertion of this corollary provides the desired asymptatic me:asure with -o)mewhat mowre
precision than does (6L Also. Sievers' result follows from -7; upon taking logarithms, dividing by n.
and letting n - z.
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A BIVARIATE NORMAL THEORY MAXIMUM-LIKELIHOOD
I TECHNIQUE WHEN CERTAIN VARIANCES ARE K.NOWIN

Ih+ 0u.r ii.Isrk-

t C4nr~ .S-ktin il i h ,ryt
&tIlm4 t4 fl~tu. S-r -- Y ma- wbdaa ir fa P

-,A! dperem--_m rch q Aiw -'.nTilaC. t p-- - ~r~r -mvk

For havilyinstuentd riins;.- uch a uideda ;nj~oiiic ~a tsace .Aiaar-s-th Tau-rfs

I 'f the parmerters of the s ;stem can frequenI1yhV be otained in rveroal different way.v- because of boith

- the tolume and the variety of nxeasureinentz-.. A iven, value. for ex~ample. can he obtained either fromn

'm o mredire'traig.relefo re -rntitins of related data. 6: is o- frequently as-!unwd

that the emw lilerainees. such a'S the nonnai-1tlrr 3i-igm em~mL. assocPiated with hcoth the measurt-

ments and the rwcoflsttie techniques are kn..nn and can be sgrrifiedl int advance.

A ca-in in posint is the mass- 4. a !itagevd launch vchicle. The mass- w. criae inaition. and also at

- ~ ~ utaif can hi - timated using_ Iit se-n-or and probe data. t-ceh with a spe-cifed ernw. "A-el In additiont.

- f~stnmer data propvides_ the .liffenre letltrfif iitiii ntas ai- '-Utt! mass, and simulated remn-

-rn-lion of the trajectory rn-mbincdl with i-urine thrust data pro.vide a ratb*. of irnitin to cutoff nar-

This exampttle. uhtich motivated the study, IS covered 1n mo- dea3il at the end of the- paper. The

technique de-scribed herein 92s1 r-ssc-nlially the s-amte as ome that haTs bern Use.d f15r t1'is typ 01ms

estimatin for certain A;Ndlt flights.

T-he puuips~e Mf this rernri t,. odecriht- a te kiniqlue fotr estimating the bivariaze notrmal diiiu-

lion of two- crrelated but unknoiln values. U-iur n61nlined data fncm -ndifferent kiwis otf sotures. each

having knotwn err Some oif the- -sturce-- are- indepvendent mea'uwnht-nts of either value: others- are

recnnstnwcti..n of a linear functional relations-hip bet%rnp the twe. vztu-s. which are estimated lIn

-- using indlependent data sumThe eptarate measuremet sL of :he prdic-tor, the value which is

- ~ ~ ~ rmasure wth smallest ern'u-, ar m-ite p ta d rto- value t- pc th v-.rrer-stdin .deignations

f.'t the predictor are iand rjriey.1h-ti functional relti-anships are assumedA to he reresnotns

-s-':i m--hk Thestc can all he- differnt rezzressi'ms herause tthy are basc upn different kinds of

s-.pfflfling phv.'ical ihrory and data

The problem rn i narabide. in the bnanate sense. to eslinntfth-m te tabue -f a nomnal-theor

mcasuremnen. using data fromn different sources_ each having known error.

A nmaximurn-Iikeliild -Y-. square--! -mna theorty methi-d is dreribied few -obtaining the esti-

matt-. 4and Land their lo#int hii-ariate normal distribution, The rciproical of the variances which

525ftm~ppt
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arO prportirn.al to the squares of the toleranec levels for the measurement systems are used as weights.
The ass'iwriom is made that all systems are unbia-ed, or at leas corrected for bias. From these data
tan.' a!-, ,otais a cnf-ipence ellipse for (i. s) at any sp fied confidence level. with the center ofhie elifl y-e tqh.g fit. F-1.

The shape and h ? -c-intaui-s of the likelihood elipsoid depend only upon the variances and the
-fOp,-..w. o( :la r.7:_.Ofious and not i'pon the measurements or the positioning constants. 4. The

adriete normal distri.on Ia !the same shape. orientation. and position as that " the likelihood
fin-i.n. but diffar n".-m it "Pl ii. heiAt. As a result the estimates are influenced most by the data
wi: b-.1 de errorest a .n u; be expttc d. Likewise. if the error specified for any of the r nsrm suii ig (-n te!4?! it. d'nnii:, t- remsults.-

DE4CRIl. ON

i A...A . X, be the k unm,-r~i ;ndependen measurements of g. with corresponding variancesr ----------a. (e.g.. ui, ;,. ,rM-irJ the mauxmutn absollute error in the measurement of ic and letn- - k nia.-i :.2..,aItpeihm neau..-te easfrefets of & with variances --------urr.
Als=o f..rj =n p .. ui' nirmall6 disimtt with mean r - _4L and variance,,.

The corresponding nnrPun-:h_.myn:.. r;-'nA !iiy functions are respetirelv:

fPx, 1 92- .-- TXp-i(x, p._  tj:I . -.- p k

.-P... . . . . . . . . .. .f.. .. j.. n +I.....

The joint prdtab!i% -,r UkAn-,d ' all measmrnenr. .-4d ceations is

f-7) exp-4 61,0.

9  Gap.. v) =-.p: -t 'p 4 -Cr- OD -Er- F:

9=V 11,74a

B ~ yi q- 21 mi
=- -EA

8=-2 4 Fjr-2 h-=

__--c?
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I: ran e .iha~n thatU is4a rlissn ince 4AC -R: > 0. therefore v i, also an Mll -d.j
The maximnum-likrelihltum ef-timate tLr.(A-. v) of the pobint (pA. V) is the apex of J obtained

hr partially differentiatinr it. fuss with mnpenwc Rop and then fowr vt-ohbtin two sflultanvous equations
ini two unlknown4

Il, 1)

Bit+2C±E I h2

Silting- L't equations to 'en.t and -'ovzut. the m.Ler. is obtained

2CD -BE

ThiJS estimate is unbiasePd since

E(-DP =sZ4i-IBit

=24#p Br:

E _ p+ RL2Cp 1

Sheefre. s

Inth ~qnl hepontI~.; hilisth smtthe heelpsoid is also taken to he the summit of
-= ~ ~ h mr irariate matual distribution which hav the Same Shame =A oientation asf huts. differen height-

The radancim and rovaianre of these estimates ajm obmsinpd as fn. Frtwe note that A.Band C are independent of the dats sitter they depend onl unknwn rbe fjadt.in
and E arm randin fune tons. From 421 i %-hare

Varl);44 V IUht- V mfq 4.4

VareEg 4 Vlr=Cr

Hemte frnt !3)
=4CVsr t D .revnr El k-48CCo .E

IC

1 -t k r- r=. .-. Jl.- S-&~ t mi- v~ ~ r ~ n ~ s ~ rc

-0 rrtta= th6 1 4 mh~pvt r eta fi,



I 1 DP--4B CjD

*4I4A4C-BIF
(B I 4A CI U.- '-.EI-21C Varitb- .4R1?a(El

2H

It is p ~ l w ~ rl i tr r 4 i n '. f ut : a x d v a i a nc e s a n d th e .A r a jia u r d e p e n d c ty u p oin th e
I-presp1eified a"s and m'._ but that the cstaaw f.-- andr~ ? depend upon the aibserrabl ena wl

Fouo'ing JI4Ifit can r41- Ile $rrn that th- =0,e fvned fr. this emli od if-F~~ 61rrItL1 ar I .& r-i*V

cat. twoihirds of the- mas5 of the entirei w, irle. inelan h ieo, n hidsae n the
spaeernfl patyload. nmsised 4i svrnnd-agp rv-rnam alone. Two, dffrra wrasurin,_ Sys
w--re use-d to eflimalr- the amount of scr'md-na., lqud propeftant: -i- WrIth
the tank,. and ii: e-apaeisanrr probes., There is a s-Uudamfial amnt ivraiiyinteemalr
mefts- mane-. for example than in al of the othker reeans mass data 1dwv weigi- of th vehicle plus
the propeliants and other rnsmahles ir# the third stap and payloadL, Thurs. the enrs-g or !tdnanctes
aNonateWd with the nr-aszmr, 4 o the mas- 4 te vehicle at she timne, of m d-age iniwae
for all pratical pmPllses the- samei1- ass aiiwed with the measrmew 4th seoadar
liquid W-veLu o h se

