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CONTROL VARIABLE METHODS IN THE SIMULATION OF A
MODEL OF A MULTIPROGRAMMED COMPUTER SYSTEM

spproach I the
. a2

the gﬁ:%{*?ﬁi“‘
z*é their streasthening

Many questions of interest which arise in the evaluation of
computer sysiengis

el

stic {quening) models tha
techniques, Uue ap Fﬁ?.;} te the study of such medels §§¥fﬁ¥€% the ée%'ﬁagfgés
simulations. and their strenzthening by control x3rizble and concomitant variable =

methods. =
The main idea iz that control and concomitant techniques supplement and cerrect eversimpiificd.
bu. tractable analytical models. The goal s te obiain useful numerical resulis by means of which
sysiem perfermance can be judged.
This paper is concemned with the ap
of a demand paging computer syt

'

fication of conirsi ‘E§§§?§F ﬁgeﬁm{.

m. The particular of systom overhead.

The mm;&ﬁgr which we @ﬁi?é?.? in é*;‘ ;:azrg iz a ézﬁi% t?"i‘f‘:gé‘ svstem with twolevel memory

by zddreszable
pazes. The main memory

led page-frames. In such machines §
with snfy 2 few ;sgge-ffsﬁfé of

étiégé into ;ggf-sizf sections 2

z page-frame. execution begl
in main memeary, The page
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444 D. P. GAVER AND G, S. SHEDLER

by (1). We select an approximate model for s hich it is possible 1o caleulate (analytically or numerieally)
the expectation of IF*, ETIF=], relatively easily, F'* being the responze variable of the model approx-
imating that giving I, Alihough it is in practice likely that the distributions of 7 and §7* will be similar,
the basic requirement is only that T and 7 be well correlated. Having chozen a control, then simulate

¥ and 7™ using the same random numbers K, That is. the input values Y are identical across reziiza-
tions 1o as great a degree as possible. Thiz implies that W and F* will be correlated. We then may
estimate E[IF] as follows, In the present casze, £[l17*] is obtained numerieally from the theorem of
section HIL

——

1. [ . — =
(5) EWle=E[W*]+-S I ~ ;';5_‘, W= By — 0 —ir=,
#is fy-t

It is casily verified that the estimate 51 is unbiased. Further. we have

—— i
{6} VarlE[W].} = - {Var{P] -~ Nar[ll *] = 2eav[ %]}

so that an improvement over straightforward simulation has been obtained if B has the property that

—_ {'n?gg'.f{’ 5} i
() sarliF*] > 2

In Table 1 we give results of experiments for straightforward ~ampling. in terms of which the
other method: can be assessed. We display an estimate 17 of Var[# '] obtained from a set of m=20
independent observations of I along with 1/ <he mean of the m obzervations. In one case the response

TasLe 1. Assessment of Straightforward Sampling

CPU I ghzation DTU § silization
A — R
i H i H

AL 63,662

f H 24,238 8373
joe YL i HH 8803
$H.540 F).565 3 4 15,502

variable IF is CPU utilization and in the sther eare the response variable 7 iz DTU utilization. In bath
cases, the system input variable X is the exponentially distributed a: service time, For pitive integral
e, CPU wilization U (<) is defined by

l;f{‘? ;;';;gfr}

X 104,

o5 ) h

[T

I ot i 1 il Oy

wiaid Y am

W Ay am by

TR




AR A

B R

i

where 44(1.) is the 1
nai (0. 1), and ¢
service, DTU uh!nza!mz

& UPL renders servics

at which the (01 r begins b

where 4a(1,.) is the toial ameatin! of time tha 1}

-,

LS

Al i‘t'sulb: displayved wdependent re

tionz of ¥ and are fur

other than that of :iiij-

seerveee distrihag
AN R 5 JRS
o fBoar gl

aewe of e G Qe slmertesd tha f

ire constant, ©

i .tiwn tes Bee 3l

mint overhead servic

and the duras
in i*;i{-h g't'afi?miun all ¢ ‘*s;sim;n-rs are i the P

o given

when the 0~

Lamer was ahou B2ty service vie
mimw of CPU dpd 23 § utilization which =lightly from

of a time interval o

gy

by the first realizar

e fermination
simulated time .

Results of experiments on the straight o

2 and 3 we display results ri;isé' ed from a sin

utilization. respectively. We ¢

- g

mate I of Var {£]N

with Y, the mean of 1

imates of V

dizplay in Table i’i uttlization

21 independent .

HY hmuun an
oiis :ii‘.lff 1(‘.

shtained from a set

r shervations, (4

s of these eslimnaies

dnetion in

en in Table 1 indicaes
control method,

(VAL H
7.0 Q1484
) PR

TaBie 3. Straight Comr

1500
A7tk
19600

e

AT IvY




e e e e e e ST R ST T =% 3

D. F. GAVER AND-C. 5. SHEDLER.

TaBLE 4. Assessment of -Straight- (,.ummi

_CPU Grilization

As e -
M F - :
’ 2.00 63,279 0.01497
100 93.007 0.28159
050 b5 0.01537 -

is used: the resulting ﬁ?ﬁmé! régi‘eséinn *éajgsged {;@miﬁi es‘ﬁ,ﬁa;&ﬁiéigéﬁg’;?é

@ Var (B .o = Var (1] {1 = (core (7, 4103}

and therefore will. in theory.-always_be an_improvement over simple estimates. Alihmigh: Var[#7*]

is presumably knowr. the required covariance \s;i! not-be knawn and-must be estimated-from data.
The realistic estimate uses an estiniated optimum. Bﬂ and isof the form

10) ELW),,o=IF + Bu( B == E[F*]),
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v | EDE) 3 1 3 £,
200 | 990 [ -0om1 | 5213 65.523 6.’;.~§§§—-
. 100 ”13‘;@ =0 i om3y | osiew | esae

0.50 99.200 -3;;.33 99581 998 99.683

» A ES?-“;} Bs 5= 34 é‘j{%,

: 200 | 99000 |-tom | 9nis 91782 95.498
1.00 8"93} 7 -0993 | #sm07 79.019 §0.203

i 050 | 49600 [—08603 | 19.283 454805 ] 16.07%
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CONTROL VARISBLE METHODS 447

where
=) (W*— E[I*])
Var[IFF*]

el

Ii should be noted that the realistic estimate (10) may not be unbiazed although the bias decrsases
as the sample size n increases.

Results of experiments on this control and regression method are given in Tables 5. 6. and 7.
We again use the simple cyclic queue model (Figure 4) as a control for the overhead model Figure 2).
We then compule a regression adjusted estimate of the form {10). where

TasLe 5. Regression Adjusted Estimates CPU Utilization

TaBLE 7. As cssment of Control and Regression

CPL Utilization DTU Urilizatien
=7 A -
3 M F Y] 1%
= 2.00 62,461 0.00293 95.500 0.0098%
100 | 9139 o.0R13 80370 0.0%012
{050 ;9977 00127 6.8 0.00337

IR

i
il /! w! Al JIW"p) L V|. §

L

EUWY0= 0+ Bu (7 = E)).

ith regression adjusted estimate (i=1,2..... m=20)
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Tanie 9 Amtithetic and Regression Adjusted Estimates DTU Utilization
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Tanie 10 With Contro! and Regression
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It has been noted thiat the regression adjusted estimate using (10 er (11) is biased. In order to remove
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TABLE 11. Unbiased Rezression Estimates, CPL Fiilization

§ Caver, D P., “Stasicsieal Methods for Improving Simalation Efficiency.” Procesdine

Annual Conference on Application % of Simulation, Lo %ﬁg&i&z:ﬁef_ i§ﬁ£
ctive.™ Proc. FICC (1963). pp, 1011-1018.
i Bigéé of System - Overhiead in Maltiprs:

12] Kuehner, Li@égmmii ﬁ?A; .
§§§£¥§i§.i§r @éi’agﬁﬁaia%{i:a -

- TF. <%,

mﬁé or
’§§?§,£§_§E§§§§@gf§§3§§§&§§i, estion
305 (Mar~Apr. 19651

?}ﬁm&,ﬁ;ga@{,}*iﬁémg “Dynamie Steraze A

Problems: IL™ Operations Research, 13,

Sectems.” C.ACAL, 11.297-305
ene Model of a Pagine Machine™ IEM Research Repr. RC-28i4

The above unbiased estimates s of CPU wiilization t {Table 11) and DTU wiilizatjon {Table 12} were con-
sistently Iswer than the estimates reporied fur control and resression reported by Tables 5 and 6.

h ﬁfﬁ:@rg RC2813 (Mar 1970). to appedr J. ACA -
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MODELS FOR_ MULTIITEM {Iﬁ%gi‘i*%{i}éi RE‘ IEW INVENTORY

POLICIES SUBJECT TO €O!

§.‘i‘$§§ﬁ£ [ —"" 4

Nenwl Pousraduste Schoal
Manzerry, fEufifa=is

1. INTRODUCTION
Inventories exist to provide <
material £ It follows thet 2 reasonable objective of i
srovided, which ie achieved by m aﬁ
iﬁﬁﬁﬁ!ﬁxﬁ@i@ﬁ&i&@i&i{& fesirad 3
In parsuinz thiz ohjective. iﬁemé;gj stical ;iﬁx@ﬂ&ﬁ@ﬁ@@ﬁtﬁﬁ&a
number of consiraints imposed on his “when 1o buy and how much to buy™ decisions. The stock puints
of the Naval supply system have investment and resrder woikload constraints which are real and
The eiassic variable cost minimization

§m§&§m@M§ﬁfwéﬁm§w@

tory pelicies. %ﬁ%&mﬁﬁ@z@@%%@%mi@% 7 he dealt with as a2 series

m"

of independent. sincle ftem problems. In the presence idisg consiraints on a population of ftems
thi= approach is pot applicable. Additionally, _&@mﬁgﬁr&@wm&é@é@g
parameters vhich are arhitrary orat least very diffiesli te estimate. -

As 3 consequence of this argument. aﬁémﬁfﬂﬁéfam&fﬁgﬁ.mﬁﬁm
review mventory policics subject to invesiment and reorder workload constraints, These medels do not
etaploy the standard erdering. holding, and sheriage casts. This approach was sozpested by Tully [81.

In the next section the problem formulation is developed. Section 3 presents a simplified multi-
ﬁwfmﬁa@tﬁih&@kzﬁtrméﬂmﬁséWt sbles. The general multi-item model
is develaped in section 4. Eack model section contains an snahsis of the formulstion. 2 selation al-

i hnal sectiog s —“iixsgémiiﬁﬁéiﬂt!sam;-

flem models in very large ms,
*Tiis work was supgericd by the Naval Sumpdy Systesss Commend ender NAVSUP RUTEE wek requesy WE-0-5017,
=?ﬁ_'aﬁ§€ %ﬁ&ﬁ%ﬂz‘" LRsrz




452 D. A, SCHRADY AXD L. €. CHOE

2. FORMULATION

It is desired to formulate inventary decision riles for multiitem inveniories subject to specific
constraints. The rules will be of the renrder point, reorder quantify. continuous review tvpe. We
assume that ail demand which oceurs when the on-hand steck is zers is backordered. As suggested
in the introduction. the formulation to be used involves the minimization of total fime-weighted shortages
subject to: (i) total averase investment sost fess than or equal 1o an investment limit. and Gi) iaza¥=
number of orders placed per unit time less than or equal 1o 2 reorder workload Emit.

Tke specific form of the m« def depends apon the assumptions abisut the lem demand character
istics and the expressions used for the toial averame {giéz_zsé inventory &f&i za:ai aumbér of iﬁﬁ‘ﬁ
per unit time. and total time-weighted shoriaz
hution of lead time demand is normal {g;
the paper. For the i item let:

[

Vith-a eontinuous review inventory policy Efgég” §s§f§§ §3§§f ﬁ:séfmzﬁé of {iimzzs§§§§ék,
It faﬁfsws then that the expected number of o
ventory. with X ftems. the 1o1al expected §":;:“* 3

il

Inventory invesiment is the price i éi&i@;ﬁ?&tﬁ@%@imﬁw.ﬁsiﬁm
by Hadley and Whitiz 3] @%@:ﬁﬁﬁﬁf:i&*” ted on-hand quantity; E{OH). is Siven by

F Z5% = i Fa = = - &3
i1} B ;-=—§ By —pir+ 011,

Ay,
[
o

A W gros

wl ok
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‘The expected onand quantity expression can be simplified by smitiing the Bi{J, r} term and this
approximation is reasonable i the risk of stockeut s not too farge. This assumplion is emploved

i

thraughout the paper. With this sssumption the total inventory investment is then given by z&:
ExPression

e
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3. SIMPLIFIED 32?33—?@ MODEL

?&i@a:,gﬁ%%’ﬁm rilinuass review formulation was siven in the

i I
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454 D. A. SCHRADY AND U. ¢ (IIOE
which is a form of the Wilson sconomic
to be the same for all fteras.

From the reorder constraint and Equation (6}, we then write

3@2&?@&&’?&@@;&;5;%{%5%

-
[ 1
i
i
[
IR NN

The deteérniination of & then fixes the ofder quaritifies
sion variables from the problem, ie.,

ﬁﬂ??ﬁgfﬁ?:g - -'i?ﬁéi - - - - ;
® :
= hon
. 37
-’ -
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}‘aﬁzﬁg partial derivetives with respeet 1o the dec
sera vields:

arishles am! setting these express

h

-
g

%séaEMﬁ@EmiEmiﬁ%ﬁ;zﬁi&-; =
mgszﬁfgmémm
kmgmﬁfﬁm&iiimﬁsﬁféﬁf :

>0 for al values of r.. Now
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458 D. A. SCHRADY AND U, €. CHOE

The conditions under which the sequenre of unconstrained minimizations converges to the solution

of the original problem are given by Fiacco and McCormick {[2] p. 602). Applied to our problem the .

Liasic theorem states that if (1) the feasible solution space: is nonempty. (2)- the objective function is
convex and the constraints are concave and bath are twice continuously differentiable. and (3) if the
-penalty function is strietly convex for all m > 0, then (i) the penalty function has a unique minimum
for every m >0, and {ii) in the limit as m = = and p,, — 0. the unconstrained minimum is equal to the
minimum of the constrained problem.

The: first condition requires that the investment und reorder constraints together represent a fea

sible problem. The third condition is satisfied if the second condition is satisfied. Thus everything
hinges on the convexity of the formulation. :
Equation (1) is linear in @ and r and Equati- - i5) is concave in Q. Together these corstraints form

a convex region of feasible solutions. The objective funciien, Equation (3). is convex il its Hes
positive semidefinite. The Hessian of Z;{Q.. r;) is

- : 0 0f

where

R P | st A O ‘(?-3-3:
R = i § i f e H e tom fu
alf)y=—=[Blr}] {"éé = ) (r—p)dl—= )
The elements of the Hessizn are nonnegative for @ = 0 and ali r. The determinant [V2Z,| is evaluated as

iﬁz=§;j{r;

where f(r) =2B(F)®{r) — a?(r). The determinant is nonnegative if £{r} is nonnegative.

Praceeding in the manner suggested by Bracks and Lu [1]. the derivative of f(r;) is determined

ta be

L) g,
which is negative for all values of r; since B.{r.) and &.(r;} are positive for all finite values of r.* It
follows that f{r;) is nonincreasing for all r.. Further it can be seen that 3!-’2 f{r) =0, s0this together with
the fact that f(r,) is nenincreasing implies that 7{r;} =0 for all r. Thus the determinant of V3Z; is
positive semidefinite and the function Z:AQ.. r;} is convex. It follows that the ohjective function Z{(Q. r}.
which is the sum of convex functions. is convex,

The computational aigorithm proceeds as follows. Begin with an initial feasible solution, {Qs. ra}.
Select an initial p-value. dependent upon {Qa. ro}. Minimize the unconstrained P-function. Iterate on
p-values using pu. 1= pufd. where d > 1. Terminate comp- tations if the bounds created by the primal
and dual solution values satisfy a preselected convergence eriterion.

*Clearly &,(r). the normal densits function. iz nonnegative. The lime-weizghted shortages term is by definition nonnezative.
Ta show this, apply the derivative-limit argument twice more. first on the 2,{r,) term and then on its derivative — e, {r,}, vielding
finally a ,(r,) term whase siza is clearly nonnegative.
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The basic mechanies of the algorithm are given in Reference [2], extensions and the use of extra-
polation for accelerating convergence are given in Reference

{3}, and computational experience is
presented in chap. 8 of Reference {41 A computer code called SUMT, Reference [7), (Sequential Un-
constrained Minimization Techniquel is available for IBM 360 and CDC 6600 machines.

Example, We employ the same three-item problem that was given in section 3. The difference
of course, is that the problem was previously treated in a simpliied manner vging fixed order quan-
tities while both the order quantities and reorder points are decision variables in the present treatment
of the ?r{siﬁem.

The prablem was run on the Research Analysis Corpuration CDC 6600 computer. Starting with the
feasible value 0, =600, r,=200, ¢:=270. ro=260. @;=300, and r;=400, the initial solution has
the value Z = 17.808 unit vears of shortage per year. The sequence of iterations proceeded as follows:

Heration I 7z 0, 7 r: Q- r & s
Fr ] oo 1sios | ossesr | omor s | 25 | 30508 | 41653
- : 13.1337 5305 0 BN | 21739 | o2ieas 7235.5:—»' 435.13
* 3 B0 | SWAM | B2 | 25 | 21696 | 2803 43652
U3 oo | ot | ssus sam | 200 | amel | #5010 | 431
5 towon | 1w 5 2560 | 2o | 2sos | aseer

- The iterations venverged rapidly and the computer time was small (L6 sec)

5. IMPLEMENTATION

Twn models have been presented for multi-item inventory control under continuous review. Both
widels were formulated in terms of operational eonstraints thonght to be realistic of actual operations
(at least in military supply systemsi A realistic formulation is a necessary first step. but the models
must be capable of implementation by the inventory system which they seek to represent. A multi-
item inventory in that sy~tem could comprise anywhere from 3.000 to 70.000 items. Directly employing
either of the models presented with an inventory of 70.000 jtems is not anticipated. It is suggested that
the inventory analyst work with a sample of the items and the appropriately-scoled values of the con-
straints. After obtaining a solution of the “sample™ problem, the results would be interpreted in some
way so as to produce stocking policies for all the items in the inventory system. Schemes for determining
policies for every item in the inventory based on the solution of a sample problem will be developed
for each model.

The first model. presented in section 3. represented a simplified treatment of the general formula-
tion in that the order quantities were not optimized. The model. hecause of its simplicity. is easily
implemented. First select a representative sample from the population of items. Item demand and unit
cost are probably the most impoertant characteristies to consider in deciding whether or not a given
sample is representative. The simplified model of zection 3 would then be solved using the sample
inventory and constraint values scaled down in proportion te the sample size. The s )lution of this problem
yields order quantities and reorder points for the zample items. but. more in.ponantly. yields values
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of the two constants needed to generate policies for all of the individual population items. The quantity
%, which is used 10 determine order quantities from Equation 61, can be inferpreted as the ratio of the
square root of twice the ordering cost to the inventory holding cost. as imputed by the reorder workload
constraint. - .

The other constant determined by solution by the sample problem is the Lagrange multiplier, 7.
Reorder peints for all of the items in the population are then determined from

ci{r) =nhVigc;.

which is a form of Equation (10). The Lagrange multiplier, n, may be interpreted as the shortaze
cost imputed by the investment copstraint.

In summary. the soluiion of the sample problem determines the constants h and 7 which are then
used to determine (Q, r} policies for all items in the inventory system from equations

: o A o
(6) Q=i
and 7
(13) alry=nhVae, . ’

Solution of Equition (13) requires numerical methods of the sort-described in section 3. Determination
of the appropriate sample size is to some extent dependent on the requirements of the user. In general,
sample sizes of between 5 and 10 percent should he saiéfa{fi@fjs and should result in feasible
computation, A - .

The more general model of section 4 allows for optimization of both the reorder points and reorder
quantities. A priori. this mere general model will vield better policies, but require more computational
effort. Successful implementation depends upon efficient computer programs for the sequential unicon: .
strained solutiun of the sample problem and the subsequent policy caleulations for nonsample items.
The determination of optimal inveniory policies again begins with o sample problem, but with sonie
restriction on the item sample size which will be discussed later. Once a sample has been selected,
the SUMT program is utilized 1o solve the sampie problem yielding optimal reorder points and reorder
quantities for the sample items. It then remains 1s use the resulis of the sample problem 1o determine
policies for cach item in the pepulation of items which constitute the inventory system. This step is
facilitated by the convergence criterion employed in the RAC SUMT program Reference {71

by Wolfe [9] and is suggested by the Kuhn-Tucker sufficiency conditions for convex programming
problems. If we write the primal problem as

min Z{Q. r)

subjectto m(Q. P} =0 j=1.2.

then the duai problem is

min L(Q. r. 1) =2(Q. 1)~ 3 ugy(Q. 1)
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subject to JL(Q, r, uy=0

Fiacco and McCormick (12}, p- 602) show that if min Z(Q, r)=Z*. then

1“{6{?’5}* r {pw), ulpeilsZ*< Z(Q(pa)s ffpm}}-
The Lagrange multipliers 4; are related 1o the SUMT solution of the primal problen: by the equation

___ dllng)
4 {(Pm) == pu e
It is therefore possible. at each iteration in the sequential unconstrained minimization process, 1o com-
pute the value of the dual. The primal aud dual solution values bound the quantity Z%and may thus be
emploved in a convergence criterion to terininate the SUMT mininiization, The final SUMT solution
vieids the “optimal™ mn}ﬁ;ﬂier values: These multipliers can then be used to determine policies for all

- of the neﬁisfz'gzgig items in Lhé-igggntergﬁ To see this-we need only write the Lagrangian funétion for

the origizal problem formulation given in $ection 2. The Lagrarigian would be

LiQ. r,u) =§—-—£§; LI, !iisirs -Eg—;—m} -K;]*z:z {,_é %-EX;]

Eeﬁrﬂaﬁa@n&hmsgyeth&gp&mimmmﬁmﬁﬁmtsas

o - 21‘@;%3;{:3;3]%
(14) 0= [“_‘rgg
and

{15) - o) =uwe ;.

To summatize ther, the SUMT program is used to solve the sample problem and vields optimal policies

f‘srthesam;i&iigmand&éﬁmﬁmﬁﬁh&@&di@dﬂﬂﬁemmﬁfﬂﬁem

It should be noted that the solution of Equations (14} and (15} requires jterative procedures, Begin

by ignoring the 8ir} termn in Equation (14) giving
w=[22A1 "
Q [ &<

Q™ i5 then used in Equation {15} to determine r%: this solution is ftself by iteration. The resultant
value ri"is then used in Equation (14 1o determine Q': this solution is straightiorward. One continues
to iterate until successive. Q and r valucs faj! to vhange significantly. Computational experience has
shown convergence to be very rapid.

