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TREE-SEARCH ALGORITHMS FOR QUADRATIC
ASSIGNMENT PROBLEMS®

J. F. Plerce

Managemens Decistons Development Corp.
Lincinnati, Ohic

and

%. B. Crowsten

Slsan Schoal of Manegement
Massackuseits Institute of Technalogy
Cambridze, Massachuselts

ABSTRACT

Problems having the mathematical strecture of 2 guadratic assisnment probles: are
faund in 2 diversity of contexs: by the reonomist s acsipning 3 samber of plant- or 5l
sieibdr operations to 2 number f Sferent poozraphical locations: by the architect or indas-
siria! pusinerr in lavinz oul sciinfiks. ofices, or departments in 2 hsildim: by the buman
eagineeT in srranging the indicstors and counlrels i 2 aperators contnd memt by the efer-
franics oot it lasing oul compsaeais an 3 harkbeard: by the entapater systiems ensinerr
werk throush 2 preduction facilits: and 5o,

In this pepre we discuss several t3ps of abrorihm- b salving soch probleme, presenting
2 aaifyinz frasewstk for samr of the exiztig shosthms, and deserildng <ome sew 2lon-
rshms. Al of the slnahthine diseuesed proceed &t s a feasible dution and then te briter
and better frasibie sedution<. until slimately ane i Siermvered which i< shoon to be aggimal,

1. INTRODUCTION

The quadratic ass mment problem is one which arises in a diversity of contests and has been
investipated by 2 number of reseachers. Formally. the pmblem may be stated simply as follows: given
n* cost cocfhcients S.eg. (. jo k. g=1. 2. 3. . _ .. n) determine values of the n? variables

xii j=1.2.3. .. ..n} s« as to:

5L

(=1 j=1.2.3 n
Tx=1 j=LL3 .. e

»
. s g
{3} E ;= =113 ... n
i3} x,=1 1 P A

*The anthars gratefully arkneaiedor M suppert of this recearch rerehved from the Boeinn Berwrareh: Preject aad & H
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i+1 y=l ij=1.2 R

Historieally its name derives from the faet that matkematically its structane i= identical o tha
of the classical linear assignment preblem concerning the assiznment of 2 indivisible entities 1o each
of the n mutually exclusive classes. one entity per class. except that in the present case the shiective
function (11 contains terms which are quadratic in the decision ariables.

Commencing in the field of economics. Kvopmans and Beckmann {15} identified this name with
the striteture of problems which concern the ::ss;gﬁznem of n indivisible plant= to 0 loeations. Sappose
the cost of establishing and of ng plant { at location J plus the cost of supplsing prespecified prodoct
demand e customers from %*:i lut'aims* s, Qi ;' L 2. . .. # these eosts being independent of

other plant-location assignments. Alss suppoese that between plants / and £ there

= 3 cvamadity
fiew of fir units (e, weighty which is independent of plant location. and that the cost per unn flow
berween locations § and g is dj,. independent of plant assignments. Then in this context 11} beeomes

2] £i¥e E E;{% = a_g-tcg
LR
nhere
5., =§ ifi#Ebar ;-,t'? ;;
TR fi=kandj=g]
As a generalization 1o this assipnment preblem. Lawler 18] discusses the multicemmaodity case in
unhich there iz 2 % for each commadity ¢ and 2 cost per unit flow between lncations j and g of 47

As another i""?’i‘ﬁﬁ;&ﬁim Graves and Whinsten [12] peint sut the possibility in this moedel of 2 comt

component K.z, that depends on a pair of 2:signments, such as might be illustrated by the ront of Iavina

2 pipe line between 1wo plants. Combining theee we thus: have the more general cost expression:

i

where

.

In the event theere are s §§¥§$'§¥§Eﬁ§ ireducestng

Bigear arcignment problem. Qhen o, =1

M
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i
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TREE SEARCH ALCORITHMS 3

“lateneyv” in magnetic drum or dise storage compaters 119] ) minimzing te23] wire oonzth in the place-
ment of electronic companents in assemblies

2, 7. B}, or minimizing tetal flow time or tolal variable
produciion and inventors carrying oost in varions production sequencing problems [22],

In seme contexis there may §n* conntraints applicable 10 the problem which are nit represented in
the statement as embodied in (3} — 3. For example, there may be a restriction that plant 7 not be
located at j, or a restrivtion that plants 7 aed £ be nol more than distance. 4. apant. or that { and £ be
closer than . All single and pairwise constrainis of this kind are readily aceammodated in (31— ¢4 by
setling 5,2,= 0. ¥ — = Hownever. more diflicuht to include are constrainiz invehving zhrﬁ* ar mate

- assigmments unless it is possible 10 derive an equivalent set of pairwise constraints. While the algo-
tithm: 1o be discussed an be adapled for such cases the resuliing alparthms may net be 3s effcient,

¥rom a problem-solving point of siew there may in practice be fewer than 7 planis. m < n, but with

) to loss of generality we may assome =2 by introducing dummn plan: =3 1. m-

. ..n aith
c;=0and fi; =0 far all . £ > m. Also i1 s noted that. siated in terms of 2 plam § and s location . (3.
problem i 1) ~ 045 and its rariations i the problem of Gading apermutation {7 11720 7830 . . .

Fintd of the Integers {1.2.3. . . .. 5} 2o 2< to minimize:

This representation will <cometimes be uwrd in the Gllowing discus<ion.
For solving guadratie assimment problems a number of procedures of bath the reliable™ a4 the
unrelishle 1vpe have been reporied in the erature. Reliable procedures for deti-rmining optimal solu-

- -

tinns with shjcctive function 03 have b --n posenied by Gilmore [10] and Lawler 1i5]. and for the
symmelric case T of 03} by Land [16] am! Gasett sad Vivier [6]. For the proslem with the general objec-
tive function (s a reliable algorithm has been given by Lawler [18]. Or the wiher hand aneeliable
procedires have bren reporied for warious quadeatic assignraa §$s§iﬁﬂ.€ by Armeur and Buffa 1],
Gaschutz and Abreus I7] Gimore [FIL is?at and Whinsten 1121 Hilker {121 Hillier and Connar= {1
Nuzent. Vollman, and Huml 1231 Pegels {241 Steinberz 1301 Whitehead s&i Eldors |32} and by Wim-
mentf (331 An interesting smai comparison of 2 sumber of these latter procedures iz presented
iz the paper by Nogent, et 2l | 251

; From = i'nf;?i?;éé?%ﬂ*ﬁ* ;::nng? of sieu. the ;?ﬁéﬁ*ﬁi sialnz can perinaps be seccinetly ~ummarized
‘_ 3= iﬁ*iﬁ%*

tally be clasciliedd inte three groaps: the noegmer

2.5
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rative procedures of Lawkes [18] 2nd Gil.
i and Land [J6]. Witk
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3 L F.PIER(E AaXD T E CHOBRWSTON
of Nugent, 1 a3l “one & foreesd to conclede that e {wnpmagamsi i’i*a<§‘=§r sptimal-prodocing pro-

In the present paper. we redireel attention back to reliable provedures for solving quadratic

as=ignment prublems. The methods 1o be considered are these which equivalently been reforred 1o as

Branch and bound gtﬁﬁ‘t‘*jﬁﬁ“ §

. backarack pregramming provedures [ L implicit enumeration
provedures |91, reliabie heuristic prosramming §H§i§‘i’dﬂ!‘(h £25]. aud -thers. Escentially these a7 the
typees of metlsds that were ’J&ﬁ‘; in tiw aleerithms of Cavett and Plyter (8], Gilmore [16], Land [16].
and Lawler § 81 In the zuiiumﬁs sertions we §¥*‘t‘~i‘§¥ a iiii*g:‘x;‘ framework in whi (!3 to compare the
i e derise more cfficient procedures,
Be ;; turpming o the aloorithms in detail, honevor, we shall comuent Lrefly an the nature of
nethusds to be cousidered and the reasons for sur inclination toward them. The most common
sanw for the  roredures 1o be imvestizaled is “Lranch and boand.” the pame shven 16 the beas em-

bs Little et al., ; H3] in their algorithms for sohing the traseling salesman prablem. The “branch™

-
IE.-
ot
+
-
fa

»w

aation stems from the fzct that ia terms of a tree of alternate ;‘u!r*ii;a; solutzons tu the {r{nhwtﬁ the

trovedurs is ﬁggé;;uaﬁ} conermed with cherning a next branch of the trec b elaborate and evniuate,
The “beund term denetes their cmphasis sn. and #flective gae of, means o iﬁ?&ﬁéiﬁf_ the value of
the nhjective fouction at each node in the tree. i’iﬁﬁt far eliminating dominated paths and for selecting

2 next branen for elaburation and esalpation,

Perhaps the essence of the precedures fo be considered i= most soecinctly captured in the mean-

inz given to “rombinatmiaf jrogramming” by iis authors Rossman and Twery [26]. By combinaterial

programmung we man proceduies deseliped oa the basis of 1wo principal concepis: the use of a oon-
troiled enumerative techingue for tmplicitlys considering all putential salutions: and the elimination
from ecxphicit consideration of particular pdential solutions which are knowsn from dominance. b=
ins and Seasibifity considerstions 1o be unacreptable. All of the equisalent trrms for these methads
=ill be wsed interchanzeabh threpghonut.

As mill berome apparemt mam of the feasibiliny. dominance. and boundie= considerztions pre-
~ented i the {ollxing sections are 2o applicabie
ather tvpes of presblem-sofiing procdures. In the foflowing sections, attentivn wili be forused

sther combinatorial prosramming alserithias as

miintovial programming alserithms in which problem=ohinz prwends 5t 1o the disemery

hie solition and then te sorcessacly beifer feasibie sohutions vugil oltimar-Y o is dis-

s shewn o be opgimal. We s These procedures principallh beeause

aining usahie wolatims and terminating

-~olsing privr 1o the altic Hem-soltine pruce=s, This fealare &= ob-
="¥§§§ for quadesti

. theze procedures exphdt in an oficient manner informstien thar & suailable heforckand

= 10 the 1alue of 30 optimal s utbon. 2= 3: aluais the case fur instance when 2 feasible wefutin

HY %gma'« § rem exprrience of has been derived sith the atd of 2 Bruristie iunrelizhie) preedure. That

in the preecedure 1 be invesligaied cuborquent seareh s always directed toward solations

Iresier than the hest keonn o “ar and «ill terminate if 2 sofution = discovered atiaining

g

e i‘ﬁ%*ﬁ? use of 3 prinsd Anosnkbd; Liwer hounds senves f6 reduce the

in conjeuds where s=ad heomstie preaedures 25 mvatiable,

roredutes may pronc advantagenus in whivh the refiabie,

W
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TREE SEAHO ALCOHITHYS 5

direct algorithm i=s emploved 2= an adiunet 16 the heuristic prscedures. an adinnet to be employed
when in a given inctance the econnmics of the ;i{gsié@*m and problencuiving effort together with environ.

mental ﬁs#}:-is:k*,ra%ﬁ m= warcant the added search for a sulution beiter than that vielded by the hrunstic
procedurss,

Thirdls. these almrithms are attractive in that with slisht modification they can be employed

== find not anly er aptimal <olution. but off gtimal ~olytions_ or a2 ~peciied rumber of most prefersed
~esfaptinns, or g§ ;zsé;;%imzr having z value within o specified interval of the optimal salue. and o on,

e

Such peisaibil

fies may iﬁ-

erest in contexis in nh:ci: there are attributes of the problem of im-

he prubdemn being sohved,

. SINGLE-ASSICNMENT ALCORITHMS

Az muted earfier. 2 first principle of combinaionial ;nrﬁfsa;-smi*zg is ibe e of a controlled enamer-
ation precedure for ?}"i:‘fﬁ&iii‘— Hy conideting, a ifas! im{éi{_ i

&-s;;ﬁfz}ﬂm §!ﬁi§i;§¥§‘ there are at least twe

;siwéz‘ﬂ; ) ;ffi:;.{ér SL

ri
. and i.arai i ifsg and Lavett and Phiter %3:5 us

]

;_g*;::sz%éztﬁ.-' of ﬂzf furmier type.

A property of a feasible solution ti. the problem (£i—113 iz that with the variables =; arranzed

in an n X a matrix X = !x,.| there exists exartly ape caniable in ?&?i‘% sow and wolamn ? the a~sign-

)

mwnt matris X having unt salee. To catify the requirements for considering ail potential solutions,
ne therelore nesd 2 eontrulied enumeration procedure for peneratine all ;a:ﬁ-:é’é? wass of selecting
ane element from ~ach row and column of X. One possible prcedure, for example, ic to suevessively
select elements from successive mns of X and to celert within 2 given s the first clement iwhen
scanned from b

resull meither in 3 nunfeasible sofztion nor in 2 =igtion

eady renerated. 1 imately upon

Lection from mu 2 and heace completing the specifi-
catien of a saimion. the procedure backs up ts row 2 — 1. selerte the next admis<ible clement and
steps forward to row & again. The results may be represested in 3 tree dructore with the fth level of

sedes representing the permiss fgg* sasignments for plant £ 7 {21, in the permmation {710 7
as shown in Fizure 1. “ote thar cach path in this tree represents 3 frasible colution 1o our

fram befl tn rightl. Enumera-

; fasn %f'gfi‘ﬁ%lﬂ of 3= f??’f‘:x}i*’%%

Ths ;g‘e wedure desoribed 2

= egrivalenth
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) 1 F. PIERCE AXD W B CROSSTON
level n. Lpsn reaching a terminal nede., the commesponding assignment s evaluated and the tree-

evalustion process hachiracks 1o the lowest node on the path for which all branches have not been
rlaborated. selects the next and resumes. When the process has backiracked to the osigin pade and
all its branehies kave been cnumerated. generation and hence preblem solving = complete.

In addition tes this illusirative enumeration scheme there are many sthers for systemstieall
selecting an clement from cach row and eolumn of X For example. if we hiterehange the words “row™

and “eolumn” in the cited procedure, we Bave 3 trer with levels correspemding 1o bseations rather
than plants, as shews in Figne 2

LEVEL Y 3 T30 £

LEVELZ LOCATON 2

- - =

LEVEL s 1OCATION 5 wf\;{

Feaiei 2 IBusratiie feer w2h ek beved feprr=srsting & mmiree
Soration

in the process of exhaustive enumermion. it beenmes knswn with centainty for a pantienlar

Eﬁﬁi? assignmeni. thal all paths which pass through this nede represemt potential solutions whick
are nonfeasible or are duminated by a feasible solution already disenvered. then the enumeration 2nd
evaluation of all branches emanating from this andc can be efiminated without impairing the reliability
of the preblemesolving procedure. Let us consider possibifities for reducing search based on deminance
eunziderations, For any two feasible solutions, §; and g, 8 dominates 4, if ? < Zs;. If in an exhaudive
;sﬁﬁ'éi.f— €, denutes the ith feasible sofution discovered then, in seneral. 7,

2@,,:- Throush éueé-
izdnce ransideration we <eek te rrduce rnamenation amd evalustion of fesible solutions 1o 3 subset
iz whivh

stg >Z;_,> .- .- >2§¢§§.

where Zg, is an optimal <olution.® In offret. this s 2ecomplished i by afhing & the prdiem throush-
et the ~earch process 3 cuncdrsint of the form Lo, < Zs

far. In essencr, the sqdimization predlem is bereby trans

where 8, i the best solathn disoriered se

asformed infe 3 sequeace of o feasibility prods-

fems for puipesses of preblem<ohing To implement this type of consideration 2 fower bound B i

deselnped an Zs, a1 cach aode in the tree for 2l §, whoe pathe pass throush the given pode. that is.

B<Z, toxr 2l 6,; f B = 7: then s branches emansting fom the sode nerd b explicitly comsidered.
For the guadratic axsignment pevhlews. thee houssds can be determined in 2 somber of wais.

Suppese wr have ammivest 21 o meade op e

made aesignments 5, 7 44

~of atree ol the prebless 1 =G 1 | | .. =2— 1} bavias

7 and we sow wish to chouse 2 next as<ianment. 2, Let a; be 2 bawer ﬁﬁff
on the cum

R £ poveadide thay s 1han wna

spgimal et cemld vt re B o e, = . . L = Ze.. H 28 sech anbutis e
Grsinnd then the ot of fo3S %ﬁ%sgyz,% e A R N
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T

Tha~ if B = 7 thea the search prav=s can be backtianed immedisiel; withost considoring any of

in &

Thus by determining 25 apprupiate hound
ard locstios

TREE SEaqtH ALLORITHUS

i

>3

two teras are Apane eaacil, we hisve

— i In the <prgial

a value van be obiained for each yoassizned plane

j remsining al bvel v, Let A7 denote the resali
of 2n optimal seldstien to 3 Brrar ascignmen sroblem defined by &7, e

3 I thiz

Leumed whicl:

wor for the Kimpmanefeckmans problem which be insestizates. With the shiretive
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L F. PIERCE AND W. B. CROWSTON

1 2 3 4
A 1297 17 294 7 152
B 368 254 353 217
Co2ad 131 245 116
D 1156 82 161 73

bouuds determined in the following calculations will be exactly twice as large as the true bound.

Solving the linear assignment problem defined by this matrix. gives us the resulting matrix with tetal

reduction of 762, The lower bound on the problem is therefore 792/2==396,

Al 2!?;‘:,"'29;_"}‘5“2 zs;:iﬁéi g

ke?

for eell B-2 we have,

3 Sipeas

)

Es'l“:‘i) =

P2 3 1
Aild 8 5 0
Bi20 3 9 0 :
ci+ o0 o0 7
pte 35 o 8
—~

Y
== {i:
bl #3984

RY

(s, p3 = (28){6) = 1568

2 3 4
kzr
B |68 I 7B
) g 196 175 9i
D136 50 26

s

Reduetion © 2




develop level 1 of the enumeration tree.

Y

b
Lo

- FREE SEARCH ALGORITHMS
This term represents the interaction of thie previous assignment {(A-1) with the possib

inent (B-2)

s

B

C

D

-

0

To get the desired bound we now divide by twe (since the clements in the inatrix were 2a}) and

round the resulting fraction up since only integer solutions 16 the problem are feasible. Similarly we

> wha apen

bavitd

L

b s el

4
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1 F. PIERCE AND W. B. CROWSTON

ALL SOLUTIONS

We seleet the smallest of theése. A-2 fo develop first at level two. We now develop cell C-3 given ™

previous selections of A-2. B~

Z Sijrier= U s)de. )+ (o) {des) + ffsizfitf(.{. #

kel
7 gg_;z{as""’__.j’___i
et - G338 369 -
- -pi28  39¢

Cre%  wr
Disee i

. : I S
: ' T C0 e

Dlisgs o

Reduction 202=355.

The same set of operations fur A-2, B-3 and A-2. B-4

-

333

The information for level 3, and 4 are obtained by complete enumeration which we designare with the

svmbol @&, We begin with B-4.

L EaEed)e3n=23 0 . .

;A; o 7: - » i} 23_4 23

405

B
L%
T
1
= £
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=

- Freore 3. Tree elsbomted for preblem of
- Figure 3 using Gilmurelawler algaithin:
with bounds «f Equation 81

In contrast. by asinz the less stringent thut more easily evaluated) bounds of Eilmore (9) the result
is as shown by the tree of Figure 5. As illustrations. we will now demonstrate the ealeulations for a

R W

"

v

DT TETs

Fiyge 5. Trew elabomated for problem of Fizure 3 ucing
Gilmore-Lawler alzorithm with bounds of Equation (5
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). F. PIERCE AND W, B. CHOWSTON

bound on i) all zolutiens. 1) solutions with A—4, and (i1 sslations with A~4. B-3 are as follows:

iy 7-4+6-1346-15-3-23+2-25+1-28=380

iy 7-4+6-13-+2-2346-1545-25-+1-28=3Y5

@) 6-23F7-4+2-1346-15+5-25+1-28=435.

The resulting tree is seen to have a greater number of nodes than the former, but since the evalua-
fion of each is less time-consuming the total problem-solving time could be smaller.

1. EXTENSIONS OF THE SINGLE-ASSIGNMENT ALGORITHM

Turning o prospective improvements in the problem-=solving procedures which have been dis-
cussed. let us review the steps in the Gilmore-l asler alzorithm at a node on level {r—1) in the 1rec
For each of the {n—z+ 1} assignments {i. j) that can be made a lewer bound B, is-determined ac-
cording 1o 181. To determine each vi-the values B, reguires the formation of an {n - v+ Dz n—r+1)

trix A7 and the solution of the linear assiznment problem wiich it defines. To get each of the elements

ag requires in turn the solution of an {n—v) dimensional aéi;gnment prablem (which in the Koopmans-
Bczimcmn {m:bif-m can be accomplished by ﬂ;m;:iv; séquencing the- felevant flow and distance values
and Torming the inner product.) To make an assizniment at this node thus entails the solation of i—e+ 13

assignmont problems of dimension {ir—z) and {n—r+1)in—o)? problems of dimension. (n—&—1):

Bv e

spending less computation effort in making an assignme.dt at eoch staze it may. however. be
pussible to _achieve overall iniprovement i problem solving. In the following discussion we shall con-
tinue to employ the same level hy level search stratesy, choesing at caeh level a node with a lowest
bound. but <hall consider alternate ways of assessing the lower baunds.