A: the time af -__rniod-naze cutoff the am~ of resiua Pwropeln evUd have be"a mesurd
hr the sensor and pirbe syr-stews, asL at ignijtion. hut with cmnideraj& k-s' naialfiwy in thec rndlups
kran-e :Iw tapks4 'mne neatly einpnr. Thenfcr in analrzmng the reLSakuisnrkip between cutff mass
and inhhtion mass ELe cwmff &s ujsed as the "pfrrxjnC and the lane,. as he .wdpinnd2

Be~sides the sny-ot and prxi4r readiaws. otbrr 4id-n dnaa are availale wish rezpec to the iris1
iorjp btween the i~1 jg, and ctoff mass. Thes ae

turn ~ daa !L., ~diffrenn brtecn=.a_.,-i mass and rmnlff mwws is the imntenmi

ns Tknor iructin..Radar tat kat data of pnsiin. w-err and ruI, an
enne trus aw spei& inmds daa used, by a simulation :eechniqnr. Ta otn= the

mwss rnvbakl ratio .4 the ignition mwas to the rUj4sfMaSS,

Let is demisde therut Wwrmen.n rradin and-vx: the- ctoff jaobb trdn .- oh of the--, are
assunmed To 1e indnrndrnsm unldasr-d etimt, .4 the, qmuff mas pc. imilrlthe intahn painsenlsor
traling- 6 y, and she-- -*;%'e r _: ftee rc sue to h-- indeprad m ubad enimars 4-thie iio

w, tCnnr-V-..ainz tP the Z3asimm 13by) emwro 14 these wahlte ;n the -standard dreininas nf,-
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Let the --mtnt 6i denote ahe total fintegraP) of A propelant &w-- recorded by the flwmeueus.Then it i& easy to see that based upon these data we have the function

with standard dem :r.Notehahe 7:pe w.kiym i this Sa y. Msot.t

th ta o whan ther fao

wit careseadgerrors ar. imreconstructiongiv h ai of the two masses b. is zm
The hvpotheuica data ame as foflown:

fl: Ct@&- --- -- --- 463-200 15cC
----..-..- 460-400 2aC

E6tr mmSaScp Ifnf

Saw=*ur t -.as..... .3
Il a

Based upon thee data the iowing resu;c e tand

p5-783 aE; = 185

The angle of the confidence el~ire ennecjnr pL and r is iu degyem Fljr 1 sho, ther
DOWp of a Sc o nidence erlliprducned by the compsa program for thseua. It 4-hoold he Athat because of the rularw sall valie for ar the frruanadio data tad to Join" th rat
of anl calcu~laia

REFRENES
[1] IIZ&A.SrlCTkfirlTrM EKttM4 AppIv-, in Ula Wiley aSes New~ Yx

N. Y.. 1Ins).

'Snkcdv awkw Ike r mmttr u*Nwmuc~w e. intri-,* r I r HWrP lemtPiam aN SC ik w
Lards ~ ~ ~ ~ ~ ~ ~ ~ ~ W f **Mer~ rawiAl M M I a r i . ai u rr r w ec a a a a n &L



oN TIlE USE m,~ srrANI)AID TABLES TO OBTAIN DOIWE-ROMI(; IATI

SAMPIiNG INSPECTION PLANS

itlraniiq tmfrit idmfo-ciir it lt) rev'4iti iti timmIilin l ii. Fm flit-' demtemiii tihm, it l

pttiri tonly a: ulm*lo; ivilculatior andt -ftidiurd l iii-. tit i' t dkervi. tiroitli ility dr ttrit io.m- aire

riitdoilt. Simit' adrla~~igmi4 guiledty iivgim, i n ~riveitrm, radtmr t han flit I oei l-m ing
tab~le ifeltiule: I(aI 'ITi. Coono,~fli, titter i k ic im liinitmiti too 0.11). 11 l owv chtiu r epim , ifr I LTP are

avaiiilalem. fie) Smaeer avorrage footat io,.goe.'tie ipi arldemh flmi -ti g .. it 1.,1 mialviimemt lor

Pi;irrifir *lotir i s aviiim l or ai~ii nid hot -i ip rat Itmr I ii th i 'm milmproomji Imiun ili, j iem l toe mver
hl mrvalo #offii the i~mW, louraielt-r.

1. INTRmIUCTION
A product that is mami produced is asmbled tit raiidom into lot- of sizv A. 'rii each lot it ems

are sam pled at random anti tile number of defect iveS is oblservedl. If' file lot is aeceplted all (l(ficlive

items4 l'ounti when satmpling are rep~lacedI ly nomntefectives. If the l it is rejected all A? items arc examined
and Lill nlefecltive items4 ill tile lot are rep'laced. The jirticeti tre just iflseriliec is flt- s pcial case (oif'

reel ulyifg inspectionl which we are abltt oniusider. Ouir goal ;,. io determine reasonable sam; ilinig
plans for the I ypI of situait ion just described.

Let 11. assume tha~t tile process prodtuces4 at defective wit 1 probalbilit y p. lEach iii-Apeceet lot will
contain an unknown number of defect liVes. s4ay 1. i t V l lie iC ii umber of defect i ye- in a randopm samle
oif size n drawn from a liii. It is well known that thle probability funct io n of Y given k is the( hypiergeomletrnc

p(N.n. k y) (N) YZh

where a max [0, n - (A' - k)]I. h' numn [k. i]. andI the( uncionditivinal p~rfibalnlity function of Y

is the binomial

For hfotl h ingle anid double samliling we will miii/ci the(. average toptal inspoct ion if p f.lit!
66 rocess average." sutbject to) tile condition that the( iperilt ig chiaraci erist ic (0C) (if flte sampling jibi ii
hei, no more fihe tit if thle lot contains k, - Nr) defect ives. (11n the Ia ngliage of lDodge. Bom ig I I 11,= 0

!.TI'i. T~ lhe Consumer's Risk.)

531
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Binomial cunnilat;ve sums will be denoted by

-1.3) E(r n. p) N b(y n. p).

For our purloss we find that three tables are useful. The Ordnance Corps 17-I table giles 1.3) t seven
decimal places for n = 1 (1) 1.5 p = 0.01 0-01 )0.50. The Harvard 141 tablz iv-es v 1.3) to fIhe de-inial
places for n =1i ,_-;1)50(2) iO)O2_(20)-j(50j 0(01. p=0.01 ((01 )0.50 {plus a few rational feat-I:; 0 fo r n ( .0 1 oi 15(2)001 2 ID.afrc
tions). The Weintraub [8] table gives the saein sum to 10 decimal places fur n = 1(1110, 11- 0.XN.
o~~f0001 (o-oooiJ0.oo1 (0A Du-)0A0-

In the hyper-..znetric case we will use the table.; of Liebcrman and Owen 151 which gies both
-(1.1) and

i.4) P(N. n. k. r I (N.nkyl.

k to six decimal places for N=1(i)50(10)100. In addition two approxinations to (1.4) will bie used.
W7 _ These are

I k N
t 5 P(1V n. k. A I-r) I-E r+ 1; . )

if -- f-N G. 10. it. and-

(1.61 P(Gn... ) a-E r+I; k. 7;.).

if k'V5 0.10. k n. Even when neither condition- nV' 0.10 and N-< 0.10. is satisfied the approxi-
mation is- usually surprisinly good if we use tiS when k a n and (1.6) when k < n (as su ted hy

Lieberman and Owen). The examples considered later in the paper sutgest ;hat the aecuracy obtained

--Using the binomial approximation is sufficient for practical purposes.
If sample size are larger than 150. it is usuallv convenient to use the Pisson approximation to

the binomiaL Two g-nd tab!e, which together contain about all the probabilitles that would ever be
needed.are the ones prepared by' General Elctric 121 and Mlina (61.

If more accuracy i desired than can be obtained from the approximations (which is unlikely in
most applications), then a hi-t stpezd computer can he used t, obtain a sulution by following the same

procedure demonstrated in the examples.