A proof of convergence is developed as follows. If plotted i &r, @) coordinates, Equations %)

m&{is}mﬂ&agpearasshawniﬁ?‘m LI mg&e#aiﬁedtbax%<8md§§>ﬁf&ra§ﬂm
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g

&

z

]
FictRe 1. Plot of Equations i14) and {15) and indication of the iterative solution
of r, for bath Equations (14) and (15). Further, it is clear that Equation {14} is asymptotic to the value

f Vo3 213 . L o . ee . . _ . N . .
= (2 as r=> . while Equation (15 is asymptotic to =0us r= . If we associate Q1s with

\ i€ [/ ]
Eqiiation (14} and Qs with-Equation {15). then- for lirge values of 7, Q=i <0. If we can show
that for large nezative r valués Q= Q,, >0, then the curves must cross, indicating ihe existenée
of. a solution. From Equat

1ons-{14) aind {I5) the differenice  01:~Q1e may be written in the form

alr}—[p+2B(r)]*=, where n and P

are positive constants. It can be shown thar it the limit as r—=— = alr} grows as —r. while the term

[pB{r1}2 srows at the rate ;:%- Thus for large negative r-values Qs —Q;, > 0. This establishes
the existence of at least a}ﬁesimnimuwasssiuﬁﬁn&fﬁqnnimi}i;anﬁiigi turther there is no
mssiiﬁﬁtfgfmrﬁg'ngi&akﬁimﬂﬁﬁsﬁmhﬂk@miﬁtﬁmﬁgﬁﬁgw@dm,

size of the problem which can be reasottably computed with SUMT. However. the structure of our
particular formulation can be exploited to reduce the normal malrix *versien storage and enmputa-
tion requirements. McCormick [6] has shown that only (N +2) storage locations. 148 multiplications
and additions, and 3N divisions are required for the Newton move in the model of section 4. Thus,
while still somewhat restricted in size. sample problems of up 10 V=500 items {1,000 variables) shonld
be practical. (The standard SUMT program is restricted presently to 100 variables in ennsideration of
computalion fime.}

The second comment is concerned with the generation of 2 frst feasible solution for the SUMT
compulation of the problem of section 4. It seems that salution of the simplified model of section 3
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{for the sample problem only} may be the best and quickest way
solution. Further, providing a relatively good first feasible solutio
of computation performed by SUMT.

We have presented two miodels for continuous review control of multi-item inventori

es. The farmu-
lations emphasized operational ~onstraints rather. than the classical variable costs postulated 10 be

10 obtain the mﬂuy first feasible
n should minimize the total.amount
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THE BOTTLENECK TRANSPORTATION PROBLEM

R. 5. Carfinke§ and 1. K, Kao

Cradeate Schoal of Mangecrien:

o

Roctester, New York

ABSTRACT

There is 2 trassperictian fime 2< _’s;ﬁﬁém%hmmi:ﬁéﬁ;gm,
It & verpuived 16 find 2 fesibie drribusion &f the =opplies; which minimizes the maximem
trihution betwees the fwa muints i pocive, |

all oplimal s&latens = the hotlenesd

Eans gbe shidined @ vdch Beration. The

1. INTROD UCTION

Hammer [7] is to minimize

where  a; = amount available at the = sapply point,
& = requiremcnt a1 the 7 demand pint.

§ = lransportation time from supply pein: § te demand peing 5.
Xz=amount 15 be transperted from the # supply point to the 7* demand paini.
and all of the data is intezer tor equivalently rationaly

Pl belongs to a clazs &

nowa as bottleneck problems {2. 5]. Applications of P1 are given in
{7]. A transpontation problem

can aiways be written as an assignment problem by appropriately
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increasing its size. Henee PI can be transformed into a bottleneck assiznment problem and solved
by the algorithm of [5] or [6]: however. such an approach would not be computationally attractive
since the size of the problem is increased considerably.

An extension of P1 is also considered in [7]. This problem which we will refer to as P2 can be
stated as follows:

Let =* be the salue of an optimal solutien to P1. From all optimal s
that minimizes

irz;

lutiens to P1. find a solution

Hammer [7] provides metheds for solving P2 fand thus P11 Corrections to [7] and a thoroush
review of the East European literature are supplied in [9].

In this paper. we present two methods for solving P2, ﬁc&ﬁm&mﬁmawm&imﬁm&
in that it zenerates a sequence of feasible solutions 1o P1. By :olﬁngaﬁapirame {classicalj trans-
portation problem at each Remation, a.solulien iu?f* s fnnnd.

In the second methad P1 is solved by 2 “thn

f@@ﬂﬁﬂimmmgmmﬁéﬁzm
2. PRIMAL ALGORITHM
In this section we present a primal algorithm for solving P2, It is similar to the approach of Ro-
1. Find a starting feasible solnion X = (551 to P1. This can easily be done. for example. by usins
the well known “?E@ﬁ&-fﬁz Comer Rule™

a}:@mﬁmhz fﬁlmin?"g

1=z - _
{ﬁiff:%‘f’
gfsﬁmraﬁfisﬁ-nf:«>-

3. Solve the transportation problem using €={c;} as the cost matrix. This can be done. far
a;mpif by the u—r methed [1] or the cutof-kilier method [4}. Call this soluties X and g 1o Step 4.
4. If the vbjective function salue is zero. g to Step Z Otherwise., X. is an optimal solation 1o P2,
?tﬂftiesrziia:t n*@§é§fmaﬁém}§&we§eﬁﬁg§§r§mafﬁmnm
(oot mere than the number of distinet eniries in T= {75 of transportation preblems and ennsequently
the procedure i= finite.
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Step 1—F=—=, :=2=4,
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SOME REMARKS ON THE TIME TRANSPORTATION PROBLEM*

Wiadzimivrz Srware

The University of Wiscensin-Mitwaukee
Miluauker, Wisconsin

1. INTRODUCTION

One of the last issues of this journal contains a paper of P. L. Hammer [3] on the so-called Time
Transportation Problem (TTP). Since Ref. [3] does not reference the previous work on this particular
problem,t it may be worthwhile to zive a historical sketch of TTP. Here we shall do this in a way
that @ corrects or amends some of the deficiencivs in [5] at the same time that we (b} align these
developments with othier parts of the pertinent Literature,

The Time Transportation Preblem {according to the notations of [9]) is a problem of finding an
m X n matrix X = {x;;} which satisfies conditions

# <
Yx=a  i=l....m
i=

o~
o
S

EI;_;’—‘I),' J=l...n

gl

and minimizes

{33 .= 2
) = gmex tu
where

(3} e ={{i, j)i 2y > 0}.

ES
Numbersa; > 6,b;> 0,7 1; =0 are given and ¥ o= Y b,
: 7

The TTP was posed and solved in 1959 by A. S. Barsow {1}. The solution method was based on the
simplex method.

E. P. Niestierow [7] solved this preblem by an adaptatien of Kantorowitch's linear programming
dual method. In [7] there is alse given a method by I. W. Romanowski based on the reduction of TTP

=Thi= paper was prepared when the author was a memsr of the faculty of the Schonl of Urban and Pullic Afairs.
Camegie-Mellon University, Pittsburgh, Pennsyhania

#The only two references mentioned in Refl 15] do ot actually, deal with the TTP itself.
$Some authors assume o; = 0. and 5, = 0 but cquality a,= 0 aetomatically implies

E T:j;ﬁ
]

for thi= particalar i. in which case row § may be rmined
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to a classical transportation preblem with a cost matrix changing in 4 course of the iterative solution
procedure. W. Grabowski [3] and [4]7 sulved the TTP by transforming the preblem into a single classi-
cal 1ransportation problem.

The author of this note presented in [8] as well as in (9] a method based on the theory of graphs.
This method consists in finding a sequence of basic feasible solutions

(+) Xio Ao o X

where X; is the optimal solution of TTP.

The same author propused a slight maedification of this method in [10]. Aceording tv the maodified
method the corresponding sequence

(5) 4 S S

satisfies conditions

(6) ty, Sy, ,

foreachs=1.2,.. .. k-1

5. L. Zukhovitsky and L. 1. Avdejeva[l1]published two versions of a solution procedure where
the elements of (4) may be not basic solutions (scme of them may have more than m+ n—1 pesitive
xi5). Paper[9] contains a proof that the method from [8] produces an optimal solution in a finite number
of steps provided (6) halds. This is always the case when the problem is nundegenerate.

A. Janicki [6] set up a remarkably efficient computer program for the method given in [9]. He
proved in [6] the finiteness of this methed in any case {including the case when (6) docsn’t hold). This
paper using some idea of [6] offers a new and simple proof that cycling in TTP is hinpossible (when
one solves the TTP by the method from [10}). So there is no need of using perturbation technigue for
the degenerate cases.

In 1969 P. 1. Hammer [5] published a method which is equivalent to the method given in [8] and
[9] in the sense that they produce the same sequence 4} of basic feasible zolutions provided we start
with the same initial solution.*

The theory of the method from [3] is based on three theorems.t One of the theorems which sup-
posed 1o be a justification of the finiteness of the method is not true as will be shown in the next section.
Anather theorem of [5] concerning the equivalency of a local and global optimum is true. but the proof
is incorrect. The correct proof of it where we followed the reasoning of the author of 5] is given in the
appendix.

This section cuntains an outline of the method from [8] including the modification from [10].
These are stated all necessary theorems. The proofs of Theorems 1 and 2 can be found in [9] or [10].

TThe review of this paper appeared in Mathematical Heview. Vo, 32, Pan 11, No. 9047 19661,

*Andprnided we apply the folluwing devisr feuhetep 2.1, from [3], page 3375 In case when there are several (4. /3 with the
maximal 1, enrresponding 1o the positive basic variables 24, try to remove from the hasis the greatest 1.,

$0ne of the thewrems i+ actually a statement but of great imporance,
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whereas Theorem 3 is proved in section 3. The method is illustrated by a numerical example.
K. 5. Garfinkel and M. R. Rao |2] propesed in this issue d solution methad of TTP for the case when
a; and b; are natural numbers (or rational), (all previously discussed metheds work for arhitrary positive

a; and &;). This method is baged on the Ford-Fulkerson labeling procedure of finding the maximal flow
in a network.

2. SOME REMARKS ON PAPER [3]

The solution method of [5] is given az follows:

1. Determine a basic feasible solution.

2. Find an adjacent better basic feasible solution. [This step consists of 4 sub-steps. as indicated
below in substeps 2.1 10 2.1.]

3. Pedorm step 2 until ne adjecent basic feasible solution will be better than the considered one.

On page 37 of [5] there is the fullowing statement:

“From the fact that every time step 2 is carried out the value of p - ¢ is reduced by at least 1. it
follows that the algorithm produces an optimal solution in a finite number of steps.™
The following two examples will show that the first part of this last statement is not true.

Consider the Tollowing 3 x 4 TTP where

&
-1
o
bi
_

=it,i=

E 8 i3 3 HY
TR I 31 gin
3

and where #; and §; are writtenon the right and below the manrix 7.
The authsr of [5] allows us to start with any feasible basic solution. (sec page 318-bottom in [3])
Step 1. We stant with the fullowing basic feasible solution

B

H i
| 4
- 3 1
f.= {x:}: : ,
R 8
— 0|t

where By = {{1.1}. (22). (2.4}, (3.1). (33). (3.3). (1.4)}. According to {8) in [5] set N consists
of ~ells 3,31, (3 3iti.e.. cells with the max t;= 15},
Proceed tostep 2.

Substep 2.1. Find the greatest x;. 4, jie ¥ which is xya = 10.

Substep 2.2. Determine S,3= {(2.1). 123}, i4.1)} Gi.e.. the set of cells. except for (4.3), which are
at the intersection of arrows — see next chapter.

Substep 2.3. Find the element of S, ; with the minimal ¢35,
Thisis 2. 11 witht; =3.

e S T el e

=
b3
3
2
z
j
;
¥

i
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Substep 24. Introduce 2.1} and according to the transportation technique remove 14.3). The
new set B becomes B:= B, + {(2.1)} — {(4.3)} and the adjacent solution is

3
ig 5 i
X:= £
3 iz

)

However, X: is not better than X, since ==
Remark 1. If by performing substep
{4.3) belong to ¥ then step 2 will lead us

15 and tp2=15- §3=£;p; =15 (10"{"8}-
2.1 we chose x:3 =8 instead of 23 =10, where both 13,3} and
from X; to X which has asmallerp=10+4=14<10+8=18.

i A MWMHWWWMWWWM i G

- 1
: B 1
A= ;
i i

The next example will show that performing step 2
Considera4 x4 TTP with the following data:

we may get even a “worse™ solution.

wi ) sl g

39 B2l 1e
5 F=
3 81131 51 2
3 147 %1 15281 10
3 % 3 1|\ n
2 Now start with
= H
! 3
- 3 1}
-i-r;
iz : g
= wio

Here N, Sa: and (k.. £.) are the same as in the previous example.

Performing step 2 via substeps
21,22, 23, and 2.4. we obtain the following resnlt:

|I|||m.x
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As we have shown step 2 doesa’t imply a decrease of the value p - 1. Thizs means that the cited
statemen! on page 317 of [5] cannot serve as a proof of the finiteness of the solution procedure.

Remark 2. Let us retum to the second example. We may prevent the shiective function (2 from
increasing by removing x},=0 frem the hasis. The new basic varable 11, will be zero and Xo=1,.
This rule makes the only difference beiween the modified method in [10] and the arizinal methed in
[e].

Sequence {57 which satisfies 6} may_ however. not strietly decrease.

3. OCTLINE OF TTP METHOD*

Befure we start with sur own selution procedure. let us introduce sume definitions.

Let X be a basic feasible solution where B is a set of (. j) of all basic variable 1, We will denste
such a solution by X{B}={x{}. B is called a feasible basis.

Let (£, 1) eB. Consider the set of eells B= (£. 1}. Link svery twe nearest cells of this set which
are on the same row o eolumn by a segmem tlink).

As known [9] this set will consist of twe disjoint sets 1, and {1, ione of them may be empisi.
such that no element of either sct is linked with an elemen: of the other sel.

By £}, we mean either an empty set if {4. /) is the only cell of B in column / or that set which cea-
tains a cell in column L

By I, we denote the set of rows. and by J; the set of columns of a m X n rectangular table in which

the elements of (1 fie. In a similar way we define the set of rows Lo and the et of columns J; which
are determined by {1,

Let I be the set of all rows and J the set of all columns of an m X 2 table. Further let
h=1-1,. Jo=1~1J-.
Let @ be a set of all cells of a m X a rectangular matrix. We introduce the set V. ¥ C ¢
@ Y=L xL— (D1

Let 71 be any subset of €.
By a 1 salution we mean each solntion of TTP that satisfies conditions

zy=01forall (i.jlell

=see [81. [91. [101.

*Set ¥ is dentical with =t 50, i {11
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Let X(B) be a basie solution where x5 is positive (then (L. 7} ¢ B). Then following ilicorem holds
ifor proef zee [9]. [10]).
THEOREM 2: If ¥ C H then there exist no 11 solution XY= {x 4} whese element X =05
This theorem serves as an aplimality eriterion for the TTPmethod.

We presenmt the TTPmethod, which is as lollows.

L. Find an initial basic solution X(B:) by any of the known methods tfor example by the minimam

row methadi.

2. Find tw, 1= 1. Define 11, as follows:

My={G.Niu. DD, ty =1 15=0}

and censider from now on I1; solutions only.

3. Find the corresponding ¥. There are two cases:

al ¥ ¢ I,. Then X(B.:) is the optimal solution of TTP.
This follows from Theorem 2.

bt ¥ # &.* Then proceed 1o 4.

4. Find min t;=1,,. Apply the known transportation technique 10 find 2 new adjacent basis by
introducing to B: cell (p. ¢). There are two cases. The set of cells for which x;; may increase

aj contains an element. say {u, r} of H,.

b} does not contain an element of 11,.
In case 4iai the new et =81+ {(p. q}} — {{u. £}} and the new basic solution X(&:) = X (B, jand
Ii:=11,. In ~ase 4ib} apply the usual transportation technique obtaining a new set B:=B, + {{p. ¢}} —
{ir. s}}. a new solution X{B:). and a new set Tl where

=+ {{ij}|1u= !5{553}— {iks. 1)},

where tos =txp,; Of (£ 7) e Ba then (8,1} = (k. 12)).

5. Repeat steps 2-4 for B: by restricting 1o L. selutions (I is defined in step 4i and continue the
iteration procedure until encountering in (4) a solution satisfying condition a from step 3. Aceording 1o
Theorem 2. this solution iz optimal.

In the course of the procedure apply the following rule. Cell (£, I} —once a candidate for the
removal from basis B isee step 2} and which was not removed from B; will be the oniv candidate for
removal from B..,.

THEOREM 3: The solution method defined by steps 1-5 produces an optimal solutinn in a finite
number of terations.

PROOF

Part 1 Preliminary remarks and notations

Naote that the solution procedure possesses the following properties

1°. i nrders the basic solutions of #31 in such a fashion that

tyim, s = txis, o and [ C 1ol

Hine can prove an even strnper theorem: H ¥ C 11 then there exists oo 1 eolution {19} whosr ddement 2008 <25
tﬁsgéﬁ'ﬁ;.

M“fuﬁmm '
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following basis B, i > ¢ since

k. 1y ell, s whereas {u, r} el T ...

can be arranged in sequence of the following form:

it o i iy Ui fudo . o L EEL

@) or
and where no more than two cells appear on one line irow, columni
{i.e.. whose all elements belong 1 B

of elzments of sequence (8 whose elemenis except of possibly (7.1 belong e B.
Consider a basic feasible solusion X {B). Intreduce se1 7.

Let (k. 7} € B and t= Tus:. Define B® as follows:

{G.j)—~ &} CB
Partll  Main Part of the proof

iterations} is finite since the pumber of all bases §s les< than

(m’f NE
\ortn— L}.

479

2°, Cell t£. 1} from step 2), and 1. £} (from step 4a) once removed from B, cannot belong 10 any

Definition 1. By a route {{i. ji~ (I.J}} we mean a set of cells of a m X n rectangular table which

As known te any pair of elements of {4, ). (7. ]} €8 thereevistsexacilvoneroute {{i. 1= {LJI} C B

Definition 2. Let Ui, §3 be an arbitrary node. By a distance d:[ (4. j1. 6. J}] we mean the number

Definition 4. Cell (;. ji belongs to B if (i.j) € B° and {i. j} is the only element of B°in the route

As known (e.2. [C]} 1o sach feasible basis there corresponds exactly one basic solution. Therefore
if zequence () consists of basic solutions where no hasis appears 1wice then i41 {and so the number of

Assumption 4 Assume 15 the contrary that (4) contains an w-element segment (i = 3} which

we will for convenience denute by

{9) -¥€B§}- - . sy af{gt}‘

where all bases B;.. . . . B are different except of 3. =B,
Assumption A and properties 1° and 2" immediately imply
3 E;“—"ﬁg:’*i - -=§¥:
4° all basic solutions of i8) are identical:
5 ftu=tzanthenta=ina=. . -=lyam.
Conslder an arpitrary cell (i j)€B.. It is easy 1o see that

10 dy, [{ij}. thd)]=di{=constantpforalle=1. . . . . .

* Actually the somber of frasibie bases ix less than &'V,

ijﬂ"illiilx
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These are the ecazes: ajd 13 even: apd b o is addd.

In the first case (741 taceording 1o tie procedure) cannet be removed from B, In 1k

} snce remaved from B cantiot enter any subsequent basis, which contradicts 3ssumption 4.
'ﬁ; webaveshownthat Bo=l=. . . (=B, CBfort=1.. .. s

Therclore instead of 195 we may consider another sequence

RIS . L/

where \® (8,1 = {x! ' 5 1 is defined as follows

s,
2]
-
W

L
-

It is sshvions that ¢ W consists of Blentical matrices tsee 3. 85, 3%

Similarly we defi EB‘ and matrix X3B,) and oitain a sequence of identical mairices

‘fg }....., §i§ ii§

=5

repeating the came proecdute several times we peach 2 sequence
LAt I

uhich consistz of identical matrives sith all hasic clements positive.
But then B, = .= . . .=l which contradicts assamption A that P and (105 contains 2 basis Sfierent

Therefore no basis appears inth twice. QED.
Erxample, * Consider a 1 ¥ 3 TTP:

p——— s

H i ¥ g Y
H P -
i B 1 2F : t 2

H : - §
R B 5 § sz | =
HE HA ; H S I = Y

F-r,)-: <
e | s Y : §oga P
OER o S -
H F [
P w8 ool

: H :
- a Z 4
ped L3 H : 3

The numbers a; and b, are on the right and below the matrix T respectively. Using the minimom row
methad. we find the isitial hasic solotion Y18,)

*?Ei cxample i t3ken fam [ 161

Ll g d & 1y T
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Here tory=1= 16 and H=[{1.2). (1.3}, 4 45 ¢4 31]. j
: We consider from now on only Il; solutions.
Gﬁéaﬁfgmiz@@i@iﬁfijﬁiétiﬁaﬁ&Pﬂzﬁméﬁﬁt@ﬁﬁﬁtih E

X circles. Empty cells or cireles denste elements of il.. Link zach
) same row and ealumn.

two nearest cireles which are in the :

i b A,

LIEITPICET R P

U
"

Here (&./v= (1. 2). Determine ;. This set occupies row 2 and eolimns 2 and 3.

: Applying step 4. we find mB 15 =1e Accurding to the E

3 &, ST :

- :msm&;nimggi&igzg}}%{iisﬁi%ikﬁéﬁ%f@?ﬁég;ﬁ:gm

= contains no clement of I1,). and X{B:) is as follows;
— ‘i‘, : Fgy

_: .v 3 ;

TPRSRUGN W P
-
W

®
&

e
[T N
N
o
n
LT [ a——
1y

U
|
-
ey
ol
(]
@

[
114

I
|
b
O3

dwg ot e




. SZWARC

:\!ﬂe tha: ﬁg = ﬁ;*

Determine ¥=1{q. 2), 3, 21} and $l1.. {3. 25}
for which x,, may inerease In this iteration {step 4, case a3 Therefor n
introduce i3. 21 sinee &% fg=fn=1}, '!'ius:?-;=32-§§§. {2}%%;3. 23

X8y =X{B.}. and M. =T1..

H £
H -3

L e A L

Wer@m&cmﬁmgﬁs%%méahmfiﬁi

: : H B
- - - - -
: H
H s 0z
- =

&
| e
1o

|
&
3

WG
™
W

I
L
i
) o
"]

W
(uomen ey
L]

Bae.ﬁﬁi‘&ggihﬂeﬁs&:ﬂfiﬁé&
we remove &, 45 from H: and




Determine the mﬁz«pﬁrﬂiﬂg set ¥, Sinece ‘I’Ha is empty X{£:} is an optimal selotion ot

iﬂ:ﬁmuﬂxﬁ;mﬁmsmﬁﬂﬁmiiﬂizsﬁm@msﬁﬁn@&rﬁﬁﬂw
salutions given below: «
- 1 ]
o 61 2
I Y EI I | i
1 1 3 y 3 ]
3 - Here the second optimal solution is net hasie.

3. Appendix

: Pruof of Theorem 1 from [5] (pp 346-3173
THEDREN Iz A feasible [hasic] solution is optimal i, amd only il it is locally optimal *
?m%i-W&\éﬁi&f;&iﬁg@‘gﬁffheﬁfgﬁuﬁﬁ:ﬁs@iﬁéﬂ@ﬁﬁﬁﬁﬁfﬁﬁ%ﬁéﬁ%*

The only change is that we replace “stars™ of [5] by numbers and we also replace his Chv 2.
PROOT: We will prove only that 3 local optimal solution is sptimal ¢ isince the second pant of the

theorem & obviousi Lat X.= ;izﬁr;fm&kk@fﬁﬁ@fm;iia&&eagmﬂﬁm

m*&@m&ai&m@;ﬁ&%ﬁgmmﬁtﬁi}z%;-;%fiﬁfﬁsﬁazﬁﬁzﬁi* z

Introduce 2 = X n cost matrix € = {r;;}. where?