In (8 the valie ZZ fur an.eptimal assisnment solution to the problem defined by matrix A; »
emploved in developing bound Be. but in general any value Z, constituting a lower bound on ZF may
also be used. One sich bound less strinzent than ZF can be computed with little effort by the matrix
reduction method used by Litle. ot al. [20]. This method rests on the faet that if T{z} i= the cast of an
'isii,.ﬁmf‘m with respeet 1o 2 matrix A4 and si'?' =} iz the cost of that assiznment with respect ts matrix

] Lh is formed hy subtracting the constant b from each clement of one row or colinn. then T gi=

+4. and the optimal assipninents ander both matrices are the same. By sublracting appropriate
constants from each row and column. a matrix 47 of nonpesative vlemenis with a1 least one zero in
eazh row and column can be vhiained.® Such a matrix they have termed a2 “reduced matrix™ and the
sum of the constraints sublracted in forming the matrix, the “amount of reduetion.™ If T {z3 is the
tatal cost of an assipninent with respect to the reduced matrix 4.7 and K is the amount of reduction
incurred in reducing A, then T{z) =T"{z) + K. Since all elements in 47 are ponnegative. T2 =0
for all assiznments z. and therefore the amount of reduction K constitutes a lower bound on the optimal
valoe of the assignment problem defined by 4.
We will denote by 47 a reduced matrix for 4. and by Z
Z¢ may be used in plave of 7, in determining ¥

X

2 the reduction achieved in reducing i

B

“This car b soromphshed. for Instanee, by &l sulirachios from each ralumn the cmallest cloment In the oodums and
thra sshifactiaiz fran cach realting p the ~mallet clrmest in the s, Is crperall baeter, the sedoeed mandy and 1
ameunt of prda Sien are ot anique, Bt may be dependent en the arder in which ow~ and colame 210 reloerd
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Morcover, between 27 and 77 there are 2 aumber of values Z; which may be used. Of special

interest are these derived during solution of the linear assignment problem by a dual algorithm since.

for successive iterations 7. 1+ 1, . . .. of the alzorithm, the value of the objcctive function Z% is non-

decreasing; Zi=<Zi'= _ | | = 7% With such an algerithm problem-selving can terminate should
the condition )

!‘ : ? Sclét;;_

S;iﬁs’_

sing through the nude associated with 4, must then be
dominated. Alzorithms of this type include. for example. the Hungarian method [4]. the network flow
algorithm of Ford and Fulkerson [6] and the 8ow algorithm as improved by Sprague 29]. At each itera-

=2;.

beeome satisfied for any 2. since all paths pass

tion in these dual algerithms Z1 is the amount of reduction asseciated with a matrix of nonnegative

coefficients 41 derived from the original, a marrix in whichaf;= 0for eachz;=Tinthe :;;z:.maf selution.

Besides the chotee of the amount of reduction to perform on a matrix 1. here are numerous

alternatives for selecting the elements 2 to be uscd in assessing f;. As was n:.k*d earlier. in zeneral
any value afj which resulis from use of an appropriate lower bound in (T foragfis permissible. Thus.

for example, in eases where in developing A= it is pol pessible o determine 2% simply by

by sequencing the flow and distam ¢ elements and forming their inner praduct. it may prove efficiem

1o determine lower bounds on the 4§ in this same way. aad then proceed to solve the resuliing matrix

fE L 3&35*{; *‘%ﬁe {£. g1 iz the

in
A ¢ as discussed, Another possibility & 10 §§E‘s§§_] %e! 5—=’§¥af-‘

assignment made in passin

where Z2% is g lower bound on the problem defined by A4, and [ is the set of asziznments existing when
the elements afj ! were determined. Or. in gencral.

10

"y
L

#il. and a*, ,, are the coefficients o { the assignments . £ Grare £lea))
:1) which §;av;ai been made and 77 i= a lower bound in the problem defined by 4,
And between these extreme alternatives of determining 2 misimuam value for cvery af, according te
{7} at level ¢ and of simply using af from a previous stage there is. for example. the altemative of re-
eymputing only selected u;; perceived to he oritical ¥ 1ozether with others.

=

s Eratte] 10 ¢501 foullins directh frem the fact that the ~um of 1he o fiviemis o, in 4. 5 30} feasBle Bnear accizament
sediitiog ssardintes 2 5354 looer bennd wn the oot of tha? a—Enmest I thee quadnatic problem

24< the petential sarialifity in 3 ot ceeBichenmt 8., diminkhes with sprevssioe asigmmente e peteniial ﬁ;sg*saa- of
a%ﬁr =2y ;ﬁzaéﬁ%—é Fur evzmple. rﬁﬁ’xﬂiﬁéaﬁﬁg;&tﬁ% ﬁ;%vasgﬁrﬁfsgé

The

pisting ihe raclicient o,
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Continuing further the discussion of alternate means of bounding, recall that ’ﬁé situation we have
n the mansaer of

been discussing was that in which we had arrived at a node at level (£~ 1) an

Lawler and Gilmore, were making each of possible (s —++ 1} ascignments {f. { § at level ¢ and evale-
ating threugh means of an appropriate matrix 4, a bound B, for each of the (n— = 1} nodes. Any of

the ways for getting the clements for the matrices A, and any degree of reduction could be emploved in

carh case. However, while perhaps resuliing in less sininsent bounds, 5 value for cach B, at level r
can be assessed a2t fevel {r— 1} without first generating each of the matrices 4, hence reducing the
computational effont preparators to making 2 next assignment. For if 4., is an appropriste assipnment
maltrix for the problem at level tr— 1) and 47

desived from It throunzh ene ur mase stages of reduction. then a lower bound on =alutions passing

< any maizix with nonnezative clemenrs

= ? sﬁf;;fu,

throagh the nade at level r which resulls from the assinment (7.} is

(b

[

where 73

mest §s’f§f be the reduced matrx which resalis from simply reducing rows and eslsans, or the matrix

is the anount of reduction incorred in reducing matrix A, e 47, §ﬁ practice AL_, would

A assorizted with an oplimal sssimment solution in which e; =9 for all 55=1 in the optimal <slution.

To facilitate fis cussion, we will assume at least the former s that there exists at least one zero clemem

in each row and enlusn of 42, althiongh this in oo way limiz the aenfréiizhsf th= discussion,

T employ in this frainework the search strategy of Gilmore and Lawler which selexts an s

- £t which has a lower bound, we simply choose an assimnment comesponding te a zero

in the oslump of 4 ; representing kecation . We then proceed 1o formulate 2 matix 4, for this one
=} matrices at thic level 21 a later point in the zearch

iy

nede. fﬁﬂ‘szi' ng some or all of the remaining (2
s dominated.

Te 5‘1@!&%&& somewhat bevond the search siratesy of Gilmore and Lawler and make search more

ependent on the data. we may select from all candidate assipnments 7. /) 21 level (r— 1) a nest

zssipnment. not Hmiting clwfes 1= location =, Assuming 4., = a re‘éa{fé malax, ?ﬁf%‘if?f?g there

ave at least {a—r— 1} zern clemenis, at feast ane fur each mw and column. Therelore, additional

= crileria are required for chonsing among the zero elements.

= A very cffective criterion i that of Lizile o1 al. [20] which employs what & termed an alternate
3 casl. At cach point thronzhom the <earch process the selection of ap assipament 4. /1 pariiiions the
= se1 of all potential selutions into iwe subsets, ane of alf potential solutions which i&f*i:éf- {i. i1

the ather of ail palential solutions which does pot. A1 level 71— 1 a lowsr biound on the enst of §§?§2§3§
solutions in the Brst subeer &

== 7+ X Spedeas

\wlw

z F=

s

inee

h

£. j1 is a zete element. On the other hand, since one element nust eventually be selected from
each rvw and cach eolumn of the 2esimment matrix. 2 lswer hound for potential solutions In the second

= subsei =

1Y

W o

il

K
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H
Aecording 1o the esitetun of
for which the alternate st is the sreatest. Thus. search

L)

fives to the pair {7, j1. as ~sm§ v the aliernate enst for the pair 4. 5},
Littie. &1 sl the zeto element i= chozen
proceeds stage by slaze selecting
ninde is reached or one for which it i= known that all petenual solutions passing throush it are dominated.
At this point the search provess backiraeks o the first node {or which the alternate cost iz Iess than
the tutal completion time of Jae best feasible sequence discovered s
mient just investizated, and then resumes,

slements aceording 1o their cus! criwerion until either 5 terminal

o far. ~ets 4, = M for the assign-
As a eomputational consideration it is neted that if £2_,{7. ) = 72 then the assiznment {4, j§ must
necessanily be included *< every rondominated jrath passing threugh the node. If this is

< frege for lus
&r more assignments. then i is annecessary » explicitly consider nades for sach of these, but rather

make all such assiznments immediatels Gumping hvels in the trees and then praceed o establich
matrix A for the remaining choives.™ [n the special event that this is true for all zero element

ements in an
optimal assignment solution at = given node, thes the only forther consideration that need by ziven
the nude i= to eviduate the quadratic assipument solution defred by thic sssignment.

in summary. there are many ﬁaﬁgéxag ahernathes that may e employed within the 1ree scareh

slgarithm. Basicalle. ac we have seen. these cincem altemnative =ay= for determining the elements in
rairix A, al a given nede: akematier degrees of redactivn 1o be applicd to i1 aud ehisices regardins
the domisance fesis to be made en the basis of the resuhting bounds. Further, 5z has heea disenssed.
tizere gre 5 pumber of alterpative search Sraegies ranging from Bxed, datzdniependent sirategies
te the Ievelby-level stratesy with §§‘€-§§Ef§'§ﬁ§ levels of Gilmore and Lawler. 21 10 the general level
by-level strategy with varisble finede In = (Ui, there & the alternative of stopping to evaluaie the
aquadralic rost of 3 frasible solution which 1. <ths whenever 2 feasible selulion te t.- Bnear assizumend
problem i= determined 3t any node: for if 2o < Z3 7 £211r feasihle solotion has Leen discosered and
the lower satue of Z may be used 16 make potentisiy orre siringem the dominsnce fests In reducins

To illa<irate these exfensinns we azain solve the problem of Fizure 3. In the alperithm 1o be uand

éa% search sdrategy s the general leveldhiydevel strctezy <20 1 that when we roach level f8=-2} »o
1#ft 1o 2 data-independent Sratezy of exhaustively enumerating all feasible 2ssimimenis. Besinning
at level O znd a1 every lovel 8B fier. we establish matrix 4, by detérmining #ptimal rvalues of the
clements a; and then redusing ‘egf; 0 un opfimal assiziment eolution.

We then solve 2 second rime the same problem. illustrating the pessibifity of evaluating the feasible
gaadratic sssipnment solution drfined by the opimal Hnear assignment. In this proesdure we 2keo
review. the aliernate ootz & every mode s indentify +wriables 15 which must necessarily have value
5= 1. For all such varialies s level in the irce s jumped.

We begin with the matrs develaped mﬁ!‘ﬁ’ and o ower bound on afl solutions ﬁf —=-=3%.

Asn - xamination of the mairix shows taat cefls -2, AL B-3. B3 C-2. C-3. D-1. ggéﬁ-:; may be
seleeied at zero incrementsl eost. The aliernste cost of D-1_ that s 4. is hizher than sav other 50 we

R 3
make the Brs braneh af this ool w3tk aliemuie cost ﬁfw—-’"-f-},

“Neir thet brforr precerding 0= el the new matn i 2355 prowe werthu ke o reetaiame 1he alermate voile of Har
rmsnias prre b rvnls i reeherl btz e B 53 ;= ol any aifsinalper Slermren,
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L

The assignment with the largest alternate cost i= B-3 with 87, We therefore branch un B-4. thea
enumerate all possible alternatives folluwing D-1, B-4.

T

LY

At this point ail completions are bounde 4 by the solution D-1. B~4. 4-2_and C-3. with the exceptionof
1. W. next medify the initial matrix 1o reflect the conditinn D-1. by adding I 4z larze nemberits
the D1 element. The rescliing matris is sohved as 3 finear assignment problem below. with 3 reguction

3 = TR

= P
= ol

Wl
wd
'™y

-

W five]
BB
F T

i 1
E™
L)
L]
[

el ‘
T g e e

]
-
W
]

- The highest alteraste oo in the matsix s 35 on -3, We branch a< below
1
H

: p1)>®

= . 7~

= 1i6 { 1 398

3 S\

OB

= The maris giver -3 5
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= Nimpde row and columnn reduction gives 3 toial redoction of - =411 and the following matsix:

L
Ny

I

e
o
g

by
o

)
Vo
[y
e
o)
L
I

i
o

his is adequate ta show thar afl sojutioas containing D3 are bounded. and that we have discovered
3 optimal solution. Wr have now completely elaberated the enumeration ree a< shown i Fizure 6.
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3 As nuted earfior if | Hin

12: is yreater than or exusl (o 72 then the 2 iz _EF
caleulations in cur sample problem to inclade this test. We begin azsin with the

i

mstal sesimnmen

PIMRI

. s . . . s - S . 8%
solution D=1, -2, B-3. A-4. with a teta! reduetion of %—-=.§% and 28 sctual ot of — =345, &
#his peint we sof Z5=315. The firet branch i= P-1 gﬁigwaﬁﬁﬁmﬁémgéﬂﬁﬁé@&
= and solve for a4 optimal nesr assimnment.
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Awcremiched T the Tntroduetion, there e sometines contendnte 1o e watlafied I neddition to
those of (20060, "o the oxtent that the eondithons of these constrabutn can be eompletely stated by
metthngg sy = M- for appropeiate 4, /b and gu the algorbhms as disemssed ean be atilized withon ehunge,
For algorithms wideh, for prolilions whepe My = il deterndne elements ufy simply by approprintely
senueneing e elements fi and diy Dhere are now b least theee options: Flest, contine 1o delermine
aaly b the sume way, the vexult helng a lower hound on the teae minfma values second, determine e
teae mintmum by solving anasstgnment problem with sy == 8 where appropriates or thied, determine
the sequencing of fis and ey In the present way and make adjustments for inndmissalle palrings

Sl whieh results T eneh came when sy =+ M owee will s afy= M whenever assignment () Is made,

el "~ M owhenever (1) s mades When eonntrabnts Involving three or more UssiEments are prosent,
we_enn procecd T the same way exeept thit the consteainte heconte explieitly reprosented in the

 problen theongh the sy and afy only when a saflielent namber of assignments have already heen maile
tocenahle ddentification of these nonfeastile axsignments,

IV PAIRASSIGNMENT ALGORITHMS

T conteast to the algorithms whieh have heen disemssed T e previows seetions, both Land [16]und
Gavert and Plyver [B] have developed algorithms in whieh seareh proceeds on the hasts of o controlled ene
meration of the variables yirgs gy 8 g where as hefore each variable xy; denotes the lneating of plant £ m
loewrion Jo These anthors oo view the underlying problem as o linear assignment problem, but ane of
wantgning w pair of plants £ and & 1o loeations f and g, (o both instances [8, 167 the algorithms devels
oped apply 1o the symmetrle Koopmans<Beekmann problem with Suwg = Sy = finddyy

[ Figuee 8 0 shown the relevant assignment mateix for the problem of Figure 3, In general, thire
are nCn==1) 2 pades of plants and paies of Toeations In the problem,

— LOCATION 21 3=1  4=1  3=2  4=2 4=}
\\%L',ﬁ”‘ =2 1=3  I=4 =3 2=4  §=i
PLANT PAIR

A=l 168 180 TR 90 24 138

A=(; 196 175 01 105 28 16

A=) B 80 20 a0 6 46

y=(: M0 126 65 T 20 1B

3=1 166 150 T8 00 24 138

(=D 20 % 1315 420

Frevie 8 Dt Tor praddem of Gavert and Plyter represented In terms of pades of aesigniment,

However, there are many feasible solutions 1o this assignment problem whieh are not feasible solwtions
to the original quadeatie assignment problem, For example 1t is entirely aceeptalide in the linear assign
ment problem for plants A and 110 be asslgned loeations 1 and 2 and plants A and € loeations 3 and 4,
n wolution elearly infeasthle for the original quadratie problem, For a feasible solution 1o the original
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If

Yirg=1

Then-

: A Yigpr = 0 Fepr = 0

.33y Vuire=0  yiupe=0

- FYurke =0 Furr =0

- .“: ~ N yatpq::{} 3}@;—0.
w}‘fere; —=i~§”=u#j. i#v#j, k¥ps g and kAL #q.

Operationally both the algorithm of Land and that of Gavett and Plyter commence by determining

_ an- optimal lineat assigi'\iixem solution for the matrix 4s, and determining a reduced matrix A} with
" nénnegative eritfies in wh.ch afre=0 for all variables yj,=1 in the optimal solution. Thereafter

o Gmext and Plyter empfﬁy‘unh'ﬂ row and _column-reduced matrix 4, 4t each node. and Land employs

!umu-mduc:éd matrix at.each node. As in the procedures discussed in the previous sections.

0 '&ed ie‘el h\fi xe? in the H’f‘tj; Ei‘i!!s‘!!!!lt!‘:g one new pan* {L.e., setting };;m =1j

ke ‘,‘seieﬁtmg the ass;grxment pair and hence the vanahie Fojrg al nm’e v, app‘s‘ 1333 for the iﬂ'am?h Yire=1 and

rednce the resuhmg matrix 4.1 to get a lower botind on the cost of solutions with ¥, rq = Iz if the resuli-

- ing fu,-uné excéeds the- 3itémate ¢ast of the-assignment {ijkg) they will ar this point in the search
pmsu “the b'anen for m;? = O'rather than that® for vie= 1.

This 3812?:' pomt is. feati:!) illdstrated. for instance. in Figure 9 which shows the iree elaborated

) ) - 305, ASSIGRMENTS
ac a3

¥Ficvae 9. Tree claborated for problem
by Gavett and Plyter slzorithm,

*in comparison with the other search strategies that have been discussed. this sirategy mayv entail the elaborziion of a
fonger path in the decision tree and require longer problom-colving time 1o determine a first feasible solation

problem we must therefore, affix to the linear assignment problem the following additional constraints:
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by the Gavett and Plyter algorithm for the example of Figure 3. Since the detailed calculations under-
Iying the development of this tree are contained in [8] we shall omit them here.

As in the case of single-assignment algorithms there are a number of alternatives 1o these paif-
assignment algorithms which may result in more efficient algoriiuns. For example, all of the alternatives
discussed earlier concerning iﬁ?» extent.to which a linear- dssignment matrix-is reduced at a na&érin
the tree are applicable in the present ﬁfnblém;Sﬁmﬁ‘gﬂyihe use of alternate costs to identify mandatory
assignments and the jumping of levels in the trée on the basis thereof, is equally appropriate in the
-present case. Of course in the present problem the altematives for detefmining the costs afy, are
inapplicable since A.=afz} for all v, i.e. the value af, is the actual cost of ussigning plant i to loca-
tion j and plant # to location g rather than simply a lower bound, and hence need not be updated.

In concluding discussion of this class of algorithms we comment on their extension to the: fion:
symmetric quadratic assignment problem in which s # sie;. For this problem we have the associated
linear problern: 7

Minimize S, (sieyieg+ SriFia)
11, G : 7 .
Subject to:
Wi ) )
1Ly S et yui)=1 all (ik)
ﬂ(a-i:ﬁé‘ T atnernz -
> Yot 2 yee=1 -all {g) :
tix} ik}
and Yijiegs Yige=0, 1 foralli.j, k. q.

upon which are imposed. as before, constraints (13).