2. THE SINGLE SAMPLE CASE
A sample of size a is selected at random from a lot of size N- Let X ie the numaber of defetves in

the sample. Ifx S c defective items are found in tie sample. these items are replaced by nondefectives
and the lot is accepted without furfier inspection. If x > c the lot is totally inspected and all defective
items in the lot are replaced by nondefectives. If the lot contains A defeetives then the operating char-
acteristic is

(2-1) OC=P(N. n. k. c).
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When A- k, =.Vpt we wish to ata ept Il1e lot with pr-lb.-nilinv -at in's- fiso that nt and r nibs _ atisfxv

the inequality
(2.)_ P t, a k,. ci tfi-3

hu-r a bit eontantn' I. itemis Ill= exPeeted numb11er cif itenis1II-(.)Jn X-HlJ( ~oever. if tine jircnui=S a~eragc s_ p. then I i--. ani -a5NIniled Idue oft a raitnarihl and tile nmrher

)f defeethec items1- in a -anmple of L--t n Ii-ls ant imlaiiitionl Ifi-xnnnial diStitntin will, parme(crz. it
andt p. othner wiods 1. is a cilInttInIil eq'e'latin tile n r..ditin'nal extpected value [winE

(2.4) Jn+I (N Alt- 1:11ar P ). p

flodi: asnd Rimig- [II have- minimized 12A3.4) pt p .uicct iio -21 Du ft .I and have tab ulated a
nutrler 4f such sannmiplns. Teniinn 41fF.I~i. dloted 11 1IS

U--ing tile stanidani tainhes meiinied in Scr'iiin I thle nminimiation can L-te areoiniplined 1w trial

starting with c 0 . _and nncreasina Y tione %tnt at a-tirne. For ea Inrthe munnniunt itusvn (2.2 i..
found and Is is computed. Calculations Uceise when ie nunnimn Is ulitened. We will denmonstrate

-11 examtples.
EXA'I '1E 21 v If 50 k-= 12- 0.~f24 ui It ! -lan mlirhniir1ns 1, uthen Dp_0._C

Fi nd tie (Ic if rk;V-!3.

S0I.UTION: Condition, n ircimes I'tSO. i *9. c!i cln -U th I- neberrman and Owien IMi
table we verify that if r n -:-6. if c- n - 16 it c= 33 r 'i ce (Ynwlnu y we choose-m thmii

Ilium 1n i11 each interval. U-in" tie Ordnance Co1- N for ilarvinlI til1 an] ii I icrhennaiv-and Owen
laiefs we find.-

if c and! 6 ti=-44E(h: 6. in nw,-n-44lnn mn 0)1'
if c=l and a =I 11 ni1± 139fl2:- 1 Ititi0) =II 3u-in i38216.=0.39h
if r=2 aind It 16. 1=_ 16±34F(3: Ick c).6=6 it-- 3 11.- 1 . -")2.

Furlther- raknihatioS are olivito,,h lnnt.*cee,-ans idtIe plhan whicht nninuimnires R-M ist=]--1 r-1 wiuin
= 16=39.

The Or- at Z- is- O1> Pt5 11-M1)d)8143.

EXAMI'I.E El2-: If N= 1000. k'1I0(pn=O.JO). Pnt) LIi find the [Ilan which minimizes tine
averaze annon of inspetion if p0.02. Fnnd tine (IC when kK=Np).

S.OLUTION: With N= 10)(1, we are out of the range wof the Lieher.:anOwen hyprronnetnc

table, and we use,- tile approimatiou

OC=rP(1000. n, ZOO. r) I -Ec--1: a. 0.10)

(with na> 100 approxnination (1.611) ispll binatheterls that iZ2j 21efflultes

=With the Ordnanve Corps 131 nabie- we trrilv that if c0O qzz =1 if c_- $a.ml if c 2_ n -52. if

c=3- n 65. if c=4.n 78. i=f-Sit91.i r& n1 ic=7. n>H etc. We with
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c=0. n=20 Is-k +980E(: 20. L0.2)=20+980(0.3 )934:7

c=-l, n=38 4962E38+%2( 38, 0.02) =38+962(0.73, I-207.3

c=2. n=52 ts 9=529 4(3; 52. (L02)=52+9 (0.08593= 133_5

c=3. n=65 Is-65+935E4: 65. 0.02) =65±935(0n04i38) =103.7
e=4, n=78 1 2~= G+;9(5: 78. O02 = 78+922(0.0028,=9.:

c--5, n-91 Is- =96+K( 91, 0.2) =91+909(0.01)t 100.9

Obviously further calculations am unnecessary and the desird plan is n = 78 art i4.
Dodge and Romig [II give n=65. c=3. but their plan is designed ti- cover intervals on both N

and/P.
The OC at kk 1000(0.02) ---20 iO C I -E(5: 78.0.02) 0--9.

Hald [31 has derived asymptotic formulas which, together with s.me auxilian tables, can be used
to btain sapling plans of the type bave considered. Considerable calation sms to bere.
quird Hispaper has one numerical -exatle which we will now wrkr co.aui-son of-results.

EXAMPLE 2 3 IfN2= 20. _ -- 10k =28)./ =0.10. find the plan which mininjizes the avenge

amount of inspection if-p= 0.045
SOLUTION: We- need

OC=P(280. n. 28-. ) z- ---] : .

or

and

hsn+' (2 n E-1+1: n. 0.045).

Without interpolating on p in the binamial table we find if

c=0. n:iM8 008~. na . 2i5+254(.697nh=2M
c=1. nJ2800. 14 . ._z -401..-Is 40+240(0.54 1 1i _-0
c=2. nI 180.8 n 51n I 51+229(0.40449 1 4 4
c=3. n2980.D-: n 6. 65+215(0.33554 =137

c=4. n280.27 n 76.4= 76+204(0.25%6W9;=Iz
c=5. n.28O 0.3I n 8. i s= 874-193(0.19784)1=2
c=6. n280Z 0.35 98.1-v= 98+182(0.13299 1-
c 7 nj280 O n 110- Isl10+T0. 12T='3

where Et - I: n. 0.045) was found frnn! thr W, intraub [81 table except for n=1C for which the Posson
appromation was used. Recomputing the t maliest Us using linear inerpolttion in the binomial

table vieids with

c=4. nt' 2M.0 S_ !a h 23 75 - 205(0.248451= 15-i9
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c=6. n!280 -0.340 at97 ~Q 183(0.14740) _124.4)

Tuepln ith minimuml is n=86. r _5 with 1s123.1amiesn8.c5bl96buhi
Consumefs Risk is -slightly larger than M1.I(1while ouzs- wiiin the limtsof the appozain-a h
Consun eiS Risk slightly -lethan 0_16.

The a1veae outgOing: quality for the s ligle cu' a-e is

-The maximum oif C) 51,t.Lk.. over p-i- railrd ii au~ u"li-qaivlmt(.0L- cgROe! U'Lae optp-n quality limitri a4QJ DigeanRoIg 1.p.3-9uecieamthod of approximatin AOQL. We bev ta QLca lob
fo~und by trial using Wrintraujhs 181 table. For Example.2 2 in which IV=1000. a=78- c=2 we find

ip0045 AOUQ=0.921- 45( if;,= 0-03011
P006 OO= 0221.06) Od- a 03014

Pr=0.J4T AC)-09200< io63 0.03013

sotht DQ=003. he Dd~-Rnin-Mdutto ls e AOQL=03. occurring atp .6?-=

-3. THE 'DOUBLE SAMPLE GA SE
A sapleof sze A th eected at rtandnum-fro-m a-11-4 dXie JL tbe the nunbetor 4de-fectiveitems in-the sample if x, - c, eetv tr-ae id ntesml..teetm are rpae ynn

defectites ~O an h lti ccpe ith.t unamrr i1H5c~n if c~<x1 S a secoind sAmple ofasize a-
isstiected at rndom fromn the remainir 4N-, items and X. the number of defectivue item in the SO-ond s-ample. is observed. If &xz" rC x x= the -lot is accepte wihu futehnpcin ut al de-
f-crtive items found in both sampiles, are replaced by --jad 'ne-s. If e+ite-r xi > cz or ex<c, 29 c. and
ii -,.r.z te Z is totallyh inf eeled and all defecve items in the lo are replaced by n"-',Aeccvs
it the lot coantains k defectv. then the o['rating charn~cersic is