[N

‘§'=_,_ &+ 1=V 5+ dHig>y,
= o . r]
:: (12; " l §§:=£§ ’

m%:@iggﬁ@afa“m“immﬁ&;@fma@

;52

4

SRE=p >0
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2 Xs i nt an eptimal solation of the cast frassporigtion

53 X3 for which

=

ar letpa=g . '?;‘ig%. tezriher wath
B Let 2:<z,. Thes zo.=0
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demic Verdag Bedin 19, 72-72 {1965} iin Germany. iProceedings of the International Confsrencs
of the Applications of Mathematics and Crbermetics to Econemics. Berlin Octolier 19531

{97 W.Szware. The Time Transporiation Problem, Zastosowania Matematyki 8, 231247 :19%6;
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Philadelphiz and Lendoa 1966) v, 160-169.



(i WMWWM' (i

gt

gl
(adl

i

R

il
i

UNICATION ON “THE BOTTLENECK TRANSPORTATION

- PROBLEM™ AND “SOME REMARKS ON THE TIME TRANSPORTATION

PROBLEM™
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51 error. since they have fourd examples where i doce not Iead 1o an ospfimad solotion. The cosater
example of 17] will he siven below.
i niortanately. the procedure dthwuzh it eon be “easBy commeeted™ 2]} is net scovee? shen famins
the notations of (315, [N 1> 1 A duly corrected version of the slsoniths =i be oiven b
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488 P. L. HAMMER

§ 3. What was wrong with my algorithin given in [4]? The procedure enabled to reduce the amount
of an xn: with (k, k)elN, overlooking the fact that it might happen that by introducing a new element
x;; into the basis, as a side effect, the values of some nther xu-(with (&', k')eN) may increase (in the
above example 12,3 and xs, 4). Hence. a correct procedure must make sure that ¢; < t* and that

E xnk+ €gxiy where ;=1 if ty=1t*.and ;=0 if t; < t*)
{hk)eN
decrease step by step.

8 4. Correction. Let us define for an arbitrary (i, j) € V. and an arbitrary (&, k) € N, the values
ua, (i) and va{f) as in (17), (18} of [4] (where these values were denoted by u(i) and v(j). respectively).
Let us further put

Znu(if)=un (i) +va s () — 1.

The following two Lemmas have been proved in |1}
Lemma A. By introducing (i. j) into the basis, the value x: decreases if and only if 24, 1 {i. /) =—1.
Lemma B. By introducing (i, j) into the basis, the value xax increases if and only if z», £{i. j) = L.

If we denote now by S *he set of those (i, /) ¢ M, the introduction of which into the basis leads to
a better solution, we arrive at the following.

THEOREM. If for every (i.j) ¢ M. we put

lifry=1*
€:_;={G i<t
m4nifty>r*

and

ZGi,)=e;+ 3 znslis ).

h kX

then
S={{i,HG.NeM . Z{i.j)<0}

Hence. step 2) of the procedure given in [4] will have 10 be the following:
2-1) Determine S (by the above Theorem);

2~2) Determine (i, j) €S for which the absolute value of Z (i, j} is maximal:
2-3) Introduce i. j) into the basis (as in the common transportation problem).
Remark. If |¥|=1, the algorithm is id~nficai with that of [4]

§5. As an example. consider the first solution of the Garfinkel-Rao counter example. Here.
AN={(2.3). B. . (3.3}

and, we can easily find the values of the Z», . (i.j) for (A. k) € N, (i.j) ¢ M (in place of the elements
of M the corresponding level L, containing it was intreduced):

i
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COMMUNICATION

Tableau of z..1(i. j)'s

-1 —1 ',; L: 0 0

= -1 =1} L L: | ¢

=1 —-1] =17 0 i L.

Uz 2§}

te 1l f}

0

0 0 0 1 1 H

Tableau of z3,4(i. j)°

w

I" ’-3 Igz 0

[
—

uy 5 {i)

a,45)

!
i

Tableau of 23, ;(i. j)'s

0 0 1. I

Ll

Finally, the tableau of the e sfarti. jle¥ is




i e A

U T

il

i

P. L. HAMMER

o} 19
101 10!
= ‘\ Y :
0710 10 a\\\"\\\\" 10
_ o N .
Hence. the tableau of the 2/, j) s for (i, jleM. is
10 1

o
Ny 0
N
\\

N !
8 8 7 8 ‘%\
9 7 g g 10 \ N

Hence all Z(i. j) are positivz. showing that the first solution is optimal.

/ el =
oo
4 |

o

§6. The Editor of NRLQ has kindly brought to my attention the manuscript of [3].

Although I cannot agree with numerous statements of [5]. 1 would like to stress its positive aspect..

I am happy to learn of the contributions of L. I. Avdeyeva. A. S. Barcow. W. Grabowsky. A. Janicki,
E. P. Niesterow, W. Szwarc and S. 1. Zukhovitskiv to the time minimizing transportation problem.

§ 7. Finally. I would lke to express my appreciation to Professors Garfinkel and Rao for having
called my attention to the error contained in my paper. and to the Editor of NRLQ for having informed
me about Szwarc’s paper wnd for the kind publication of this Letter.
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INTEGER POINTS ON THE GOMORY FRACTIONAL CUT (HYPERPLANE)

Harvey M. Salkin and Patrice Breining

Department of Operations Research
Cuse Festern Reseroe University

Clereland, Ghio
In thiz paper we show that the Comory fractions! rut thyperplane) fur the integer program

i< either void of intezer points or contains an infinite number of them. The conditions for

each case are presented. Also, we derive a stroazer cnt from the hyperplane which does not
intersect integer points,

in Reference {1} Gomory develops the well known fractional cut (1) {row indices are omitted) as
part of a classical cutting plane,

4] s=—ft Y fiup 20 (0<f<1.0=f<1).

j=t

algorithm for the integer program. The inequality (1), implied by the constraints of the integer program,

- is obtained from a sourve row,

E]
2i x=ap-§-2 ai(—an,t  {as >0 and not inegral),
3=t

where a; is some integer linear combination of the coefficients in column j of the current simplex tab-
leau. and J(§) is the jth index (f=1. . . .. n) in the set of indices J corresponding 1o the current
nonbasic variables. Also. fj=a;— [¢;]. where [¥] is the largest integer smaller than or equal to y.

RESULTS

A well known result is that every a; in (2) may be written as I”;/|Bl. where I';is _ainteger and | B

is the determinant of the «urrent basis. Also. as indicated in Reference [1]. we have
I; ;[ —[a]B] L
=g;—[aj]= s~ [aj]l=——=r= (j=0.1.. . ..}
fi=a;—[aj] 1B [a; 1B} 1B} 7 n

where [; (j=1..... n) is a nonnegative integer. I, is a positive integer. and all /; are smaller than
iB . (This follows since the original tableau is assumed to be integral. Hence. |B] is an integer. Also,

it is the product of the pivot elements which is always positive.} Consequently, the inequality (hyper-
planel i1} may be written as

i3) L R I

s=pt mrap=i=) 0
Bt 28

491
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We are now ready to present some useful properties.

THEOREM: Consider the hyperplane —"2

:53

(1). Then the hyperplane passes through at least one integer point (not necessarily a feasible solution
to the integer programi if. and only if. the greatest common divisor iged) of L. . . .. I divides I... More-
over, if it conlains one integer point it contains an infinite number of them.

PROOF: Suppuse {(A,.. . .. A/} is an integer paint. Then. for it 16 be on the hyperplane we must

7

|..~,.

have —%* A;. which means I, -—ZI A;. The entire assertion then follows from elementary re-
j=t

®

!

sults in Number Theary i(see. Reference {5]. Theorem 4-1. p. 169 and Theorem 4-3. p. 1761
To illustrate, consider example 2" of Reference [1]. The integer program is

maximize 3n— x=x.
subjectto 36, —2x. <3
-5 — 4 <-10
2,4+ x==3.
and 1. xz = 0, integer

With nonnegative slacks xs. x;. and x:, the (first) eptimal simplex tableau is

1 — e
% 3077 57 37
A B B=(-3 -3 2
x 0 -1 0 =5 -2 -1/
= 0 0 -1

Suppuze 2y, is the source row. That is. the cut is generated from 2x, =26/7—2{7x; —4/ixs. Then
the derived inequality is

s==53[i+ i +¥ix =0

Now_the ged of 2 and $ is 2 which dees not divide 5. Hence. there cannot exist an integer point satis-
fving s= 0. Te explicitly sec this. transform the hyperplane ta {x,. x=1 space. The result is the hvper-
plane 3 ~2xv. =0 which. of eourse, does not intersect any integer point fsec Fizure 1L

Suppose now x; is used as the source row, Then the generated inequality would be

$'=—6/T+ i+ 2/1: = 0.

Here. the ged of T and 2 is 1 which divides 6. Hence, the hyperplane s* =0 passes through integer

xj {fjcorresponding to a zenerated inequality

[




§ ¥
§ - f - !2
Ej. 1—; \{1‘:3\
80 50
Fieune 1.

FEASIBLE REGIDN
£ 2:2, esn: T} SPACE

s
«/ $:0
2
o - . .
v
g+

Frooge 2,

points. To see this write & =0 in terms of & and x.. This vields the hyperplane 2—2x, =0 in (x,, xz)
space. It intersects an infinite number of integer coordinates isee Figure 11
IMPROVING THE CUT

To complete the discussion consider the case where
Then the inequality 3} can be improved if we can push
intersects the first integer point (on Figure 2. the

the hyperplane s=0 is void of integer points.
hshﬁ:aphﬁt&ﬁgihefeﬁﬁemﬁmwﬂh

inequality s* > € is stronger than s = 0). To do this,
rewrite inequality (3) as
Y -
3 x~—§—§¥+3_§ Bl =0,

Since there is no integer point satisfying s=0, we know that the ged of /,. . . -+ 1a. s2y d, does not
di?idcfg.

We can also write the inequality s = 0 in terms of the original nonbasic variables x,. . . ., Xx.

493




Hi

el T A

494 H M. SALKIN AND P. BREINING

The result isee, Reference [1]) is the all inteser inequality

L s-—snﬁ-é-gg nx; =0,

Now. there is a I-to-] correspondence between the points of the feasible region in (xx). . . ..
Xnws) spaee iwhich is contained in the firss quadrant) and those in i, . . .. xl space {defined by
the original constraints). Further. the hyperplane (3) intersects the Xz axis at the point I—'(see Figure

't

3). Therefore. to “push™ the inequality s = 0 iparalle] to itself) into the feasible region, or equivalently,
to derive a stronger incquality. we must incrense [ Looking at (3}, we can change na by 1 without

cutting off any intezer point: but lni’!‘{‘aﬁni—g for fo} by 1 i the same as changing ne by 1. Thus. we

7
can increase ;;—’ by 1 without cutting off any intezer point: or «quivalently. we can increase J, by [Bi.

This vields the stronger inequality.

51

where =1+ |B]. Note tha: I, cznnot be increased by any integer amount_}

Now the ame line of reasoning can be applied ‘o the new inequality thyperplane) (5); that is. i
d twhich has not changed) divides /1. L we have the desired constraint. Otherwise. we increase
l=l.+ ¥ 18] and retest d. In effect. the Frocess i< repeated until we find the smallest positive in-
teger K. such that d divides I, + KiBl. To clandy the procedure we improve the first inequality in the
example presentcd carlier. We used the source row

2§:=§?*2—~?§"1:§ + 4= x:).

The zenerated inequality thyperplane) was iR

3y s=—5{i —2ii—xi—4it—x) = (=0
;‘ai=§
é -
L
’,,-"'
g
+~ -
U FEASIBLE RECION
; £ éi‘}{;r sy X §§§§§E‘f
¥ =
K-
T e
I SN
=" s =
~ N

Q\\K
/
Y / /
\
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Or, in terms of the original nonbasic variables 1, and %=

FELS

# 5=3—-25 =0
Now, the ged of 2 and 4 is 2. which does not divide 5. Hence, add 1 10 5/7 in (3)’ and the new cutis
5y s'==127 -2 {—x)—~4i(—x) =0.

Its hyperplane int=rsecis integer points {since 2 divides 12}, Of course, increasing 5/7 by 1 in 3Y
amounted to reducing 3 by 1 in 5. Or. in terms of x; and vz, (4Y' is

57 si=2=21;=0,
which clearly intersects an infinite number of integer points. {see Figure 1L

COMMENTS

1. Gomory [2] has shown that the integer program: max cxxp-+cuxy. subject to Bxs+Nx=>5b,
Xg. xx =0 and integer, where H iz a {eurrent} optimal linear programming basis. witheut the condition
x5 =0, is equivalent to the group minimization problem: minimize (cx—csB-'"Nixx. subject to
Zggg;,=g., = (s - - .. Xm? 20 and integer. where the vectorg;, j=0.1.. . ..nis an ele-
=t

ment of the factor group {B-*}/{/} and is the image of the nonba-ic column afj#0) or 6{j=01 ({4} is
the set of vecters which can be writien as an integer linear combination of the columns of 4 and T is
an identity matrix.) As Hu indicates in reference 4 the matrix £= (£ £1. . . .. £) can be found by
transforming each rew of B-'ih. Nito the row vector representing the coefficients of the corresponding
Gomory cut. multiplying this matrix by !Bl ard premultiplying the resulting (integer) matrix by a uni-

t 2
maodular (row transformatiun) matrix Q. That is. cach equality in ¥’ £;x45=g.has the form

b1

Utith.. . . LYxx=0Q"Y,
Equieaiem!y.i Lxxz=k. Thus. it follows that if 2 Gomeory cut passes through integer points then its
j=1

Another interesting thing is that the hyperplancs defining the boundaries of the feasible region of
the zroup problem {referred to as “faces™) give the strongest cuts that can be generated from the
current tableau. {See Reference [4]) Thus, the faces must correspond to cuts whose hyperplanes

2. Up to this time we have not mentioned integer points inside the feasible region. A generated
incquality (hyperplane), such as 3). could be most improved if we could replace it by the one whose
hyperplane passes through the first integer sclution. (In Figure 2 the hyperplane s*=0 defines the
strongest cut from s=0.} The difficulty is. however. 1o determine whether the hyperplane passes through
an intewer solution and, if not. to obtain sne that does. Precisc conditions, as before. are not avail-
able. Nevertheless, a procedure might be to first obtain the hyperplane which passes through an
integer point. Then, test all integer points on it “near” the feasible region for solutions. If an integer
solution cannot be found increase fi by 1 and repeat the search. The problem with this approach is
that gsually there are many integer points near the feasible region on the hyperplane. TLis is especially
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true when r—1. the dimension of the hyperplane. is large. Thus. even if a systematic enumeration
scheme could be developed it would almost strely be computationaily unworthy.

1] Gemors. R. E.. ~An Algorithm for Integer Solutions to Linear Progmams"" Princaten iBM Maih.
Res. Keport iNov. 19538k also in R. L. Graves and P. Wolfe ieds. . Kecent Adrances in Mathematical
Programming iMeGraw Hill. New York, 1963}, pp. 269-302.

2} Gomory, K. E.. “Some Polvhedra Related 16 Combinatorial Problems.” Linear Algebra and Iis
Applications 1American Elsevier Publishing Company. Inc.. New York. XY, 1969, Vol. 2. pp.
151-338. )

[3] Gomurys, R. E.. “Properiies of a Class of Integer Polyhedra.™ Chay. 16 in Integer and Nenlinear
Programming, edited by ). Abadie {Nonth-Holland/American Elzevier. New York. N.Y.. 19201

=g

{51 Saaty. T. L.. Optimization in integers and Related Ex:remal Problems iMcGran Bl New York.
XNY. 9701
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DETERMINING THE MOST VITAL LINK IN A FLOW NETWORK*

= I Luberc
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ABSTRALT

The sy siaf fink B 3 <5l & {5 Bow Bethork B that 2or shese somarad eaite
I the srestest sedoctia®t In the 1285 of thr muiars) Sux in the oefeork Setworn 3 ~omree
ment sital Enk & the nefwrk. ) nevessary cendithn Soran 2t b the et st Bl I

INTRODUCTION

The problem of remeving ares and nodes from 3 network is a2 part of network theary that has many
. mmoportant and oseful applications. Oue appdiestion: would be 2 confliel situation where there = 2
logistics sr comnumications notwork uader attack. A defender or user of the system must knew shich

= arcs are most vital to him so that he can reinforce them azainst anasek: while the antacker. natomally.
= wants fc destroy these ares whose destruction weuld woxt affest the «ficiency of the system. Anather
3 appication weuld be is helping the mansgers of 2 hizhway svsiem or 3 transportafion netwask 1o de-
3 termine the effect of closing various links for repair_ etc.

The problem addressed by this paper i= concemed with finding the most vital link in a single
- commodity Bow netwsrk [V:4] tdirected. andirected, or mixedi An are trved s declared 1o be the
= most vital fink if its valoe stx 3} i= af least as karge 22 the valte of every other arc in the setwork. The

1

value of arc (x.y} i= dehined as the difference in the maximal flow values in networks L¥: 4] and
[¥: {4 — (x.5)}] between some source nede 2nd sume sink aode. Thas, rix.y} reflects the reduetion
in the maximal flow attamable if are 11,38 = removed from the nefwork.

N

= Wailmer §3] has develuped an algorithm ~a determining the most vital potwork ok, This alze-
—__ tithm has been emploved Iy Durhin 11} ts detrrmine the single ot eritieal fink in a highway syetem.
= The fellowing sections of this paper briefly present Wellmer's methed for finding the most vuial
__ fink in = network and develaps an improved alerithin for solving the mest vital ink problem. Anexample

- Wollmer's algorithm for fnding the me=t vital Hrk in a petwerk follows a3 a consequenes of the

< “Prrsrnynd 31 the Tak Cataasl ORNA Meating Thetress. Wirkdeos, (i 5. 55,1905
**This wark was perfermed white the sothor was 32 The Yitre Carperation
4 £

L

Ly
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following theorem. The proof of this theorem is given in Reference 3L
Suppese the network [V: A] has a maximal flow value of ¢iF *1. while the network [N: {4 — (x. ¥}]
has 3 maximal flow value of £iF %, Then. every maximal flow pattern of {N': A] has at least viF *}
—o{F* 5} units of flow through the arc (x. ¥). Moreover. there is a maximal flow pattern of [¥: 4]
which has exactly ¢{F*} —o{F*,} units of flow over the arc {x. ¥).
As Watlmer peints out. “the abuve theorem reduces the problem 1o onz of finding that link whose
minimal flow amenz all maximal flow partems is zreatest.” Wollmer's iterative procedure for finding
STEP a:
Find a maximal flow patiern. F . in the network [Nz A] 2ad let £%0x. 3} be the correspanding Bow in
gach are {x. yled.
Set the “ieast flow™ of each arc.{x. 5}. equal to /*(x, ¥).
Let /*(p. q?fﬁgf*{g 5} and 2o 10 STEP L.
STEP I: Solve a maximal flo problem for the network {¥: {4 — (7, ¢)}]. Let the corresponding
maximal ew pattern be dencted as F*yand 20 1o STEP 2
(a} Ser the eapacity cip. q) of arc {p. g} equal to {F*)—o(F*,) and solve 2 maximal
Sow problem for this network iic. the network [N: A] with efp, g} =¢{F*) —v(F*%y)). Call the
corresponding maximal flow patter: F'. (Note F' is also 2 maximal flow pattern of [A; 41
b} Next. compare the least flow of cach arc {x. ¥} with /7 {(z. ¥) and i /" {x. ) < least flow of
arc (x, y). replace the least Bow of {x. ¥} with " {x. yi. Reset clp. g} 1o its original value and go 10
STEP 3.
STEF 3 Lat i_;:;ﬁ;f}i'ﬁt flow of are tx. ¥i}.
ia} H L < oiF "} ~&{F "y} 1erminate: {p. ¢} is 2 most vital link;
b} If U> e{F*)—olF *y): find an arc (p. q). such that the least flow of (p, g} equals U,
and 7o 1o STEP 1.

AN IMPROVED ALGORITHM

Wollmer's alporithm considers each arc as 2 candidate for the most vital link: hiowever. a neces-
be considercd exphicitly as candidates.

THEOREM 1: A necessary condition for an arc (2. b} te be a most vital fink is that for any maximal
flow paitern i the network LN: 1] the flow in arc (a. B) is at least as great as the flow over every arc
in 2 minimal cot_

The following lemma will be useful in the proof of Theorem 1.

LEMMA i: I :X. X1 is a minimal cut containing at least twa arcs in 3 network {A: 4] and if arc
ix. 33 is in Y. X0 then X X)— x. ¥) is 2 minimal cut in the netwark [A: {4— (x. 1} ]. .

PROOF OF LEMAIA 1: Suppose that ¥, ¥) is 2 minimal cot in [A: {4— (x. ¥)}] and that C{Y,
Y1 < CiX. Xy =iz, y5. Note that ¥, F)Ux. 3} has 1o be a disconnecting set for [N; 4] and that
Ci¥Y_ ¥+ clx. 5} < CLX. Xx but (X, X} is 2 minimal cut of [N: 4] and (V. F3U (x. y) i 2 disconnecting
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séi{f:g};ﬁakm&miﬁiiii?“;f{fi.fif}*-zi;f}ﬁﬁEErfa&,gif; ix.¥liza
mﬁmﬂ&m@hgsﬁ@ﬁ;k&a@eﬂm{%{%—iz ¥illL

PROOF OF THEOREM 1: Let X, X} be 2 minimal cat in {A: Al and note that by hypothesis arc
ia, b1 is a most vital link. %smathsfig{ssg;"igqi-mf* {17} for some maximal Bow

ez.32ecl_ E:

pattern F* deficedin [V AL It *Qhesﬁmiﬁai&m;ﬁmkﬁ&am

D) By Lemma 1: {F %) =o(F *) —f* (p. q): by assumption f*(a. b) <[*(s, q: therefore.
AF ) =elF*) —f*ip, q) <elF*)—f*(a_b}.

Q*?ﬁihﬂ.&g&zﬁss;hm‘miiffiiim%i Jwiththe value o{7 s} =olF*) — fia by,
and hence. the maximal flow value, ={F*..}. in [¥: {4 — fa b1} 3. must satisfe: o(F* 3} = dF*—f5u. ia

22} Conditions {1} and @2} imply that £iF %L} > £(F* gzﬁﬁt}s@i&a@@mmﬁf
mﬂiﬁszﬁﬁ%@%ik&ﬁ@ééﬁ@@ﬁﬁﬁ&ﬁ&-

HF s} < ofF° ). foralitx, yied. 0ED

Mimfﬁé@msﬁg&ggm&mﬁmMEmm;
minimal cut for sorne maximal fow pattern in [A: 4} need not be considered as eandidates for the most

sital Eok.