As discussed in more detail for a related, multi-facility production requiring problem (or multi-
salesman traveling-salesman problem) in [25]. when formulated as a linear programming problem (13}
has a 1otal of n(n—1) variables and activity vectors, the vectors for each pair yze and yipj being
identical except for their cost. Being linearly dependent, at most one of these vectors in each pair can
appear in an optimal feasible solution to (14), this necessarily being the vector in the pair with the
smaller cost. Therefore setting Sjze=min (Sijxg. i} it follows that an optimal selution te (14) can be
obtained by solving the n{n—13/2Xn(n—1)/2 linear assignment problem with custs [3rdl

Operationally, then, problem-solving for the nonsymmetric problem cah proceed a< for the sym-
metric except that at each node in the process the cost matrix to be used is composed of the presently
minimum elements, §min (sgrq, Sigg)jl. To this matrix can be applied any degree of reduction as in
the symmetric problem. Upon selecting a pair of assignments to commit to the quadratic problem solu-
tion, all costs (hoth for a variable yiu, and its interchange yiu;) are updared as required to reflect the
feasibility conditions in (13): for any pair therefore, min (sysq. $is) may increase for the next node.
Otherwise the only difference between the symmetric and the nonsymmetric problems coricerns the
alternate cost of an assignment: in the nonsymmetric case a valid altemative to the assignment y,
may be the interchanged assignment yiy; so that in this case the alternate cost is the minimum of that
as evaluated for the symmetric problem und the cost of the interchanged assignment.
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V. PAIR-EXCLUSION ALGORITHMS

In all of the alge-ithms discussed up to this point, problem-solving has proeeeded on the basis of a
stage by stage commitment of assigninents to the sohtion of the problem. edch such assignment repre-
senting a level'in the decision tree. Upor backtracking a particular assignment would then be excluded

- from the solution and the forward, assignment process resumned. This has been the nature of the process

for bath the single-assignment siid the pair-assignment dlgorithms, In this section we ¢onclude the
paper with an algorithm in whiéig problera-solving proceeds on the basis of a stage-by-stage exclusion of
assignments from a solution to the problem. A

More specifically. let us consider the qu~dratic assignment problem as formulated in the previous
section. Suppose for this problem an optimal assiznment has been determined for the linear assign-
inent.portion of the problem. If for this assignment conditions (13) are satisfied for every yiz,=1 in the

-solution (i.e.. all pairs result in each plant being assizned to one location, and ne location bsv:zzg more

than one plaiit assigned to it} then this solution represents an optimal. feasible solution to the original

‘quadratic assignment problem and gmblém-wif;ﬁw;s complete. Otherwise there exists one or more

conflicting ussignments in this solution :endermt ;nxm:bie the solution to-the quadratic assignment
pmﬁem. -

{:oa'r 8+ 284504115590+ 28= 3689

- =3 1-4 23 24 34 © 2 13 -4 2-3 2-4 34
: 271 471 32 243 2-1 3~1 41 3-2 4-2 43
ABI3 16 » 0 o 8 ‘ ABi31 16 M o 0 8
acls ww oo oow TACis 39 o e 2
AD 3 o3 2 6 0 S D |3 0032 2% 68 0
BC|18 6 2 6 1 0 ‘_*Bc_;a, 6 2 © B ®
B3 16 0 o 0 8 wla B ¢ o o 8
cpDio o 44 3 s 2 cpio 0 4 35 8 2
7 i a o €5

Fuare sfi Optimal lneer a:«:ﬁm::rnf ﬁ?tﬁi ta ,‘BT!&R’Q ;—:i% data o Fizure &
tay al ;fs:a;mrxm &.ﬁ‘g_‘ﬁazf ';n*‘f;’ !iif ﬁmm‘ .

As an example. Figure 1002 éi;wx%s rﬂg}mai i
the ﬁ'ﬁ;ﬁ!ﬁ?;iﬂi‘ai‘»aﬁ_‘ié;"ﬁ aent is méfwed by HR‘ with dHenate costs fepresented in the upper
right. hand eomier. As is readily zeﬁi;e«:.: 1 o {fﬁie Yincar. assignment is not feasible for the quadratic
probiéia, 2.z, aaﬁfgar.fn* (15, r-i; iz incunsiatent with iBD, 23).48C, 33) with 4L, 3) apd €D, 12). In
an ﬁﬁt;fr:ai?!eas:ﬁia quadratic asssgamf af, then. it must by true that st-least one of the assiznments in
this eptimallinear assigmwerit will net be 32-7“*;‘#% We can therefore %&-ﬁ:’:ﬁfée the total set of feasible
'quaara;;c assigoments into thdxy _§§t du not incivde the assignmen: ..48 I-i;. those that do not include
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Ficure 11, Partial iree claborated by pairexclision alzorithin,

{4C, 24), and so on. for each of th= preserit assignments. The result. in térms of a tree. is as shown as the
first level of nodes in Figure 11. If for each subsel we now determine the best feasible quadratic assign-
ment amiang solutions in that subset. the best amongz these is an optimal solution to the orizinal problem.

Beside each of the nedes on level 1in Fi aure 11 iz shown a lower bound on the cost of solutions in

the subset equal 1o the cost of the optimal selution in Fizure 10{a) fthe amount of the reduction) plus the

alternate cost of the particular assignment which. as indicated by the niode. is 1o be exchided. Suppose
we now choose for elaboration one.of these nodes for which this bound is minimuni. say 1714, iiaifmg
inadmissable this assignment in the cost matrix in Figure 10a} G.e.. giving a large cost of 3} and sclving
for-dn_optimal assignment t6-the resulting problem, there results the-matix in Figure 10i). Checking
thie assignmeént which résults. this salution is net feasible for the quadratic ;m;iﬁen* eﬁiﬁzr the rezult iz
-the tree with %i}ﬁ fiew §eegi of iodés as'shown in- ?‘gmfe i1
- Ina v.irmiar mafiner; we €an now proceed 1o seleet any of these odes with iukét bound. solve ﬁ}{"
asdignment problem ind eheck it for feasibility, continuing unfil a node is reached for which the optitmal
linear assignment is a feasible quadratic assignment. At this point we would then backtrack and resume
with a node whese lower bound was less than the value of the quadratic assignment = Jution. cantinuing
in this manner until the complete tree has been considered.

Inn seneral, it is difficult to auticipate the performance of this 1ype of algorithm reladive to the com-
mitment types-as discussed in the earlier sections. For the related. basic traveling salesman problem
this general approach has proved significantly more cfficient than stage-by-stage commitment algo-
rithms [4. 28. 29]. Undoubtedly this is due at least in part to the fact that. in the words of Shapire 128].
the optimal traveling salesman solution is frequently quite “cloze”™ 16 the optimal linear assiznment
solution in the respect that a large majority of assignments in the former are present in the latter. so
that relatively small decision trees necd be explicitly elaborated. In addition it is due in part 10 the exist-
ence of an eficient dual algorithm for selving the linear assignment problems at cach node [29]. In the
present prohlem this latter element will be equally imponisnt. bat. on the other hand. it i= no? apparent
that the optimal quadratic assiznment will be “close™ 1o the optimal linear assignment. Le.. that in
aptimal lincar assimniments the conditions in (13} will commonly be auteanatically satisfied.

To pursue discussion in greater detail. there are a number of éif'é&é% which must be made in
specifving a pariicular “pairexclusion” algorithm. What search strateszy is 1o be cmploved in selecting
s node in the tree o claborate next? Cisen the conflicis in an n;mmai iznfzar assignment solutivn at a
siven nnde, how should solations be subdivided into subsets for further evaluation? Which branch
emanating from a node (Le.. which subset) should be considered firse?

For specificity let us assume for discussion purposes that the search strategy used is the same as
that which has been assumed in all of the sther alporithms discussed. That s, we proceed downward in
the tree one level al each succes.ive stage. cheosing at each stage for elaboration the nede having the




J ol l“’h ‘l» ‘l iy

L[v.‘y‘lqlvp\, i

i u, by

28 J. F. PIERCE AND W. B. CROWSTGN

smallest lower bound on the cost of solutions represented by the node. Upon reaching the bottom of the
iree er reaching a node for which there exists no feasible. nondominated solutions the precess back-
tracks to the luwest level in the tree for which there is an unevaluated node and resumes. There remains.
then. the determination of subsets at nedes and the assessment of lower bounds for the solutions con-
tained in the rﬁéiiisg subsels.

While subdividing the subsets into the n subsets on the basiz of the n assignments in the linear
snlution is perhaps the casiest subdivision to specify at a node {as was dene in the illustrationiit is by
no means the only possibility nor probably the most desirable subdivision. Ifi general, any subdivision
inte subsets at a node is permissable which excludes at least one confliet present among the presem

Assiznment Al cost Conflict Alt. cast
ABH BDz3 389
ABI4 CD12 392
ACH AIM3 - 389
ACH BD:3 389
ADI3 BC31 389
BC34 chi2 392

BEE38E

Fiersg 12 Qgﬁzzsi.ﬂm@i@é.:ﬁ eris in uptimal inesr sssiznment sofutions to iflostrase problems in Fipere &

assignments {and hence renders inadmissable the present sélution’ and for which the unior: «f the sub-
sels conlains at least onc® feasible quademic assimment which bs uptimal for the zet being subdivided.

Fizure 12 shows all conflicts in the optimal assiznment solution «f Figure 10ia} arising between
pairs of the: assignmenis. Any of these conflicts eauld be used as the hasis for subdividing. For example.
Figure 13{a) illustrates subdisision of the hasis of the conflicts hetween the assiznments (1024} and
{4013 Of course, in the optimal lincar assismment at- the 'resufiing wodes there may persiss conflicts
which were present at the parent node: thus at node (D13} it might be necessary to resolve at a next
Ievel the conflict between {4024y and iBD231 should it be present in the new solution at that nede. as
Hlustraied in Figure 13(h). On the othier hand. the conflict may not appear in subsequent linear assign-
ment solutinns and hence nat have to be considered explicily.

More stringent, subdivisions may result. perhaps. by using more than a single confliet. Letting
ACZ3 denote the event “not assignment 40237, 4024 the evemt “assisgnment AC24”, “S7 logical “or™
idisjunction; and *~7 Ingical “and” (conjunction]. we can represent the resolution of the conflict hetween
AC23 and AD13. for example. as simply:

{15} AC23 S AD13.

meaning simply that a necessary condition for feasibility is the event “no? assignment 40247 or “not
assignment AD13.” or both. Suppose we now consider the conflict between. say. 4AC24 and BD23. For
resolution of this conflict we must have A28 B BD23 <o that in cunjunction with (131 we mast have for
resofution of both:

(16} (AC23 B 4ADN13) - (AC2A B B0 = AC23 & (4AD13 - BD33:

*The <airri= nred d be motually exchedve,
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as reprezented in Fisme Rel If ég?ﬁi we eould consider in conjunction with thess two, =ay. the pair
of conclicts 4113 and BL34. with the resuli:

{17y (AC2384D13} - (10235 BD33 - {AD13 2 534

=AC23 - AM3DAC24 - L34S ADI3-8D23

as represented in Figure 13(d). or perhaps these in conjunctinn with the pair BC34 and CD12 as repre-
sented in Figure 13iek Similarly. any combination of the constrainis c2= be considered T

For the resch’nz nodes we proceed just as before to détermine an optimal Fuear assignment, where
now cvery assignment appearing in the expression defining 2 node is made inadmissable. For 2 lower
hound for 2 node probably the casiest is to simply use the largest alte:nate cost of the assimments 1o be
excluded a1 the sode. A more stringent bound of course would result by actually making the elements
inadmissable and reducing the resalting assisnment matrix or by obtaining an opiimal assiznment

These iilustrations serve ts indicate the nature of the choice: 1o be made at a nody in the tree.
Referring 1o Figure 13 2 is clear that {¢) is preferable 1o ib) since the resulting subdivision is obtained
2t a single Ievel of the tree. and with no increase in the number of nades at that level. Similardy it can

¥z that renflicns Intelins susirnernts vt actnaBy cammitted éf@ﬁﬁé@mfﬁﬁfﬁéémﬁ
w2} flrer 2= nel] The- s rampde. v ibr vt wf andcnia 0= £2t i prre 1hEs el ol apowar 7% 28 3esiza.
ﬁrﬂﬁ;?%ﬁsg Sramrnnt bl Soer thie seimmrrst ko @ér@%*ﬂgmwffﬁingﬁgﬁ
r that ovafict 2 the a2 ==de In formiss b ~udafnidess,
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be arzued that the subdivision in Figure 13t¢) is preferable 1o that on the first level in Figare 17 since
the ts1al number of subdivisions or nodes 1o be considered is the same while the size of esch of the
subsets in the former is amaller. Unclear. however, is the choiee among. say, those in Figares 13ich
idi. aed {rl, a choice invelving a larger mumber of subsets. bul each of smaller siie. On the one hand
it is necessary 1o determine a bound andfor eptimal assisnment for each node. hut on the other, the
subset being smaller the greater is the possibility the node will be bounded by an existinz feasible
sofution and hence not requite any further consideration. Similardy with regard to the evaluation of
lawer bounds ar a node: redecing the assiznnient matrix andfor determining an optimal assiznmen:
sields a more stringent bound and enhances the likelihood that the node will he bounded_ but to do either
requires establishing and manipulating the approprizte assignment matrix for that node in contra-
distinction to the use of the alternate cost information which requires ne explicit consideration of that

node's matrix. These chuices remain subjects for empizical study.

iz concluding discession it is noted that in practice it may be efficient within this exclusion 1vpe
of alzorithin te be louking at each node for mandatory assigrments as well as for assignments to be
excinded. As before, this could he done simply by checking the alternate costs of the assisnments
which oceur in the aptimal Enear assignment. For each mandatory assignment discovered the appro-
priate iclated assisnmenis would al that time be made inadmissable. thereby makinz subsequent
bounding and s:arch potentially more sffective.

As an illotration. we again eonsider the problem in Fizure 8. and zolve 7t with the following
alzorithm. For 2 search strategy we use the same levelby-level strategy used for illusiration through-
oul. choosing ai cach subdivision an unexplored node having the smallest lower bound. In each optimal
linear assignment the alternate costs of the assignments are 3ll checked 1o see if the 2<<iznment can
be shewn te be mandatery. Whenever a nede is encetmtered for which the optimal Encar assimnment
reselis in a nonfeasible quadratic assiznment. a subdivision is formed in the following way. All pairs
of assignments in the optimal solutions are investizated for conflict and these so found are noted
together with their altemnate costs (as was done in Fizure 12 From this list is selected the pair for
which the smaller of the tws alierate costs is larzest smong the miniman of afl pairs: uliimately every
feasible nradratic assipnment which resslves ail of these conffiels muost have 2 cost 3t least s large
as this valye. Should there be more than one pair with this same misimum. a pair Is sefected o which
the other aliemate o231 is maximun. fln Fizare 12 we thus select either the pair 40234013 or 4024
BDZ; For the selected pair. we then search for other pairs which have an assignment identicsl 10
the assiznment n the selected pair having the larger alternate cost. and use these pairs in conjunction
with the selected pair. (In Fizure 12 we would thus isrm from the pairs 40234013 and 4C24-B123
the suhdivizion: (40238 AD13 - BDZ3L) The resuliing subdivision will thus insure that a1 least the
minimal intrease in coxt that eventually most be incurred will in faet be incurred now. and possibly
3 grealer increase—but withewt prolifersiing the number of individus! subsets 1o be considered a1
this level in the tree. Finally. asther assignments are sought having exactly the same conflicting assign-
ments as this assienment in the original selectinn pair with the higher alieruste cost fin the example.
ah assipomenis having the omflicts with the same assignments ADI3 and BI23 as does AC24) and
three conjugated with the present set of conflicts fthere are no such assinments in the example:
The result s a subdivision crnsisting of 1we subsels

In the event there is conflict in an optimal Bnear zssisnment solation. but no conflist amone simple
jairs of assignments we simply choose the first subset of the assignments disecvered to be in conflict.
remove the assiaments in the subset not contributing 1s the conflict, and subdivide on the hasis of
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£ femaining assignments— cach sssignment debning one subdivision,

Oceasionally in the development of the enumeration tree it can be shown at a nade that a par-
ticular pair of assignments is mandatory in the same sense as in Section HL. Fer example. in Fizure 1465}
we have a solution 445 CL labelied with a® which was obtained as follows: The solation te the linear
assiznment problem obiained after adding AD32 kad a reduction of #5 {equal 16 the current best
feasible solutioni. The alternate vost of assignment CD12 was 19. and therefore CD12 would kave to
be in any optimal solution 1o the poblem. Similardy the updated aliernate costs of AB3% and BDI3
force them into a solution. These assiznments taken wintly give 4=4. E=3.C=2. and D=1{oraa

. actaal cast of H5. It i= inleresting 1o note that the assipnments which sre ohiained in this manner
may result in a nenfeasible solotion 16 the Enear assiznment problem at thst point in the epumeration
tree. For example. we might have arrived at the above solution even if BCB were specificaily excluded.

Far the Gavett and Phvter problem in Fizures 3 and 8. the tree which is elaborated is shown in
Figure 14. At lzast for this prohlem the opfimal linear sssignment solution is not “clsse™ to the optimal
sjuadmatic assisnment solutinn,
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VL. CONCLUDING REMARKS

In ihiz paper tlues classes of algerithms have been disenssed for selving quadratic assignment
sroblems. Repardiess of itz class sach siporithm which has been considered is reliable ia the respea
that if carried 16 cosapletion it guarantees the discovery of an optimal solutien. Furthermere in finding
an optimal solution it procesds first 1o 2 feazible sslution and then to ketler and belter feasible solutions
s thai. if desired. problem-sidving ear be terminated prematerely with 2 ussile. if not optims], solution.
In addition. these pracedures can all eficiently explois information asailabie beforchand regarding the
valae of 3 known feasible solution and hence. for example. can be readily usad in conjunction with
henristic procedure whieh gives good subropiimal soletions. Morcover. if desired. all of the sizurithms
discussed can be used with shzhi madification 1o determine off aptimal solatisns. o7 a specified num-
ber of the most preferred =olutions. znd so on

Commen to 2l three clazses of algorithme is the stractoring of the quadratic assiznment problem
in terms of a related lnear assizninent prablem. Ia eack this Iatter poobles ix then used in directing
the tree-search preesss and in bounding and deminance eonsidenilions designed 16 redace scarch
Howerer. hetween the hnear assiznment prolfems used for the single-assizament alsorithms and the
pair-assiznment algorihm there are rajor differences.

In the single-assiznment case the linear assiznment problem & only of dimeasions 5 X & 2ed has
the property that a feasible solution slways represents a feasibde solution to the quadrstic assignient
problem. Itz sherleoming. howcver, Bes in the fact that the cost structire exbadied in the Haear s=sian-
ment probien is nol. in general. an éxscl represemtation of the e onst siracitre of the geadratic
problem. bul only an aporeximation. The cfert &= o diminich the siriugency of the bounds and domi-
pance tests. and le necessitate the periadic expenditure of prablem-solcing time in updstine the repre-

I the pair-ass

e

i

siznment or pairescinsion cases, en the sther kand, the 3ssaciated Bnear assisinient

probiems is signifcanthy larser being of dimensiome sl — 1) Xals— 1 2 hm mnthis larsrr srebbem i1 80
pocsible 1o 1epresent exarily the cost dimctere of the quadratic problem. Hoseror, the shottraming of
this representation fies in the 263 that a feasible saistiun & ti= linear problem oeed oof congtituic 2
feasible sofation 1 the quadratic probiem.

Erer from wtr experience with the one sample pmblem & this paper # 12 olear that the different
alzorithms can givr rise e the claboration of quite Efferent pantiz! trees of sofutions wath guite differins
numbers of nides izee Figtires $3-7. 9. and s However. in Bkt of the 301 that the ime reipiired 1o
eiaborate and evaleais 2 single nade in a tree can differ markedls amang the alpnithms. 7 is dificalt
o assess the relative efcienry of the different slsembms cves for this sur, sinsle problem. In prociice.
marenter. the relative efficiency may weil turn o0t 1o be highly dependent on the patticalar form of the
quadsatic zssiznment being salvel. For example. were ihe eseficients ¢; in a preblem with objecinne
{unction 51 1o predaminaie, the sppreximale cost siructure &5 the s assismment methads mizht
in fact be quite “tlese™ i the troe oos! stractere aad hence that elass of algoribms be quite eficen
On the ofhier hand. were an archited! to pese 3 preddem with 2 large number of pairwice comsiraints on
the pairassiznment of pair-exclusisn clasces mighe render these approaches meare oficient. Hopeluils,
# will be possible 16 glezn Information pettalning Is these goestions frem the comptiations! ressfic to
be reporied in the culsequent maper.
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il. PROBLEM STATEMENY

In accordance with the above discussion and assumptions. the original problem can now be
restated as follows: “Given a graph. G, which defires a flow network and limited resources. determine
the set of arcs, Z*%, to remove from & such that the resulting maximal flow is minimized.” An obvious
constraint is that the total resource expenditure required to obtain Z* must be less than or equal to

the total resvurce availability. Employing a symbolism similar to that of Eerge [2]. this problem may
be stated mathematically as

maximize #=¢{G) —-H(GC—Z*1. -

subject 1o the constraint

z Régﬁmax- s -

el

whete Ry - =the resource expenditure necessary to destroy are i,
Roax = the maximum resource availability. and
) (X} >=the maximal flow through-network X.

. -

& O!f\érﬁuthaﬁs’:havc considered similar préblems. Bellmore et al. {17 utilize a dynamic programming
"L wihnique to determine which links to remove from a communications network. The flows in all arcs )
 ofihis nﬁmﬁﬁ, are ‘constraiied t5-be either zero or one. Wollmer {6] proposes two techniques for -
determmmﬁ the most wtal link in a railway network, The first technigue considers the case of an un-
jf: hmued numbﬂ' of trains. whsie- the second assumes that the railway Ras a fixed number of trains.
‘ Both précedures allow rémoval of only a single arc. In another work Wollmer [7):% #onsiders the removal
of 7t_arcs. but no resourcé ex,x*ndgture s necessary for removal. If we set R;=1 for all ares in G, and

S 5?"--_ n then the problem analyzed herein is identical to that of Wallmer.