GC4 (k- fl. a. 'z, c.. C

The counterpars of a2.3) and 12 4) are

and

Ito3 In nn E(di: n._'+ (N- n, I Kip. n . -n- d,. d-)



t!n.Pre dc, + 1.u d=c±. andi

13,4 Kin i. n. d1. ti=E(dz n ) T1- tus~-.j 1 p ~-d~:n

.Now we uzs,. to rnrunua I %vtu It ,su~dJee to thle I!ondi in hat th C 31a 9'1 be no greater

than $,. That is- -we require

1331 Ht kt N n,;zcm

I The Mnium v.alue oF.3.3 at -p will bew denoted hluI. IIUV>50sthat l it is not practical to use the
table oif Lieberman -And Owen I4then we wit use bintsmial appnnimmations for hy pergwometinc sum.-

powr nstead of(AC. and condition. S.5) i replui

Fr:we tsnake *'rn -p~e-ea obd-en'a-ors.

of Rt IJV. ull AtoubiisulutVv bous Thatla * n- fist .rke viarrr this istrue because
K(p:- -h .-. dJr Oft <Ed:=1 . p a rtscn( which 1o16has from 0.4) and the fart thax E -d -j

Beus hi-ar-- HW ne ala

t.-enIthe 1 bioa atwiuatis tn is nSC beedeIJ

- then _Kims: n, .n~ k S 4) k = for ere - 0. lie if rno is the smaileszat o samsf ( .ten

I"S1== inhFep.snte i 1 p -u

1-Only if n= C It dow we need n 41 CM r= a n='.i s.uerwis 1Sn >h .-nd the objecive of dinuble
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samlin It" reure av en total insp-etion-1 would be dkf-atett

4-TI v n a tw niast have n H+ni- llw TO; Sue thhi ass4umfe that tie convers I rl. that

j5. thr xs az<n 'e h -_r tkA11-md -1-,h aign obseny-auons all

5.As n i increasest + n-- Is no-nincreakina and has as itS. minimum Value a,- tatt inable whennz-n.h This0Su may be cosdral reater than nit- when i3 = 'u u e~coet
'it, after nt hatsbe increased by relativelv few uits.- This - iic !piainedl by observing-that when nx,a,- Elft Hi. ill -which is greater thtan the pnwcn- is vry nearly I -% and-t" satzisy13 6i the terms,

P! tha a islage As a~Icesstedifference beaween powerand En!1 : mu. pol _rsN~ at a relatively rapid pace pvnniltinjg Li. -dI.: ~.p a. t-emc

Inl a numierical tproblemn we5 sthe fdoing
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ii. LEARNING AND WORKER PRODUCTIVIfl

When workers are assimilated into the program organization. they must be trained and indoc-
trinated into the company way of doing things. This requires. among other things. explanation of
company ptiieies and torganization structure, the products to be developed and their technical speci-
fications. and. perhips- training in the use of special tools and techniques which are required in per-
formance of the individual*s work assignment. All of this takes time and from the point of view employee

contibution can be re!arded as a "nonproductive- period. This period will be referred to as the learn-
ing time. denoted by L. and the basic assumption of the model is that all personnel are "productive"
after they have been on the program for L time units. The learning time corresponds to that which

Purkiss [5 p. 5] refers to a, the time period to train a man. It is not unreasonable to expect that the
value of 1, would depend upon the type of individual hired, such as technician, engineer. tool and die
maker. machinist, clerk. -nd quality control inspector, or even upon the number of years of experience

both within and outside the company and educational degrees obtained.

Factri affectin-' the learning time of a worker can be expected to include the following:

11) The time spen.' in general orientation training concerning such subjects as erganizational
structure. obiectives and missions: program purpose and objectives: philosophy and inner workings
of the customer s operating and support environment: general systems outline (if the purpose of the
organization is to develop and design some type of system).

02) The time spent in technical orientation training concerning the technical concept of the system
design and indoctrination at the technical level of the major and minor subsystems

(3) The time spent in the internal company traininglretraining. skills development and skills certi-
fication programs. Typical examples are as follows:

fat Engineering taining to accelerate the engineers integration into the working team and
to broaden their comprehension of their specific task assiament.

(b) Manufacturing skill training to provide personnel capable of assuming the duties of an
assembly work station and of performing the tasks of the station in accordance with program require-

nients.
(ci Quality control training which encompasses all techniques. processes, and procedures

utilized during design. development. manufaeiuring. inspection. handling, and packaging.

1d; Reliability training of technicians and skilled craftsmen to assure that their skills and
knowledge ker;p up with the advancing technology required to achieve the specified system reliability
requirements-

(c) Training in the proper and safe methods of packing. shipping, and storing of the items
used in the mtanufacture. assenbly, cnd test (f hardware items.

(iD Supetrvisory orientation to provide new and experienced supervisors with program phi los-

ophy and revi-w of responsibilities.
-! - °  $41 Thr time spa-nt after co~mpletion of all general and specialized orientation training until the

-* worker is -ien -a sp-cific and well defined task assignment. This factor Is quite importanzt and can

usually be attlihuted to poor management planning and supervisory practices.

Twoimpli-ation of this basic assumption regarding learning time are:
(1) It inpt~ies that each individual reaches a productive level after spending L time units on the

pngam. thus ignoring the fact that some new hires never become productive;
ar
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(2) it ignores the fact that while an individual is being trained and indoctrinated he can make a

meaningful contribution to the program and thus, in a sense. be productive even though not perhaps

productive at the level for which lie was hired.

One way if resolving (1) would be to introduce into the model an attrition rate for each type of

worker hired to allow for recog'nition by company management that the individual is not going to mature

as expected and thus his employment iN terminated. Consequently. if the buildup rate is U workers per

unit O me and the attrition rate (i.e.. terminated workers per unit time) is -, then the net buildup rate

is U-A workers per unit time; hence, tine could merely use U-A instead of U as the buildup rate input.

The assumption of zero productivity by a worker during the first L time units of his employment

can he described graphically by the step function in Figure 1.

One may argue ihat (2) is an unrealistic implication of the basic assumption and that productivity
is perhaps a piecewise linear function of the form described in Figure 2 If this is the true situation.

then this can be resolved by redefining L to take into consideration the area of the shaded triangle

which the assumption. as stated. would otherwise ignore. More specifically, if the line segment for real

time between 0 and L has slope m. then we must have L = 1/m: hence, the area of the triangle is 112n

Therefore. using the interpretation of learning time according to our assumption, we choose the learning

time equal to 112m because then the area of the shaded rectangle in Figure 3 equals the area of the

triangle in Figure 2. In this way. the effect is approximately the same.

I1. DEVELOPMENT OF THE BUILDUP A-ND BUILDDOIN PROCESS

Consider a program which beuins at time O. with MAO) workers of which p(O) are initially trained

and the remainder n(O)= go) -pO) are nontrained. At time t > 0. let gtin be the size of the program

1.-

WORKERI ~~PROCAPCTIVI'Y 0&TM

* TiMEI p~~Fiat nRE L 2nIiii mep runcthli

WORKER 1

PROMuCTVITy

o L

Fiw;t: E T IME- nwat Imul-cthity ftJLtixW

I

I 7 I1

Ficr.RE 3. 5tep III Ttivm apptoximainn
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organization, where the units oz could be weeks, months, or quarters. At time t, the number of pro-

ductive workers (Le.. those who have completed the learning process) is denoted byp(t) and the number

I of nonproductive workers is denoted by nit), hence we obtain, since each worker is defined to he either

productive or nonproductive,

t(1) w() fn(t) + p(tLI Assuming changes at discrete time-- only," if wr(t) > wt -i1), then the org-anization has increased at

time t by an amount equal to U(t)=wt)-w t-l); on the other hand. if wt) < :-(t-1), then the

organization has decreased at time t by an amount equal to D(t) wt-)-w(). In general, we can
define the increase in the organization at time t ; i relative to time t- I by

- (2) U(t) =max {0, w(t)-w(- )}

and the decrease in the organization at time t-i relative to time t- I by

(3) DO) = max (0, w t- )-w(t}.

Consequently, we observe that

(4) wt -t )+Ot ~)

Suppose that, if there is a decrease in the number of worke at time relative to time t- 1, thedecrease is made in the number of productive workePrs first, that is,. trained workers aeremoved first.
are

The reason for this assump tlzation would no decrease in size until all
workers were trained (hence. everyone would be productiWve and. if notrained worker-- were removedIfirst, then some type of seniority rule would have to he assumed such as the removal of the most re-
cently hired workers, then the next most recent. etc. This assumptino thus avoids any further assump-
tions about seniority rules and simplifies the modeL Therefore. if t < L. where L denotes the worker
learning time. none of the initial nontrained workers are vet trained and -o the number of productive

workers is either zero or equal to

p(o)- V Mj4-

where [t] denotes the largest integer not exceeding t: if st- L. then all the initial workers w(o) are
now productive, together with those hired by time t - L. (namely.