NG SCHEME
%% :s@ﬁmﬁg&ﬁsﬂgm&@;mxﬁﬁfmﬁgém
ﬁm%&ﬁé&%@gsm&giﬁgam&mﬁm
ﬁ&hﬁfﬁi&,fﬁ.‘m%ﬁﬁ&§¥ga@§@i&ﬁr%ﬂ&§gﬁ@§
h&ﬁﬁi&mmﬁQMEEEg_gmsﬁéﬁ&fm
gﬁ&f&iﬁeémm&m@-&iﬁmaﬁﬁéﬁﬁﬁgmm@
habeled. The labeling scherme system cally searchses for a flow pach foom pode 2 10 nads b which dors
not inclede are ia. B suc i&%m&%é@aaiém&ﬁifﬁés%kﬁ
mgiﬂéa@m%%@iﬁ’ ckir ,ﬁ;l"i‘%i&&@‘éﬂtﬁ!ﬁﬁg
fﬁmﬁiﬁ?ﬁa&i’gﬁm?ﬁa;@M%z&; tlicn of the maximal flow problem.
Let node g be fabeled withi—_ <{a) ==y, At 2 general step. suppose the nede x is labeled 25 _ iz} 3
@@&ﬁaﬁ;@fﬁmiééf@esahﬁef@&-&Eﬁeﬁf&é&:é&
following siteations ecenr:
fa} f{yx} > 0: then node y is labeled (x. €{3}} wher~ ely)=min { }. fivaih: ar
xk:{:,,;*;:i;*ﬁ*;ﬁgﬂefskéﬁ:ﬁ{f ifiﬁ ﬁ&ﬁ{i?i‘iiiii.*‘i& ¥ —flxyik

. } ino kthreazhi Emﬁ@ node
5 must have 2 label of the form =, fiisiifamﬁ& Likewize. node g has a labef &= eight
and node r has a label ip=. £ir}}. etc. Thus 3 series of nodes “**@aﬁkgﬁsm&i@k
£ and ending with node 2 is defined.

iﬁf—m’ﬁkfﬁjfﬁi?i?x&iﬁiﬁg&@km&e&fsf@ﬁz

i;}if@:fhﬁiﬁifififﬁ.ifﬁﬁfigﬁ byfizyide

th! If nade ¥ has 2 label ir . eiyi. replace F iy} by f {vx)} —¢. Finally. decrease the fow in arc

{nb} by € units.
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As Ford and Fulkersor: have shown the libeling scheme must end in one of two mentioned states:
breakthrough is achieved or breakthrough is not achieved. The following results indicate what can be

THEOREM 2:

Let F* be a maxima™ flow pattemn in the network [N 4] Let {a,5} be an are in [N:4] and use the
hakeling scheme 1o label from nsde 2 to node § without using are {2,5). If breakthrough occurs, the
value of arc (e b) is I=ss than or equal te F*%{a.0) —e. Il pon-breakthrough occurs, the valoe of arc
fa,b} is equal 1o F *{a.b}).

PROOF: If breakthrozgh sccurs an aliemate maximal flow pattern is found by making an €
chauge of flow in the path established by the labeitng and decreasing the flow in (2.5} by € Then
iF*a) 2 e(FYi—f*ab)+€ and since e{abi=r(F*)—e(F S} <clF*}—[ciF*})—f*{a.b}
+¢i and € > 0. it Tollows that ela b < *Hab) —e < f*ab).
flow pattern exists in [V.4] which has less than 7*{a.b) uniis of fiow over arc {a.b) and. hence, by
Wollmer's Theorem ria,b)=/*(a.5}. QED.

Utilizing these resuhlis, the fallowing algorithm can b emplosed to locate 2 most vital hisk in a

STEFP 0-

- ia) Find 2 maximal flow patiern, £°, in the retwork {V;4] and et (X.X) be a minimal cut.® Let
TH e g PR Y . e <
= =max c(xy) ﬁm£;§§§i“' *xa).

ib} Note those ares (x.5) £4 for which F*xy) 2 U* and store these arcs in 2 Est; these arcs
form the saadidsie set, S. For cach arc in this zet define an spper bound as Uixy)=F*{xy].

STEP ::

Let gf&ﬁ'#g@aéii:g? and set fixy)=F"{x5} for all arcs s [V:4]

Use the labeling rales to label from nede g to node & without wsiag arc {a.b}.
STEP -
the resultant Zow in each {x, y)ed. and i fia, b) > 0. repeat STEP 2.7
{b} Otherwise, replace Ufa. b) with fia, 5} and i Ula, 3} = max Uiz, ¥} terminate: arc
r.ahs

{a, L} is 2 moxt vital link. Otkerwise. replace *(x, ¥} with f{x, ¥} for all {z, yjed and o 10 STEP L

By the use of this alperithm. 2 maximal flow pattern is always mainiained and once now-break-
through resilts for the are {a. 5} and U{a. §) = U{x, 7} for all arcs (x. ¥} of the candidate st §. the
arc {a, b} can be declared 2 moxt vital link. ie. nonbreakihrough implics that via, 51=7F"{a. §)
={ia, b} and. thus, ee. §) = Uiz, ¥} = vix. 5] for {x, y)eS and by Theorem 1 the most vital Enk of
[A; A) is an cdement of 5.

* T Ford and Faikersen mavimal Sow aiporzhe 121 may be osed since # dlesciles 2 misical omt 25 well o5 3 »eincl
E 2

$2n deeraative to STEP s Is te ot F fix. 2 < Ui ). (2. 555, ond # Fin. 7} = U™ 3= sepiloce Uls. 5 with flz. 55
e {a, §) kas mot loren deopped ot retmrniss = STEP | 30r fa_ Sl has bren diopped.




The other aspects of the method that must be considered are: {1} is the method firite and 2i is
there 2 way to locate alternative optimal solutions? The finiteness of the procedare follows since there
can be only 2 finite number of arcs in the candidate set and there is a finite number of fabelings that can
be made for cach arc of the set. AKemative optimal solutions are readily identified 25 follows: afier an
candidate set whose upper bound is equal 1o the value of the most wital knk (0. b).ie . s /*=[{a, 3],
delete arc {a. #) from the candidate set. and reapply the alzorithne If upon reapplication <f the alzs-
rithm the most vitai link has a value equal 16 U*, then an alternative solution hzs bees found. In the
Iatter case. the algorithm is reapplied using 2 further reduced candidate set and the pmcedure is con-
tinued until all alternative eptimal solotions have been found.

EXAMPLE
Consider the flow network [N: A] shown in Fizur= 1.

E
E-
E
=3

= i b
= E B3
= Frorme 1. Maxieal fiow in sampde metnetk with svwrre mosde s aad sink made £
4 The impro=ed algaithm will be cmplayod 15 fad 2l mest vital Eaks in the network A 4]
— STEP O-
= £ai Figure 1 presexris a maximal Sow pettern F ¥ in thie netwark with 27 units of Row from sede s
to node 1. The mdividoal are fows are:
=1 Fis.a)=35, Faa. =13
Fois. 8y =2. Frie. dy=10.
e =17, b ci=2,
] Fhd.n=10, b dy=a.
The corvespending minimal cut twhich is snijuc] contains the arcs ta, e}, (&, ci . aod id, 7L Henee,

U =max Ffix. yi=Ma.ci=15
= €x ooy 1% Be

P
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{b) The set of candidate arcs is:

S={(s. a), (¢, ). (@, c)}}.

STEP 1: Start with are (s, a) since U(s, @) =f*(s, ) =max U(xa, y).

1, ¥ 1S

STEP 2: Labeling from node s to node a without using arc (s, a) is possible over the path containing
the arcs (s. b). (b, d), and (a, d). The value of e=8.
STEP3:

(2} Since breakthrough occurred, the € units of flow are removed from arc (s, @) and added to
eaci arc in the path found in STEP 2. The revised maximal flow pattern is shown in Figure 2.

FicURre 2. Revised maximal flow in sample network.

STEP 2: Starting with the maximal flow pattern of Figure 2. it is not possible to label from node s
to node a and non-breakthrough has eccurred.

STEP 3:
(b) Replace U(s. a) with the flow f(s. ) =17. Since U(s. a) = max Uitx, y)=Ulc. 1), arc
(s, a) is a mosi vital link, 1, xS

Since U{c, 1)Y= Ufz. o) =17, are ic, 11 may also be a2 most vital link. In order to test this hypoth-

esis, arc (s, ai is dropped from the set S and the algorithm is reapplied starting with the maximal flow
pattern in Figure 2.

Employntent of the labeling rules from node ¢ to node ¢ results in non-breakthrough, and arc (c. 1)
is an alternative most vital link.
REFFRENCES
[1} E. P. Durbin. “An Interdiction Model of Highway Transportation.” RM~-4945-PR. Thke Rand Cor-
poration. Santa Menic., California, May 1966,

[2] L. R, Ford. }r. and D. R. Fuikerzon. Flows in Networks iPrinceton University Press. Princeton.
N.L.. 1962). pp. 1718,

[3] R. D. Waolimer. “Some Methods for Determining the Most Vital Link in a Railway Network.”
RM-3321-ISA, Thr Ranua Corperation. Santa Monica. California. April 1963.
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OPTIMAL LOCATION OF A SINGLEI‘:: SSERVICE CENTER OF CERTAIN
TYPES*

K. P. K. Nair
and
R. Chandrasekaran

Case Western Reserve University.
Clereland. Ohio

ABSTRACT

Hakimi has considered the problem of finding an sptimal location for a single service
center, such as a hospital or a police station. He used 3 graph thesstetic model to represent the
region being serviced. The communities are represented by the nodes while the read cetwork
is represented by the ares of the graph. In his work, the objective is une of minimizing the
maximum of the shortest distances between the vertices and the service center. In the
present work, the region being scrviced is represented by a convex polygen and commu-
nities are spread over the entire regon. The objective is 1o minimize the maximom of Eu-
clidian distances between the service center and any puint in the pelygon. Twe methods
of solution presented are {i} a geometric method, and {ii} a quadratic programming form-
ulation, Of these, the grometric methud is simpler and more efficient. It is seen that for
a class of problems. the geometric methed is well suited and very efficient while the zraph
theoretic method, in general, will pive only approximate solutions in spite of the increased
efforts involved. But. for a different class of problems. the graph theoretic approach will be
more appropriste while the grometric method will provide only approximate solutions though
with ease. Finally, some feasible applications of impertance are outlined and a2 few mean-
ingful extensions are indicated.

1. INTRODUCTION

Hakimi [2] has considered a class of problems dealing with the determination of optimal location
of service centers. such as hospitals and police stations. In his graph theoretic formulation of the
problem. the nodes and arcs represent. respectively. the communities and road network. The optimal
location obtained minimizes the maximum of the shortest distances from the service center to the ver-
:ices of the graph. A more general version of the problem has heen solved by Frank [1] using the idea
of a game defined on the graph. Subsequently Hakimi [3] haz also considered the problem of determin-
ing the mizimum number of policemen and their lorations in a highway system so that the distance
frem any poini in the kighway system to the near. st saliceman will not exceed a specified value.

In this paper. a convex pelyhedral region is considersd and communities are assumed to be spread
over dhe entire region, Further. it is a.sumed that the distance between two points in region is the usual
Euckdian distance. These assumptions are realistic if the transportation medium follows a straight line

“This report was prepared az part of the activities of the Depariment of Operations Research. School of Management.
Case Western Reserve University innder Contract Numbes DAHC 19-68-C-0007 with Project Themisi. Reproduction in whole
or part iz permitted for any purpose of the United States Government.
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path as in the case of a helicopter. Further, this model is exact for determining the optimal location
for a radio transmitting station or a radar station, It is also a very good approximation when the road
network is highly developed and the simplicity of the solution method makes it attractive in these
cases as well. The objective here is one of minimizing the max:mum distance from the service center.
The two methods of solution presented are (i) a geometric method. and {ii} a quadratic programming
formulation. The appropriateness of the formulation presented in this paper and that of Hakimi [2]
is discussed and the results in a specific example are compared. In certain applications the geometrie
method of solution is shown to be more appropriate and efficient than the graph theoretic method
of solution provided by Hakimi [2] In situations where Hakimi's solution is more appropriate, the
geometric solution will be only approximate. but with considerably less effort. Some feasible appli-
cations of importance are outlined and useful extensions are indicated.

2. STATEMENT OF THE PROBLEM

Let the convex polygon. P. under consideration have a finite number of comner points numbered
1. 2.. .., n (It may be noted that a nonconvex polygon can be converted to a convex polygon by
joining some of the corner points.) Since the polygon, P, is convex the largest distance from a location
point, c. will be at one or more of the comer points. Define d(i, c) 1o be the distance between ¢ and
cumer point. i. Now the problem is to determine the location ¢ so that max. d(i, ¢) is minimum.

3. PROPERTIES OF THE SOLUTION

In this section some inportant properties of the solution are established so that the geometric
method of solution presented in the next section will be clear.

The optimal solution 1o the problem can be characterized by the covering circle of the convex
polygon. The covering circle of a convex polygon is defined as the smallest circle that will cover the
polygon entirely. Obviously. the optimal location is at the center of the covering circle. Thus, the prob-
lem is one of determining the center ¢ of the covering circle of the convex polygon. P.

THEOQOREM 1: The center of the covering circle of a convex polygon, P. is always within P.

PROOF: Consider a center ¢’ outside P. Now find a point ¢ in 7. such that dic. ¢’} is minimum.
Obviously. the point ¢ is unique: it could be one of the corner points or a point on one of the sides of
P. Both these cases are illustrated in Figure 1. The radius of the smallest circle. with center ¢', that
would cover P is d{k’. ¢’), where k' is the comer point farthest from «’. Similarly. the smallest circle.
with center c, that would cover P will have a radius of d{£. c}. where £ is the corner point farthest
from c. Since.

dik.cy<dlk.e)
and

dib. e} <dik.c'}.
it follows that
(1) dik, e} <d(k.c"}

Inequality (1) shows that there is 2 smaller cucle. whose center is within P, that would cover the entire
polygon_ This is a contradiction which completes the proof. This is illustrated in Figure 1.

THEOREM 2: The diameter of the covering circle of a convex polygon cannot be less than its
largest diagonal. (The largest diagonal of a convex polygon is the straight line joining the two comer
points that are farthest from each other.) The proof of this theorem is obvious.




s

]

I
i

Fictre 1. Proof of Theorem 1

Ficure 2. Hlusgiration of Threrem 2
iFor the respective pulygons 4. #. and € are covering circles. while D is noti

THEOREM 3: The covering circle of a convex polygon will pass through two or more of its corner
points and all sueh comer points cannot be on less than half the perimeter of the circle.

The proof of this can be easily seen threugh contradiciion. The theorem is illustrated in Figure 2.
4. METHODS OF SOLUTION

In this section. first. a geometric method of solution is presented and illustrated. Also. a quad-
ratic proygram that solves the problem is provided. But no attempt is made to compare the two methods,
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since. in all practical problems the geometric method will be done manually while the quadratic
program will be solved on a computer. When the twe methoeds require such different means a com-
parison of computation time is not meaningful. However, based on prior experience with quadratic

programs. the authors strongly believe that the geometric method will be more efficient. Further, it
is very simple.

= Geometric Method:

Step I: Find the farthest corner points {r. s) of £. (f there are more than sne such pair take any
one of them.}

R

Step 2: Determine the smallest of the angles subtended by the diagonal r—s at the comer points
un each side of r—s. Let these angles be #, and 8- and the corresponding comer points
be vy and r. respectively. If 0+ 8. = 180° go 10 Step 3: otherwise go to Step 4.

Step 3: The optimal Incation point r {i.c.. the center of the covering circlej is:
{i} the midpoint of the diagonal r-s if 8, = 90" and 8. = %°
iit) the circumecenter of the tiangle rse; if 6, < W°
iiii) the circumcenter of the tdangle rses if 6: <9°.
{Step 3 gives the solution and hence the algorithm terminates here.)

Step £: Find the next largest diagonal and work through the above steps.

PROOF: The preof is given for each of the three cases of Step 3 considering the nature of the

solution ebtained therein.

e R

{i} The diagonal r—s is the lower bound on the diameter of the covering circle. Since 8; =9%° and
- 8; = 90°. the circle with center at the midpoint of s and diameter r—s covers P, and hence it is the
E required circle

: (ii} The circle circumseribing the nonobtuse triangle rst, is the smallest circle that can cover rst:
and this circle by construction covers all the comer points of P and this is therefore. the required
circle.

= tiiit The same arzument given for ti} above holds goad,

= It is of interest to note that the number of iterations in this method is finite since the numbes of
corner puints n in P is finite. In fact the solution will be either the midpoint of the largest diagonal or
the circumeenter of one of the triangles which could be formed with the comner points of the palygon

2 such that the circumcenter radius of eaci. will not be less than dir. s)/2. Therefore the number of
= iterations is bounded by the number of such triangles thereby making the method very efficient. Solu-

tion of an example is presented in Figures 3 and 4. showing the required iterations.

3 4 Quadratic Programming Formulation:

4 As stated in Section 2 above. the problem is to determine a point ¢ such that max d{/. ¢) is mini-

: mized. This can be formulated as a quadratic program as follows, )

3 Let the conrdinates of the comner points of P be denoted by 33 ¥5)i=1.2.. . . . naund. those of

¢ by (%, x°1 Also. define J= max dii. b Then,

- d=dii, ¢}
4 or cquivalently,
E - 12}

=R —IF+ I~y i=L2,... .0

Now defining a new variable A=d% — (X'} — (£ the problem reduces 1o the following quadratic
program.
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Ficvne 3.  Ilusiration of the geometric method (first iteration}

R

Fiovae 4. Seosnd iteration and selution
Determine A xand

3}  minimizing A+ ixIP+ (£F

subject to 2+ 20+ A E O G- i=1.2
This quadratic pragram can be solved by any one of the well knowr methods, many of which are finite.
3. COMPARISON WITH HAKIMI'S WORK

Firstly. it should be noted that Hakimi {2] assumes that the customers are concenirated at the
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various vertices of the graph which represents the rezion. In the present work, the customers are
allowed 1o be spread over the entire convex polyszon representing the region. Therefore, it is clear
that the two problems are distinctly different: however. Hakimi’s method can give a close approxima-

g_, tion to the present problem if a very largze number of vertices are introduced in the graph or a fine
g grid is used. But such an approach will make his method less efficient from compuiational point of
g view. For the same number of sertices. in the zraph. Frank’s method [1] will be a betzer approxima-

tion since in this formulation customeri are allowed te be alsoe on the various branches of the graph.
: From the above it can be concluded that for a certain class of service centers. such as radar
4 stations or radio transmitters. the geometric method of solution is exsct and very efficient while the
= graph theoretic methods of Hakimi and Frauk will provide only approximate solutions. Further, a
good approximation to be obtained. their methods would require considerably high level of computa-
tional efferts. However. there may be certain location problems for which the graph theoretic methods
are well suited and in such cases. indeed, the geometric method will provide only approximate solu-
tions but with ease. However. it is conceivable that in some problems. the geomeiric method as well
= as the zraph theoretic method may give identical or close solutions: but this is 2 rare event dependent
upen the graphic abstraction for a given region for this 1o happen. Obvisusly one cannet hase the
e choice of method on such a rare event.
- For illustrative purpose. a triangle is considered and the solutions obtained by all the three methods
3 are shown in Fizure 5. While solving with the graph theoretic method the complete graph given by the
polyzon is used: no additional vertex is introduced. This appreach has been suggesied by one of the
referees. In the example. the complete graph is therefore the very same triangle. Frank’s method
gives an infinite number of optimal solutions. namely, every point on the sides meluding the vertices,
but the one which iz nearest 1o the geometric solution is considered. The solutioas ehtained by the
geometric method. Frank’s metkod and Hakimi's method ar= denoted by G, F, and H, respectively,

in Figure 5. It is seen that.

PR

AT

i

max d(i. €): max d(i. F): max d(i. H) = }:1'5: V3.

= It should he noted that the only means of improving the solution in the graph theoretic methad is
= by approximating the region by a fine zrid. but this would invelve 2 considerably larger amotint of
compiutational effori.

. Frame 5 Ssistiens of a probiem with different mothads
= . — Lrametric Method. F—Frank's Method, and H— Hakimi's Method:
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6. FEASIBLE APPLICATIONS

(i} Location of a Radar Station or a Radio Tranzsmitter:

The region to be scanned by a radar station could be represented by a convex polygon. Then the
optimal location of the station which would minimize the maximum distance tis be scanned is given by
the center of the covering circle of the convex polvgon. The required power of the station is dictated
by the radius of the covering eircle. Similar arzuments will hald good in the case of a radio transmitting
station also. The geometric methad of solution presented iz well suited for this type of problem.

fit} Location of a Hospital for Emerzency Cases:

In a combat area, ha== Lnspitals have 1o be located to provide emerzency treatment of injured
p=1sonnel, Normally the injured personnel will be brought by helicopters. Helicopters can be assumed
to follow the straizht path tn the hospital. In this situation. the geometnic method of solution is applicable.

Police and fi-~ ..ation personnel normally us~ road vehicles. Therefore. the solution given by the
geometric metho: will be only approximate, However. this approximation will be a gzuod one provided
the road networx is well develuped all over the resion.

7. DISCUSSION

The translation of the optimal location preblem 1o ane of finding the covering circle of a convex
polygon is of theoretical novelty and the geomctric method of solution presented is simple and efficient.
Solution by quadratic pesrmnming may require oonsiderable computational effort. The characteriza-
tion of the covering circle may be of inferest. alse. in contexts ather than location problems.

" The geometric method is well suited in the case of s=ivice centers. such as radar stations or radio
transmitting stations. In these cases. the graph theoretic model can give onlv approximate solutiens
in spite of increased effori. Further. if the road network is well developed. this methed will give a zood
approximation to the optimal location of service centers. such as a pelice station or a fire station.
Although the two methads may result in the same or clase Jocations in some problems, it is not gen-
erally true. Such a result is heavily dependent on the zraphic abstraction of the region. But there may
be certain problems fur which oniy the zraph theoretic model is capable of finding an accurate solution.
Thus therc are distinct classez of problems for which these methods may be. respectively. applied.

In this paper only a single service center is considered. Generalizations of the methods for solving
the preblem of locating several identical service centers will be of theoretical novelty and practical
value. Further. the question optimal addition of service centers to a system already in operation is
meaningful and a method for answering this question will be of immense value.

8. CONCLUSIONS

1. The optimal location of z single service center of certain tvpes is at the center of the covering circle
of the convex polygon representing the region to be served.

2. The propertics of the rovering circle are established and a finite geometric method of salution is
presented and illustrated. Alse, it is shown that the problem could be solved by a quadratic program.

3. The appropriaieness of the zeametric metkod and the graph theoretic methods available in ltera-
ture is discussed.

4. The geometric methnd of solution has distinet applications where other methads are. in zeneral.
inappropriate and less efhicient.