Ty % m. THEORETICA). CONSIDERATIONS -

: Thé de&eiupmen‘ of this section is extracted from our previeus paper [4]. Network flow has been
cxammf-d ‘extensively by Ford and Fulkerson [3]. and they have provided the following fandamental
!hmrem ‘conzerming maximal flow: :
THEOREM 1: “The maximal flow from a set of sources § to a set of sinks Sina an aetwork. G,
is tquai to the minimum of the capacities of the cutsets of ares separating § and S. ]

“This theerem formg the basis of a well-known algotithim by Ford and Fulkerson for determining
the maximal ‘flow. It is assumed that the encmy will use this procedure to determine his maximal
flow policy. Theorem I leads 1o Corollary 1.

. COROLLARY 1: The maximal flow through G is an univalued function of the are capacities and
) © the netwark ecoufiguration, 7
. " COROLLARY 2: it is pussible to control tor alter) this maximal flow by manipulating either the
are eapacitics andfor the network configuration. We shall be concerned only with the manipulation
. of arc capucities,
Consider now an are { included in the gwaph G. H the capacities of all ather arcs remain unchanged
“then &G is. by Carollary 1. a univalued function of the capacity of arc i. Let C; represent the capacity
of are {, ¥ &{61 and B{%) represent the maximal fow when ;=0 and C;= %, respectively. then the
quantit; C7 = ${=) —§10) could be called the critical eapavity of arc i. It can be argued that so long as
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Ci = CF, arc i is included in at leust one minimal cutset. If C; > CF, then xe i would nut be included
in any minimal cutset and would contain a “slack capacity.” Let I{k;} t e the “interdiction” caused
by the perturbation A; in the capacity of are i. Thus

SC;i+ Y =H{C) + IH{h).

and 5
b ifhi <o and {4} <C;
- - if hi<o and [l > G
} =
"’ (=44, if #i >0 and Ci+ b < C}

CFE—GC; fC+h;=CFand h; > 0.

If the perturbation & required R; uuits of resource then R; \muid i;f mnimgred as :: €651 (»f hs}
interdiction I{h;}. . )

This definition holds only for ares included in a mivimal cutset. An arc wh;éh iz not incleded in
such a cutset will, by the above reasoning. have a slack capacity, If w i) and 0= (1"} reprwem ﬁir
sets of ares incident from and to vertex V. res pnmch. then =iach éxists iare. - N

o’ (V)ii ¥ CGi< ¥ G o o
- ko 1) P

By similar reasoning. siat_-k e;ists inare few{F} il 2 2 Cr. The quantity £} is the cffective
- R AT} T {12 co-

capst:;t\ of arc i. We may now deﬁ: 22 slack associated with arc i, ov. as

C;— E C;’:-ifii?"f‘y}v. Fi=o

‘} =)

-
v

2 ) o=

7 E Cr— }: Cilicw V). 0. = a0
Leairt

s i)

and £;=C;—mi.
Shapley [3] hias investizgated the interactive effect of capacity variation for two arce in a network.
This interaction may be either assistance or hindrance. and is defined by the difference quotient

3 qi= {HC+ b C;4 bt = G {Cit hi: Cy = BET: G4 b5+ Wi Ciiki il - 1},

where @t- : -} is the maxima! flow through the network. €.+ k; and C;+ fi; are nonnegative. and ;< &
is nonzero. If the difference yuotient is positive. then arcs i andj assist each othes. and if the difference
quotient is negative then ares { and § hinder vach other. If ares { and ; have ¢;; > v and o == 2. the slack
could be reduced by increasing the capacity of are j. Farther. it would be possible to reduce the slack
in arc { 1o zere by reducing the capacities of ares having a negative &fference quotient withi. To iden-
1ify arcs with positive and negative fi:ffc-rencé quotients we quate without presf the following thearem
due to Shapley:

THECQREM 2: (a) U the terminal node of  is the initial node of j, then g4 = o: (b) I § and j have the
same initial terminal} node g, = o: (¢} If the initial node of { is a source and the terminal nede of j a
sink ¢;; = 0.
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When the slack of any are is reduced to zero that are would new be included in a minimal cutset.
Therefore, it is now possible to define the interdiction function for all arcs in the following manuer.

(1) If arc i is inciuded it 2 minimal cutset Equation {1) gives the interdiction function (hi).

{2} if arc { is not included in a minimal cutset, but can have its slack o7 reduced to zero by altering
the capacitiés of sther ares. then the interdiction function f{4,} is the variation in the maximal flow
caased by a variativn of #.in arci after the alternations for the removal of the slack.

(3j If arc'/ is nnt included in & minimal cutset and the slack a7 caniot be reduced to zero. the
T{hy=10. ) .

The- resource cost of interdiction in cases (1} and (3) would be the cost of the capucity variation
h; only. but for case {2 the cost of capacity variation necessary to reduce the slack to zero would also
have 1o be included.

From the ahove definition, we see that the interdiction function possesses the following
properties:

@ ~ ()} < fhd.
5} I+ Ry =1{h:+ ;).
© H(ki+ ki3] < R+ (k).

- IV. STATEMENT OF THE ALGORITHM

For the problem zz;'}éef consideration the capacity variation k; would he exactly equal 1o —C; as
arcs cannot be partially destroyed. Hence the problem may now be restated as find Z* to minimize

7=8(©)+1(3 - C)
e~ o

subject to the constraint

The solution can be obtained through implicit enumeration using a branch and bound procedure.
The decisions cither to include or excluede a particular arc form the branching procedure. The bounds
on the interdiction can be obtained by considering the following:

T=(G)+1 {g {—c';}).

Therefore. by Equation 6
z=6(6)+Y I—Cy).
i
Continuing,
. 1—C;)
e 6145 (1561 1]
é *22 i R
72 6(6)+gin L) S R,
- T
@ T2+ rgin {&;%:’}} Roax-
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Hence Equation 7 is a lower bound on the maximal flow through G subject to resource availability
Rpay. A computational algorithim for solving the problem may now be deseribed.

In addition to the notation used previously let Z be the set of ares destroyed at iteration £ and
T: be the interdiction achieved after k iterations. Now the algorithm may be stated as follows: Begin
with k=1, T1=4¢, Z;=d. Ih=R,, For the node “All Arce™ set UB,{G1=0. Create the dummy
source S and the dummy sink S (f necessary).

STEP 1: Lable those vertices nearest § according to

=+ ¥ G

[ o

Set £; =C, for all iew” (V).
STEP 2 (A): Proceed to the next set of vertices and label them according to the following rules:

+Salsa<sq

PR e 1T JesTE53

fe={— f}j'f §; < }: c;
ke 15y e (1 RS

= ¥ G otherwise.
. [Tt ]

(B) If I+ < 0 compute 0= §; Ci—ill.

Ei iy

set LI =C;— 0] iew (¥}

1

(Cy U 5> 0 zet £ =C; lien (V).

STEP 3: Repeat Step 2 until the vertices nearest S have been labeled. then proceed to Step 4.
STEP 4 {A) Stanting with the arcs pearest § and proceeding backwards consider those with
Ii-=-+. For these arcs compute

Ci=C;—48.
where
8= E Ci—1ik.

JeuT{V}

(B} For all arcs having slack o > 0 {0o: as defined by Equation (2)} identify those having a
negative difference quotient. Among these determine the minimal cost of removing the slack. Then set
Ci = the interdiction ohiained and R;= the least cost set of variations to remove the slack o;.

STEP 5: Repeat Step 4 until no further capacities can be adjusted. Go to Step 6.
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STEP 6: Compute the quantitices

. _Cii. .
é;‘:—,'ff £
[

Seleat

and

STEP 7: Create the nodes on the tree (17 and (7). For node (7) compute the upper bound:

UBifi=8D:+ Ty
STEP & To Branch from pode (7). we set b=£+1

ggﬁ 1;?-; -Rs-,
Te=Te+CL
Ze=2Z: Ur. and

G=4LNr

Retumn te Step | and continue. initially setiing all £ to thelr ariginal values. ontil ?gfi;;z iR} >D..
Denate Tp 35 T G 1o Step 9.

STEP 9: Search back up the tree until 2 nude (7} is encountered such that UB.(5) > T If more
than one {8217} > T= branch from the maximum. Begin branching from that nede by retuming te the
Ztep 6 calenlation at which arc j was selected for interdiction,

STEP 16: Select for interdiction the are designated by 8, and repeat Step= 6-8 antil one of twe
possible events sccun

fai'\‘-j‘i‘n 124 > U Go 1o Step 1L

) The arc i is seleated for interdiction. and a decision {7) i= incorporated in this branch pre-
viosasly. G 10 Step 12

STEP 11: HT: > T then set T°=T} and go 1o Step 12

STEP 12: Cantinue 16 search hack up the tree fur a node with UBL1J) > T3, repeating Stepsz 9-12
entil no further branches need be searched. Then 7% is the aptimal interdiction and the sct of arce to
remeve is siven by Zp =25,

Steps 1 through 5 of this algerithm compute the effective capaciiies for each arc in the network.
The ratins formed in Step 6 provide a measure of the interdiclion oblained per unit of resource ex-
pended. Naturally, as sne wishes to maximize this imterdiction. the largest ratie is chosen. The upper
bound for not selecting this arc would be the product of the next hizhest ratio and the available resource.
plus the interdiction oblained to that stage. Steps 10-12 are concerned with scarching back up the de-
ciston tree. and branching from all nodes whese upper bound is greater than the current maximal
interdiction. Dynamic pregramming could also have been utilized to solve this problem.
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V. NUMERICAL EXAMPLE

To illustrate the computations consider the following numerical example. Suppose a feld com-
mander is enzaged on three hattlefields by a '« enemy who supplies his forces from four depots. The
enemy transportation is shown in Figure 7. lLiitially 720 truckloads per day of supplies can be delivered

£} 3 —
) N

Ll
o

]
I
»

& =2
Ficurg 1. The initial network
through this network. The capacities of the routes in truckicads of material per day and the expecied
aircraft losses are given in Table 1. Fifieen aircraft are available 1o antack the supply system.
TABLE 1. Network Configuration Data

Capacity Coxt to ) Capasity I Cantee
Are | frucilaads hestroy Are I awidads Bestray
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The decision tree which illusirates the steps needed to 2olve this problem is shown in Figure 2,

Ficire 2. Decision trec depicting prablem salation
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and the ratios caleulated at Step 6 are displaved as Table Z. The asterisks in Table 2 denote the raties
chosen at each iteration. The optimal solution yields a fsal maximal ow of 340 truckisads per day.
and iz shown in Figure 3.

Fr:re 3. The aptimal =olution




OPTINAL INTERBICTION POLICY 15
REFERENCES

=mal ek of 2 Demassintian. Yefnask” Thins Serand Nartienss? Moot

igra‘;-.f:. F=— i S R T

sicemy sdofes §:§g~% sfsé Sema, o Yark, PO

Priseetes i ??“. i’%d% e Jeraes, P65

***** i2.” i IRE, Freecodinss of 8= Filth

m §§:§i

i‘%i‘ == 'fif §‘£§§a i.ﬁ-{fez e Rasts Uomies (aSfa=s 1558

- et Vemwae das RT3

i
e

TR

AT u“» A !:Il,-m [

i
(B LR
]

i




TR R

ERImIET

[
el

bl

TR il

”

'

iy

ABSTRACY

= ¥ =2 =iz

“hrsned: 2od frarmd fype Aioeritbes Gy ildl g

INTRODLCTION

Problems in 0. 11 hyperbolie promyamms
ane has te minimize the gueticnt of a linear function representing the cost of centain items by 2 bnear
faaciion representing the produced amount of these s,
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PART 1 -THE UNCONSTRAINED PROBLEM
1.1 Siatenient of the problem

The problem of i0. 1 hyperbolic prosramming consists of mintinizing the function

e

ool

iy
"

(W
by
M
]
i
-
L]
»*

€3 g: T8
L =6 =12 .. .8

’kfc- nolice that iizfa’i:- gz;égﬁséf-fgfzéémgi? inassumin=thatthe 5, =12, | | . 1} are positire.
Indeed if ane & is null. the a; > 053} and the varisble x: mus take the valne & Thus s the following
weshallassume & >0,

The approach io the problem 1 is siven in {1} A vector X° 5 ralled an optimal solution < the
function F1Y} attains 2 local minimom at the peint 5= {28, . . a2l TloranyvetarX=ia, . . %}

hill

15 i, the fumction F{Y} attans a clobsl minimun an the point X5, The

auum

-:!r%*%sii_ . — 22} = the mequalitys FEY95 < Fi 1§ holds. The uolions of local and ghobal minhaus
-2
are relzied as folows:
THEOREM 1: Any kees! sinitmum of the fonction F(X} &= ako a chohal minimem.

2 The alzorithm
Using this thearem we derive an alpsiths which construcis 2 ‘o ol iglahaly minimem by scanning
ju~t ence the sef of fractions fa i}
We pow dezeribe the aleoritbm for the jooblem L
ALGORITHM I: Lot N depate the set of integer §1.2. . . . mi.and et/ be asabset of X,
i and se1 the index s=0

If i=a+1 snis?

£
t
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Stop—an optimal selution is reached.
We shall demonsirate that the vector =
the 2. I lyp
example thai is alke presented inllL

W minimize the funciion Fix:. . . .. 1.} where the fractions a./b, are given in Table L

TABLE I

o
o™
]
L]
L
3

iz

"
i

= 3 = = = -
=, = £ 2 = 5 E} 3
= =z : = = = = -
ES E> ts == b = = -
2
TN S SN 3 S S S

‘irﬁﬁ £2% and 38

Then the fraction 206 ic relsined and 7= {3. 4. 9%

procedure terminaies by eiminating the last {wa fractions inthe Bt 33 and 377,
Attheend I= 13 1.9} andadbh=8/20.

The global solation s thercfore

hener X5 =001 i

FTHEOREM Z: The = é:aﬂ;s: X* dasined by the aloorithm s the optimsi solntion of the

obtained with this 2lesrithm & the optimal selution for
serbolic programming problem. Let s first illusirste the algoriths: with the followins

are performed severzl times 1= eliminate the fractions YIS, 610, 12725 and @718
As K=& :&esﬁ;‘m@@r&a@ﬁa@iﬁf

e hyper-
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s};}i’ii:i 3 i;li é:{i::r twe fractions g fin and =¥, where ¢, > 8. 5;> 0. i=1, 2, Thes we have

]

Wwim

[

3
Lk

wheneser i~ a3 20 The §ﬂ‘:
PFROOF OF THEOREM 2
the algaritbm is a local minimom ol the *?ﬁii%%i't!‘i,

2 § 1o prove that the veclor V® abtained by

It ix ezsily seen that the chomenis of [ abiained a1 the end of the alzotithm are indices of fraction
aih; §§§~§ Bove the properiies:

=

%3 the vaiue of inc

1.

[ —)
oy
]
=
L™
M

e
ol
il

Fizg*y s — = — forall .
= E+-NV &84

=

-

This pronie= that U® is a Jucal salution 2nd by Theorem | a glohal salution te the lvperbolic programmins
probiem.

W potr that the salution of problem | necd nat necessarily be unigee, however. the 2lzotithm given
here preduces the optimal solution which has the largest possible number of ron noll varizbles.

Farther we remark the fofowing.

L= 7 2. s -
OROLLAEY: §rz —="%=._. -‘::giaeﬁ? & {raciions a/b; sadered in an nondecreasing onder.
; =2 ‘s
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isfied. This does not give, in general. the optimal solution. Consider the following counterexample

t’nj_,I (h 1‘ =

i
b 20 58 1
We want to minimize

du+ a1 s
bos by + bixs
where ayxi+ asx: > 0.
It is eaily seen that the solution if (0, 13 and not (1. 01,
THEOREM 3: If the vector X*=

and if ] is a ~et of integers such that

(xf. . . .. x;) minimizes (4) with respect to the constraints (7L

then
g+ 5_: a;

ST SN ' . - osr
F(X¥)= {-———m’+2;';\l” jeX—1.

il
PROOF: Let us suppose the contrary. that is

dat+ E i

i forome  jeN-1.
A
el

Then by Lemma 1 we have

g+ a;+ 2 @

Jn‘l"IJ =‘“>_i

il

— < F{X~7).

Because the vector (xF. . . . E AT x71= X% it satisfies the constraints (7) and hence X7 ic not

the vector minimizing (4). a eontradiction. ]

The solutions of the constrained and unconstrained peoblems are related as follows:

COROLLARY 3.1: Let us denote by X° the vector that minimizes 41 and has the smallest possible
number of nen null variables and denote by A% a vector that minimizes (3)-and satisfies the set of
conatraints (71 Then X < X*. This follows directly from the last theerem. ™

COROLLARY 3.2: Let us dennte by X' the vecior which minimizes 141 and has the largest possible
number of non null variables. If this vector daes not satisfy the set of constraints 7) then X' < X*
This corollary siates hat if no solutions of problem 7 zatfy the constraints 2). X* has 85 won null
variables all the non null variables of X' and others in addition. This leads oz 1o consider the following
problem which iz that of minimizing:

L
. iy -+ 2 a3 -
3y . FiX)= ———izl

t ol
bo+ 2 h:x;

e}
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aofbo < aifl;  i=1.2

PO/

9

(10} Iy = {’ bﬁ > 0.

and subject to the new se

(1)

1 of coustrainis deduced in an obvious way from the old ones

#lx . . coxm) >0

7% £ RPN 5 - A%

This problem is referred as prolilem 3 and we denote by (xf, xI, . . ., x%) a vector which minimizes

(8) and satisfi=s the set of constraiits (11). this with the smallest possible number of non-null variables.
Let/ be asubset of the set of integers W= {1.2. . . .. m}.where

xf =1 if iel
,1”.* ={} otherwise.

then we have Theorem 4.

THEOREM 4: The ector &7, . . ., x7%) and the set | described

above must sati s:' the two fol-
lowing praperties. —

I

(12 ﬂ_ﬁj_izf_‘f<§' M —1 S
12) ifg'-?zi;; \.i{g I€
Wl

and
(13) If the integer jel is such that a;/l;= max (ai/bi)

thenef. . . L&, . . ., x.)does not satisfy the constraints (11).

PROOF: (12} is a transcription of Theorem 3. We need only 16 prove that {131 holds.
By Lemma 1 and since adby < afb;. we have :

Vot

F(%*)" .and -

; ~

thus F(xP.. . 5] .. S FGES, L L0

If (13} does not hold. Le if () . . .. tj. .« « x_ksatisfics the constraints {111 Iiwn we sither have

a hetter =olution than the one givea by X* or at least one solution with a smaller namber of non null

variables. In buth cases. a contradiction :csults, ]

We aow describe an algorithm whi~%: gives a solution to the hyperbolic programming proble
with the constraints given in {11), )

We shall describe the information needed at each siage of the algerithm and the proceduere to up
date this infarmation from one stage 1o the other.

ALGORITHM I Arthe 2th stage. the algorithm zenerates a veeter YA= (x5 x%, .

. .. 2%} which
miinimizes 8 in the eluss of vectors that satisfy (115 and that have at most L — 1 aon pull variabies, Bt

AT
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also generates a zet € of vectors defined as follows:

X={(x. .. .. x2)eC, if, and only if,

;-"i I;"";s""i
/ =X does not satisfy (113>

—F(X) =3 for all j such that x;=0

S

;~ FIX) < F(Xs).

Th advance from stage k 1o stage £+ 1 one fsn:vgcz:és as follows:

~=Bet Xrii= Xk

« wxm) withibel

£
i uu

For each vectir X 'eC from the class (X"} of vecters X= i:;, .
—X' <X

PSS

-—E =k

T =l

%‘F{X}é‘

P I I

fnr ai¥ i ﬁuch ﬁmi =0

-

1:,

‘ﬁg{g

W

Let’ us de & define
C;.-.g—- U {i ¥€f, (Y'yand X éﬂt“i sof sat

Xy

tisfy (1L}

L mir Fi¥§<§-‘{3’"*§ wiwerg
el

1 § X ?’EI,{ Y'} aué X zatisfies f}}}}

,“‘cff

T Ck’-_&: =

min FiX).

T oserXE-1=YX* wixere Xtisavectorin&
- 2 g :A .

P .@1;{:%; that F(X*%)=

WC:=4.8et X*= X% ! and stop. An o;ﬁ.mai
i*‘C; .1 % @, gotestend 2,

solution is reachied.