$.1

and so the number of productive worker' in this case is either zero or equal to

W(OJ I Uj-~u

tSierrganization size chanrs typically cm a daily. w-rkty.ww mmahl, h anda u iM with timr.
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Consequently. we have for I I

pit)=(-
ma Xic - V 1 1 =V D"j'1 fL~

The number of nimnprviduvnve liviirkers nim is then determied fromt Equation (I L

IV. SPECIAL CASE OF CONSTANT BUlLEDUP AND HUILODOWN RATES

As an illustratioin Cit the miodel as foirmuiatedi. i us n'nsider the spetlal case in which tU(M is a

positive constant whenever it is nut Lerm and. Simnilarly. LOW -i sa pi-iix constant whenever it is not
zero: that is. we are considering the constant buldup rate and cons~tant builildown rate situation.
Let us suppotse that the uin~anizatitsn h-fit.'a iii Ti wihbasic cotre. wia).. of workers and ..ne

Kthe planning oif tasks and trainin-g puvgrurniS are defined. saw at ime T,. the buildup is begun. at a con-
taut rate I1. Upon reaching~ tite I ~ 'abur iuorrr sa at tune r_ the lzrianizat ian stays, at this: size until

it is deemed feasible and neusa it' an n o wnrkrrs. say at time Thf. in which case the organiza-
t~builds down at it Con1stant rate Diito a lbasic minnimal ize iti inusa Im TI. say) squfficient to

carvau te eiaiim tksandi effitut- the pnW - and then cniusntil time Tr,. at which

time the program ends.
In thi.s special ease. we have fo: I > I

Jw(t1I1 i iftIC<Tr p---I<C- Toor TCC<:

Ho-wever. since workers are only added to the program at the discrete timies Tv. To .. 71,, the

w.(Ts) if T f< T,
trT - T4' I~ if T-sz.C<T,

tr(Td+ I .T- lIf T ifr 41<T
uj(T,..j+UIfl - 1, I~' 7t 1- ifc I

=We shall. for convenience- o avoid emrirat'ng a mn -d .4f mas assume that

_L m: nin1TI- TTt Tz6-Tr Tj

This asulption nueans that somme of the workrr add it-, the .'rzamzaiw duinng the bttildup prMess
have an -pportunity to complete the tearirg phase berfire the builtdnwn beams (ix.. To +- Lz G 74.
the last gro-up of V workers added tit the pn'-gmm at time Te can complete their Want~ing phase beore
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the builddowt, is completed (Le.. T+L + T). and tie initial number of nonproductive workers.

n (T). is productive by the time the peak buildup occurs iLe.. T5 + L C Tp).
To determine the numher.p(t). of productive workers at timet. we observe that any nonproductive

worker who has been in the organization at least L time units is productive. This means that A-- worke-s
hired at Ts. T -I .... ft-L] are productive by time t and if ;- T -L. then all workers have
completed their learning phase by tane I. Consequently. it is a straightforward argment to show
that pit is given as follows:

CASE: Ts+L T, and T+L z TI,

if t < TV
p(TO) if Tv- <: T +L
xw(T if T-.- L C:< TVr L

(9) pit) - (TO -f. - T - L + IifT.] if- -+ L < -- T+
w(s)- U(T- T+ I ) if Tr+L t<T,

M w(T T+v(- T + I ) D ,if T t.

w(T )+ U(l - T + I ) - D( T - T + ) if TCt T.

.CASE: Tv+L Tt and To < Tp+L 'TL

0 if I < Tx
p(T) if T. z r < Tc+L
:wtT if T.c+ L < Tr-+L

i p( .w(T )+UftTr +I] if Tr+ L 2 t< T-
w(T)+U- Tr-L+I]-Df-Tn+l] if 7>s'v <TP+L
w(7+U(TrTr+I)-DjUT,+1] if Tr+ L 1 s < T
w( Ts ) +U(Tr- Tr + i)-D( Tt- Tg, + i) i- T "c tT T,:

CAS2E: T- < T,+ L Tr and T,+ L To,

p(T4 ~if T~1< +!

0 if < h

w(T , +ft-Tr-L+ ] if r+L-#I < Tr+L
WI(Ts)+U](:-T:- ], -) if TI] f +LT t< To

w T +U(Tr- T, + DI)- v[-T,-1-] if ToL f< T,
T + U(T P - T ) - D( - T O +) if T t g TE.

CASE: < T, +L s Tp and T < p o cL ei di

10 if ! < 7:'

PIT"?) if T., <-t< T + L
X1ip t wl,)+Uft -Tr-L +!I if T%,+ L -_ t < Tp

w(s)+Ut-T-L+ lJ-D[z- Tr,+ I] if T.. it <T, 'L
w(Tv)'UTp-T# + l-D[z-T-l' if Tp-+L-t< T

,W Tv)-+U(Tp-T#-+I)-D(T,.-T..+I6) T tT.

U-tng the relatioithip nit) =w(t) -pMt, one can easily derive nit, for each of the pr-eeding casem
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V. DETER-MINA"iON OF THE lABOR UlNIT EXPENDlITU RE FUNIMONS

Ithre arit- nunters in- 1 ai rguizai= 014a time -i. the Wx dA is t he anwun:r o 4dfir. (man-

11 hurs. maatnnmonths. vce-. depnuim'a n ierher or 1141 U5 cxlesd u -rs. t.-i

-~ am~ntt expenid during th1w ,n-enal t ~ds' ienee. letiaE H'I' denote the i'A8 M-- x a li

fo WIf< T.

wche-e T, =:she mat6n irt" I It_ i-wi izaticrn. Tniulk.A: re. mr oali T,~ 1W~i but i n a

01 -o r-c = - . or. e -

a :n#ux of werkr- in ar. "rgnnrzawni-. di'mcaw 1. hic .. zi t. rxken. ta~f ece: tTI= 'alan itc-pnl
diffren -iW' an .a- =t ftfrt- r i i

Sine art x;u a step au:s=~ =ih p -sf1 oi td-c--tm j4u=n can rewrnr

Iff th-ere afre '-tuj nnrS---'. wcrktrm at lime then a, A) dx is fln amtrnnt t wproductive
c~1f rtpndd bxv wltwkr,-4 villi Hu sh C-a nn -s- in the in era ix. x dxk Lntingg ll'rI!

z1m h uraln rs.rMoteiveefiar t--%=Pencd lb. rtirro-id 4-tare %Vur hr lie I. we b2awe

c-1 T 4

S.Ince nix)1 IS aP~nfntonl Ulhh giNAS-r v~s at lime ;._W n" the form ijLILIj I-

>+LLE -~ e vdr~iT~T;at rew-rite Eqnaitm15FL ifi- Ttc-T, as

-MV W1- iti~ 1. 15 [fILI

, 1 )( ~ ~-=1, 1=-'+L- it< filrx

VI. EFFICIENCY OiF A PRODUCT-IE' WORKER
Once a wfr-trr if. 'rained l-. pir-dwL'Cthr 6p wrof as hnn -rn;p- at l L tim un; ts art

-who8F am~ no wu rmned anid ma' rtifl particiJuWri 't~ I-r -undurt of1 jaoir WtVIr in- .w *--i-- 'rasom it

~sruw lasibr -- 'nanid' a dr-danvhun factm. r Wha up sehat' 1-"mai callr .ne-t(jr

u.~ accoun far, a partI htss in pringur-iriwy of 1 tra e 1 oke whenirrjntn'ardope-

-i rati if -u-anc to p=-



dne-livr w--rkr~iafth dira tnwivexreedsa -pnhlihrbrd Eeexamuple. eonjdcr a fully pmdueztiw

a ir a r eady4 tr ilm rni th en th is p artic u lar r h fn r r r n ii ts a ni 14 p p i or at l p em r] ff w n iifrrk a ll -, .tt- t..r th'ja n' r i j ral dteb id ptr-
artl.qanh~ let us arctarl 

exettetanidelpl .
Ff - e tn a A a hascere Wan .efficien ari r i - tha n rt--i, b r ta ti n f w rk r 'fth saIt pendn _11m nr urIVa worer. ifnvl)/nvgjt> More -n' irh n

ru e~ t rrii-i - a Ms d Vie -n''s*tfaii wr dh n

H1R1

diawn~~ tha r-s Hal Siast Taiin thedsrie nFiue
T he d j r~sig in t as d f n d i tl p i s m - - A j a a . r . z . 6 a s' r ah

t~tter furi,~, whic appoint- I as - A F nampleft wo sc n ein i

W hich ~ ~ ~ ti ~ ~ fdd hr * tb - s ;~ drflnjd as- a d r m s u r w y th i d r m d ~ b ~

Uplin~~ iiin >K. ,dwn.