5. There cnuld be some cases where the grometric method is inappropriate. but in some of these cases
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it may give approximate solutions with ease. However. if a high accuracy is desired this methed
should not be used unless appropriate.
6. A few feasible applications are outlined besides indicating a few extensions.
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ABSTRACT
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L. INTRODUCTION

Fe@a&%@ént&@a@em;m;m@é%)m
available for processing a1 ﬁma,gﬁ.miﬁmmskgmhgaﬁmhmﬁeﬂ
by time b, i=1.. . ..aﬁ&i&%:adﬂe@r&ﬂhr:ﬁatﬁsaféﬁﬁeﬁkﬁﬂhﬁsﬂ?s&s
ﬂc@@l@sﬁéﬁw!&&é?&ﬁ&dﬁkihﬁ@i@ﬁesih&!@éﬁﬁe&ﬁma

Sﬁﬁifﬁtﬁﬁf&ﬁg;ﬁﬁéﬁhﬁfeﬁfﬁﬁi:ﬁié&ﬁtﬁﬂ.?ﬁé@ﬂ?ﬂi&rﬁ@n{Lgﬁi}tﬁﬁ:ﬁsi&
l:m'ahieinf&miﬁﬁeisnéiiét;iafi,ig.a’g=§g*g_mﬁgiﬁamﬁﬁgﬂfwﬂnﬁng!&minﬁmnmm
of resotirees to complete all tas sif:k@%gamﬁ»@maeﬁnfiigiif;ﬁt&mm
zero, Jackson {2] has showed that the maximum job lateness iviolation of its due date} is minimized
b}‘@ﬂcﬁgiﬁgi&hsin!&éﬁéﬁdmﬂdﬁméwdﬁ@ifﬁﬁmﬁimm&hgﬁ:ﬁém&hﬂ
%m&ﬁmg@@ﬁﬁmaﬁmihdﬂéaﬁgmﬁm&

Wé;ﬁﬁﬁﬁcﬁt@%ﬁiﬁﬁﬁggﬁk%ﬁ#iﬁﬁﬁhﬁs@ﬁﬁiﬁﬁﬂm?@ﬁt&ij&b%ﬁ@
Eﬂdtfiﬁisﬁsnm;ﬂ%mifé@;mﬁéi&ﬁfmﬁiﬁfdfﬂﬂﬁiifﬁﬁmwﬁnﬁﬁﬁmm
ﬁﬁi@f@%iﬁ!ﬁelimﬂﬁiﬁ@ﬂéﬁiW?i&iﬁiﬁﬂ!ﬁismmyﬁcﬁiﬁﬁhiwﬁ
type algorithm and then =eneralize the mﬂéitjméﬁgvéﬁmﬁtkmtgmMﬁ
censider the problem when ne job splitting is allowed. chﬁ?ﬁp@mpﬁdtma@m
that has very strong exclusion features. 10 obtain the solution =f this version uf the problem. Finally
ﬁs@fmmimnﬁﬁétw&ﬁﬁﬁrﬁﬂiﬁéiﬁ;ﬂﬁiﬁfﬁhﬂ‘éiﬁt@@&ﬂl?i}?ﬁg

2. JOB SPLITTING PERMITTED

It is convenient 1o visuakize this problem as follows. Consider the rectangular smatrix that has a
column for each job and a line for each anit of time available. There are max(8,) lines ard n columns.
In this matrix we sh=" distingais

h between admissitle and inadmissible cells, For job i the cell (i. ji
is admissible if 2. -, & and inadmissible otherwise. In other wurds the admissible cells correspond
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to the time periods where the task may be performed. Time period | starts at time 0 and ends at time 1.
An example is illustrated in Figure 1.
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ikﬂﬁasﬁiﬁ‘f}#?@;zségiisﬁéfwg.ﬁﬂ?fﬁﬁfﬁﬁﬁé3Eniiff&?ﬁéﬁiénkafgégﬁfﬁfgﬁﬁ.
See Fizure 2.
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Thus a labeling alzorithm. such as that utilized to obtain a maximum How on the admissible eells
= in the primal-dual al=orithm for the transportation preblem [1]. may be employed to obtain a solutjos.
3 A slight adaptation of this algorithm is useful since é&f&é@&h&iiﬂﬁﬂihﬁiﬁ!sa{amm
unit and each admissible cell may contain at mest 1 singe 1,

) Find an initiel assizament of I's. If all the column demands are satisfied—~STOP~ A feasible
E schedule has been constructed. Otherwise continge to step 2.

= ) Labeling Reutine: Label exch line that

3 iandfabéaﬁmiaﬁé&éf@hmjsuch!bm (i. §) is an admissible cell with label {i). Repeat for all

Iabeled rows. Ré;ff;ﬂiﬁféﬁﬁéﬁﬁ*m&mﬁﬁﬁﬁb&ﬁﬂ;@;éﬁiﬂmﬁthu@mﬁﬁeﬂr&
= i‘;uirememE%&b&iﬁéiiﬂ?ﬁi&t@:j;ﬁiGams!epi(?:bfrﬁﬁéaif@miﬁbésmgbeassi@fémé
o 0o breakibrouzh eccurs the problem is infeasible.

mmmiiﬁf{ii.xéﬂiﬂcﬂaﬁ!ﬂeﬁiﬁf

1 If all demands are satisfied— A feasible schedule
= The form of the solution alzorithm allovs
Tﬁea\?&:’hﬁﬁfséeﬁ&ei&@ﬂmﬂe

iaﬁmmm%rﬁsewtmmsi@z
the zeneralization ':*’gfi&mb’femtﬁmuﬁipiéfm o

numberafﬁmimafﬁngt however. cach admissible
= el may contain oniy a single 1. Furthermore. if the number of resources varies aver the horizon of
!hs&dnﬁngﬁﬁﬁgmezkﬁnemq!hhnc%mi?m

3. JOB SPLITTING NOT PERMITTED

= Feéﬁa@ﬁi%gz&hkymﬁaﬁgaﬁ:ﬁe@g&ée&ﬁsiﬁéu!a&smaéﬁe
; resource. There are n! nees m.myé&semﬁ@ieﬁsézﬁvﬁaimﬁaﬁ

= ézf&.tt‘pﬁgi&éi&%?f&?ﬁcﬁfg&ﬁ!ﬁf@é&%%ihﬁ.ﬁ%ﬂ&@

tmﬂgxﬁh&i’fé@%aﬁé@sﬁfthcaﬁ@ﬁﬁmhzhffégsﬁsg
Branching: We enumerate the Fiﬁemhgzmigzmmi'mt&nmﬁnﬁia
or origin. of the i@ﬁm:azﬁm&smzkﬁﬂiﬁﬁmmﬁwkaﬁhﬁt
nodes represent: the assisnment of 1ask . }ais;:.h;be:ﬁe&zt?ﬁﬁgme. We associaze with
= ﬁc&!ﬁeiﬁeﬁzﬁ?&iﬁnﬁm&éifisﬁfﬁ&hzhiggﬁs;ﬁiﬁﬁ.iagfgzﬁgéé_ﬁeﬂﬁ&rmchfmaf&
- mmzkﬁgitsﬁiéi&iiiisﬁésmiﬁtmkﬁiExié’ih&ﬁgs&;ms!he@igs
ment of each of the (n—1} ﬁiﬁi;ﬁd!&i&s!abcg@é'mﬁemés&fﬁtwﬁsﬁﬁﬁc
= %W@c%&;fﬁmﬁﬂm!ﬁté&!a&fjf=mif,ﬂ;i-zg We centinue in similar
: fashion. In general. on level &. 1 < & < . there are ¢
= the preceding %ﬁiii%ﬁfﬁiﬁﬂﬁ!&sfﬂﬂﬂiﬁiﬁ - i S wa)
= Recognizing an optimal selution- Eﬁmi&a&afcﬁ&&@ﬁm&s&eﬁmﬁﬁ%?ﬁﬁﬁ
= mkm@ﬁﬁmgﬁﬁkmﬁ%%m@ﬁﬂé@&imdmmﬁ
interested ﬁaﬁgﬁi@ﬁﬂ%ﬁg&;?@&ﬁ!kﬁwfaﬁgwxﬁﬁ@@@éﬁmﬁémha
given urdering which we eall blacks. iﬁx&éamp&fﬁﬁ;ﬁéﬂ&t&ﬁiﬁbmaﬁsw&g
: ﬁmtimﬂaaﬁikéfg%iﬁjﬁksﬁtﬁeméd&mﬁmmzn?éeia;s;
k. 'i‘h::&gkﬁakﬁfkéiﬁsiﬁméz}ewzm&zk%_ﬁséi&ﬁﬁébﬁm&f@m&
§§§a@i@!§tf€§%§?ﬁl§;ﬁ§ﬁf§§fmﬂﬁ§i§§§§§ii&

sequence and attempting 1o find 2
- mé:ﬁs:ﬁ%&;&zé&mﬁi@if:%ﬁ:km;:&az&eﬁ&m%é:ﬁ
&ctaksinzkehigs%ﬁmgimwmsghaﬁggméskﬁzﬂzx&hzhﬁ&%

e
[
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fearliest start property). then the feasible solution found is clearly optimal. Two particular sptimal
é&fnﬁﬁu‘.ifﬂiéfmfﬁ,mihcmgmﬁs%dﬁfh@R;:ﬁ?{ﬂ;}.ﬁ!’@fdﬂ?aﬁﬁﬁ
i-igém?:{&;}. In the first the block consists of the job with the latest earfiest start time and in the
@ﬁ!ﬁebﬁé&@s@fﬂlﬁcﬁsbtvb&ﬁm
ifabhe&isfﬁunii:ma@&n@tkaﬁtkéézrﬁegstsn{mpeng.mmﬁgsaﬁiheﬁbd&fw
iiséi:iif-xeneeafah@rﬁ&ihmmﬂaﬁiﬁg%&saﬁﬁeﬁw&f&ﬁi?@iﬁgmmgﬁﬁcm
fm&&ﬁmm&ﬁﬁgﬁmmf.t&mﬁmﬁfaﬂﬁﬁﬁm{mt&mbh
ﬁié!ﬁ@ékm&mms&ﬁﬁaﬁiﬁeﬁ&iéihmm{ﬁﬁ&WEﬂ
one may backtrack :ézﬁfiﬁéf;fihem&ﬂmimbeﬁxﬂ!&kh&ém
Exclusion: Cﬁnéaﬁiﬁfig-f-:éﬁmné&sgaﬁﬂ:ﬁﬁnlﬂdiﬁﬁkmmmm If the
fﬁsﬁﬁmezfass&éﬁééﬁh&&twéiﬁ&@%ﬁm@i&ﬂn&hﬂiﬁ&m@m&
be exciuded from further consideration. The justification for this exclusion featare is the following:
if@gﬁf&ﬁeiﬁiséi&:@éi&ﬁnﬁdﬂein;@sﬁiﬁniéiﬁe@ﬁeﬁ@hﬂ@@;ﬁ&d!hﬁﬁm
sii:gii'itkﬁh&éﬁi&é?ﬂ&.%ﬂhhmh&nﬁgmmhiﬁé&fuﬁhm
is scheduled later. they may be afl omitted.
Problem Decompasition: Another means availabie 1o curtail the enumeration of solutions is to recomize
ihﬂ!ﬁ:pﬁk&m;ﬁﬁ&é@i@iheﬁrﬁ@ﬁ:ﬁﬁﬁ@g&@i&aieFé%ﬁmrém
a&iermthmhé%gés.%ﬁmzaﬁéﬁmgﬁﬁi it pesition £ of the sequence. Les
ﬁsﬁas&ﬁm’m&m&fifﬁs%ssxkaﬁmﬁzg%s@@ﬁﬁgmméﬁc
.i:-—immiéiﬁsérﬁamfwmﬁikfﬁm;mhﬁﬁéﬁfgﬁcm
fsai—ijmbsmxgm&ﬁémh%&mm@mmhﬁ%&m
2;{@&:’2m:gg—i}%m&aﬁdﬁgfeﬁémm@.@gﬁgﬁmm
than the s—lution at hand are srnerated.
ix:ié&ethfiﬁf;sfi&Efé’mihei:ta%%é;i%ik@’zﬂéﬁﬁiﬂ@d@sg%ﬁé%@&&&iﬁt%
iﬁsﬁeﬁét&iﬁf&ﬁiig?&éﬁé&&éﬂeﬁﬁfﬁraﬁhﬁmsﬁﬁﬁﬁs

Initialize
O t=a =0

Generate a nes fesed of nades

@ L=+

_@ Hany of the in—£-+ i%;ﬁéﬁrmﬁﬁééﬁﬁfhﬁzﬁé@.ﬁzgz .

® 1 all the nodes have been generated on this level. 20 1o 7. Generate 3 new sede i(£) far the nest
unscheduled job on fevel £ Save?lz. If the schedule is complete g0 1o 6,

L6 If the problem splits af this level et /=2 Catn 2.
A feasitle selptian bas bren randructed

@ If 2 blork canbe found that has the earlicst stant property— STOP —the selstion ic optimal.
Othernise set k=& where £ is the level tpasitiont of the frst 135k in the bk snd retory tod,
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Backtrack i lrrel

=g}

I E={ 5o further backtracking is neressary — STOVP — the so’stion i< sptimal o1 i ne seluties has
been constructed. the problem is infeasihic,

Otherwise return 104,

A sample problem isgivenin Fizure 3.
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little time. or else somewhas! ;nore time than the average.

Table 1 summarises some of the experimental results obtained. The times quoted are in seconds,
measured on a CDC (400 using the optimising Fortran compiler (FTN),

Taste 1

Remaining Problems
Number of Number | Outliers:
Jub~ in D Qpax Bran : Swman of Time for | Minimum ; Maximum
Problem ; Trials Salution Time for Time for
H Solution Solution
25 00 7 5 0 50 0341 0.034 0.059
i : 06.192+
: f 0129
: ; .
: : > 150"
; 1979551
2% 23 50 ; 25 8.3602 0.025 0.204
: P 0.010*
P
50 . 500 jo ¢ i 25 0.; .2 0.668
: . g
: ;
; ! ! :
100 | Lo [ o 20, 15 0.3 18.250
: i : i
1 : '
a L ,

* Problem with ne feasible salution,
" Probiem not run to completion.

In the worst case. as can be seen frum the results ~Fwve. there is simply no way of avoiding tie

enumeration of very many possible schedules. but, in general. it seems that the exclusion. beunding.

and problem-division features of the algorithm enable it to cope with problems invelving .1 considerable
number of jobs. If one bes < in mind that the number of possible orderings of 25 jobs is about 1.5 X 103,
and of 100 jubs about 9.3 X 1057, the surprising fact is not that the algorithm oecasionally requires a
considerable time to find the solution of a problem, but rather that it is zo often capable of finding the

solution quickls.

We mav tentatively eonclude from the above table that the chances of being able to solve a 25 or
50 job problem in a rcasonakiec time are gand. while about one third of the 100 job problems will cause

trouble.

A FORTRAN ende of the algorithm may be {found in the appendix.

4. APPLICATIONS

A typical situation. where a problem of this type accurs. is in the

operation " a data processing
installation. There is only one computer available to process the variong 1asks. The preparation of the

H
$
7
£
i
%
Z
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data for each task is « :mpeted at tune .. the output must he available by time b, and each task re-
yuires d, units of central processor. Typical tasks are the preparation of the payroll or the report on
accounis receivable. The prolilem then is to select an order of the tasks that allows the completion of
all 1asks hefore their due Adates. Sor-ctimes it is possible 1o divide the jobs into integral units of process-
ing time. The pracessing of a jub inay be interrupted and then restarted after the processing (partial
or completel of a different jub. This situation corresponds te the assumption of section 2. that job split-
ting is permitted,

A similar problem may arise when it is required 10 allocate a single resource to activities in a CPM-
PERT pian of a project. Suppose that the earliest start and latest finish times of the activities have
been determined prior to the allocation of rescurces. Then. all jobs that are to be processed on a
p: Aticuiot . osouree are singled out and one must determine whether all the jubs may be completed by
using only one resowrre. In this problem., sume jobs may be technologically ordered and there are
additivnal constraiuts that some jobs must be processzed in a given order relative to each other. This
additional restriction may be easily accounted for in the algorithm of section 3 by adding a check of
seder feasibility at step 3. I anv of the (n—£+ 1) possible new nodes on level £ violate the order
specified then all this level of nodes may be eliminated. All the information related to the order con-
straints must be stored for the computativns. however this can be easily accomplished.

REFERENCES
{11 L. R. Ford. Jr. and D. R. Fulkerson. Flors in Netwerks (Princeton University Press, Princeton.
N.J.. 1962}
[2]1 J. R. Jackson. “Scheduling a Production Line to Minimize Maximum Tardiness,” Management
Sciences Research Project. UCLA, Research Rept. No, 43 an. 1935).

APPUNDIX

This appendix presents a FORTRAN cade for the resalution of the problem discussed in section
3 ahove. that is. for the case where job splitting is not permitted. The code has heen tested on 2 CDC
6400. and is in fact the subrowtine used to provide the timings given in Table 1. The following rema..s
may be made:

1. As written. the largest problem that can be solved is one with 100 jobs, For larger problems
all the arrays must be redimensiened appropriately.

2. Parameters ure passed through the cemmon block. On entry to the subroutine the comimon
arrays 4. B. and U should cemain appropriate values (i.e.. 4{1} holds «; and so forth). 2nd the common
variable .V should hold the number uf jobs to be considered. On exit from the subrontine the common
varighle Min will hold the miaimum possinle completion time for the schedule. and the -ommon array
Job will hold the required arder of the jobs fi.e.. Job{1)==6 means that job 6 must by scheduled first,
and sn uni if the schedule is infeasible. Min will hold — I ¢n exit. and in this case the vaiges in Job
are undefined.

3. The subroutine exp-cts nonncgative values in 4. #. D, and V. hut Joes not check ihut the
values, provided are acceptable. The values in # may be changed by the subroutine, and should thor-fore
bie saved prior to the call if they are importani.
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SUBROUTINE SOLVE

Subroutine Sclve
Common A11001.B(100.D¢100}.N Min. Jub(100)
Dimension !nﬂm;.Nomah(!anﬁab{lm) Return best value in MIN. best order in JOB
Integer ABD.Tot
Logical In Newfrz
Min=las==—1
Liz=Ta=0
Now=A(l
Boll=1¥%
If (DULCT Bili= Atl)) Retum
If (AL T. Now! Now= Ay 3
I (BM.CT.Lasti Last = B(h
Intl}= False, Check feasibility of individual consiraints
I Tot=Tot+Dil}
If {(Now + Tot GT.Last) Return
L=}
Now=Now—~1
GCoTo2
3 Newirz=.True. 3: Try anew level
DogJ=}N
HiIngn Ge To g
i iNow ~ DULGT.BU} Go To 16 If any of the remsininy jobs is infeasible, back up,
If Now.GT.AU)} Newfrz= False, Check for the possibility of splitting the problem.
4 Continue
If (Newlrs) Lirz=1
L=l +1 New level search begins
Tot=Tot—nly
Z I=}
i Hidnl)GeTos
Newnow=1: Ciow A1)
If (Newnow + Tot GT. Lasy) GoTad

JobtabiL)=1 1 50, add it to the schedule
I (L-Eq.N)Go Tes

If the schedule is complete, gota b,
Nowtal(l.}= Now
Now = Newnow + ([} Mgaﬁkiﬁemﬂylﬂdﬁj&.ﬁft the
Inth= True. time, and 20 10 3 to try the next leved
GCoTo3
6 éiin=l.:st=?c’m+ik!)
Do i0)=1N 6: New solution
If iBi)) .GE. Min) Bi=Min—1
19 Jobil}= Jobtahil;
I (Newnow.Eq Ally Return Alter constraints and save new solution
Now=A(l)
7 L=l-1}
1= Jobtabvl}
1f iNowtabiL}— Adln 12,1314

Initialize

T AT A R L TR

Mo b hor bt £

Can we do job i next?

G Lt S v

a0l B A a3

W ot I,

W:x&bakahagibesehcdukmi!ﬁzfmsia

binck
12 H Now.GEA(l}} Returs 1f this last block cannor be improved. the schedule
Gotw® is optimal
13 U (Now.GE.A{L)} Retamn
Gow 15
13 H Now.GT.AlG New=A(l) nherwise 11y to improve the last block by finding
i3 Infhi= Falee

an alternative first edement
Ter= g+ Dil

GCaTe?
9 L=t}

IF {L.Eq.Lfrz) Retom 9: Back up s lovel

1= Jobtalil,} If the jroblem splis a1 this level, there is no need
8 Ta=Tm-~DI;

to try differrnt permuotations of earfier Jobs,
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Now = NowtahiL}
Ini}i=_False.
I=i=1
HilLeN)GoTe 11
GoTo9

End
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Try next ahternative at the current level if there is

onc. otherwise back up a level
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LARGE DEVIATION PROBABILITIES FOR ORDER STATISTICS

Stephen Al Book

{alifornia State Colleze. Domingue: Hills
Deminzue: Hills, Catifornia

ABSTRACT

Assmplotic fepresentations are found for the large deviathn probabilities that the

aath opder <tatistic excerd= 8. where 82>a, The probabilities are firg expressed in terms
of the empirical distribution function, and then the 1960 theoress of Hahadur and Kanza
fae is applied. The resalt is then shownp (0 be more precise than s lezarithmie <tatement in
3 1969 paper of Sievers des inz with the assmptatic selative efficiency of the sample medion
fesd.

I. INTRODUCTION

WU L. . . . is a sequence of independent random variables. uniformly distributed on the interval
{0, 1]. with order statistics Ugnap. 0<as1. for cach positive integer n. we would like to find an asymp-
totic represemtation of the large deviation probabilities P{Uge.p>8 for §>a. ({y] is the greatest
integer <31 Our result extends 1o random variables X:. Xa. . . . having arbitrary distribution F in
view of the fact that Pl e > 81= PNy > Fidin= Pilie > Fii To determine the asympiotic
formula. we write the larze deviation probability for the order statistic in terms of a largze deviation
probability for the empirical distribution function fe.d..). and we then apply the recult of Bahadur and
Ranga Rao [1]. It will then remain only to compute the values of the components of the Bahadur-
Ranga Rao formula.

2. THE THEOREM

From elementary results on arder statistics and the representation of the e.d.f. az a binomial
random variable. we obtain the folloning result:

LEMMA 1: HO<e<d=1.andF.i- the e.d.f. of the random variables U';. s, . . .. then

thh PtUe 15 2eesp > 8V =PIF . —8) ~ (1 -8 >

> €3

PROOF: We set m=[n{l1—5+¢i] 1o simplify the notation. The result in [3] and changes of
v.riable show that

. Pl o,>8)=% iH1-58p5" "
(23 LB

On the other hand. denuvting the indicator function of a set {4 by J.. we have that

3) PF.(1=8)—(1=8) > =P(F.11-5) > 1-5+¢)
=P{S Li s >l —5+€)

Comparing (2} and 131, we obtain 11
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Now we are ready to apply the theorem of Bahadur and Ranga Ko, In [1]. the twe authors demon-

strated. for x = 0 and € > 0, the existenee of a positive number pix, €} <1 and a bov~ded sequence
of numbers b.11. €}. such that

PiF i) -x>€i ~ 2an) " Ppetx. €lh.ix, €}

swhere the svmbol =~ means that the ratio of the two sides tends to | as n — = Ameng other things,
the authors alse gave methods for explicitly computing p(x, €} and b.(x. €}. Combining Lemma 1
with the theorem of Babadur and Ranga Rao. we wet:

COROLLARY |: f0<a<és i.then
th P s oy > 8 ~ 2an)12pi1— 8.5~ atbail —8.5— )
where n— [nti —a)] = na ifnu is an integer. and n — [n{1 — &) ] = [ra] + 1 if na iz nat an integer.

It remains to compute explicitly the numbers gt] —&. 8 —a) znd 541 — 8. 8§ — ai. which we shall
abbreviate as g and b, frum now on,

LEMMAZ: p= (§/a)* ({1 -8) /{1 ~a}}? " .

PROOF: P{FA1—-8)—{1—-8)>8—aj=P(n'3:_Yi:>6—a). where Yi=lyes-gq—(1—8).

Bahadur and Ranza Ras showed on p. 1615 of [1] that if (1) is the moment-generaiing function
of ¥,. then

p=infps exp(—(5—ait) ¢(2).

Here ¢lty=esp (—(1—58)t} ('{}-8}+8) so that p=inl.s exp (—{1—aj} {#£{1—-8)+8)=
i5/a)” ((1 —8)/{1 —a})* -~ the minimum being attained at 1= log (8(1 —aVja(l —5}).