- Atstage LweletY'= (.1, . ﬁi_}and{};’—*{ﬁ;ﬁ‘ .. .0)
This terminates thie deseription of the algorithm.

and satishes (11). This with the smallest pessible number of non-null variables.
PROOF: Let X* be the vectsr which minimizes (8) subject to (37 and has the

sumber. say r, on non-null variab

Letj be the integer such that

xj‘%ﬂaﬁéﬁé; fur all 7 such that x# £ 0.
LA H
By Theorem 4. 7%, . . ., £, . . ., x7) does not satisfy (5). also tx7, . . ., .ij, ..

ilo wing properiies:

THEOREM 5: If thé+ provedure stops ai step £+ 1 then X s s the vector which mxmmxzf*‘ @&

smallest pessible

i—‘i'
H
e

has r—1} non-
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null variables and we know that F(xF, .. .. LxN=FXY) sF (x7} where x* is any vector
that has at mest r—~ 1 non-null variables and satisfies (11),

Also it is easily seen that

i

FixF. . .., .1;* < aad) ﬁgf for all £ such that x:=0and £k #j.

Henee the vector =, ..., I .. L1 isinC, and a slage r+ 1 the vector X7+ will take the valge
X*_Ifthe procedur-: stops ai stage £+ 1 we rconanize that Xe-1 =

The solution of prablem 2 can be obtained by solving
opiimal solution of the -uncons:

X* which proves the theorem.

first problem 1 and obtaining X¥ as the

rained (0. 1} hyperbolic wrogramming If X* dovs not satisfy the

straints {7) we reduce the ariginal problem 10 the problem 3 and use algerithm I

faster procedure would be 1o start the algorithm H a1 stage s+

variables of X* and to set Cy., = X° and Yot = (L1....0.
EXAMPLE: This is the coutinuation of the first example.

con-
- An equivalent and
1 where s is the number of non-null

We want now 1o minimize the function

wiﬁ;iﬁe restriction

12 ds'i‘i a;x; > 18,

i=3

The solution to the unconstrained problem is

®=(0,0.1,1, 0.0.0,0.1,0. 8l
This vector does not satisty the constraint
constrained problem has B=an=i=1.
The algorithm starts a1 stage 4, where C, and X+
STAGE4

(12). From Corollary 3.2 we know that the solution of the
are defined as {ollows:

A= QQunnnn; F(x4=04s6

C,={X% = {001 10000100)
STAGE 5:

[(01110000100)
L(x°) = | (00110001100}

H
H

| (00110000101}

{ (00110010100)
[(01110000100) = ¥,

C:= | (00110001100) = ¥.
1.(00110000101) = ¥,

A%= (00110010100); F(X*)~0.444

W e,

W & N e gy o
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HYPERBOLIC PROGRASIMING =
STAGE 6:

L{Y.)=(01110000101)
L{Y.)= (00110001101)

LiY:)= (01110000101)
{00110091161)
{00110010101)
Ca= (011100001013 =Z
X#5= (00110001101 J; FiXcy=04322
STACGE 7:
L(Z)=¢
Cr-é

The solution is then (00110001101) =X* with F(X *)=042.

{1l Hammer, P. L. and S. Rudeanu. Boolean Methods in Operations Research and Related :freas
- {Springer, New York, 1968).

)




APPLICATION OF THE GLM TECHNIQUE TO A PRODUCTION
PLANNING PROBLEM*

L P.Evans¥andF. §. Geuld §¥

Unireesity of North Carofine ot Chapel Hiff

Genenalized Lazranze Maliiphiers «11300 are gsed 1s dovelop a0 lzarithm for 3 type of
multipreduct sinsie peried pradsciiaa planains proliem which invalees discentinuiies
the Eved chaer satiety. Several prepetties of the GLM lochnique are desclaped for this
elans of problems and from these praperties sn alcorithun is obtgined. The poblem of re

selvmnz the zaps which are cipased by the CLA] proeadure s considerad. and 30 examele
invelvins 2 quadratic mat{unﬁsm5ﬂ§%rcdmﬂri§=

: 1. INTRODUCTION

This paper continues and extends the type of investigation reéport=d in an eaclier paper 4] deating
gﬁk appéiﬂaiiﬁﬁg of &:ﬁeﬂ&eﬁ L‘xsrarﬁ iiaﬁzpliefﬁ toa g&ss of 9@6@3@5 ;}3233;3: ff};sk‘ms f&éf

L “.| ‘l“,“)‘r I !‘M ' i M‘ l\l‘ LY !Wm!"m [ i R

3 ?inﬁ;pher— s was émlnpeé %% i‘-t‘f’féii 3;3 for ﬁig general @iﬁemazxﬁ} pregramtping frs?:;i‘em.
3 P
R

= s.1. gsi=bi=1 .. . m

where 1) is some subset of B= on which fand 2. = 1. . . _.m. are real valued. The principal part of the
GLM technique requives solution of the problem.

i 4
fll ‘ el

il s
max  {Flx.2}]

‘.‘ |"|v‘ I ‘l

where F is the Lagrangian,

Fiv. x1=/fix) —§ Az {x).

ey
F==

and the multiplier values A;. are fixed and nonnegative. Everelt proved that if x* maximizes Fix. &}

il ,.!, h"“" il yl!,hlz

over the set /1. then x* is optimal in problem (P) modificd by replacing the value of &; with 4x%).
5_? I. - . .. . In order 1o solve tP) fur a specific . it is easily shown 10 be sufficient {2]. [6] to find
ai

*2 0. and an x* which maximizes Fix. A*) over D, such that gix®) < &, and %jig {x*)—5;=0.
=i.....7.

In this paper we consider a singie period. multiproduct preduction planning model. for which
we develon a pmcedure for obiaining a set of mulliphiers. A7, for which under - 2riain conditions the

™™

Kt

i

“This werk was sap=ried by the Office of Nasal Brsrarch, Contract Yo NODBIS-67- 36321 -0 NEGIT- 0951
'im%é&w Adesinhtration. Usheersity of Nontk Coyoling 2t Chape! HEL
HDepariment éii?ﬁsw.iweg%ré’\m& Csmedinaat Chapel HiE
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60 L P.EVANS AXDF. 1. GOLLD

above optimalbily vonditions are satisfied. The model is related 10 byt different from the one investigated
in [61. A zeneral algorithm is deseribed and a2 specific case involving quadratic cost functions is explored
in detail,

In the general model the objective i= profit maximization. unit revenue is constant, and even-
thing produced can be swold. A constant pruduction rate is assumed. each produet produced requires
a setup time, and the 1otal time available is limited. We asseme the cost incurred = producinz a
product can be expressed as a function of only the toial time {seiup plus production) allocated 1o
that preduct and that the cost of time allocated is ziven by a convex inereasing function. This mizin
be justified by an assemption that prices of aggregate inpuis fincluding possibly labor. raw materials.
{facilities. etc.} are Increasine.

For cach producti=1. . . . K let

x:=total production hours. excloding setup time,
K== yevenue per production hour (> 01
5 = setuptime = 0.
€;(¢) = 2 strictly convex function, defined for all £. nonnegative and increasing for £ 0: C;(£) is the
cost of allocating « total of £ hiours fo product {. We shall assume G0} =0, 7 is 1wice
neusly differentiable. and C;{x;} unbounded.

i3

%’

s

&

g0

#£= 2 consiant giving the total number of hovrs available.
The problem isthen

X
(L1} max ¥ [Ru—Cilx+ 816153} ]
F13
. E
{1.2; st Y n+diniSl=n
et

Sinee this version of the model contains only one constraint we will need only one Lagrange muhiphier.a.

2. MAXIMIZING THE LAGRANGIAN
At this point we wish to employ a nondegeneracy assumption that for each i if product / were the
only product in the problem. then it would be profitable ts praduce that product up ts seme positive

1

c i{sg
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61
level. That iz, for at least one sslue of x, > 0 we have

Rix:—Ci{x: =53 >0
By the fact that {; is a convex strictly increasing function with value zero a1 the origin, it follows that
-i=1. . . .. K. This sitnation is exhibited

in Figure 1. from which is is apparent that if K; were not zreaterthan £(S;} . thea 8o, — Ci{n:+ 5y < 0
for cach ;> 0"

For the prohlem under consideration the Lazranzias funetion 1= given by

Fis.kj=

e

TR — Az, — Calx: 5 34x;:)8,1 — ABix:38: ).

iy

=

3

the production plans which maximize the Lagrangian. Fori=1. . . .. K

cilR;—R3~S;. HOsA<ix
2.1 A= BoralBi—A)—S;. ira=Ak;

0 A=A

Fan
=
I
%

possible alemative values of x*(A} for the ~ase 3= i,.

3. CONSTRAINT AND OBJECTIVE FUNCTION PROPERTIES

In this section 1:7¢ consider the eflect in the production lime constraint of using 2 prodoetion plan
from 2.1 which aoximizes the Lagrangian. Define:

7T{a} is then the agzrezate time allocatcd 1o production and setop by the plan £¥14 ). Because of the
existence of allernative optima in é2.10 T(X} = muliipic-valued for some values of 4.5 In this eaze the
symbod T{A} wiil be used to represent any one of the possible values. Discrimination among these
multiple values will be provided ax the developmentis reqmire.

Rarefr.— L5 - 8,1 2 sesmeaie fenriien, wr hate

L $8,} the rigfs Band oide of 1R Hprgraiss = mezathe

§ denates the Bnerse o cen of €11 That i O] 18 =izl (2} = £ The sssumpiiens o 0} sosrester thay

3 Thesr ssfes of & 22

. Shwe Bmemmrrims st 2 hand 27 Je we
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L F.EVANS ANDF. 1. GOLLD
PROPERTY 1: HTA)>0and A" > A then TIR I < T{AL
PROOF: If Tia) > 0. then x5{3) > 0 for at least one i. If 273> 0. 2215 implies A=k and
xFiki=coil;—-A}—-5.

al FA<A <), then x7{1°} < x71X) either because xFiA]
increasing function of is arsument.

by IFA; <A x5A"3=0.

PROPERTY 2: For A sufficiently large. TiAi=0.

PROOF: TA>max [Nizi=1. . . .. K].z7a)=0.i=1. . . ..K.

Fgf??ﬁﬁ'f‘i 3: Let A > 0 be fixed and let 747} be a permutation of the integers 1. . . .. K. such
that A== 3%,;-;‘ - . . =ksewss For convenience it will be assumed that these inequalities can he
taken as strict, Also define A=ie;=0. Then

13 For -igi.—*;{ i< i:ig;. f=1... .. K.Ti-} is a single valued continueus. strictly decreasing
furciion.

2} At A= Ao I=1. . . .. K. Tt-} has a discrete jump of the amount czg;{Rz0y— Aeissh.

31 Ford > Aou,. T(A) =00

PROOF: Conclusios 3} is 3 restatement of Propeniy 2. Now consider part 11 and lot & be any point
in one of the open intervals {(Azgs). Aepd I=1. . . ._K.Since A< i:g; it fallows from 2.1 that for
fﬂ!‘f*—'i - .. K.

}

2 an

T~

§ drops te zere or hecause o4~

As A varirs on the open interval from Azg_s; 10 Azgn. TTR) is sarictly decreasing and continuous. be-
cause each of the functions ¢;¢5 is increasing and continoous in its argument. This establiches
conclusion 1L

Now ﬁ:ﬁg&-‘; the case A= A.e; for some Jefl. . . .. K} By 215 either x2 {2} =0 or x5 (A=
€;§,§§§§ Aztrs) — S=ers2 however. we need nat be concerned at this point. with the precize salne of T
at 2 =Axs. Rather. we focus on limits of T s A approaches Ao from either side. In particular. as A
appreaches Az from below we have

Em  xid)= ek Ron— Azisst = Seens.

E*Ron
and thes
£ -
§;m ?§§§ =S‘ fggggg_’g‘;“ i;-i";?i
3.1: [, Yo ;;if;

un the other hand as A approaches Axs from chove we kave 13, a0 fora> Ao, and

5
3.2 §_§¥ Fixi= ;S: reeaf Hogy ot YR B

AN e 5;;; H
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where F{™} denotes monolanic converzence from below {abovel Eguarions G.15 and (3.2) imply
that T(-} has a discrete jump at A i}f the amount ez K=n— Az} . completing the ;szis-f.

These properties of T are ;mﬁzsgai on Fizure 2, where the T values at the points A; are unspecified.

F :?{‘
X ~ %
) %203 Caen) = Py~

7 - /ﬂ\
5 G e | 1

32

- -—"—ﬁf"’v:-‘ﬁf"__“'" A
A e 0 e o
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On the basis of Property 3. the main pontion of an alzarithm for the orizinal problem in (3.1} and
137 can be stated. Increase & from zeru lo some valie X such that T{l} = if pessible. Then the
assacisted production plan is an optimal selution. This fellows from the pruperties of the Ceneralized
lagrange Multiplier technique proved by Evereti [5L If thi= procedure is nol possible, then w is said
16 be in a gap. This means there i an %fl. . . .. K} such that when A=X.q, each of the possible
sales o TiA) i either <w wr > but forcsch e> 0. TIA—ei > wand T(A+€i<ux. We can in
this ease comstruct lower and epper bounds on the sptimum solution and thereby fusther refine the
alswithmforthe coce shenxr il inazap.

i*;:fsné fia‘ ﬁ% @ir of vanvenience that the preducts are aumbered in increasing order of the
- . . <3is. The following resull will e of interest.

5
a i g-=§‘=§_; E8;— Asd. the optimal ;zmizﬁ;:;f plan =

FE
.
N -

gy

+i... Al

§*§¥§3¥-’. The conclosions follow from the f2et that bath plans maximize the Lagranssan for
A= A, Thus if the ressurce availzhility s =&, the plan in 2) must be optimal, wheress i r— o the
pian i bi s oplim %éﬁmﬁfﬁf:iﬁ? progeriies of the GLM technigue,

Far the case w <w < #. we will use

I wmu

e the resulis of Property § to develop %ﬂ#r; ard upper boonds
an the optimal value of the éz?ﬁe? fonction. Define H{x) = maximom profit anss

inshis for resouroe
{evel o fsre Figore 30

We have from Properiy 4 tha
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Feaxe 3l

and

M) — Mz =RileslR: — A3 =S} —Cl e, (R— As} ).
From resuhts in [6] it follows that the function 3{-} has a linear support with slope A=A, at i and
f#:thatis

g+ M@ =N ix}). alix

IIMI
Iumm'

Mll

o [t==
§§§H¥iis Mix) = i) all e

By substituting x in the first of the above inequalities. and # in the second. it can be seen that

u\lu

and it follows that the two upper estimates in 3.3} are equally tight upper bomads on M for welie. 21
%t will now be oseful 1o define the real profit functina fer =1, . . L K:
Rﬁtf‘*féz_“i’s'sf. dx>0

Piix:i=
EE =0

,ummmmm

Thus. F: sives the contribution 1o tetal real proft aceruing from the allocstion of 2; time units foxclad-
inz setup) 1o the production of product i, It i= clear that as x; appreaches =10 from the nght. P, ap-
proaches the imit —C:(S:h Alse. for x: >0, P, is sirictly concave with a unique global mavimom &
£, which satisfies

R:i—CiHE+8,)=06. worciRi-5=3%.

There exists such a value becanse €] is sirictly increacing. unbounded. asd € (5. <&; by the non-

H _%ﬁé%&v!&ﬁﬁﬁgﬁgiﬂg#fﬁ;g%?’%%aﬁgigﬁﬁéﬁiﬂﬁ
ernmydeird = 1R wr bge Semifed rewewner Ivele whixb bemnd 2 o,
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degeneracy sssumption of section 2. Ake note that P{{x;} > 0 for 0< x: < %; and henss 7, iz increas-
ing in the range (0. %0 with a unique zero in this interval, say a1 22 Then for product i to make a positive
ceatributien 1o tolal profit. meie than 17 hours must be allecated to aclasi prodtuction {excluding setap)

of product i. We alss note that in the case where r2{Ai =, {K.—A:} ~ S,_ we have 2%{1;) < I; and

~
L
=
>
i
o]
J
*
i
&
g

ﬁrn,- :sgzsgzéz time remaining Le. & —®iso :i:a} pasitive pmsﬁi ﬁuiﬁ be made rom the proguction of
iﬁ—ﬁg“f we £2h increasze the profit from 1H % to Mz} + Pelx:d

Fﬁ‘ﬁ:ﬁﬁ i igsﬁsmgigéas—

Ty

3.5} H<n<alli—2)—-5%<g.

i&gm&fféig}
saﬁgweiﬁg.ﬁiﬁﬁ;;gm
‘uppose ir i= In mggﬁﬁr@mﬁggaﬁ;ﬁ@gégu:ﬁ%{x{i%
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1. P. EVANS AND F. J. GOULD

A more complete attempt to resolve gaps is possible; however. 1t would, in general, require com-
binatorial Sétzhniqul;s which havé so far bicen avoided by the use of Generalized Lagrange Muliiplicrs.
The fact that a solutien via GLM metheds cinnot be guaranteed for each w is offset by the important
fact that a great deal of parametric information is réadily available about the influence of various valies
of w on the optimum value of the objective function. In particular. let us refer to Figure 2. In the first
step of optimality analysis, thé Gnalyst should compute-the K values of ;. Recall that these are the
points st which the T function is double valued and for each i the two 7 values specifv a gap in the right-
hand side. By compuiing the two 7 valies associated with each A; one can immediately identify those
values of w which fall in gaps. Also. the optimal product mix can be detesmined without further computa-
tion for any value of w notina gap For such values an optimal plan can be computed by the algarithm
below. Fer those values of which do fie in a gap, it is often the case that in actual problems there is
some latitude in the specification of the ;igllt-}xand side. In this-case it may therefore be possible for
the analyst tagain with refererice to Figure 2) to specify an acceptable value of the right-hand side
which does not fie in-a gap. and hence for which @n optimal plan ¢an be computed.

We can summarize our proposed algorithm as follows: ’

1) Starting with A==0 increase A until we reach 2*=infl {x :T(A}) € w}.

2) I T(A*) = w, stop: we lizve an optimal-solution. Otherwise continue.

3 T{}:“} <1, To saprove the solution. determine the product, 2, for which A% 4, and compute .
w a8 defined in Préjierty 4. ’

aj Ef o< :g-%-.—:‘;% Si. stopy use the ;-)la?m for =1 as an approximate solution. ’
b fw= wi %2+ 8. solve the-associatéd ausiliary problem. {3.10), (3.11). 3.12) by finding the
Aa.of Prop =ty 6. Use the resulting plan as an approximation.

4. AN EXAMPLE-THE QUADRATIC CASE
It this section we wish o apply the preceding developments to a small example in which the cost
functions C;(-}) are all guadratic and of the form

. . I I
Cidu+S1=ailxi+ %) 5 (i + 80
where a;. B; > 0. We will demunstrate the caleulation of the critical values A; and the use of the algo-

rithm to obtain preduction plans for a range of resource values. Consider products with the following
data: - : )

i S R; @y Jif
I 3 15 1 i
_ % 8 40 1 2

For the quadratic cas=. we have

Cllx+8) =i+ B+ 38)
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thus
N et S
ey} = G

Now we consider the determination of the critical numbers A;. We have from Equation {(A.2) of the
appendix

Cilxi. M) ={Ri—-A—awintS) *Q {a+5— A8

By definitios. A; is the value of A such that G; has a maximum vaiue of 0. which implies that the cqua.
tion Gi{x:. A;) =0 has exactly one real root. The value of A for which this oceurs can be determined by
setting the discriminant of this quadratic equation to zero and selving for A, Thus we seck a solution to

the following equation in A:

‘ /
(4.1) (Ri—ai=~BSi— Ay —28; ( e+ A)Si+

b rm
y, L ] "
il
©

“The roots are

A=Ri=a; = Efgﬂfﬁ.bi
1t is easy to show that

(4.2} 7 A=Ri—a;— \f:?ifﬁ.sg.

and that if Ri—<C;(Si))=R: —{a;+B:Siy> 0, then 3\,';‘0. see the lemma -in-the appendix. For the
data tabulated above. we get the following:

I A B ?’;E
1 1.3 22
2 32 3.3

Also included in the above table are the minimum profitable production quantities x7; these quantities
are chiained by solving the equations

- Pilx:}=Rixi— cei(x: + 84} "% (i +5:)°=0

for each i: the roots are

= E( f—as—B;sz?fﬁ;4a;)2—23;3;?;).

‘and x{ is the smaller of the two roots.

"t “
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70 J. P. EVANS AND F. ). GOULD

With the values of X; determined, we consider now the problem of obtaining maximum profit for
a given availability of time. .

0<A<A,=175:

4.3} 7 =9—x: x¥=1L5—.5A
Thus T(3) =33.5—1.5A for 0 < A < 1.75. Hence at A=A, we have ©=30.875, and w=18.625, where
w is computed by setting x,=0 and x:=11.5—_5;. So for 30.875 < w < 33.5. the optimal solution is

obtained by finding A, 0 < A < 1.75. such that the xJ from (4.3} satisfy

i+l +13=uw.

@4 xF=0; x¥=115— .51

Thus T{2)=19.5—5A for L75<A<3.25; at A=X: we have @#=17.875 and w=10. Hence for
17.875 < w < 18.625. the optimal selution is obtained by finding A, 1.75 < A < 3.25. such that x from
{#4) satisfy xI +8=w.