The emtrn .4 ~ntr e fiency ha >Reen Kiiew 1a tie el.ewhere and. in- part rnimin a e e a-2t a ia cn13 aeserses in F ng Jan 4 - tenitC1wfa xeine.nw netnand - --+ePurik d fwrkz- !u tha tlis ir in d-n-r ff the tun -- r-Ld inenr hs
laehinr ~ iL nr~ u rt ta s n se n t n are awulucE11% t a a- it r iod, an Lua xan7cnie wh4! cwansrh Isitati wher a . For bi- -P hao etfhficiency-mec

ffP- K)lti -J K n J'!,,(1F- iem izAl
Wi ii i opi

UnKt tK o-L - tU _ 1 11?
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Fr -Hrxprrtirrd to _ analta '.,a.'en wvi,z

Jui -itrtflr ti-~ 'lzz n in Ref'-4 ewwlm arxe luickm pnunat rahe thanrg t-meidnnifiaa-k1

'~~~If'ine pr'fl'nnin.rEl.

c: tin- i t h irz war u araisunn n ikwnirt

drinmim frl~i~ i mnim .afe1161rk - -

--tIn tia!e pe fn e- n mucing withr r i mw --krraeem h.-ng-T
tn r-Abe tie woren iav -lw Inu b C'inreuzmw ie rvt~ nE uain-1413. .11 hoe m~EMNTO (Ie TUAiiupt. nO h R ~ nn AO NTEPNIUE

Brru.e . se numthm I olnd d frn 4 X w-metu t c e inu ibr rmrnda iw m
U flrrh -utvcqima- l n dir ean- eine d 14 l a i iwtbzi ores ti ginbra tui i

nimndareqaeffn ' -sanoin and mirifr.s idet fianpwuirf.mfi nlnv it

Nm-1 ta e fimap r _ rrczJ!an 
ssmi

amrU it iT 4 is 4

imp SU It md

Ol)1 -= t ,=ci wokg.nar

12*he=imIspnt - rot ui)±mwithi4 f ~ -J I .rp-.J J
jj_~~I pet if ow -cnmmttettw



[ Therefore. dih -a ' M-
Is2 svv a-ur /I.. A

Similary. hls E-1:at aIuffdnt '4

MYur' HPl dv7

rim ram tc tita ai Hdn1i f wlarsrpeof 
i f rrir'reaq~qn

H-- U~ 1fet i rnapiwrras n , wta- o' inu the p ea wfn-i II tuajc .3 -.= 'tzflflmpriUtit i-er.n .- - na - =: Rn ai4 K a-t snx- -It By

anrtc .Iran1 aiinnnn 1ad i-=q4 Is Lv - t aIts f payod It.Iweapr..ee 1~sie~da ilwr ,~ .aum-r=~ ,.-r inm mw exq" lrn~ us-awoiaddr- g ats the priwnnia=vv pa ism wna d AW.lts IsM d n 4-n4 Selidc fl_ 14._th j l 1 t -. Th
Uivjn rnnslrawe Mranau Him m- rkpf -1 bijina ewt nee. waiimrie wd~ ik

:mha w n- - - a k-~~~-W f-gwaar Mepnn Sti~. = r-r i w r intin thwitetthnow rj a ~'e

Fids~n LL Tr ai ff wi
Nwi0). thee timeI That -h radii,. rr~w drn Wok- whic zt'inr,--- with pn'd

Cud an asuretha ri an~ @- ir r~ toTa.and hao ir a a141 T then wqesm
hoam e DN e "aig i e or fckb

she meit t ha 
e mo h

ar. part-uli. Wn-r aMU -" 4i i izui - ~x f- r0 .-- h

t h i e oy fa r ~ r r ' ~ = ~ ~ i 4 m i t h e n e r v a r i b l e w t O I w E e I a -~ r i
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fhloe r. e srriff tMal the learnintimeh L is integral and that the bildup threshold mut Hot hw
exceeda" during the buildup prtocss. then Equation (129) becoen 2ierinte 4 TISisfdtad

by adIft thie rnniitrin: that ')t--t 1!! K for 1=0. 1. 2. Tor. equivalently.

I - K pe'W)- w,t')3- for t =0. 1.2. T.

Thi tyw 23 onsrant n"been ninsidnrrd beare by Parldss '51 when he iznpowsodt6- vandtion that
the nunfml :r-rxnecannot exeeu s-nne fi"e pw'mponrion K of the trained meni.

Mromn dhown tirni the problemn defined by- (2H1,a) is an inteper linear prigrammina probtem
Ret= t 'herretk an alteniative. andi perhapis more rrai#. form of Equatin f29) is for girc

177USmz k;; thr toa n;:effr e ae(o qa.ne4e

021 A;ji

Fanr w-e =--- T and the buidu treshod t e eeerden-. itw follows thae f -na 0 a iun 14)uak

th bidu tr -lwdt e xeeed3- fi

nnretis asumeilto P an intr. Couqurale. it mmaers to shotw ths! pil! I is finar in the rar-s
-=Uw--M the delinihri 4~ t'(j; and DziJ) alongc weith d-971 and MRL it is easfl -hown frow Equation (5t what.

if £L -Tff then

if Ilzt< L

-Iz-L ifLrv; CTr

-3 V- a )r)~1r
-pg-{w(I-L?- wni:)-wtT,) if Tr< %;Tr+ L

L& Meiw-eTet ifLL=T

- 1%.' DETERMINATION OF THEE OPTIMUM IBUILDUP RLAW

- ~In dincssng q~wi man zpmw plas roidraion is sswnctfrns given to the concept voS an
-m enot buildup rae. Two pos sihe enswin. for such: a rat e are: I I) thue f atti on a thAe tonad kbir (wc
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whxih r- tranedWrdt vet erles-sthan a-4wn tevelaewkths-inrrr t aoall:r Tz

Fand i21 the fration of labor espendeUi far pwrcif-ivt effnxr is ner EI L-0 han kve lvel &bAa s

H,'A)1j.:)r B for a : Ts. Probahly. the moast irnpwtaut rmt rm rr its v enailv no do-
smddbe to obtain --unproductive effort From productive ptn-qd. 'M that th n, Up-t neve-r ee
the buildup :ursh-l Thi means that the MUad mnnDCUtie eilWt naed isdue to the uin

dz new workers and njg due- to an nensirr4 LMIld-up rate Wblcb WOedeurpoutv e*t
hernia partially nnnprodneaive.

Thus. as an ifsuilnn. et us rinsidera the praoldcn of detennining theMIU raintbidpate-

L'V sav. n-ah that nuj/ K) for all zTFor rer wenikarsurfwe0andmnnNh

that nffid- p .0 IC If Ohe otnztibi~m up at the rme iV -ha I h aitn a4temr
rx~-wjflZr (Tp)w~o)U(T-Tr~L were i j i' e ua: w~rh the I-,ildu !S hegm

Oan 9?:- Aodnnminet71er - a. ).dnp m.ishflurwe

nunetsc to crmisdrmr anl _ r tekfiu v& T5

&Ai If L!: t <n - then =QltA). sinCe the MWa= UUMehe U- ri e woke ra h av Weri

traied and the build"p has nr- vet hens
ie!IfTr%:-< 2 -tL. then bM t TrJwn and so

~ ~L fL is rml
43$ mn Tr leZ<Tr Ll

Thdrie in mdrrzthm uvfpftJG<K -a6rTrSa< TL~i suffecto -Cm-

ait If T-+L tTv. then

Ejq.r)U:-Tr+Zj-t1&-T-+i L1 ________-______L _

s- A, wo)+Ujl T - I -o 'rliTr+ I-Ll

G~IL+I ifL i iorsoL
itf'w ifL ai =

Thneir. i. order that :;t0) pfl do esni: exceed K. is-4a svce toosem L cm&iin to aft In sr=