NOTE: Carsrud. in [2]. has determined the value of p by an entirely different method. due to Huber.
invelving the minimization of 2 centain convex function,
The method of finding &, in [1] is semewhat more complicated. and resulis in the next Jemma:
LEMMAZ: b= ({1 —a}a}' * (8/{(b—a)) (a{l -5

{1—ar))=-i=,

PROOF: Aceording to the avgument of Ref. [1] pp. 1022-4) culminating in Equation (36} {on
p. HR24). b, i= ziven by the formula

5 b,=d exp i—rdlnad~* —[nad-1]))

ol =9} )

where d ts the maximum span of the lattice variable ¥y and o= ("' (717} ) — (6 — a ¥ is the variance
of the “asseciated” distribution introduced in Ref. [1] ibottom of p 1016). Cleardy d=1. and we
calrulate from <(2) and r=loz {(5(} —alia(l ~5}) sthat o =a{]l —a}. Inserting these values for
d. 7. and o inte 51 we obtain the desired expression for bs.

Havinz found fonnulas for the quantities that appear in Corollary 1, we ure now ready 1o write
down the asymptatic representation of the large. deviation prohabilitfes for order statisties:

THEOREM: HO0<a< £< 1. then

=

3 & s 1=83\7 "y l—aytif & ol —§jyso-iret
Pilie ot oy~ 2 <o 2)7 (128 (2)(auzb)
% et o > BY n (t“ii ‘3-—."} § © } Ls—a/\Gil=m/
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PROOF: This is an immediate consequence of Coroilary 1 and Lemmas 2 and 3.

3. APPLICATION TO THE MEDIAN TEST

If F is a distribution function with a continuous symmetric density, such that F*i0j >0, and
X:. X, . . . is a sequence of observations from F{x — ). then the median test can be used to test the
hypothesis Ha:0= 8, against the alternative #,:8 > 8.. After transforming to the uniform distribution.
we reject the hypothesis if the median M.=Uu, -1 23 > 8 for some 5 > 8. The probability PiM, > 5}
under the hypothesis is the siznificance level of the 1est. and as #— =. the tests based on the statistics
M., impreve in the sense that the significance levels tend to 0.

The Bahadur “exact slope™ measures the rate of converzence to 0 of the significance levels of
the .este. The exact slope here is 2¢{5}. where (5} ==—lim n~* log P(M. > §). Two tests of the same
hypothesis may be compared by computing the ratio of their exaet slopes. which is called the Bahadur
asymplotic relative efficiency.

In a discussion of the asymptotic refative efficiency of the median test in Ref. j3]tp. 1914). Sievers
shows that
(6) fima 'log PIM.>38)=4log (4511 —5)}.

The theorem obtained in the previous section vields a mare precise measure of the rate of convergence
to 0 of the significance levels of the tests,

As a particular case of the theorem. eonsider the large deviation probability for the mediarn. Here
a = 1/2 and we a:sume. as is customary in this situation. that # 1akes only odd values. Then na = nf2
is not an integer. so our method gives the large deviation probability for Lo 2f. 1= Usta - 1: 2y = .. which
is the median. We have. settinz a = 1/2 in the theorem:

COROLLARY 2: For 3 > 1/2 and # an odd inteser,

i PiM, > 8) ~ i2an)17(46{1 — 8))*2(8(1 — 8§} 1*2(6— 1;2)- 1.
The assertion of this corllary provides the desired asvmptotic measure with somewhat more
precision than does 6}, Also. Sievers” result follows from 7) upoan taking logarithms. dividing by 2.

and letting n — =,
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A BIVARIATE NORMAL THEORY MAXIMUM-LIKELIHOOD
TECHNIQUE WHEN CERTAIN VARIANCES ARE KNOWN

Mitehelf 60, Locks

Cediezr of Basiness ddmiistration
Michama Siate | aiversits

ABSTRACT

A punsismndilebhoeud fechiiiue i desrriied for cdisastins the hiveriate nermal
ditniinttion of the eslimales of tae of mare related saliee eben data ate obtained fnm
sreral different wairees. rack havinz bzewne sapami e, The preddems i v

35 o =%
paral=e, = 16

hBivariate ~eme, 1 slimating the mean of 2 rormal popaiation with Anvsn arianee. The

resnits femd to be doeminated bn theee wamee. of data scwsrizted wih toe «mallect carianee.

- INTRODUCTION

For heawily instrumented syvstems. such as suided missiles and space sohicles. the valtes of some

of the parameters of the svstem can frequently be obiained in severzl different wass berause of both
the volume and the variety of measurements. A given value. for example. can v obtained either from

one or more dirert readings. or else from reconstructions of related data. 1t is alss frequentiv assumed
that the emor toleranves. such as the normal-thesry 3-cizma errors. associated with both the measure-
ments and the reconstructive terhniques are kaown and can be specified in advance,

A casze in point is the mass of a staged launch vehicle. The mass a2 engine iznition and also at
; cutsfl can be estimated using hoth zenzor and probe data. ezch with a specified error level, I addition.
= flowmeler data provides the difference between iznition mass and cutoff mass. and simulated recon
striction of the trajectory combined with engine thrust data prside a2 ratie of iznition 1o cutofl mass,
Thiz example. shich mutivated the study. is covered in more detail a1 the end of the paper. The
technique deseribed herein iz essentially the same az one that has been vsed for this tvpe of mass
estimation for certain Apello fights
1 The purpose of this report i~ to describe 3 tedhnique for estimating the bivariate normal distribs-
tinn: of two correlated but unkpenn values, usinz cambined data from different Linds of sources. each
having known emor. Some of these sonirees are independent measuroments of either value: others are
= recunstructions «of a linear functional relationship between the two vidues. which are estimated by
= using independent data sources. The separale measurements of the prediclor. the value which is
A measured with smallest ermor. are designated « and the true value is g the correspending desiznations
for the predictor are 1 and = respertively. The functional relatienships are assumesd 1o be regressions

= “r=irp+5h" These van all be different regressions berause they are basoi spen different kinds of
sappusting physical theony and daia,
The pribdem is comparable. in the bivariate sense. o estimating the alue of a normaltheon

measurement. gsing data frem different sources each havinz known error,

= A maximum-likelithond ieast squarest mormal theory methed is described for shraining the esti-
mates. & and £, and their joint bivatate normal disirbution. The recigrocais of the variances which
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are preportionsl te the squares of the tolerance levels for the measurement systems are used as weights,
Fhe assmpien is made that all systems are unbiased. or at least corrected for bias. From these data
wne alen nbtains & confidence ellipse for (g. 1) at any specified confdence level. with the center of
the ellipse helng (4, ).

The shape anel the wrientation of the likelihood ellipsoid depend only upon the variances and the
sigpes. 2. of the regrocsions. and not vpon the measurements or the positioning constants, b. The
bivariate normal distribeLon Lus the same shape. orientation. and position as that of the likelihood
functien, bat ditfers from it only i heizht. As a result the estimates are influenced most by the data

with the smallest errors a2 gl be expertzd. Likewise. if the error specified for any of the regressions
A_ Fm’

fo
»
‘:‘-

SIt teve o domiast=s the results,

DESCRIPTION

Lei 4o, . . .. x; be the £ unbiaced independent measurements of . with corresponding variances
i- - - .. Oftez. v, is smeghind the ma<imum absoleie error in the measurement of x1: and let
i+« .o Yo e n— & unbiased indeperdent measurements of r with vanances i ;. . . .. O5.

&

.
w

Aboforj=n+i.. .., giet & be normaily distributed with mean » — m2p and variance ai.
The comresponding normai theory prohabiliiy functions ave respectively:

fixpp = 2=
fis=

:fi &Jiﬂ' P;‘ =

The joint probubilisy or ilaFhood of all measursneris ac

m
%.
:

™
i
o




BIVARIATE NORMAL DISTRIBUTION
It can be shown that € is an ellipsoid since 14C— B= > 0: therefure 7 is also an ellipsoid.
The maximem-likelihood estimate im.Le.). (4. 5). of the peint (p. ¥} is the apex of 7 obtained
by pantially differentiatine it. first with respect to g and then for 2. te obtain twe simultaneous equations
in two unknewns
‘géze (24u+Bo+ D) 72
o

——— + ¥+ 3
P Bu+2Cr+Ej 712,

Setting both equations 1o zero and solving. the m.Le. iz obtained
B=—34C

. _24E—BD
Y T

p=

This estimate is unbiased since
E(—Dy=1i24u-+ Br)
=24u + Br:
Ei-Ei=llu+2Cm

hikewise

=Bu-+2Cr.
] e Eipgi=p- (Fi=r.

In the sequei the point (. 7} which is the summit of the ellipsoid is alss taken to be the summit of
the hivariate normal distribution which has the same shape and orientation as 7 . but a different height.

The variances and covariance «f these estimates are obtained as follows.* First we note thar A.
giéﬁd€arriﬁééfxﬁéemi§!hefhﬁ§@iﬁe§dﬂrnéﬁﬁi§§@&m;m values of m; and o3 bt D
and E are random functions. From (25 we have

M -
0

3,

ST \
Varilh=4{ ¥ Voi+ § m,:ia;}ﬁs;;

F

to
")

-3

F
VarsEy =3 ¥ Vei=sC

5%&;:

CovtDEv=—3 N miohy=21.

Ermat

Henee from 33

Vargs <3CNar Dy + B Var (E) — 38C Cex (. E)
;e = FE~-UCyE

N A
T3C-F

TE aboeld Bie te thank me enSemene a1 Ohlabeey t”=§£=r’§éxﬂ~g"§.fk.§;§ﬁi_?és.ik{!ﬁéi%ﬁiséﬁ&a'iﬁf‘ﬁi?
= b an amd o referer =t NRO G their sossaase, v &= brkans = b= <kmplfy the prerntatien &8 thic cection, & fer
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Var (3 - M2YVar (FV5 B2 Var iD) — 448 Cox (D, E)
ar (5 - (B —34C)® '

S -
HC=EE

Con o5z ABZ+4AC) Cov (D_E3—2BE Var (s — 4B Yar (£}
Loy I3 PRl = e Tyl y
: B2 — 14032

2R
OGBS
It is particufacly interesting to note that the varinces and the covariance depend only upen the
prespecified o's and ='s. but that the estizasies 2 and # depend upon the vheervable data as well
Fullowing Hald 1] it can easily be scen that the angle furmed by this ellipsoid is
{ 20w . f

b= aretan | - — }. Vur ¢ = Var (&) -
& "335“%’{3§;}§—¥3?§§§§ Vur tad ar {#}

EXAMPLE

At she time of ignitien of the second stage 5-1 of 3 Saturn-3 launch vehicle for an Apalle space-
craft. over twn-thirds of the mass of the entire sehicle, including the sevond and third stages and the
were used to estimate i&Mthﬁ%&ﬂWﬁmé%ﬂmmﬁwgﬁéé
the tanks=. and i3 capacitance probes. There is 3 sub<tantial amount of variability in these measure-
mients. mare. for example. than in all of the other relevan: mazs data tdry weizit of the vehicle plus
the propellants and other consamabies in the third stage and payloadl Thus. the errors or telerances
assaciated with the measurement of the m&réi&_&v&k&ﬂ:kﬁ&i%&&:ﬁﬁmﬁ
for all practical purpuses the same as those associated with the measurement of the second-stage

At sktsmaﬁmwtﬁzkgmimﬁm}m@&gﬁﬁﬁémmm

bzeause the tanks were nearly empty. Therefore in analyzing the relationshiy between cutoff mass
and ignition mass. the former ic used as the “predictor’ and the latter as the “arrdictand ™
Besides Shmg@éﬁéewﬁigiig%;@ﬁéaamaﬁé%ﬁﬁm to the rela-
tisnship between the imition and cutofl masses. These are:
i Flowmeter data e,
the Howsy
fiit Trajectory reconstruction. Radar trarkins datz of position. acceleration and velocity, and
engine thret apd spevific impalse data are used, by a simulation tecknique. to obtzin the
mnst probable ratio of the iznition maze 1o the catelf mass,

Let 1, &aé@i%@ﬁ%ﬁ%ﬂﬁs&ﬁ@ﬁéﬁiﬁfmﬁﬁﬁ&ﬁﬁﬁ% Bath of these are
assumed 1o be independent unhizsed extimates of the euioff mass
reading ix y; and the probe ve: these are zsss
mass r. Cotrespondinge 1 1
oo ando .

. Similariy. the iznition point-sensor
ie be indepradens unhissed i estimates of the iznitinn
br masimom (30 errors of thesr valoes are the standard deviations o,
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Létihemtb;dmz:kiﬂﬂﬁu:@ﬁafaﬁpﬁpdhm flows recorded by the flowmeters.
Thmﬁiszs;icmthﬂb&dnﬁnihm&hﬁhﬁﬁefmm

=pt+bs,

ﬁhﬂmﬁideﬁaﬁoncﬁ.g’%ﬂe{bﬁﬁcsiopc.ﬁagisminthismiim‘kﬂg.@mm&ngiﬁ
the trajectory we have another function

y=myn+b;,

ﬁthwnmﬁgmmaﬁ-%mmm&sﬁcmboﬁhtﬁm&km*
The hypothetical data are as follows:

R

KReadings Pesmds Nirma

P R S ¥ ) E
221 Ipnitied peodecneie e . 1332900 SO0G
¥ Ol amseto oo 63200 so0e

=: Cote® prob . 360 100 2000

LR LA U R

Otker datc Sirec Slcpe  Intercept
Flowsetrr.. - . 2600 00 950

Based upon these data the following resu’;z were obtained:

mmﬁcéﬁgm&gm;nﬁréﬁ.ﬁ@g?@gim&@
= Mhméﬁatﬁ&mﬁﬁ&hcggﬁmm&ﬁhm&eﬁﬁ
of all calculations. )
1] Hald. A.. Stavistical Theory With Engincerirg Applications {John Wiley and Sons, New York.
NY.. 1953

“Strictly speaking., the wse of the Hajerzsry rrcomstraction techaique far the putpese i oe sppresimacir. Siac= b s duwrs )




ON THE USE OF STANDARD TABLES TO OBTAIN DODGE-ROMIG L'TPD
SAMPLING INSPECTION PLANS

Williwm €, Guenther

University of Bvoming
uned
University of Oslo

ABSTRACT

Procedures are deseribed which vield single and doable cample Dodge-Ramie {17 ot
tolerunee pereent defeetise (LTPD) reetifving inspection plans, For the determination of sneh
plins only a desk caleulator and standard 1ables of the diserete probability disteibutions ape
required, Some advantages guined by using these procedures rather than the Dadge Romig
table include: (@) The Consumer's Risk ix not limited 1o 010, 1) More choiees of £TPD are
availuble, (¢) Smaller average total inspection is achieved by using o plan designed for
specific “process average™ and lot size rather than @ compromise plan designed 1o cover
intervals on these two parameters,

I. INTRODUCTION

A product that is mass produced is assembled at random into lots of size N, From each lot items
are sampled at random and the number of defectives is observed, If the lot is accepted all defective
items found when sampling are replaced by nondefectives, If the lot is rejected all Vitems are examined
and all defective jtems in the lot are replaced. The procedure just deseribed is the special case of
rectifying inspection which we are about to consider, Qur goal is to determine reasonable sampling
plans for the type of situation just described,

Let us assume that the process produces a defective with probability p. Fach inspected lot will
contain an unknown number of defectives, say £. Let ¥ be the number of defectives in a random sample
of size n drawn from a lot, It is well known that the probability function of } given £ is the hypergeometric

R0}
7

where a=max [0, n = (N = k)], b= min [k. n]. und the unconditional probability function of ¥
is the hinomial

(.1 PN n k. y)=

asyz b,

(1.2) b(y: n,p)= (;:) pr(l —pyr-n, y=0,1.2,.. .. n

For hoth single and double sampling we will minimize the average total inspection if p = p. the
“process average,” subjeet to the condition thar the operating characteristic (OC) of the sampling plan
be no more the By if the lot containg &y = Npy defectives. (In the langnage of Dodge-Romig {1] pi= py
= [,TPD. B, = The Consumer's Risk.)

531
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532 W. C. GUENTHER

Binomiai cumalative sums will be denoted by
e 2 .
i1.3) Elr:n, pi= :1. biy: n, p}.
FET

For our purposes we find that three tables are useful. The Ordnance Corpe [7]1able gives (133 10 seven

} f.
decimal places f.: = 1{1}150, ;; i} Oiii?f §§? S The Harvard [4] table gives (1.3) to five decimial
places for n =11 id{}('n {G{10} 000, p=0.0110.0110.50 iplus a few rational frac-
fions). The Weintranb [8] table gives thc samé sum to 10 decimal places for 5 = 1(1}100, p = 0.0001.
0.0001 (0.00010.001 (0.0010.10.
In the hypers reesmielric case we will use the tables of Lieberman and Owen [5] which gives both
and

{14 PN, n, k.= }_‘, PN n £ 51

#=a

to six decimal places for ¥=1{1)50(10)100. In addition two approximations to (1:4) will be used.
These dre

{1:5) . PiN.n. k.ri= I—E(r-% 1; 4,

] e

L™ ol
-

a6 P, n. k) =1—E(r+1: 5,5 ).
il HN=0.10, k<n.Even when neither condition: nJ¥ = 0.10 and E/N = 0.10. is satisfied the approxi-
mation is. usually surprisingly gﬁﬁ if we use (1.5} when £ = n and {1.6) when £ < n (as suggested by
Lieberman and Owen). The examples considesed Iater in the paper suguest that the accuracy obtained
using the binomial approximation is sufficient for practical purposes )

TR =,

‘wl ]

If sample siZes are larger than 150, it iz usually convenient 1o use the Poisson approximation to
the binomial. Two good tables. which together contain ahout all the probabilities that would ever be
needed, are the ones prepared by General Electric [2] and Molina [6)

If more aceuracy is desired than can be shiained from the approximations twhich is unlikely in
most applicationsl. then a high speod computer can be used 1o obtain a solution by following the csame
procedure demonstrated in the examples.

2. THE SINGLE SAMPLE CASE

A sample of size n is s

l "W

slecied at random from a lot of size N. Let X be the nuisber of defectives in
the sample. If x = ¢ defective items are {ound in the sample. these items are replaced by nondefectives
and the lot is accepted witheut further inspection. i x> c the Es: < totally inspected and all defective
items in the lot are replaced by nondefectives. If the lot containe £ defeciives, then the operating char-
acteristic is

M

213 OC=Pi{N.n. k. c)
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When £= £ =Np; we wish o aceept the lot with probability at most By so that 2 and © siast satisfy
the ineguality
2.2} PN.n. k.c)Ep:

For 2 It containing £ items the expected sumber of items inspocted is

2.5 Ji=a+ (N=nill1~P(N n.

However, i the precess average is p. then £ is an assumed «alue of 2 random seriable and the number

of defective items in a ~anple of sizc # §hh an uncoinditional bin Tmii distribution with parameters o

and p. I sther words . i a cimpiitivnal expectation, the ua d value being
2.5 fy=n-+{(N—n}E(c+ 1 n.p}

Dodze and Romig 1] have minimized 23 st p=5 =

number ef such sampling plans, The minimum -+

M
X

“sing the stamdard wables mentioned in se

eh r tiu- mintmun

starting with ¢=0. and increasing « one unit al 2 23 e, f*m‘ e i
found Smi Is. is computed. Caleulations ceasé when the minimum is obsenved. We will der

R
g
-
[0
=T
o
"
g
o

ich minimizes I, when p=5=006.

fe=land n=
He=2and s

Further calculations are obviausly unnecessary and the plan «}

EXAMPLE 22: If N=

miiig, é?’ié we use the approximation -

OC=P{1000, n, 108, ¢}

(with 1 > 100 appreximation (L6} is slightly bent

Z.az=52.if

t with

T

Lo L ddbes KL T b
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] c=1,n= Is=38%§6;£§‘;; 38, 3.&3;=33+%2{§.§fé§§§;23?.3
c=2.n=52 Is=52+948E(3: 52. 0.02) =52+ 948{0.085931 =133.5
= c=3.1=65 I+=65+935E(4: 65. 0.02) =65-+935(0.04138) =103.7

c=4,n=18 [s=T8+922E(5: 78. 0.02) = 78--922(0.02028) =96.7

AR

€=5,n=91  Is=91+909E(6: 91, 0.02) =91+ 909{0.01066) = 100.9

sary and the desired plan is 2=78 and £=4, .
=3. but-their plan is desizned 15 eover infervals on both A7

Obviously further calculations are unneces

Dodge and Romig [1] give n=65.
and p.

The OC at k=k=1000{0.02) =20 is OC = 1 —E(5: 78. 0.02) =0.9;

[

‘Hald {3} has derived asymptotic formulas which, together with same aﬁnisan tables, can be u‘{-d
to obtain samplinz plans of the type we liave considered. Considerdble egleulation seems 1o bere:
i;mréi ﬁ;s -paper has one numerical- example which we will ioie workfor  comparison of- resulis..
E) f?LE 2.3: I N=280, ¥ =0.10{#;=28}. B, =0.10:find the plan which minimizes the averaze

it 6f inspection if 5= 0.045.
SOLUTION: We. need

it

OC=P(280, n. 28, ¢

=3 E(::-—i 2& i}:%ﬁ{ié ‘

E

“,,anm.h

g’:i 3.%):’8.

Is=n+ {280 — n}E{c+1: n. 0.045).