Now consider the gap in T{A) which occurs at A=1.75: We can compute two points of the function
Mz}, namely -
- M%) =M(30.875)=80.98

M(x) = M(18.625) = 59.48.

Now, using the results i Equations (3.3) and 3.4). we construct the following upper bound on M (i)
tor 18.625 < < 30.875:

Miw) =59.48+1.75(w — 18.625).

We know that the minimum profitanle production of product 1 requires 7.22 (productior _.us setup}
time units, thus suppose 25.845 < w < 30.875: for definileness assume w=28.625. Th 1= vsing (3.4}
and the discussion following (3.6} we have

4.53 A8 = 1(28.625) = 76.98.
Now by emploving the results of Property 6 and the auxiliary problem in 3.10}.13.11), and 3.12) we can
refine the lower bound. Selving the auxiliary problem via Equation (3.13) vields the following results:

-

A=3325:47=575: x

Ve i

=9 875

P{xy) + P{x:)=75.33.
Clearly the profit exceeds out lower bound in {4.5): in fact it can he shown that this production plan is
optimal for w=28.6325.

Finally let us briefly consider the gap in T(A} which occurs at A=3.25. We have T(3.25) = 17.875.

whereas the minimum profitable production «f product 2 requires only 13.75 tetal hours. For
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11.75 <'tv < 17.875. the approach suggested in (3.13) would vield a solution such that r=w—8. For
1 < 11.75 the discussion of section 3 suggests no detailed remedy: however for this example it is clear
that product 1 can be produced profitably provided only that o > 7.22.

5. CONCLUSION

In t!u: foregoing discussion we have developed aud demonstrated an application of the Generalized
Lasﬁm"e Multiplier technique to a certain type of production planning problem. Particular attention
has been devoted to the issue of resolving gaps in the function T(A). Nocomplete solution was provided
for these situations: however, useful bounds have been constructed and a procedure for refining these
bounds was propesed. The primary goal of this paper and its companien [2] has been 10 exploit the
analytic (i.e.. non-combinatorial} nature of algorithms based on the Generalized Lagrange Multiplier
technique.

An important property of the madel in (1.1) and (1.2} is the fact that the critical values of the
Lagrange Multiplier. the Ai. i=1. . . .. K. can. in principle. be calculated directly.® In fact in the
quadratic case, a simple closed form expression was pruvided for A; in Equation 4.2}, The method for
exploiting this information was discussed in detail in Section 4. Furthermore, for the quadratic case.
since C3(-) is linear. itz inverse c;(+) is likewise linear. This fact can be exploited in planning computa-
tions for the quadratic case.

Several possible extensions of this model and the .lgorithm are readily apparent. In particular a
collection of one or more material constraints might be added: the current model assumes that any
time-feasible model is also material-feasible. Other extensions include overtime andfor subcontracting
afternatives. The madel in [4] is of the latter type.

Appendix

MAXNIMIZING THE LAGRANGIAN

The Lagrangian. F(x. 3} &= given by S‘ Fixi. A}, where Fi . K- < K- = R, R - denoting the non-
negative reals. and ~

Al FAu A= (R, —hixi— Cla +8(x;:)8:) — A3{x,15.

For fixed A = 0_ it is required 1o Aind the values of x¥{0 ) which maximize Fix. A) over 2 = 0, Since the
fagrangian is separable in the @ variables, it suffices. for fxed A. to find the values of xF(0) which
maximize Filx, Ajovergy=0fori=1. . . ._K.

Foreachi.i=1.. . .. K. it will be convenient 1o define the auxiliary functionG, : KR <K — K a=
A2 i M=/ -2)x—Ciln=8)—2AS8,.
The properties of £7, will be relevant to the maximization of F, hecause of the following relation

) . Gil, Aj. >0
iAd: Filu. My =
A% (v A { 6 .x=0

“This was gt peccilde in the meded considered in 8L
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We now consider the following possible ranges of A values and derive the optimal plan x*{A)
for A in each range.

CASE 1: A = RKi— €[ (5.). Recall that R, — C](S;} > O by the nondegeneracy assumption of section2.
CASE 2: 0s X <R;—Cj(S)

CaseI: A= R, —C)(S:)

In this case it will be shewn that ;{x:.A) < 0 for every x; >0 and nonce. from

(3. it follows
that x7 {A) = 0. The proof follows from the concavity (in x;) of €i{x;, A). which implies

t! iy

Gidn A) <6001+ zdr- GAD, A xi=—CAS: 1 — A8+ [Hi— A — C;fS;}}Is.
which is negative fer all x; > 0 if A = R;— C(S;). We thus have shown

Ad) A= R~ C{S) D x*A) =0,

Case 2: 02X < R;""{?;{S;}

In this case we first observe that {;;{x;. A }assumes a unique global maximum at £{A y=¢;(Ki~A }—S.

s

where ¢; is the inverse function of £]. The reasoning is as follows. In section 1 it was assumed that
C; (£} is a strictly convex functivn defined for all £. nennegative and inceeasing for £ = 0. Also, Gi0=0.
G; is twice continuously ditferentiable, and C;(x;) is unbounded. It is thus apparent from (A.2} that,
for fixed A, &;{x:. A} is strctly concave in 2. Te find a unigue global maxiniom of Gi{x:. )it is necessary
and sufficient to find a solution to the equation

d N
é;f__; {;5{_:& h} - i},

where A is fixed and x; is the variahle.
It is thus required to solve

Ri—A=C](>;+5).

My
P

Recall tite Case 2 assumption that the range of A is 0= A <R, —~ € (5;5. This implies £—A > {(

Since €] is unbounded and strictly increasing ifrom the strict convesity of L) it follows that thers
exisis an x; such that (A.5) helds. Using the propenty of the inverse function. o, we have
Ri—a=C(xi+8) S alli~A)=a{Cix + 831 S oK~ Ay =x,+ S,

That is. for each fixed A, 0= A < H;—C](5;). %.(x;. A} has a unigue gohal maximem at the point

EfA)=ci(Ri—A) -5,

=2i.

Note that the Case 2 assumption that 0< A< R;—C(5:} inplies B,—A>T!{S5:} which implies
= ci{f;— &) > 8, which implies £{A) > 0. We can thus conclude from 3.3} that if G

:;ig?g-“,. A_:; }gn
xFAY=EdX): i GAEAXR). Ay =0, x A} =0 and i C.{&1R). A} =6, 1511} can be taken as either
A ot zeTO

Now we show the existencesf aA; inthe apea interval (0. K; — €] (S;}); with the properties

i _‘ 1) GAEAR)L. X)) >0 H0<a<i;, .
i) G:&:4h:), 7)) =0,
= (i) GAEAA). Q) <O A <a< R.—C{5:.
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Observe that the interval {0. R; —L(S5:}} is well defined since the nondegeneracy assumption implies
that K;--C;{S:) > 0. In case {i} above. it then follows that

(A6} 0<A<hi & xf N =&lrA)=ci(Ri—)\)—S..

In case dii) above, it follows that

M\
lm

AN A=A DM =0or xF(A)=&(A) =cdRi— X)) —

ie.. altemative optima exist. In case (i} abeve, it follews from (A3) that

")

A8) L<A<R:~CiSi =2 xF(Ri=0,

For the case A=¥. the nondegeneracy assumption implies G:{£:(0). 0) >0. and hence
x50} = £4{0) = c:{R;) = 5. Combining {A.4}. {A8). (A.7). {(A.8]. with the case for A=0. the following
rule kas been established for eptimizng Fila:, A}:

cidBRi—A3—35;, s A<A;

xF A} 25 D.orc:AR.—a)—8;, i i*—-:\;
{ 0. fi> 35.

This 1s Equation 2.1} in the main body of the exposition.

We now present the lemma which preves the existence of the number A; alludeu to in the above
rensarks.

LEMMA: Assuming R, —C[(S;) >0, there is a X, in the open intereal {0, R,—C (S,)) such thar
the ahove refotions 01, (). and (1) are rafid.

PROOF: Let £(A) =ci(Fii— A} — S, and for Ae[0. R; —C(Si1] define the function HAN=GAEAAL. A).
It is clear that HiiA) is continucus. since it is the compesite of coutinuous functions. Alse
Hi {0} =G:A£:(0}. 0y>0, by the nsndegeneracy assumption. and HAR:—C;(8:}}=—Ci{S:3 < 0.
Then by the continuity of H.. there is a aumber A0, R;—C,{5.}} such that

A=0=C08:43) &)

o 4

Hi

which proves iiL In order to prove (i) aud i), it iz only necessary to demonstrate that H{}) is a de-
creasing function for Ae{0. R:~C (S)). Lat 0 < ' < A2 < R:—C[(5)). and (M) =R~ 151 =8,
j= 1. 2 Then we have

HA = (R—=1)EM) ~C{ &R +5) - 48,
>R —ANEAT = Ci&ida 5}

L2345, — &8
>R = ATEINY = CilEA1 8 )-—:‘55531’5{3?}

The first incquality fellows from the fact that £, 1 1s the unigue value of x; that masimizes Cii{x._ A%},
The second incquality is due to the fact that ' < A% and £;{0) > 6, j=].2 Tixis stabiishes the mono-
tonicity of H; and completes the prowof of the femma.
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ABSTRACT

Supprre 2 sives ot of jobe ha~ 16 be procesoed on 2 sadibptrpese feality shich hac wan
st srflings or <13te=. There i~ a choler of <tates it which 1o process 3 b and the st of
prvers<ing depends on the <1ate. In adddion, thete 2 ales 3 seguence-dependent changesver
£2=<t hetween ~1ste< The problem s then to ~cheduls th= Jals_ and pick an sptinmm settins
far each pob. <o ac te mimimize the sverali sparalinz costs,

Ads ic pramammine medde = developed for <fasinine an aptim=! sslntion e the
grddem, The pedel &= then extrnded ssing the methed of sucor<ebe siagusmations with
2 view ta handling larse-dimessiunrd reblenis. This extension viclds =ood dmt not neces-
sarily optimale salmtbms a1 2 «shifiess cempuiatiens! <mving waer the direet dynamic
presramming apideach,

IXTRODUCTION

This paper deals with the problem of scheduling ¥ jobs on a single “multi-purpese” facility which
has various adjustable settinss that can precess a variety of jobs. Let us define a “state” as a unique
arrangement of those settinzs. There i1z a chwmice of states in which to process a job and the cost of
processing depends on the state. In addition. there is alke a sequence-dependent changemer cost
between states. The prabiem is then 1o schedule the jobs, and pick an optimum setting for each joh.
so as 1o minimize the overall aperatine cosis.

Buretail [3] has reponed that this moblem was epcvuntered in the manafacture of steel tubes.
Anuther area where ane is frequently Taced with *his type of problem is in a machine shop. Typically
this consists of 2 number «f machines some of whick are likely 10 be multi-purpase fotherwize called
general-purpeset machines. In many real life machine shops these mulii-purpese machines work quite
ndependently «f one anotlier. and in these cases it is possible 1o brezk down the whole problem of
scheduling all the machinss inte indepradent sub-prblems. each pertaininz to a different malli-
purpose machine. These subproblems then resemble vur scheduoline model

CHARACTERISTICS OF THE PROBLEM

The “sequencing’ prablem may e characterized by the following assomptions:

1. There are N given jobs that are 1o be prcessed.

2. There i= only one mulii-purpese machine ifacility available and it has W different "states”, At 2
given time the machine cannol be in more than ene state. Morcover. a siate can handle only one job
at a time,

3. A job iz completed snce @t hac heen :f swessed by a singie state,

4. Each job can he procesed by the mackine in at least ene of the states and. additiorallv. it may be

pussible to process more than s of the _;san with a single <tste.

=]
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5. All jubs are considered equal in importance. Thus there are no due dates. priorities. or rush
arders,
6. An aperation ence stanted must be completed withoul interruption,
7. There are only twao types of costs:
at €,;= Processing cost of job i at state j. (I it is infeasible 1o process job i a1 state j. the
symbol 0;= = is used.s

bi £,.,= Changeover cost from state g 1o stale g. {h,, and fg. might have different values.s
All costs are assumed to be known without error.
The objective is to find 2 solution as a sequence. Q. of states and an assignment. 4, of jobs 1o states
which satisfie> above assumptions and minimizes:

Z=§: f;j+§ Iig.

where the first summation is over 2ll pairs {:. j} such that { is assigned to ] in 4. and the second sem-
mation is over all pairs { . g) such that i immediately preceeds g in (. ieJ: ). p. ge5_ where f and § are
the =ets of all given jobs and states. respectively.

This optimization problem ard variatinns of it actually arize in many industrial situativns. The
model also fits situations that are entirely different. A 1ypical example appears below.

THE DECORATOR'S PROBLEM

A decorater wants to purchase Y different anticles for meeting his present contracts. There are i
different stores situated in M different Jocations, from which the ariieles may be bought. Let 5 be the
cust of travelling from store p tn store g (note that 4., is not necessanly rqual 15 k.1 and o, be the
price of article 7 at store j. If an article { is not available a1 store j. the symbel 0;;=x is used. The cnst
matrices Uy and H,, are assutied to be krown beforchand. The problem is to find which stores are
12 be visited, in what sequence. and which anicle or anticles should be bought in each o as to minimize
the overall cost resulting from purckase and travel

I the state for vack job is fixed. the.. oy == fur all £5 except =77}, where § is the set of all
siven states and j({} i= the anly teasible state where job 7 can be processed). then the total processing
cusi iz 3 constant. The problem of minimizing only changesver cost among the chosen se of states
is 2 travelling salesman problem isee [2]). Thus our problem can be thought of as a zeneralization of
the travelling salesman problem in which the order of 2 state as well as the job fiobs) to be done in
that ztate must be specified.

Annther machine sequencing problem related 16 the travelling salesman problem i= that cen-
sidered by Gilmore and Gomory [4]. There are X jobs 1o be sequenced un a machine having a state
deseribed by a single real variable 5. Each job has two associgted numbers . and B as it= staning
and ending states respectively. I joh § follows job 7, the atate of the machine most then be changed
frem 8, 1o A; and the cost of this chanze is ¢ Note that in Gilmore and Gomory's problem there is
ne chojee of states for a given job.

SEARCH FOR OPTIMAL SOLUTIONS

Burstall [3] has given a heuristic solutinn for this preblem which works reasonably well for the
particular case where the differences in the prodariion times tcostss for a given job in varicas states
are small cempared with the changesver times icn<r~t beincen states. Burstall proposed 2 branch-
and-bound technique as the search procedure for which Lommnicki [5] has suzzested a simpler methed
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using Boolean algebra. Note that none of these methods can puarantee aptimal solutions. Also when the
cost matrices are not of the desired type their methods vield selutions that are far from the true optimal
solutions. However., no trace of any other solution schemes for this prablem has been found.

With a view to iinding an exact selution te the problem we developed a zere-one Integer prograin-
ming formulation. But computationally, this appreach did not seem to be very useful. This was mainly
because 3 large nomher of sublour constrainls were necessary even for a reasanably small sized
problem. Moreover the eompuuter time required (o identify an optimal solution was. in general. ouite
ligzh. As mentioned above. this problem resembles 2 seneralized version of the travelling salesman
problem, for which i s known that the intezer prozramming solations are not paricalarly soitable
[21. In their sorvey of the travelling salesman prebifem. Bellmore and Nembauser {2} have repurted that
for probiems of less than or equal to 13 cities they would use dynamic programming So it 1 fegival
to think that an apprepriate dynamic programming scheme might be suitable for solving “sequencing’
problems of at least small dimensions. The expected Bmitations «f a dynamic programming appreach
is usually due to she curse of dimensionality. It will be shown in a2 later section. howeser. how this
difheulty can be surmounted by using the technique of successive approximations.

A DYNAMIC PROGRAMMING MODEL
A step wise dsnamic pregramiming formulation that obiains an optimal sslwtion to the problen.
is discussed below.

1. Stuge Dariabie- K — Kth choice of job has te be made: K—1 jobs have alieady been jrrocessed.
K=1.2.... X\

State ariabies:

o

§) is~—the macninc state used instage K~1. ix=1.2. . | .. 3] {f 3 starting stale s not giren
imagine i;= D — a heticious state, s.L. &p ;=0Fi).
iis yx— the subset of jobs already processed. e y2=
3. Decision Variables:

oy

XseXz. - - .. Xx 1}

i) xx—the jobto be prcessed at stage KL =102, . U N
i} i, —the machine state ta be used at stage K. i, =1.2. . . ..M.
3. Transition Relations:

i ¥ 7 §'§{'§I§-

5. Consiraint: xs€vs=1%. . . - 2a :}.

& Fconomic Fanction: Minimize Z=% V {r. ., +58, .}
gty Ve, T
where €,;=cot of processing job ¢ a7 stare 4

k. =changesver cost from Mate p 1o date g

_ Rerusrenre Refatian:

Fuliz. yx) may be defined as the minimum scheduling cast stasing with the machine in machine state
ix. when the jbs that have alrrady been processed are known ithrough ¥;5)
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IMFLEMENTING THE MODEL IN A COMPUTER

The state variable y, may be represented by an N-dimensional vector (1) vach element of which
correspunds to 2 unique job. Initially, before any jub has been processed. all the elements of I arr
made equal t6 zero. As soon as a job is precessed the corresponding element in § is given a value of
one. Thus yx will be represented by a vector whose K — 1 elements have a vahie of one and the remain-
inz N — K+ 1 elements are zero. Note that there are { %, ) of such vectors. only one of which represents
¥s.

In urder to reduce the cost of storing all these vectors. we represent each veelor as a binary number
and store the corresponding decimal number in lieu of storing the whole yector. There will be as many
as 2 =1 different vectors corresponding to 2% — I possible values of the state vardables y.(i=1.2. . . .
n} when the number of jobs in a problem is n. These vectors may be treated as binary numbers and
represented by the decimal numbers 0. 1. 2, | | .. 2=~2. Unfortunately. the decimal numbers that
correspord to the possible values of the state variable (y5} at stage K are. in general. widely scaitered.
This creates a problem as to how 1o collect the numbers corresponding to the possible state variables
at a particular stage. This may. however. be done by arranging the decimal numkers in zuch a way
thai the number of I's in their binary representations are in nonincreasing order. The first %)
numbers from highest down would represent the domain of .. the following (,*.) numbers vaould
represent the domain of ¥y 20d s 6n.

Exampde 1:

If =3 the numbers would be arranged in the following way,

Stage K State rartable | Binary Number | nf Decimal
T Equivalent

3 - R S O B 6

i a4 i 2 5

a i i 2 3

2 ¥z H 1] & H 3

4 i o 1 2

: 0 0 i i i

H 3 ) 1] 1] o 0

“2s = Beof 1's in the Binorns rejroseniatien,
Thisc concep! may be applied 10 the dirsts rans<ithn oelation a5 wefl A stage KL o the fth job i
processed we put 3§ in the column § of the sector that regre=entz 3% to obtain a nes vector forsa.,.

The equivalence of this aperation in our representation is simply 1o add the number 2 o the decimal

repre~entation of 1, o zet 3 new decimal pumber e hich will mos repreeni sa ...

Example 2:

lety:= landw:=3

Then 32 w2l 3-5 1= F P =5 aud the binary sepoesentaiion 1100 of the derimal number 3 deoes

confirm that the jole | and 3 are over
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LIMITATIONS

The algorithm was tested an an IBM Model 360/65 and was found to work well for smail and
medium sized problems. Bmstall's [3] jllustrative example of 8 jobiz and 19 states was solved in less
than 19 secondz 7 CPL time with a core requirement of less than 100K byvtes. Unforiunately due 1o
computational Iimitations the use of the dvnamic program becomes restricted to problems having
12 jobs or less and any practical number of states. Neverntheless, with the use of dise storage it will
be pessible 1o handle proklems of up to 13 jsbz with a reasonable number of states. The dimensions
of many practice! oroblems 12 gaoted by Barstall from factery reconds® may be expecied 10 be rea-
sunably ~mall so Uil an rxaet optimal solution may be obtained by the abuve formulations. In view
of thix. the p<iriction on the rumber of juls dues Bot appear 16 be disesuragingiy strinzent: bowever,
the folloning shternathve solution xcheme has been develoged 1o 1ackie problems with a sreater number
of podix,

EXTESNSIONS

In order 16 svervame the dimensionality difficulty we propose to use the method of successive
apuroximations {1 p. 78] Starting with a kaeun feasible <olution., one way 1o employ this appreach
iz 1o consider Imtially a subproblem of sequencing oniy pdeds (p = 3 ssitably choen oumber = V3
te all the available ~states. and seive the sobproblem while the remaining jobs are ket fixed in the
sehedule. Then another scbhproblem with a Jifferent set of pisbs i chosen 16 be solved and the jroscsss
= continued getil 1 comerges. The choiee of the seis of pjobs may be done In varieus wavs among
whivh twe ppalar enes are seighbour combinations and stechastic sor random) combinations. In
this preblem. howsver. the stachastic choier of the subsets of fobs would 5ot be panieslarddy suftable
bBeeause the changeosver cokis among the s1ates may be segqeence-dependent.