Mmy. we have

-43 0 9*KielO)IL ifL is mter-X

AKwBeR[L+Ij ifL is mmaitpW4.-

L>s-tLTv and Tr,+L > T.

tIC If~ < -I then nQ)/pltt nfo)J/ple. Sber:I< T
b'If L! < T. -then nW/pO =0 sice ahe is an-vl-r 4 flv Wd wakers mr nnuuned

ad the &nudnp hasnO auatt
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(c) If Tr z vs % --then au1paiL ii= - T-+tIo aW go

In --mmarr. w- dwos v&_C as Owen hr +L
CASE 3: L > T and Tr+L T-
Wa l -, < 2iv then an'. p1ri -n ,. .
t h) IfTr <CL.thrn

q46)ij n+--T T.+ I +

andso

sic ~i LL is ff in egrni

(47 mx -. t=T - +< +

+ -- + if L"

ThucfTe .- it sffices to da n)

&jii-a - i f f Ls ispa

I UT --gO
1_"x. .. ... + LS[L;-T+I d+ -n -r"r"

Ct1TfIL ,VC <Tr+Lwnrin t n-+,++-_ uu-,+++T+ I +-ml ad so

L U'LI~rtl4Land Saai
f I ,, L+__+ T-o- L -+ if L i ir2 1 1 7 _ m u -1o+, - < m - , -

ThenJme. it Sofficcr to am

Kr-t 1,+' uL nnuit.it

-M) If Tr+ LCi -G T tum

From 4) 1 I _ -I_ F I iwe___
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of a subsequent one. a elinpany is fre:iue-ntlv faced with tile projlem of supplrting a basic labor forceduring such an interim period while no contractual funds may be available. One radonale for determin-
inm what the size of this basic lahor force should be can be developed as followr. i-et Mfx) denote theft-tal estimated cost for n'mproductive effort (i.r H.l T, . LI til a prilposed prsgram if the initial num-
bet of productive workers is x(ie. p(T5 ) = x). Then Mx) - M(x±+ A) denotes the savings in expendi-
ture for nonproductive effort if the program Iwgilts with x+ A rather titan x productive workers. Iftime is expressed ill months and AI.M and I1(x± A) in nian-noths then this savings is equivalent toSsupprting the additional A workers fir (JI(x) -Mjx- Aiu-A monlhs prior to program go-ahead. that
is. it is to the ompanyVs advantage to start the program with x+ A produetive workers rather than x if
the time required it support these additioual pr-ductive workers does uat exceed (il(x) - M(xA

To illustrat this application oif the modAel. suppose a company plans to buildup a program organiza-titan staning with 500 workers, all initially productive to a maximum -ize of 1000 -workers 24 montls after
go-ahead, i.e., setting Ts = 0 and Tv, 1. p(o) =wo) =500 Te =2 t andw(TA)= 10.000. This implies

buildup rate of approximately 396 workers per month. Suppose tile Iearninr time
is estimated to be 1.5 months and the buildup tf reshld i T nntt--%s~m is0- The oramzatio-n planners are inter-
ested in determinin- whether or not it iuould be more adtantageoun_ to start with a larger number ofinitially productive workers and. if so how much time would he required prior to go-ahead to sup-port this increase in the initial workers productive. They are interested in considering the range
5W - p(O) *: 5000. Using Eruation (22) with t = Tp + L. the total nonimprductive effort was computed
forp(o) equal to integral multiples ,if W in this specified range and is guiven in Table 2 as .1l(p(0)).Setting x= 500 and A= 500. iWO. 4.W, in Table 3 are presented the corresponding values of.11(.% -lX +A) and the ratio (Il(s).--.1( AiA. Frrnm this table we see that 130 additional
productive workers can he supported prior to pi-ahead for the large..+t possible time ia little over 2.5months) implying that. if there carl be expected to be a 2-3. month delay before the start of the program.
then to start the program with 2.000 productiv- workers 'hence a buildup rate ,of 333 heads per month)tuumld he more efficient titan starting with inly on0.

T.\lI.E 2. Total Program No| p-oluciive Effort imao-monlbs

.t l ) 7otiI

.CO -11)

4"',') i 'n 2-4-n; 84.- :
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TABLE 3. Savings in Nonproductive Effort and
Maximum Support Time (x= 500)

00 1223; 1 2.546
ML LOW 2,616 2.16

1MI 3.98& 2f
la noml5943 1 2.62

3,000 7.5234 2.508
3.500 8.491 2.427

4,000 94321 2.330
4.50 082248

We have presented a few applications of the model developed here to suggest how it can he used

and perhaps these can stimulate the intertsted reader to find further uses and applications.
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ON MODELS FOR BUSINESS FAILURE DATA*

Satya D. Whey

Delinm _lndiuatnal Ensiaerln nod Qpaiins Resem h
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ABSTRLACT

It is po4it-d ..W in this paper thlat Lomag's hvrprb. funtin is a special rase.[ruh C on p~nuI Caamct and C nmnr-wund Writiuli distriuh. an hb of It'e c disu iianls

poncide ein mn-els h. L'maxs -i4n"s failure data than his byp lie and txpaneutg
cuns SincW his n fuucti, tairs to yi-d a VaW distnibutlon functim a eec-esssrr condition is est i to remedy tibi drawback, In the light 4 ii resub. is

ponennia wfltmais znnd d in everal was. It is furthr, slwn tha- a natural c m lut
is birnax' expeniai f inn dc not suffer from th& &awbark.

1. INTRODUCTION
While anakzing data on failures of fomr types of busines. Lomax propmsed two functions which

gave ood fit to his data in 19I- His hyperbolic function

(]l) zQt)=4t .b~to.

where a and b are positive ronstants, was found more appropriate for t he data relating to retail, craft.
and ern w groups while his exponential function

where a and h are positive constants gave better it to the data on manufacturing trades, In this paper
it will be pointed out that Lomaxs- hyperbolic function is a special case of both Compound Gammaand Compound Weibull distributimos, and both of thes , distributions provide better models fr Lomax's
businesS failure data than his hyTerbolic and exponeitial functions. In addition. several important
p-ints relating to Lomaxs paper 191 will also be conside. 'd

2. LOMAXS HYPERBOLIC FUNIfMON
From Reference 121 we obtain the probability density unctiom -pdf.) of the Compound Gamma

distibution as

(2 1 f~r(t= { B { . b) [a tg]tB tut -'O. ( a7. a. -6 > 0).

tO elsewhere.
M&ris sreh was partial supzrtr b the Arrraspe Researeh Iary-. Offmc of Atrosiae R-searh. Ut.AY.

under cntract fllS--C-1174.
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which reduces to the pdf. of the Lanai distribution corresponding to 1) I(a+a) for a- .

This Lomax distribution enjoys the following property.
PROPERTY: Let X,, X.. be n independent identically distributed random variables

from the Lomax distribution with the parameters a and b. and let Y=nin (Xi, Xi .... L 1r,)- Then
Y. obeys the Lonnax distribution with the parameters a and nb. Conversely, if Y. has the Lomax dis-
tribution with the Parameters a and f3 then each Xi= 1. 2.... n) obeys the Lomax ditribution
with the parameters a and fn-.

This propeny is very useful in life testing situations where failure data are generaed by destnictive

testing requiring unduly long waiting period. The proof and the application of this type of result are
discussed in Reference (41.

The above Lomax distribution may be considered to be Exponential-Gamma disiributivs. Later
on. it will be shown that a Gamma-Exponential distribution is a better model for Lxunas' daa than
his Exponeutia-Garnma distribution. It may be roted that both of these distributions ar special
cases of the above Compound Gamma distribution.