Without interpolating on p in the binomial table we find if

c=0,n/280=0.08.n= 26.Is= 25
ce=L nf280=014.n= 40. ;=
c=2,nf28020.18,n= 51.[;= 5
c=3.ni280=023. n= 65. ;=
c=4,njB0=027.n= 76.Is= T
c=3 nj2i=03l. 2= 87. 1= Y%i%{é.i??gé;;i;‘%
c=6.n/280=2035. 2= 98. .= 98-+182{0.15295)=12%
c=7.n/280=0.39. n = 110. I.= 110+ 170(0. 1283}=132

N

LA <|"‘ ! !,!]J,i g lzlx,“} A )

where E{c +1: n. 0.045) was found fron: the Wrintraub [8] table except for n =116 for which the Poiszon
approximalion was used. Recompuiing the three smallest I<'s usinz linear ;n:ag;;ﬂﬁﬁﬁ in the hinomial
table yvields with

i
i ! )

c=4. pf280 = 0.2655. n = 75. Iz =75+ 205(0.21815} = 1559

L

s
¢




£

The plan with minimum Is is n=86. ¢=5 with Is=123.0. Hald g gives n=84, ¢=5, [5=119.6 but hi=
Consumer’s Kisk i= slighily larzer than 0.19 while ours fwithin the Hmits of the approximation) has the
Consumer’s Risk shghtly-less than 6,15,

The average outgoing quality for the siigle samy e case is

i nmnmﬂ '
]

2.5) A0Y=( —%. 1 —E(c+1: n. p}]
N

The maximum of 2.5} .taken over p is called 1he average osulgoing i;iféiiif limit £ (AOQL}. Dfnigé and

Romig 1, pp. 37-39] describe a methad of approximating :IOQL ?e gi:scﬁe thar- 36{3}1 aisﬁ be
found by 1rial using Weintraub's {8} table. For Example 22

50 Ihai 4@2 31 933 E& gé&ﬁﬂﬁ!&,—ﬂéﬁtﬁjﬁ -alse

o-gives AOQL=0.030. GCCUrning at g—&iﬁﬁ

jef!éti at fzﬁéﬂm fram a2 Ist-of size N Let X;: bethe number of defective

o é&feﬂr%—e iter = are found in the sample. these items are replaced by non-
éﬂf?ﬁii%ﬁ a&é the lotis accepied witheut 1unher inspection. If o, <4 = 2 a second sample of size

is ieia::gé at rendom from the remaining ¥ = #, jtems and and X:. the uambﬁ ﬁf defective iiefasg{ﬁe-:gj
ond:sample, is observed. If ¢, < x, Fx: S & the lot is actepted without further inspection. but all de-
fective item= found in hoth samples are replaced by gosd snes. If sithar n > or &<y e, and
nteZdathelnlis kszg? in: pected and all defective items in the Iot are replaced by neadefcctives.

ke fot contains & deiéfﬁ%&. then the operating charscieristic is

ig-i} ;f{%;§ #:. Bs, {g.fs*

=P{N._m. b )= gi% N :553?i:;f—ﬁg,kg?iéégg—"}'.fz-fgi}’}‘
= ¥

For

M

The countérparts of (2.3} and 2.4) are

i3.2) Jo=m+n: =PV, ay. £, &)1+ (N—n, —ml—H{EN, s, ne. 6y, 63
and
3.3

In=nsn: E(dy: ay. p} 4+ (N—n, —mi Kip: neon.. di. )
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=g+1and
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{to reduce average total inzspection} would be defeated,

e wemust hwvem 4.2

az~ To see this sssume that the converse is true, that
< 15z, Then the power st k= E, is made = 1 8: by taking n; observations all

and 5. ﬁi;eervfatmn-: part of the time. The power is not deeffaaéfi if the second sample
%j*:f’rji 1bi i 8

lity 1. But ihl* means that a single sample plan with the sven €= exists with
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5. As n, increases 1y ¥ iz nonincreasing and has as jte minimum value n

sum muay be considerabi T
nye- after n; has been inereased by relatively few u This is expiained by trbién‘;sg iiia iien nyE=
fzt. Eliks: 5, pi. i&iiig;! is greater than the power_is very nearly 1 - £ and 1c sa

greater than - when my=ny. but zeéts close to

must be larze se that n: is large. As n; nereases the fiifféz‘r?ef Eﬁgk&p power

wz at a relatively rapid pace wrmitting Edd: —dy—j: 1. 5} and #: 1o be muck

§ nol necessary to consider flans fur which

25 Hzz, ﬁmi I

S;ﬁ! c2=2 As 3 frst

"

f.si‘;t‘;s}zh §§;§ a minimum bas been ound for e ciz c=for gﬁfrﬁ it ;‘;i, %&? necessary

Zand 3 with e:=1. ;=2 thes e, =2_etc. - lermirating when values of I get too
at worst when a1, > I

ragraph may n:t;gz?aa number of calculations,
fication. §§§§ as=ing the

ormat of the §a§é§. In :i*e B
33 ;;f;k‘?i‘ff the E{d.—d,

s * 59?
may be :ransfm ésrﬁ:z Iy from the binsmi

aéearsage af ?féfééﬂf?fg E:
?!E?ii‘iﬁi‘e f%@;ﬁ“ is §§§3§ in the raifaizz;f f power or OC all previous 54, = T

F = unit. We now {fﬁ?ﬁié’éf e;arsg%.
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548 C. GUENTHER

AMPLE 35.0: If ¥=50. £,
I: when p=5=006. Find 233: OC for the required plan when £
S0 {Ti(ﬁf fn !;sam;éf z % s ;i:—gaiix i:ii;ﬁ(i that I,=16:39. ;

“12, B:=0.20. find the douide sampling plan which minimizes
=3,

Alse we had that if c=0. nEbg,

3. 4. ete..and the OC is

*i;gé iz, g’_‘;- f:—}:}

g e==1 L=L

}
=d H{12: 50.6.9.0. 1j=0.194350, H{12: 50.6.5. 0. 1=0.203123 so that #,=6, n-=09.
a pressilile plan, Then

snd when 5=0.06

+p(S0. 6. 12,
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y trial we find {a good first gﬁ{‘i? is n:=15+4=19) H(12; 50,6.19, 0, 31=0.199822, H{12: 50,6,

}3 0, 3)=0.210383 so that 2, =6, n.=19, c:=0; =3 is z possible plan. Then
K{0.06: 6. 19. 1. 4}=E{3: 6, 0.06)+5(1: 6. 0.06} E(3; 19.0.06)
+5(2: 6, 0.06) E(2; 19, 0.06)
—§§3‘5 0.06) E(1: 19, 0.06}
0261213 (0102073

"
i

and when p=0.06

Similarly, with a=0, =4
and the térms of I 3:23!@3& thar
We snext -repeat all ilie af
until it is obvious that a:
fi:é!ﬂ%i&! ﬁv’iiiztp-ﬁ ke?%

Now we repeat all the steps with o=1. This time ¢: can take on values 2,3, 4, ete. We zet the
following {a,. 2=} and fs:

=3

g5 e
g2 155 1.7t

§izsafﬁmgssﬁmééaiﬁgéﬁﬁfzsmik&ﬁ:ﬁ‘méfgaz;zéﬁii + 19

Eq2;

63 %&%gﬁzﬁsa&e&w&aﬁ*ﬁ?‘ t

:izisisiésﬁ 1246= Sﬁﬁtgﬁﬁﬁiﬁﬁwg@,ﬁmﬁméﬁsﬁﬁg@z
§§§ﬁ<§em;§f§g§§§§§i§i§§§§§i@a

The O for this plan when £=3 &=
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Recall that for single sanpling we §zaé fj
EXAMPLE 3.2: If N=1000. |

miﬁ!ﬁ% the averaze 3&;@*{;?
SOLUTION: In Exﬁzzgéz

;f£—§ o= 38 xff

:10 find the double sampling plan

nd the OC when §=§=§§,

"'8 ete.
) &5 1 c.=3, {ifm&sgﬁkﬁ. the

e:=L. the value which yields T 3 Condition 3.8 is fif—:’

which requires that n, = 38,

I e2=2 (or 4:=3} 3.9} vields

{f.@}fgi :é 4
‘i :i} %‘35%} =0, if_i'é"i

éiﬁ;g:i 2. 2. 45=012 * 373E{2: a‘%‘--é.;g%
?;E{i-a_.ﬁ.zgs

K{0.10:38,54.2.4)

$3=090024. K{0.10: 35.53.2.4) =0.89980

sothat 7. =38. p.=5}.e: =

Ki{0.02:38.54.2.4

Fip

=3

=95 E. Also we had that if =8,z
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and when p=0.02

We next tzke 2and the poweris

] ?5%2:3 piE3: 0. p}
+583:38. p3E(2: 5«.;}
4:38.p)Elina. p)

i

37}E{3: n-. 0.1}
+ ig.i—-.i%i 1 3E(Z: 1, 010}
+ {0.205300E{1: .. 0.1}

(0.6522)=65.74

5 the seovnd term of f will |

senten! 5§ ggcé ;§?§§ {'3%223*;% ;—i%s &= 3

: - Pt A é e=7 : =g :
H : - -
H 2
: = H¢ 3‘-5
! HGhL 6932 a2
z - i
j Eh 6349 13,
2 e
| 1 K2 438 | n
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hae a minimam for {*a?i“: s Theresultz in Taiée  are aégazﬁfé. i’m the ;;%ée s sé@té x§§

L0 = §.‘£}¥Ei§§n§“.. a; = 65and we issff ;*raiiz- ;n%iﬁéi ﬁﬂ%’éﬁ:{é?@ %ﬁi.z §=-< &5,
JC at =002 %r the plan which minimizes I has value 0.99649. Recall that for the single

sampde an of Example 2.2 we had 097572,

Dodze and Romiz sive for the solution to our prolilem 21 =28, 2,=72. c.=0. £.=3
I,=7089.K{0.10:28.72. 1.61=0.901.

The aversge amgeing quality for the donble sample rase can be writien in wariess foems, bat
perhaps the ane most convenient for use with tables &=

3.11) A0Q=5 pli—E di: n. p)] +
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Agzin the AGQL, the maximum taken swer p, ean be found by 1ral using the Weintranh 8] wabfe
Far the plan fuund in Example 3.2 which had lp=62.43 we =t

Hfp=0.016 AOQ =0 06; G.016; (0.99959:+ {0551 (006 (76707 1=0.03490
=007 A0D—=00%)001) A9 L- 4S5 M A GI13n= &@
p=00H8 ADQ=0961{0.048)0.99916} -+ {0.561) (0.018) 073338

so that A00L =0.035. The ADQL for the cotresponding sinzle sample case, found at theend of Sectien
2. wis D30 Inteitively we mizht expect a lagger AOQL for 3 phar which on the average regquimes fess
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- A MODEL FOR MANPOWER PRODUCEIVITY
DURING ORGANIZATION GROW'TH®*

Jodus Gy

Uity seems, e,
Newport Heweh, Califmnin

A astthemathend wionded i oleveloped thnt epiciles arginizitdon and mapeseer pdimners
o quant ity the neMeioncioe dnvedvesd o vapisd budldop of arguntzations, sieh as fa e
aventhy Connd dn the aerompitees udustey hetly alter the award of i mnjo comeaet, Cone
aleberation fu given to thee thmee peaquired tee tradne fodeetvinine aned fiendliseloe new workers
with thedt fobm ane tue geneen] rogrmm wspreets, Onee teadned, workeors are asstimed to he
pradueriven, T the satio of unteained 1o teadned workers exeveds i orbieal vilte, catled the
e theeshold, then thee perturmanee of the deained workers bolegrde] b the extent
that they ure ne longer 100 pereent effietont antll this wagio vetnrs toon vibie Jowa thim the
threshobd, e el b sufielontly general 1 conshiber an athiteary mampower plan with
more thion one ek oe vieley, The model oapote aee fmehons of rend time sl eonsdst of
e feaetion of the tarsd Tnlwer foree which e praductive the fraetion of the totsd Tnhm nnite
engrettded for mongrennetivee eort, e enmalitive lnbag eoste for pemduetive offort, aml the
ctimulitive lidur cost tor nll effon,

L INTRODUCTION

During the boildup phase of a program tor, equivalently. daring the Initlal growth period of an
orgilzntiony new people are agsimilated Tto the program team, These people bring o broad variery
of wkills, experience, edueatton and training to the organtzation und are required 1o support the program
i varions funetlonal areas sueh as engineering, tooling. manofactoring, quadity conteol, and logisties,
A i peslt, nutieal questions arbse as 1o what the buildup and builddown rates should be for these
types of warkers, what the stze of the inital tabior foree should be, when the baildup should commenee
el enddy and finally when the butlddown shoutd hegin and end, Typleally, management Is interested
in whether or not there exists an optimal plin for bullding o organtzation and, furthermore, what are
the whternative erlterta whieh can be used to determine an optimal plan,

The major dilenbty In formulnting erbert and determining an optimad bufldup plan Hes in defining
the varlables whieh need to be constdered, determining how to measure them inon practieal way, and
diseovering what relationships, It any, exist between them, These are In essence three hasie steps in
developing a mathematienl model, In many cases, In order to obtadn aeeeptonee by management, the
model must he eonceptually simple, involve varliables which are casily understood and In some senae
rendily mewsurnble, and yield reswhis which are explainable and potentially wseful for planning amd
Forecasting poeposes, We shall attempt 1o gecomplish these objectives in the ensuing dovelopment anil
shall show how with o rather simall and sbmple set of varinbles, one can obtaln conshilerable nsight
into the nature of the butldap and butlddown process,

D ST I R it a1

S amerad oy pewpritredy e el J00 Dy e mithor while with North Ameviean Roehwell Corporation, Anabeim, Califeria,
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844 1. G, RAU
1. LEARNING AND WORKER PRODUCTIVITY

When workers are assimilated into the program organization, they must be trained and indec-
trinated into the company way of deing things. This requires. among other things. explanation of
company policies and organization structure, the products to be developed and their technical speci-
fications. and, perhdps. training in the use of special tools and techniques which are required in per-
formance of the individual's work assignment. All of this takes time and, from the.peint of view employee
cuntribution. can be regarded as a “nonproductive™ period. This period will be referred to as the learn-
ing time. denoted by L. and the basic assumption of the model is that all personnel are “productive™
after they have been on the program for L time units, The learning time corresponds to that which
Purkiss [5. p. 5] refers 1o as the time period to train a man. It is not unreasonable to expect that the
value of /. wauld depend upon the type of individual hired. such as technician, engineer. tool and die
maker, machinist. clerk. #ad quality eontrol inspector. or even upon the number of years of experience
both within and outside the company and educational degrees obtained.

Fuctors affecting the learning time of a worker can be expected to include the following:

11} The time spent in general orientation traininz concerning such subjects as crzanizational
structure. objectives and missions: program purpoese and objectives: philosophy and inner workings
of the custemer’s operating and support environment: general systems outline (if the purpose of the
urganization is to develop and design some type of system),

{2} The time spent in technical orientation training concerning the technical concept of the system
design and indoctrination at the technical level of the major and minor subsystems

(3} The time spent in the internal company training/retraining. skills development and skills centi-
fication programs, Typical examples are as follows:

{a} Engincering teaining to accelerate the engineers’ integration into the working team and
1o broaden their comprehension of their specific task assignments.

{hi Manufacturing skill training 1o provide personnel capable of assuming the duties of an
assembly work station and of performing the tasks of the station in accordance with program require-
ments,

{c} Quality contrel training which encompasses all techniques, processes. and procedures
utilized during design. development, manufacturing, inspection. handling. and packaging.

tdy Reliability training of technicians and skilled craftsmen to assure that their skills and

g keep up with the advancing technolugy required to achieve the specified system reliability
requirements.

knowl
{el Training in the proper and safe methods of packing. shipping, and storing of the items
used in the manufacture, assembly. ond test of hardware items.
{1 Supervisory vrieniation to provide new and experienced supervisors with program philos-
ophy and review of responsihilities,

61 The time spemt afier completion of all general and specialized orientation training until the
worker is given 2 specific and well defined task assignment. This facter is quite important and can
usually be attsibuted 1o puot management planning and supervizery practices.

Twe implications of this basic assumption regarding learning time are:

{1 It imeplies that each individual reaches a productive level after spending L time units on the
program. thus ignoring the fact that some new hires never become productive:
an
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MANPOWER PRODUCTIVITY MODEL 545

{2} It ignores the fact that while an individual is being trained and indocirinated he can make a
meaningful contribution to the program and thus, in a sense. be produciive even though not perhaps
productive at the level for which he was hired.

One way of resolving (1) would be to introduce into the model an attrition rate for each type of
worker hired to allow for reeognition by company management that the individual is not going to mature
as expected and thus his emplovment is terminated. Consequently. if the buildup rate is U workers per
unit fime and the attrition rate {i.c.. terminated workers per unit time} is 4, then the net buildup rate
is U4 workers per unit time; hence. ene could merely use U4 instead of U as the buildup rate input.

The assumption of zero productivity by a worker during the first L time units of his employment
can be described graphically by the step function in Figure 1.

One may argue that (2) is an unrealistic smplication of the hasic assumption and that preductivity
is perhaps a piecewise linear function of the form described in Figure 2. If this is the true situation.
then this can be resolved by redefining L to take into consideration the area of the shaded triangle
which the assumption. as stated. would otherwise izmore. More specifically, if the line seament for real
time between O and L has slope m. then we must have L=1/m: hence, the area of the triangle is 1/2Zm.
Therefore. using the imterpretation of learning time according 10 our assumption. we choose the learning
time equal 1o 172m because then the area of the shaded rectangle in Figure 3 squals the area of the
triangle in Figure 2. In this way. the effect is approximately the same.

III. BEVELOPMENT OF THE BUILDUP AND BUILDDOWN PROCESS

Consider a program which begins at time 0. with w(0) workers of which pi0) are injtially trained
and the remainder ni0)=1(0) — p{0) are nontrained. At time ¢ > 0. let witj be the size of the program

.o

H f
WORKER | |
PRODUCTIVITY i
ob— . ——
H
1 L3
f——————
; LEARNING :
H TIME i
Fiat 28 L Preductivity otep function
!.fi{
WORKER
PRODUCTIVITY  ©
GL{Q = TIME
Fiut RE 2. Plecewize linear productivity function
.G -
wWORKER i-
PRODUSTIVITY H
;
£
cl - — TIME
H
t
T7TTT
i "’%r&

FicURE 3. Step functinn approximation
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546 J. €. RAU

organization, where the units ot could be weeks, months. or quarters. At time ¢, the number of pro-
ductive workers {i.e., those who have completed the learning processi is denoted by p(t) and the number
of nonproductive workers is denoted by nft), hence we obtain, since each worker is defined to be either
productive or nonproduetive,

1) wity=ni{t) +plt).

Assuming changes at discrete times only.® if w(¢} > w{t—1). then the orzanization has increased at
time ¢ by an amount equal te U/{£) =1(¢) —w(t—1}: on the other hand. if w(t}) <w(t—1}, then the
organization has decreased at time ¢ by an amount equal to Bt} =wlt —1) —w(2). In general, we can
define the increase in the organization at time £ = 1 relativetotimet— 1 by ’

2) Uity =max {0, wit) —wit—1}}
and the decrease in the organization at time 21 relative to time 1 — 1 by

(3) D(t)=max {0, w (¢ —1) —wlt}}.
Consequently, we observe that
@ w(t)=w(e—1}+D{e} + Ufe).

Suppose that, if there is a decrease in the number of workers at time ! relative to time 11, the
decrease is made in the number of productive workers first, that is, trained workers are removed first.
The reason for this assumpiion is that normally the organization would not decrease in size until all
workers were trained (hence, everyone would be productive} and, if nontrained workers were removed
first, then some 1ype of seniority rule would have to be assumed such as the removal of the most re-
cently hired workers, then the next most recent. ete. This assumption thus aveids any funker assump-
tions about seniority rules and simplifies the model. Therefore. if 7 < L, where L denotes the worker
learning time. none of the initial nontrained workers are vet trained and 20 the number of praductive
workers is either zero or equal to

where [t] denotes the largest integer not exceeding i: if 1= L. then all the inftial workers (o) are
now productive, together with those hired by time ¢ — L. (namely.

fe-1
>

FEY

and so the nuriber of productive workers in this case is either zers or equal to

LG) -3 D,
ot

- -

“Since organization size changes typically on a daily. weekly, v monthly basis and oot contieoously with time.
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Consequently, we have for ¢t = |

<
-
LY
o~

]

MAT S

»~

The number of nonproductive workers. #(71. is then determined from Equation {1).

IV. SPECIAL CASE OF CONSTANT BUILDUP AND BUILDDOYWN RATES

As an illustration of the model as formulated. let us consider the special case in which U{t) is a
is a pusilive constant whenever it is nol
zero: that is. we are considering the constant buildup rate and constant builddown rate situation.
Let us suppose that the organization begins at time T.=

positive corstant whenever it is nol zero and. similarly. I

=0 with a hasic core. 2{o), of workers and unce
the planning of tasks and training programs are defined. say at time 7. the buildup is besus a1 a con-
stant rate { . Upon reaching the peak 1abor foree. say at time Te. the orzanization stays at this size antil
it is deemed feasible and necezears to stan layinz-off workers. say at time T in ﬁ'ﬁi{:f* case the urzaniza-
tion builds down at 4 constant rate I 1o a basic min

nimal size ithis o
earry oit the remaining tasks and effints of the prozram. and then
time the program ends,

In this special case. we have for 1 = |

air—1} it <T: . Tp<i<T,
witi={ ait—1}+UViW T < ]

-
o
o

However. since workers are only added 1o the pregra sra
total number of workers hired by time 7 vwhere
3 removed from the orzagization at times 7., T,
3 time!where Tt < T is D[ —Te+

iserete times Tr. Teose o . o T, the
— T+ 11. Since workers are only
tatal number of workers laid off by

L Therefore. it f,éﬁ:z%ssi at

?{) §§ ; TR

‘i ﬁ'ﬂ%? is ?ns =< ?‘f
E (7 winy =TI UL T + 1} ;{3}-5:‘:3:;

= wi{T G+ T —Tr + 5} #T-=s:<T,

3 wlT O+ UiT—T: 4 11 I PSS Ea 1

e Wel(TO+ 0T ~T: + 13 HTe=1=sT
; We shall, for convenience ite avoid enumerating a myriad of cases? assume that

= {8 f=minl{l-T.-7.T-—T..

_:: This assumption means that seme of the warkers added to the srzanization during the buildup process

] have an wpporlunity v complete 1he learaing phase before the builddown begine de.. T + £ 2 Th).
* the last group of U workers add=d te the program at time T can complete their learning phase hefore

l.,.ivnly, 'u!vll
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the builddown s completed Hee., To+L = 7.}, and the initial number of nonpreductive workers.
n{T:}. is productive by the time the peak buildup occurs e, . Te + L < 75},

To determine the number, p(1). of productive workers a? time , we observe that any nonproductive
worker whe has been in the organization at least L time units is productive. This means that all workers
hired at T5. T+ 1, . . . ., [t—L] are preductive by time ¢t and if 1 = T=+L. then ali workers have

cvompleted their leamning phase by time & Consequently. it iz a straichtforward argument to show
that pir} is ziven as follows:

CASE: ?5‘?5; = 7¢ and ?,s"‘ia =7y

¢

piTs) Hle=t<T.+L
wily) HIs+l=1<Tr+L
€9} pity = wt T+ Ut ~T ~1,+ 1] TN+ L=t<T-+1L
w(Ts}+ U(Te—Tr+ 1} HTevrl=t<T:
wi{T )y +UT- =T é‘i}“ﬁ{!"‘ n+ 1] #fTusr<T:
(T} +UiTp~T, + 1) DT, —Tou+ 1} =<7
CASE: In+L=Tiad Tu<Te+L =T,
{i] Hr<T:
piTs) T Tx=s=r<T 4L
il HTz:+l=i< Tr+L
{10} piny={uw(TH+Ul—Tr~1+1} HTr+Ll=(<Ts
wl{T)+U[t=Tr—L+1]-D{t—=Ta+1] Flo<t<Te+l
wf{Ti+ VT =T+ 1} =D~ Tu+1] flotl=1<T:
CASE: T < T+l =Trand Te+ L= Tp
[0 H1<Ts
?i?s':

HTesr<T.+1
wila i+ U0~ —1+1] HTc+l=e<Te4L
wlTy+ Ut =T+ 1) HTe+lst<Ts

wl T+ Uil =Ty + 1) =D~ T+ 1] HTuzet<T:

{1 SEE =

E*t'f?s.i‘:‘gf??‘—rt‘i‘i)—g{?‘t"?ﬁ?f§ if;l%fé?g.
CASE: T < T+ L=Trand To< Tr+L =T,
fé ifz< ?:s
2Ty HT =se<T =L
{12} pir) afT ) +U~Tr—L+1] iiTu+l=e<T:

w{T)+ U —Te—L+1]-Blt—Tu+ 1] i T <Te+L
wil 3+ Te—T + 1) =Bt=Tu+1] H Totl=t<T:
el T+ U =T+ 1) =-MT —Tatl) T =15 T

Using the relatienship #(1) =w{(#) — p(t), one can easily derive n{t} for cach of the preceding cases.
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VI DETERMINATION OF TOTAL NON PRODUCTIVE LAROR UNIT EXPENDITURES
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VHI. DETERMINATION OF OPTINAL MANPOWEER PLANS
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However. if we specify that the learning time £ is integral and that the buildup thresheld must not be
exceeded during ilic buildup process. then Equation (20} becomes finear in the wfr)’s. This is facilitated
bir adding the cunstraint that slitjjpiti =K fore=0. 1, 2, | . ., T or, cquivelently,

35 +Kipiti—wit} 20 fore=0.1.2,....T.