Details of the Method

Thke detail workings of the method for an Yopwb V-state problem mass now be summarized in the
following steps.

1. Generate an initial feasibie solution, (Burstall’s and Lomatcki's methonds tnay be used for this
purpose. i

2. Clawse 2 suitable saloe for 1 {An alfernative is 16 try with different valucs of o

3. Frum the mitial schedule consider the first p jobs and solve the subgroblem of scheduling these
£ job to all the ¥ states. Le. find 3 <tate fon each of these ;= johs and an eplimal sequence of these
jabs. The starting and ending states for thi= subproblem duald be found frem the initial solution ob
tained in t1e This represents onc “step.” (The dynamic prgramming fermulathon may be used for
soliing these subpmbilems

3. To continue keep the same sequence and assignment tof Stalcsifem ip+ 2 5p+31. . . L N0
jobrs as hefore. ase the assiznment tof a st2te? 1o the hrst b as determined by the previon: step. and
“hen zolie the pew subjroldem forthe 2nd _3ed . | | L 25+ 18h jobs

5. Continee in thi> way ontil ali the jobs have lwven concidered in a1 least one of the subpreblems
This represent< ape Heration. Then calculste the total cost of the schedule thue ohiained. If there
i~ any imprevement continge with another fteration, othersise halt brezose anv furiher Nerations

sa7 o podoce 2 beller wdutin,

A Note on the Selection of the Value of p

It has bern rypenieneed that i raciag the value of pLinercases the Fompatationa! time and core
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: accurate resitits. Therefore the chaice of p
inz ii"g these factors. Le.. for 3 reasonable and quick solution a low valoe of 2+
Id be specified i?f'rg? higher vaiues of p should be used for getting precise solutisns, For quickiy
ing a reasonzhly sood sclutin 8 recommendable vaiue of p seer

s to be 3 or 5. Nevertheless, i
ﬁs-?és to 3 great extent on the dimension of the problem 1o be solved 20d also on the aocursey soughs.

Cheosing tin- Starting Sg:ia:mn

final zfé tior. We have s?-z:ggmeasfé 33;’*;

solutions only breause they 2re simple and mée pendent of the actus!

L
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Computational Experience
A compuler pragram was written 2 FORTRAN IV dlevel G and 1ested wnith 2 sumber of smail

niing the direet

and medium sleed ﬁ¥i§§?§-& for which the true optimal ssdations were evaloaies
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LOCATION OF FACILITIES WITH RECTANGULAR DISTANCES AMONG

POINT AND AREA DESTINATIONS*

G. 0, Wesolowsky

AfcMaster University
Hamilton, Ontario
and
R.F. Love

University of W isconsin
Madison. Wisconsin

ABSTBACT

This article iz concetncd with ﬂu;- eptimal Incation of any number inj é‘iﬂeﬁiﬂes in
velation to any nutober (i of destinations e ihe Euclidéan ;ﬁ@& The critesion 1o be salis
fied 5 the minimization of total wexglnf-ii istiﬁém- where the. :ﬁslancﬁ -are :caangtﬁar ;
Tixe ﬁfszmaﬁms iy be mimf:ﬁrgi& ;igm&g §m:s of mﬂaﬁ@ias areas A ,rm@t reduction

solution. ;imfum s ﬁesmim& wim:h has- !I:f Propeny that:the drre:.dm of Jtiééibi is
dﬁmtﬁéé by the ﬁamrmi ?ttspeﬁ;ez ;Eﬁ:e ﬁéﬁan_

1. E "fhd})tf{fﬁg”i

Many contributions to the §j§£rﬂme on imﬁlimﬁ m\ﬁieie ﬁa&e deali wﬁi& variations ami sﬂeﬁsmﬂs

of the Weber problem for mgie* [8] and [12] The ohject in such problems is to locate one or more

points {facilitiesj on a plane that’ asmzum fixed .points (destinations). Optimum location is achieved

when the sum of weighted iﬁiaﬂﬁ’s between points in the system is mimimized. Such models hatfi

found varied .gplicationy mt-iuéins some in plant location [2] and in communication networks [10}

In many of these models the distances between points are designated to be Euclidean straight 7

line distances: hawever, in the context of lucation in u grid of city streets orin a network of aisles in
a factory or warehouse. rectangular distances often constitu « a better approximation to actual dis-
tances and have been used in location models ffor example: [6] and |11} The mudel in this paper is
a multi-facility model. Shipments betwzen the facilities 1o be located are possible, This is a variation
of the trans-shipment problem in lincar programming. Previous models including inrer-facility flows
are given in [1}. [3-3]. 9L [10L and {14}

Considering each destination as a separate point is oftes impractical when large populsations Hke

those in cities are involved. A useful appmximation is to consider destinations o be w.ifermly dis-
tributed over som

e area or areas. This approximation has been used in models involving postal districis

illand fucility f}e sign |7]. The inclusion of this approximation in multi-facility .nodels allows the solution
of very laree and spatially complex locatiun sy=tems.

=Thiz resvarck was suppoded by a grant from the Contrs! Data Corporstion. Use of theUniversityof WiscasinCompating
Crnter was pade possibie thrugh sopport. s (art. from the National Sesee Foundation, other United States Government
agens ies and the Wiseen<in Alommi Recearch Foundation theousn the University of Wisconsia Resvarch Committer,
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2. THE LOCATION OF ONE FACILITY

Before discussing the more peneral case of th

a single facility is presented. Figure 1 shows an example with five destination points and theee destina-
tion areas. It is hecessary to locate a point (Facility) such that.the weighted sum of distances in the
system is minimized. .

e location of multiple faciliies a method foe loeatine

o g

L4

=]
=

. FaRe L B

Let the coordinates of the facility be (x, ¥V There are™s: oim destinations locaied at {ai &),
‘=1 .. .. m Each of the p area destinations Mz d=i_ . «. P can be eoinplotely identified by

 its four corner puints (c5. ey ). (= deh, (d ;;'_{;%;_ig,;;igﬁggg%gg fese. :
The location problem now consists of ﬂi}‘aiﬁiiéiﬁg o T

i) Wil )= 3 il x—a;]

'i’~'
it |

The weights u; transform distances fnte costs. The ranstants wean combing factors of cust per unit
distance and population density. N - T S N

It should be noted that wime(x. §) ithe Pase Sehete p=0) has been misimized by Frascis [4].
Francis made use of the fact that 10;5,(2, 1) is separable in :azuiv to achieve 3 g
with respect to one variable at g time. That

minimum by oplimising

P

Fiud B - e L EL - o
S wilx~a:iand the optimute: value of ¥ can be ohtgined Ly minimizieg 3w | y— 51,
izt - - " -

. _ B éé? . B ) R R )
The function iy, (v, ¥} is also separable.in 3"and *.and the optimum valge of x can he obtained
by n.inimizing : - el - - .

- ~ - T

. - L& T oy .
2) #’:¥;§§i§',¥=zagéf"ﬁ;§+ R R Y -1 .
i Y Tt i ¥ . ,
_5.;3 ﬂg,g oy,

The nrsin cation of BAio,(x) can be thought of 2« the location of a facilit
placed on an axis; the destinations are points and. ki
It is convenient 1o pose 1n

readily be don. g

wes. The destinutions corsid avirdap. o
cquivalent problem ~where nore of the destiations averlap, Tius can

is, the gj;%iézt;?’g value of x zanbe obtained by minimizing

v.smenz destinations I

s

pp A8 B AT

'

LR

it
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LOCATION OF FACILITIES

Fur example. if there are two line destinations [¢,. 4] and [c.. d.]. such that r, < c.. ¢, < d; and
£ > dr then

. B . d;= . LA )
L;L i —:ggdz,*?l'.-!; g,réz,iflz;:i;fj; fx—z ldzn

, , ay dg
s Wer ) [ " el O [ e
e 4,
where L= us{fe —er}. and three non-overlapping lines [o.. ¢]. {a. d.]. and [d.. d.] are obtained.
Similatly. if 3 point destination is within a line destination. the overlap can be remeved by dividing
- the line into twe ai that point.
After the averlaps have been removed there is sume numberp’ of line destinations. where p* = 0.
Combine any point destinations with the same location on the r axis to obtain m’ (m < m) points.
Arrange the destinations along the axis from left 1o right and label them [re. 5] £=10 . . ..
p’ ', where 7. = 5 and £p S 5. I the Pt destination is a line then let of =1, di=5: and the
constant be £ if the L'th destination is a jieint then a. = 72 = 5¢ and the corresponding weight is ).
After the remaoval of overlaps. WX 1.p(x) bus 2"+ m” terms. A term. such us wpjr—a.d (and its
derivative). is plotted in Figure 2. Il the destination is a line [, d.]. the corresponding term and its
derivative are as

in Figure 3. Since the terms are obviously convex. then X . (x) and # qup(x. 3)
are conves.

v - . x\/’

_.._:;- - Q. —R
| ol
- ™ .P——-——ﬁ-¢';
::T; - iy r——rad

Feagr 2 -

Fram Fizures 2 and 3 jt i= evident that whes x < £;: the siope of the term corresponding to [re. s¢]
i= negative und a constant aad when x > s¢ the slope 5 the positive value of that constant. It i= pessible
to evaluste T Y in dx)/dy at the valyes sz £ 1., . . m'=p.

Let the absolute value of the constant slope covresponding 1o [ree se] bers A=l L . Lom™+p',

For 2 point destinstion fy is the weiglt ] and for a line destination it iz the ~onsty . { [id: ~c2).
Wheas < i

= AN o ix o
e -—.——-‘-—%E-_.>:."— E g':_=_§§_
= dx iwt
= Consequently. .
dl X mpix &
. 3i __.._’:..‘ff.._ =} +2 T
=. [$21 el

i “4!‘ |‘l‘|‘l‘:'v‘|| "‘4‘,\ ”’\ P
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Since FX;x,(x) is esnvex. (35 enables us to find the region in whick X »(r} is 3 minimum. Expres-
sion (31 is evaluated for successively lasger intezers, k. until it becomes cither zere or positive. If it
becomes zero for some value of £. say ', taen 55 € 1% < 5pe. ;. where 1% is the optimum value of x.
If expression (3) becomes positive for the first time when £ =41, then re- = 2= 5. In this latter case.
-if regiom £ is a line. the exact position of x* can be fonnd by using the derivative plotted in Fizure 3.
They coordinate, y*. of the optimum lecation for the facility can be found in an entirely imilar
manner. The following example illusirates the method discussed anove.
Example:

€

AMinimizing X, 1:ix} with respect 1o x corresponds 1o finding the optimum x coordinate for a
facility which has one point destination {m=1} and two area destinations {p-=2}.
First remove the overlaps,

= ] . s
?”i;;zixiégj Ix—zodzs+2-1—2i+2 Jr—zedds 3 { ix— + ]

Thenm =1, p"’=4. and

f:,=-§! =&, !-:=§‘¥3"~'"
and =




From i35
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dx
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As belore. the findinz of the <
of findinz the y coordinates.
Consider the minimization of
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LOCATION OF FACILITIES

dXsted ] o

dﬂi’f; ;2§:§}

dIF'X; ;:‘f}

1=032

3. THE TWO FACILITY PROBLEM

- §§§ :[;‘;’s?i}‘- ;}. Xg. f*;- E 2 15;;;_1’3—1{3§

=—li+444=-3,

LERd

==il+4+3+3=1,

P

.'.réé;gés;-,

The slape of the third term must be 1 at x®. From Figuee 3

2x*— (ci+dl3). and x* =§:$-

Consider now the prublem of locating two facilities {x:. )1} and (xa. 32§ among p area destinations
and o point destinatiors. It is necessary to minimize

;I J‘ by —sibblss—zaiddzidz + reeling — 5

The weight, 1. apukies to the distance hetween facility. 7. and point desiination. {, while 7 applies
12 tire distance belween facility, . and area, [. The interfacility distance is weighted hy £4-.
T conrdinates for the aptimal Incation of the facilitics is mdependent

: 8 ) oy . .
Y iyl E E 8- ij;—-?g-il b= 2aldzs = resits — x5l

FE=t

In the case p=0 iwhich, incidentaliy. was sodved graphically by Francis [1]L 151 is 2 pelyhedral

T

3 H 3 p=1 ¥, where
E -3

P=ix]s,=al.

scliony; = a. i

fl I I
Al

(AT

It i i
gl

=l niun=xl

Assume that any predections corresponding o 2ot weights are enitied e, a1y =0. -

<arface in (0 X, x;. =} space. This is trie became terns soch a< aly;— o and role — 2} are

made up of hall-planes. When 1 # G~ome of the “edzes™ of the palvhedral surfare become paraiwlically
~runded” a= can Iw Jdeduced from Fisure 3.

Let 2 br the st of projections of the edges un the 1,52 plane. Then Pis given by

j=i% i=h .. .=, and
=12 =1 .. ..p.
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Those points on the surface of B'Xewy{x:. 2} which are not in P are located on plare sections since
the direction numbers of tangent planes can only change in £. A minimuin cannot oceur on a vlane
without vecurring on at least one of the edges.
The search for the minimum of F4ze,{x:. 22 need take place only among the projections. P.
A relaxation or univariste method [13] is used 1o find this minimum. The procedure is as follows isee
Fizure 41

Fraxe 3

Let T be the minimim of the cross-section of FXou (x:. x:) formed by a plane x,= & {4 iz anv
ennstant} of 1: = Xa. 7o, can be found by the methad of the previons section. Let G be a set of points
that zll yirld the <ame value of BFXon {x. 02 at the end of the algorithm the set . will comtain the
mnnts that define the global minbaam of FX o ixn_ 51

T is Grst found for an arbitrary projection. Lt G, — T  All Bines of the form s,=h or 1y =x:
that pass thiensh T are incestigated until points ot in €. are produced. Again G- T, and the
process is continued. When ne 1 ew points can be grremted a2 ghbal minimum has been abisined
f.ocal minima are precluded by the fact that F¥on(x;. x:} is convex. An cxample illustrates the
alsmrithm.

EXAMPLE:

Y s z
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Naw clieck the line x: = 5-1/8 which passes through 6. and i in P. The result is

En=h

riefo

ﬁ.n
?‘mﬁ‘*
"
o

It G —T_.
Next consider the line x, =

To—Ta
Consider the Bne x2=5-1/6 passina thrangh .
- E - -§§
To={x. x:12€5,<3, ==3 i
Ge—To.

?m*!&rqw;sﬁﬁézwehaﬁﬁemfmmﬁrmxg lies inthe intervali2 5L and 25 =516,

Compuational experience sagrests that tww facilities car be located =ith :iis investization of
fes= than 201,75 even far sroblems with large 57z and m's.

4. THE N FACILITY PROBLEM

= - - e iXal 3.8 ameng m destination pednis
€ written as the minimization of
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The univariate method of optimization applics, but is obviously very tedious when # is larze. It is.
of eourse, puzsible to program a computer 1 do the calenlations.

3. CONCLUSIONS

Since pointx and everlapping rectangular areas can be ased to approximate quite complex spatial
distributions of populations the methods discussed above would seem to have applicability in urban
location. Warchouse and plant layeais are often comprised of aisles laid out in a zrid. If the grid is
fine enough rectangular distances would apply and the models discussed above conid he used 2o
sulve some material flow problems (see[d] and [6]1.
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A TECHNIQUE WHICH COMBINES MODIFIED PATTERN SEARCH
METHODS WITH COMPOSITE DESIGNS AND POLYNOMIAL CON-
STRAINTS TO SOLVE CONSTRAINED GPTIMIZATION PROBLEMS

LTF dezassmry Cars
Pafins, ez

ABRSTRACT

This paapes prevents 3 swihod of wireting desizn pareenrle 1= which ofifimere 5 spveify
== timed The tthad complots dine? search apticdetion op Sed te 2 monferar fTunctiond
feguived dats peints, & sesclhiity snslesis B rondoried o the spinums oo o iz

1.0 INTRODUCTION
not be Hnear,
The probiem at zasd = 1o minimize takeofl weichl. defined as the functienal calue. zad (o deter-

mine sther airer=fl desiza paramsiers which tmeel 3 spreific sel of performance requirements. thae
approach to the prublem may be 1o perform the experiment by systematic varistion tfacterial desiend
of alf indrpendent parameters while evalonting the fanctinnal 51 alf peints which satisfy the constraings.
The uptimam selatien 1= then of wen 23 that set of experimental conditians which give 3 midnum
{nncitanal calee with all cometraiats satisfied. 3 second aspsreasch may be 1n st evaluate the response
in srder o Incsie 2 feasible se? of parameter saler:. Seheequent respoases ase evaluated a7 periask
parsmieler valoe <o as ts determine 334 maer in 3 ditertinn of the optimem fonctisnal valoe whie
smiisfring all comsivaints idivns search wetbedsl The thivd, and recommended. appmach T
compesliv faclerial desizes. These de<fzns perrsit the oxtimation of fanelisnal and constraing worfaces
with & minlzem sumber of experiments] it Thns Irade to analstical swfares o br ased in dirent

The last prevodure teauites somducting the expreinenl for 2 cossposite of 2 e fevel factenial
deuimm and asiag ihe ioseling eaprrimenial data I ratimsie fopetional aed cordraimt smiaoe
mesas of ser=nd arder phanmial 8s Tis tanernt search optimization procedure & vsen = fnd the
ssptiems ot - renditions soticfving afl venstraints and sammizns the olgrctive foaction. Th- aptiman,
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=¢1 of conditions is then pertwrbed. eave vasiabie a1 s time. and apper and lower baunds are elained on
each variable in the neighborhoed of the eptimun. Theze bounds are determined such that neae of the
consiraginis are viclated outside a small tolerance Bmit, Inferences may be made about whick variables
have an essentially unique optimus ralue and which oues satisfy the constraints at the optimum withia
some small interva® Thils indicates muliiple solmions 1o the initial problem.

2.0 PROCEDURES
2.1 Design of Experiments

The problem is o maximize or minimme seane re: ponse ¥ for 3 system in which prier experience
inidicates that indepemlent variables X.. Xa. . . .. Y are the pertinent variables havinz the mod
sianifican: cffect o5 ¥ It is desirable tu sbiain an adeguate solution by emploving the fowest nnmhber of
actual experiments. The most consersative sumber of measurements at each X, thar shows any trend
with respeet 1o ¥ 32 two. To perfarm an experimental design ts sbserve responses. a o lactonial desizn
can be conducted where [ i= the number of factors. Le.. ndependent varisbles. and & ix the number of
levels or particular valoe settings of each Tuctor. I for sxample. a espservative p* experimental
desizn is perfermed 1o ohierve responses affected by thuee independent varichles. 2° desion peinis
wotild be selected. Table | indieatss the reatment combinations - ~ach desizn point where —1 and
+ 1 represent the low and high levels of the ith independent sarizhie.
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It & 3= anknown whether the response is sffected by interaclions between tws of more X, variabies
puittis giready used te sbiain & composite dexizn. This permits the fiting of second order surfaces.
Reference (1L The 28+ 1 ad&tionz] peints consist of aur a1 ibe center of the desizn and the remain-
ing six in pairs aleng the ownrdineie axes 31 T T o, and = o, respretively. The desipas matrhx &=
given In Table H where compesite points ore added 1o thesr af Tabie | Fizure | &= 2 dizzyam of 1he
greay of desizn peinds i tace disensiona] space.