From Reference [3] we obtain the p.d1 of the Compound Weibail dismution as

-j t l ,ta .>0(2.21 ~r

which reducs to the pAd of the Lomax distribution for = 1. Subsequently, it will be show that the
Weibull-Expomential distribution. which is a special cwe of the above WeibmlI-Gaimma di n
and different from the above Lomax distribution, is a better model for Lomu's data thhm yperbolic
function-

3. LMAX'S EXPONENIAL FUNMION
Earlier, we have sted that Lomax's exponential function does not yield a valid

function. It is because it yields

which is contrary to the usual assunption. F(m) 1. noting that F(x) denotes the cumulative ditl-
tin functiom. For a given intensity function z(t)we wie

which gives

(3.1) Fx~leP- ~~4

Sme z( t 0for al.Fc ) =Irequires

(3-2) fz( d-.rcas x-w,
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which is a necessary condition for the existence of a valid diAtrilnbu-in fu4ion. It is easy to se that
Lmaxs exponential function dts- not satisfv this condition. We noe that nt}. thf conditional
density function of failure probahility with time. is also, known as the intensity function in 171L and the
hazard, or the kagersperificfailure rate function in I 11.
The p.d.f. of a modified Lomax distribution is given by

{ 0 elsewhere.

which yields F(m) 1.
The modified Lomax distribution is now made more versatile by cunsideriun one of its parameters

to be a random variable and using this foci to generate a cn..pound moadified Loinax dist-ibution.
Besides. whenever experimental daa. applicable to pdf. t3.3t. are suspected to have been influtnced
by some uncontrollable factors, its compound pi.!. derived below. may provide an improved fit to
such data. Thus we shall write the conditional sdi. of the modified Linax distribution as

(3.4) fr~tia)Icdo=ri Ict' rP0esewhere-

and the p.d., of a as

(3.s 5 or 010 e. {where.

which corresponds to the gmma probability disriautior. Now the prdf of the nm m-dified
Lomax distribution i given by

fdtzh ' Ef(ira (a)da

3 0 elsewhere.

Another way of modifying the Lomax intensity functio is to chowse hiz -r-ae. where c is
a positive constant. This form of (,) enjoys a useful characterir 'se Relference [4]). One may
atso choose zWt) differently to remedy this difficulty.

4. SOME NUMERICAL RESULTS

L-omax reported correlation coefficients between theoretica and observed valmes of linearized

exponential and hyperbolic functions in 191. In this paper it has ben pointed out that LimaxS erpo
nential function does not rorrespond to a valid disaibution function. Consequently, several modifica-
thns of Lomax's exponential function have been proposed in section 3. o of these modificatioans



r...... Sntiinsbtwe isre . 0. DUBb f untinI- ssj;ts of adding a positive constant. r. to his exponential function. -4w in Table 4.1 we present the
and~I thoeialvle inearized fntosIn _-(r) =In

corelti coefficients between bserved and th~eoretical values of i -d f nto s n { --I
a-bmndln W -- c) = Ina-bt.

A TABLE 4.1. Correlation Cefficients Corresponding to Exponential and Modified

Exponential Functions

Fu ;4r.urfiru itit-wFr

!,fe ................ am W"9 0.08Craftd -........

I The values of c reported in Table 4.1 were chosen by carefully examining L,,maxi.s data ([9].
I=- Table 3N One could determuine the fl~inum values of c which would insure the ntaxiniam atainable

correlation ctefficients fur thee daa. The author has decided against this because hUi other models
easily yield higher values of currelation efwilcienls in -al eases tree Table 4."2

I In case -f the Gamman-Exponential distributiom we use the transfprmation

(4-i In tFiFf- P± t j = (i") _- sWna).

which ields pseudo ieast squares ti rs for a and a. explicitly. LaUax's data t191. Tables I and 2)
are used for this purpose. In emse :t47 Wribull.Exponential distributhm e use the transformaton

(4-2i In (FYc gRq) } -- -a.

which yiekIs ps-dr lea squares estimatrs- ft y and a. expieftly. Lrima'Cs data Q% Table I) are
used fur this purj .e. The expns-cMi RO) = 1- F) is called the reliability funciam and the Pseudo
eu squar-es iratn. are the usual le s squares estimators in terms of transformed data. The de-

tailed work is repnnn4 in Reference 51.I err we give the correlation vwfliciems between observed
and 1f ical valwrs of l-maxs linearized expomentia and hyl erblic functimos and exp-esshms
(4-11 and 4.21

TAIxm 4._ Correlatiom Coeffcients Cinmwrspding to Folow ng Four Molels

- c Hu2rno E-s tlnrtic-Mr 1 F-J A pnnrnti Eqp~rauld'

, ...... ..... . . -O -  0.9

j.. . .................. . m i j .99i o.0 9- .9
,Ska-.;w ................ &9124 e, 0, o99x C.9V9__ __ ! , ,
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derc- i.Th- 2cLarly 5.hint that iniih C-amnn-Exjieninl and Weill-Exponential distrib-

i ii n desrib I-i~axs dtaI w tte t -an hW emp wen il- an byrserbndir functions.-I5. -NATURAL COMPLEMENT OF LO4-MAVS EXPONENTIAL FUNCTION

Whereas the Lomax rarnnUfumrtm did r i el a %afd distnition. function, the natural
corhdln tohi exweni l nit r dtj- virld a valid dinarihution function ad it s-eems to b#e

~5rti.X~econidr te nturl cmnp t cnrn .. th Lmsx expatnential funcio to he

Tileaboe itenityfuctin :1) ~ip~~jj ~-j4 istibuionfunction since

qwI I F-W mar ma

criIEL-* r~nmr

iIe-ivfao: s
w .etthepaaicte aof i~l~i a~pw=j~ mLffl 0 w t~L hd

ite,. inhltitr functionn.- isv thivenpi bryirse i eenc

- (it and j6J1.
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A NOTE ON A COMP'ARISON OF CONFIDENCE INTER VAL TECHNIQUES
IN TRUNCATED LIFE TEs'rs

WI, KGl~leule.

,1tIra,' I'V, CIfi/,el-n in

imo ervalpI, fior Owc. pusruie 'tr A elf ato c'~pe eeioi al eljo rilcimiem lbaoc'c eon fiortt t ru heal d mumflc s,
l'lim. paeeler vietiiie. I lie re'miill cc lei w iiiriv'si %witly ceeiilesitil dirm-e eel' tlie oei jomdr''liirel

I I NTRlODUCTrION
III lit". I i'slinp, g 1 l'~t'o it is frl'r'u'tije y decsi red it)e obltain a 'onfidenc'e interval for thle parameter

A elf liti 'x pe cnenlil aldisiilltit i. Ini cam!' a le'st plan is use'd b'er which all t he observat ions are truncated
l 1it 1f Il' tlt'Iitime peel hi 1,. tse'vcral approeximni e comenhdcnce interval prcre(dures are available in the sta-

i 1i'ial licrul tre. 'Thae itsc' elf' I is noEte' is tIel cror file- results ofl an emp;irical si tdy ofl the perform'-

anllce- eel' three ee)I llese jereeedtires wihrc'siu'e toe thle c'e ted l kngth eel the interval. the variance
eefl the itwlcrvzl le'ngthI anu it-e 'cve'rage imrcliaheihit y.

Tlhe' g('lierat setithi1 eil' I lie- preeblem is as feello.ws: siippos* the ranidocm variab~les Ti', T., .'. . To

tire I ide'enc 1ril 1i41 ide ltically e'xpoenett ially dlist ributed with mean A-'. For i= 1. 2, . . , n,. lei
X') be' clital tit Ti I rutied at too. and let Yic I the Ilernotnlli random variable whiich is I if and only if*
x, -,- 1".We't wish tic imil cewilide'nci' itervuls foer A. Ihase'c ion tile Xi, and Y),

lie Wha~t lo'llcws. tIt're'e vccirlifiinc'e itcte'rvtil lc'sedures are uleserihied, and soeme results eel' n eln*

joirie'l Poi tely eel'tleir peerfeormtances are ptr'5c'lli'cl.

2. COPNFiIDENCE INTIER VAL. IIOCEI) IR ES
I' x ( (EI)L HE I :I'his luroewe ie is tt b icd as ai speciail vasie ol' slu cdLt ione to a more general problem

I hant was deic'vi~edc by II al perini I11. TIhe' rumndett variube Y= YiV has4 a bincemial distribution with parain-

c'terp- itile an - I -r S'l,5  tancard technitpic's c'tiri bec used tit obutai n a 10O(] - a) perelit confidence

interval f'or ji us

P ( a( Y) < p < If (Y)]

Sil(, 1)c ;-, I - ,e-Aleo. ain invc'ro-ic;i (,an be' made wlhi result s inl Ae, n-li i and Au -_ I(lI -1,)

as5 lcewer Liil Iite'r I(Mf I - a) pc'rcc', 'eifide'n'' limiits focr A.
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vcirlilple. siE, it eiiuiieu hieiis'l prols'eefii'e j'l i I9111isl pung'imelsIr #tlli jfitih 13 wal lisPed let uuliiil
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