This type of constmint has been considered befare by Purkiss [5] when be imposed the condition that
the number of trainees cannel excesd some fxed proponiion K of the 1ained men.
Before showing thm the prablem defined by 25121 Is an intezer lisear prozramming problem

ahserve that an alternstive. and perhaps more sealistic. form of Eauation 29} is for given

37 i 58— ;§§?§§,§ 'é{.‘ﬁf,'?*%-i;

A, Le.. the tolal productive «Tort by thne £; shanld be within A; of the desirad sl

T-3
=g

w the buildap thresheld to be exeeeded. it follows that H (1} =0 a8d s6 frem Equa-
, 62 éﬁiféé we uhitain

34 Heteh=Hz}—Huo(2)
-1

153 =3 gg}s-’i‘ ajy= ? pUd.
A 5 l' f‘g

5 smed 1 be gn mieoer, &%ﬁ&.giﬁéas@e%ﬁs&agﬁ?g%ﬁrgiégsis
i%%%éﬁ%ﬁ?ﬁg of

and {3¢j) alenz with &7) and C8L B iz easily choun fram fon 5ithal,
#1 = Tothen
[pée} #l=:<L
wit—L} #lL=1=27
358 pirE =%
i g wit—Li+uls}—=(T,) HTo<t=sTetl
;%%’;'; g?@":‘é{g.

Fligr<¥s

"o Mn
W
LT S

o T (o)t wis —5iT-) #HT-ge<L
33 £ = = 5 - -
) Fis—Li+witi—wilp) Hfl=1<Ta+L
B4 #Te+l=1

fere. frem Equations (33} and G51-437} i follons that €23} and <208 sre Gnear foncliens of wif}

gad == (531! defines an mteger LP problem. The soluten can be oblained by using Gemers's
Methad tcee Ref. {18

é:sa

IX. DETERMINATION OF THE OPTIMUM BUILDUP RATE
is ¢ optisnal manpewer plans consideralion s somelimes given 1o the coacept of an
sptimam bsildap rate. Two possible critesia for such 3 rate are: (1) the fraction of the talsl Isher fores
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ff?*f%ff% =2 for a8 §>?s. ?ffké@%? the most ;;ggzgzsg criterion. sinec H is certainl
sirable 1o obtain nseproductive cffort froan pradiuctive pesple. s that the ratis alt}ipir]} a@g@gj
the boildup threshold. This means tha: the only nonpreductive effert ohisined is due 1o the training
of new workers and mot dur to su excessive hufldsp mie shich would cguse productive pesple 1o
Lecome pattizly nonpreductive.

Thus. 3s an illesirmtion. kot us consider the prabiem of detenninine the maximun bail
ssy. such that aiz}/pizi =K forai ? ??g.?ﬁ@%féfgm?ifgﬁﬁﬁf
s;sz;’ﬁ.ifiaeﬁ%ﬁgsz@%&%g%ésgzg = z&&&ms&sz&m

One “‘eim@&fg&?ﬁ*ﬁ%iééﬁ%i&f%%ﬁ%@g&ﬁﬁm
& ﬁ;ﬂﬁm@% =< Tp since the bulidsn ende 21 Ti:
s apd T+ LT
esh ig’i:fs <§..§§1ﬁ§ Hplti=nls)pia). smee 1 < T,
;;::xré snd the huildup has 8=t ye! begmn
it ETrsr< Fe+ L then a¥pled =Ll — T+ 1liieis) amd o=

Therefore. in erder that s }n{2) =K G s
. . {Kmisll
=9 b= {§§3§ HIL+ 1}

e WTr+d=e=To, then

. EHE ifij—?e"-ii £‘§=—?— .
“o) ;5*2%‘;_ gloy+{js—=Tc= 14 H
ﬁ‘% 733'

; : ~pi<it
X H 8=si-{t i’“gé}.—{

# follaws tbyt
w2 N LI PSP
2 %ﬁg?%%.i £.=.s??§_ i

Y. T have

e .o | Kicte}il # L s intesyat
§§§ L. ) S . : -
o v %aﬁg;g-; i L is nenintegral

Casg 2 l=Tramd L +L>T0n
@t MO = <L then nitdpisi=nlolipiol. simert< T

58 H L =7 < Tithen ={0)ip{2) =0, siner the in35af sumsber of antreined =others ove now trained
and the bpifdap basns stasted.
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In summary. w- choose US={ as given by 451
Cast3:L>Trand T+ L =T
@y Hi<sr<Tr.thenr
Gy U Terst<i.then

M
iy
Wy
™

T,
" i
m&
L
~
i
iy
A
[
o
]

Therefore, it suffices 15 chease

T +L=1=T- then

Fram Equations 41 and (423 #t &llows that ais}ipin} wen't exceed K if we chivose U accanding ts 500
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grantities as the fraction of the total labor furce whah o

ry =

ine cam=latne Lhar onn.

detrrmine ¢
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whieh ave preaduetive sy alvemly traiedh, wad o b oo eine of 300 wiorkers per msenth, siirting
Wt theend of the fiest month e 7w L)y and contining, For 200 months, Fhe learning Hime e ostimitod
to-be 2 mventhi on the average and te bnildup threshold s ostinsated 1o e 0,25, Using Fapuation 14,
when 2y 1 andd the bubldup ente I8 we obtadn for it el 1

(M) o - \‘ WL =~ ta) o N g
~ ha!
[
(%) war(o) 1N (i) - )
4o
(56) w oty 1 HALLL

In particular, for + = 16, 0(o) = 1000 and U= 300, we ohtadn 1(16) = 42,400 man-months of effort,
From Talle Ty we see that the feaction of effort productive by thine 10 b 0819 and so /1p(16) == 34,720
mansmontis, Therefore, the milestone can easily e met, but ar the coxt of 42,400-%8,7204 7,074
additional mansmenths of effort, that s, to get 34,720 man-months of productive effort, the company
must expend F2400 mananonths,

From Table 1, we observe that the milestone conld ot have heen met within 15 months after
goenhead sinee (08100 (R2400) 0 3483E manamonths, On the other hand, i the program manager
and his staf® were conservative Iy their estimare of the Sofldup threshold K and the teae theeshold
ix approxhmately 1O, then we olwerve that the milestone eonld beomet within B months after gosabead
sinee (0.818) (42,4000 = 34,683 man-months,

TanrE 1o Fraetion ()I I I'lml I uulm'!lvv \\ lwu " lu) ~/'(n) w I(N)() Lo=2,0 And 1/ =300

'Huw From Huihlup lllu'-lmhl ]
U (1) [ oo oo e e e s
ﬂ,..l (3,00 0.75 10
| |,(Km 1.0 1000 1,000
pi 0,803 00870 a7 0,870
; 0,701 0,73 0.5m 0,500
1 0,060 Y 07 0,741
h] 0.06 0,730 0.7 0,740
O 0,678 0,77 0,748 0,704
7 0.007 0,717 0,703 0,702 .
0 0,718 0,750 0,702 0,704
] 0,740 0770 077 0,77
10 0,75 0,780 0,783 0,78
I 0,700 700 0,704 0,704
13 0,770 11 0802 (0,410
i 0.701 (1800 0410 04810
0 0,00 0817 R 0818
(h] 0810 O824 0,820 0,120
10 0.H19 0.84 0 0,813

There are advantages to Initially starting the progeam with a teabned or produetive group of workers,
however, beeause of the sometimes nonzero e lapses hetween the end of one program and the start

Best Available Copy
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of a subsequent one, a company is frequently faced with the problem of supporting a basic labor force
during such an interim period while no contractual funds may be available. One ratiunale for determin-
ing what the size of this hasic labor foree should be can be developed as follows. Let Mix} denote the
tetal estimated cost for nanproductive effort {ie.. HolTp+ L} on a proposed program if the initial num-
ber of productive workers is x{ie.p(Ty)=x). Then M(x) — ¥ {x+ A} denotes the savings in expendi-
ture for nonproductive effort if the program begins with x+ A rather than x productive workers, If
time is expressed in months and Mix} and M{x+ A} in man-months. then this savings is equivalent to
supparting the additional A workers for (H{x)—~Hix+ A}
is. it is to the company's advantage 1o start the program with x+ 3 productive workers rather than x if
the time required 1o support these additional productive workers does not exceed (M{x) — M(x -+ AJJA.

}13 maouths prior to program go-ahead. that

To iHlustrate this application of the model, suppase a company plans 16 buildup a program orzaniza-
tinn starting with 300 workers. all initially productive. to a maxinsum size of 10,000 workers 24 months after
go-ahead, i.e., setting s =0 and 7v = 1. plo) =wlo) =500, T =21 and w(T7)=10.000. This implies

. . -} —p{01 - i
a buildup rate of approximately 396 ( =w——{§}—?¢=€§—-} workers per month. Suppose the learning time

is estimated to be 1.5 months and the buildup threshold i 0.1, The organizalion plannerz are inter-
ested in determining whether or not it would be more advantageous to stant with a larger number of
initially productive workers and, if =6 how much time would be required prior to go-shead to sup-
port this increase in the initial workers productive. They are interested in considering the range
500 = p(0) < 5000, Using Ecuation (22) with t=T} + L. the total nonproductive effort was compuled
for p(o) equal to integral multiples of 500 ia this specified range and is given in Table 2 as M(p(0)).
Setting x= 500 and A=3500. 1000, . . .. 4500, in Table 3 are presented the corresponding values of
M = M(x+A) and the ratio (M{x) - M(x+2));A. From this 1ahle we see that 1.500 additional
productive workers can be supported prior 1o go-ahead for the largest pussible time (a little over 2.5

months) implying that, if there can be expected ts be a 2-3 month delay hefore the siant of the program.
then to start the program with 2,000 productive workers thepee a buildup rate of 333 heads per month)
wauld be more efficient than starting with enly 500,

TasLe 2. Total Program Nenproductive Effort iman-monthe)
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TABLE 3. Savings in Nonproductive Effort and
Maximum Support Time (x=500)

A Mizy—Mix+3) | (Mx)—Miz+a3HA
506 1273 2.5

1,000 2616 2616

1,506 3.9% 2657

2.000 5243 2622

2,5 043 2574

3,000 7.52% 2508

3.500 Bast 2427

4,000 9321 2336

4,500 10118 2248

We have presented a few applications of the model developed here to suggest how it can be used
and perhaps these can stimulate the interésted reader to find further uses and applications.
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ABSTRACT

fr is pointed out in this paper that Lomax's byperbolic function i a specisl case of
bath Compound Gamma and Compaund Weihuli distributions, and both of these distributions
provide better madels for Lomax's business Tailure dats than kis hyperbalic and exponential
funetions, Since his exponential function fails to vield a valid distribution functisn, a pee.
essary conditlion is established 10 remedy this drawhack. In the Iight of this resuh, his
esponential function = msadified In several ways, It iz further shown that 2 patural] complement
of Lomax's expenential fanction dees not suffer from this drawback,

1. INTRODUCTION

While analyzing data en failures of four types of business. Lomax proposed two functions which
gave gnod fit 1o his data in [9]. His hyperbolic fanction

. oe b _
{11} f)=——_,1=0.
iTa

where @ and b are positive constants, was found more appropriate for the data relating 1o retail. craft,
and service groups while his exponential function

{1.2; Hij=ae ¥, 120,

where « and b are positive constants. gave better 11t 1o the data on manufacturing trades. In this paper
it wiil be pointed out that Lomax's hyperbolic funciion is a special case of both Compound Gamma
and Compound Weibull distributions. and both of thes= distributions provide better models for Lomax’s
business failure data than his hyperbolic and exponevtial functions, In addition. several important
points relating to Lomax's paper [9] will also be conside, =d

2. LOMAX'S HYPERBOLIC FUNCTION
From Reference [2] we obtain the probability density function fp.d.f.) of the Compound Gamma
distribution as
& g1

g .
. Y - E.ﬁi i‘; = >§=g
Friny={Bla bj[avqjee- 1=l (e a. 6>0)

L0 elsewhere,

ander eontract F33615-71~C-1174.
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which reduces to the p.d.f. of the Lomax distribution corresponding to z{t) =8/{t+a) for a=1L
This Lomax distribution enjoys the following preperty.

PROPERTY: Let X, X....., Xu be n independent identically distributed random variahles
from the Lomax distribution with the parameters a and 4, and let Yo=min (Xi, Xz, . . .. X} Then
¥. obeys the Lomax distxibution with the parameters 2 and nb. Conversely, if Y. has the Lomax dis-
tribution with the parameters @ and B then each Xi{i=1. 2. . . ., n) obeys the Lomax distribution
with the parameters « and Bn~t.

This property is very useful in life testing sizuations where failure ddta are gencrated by destructive
testing requiring unduly long waiting period. The proof and the application of this type of result are
discussed in Reference [4]

The above Lomax distribution may be considered to be Exponential.Gamma < ;ﬁﬁrﬁﬁm fater
on, it will be shown that a Gamma-Exponentisl distribution is a better model for Lomax’s data than
his ExponentialGamma distribution. It may be sioted that both of these distributions are special
cases of the above Compound Gamma distribution.

From Reference [3] we obtain the p.d.f. of the Compound Weibull dissribution as

bryafert o
Jrie) W*g;&{ﬁ!i?}ﬁ}g

oY,
e
b
e

G elsewhere,

which redunces to the p.d.f, of the Lomax distribution for y=1. Subsequently, it will be shown that the
WeibullExponential distribution, which is a special case of the above WeibullGamma distribution
and different from the ahove Lomax distribution, is 2 better model for Lomax’s data than bis hyperbolic
function.
3. LOMAX'S EXPONENTIAL FUNCTION

Earlier. we have stated that Lomax’s exponential fanction does not yield a valid distribation
function. It is because it yields

F(=)=1-e-F <1,

which is contrary to the usual assumption, F{= ) =1, noting that F(x) denotes the cumulative distribu-
tion function, For a given intensity function z{f). we wifte

[37::4
f- g{‘:*ét*j— E{E‘fﬁ
which gives
(3.1; Fi{x}= i-—ex{sf- j zisfﬁ&]

Sincezit) 20foralls, Fix) =] requires

+ .
{3.2} j sHtydt—=xas x— =,
-%
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which is a necessary condition for the existence of a valid distribution function. It is easy 1o 2ee that
Lomax’s exponential function does not satisfy this condition. We note that z{7). the conditional
density function of failure probability with time. is also known as the intensity funetion in [7]. and the
hazard, or the agespecific fuilure rute function in {1}

The pd.l. of a modified Lomax distribution is given by

which yields F{=}=1.

The modified Lomax distribution is new made more versatile by considerinz one of its parameters
te be 3 random variable and using this faci w generate 3 enmpound medified Lomax distribution,
Besides. whenever experimental data, applicable 10 p.d.f. 3.3}, are suspected 1o have been infleenced
by some uncontrollable factors. its si:;mgegmi p.d.f. derived below. may provide an improved fit to
such data. Thuos we shall write ihe conditional p.a.f. of the modified Lomax distribution as

fae —usgiesn (1—ef)- 120,
3.4 frlday={

10 elsewhere.
znd the pdf of g as

Ba e ® o B
3.51 s a0 ie 861,
3:5) day={ " Fla 270 wEZD

0 elsewhere.

which corresponds 1o the gamma probahility distributier. Now the pd.f. of the compsund medified
Lomax distribution ts siven by

i3.63

Another way of modilying the Lomax intensity function is to chooee 2{7} =c+ae ¥, where ¢ is
a positive constant. This form of 2{s} enjoys a useful characterizatior isee Reference [4]}). One may
aiso chouse z{1) differently to remedy this difficulry.

4. SOME NUMERICAL RESULTS

Lomax reported correlation coeflicients between theoretical and observed values of linearized
exponential and hyperbolic functions in [9]. In this paper it has been pointed sut that Lomax’s expo-
nential function does not correspond 1o a valid dis.3hution function. Consequesntly. several muodifica-
tiens of Lomax’s exponential function have been praposed in section 3. One of these modifications
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conscis of adding a pusitive constant, «, to his exponential function. Now in Table 4.7 we present the
correlation coefficients between ohserved and theoretical values of lincarized functions In 2(2)=In
a--btandln z{ti—cl=Ina—bi.

TABLE 4.1. Cerrelation Coeficients Corresponding 1o Exponentinl and Madified
Exponential Funetions

= - - 1
£

Espmneatial Function | A Madified Eaponeati=! Paerthan
- - :
it ge ¥ ° H
£

095 068 :

0% LEEiE
0% ;G468 :

6.9 R 1

The values of ¢ reporied in Table 4.} were chusen by carefully examining Lomax's data 9],
Table 3L One could determine the optimum values of ¢ which would insure the maximuum atiainahle
correlation ecoeflicients for these data. The author kas decided azainst this because his sther models
easily vield higher values of correlation cocfficients in all cases tzee Table 425

In case of the Camma-Exponential distribution we use the trapsformation

+.n IntFu)ifie) )= ttla) + (¢5aa).

which yields peeudo Ieast squares estimaiors for @ and a. esplicitly. Lomax’s data 9], Tables I and 2

are used for this purpase. In case of the Weibull Exponential diztribution we use the transformation
i4.2} Im{FuRity=vni—lna.

which vields pseudu least squares estimators for ¥ aﬁd . expiicitly, Lomax’s daia (5L Table 1} are
wsed for thi= purpese. The expression R{#) =1~ F{7} is called the reliability functian and the pseudo

FE_

least squares estimators are the usual least squares estimators in terms of transformed data. The de-
tailed work is reporied in Keference (31 Here we give the correlation cuefficients between observed
and theeretical values «f Lomax's fincarized exponential and hyperbolic functions and expressions

Tamg 4.2 Comelation Corflicients Cumresponding to Following Four Models

¢t Lessae's Fanrtieas

: Tepe of . Camma | Wedel
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Satries of Table 4.2 clearly show nential and Weibull-Exponential distribs-

perholic fupctions,

tinns describe Lomax’s dats better than i

3. NATURAL COMPLEMENT OF LOM. XPONENTIAL FUNCTION
Whereas the Lumax exponen

i’ﬁ;‘;‘;;i;&‘ﬂ%ﬁﬁi of his expsnential funetin

The slwwe intensity function -{7) generates the valid distribition function since
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s in the siatistical literature as logistic corve

ass:i.:gi s this tupic are discassed in References
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A NOTE ON A COMPARISON OF CONFIDENCE INTERVAL TECHNIQUES
INTRUNCATED LIFE TESTS

W. K. Colemun,
', Jayuehundron,
unl

R Barr

Naval Postgradunte Sehool
Muonterey, California

ABSTRACT

Severu] approsdimate procedures are ovailable in the literature for olsaining rmnﬁr!muw
imervals Tor the parametee A of an exponentiol distribvtion bused on time truncated samples,
This paper containe the resulis of ai empicieal stady compating theee of these procedures,

1. INTRODUCTION

o Lifer gesting applications, it is frequently desired to obtain a confidence interval for the parameter
A of an exponential distribution, In case a test plan is used for which all the observations are truncated
at the same time point 1, several approximate confidence interval procedures are available in the sta-
tistical literature, The purpose of this note is to report the results of an empirical study of the perform-
anees of three of these procedures with respecet 1o the expected length of the interval, the variance
of the interval length and the coverage probability,

The general setting of the problem is as follows: suppose the random variables 7y, 70 . . .0 T
are independent and identically exponentially disteibuted with mean A1, For i= 1,2, .. .. n, let
Ni be equal to T truncated at ty, and let Yy be the Bernoulli random variable which is 1 if and only if
Ni 2 1y, We wishto find confidence intervals for A, based on the Xy and Y,

I what follows, three confidence interval procedures sre deseribed, and some results of an em-
pirical stady of their performances are presented,

2. CONFIDENCE INTERVAL PROCEDURES
PROCEDURFE 1: This procedure is obtained as o special case of g solution to a more general problem

#
that was derived by Halperin [1. The random variable Y= %Y, has a hinomial distribution with param-
it

etern noand p= 1= Mo, Standard techniques can be used 1o obtain a 10001 = a) percent confidence
interval for p as

PlaYy<p<h(Y)] 2] =a,
~In{l=a)

[

Sinee g = Mo, an inversion can be isade which resulis in Ay, = amd Ay =

=1In(l =)
lo
ax Jower amd upper 1001 = a) pereent confidence limits for A,
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PROCEDURE 25 Rubenstedn 2] showed thim

.
|4 J~|

L f mtaa

fa it approximately unbiosed estimator of A, He noted that Tor My <€ 1,8 s neorly o Poisson random
vartable, so a confidence imterval procedire for a Polsson parameter due o Wilks (3] was ased 10 obtain
the approstmate confidence Himjis

Aot (2R o g8 = (ANGH A 210 18 | [2
Apes [N 2800 CANSHC 4 24y e [2,

Where 3 s the 1O < anh percentage point of the standard normal distetbution and €= (XN )",

PROCEDURE 3: We employ terminology commonly used in the ierature of life testing in deseribe
ing this procedure, Imagine that the random variables Xio Xgo o0 00 Xyoare observed sequentially,
That i, imagine that o randomly selected Hem beput on test and is replaced with a similar ftem al
fallure or after a period of 1y bas elapsed, whichover occurs first, 1this process were continued. the
arrival provess of fuilures would be o Polsson process, so the time to 427 failuee (for & fised) would
Bave o gamma distethotion, (Pesting to &% failupe n this sioation eould be deseribed roughly as o com:
Bination of item comsoring and thme troneation.) Sinee we are assuming that exaetly n items are 1o he
tested, the experiment s stopped after a random wmount of time, and the number K of abserved
fuilures s u random vartable, 10 would appear however, that, given K=k, the disteibation of the time
Wy until k Cailures have ardved ean be approsimated by a gamma distribution,

K
Sl N e fr) e '*.b“-' wh Ve My (),
I'th)

Note that the disteibution of Wy, gven K=k cannot be exacetly gamma, sinee P{IFg < ntg] =1 for
any ko1t follows that V= 200, can he approximated by o Chissguare variable with 2k degrees of
froedom, Thus, for example, it g3, and xfe g are the npper and lower «f2 pereentages points of the
Chibssaquare distetbution with 2k degrees of froedom, then

( Xigg, Xi-y )
a2y,

constitutes un approsimate 10001 = a) pereent confidence interval for A,

3. COMPARISON OF PROCEDURES

A Monte Carlo study was made 1o compare the three procedures deserthed above, One theisand
sumples of wize 1 (230, 40, 50) from an exponentiol disteibution with parameter A (N 0.1, 0.2, 0.8,
A 50000 were generated, For cach sample, O5:pereent confidenee intervals for X were abtained by the
theee methods (1, 2, 3) for various truneation tmes, e The results are summarized in Table 1 where
we gve, for certaln combinations of X, fe, and method, the average length of the confidence intervals,

Raat Availahla COpy |
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i wample vartanes of these Tength, and the empirient eoverage probahility (o, the proportion of
Intervale whieh aetually euvered M),

Overally the procedures appeay 10 eank 203, 1 b decreasing order of general quality of performance,
This be elewrly the ordering with vespeer 1o average Interval lengthe e seams to b the hest general
apdeving with vespeet 1o varlanee inintervad Tengihe Al theee procedures tend 10 be conservative in
terni of coverage probability, with procedure 1 being worst fn this respset, Procedoee 3 18 generally
Dt A0 ternn of more nearly attaining the “target’* confidence level 1=, OF course such o quality in
w procedure b not b dsell of value I competing with & more conservative procedure which atining
comparable (or better) imterval Tength elisraeteristies,
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AV, = Average Interval length
VAL = Sample vartunee in interval longths
C = lmpieieal coverage probability
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