He=a.= ... =§=§§§z§§£§§?§a§?§;§é§sﬁi§i§3§?§§iﬁ§gifﬁﬁ.ﬁé%‘gﬁ@
freractines 1o be estimated Idepondentiy. | manmey is winch orilesnal composite desizaz are
szl ap for the namber of factore (& equat 1. 2 3. 4. and 5 5= shown in Table L The sevend mw of
desizes. These Ins Ievel designe are 2l complrie factonizh exeept the desirn S five facters. whick
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i a ball replicate of a complete 2° desizn. I the forrth row the values of & are ziven which make the
correspanding esmnposite desions a1 at. Table HI was shiz’ved from Refersnee 2L
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2.2 Polynomial Regression
te be affreted by a faree nonber «f X sariables and the theory bebind a rigmrandy derived mede] far
¥ a< a functins o Y5 = comples. A= bz a= anly 1he aptimoy srt of conditians & desired. 3 pelinamis!

madel which f= the datas well com Iead 1o 2 261 of sptims! condilions sppreximatine thase of 3 1ip-
- ;i ; -,é _ % i;

T&ésa;ﬁé’r@s?"fg@ﬁ éﬁ@iﬁ%ﬁé 3‘%@%5;;@@;—53%
mm@mmmﬁa%s?mé@%@?g
estimated by means of am cxperiment ¢in 1iSs c2se, a2 resmpaley vanl These prifamance valoes when
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3.0 COXSTRAINED OPTIMIZATION OF AIKCRAFT TAKFOFF WEIGHT
2.1 The Problem
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‘Table IV presents values of the independent variables and the associated set of constraint values.
The first 2* design points are those used in the initial conservative design: 2(4) + 1 design points have
been added to complete the composite design,

3.2 Composite Design

A full factorial design was constructed using 24 points and other points were added to complete the
composite design. Table 11 for_four fuactors was used to obtain « for the additional points. Since the
standardized values of the four independent variables hetween O-and 1 were at levels 0.25 and 0.75
from the permissible range —1 to +1. a=1414 from Table 2 was adjusted to 0.353% by the
proportionality:

o 141
0.5

1=0.3

-

[ -]

(5)

]
4
b

and normalized levels of each variable used -in the design occurred at 0.5—a'=0.1465. 9.5, and

0.5 ot =0.9535 for the nine additional design points. Note that 0.5 is the center point coordinate of the-

design. Table IV shows constriint. responses for-all 29+ 2(3) -+ 1 =25 trcatment combinations of the
‘composite design.-Only raw, nonstandardized: values of the four indrgendent-variables are shown in

TABLE'IV. Design-Point.Constraint Values For 2% Composite Design Experiment

- ) “Indépendent Variables % ) Constraint Values
Design po——7——7——"7—7 g e - -
\*;,;‘;‘fcr ”’;f"‘ "‘if $=x |T=x| c® | caoy I can | can | cas | can | cusy | cas
1 500001 6 450§ 425000 4111 § 013 1889 | 045 | —3934 | 0.1144]-3236 | —0.131L
2 150000 6 450 | 67500] 4111 | 065 1889 005 | —=393%] 1306 | 7165 | —0.131
3 ] 50000 6 750 ¢ 42500 1—3.3331 015 ] 63.33 | 048 | —7970 | —03057 —178.4 1.083
3 500000 6 750 | 67500 1—3:333! 0.65 63:33 ~0.05 -7970-] 1125} 7001 1.084.
5 50000 1 8 450 1435000 31011 015 | 1889 | 045 | —3638.1 043 I-1741 ] -0.1491
$ 50000 8 450§ 57500) 4L11 ] 0.65 1889 005 | —3638 ¢ 13181 7006.; —0.1391
7 500001 8 750§ 32500 |—3.333! 0.I5 6333 | 045 | ~8132 | —0.365 | —299.1 1.05¢
] 500006 1 8 750 | 67500 ]—3.333] 0.65 63.33 005 | —8132] L3 ] 6%6 1059
9 60000 | 6 450§ 425001 63.33 | 0.008333; —3.333 | 05917 | 2026 | —0.5656] 2727 | —0.4516
10 60000 | 6 450 § 075001 63.33 | 0.425 1-~3333] 04750 | 2026 | 1.015] 4136 | —~04516
1 | o000} s 730 | 423001 100 | 0.008333] 300 0.5917 | —1382 |~1.129 | —288% 0.5517
a2 [ e00e ] 6 750 | 67500 100 | G425 500 0.1750 | —1582 7723] 3960 6.3517
13 60000 ! 8 450 | 32500 63.35 | 0.008133; —3.333 | 0.5917 2617 {-0.52861 —2870 | —0.3674
M 60000 | 8 450 § 67500 63.33 | €.325 | —3.333 | 0130 | 2617 | 1.030 | 3970 —0.367F
151600001 8 750 | 42500 10.0 { 0.008333 50.0 05917 | —17386 |~1077 | —3t0: 1 05299
16701600001 8 30 | 675007 100 ! 04250 | 500 0.1750 | —1786 | 0.7947] 3825 0.5299
I 4793061 3 600 | 55000] 9.883} 0.4475 § 5012 ! 0.1525 [ -7181 | ©.8598! 4398 0.5761
-} 620761 7 600 | 55000: 33.45 ] 0.1861 | 2655 § 0.4139 1830 | 0.1957] 3023 | --0.030
19 55000 15586 1 600 | 55000 2167 | 0.3000 | 3833 | 03000 | -2757 1 05192 2289 0.2187
20 55000 18414 | 600 | 53000] 2167 1 03000 | 3833 | 03000 ] —2Z700 § 0.5550; 2092 0.2198
21 Eo 3 379 1 530001 70,79 ¢ 03006 1359 ] 03000 § 13.57 ] 07814 2320 ] —0.3312
SEOL 550K 7 8139 | 55000 |—2.42%1 G3000 [ 5242 | 03000 | —3903 ; 0.3482] 2097 Le12
3 55000 1 3 #00 | 373201 21.67 002136 § 38.33 | 06213 | —261% | — 1178 | —347 0.2320
23 55000 {1 7 00 | 126701 2167 | 0621% 1 3833 F002136] 2631 | 1202 ] 6570 0.2320
25 (ss000) 7 0 | ssel 2067 | 03006 | 3833 | 0.3006 § —2641 | 0.53w2] 2% 02320

1




3.3 Polynomial Regression
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A step-up regression program was used to fit the data of Table IV to second order polynomial
maedels. The first eight constraints C(1) --C(8) were merely upper and lower bounds on Wro. AR, S.
and. T as obtained from Equations (1)—{1). For each regression. terms were added one-at-a-time to
the model until the multiple correlation coeflicieni K reached 0.999. This means that a plot of observed
responses against calculated responses would give a line very close 10 a 45 degree line passing thzough
the origin and lying in the first quadrant: this implies a close estimate of calculated 1o observed re-
sponses, The regression constraint surfaces are shown in Table V.

TABLE V. Quadratic Regression Models For 2* Composite Design Constraint Surfuces

Constraiut Equation

(0} = —~0.700) ~0.367E =4 A Xy~ 0.33HE—9 4,8,
(113 =33.3015— 0.0033 36X, ~ 0.237\;5 =0,
7y = 130016~ 0.3669E ~ § % Xi = 033ZE=9% N,

:; 3’: ; 3.3?‘3!:"‘ ?2,‘.3‘-3 B
§=—=3305.6797 = 0.2872 % X -+ 049680, ~
§= =L 58H -+ 0007581 —~ 0500 E — T ALY

268511~ 0003538, ~ 337505 027 E~ A X NI~ 0207 E -5 x V.,
i

FBE =3 Vi-+0.2983E -5 % Vs

o=~ 6IN6.5251 5 LBYSY, ~ 1057790~ 0 12I8E =1 % Vi~ 0.0 28 XX, o CIDGTE—3 V. Ve L2TO2A5Y;
Cildi=LOBI5 — 01261 — 3 % X, — .0012861; — OLIZ33E — 3 < XV — 0162 —B X X5~ 0328 — T 2 N\ - WITI9E =3

TABLE ¥1. Optimum Solution And Limits

3;4’——(‘3@:’3531‘%3&&:«{ Optimization Sea“rt-hf’rocedure and Sénsitivity Analysis

The Hilleary tangent search program: Refereice 1] wis employed:io miinimize the takeofl weight-
f-uiijeé{ 16 the bound cqimti(,-ixs;’lfggaiiciqsf I— (4}, and the cnnstrz;iﬁ;:ts‘ﬂf-"?gbfc V. The search terminal-
values at-the optimum are recorded inthe second column of Table VI A-short program was wriftén tg -
perturh these optimum values éligi:ti? ong-at-a-time until nane of the constraint values went helowa -
selected tolerance limit: —0.005. Recal! that negative constraint values constitute a violation. ‘Upper
and lower-limits were obtained on the optimam for each variable while holding all ather variables con-
stant. The percentage variativns of upper from Jower limits are indicated in column five of the table.
The variations for takeofl weight W, and wing surface arca S are both less than ope percent. so it-
may be assumed that the optimum valves for these variables are essentially unique constant).
" The values of aspeet ratio AR and thrust 7 at the optimum are not unique, that is. any value of
aspeet ratio between the upper and lower limits may be selected and similarly for throst. Table V
cquations indicate no interaction between surface area and thrust. X.X; ferms, so the preceding state-
ment of freedom of choice for both variables within the Table VI limits is verified. If an Xz\; term

A A

Lower Limit

Reareh Lower Upper Pereent
\ariable a1 Oprimam Termenal Limit Limi Variation*
Value
. Takefl Weight, Fn....... L EBUAST SRST 58252 1.215
Aspeet Rutin, AR... ].428 883 i a4 1132
Winz Surface \rea 36,5 3.9 BT a.l66
Thret........ P 61.100 M3 35658 L3
.. iCpper Limit— Lower Liniti "
* Poteent Variation= Lb s X jod,
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were present in the constraint equations. then: different aspeet ratios could he plotted against thrust
upper and lower hounds-te determine the range of choice for thirust at a selected aspect ratio, In
actual aircraft design it is unlikely that the thrust parameter will have such latitude. but it is prohable
that seme of the independent variables will not be effective and hence not controlled.

4.0 CONCLUSIONS

If constrained {or unconstrained) optimization technigues are to be applied 10 empirical data
obtained from-costly experiments. analysis costs may be greatly reduced by employing the procedures
vutlined herein. This -invelves the combination of a composite experimentzl design to minimize the
numbier of required experiments with regression analysis to obtain analyticai approximations of the
experimental data. !"inafiy classical constrained optimization techniques are used with data from the
analyticdl form of the response surfaze. The resulting optimum solution will, because of regression,
approximate the optimum which could be obtained using actual experimental data. It is also desirable
to conduet a sensitivity analysis -ahout !hc optimum o investigate the uniqueness of the solution.

The response surface model would again give approximate resulis while actual experimental data
would give exact results.
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FINITE STATISTICAL GAMES AND LINEAR PROGRAMMING

Robert A, Aznew
Air Foree Institizte of Technolozy
and
Roy B. Hemnliy B

Hewdgaarters USAF

ABSTRACT

The dual linear prozranis associsted with finite statistical pames sre imestizated and
their oq2imal solotichs ure interpreted. The usual statistical zame s penceralized ta a twor
sided iinferencel zame and its ponsible applicatiun a5 2 1actical model i< discussed.

L. INTRODUCTION

In this paper. we:investizate the dual linear programs associated with Gnite statistical zanies
{i.e.. finite strategy and observation spaces) and intérpret their optimal selutions. Furthermore. we’
zeneralize the usual {one-sided infeérence) statistical ganie to a two-sided {inference) statistical game
where gach player makes-an initial strategy choice. paitially impléments his initial strategy while
making an observation -allowing him- to infer about his opponent’s initial choice. and finally makes a
secondary choice restricted by the pariial implementation of his initial strategy:

In Sections 2. 3. and 4.-we present a hierarchy o1 three games and their associated dual linear
programs. Each zamé in the hierarchy contains its predecessor as an imbedded special case. Section 2
qréats the fumiliar Rectangular Came. Section 3 treats the Statistical Game of Statistical Decision
Theo

Two-Sided Statistical Game as a tactical warfare madel. All summations are over their full ranges

rv. Section 4 gencralizes to- the Two-Sided Siatistical Game. Scction 5 briefly discusses the

unless otherwise specified.

2. RECTANGULAR GAME

Suppose we have twe plavers Blie and Red. with finite pure strategy scts indexed over 7 and J.
respectively. Let a;; be the payoff to Blue when he chooses pure strategy fel and Red chooses pure
strategy jeJ: we make the zero-sum assumption that —ay is the corresponding pavoff to Red. Let
x; denote the probability that Blue chooses pure strateay i. and let 3; be the probability that Red
chuvoses pure strategy j. The Minimax Theorem assures the existence of a saddle point in mixed strat-

egics. Muorcover, we have the familizr dual lincar programs
maxv

( sty ez jed
i
E xi=1

T
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min i )

oy
[
.

/]

v

-~

.

agyj s u: iel

either of which can be solved to yield optimal strategies and the value of the game.
3. STATISTICAL GAME

Suppose that Red chooses first and that Biue makes one of 2 finite number of mutually exclusive
and exhaustive observations indexed over K. thereby allowing hit ta infer about Red's chinice before
miaking his choice. Let pe denote the probability assumed knowni that Blue observes 4eR given
that Red has chosen pure strategy j. This game can obviously be formulated as a rectanguiar zawie
where Blue has pure strategies of the form {ic}e.s implying his choice of f1€f alter observing L. The

expected payoffl ta Blue is ¥ a. o when he chosses pure strategy {icheer and Red chooses pure
S

strategy J. One can write down the analogs 1o (1) and 2} for this game. but trivial rearranzements
and zubstitgtions vield the equivalent dual linear programs

-

max r

sy
W
it

W

1. é_" E HP s 20 Jjed

xei=1l: kek

M

xz= 0 iel. kek

mitrg e

o
]
vt

st Y app; S iell kek
i

Y=

Suppose we denate the optimal solutions 1o (3) and {3) with stars. The x5 represent Blue's aptimal
mixed strategy in behavioral form: Le. 1, is the probability that Blue chooses 7 after obsenving L
The optimal dual variables yvield a nice interpretation for Blue. 57 represents a partial vaiue of the

game with respeet to ohservation £, and E yfp,x- is the prohahility that L is ebserved. Hence. we can

E
Fp;e as the conditional Ginterimy value of the game to Blue @dven that he has observed £.

- &

interpret uf§E

F
in convemtional statistical decision theory. Bluc represents the statistician and Red represents

nature. A mived stratesy for Blue is called 2 “randomized decision rule”™ and hiz aptimal strategy
iz called “maximin.” A mixed strateay for Red iz called an “a prioni distribution™ and Lis optimal
strategy is called ~least favorable.” We remark that there exist siteations [9] where the payoft depends

on the shservation fi.e,. #:: 1. 1 should be elear that this generalization can be handled id-ntically.

4. TWO-SIDED STATISTICAL GAME

We pow assume that each player makes an initial chiviee. makes an observation allowing him 10

infer aboui his opponent’s chivice. and then makes a secondary choice from a restricted sct of pure

B
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use the previous notation for Blue. and we denote his admissible secoidary strategy
set by M; C [ after initial choice 1 we assume jelf. We assume that Red makes one of a finite number
of mutvally exclusive and exhaustive observations indexed over T, and we let gir dendte the prohabilty
that Red observes 1€7 gives that Blue has chosen § initially. We decate Hed's admissible secondary
strategy set by Aj CJ afrer initial choice j: we assume that jeN;. This game can be formulated as

rectangiar game with pure ~trategies of the form (i. {ic}e.s} with ixed; and (f, {jr}ar) with jieN;
for Blue and Red. respectively. The expected payoff to Blue is 2 2 di i Piqe when he chooses (i,

{j. {it}re1)- The analogs to (1) and 2) redum, to the following dual linear

strategies. We

{is}ex) and Red chooses
programs,

maxvr

3
y,
4

3 Y daaptingiziom = vie: neN;. €T jeJ
T oma;

Y, = jel
I 4
E xiem=10;: leK. i€l

E(JI.- _

3

Xz 0 melli Lek., i€l

s 2 2 S dntrisqidiin < et medl,. LeK. il

Fi - ﬂ‘-

E = u: .{d

2 Yen=3j2 €T jed o

“‘j

2:,“:!

¥
yjie = Oz ne;. 1€T. jeJ
Again. we have a behavioral representation of the optimal strategies. «” is the probabifity that Blue

chooses { initially. and if & >0, x]_Jic is his prohability of subsequently choosing melli given

that 7 was chosen initially and £ was observed. Again. the optimal dual variables yield a nice inter

pretation for Blue. We can interprat ¢ ‘,}S‘ 2 pje 35 the conditional value of the game to Blue givén

$9=34

that he chose § initially and ohserved . 7

3. TACTICAL APPLICATION

Thf: Th‘u-sgdﬁi ';

tatistical Game may be useful as a medel for tactical warfare where both sides
have reconnaissance capabilitics. Suppose that o, represents Blue's

subjective probabiiity of mission

accomplizhment given that he selects 7 and Red selects 7 The value of the game is then Blee's un-

conditional subjective probahility of mission accomplishment. Zerosum paveff represents the usual
conservative Tworst case’ criterion.

A value can be assigned te any paricular type of reconnaissance (e.g.. aerdal) by solving the mume

th and without it. the difference in values representing the increnient of subjective probability of

mission accamplishment contributed by the specified 1ype of reeannaissancee,
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ON QUEUES WITH STATE-DEPENDENT ERLANG SERVICE

Carl M. Hamis

The Ceorge Washinzion Uriversity
Nehoo! of Encineeriny and Applied Science

institcir for Mancgement Science und Enginceting

ABSTRACT

Seme zrneral revulicure desived for Jdnple-channd aienes with Potsion inpot and state-
deprendent Erlans sesvier times in sien of the posdible ter of this model te appeoimate
Zrhitrasy MiGH-Eke statedeperdent quetics in 3 manner similer to-that sogpested by
Beomenshine. 3nd by Kendall. and Kutizh. Thempam. and Wauzh for the MG Numesieal
protodures are indicated " for ibe evaloafion of stativhry state probabelities. expeoted
E¥item <izes and wailtine thoes. 2nd parameter ostinstion,

i. INTRODUGCTION »
An-siew of the history of the us: of Erlangian distrihutions as-approximations for. more nenerai;
h’pcs of m!cr-arn*:a? ami sen'xce-umc dx:.mbuuom in smg!c-cener systenis-(see-Kendall {1j§ and: of
:iﬁf.simc res f*arc dc:\-c!:;pg;é?
in !iu- paper for quenes \mh Po:wm mpm cmu;-dc-pendem Eﬁanﬂ -service: ami e server: in s;eu?
of-the rea-mn:mis favorable resuhls the authors of [6] | fmmd in-their r\'aiuanur of- Eﬂan;san ap foxi-
mations for-G; !;f‘ J1. it is sugzested here thata <n:mlar approach could be used for quenes with Pnss:w},
input and g gneﬁ% but state-dependent service !mu‘ == and thai these models should provide reasonable
estimates. The particular emphasis of dhis-paper is is upon-the proceduré for- deienmmag ;-!atm.fan'
pmi}abﬁﬂ;& for the MIC]1 state-dependent queuc with Erlang service. -
The general state-dependent system with Poisson input can be described in the following mannen
11y Customers arriveazasimple Paisson provess with parameterA,

121 The custolers are serviced singly. first come. firsi served. byone sener.

3} The service time of each customer iz conditioned an the number-in the queue. Sérvice times
of customers begnning service with the same number 7 in the system are independent anid ;{icntscai.g
distributed random variables. {T..n=1.2. . . _}. with cidf

Bty =Pr{T.<1}.

The departere process of this svstem. Mo, =1 2. . . . {Xi=number of custemers in the
systems immediately after the Lth customer leaves the system}.-is a Murkov chaie, independent of
the form of the set of cdfs {B.41)} (3} The transition matrix. P'= [p;1. of this imbedded chain is
svenhby

Far I by ! - - -
b ku Lz an - ot
L] ke sz o2 * - -
0 o ke k= M - -
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where

{h L= Pr{i arrivals éunaia Tull service period | j were in the system when service bezan}

=(fin j * e MALAB ).

It is elearly seen for i >0 that

and thar
=k

,:j:. RESULTS

_ Ba{pat) s lemmar
{s.— I} %

dr  ifor all nj,

ed ac

YmEmeE g=a2 ..
Er

and
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From the transition matrix.

Ehy

kﬁ'ii.'.} ':“-;;':’S"K: ‘:}":‘?25 o 1 I .}’

probabilities of the chain are identical 1o thosc of X{7). namel§ p,. X pronf of this sssertion for the
single-server Pisson queut with zenerdl but state-dependent senvier times is contained in 31

As an Musiration of this appriach. let she service distrbution of these alone in the svstem be 2
different Erdang from that geveining all other customers. That is.

Bist = dB i = | R T e (s =1} da=1)
siry= }!’gif}?ft-‘-' 5": {1 e 43{52 — i ) 3
R {Fi}!ﬁ“‘c‘—"’i{x* 13 in>1
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and the generating funetiens i’:}*;

ru!e:sz:sﬂ! ax:duxsfmméi&ai
:,.gﬂg;j, {;fi?-—a‘\

and

where

pr=s:Aln.

and

But, from 151,
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The vematning meowoubih bhe obwained) by Ttevnting Faguantion o Phe stattonary distelbation wanld, in
faet, oxkst whenever p 1 OF eourse, the eompuntion of the () beeomes rather cumbersome vory
apelehdy. s appeal Bomade o the computer, Namerleal valies of the {m) are displayed in Table |
followlng the test forsome typleal values of poand o with s and s fxed ot the nor unasaal valnes of
aond b vewpeetively, OF course, simblar esleulatioms ean abeo e porformed simply for arbbeary vilues
ol sy oneb v,
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TABLE 1. Pi(l) vs RIIOG, RHO! FIXED = Continued

!

C. M. HARRIS

KHO1=1.0
Rio= | .10 0.20 0.30 040 030 0.60 0.70 0.80 0.0
PIGM 100001 | 00001 | 00001 | 00002 | 00001 § 00013 | ocon | 0015 § 00316
PIGH | 00000 | 00600 | 00000 | 00001 | 00002 | 0.0006 | 0.0026 | 00162 | 00293
Pra2y | oooo0 | 00000 | 00000 | 00000 | osool | oooos | soms | 000z | eous
PIO3) 1 00000 | 00000 | 00000 | 00000 | 0000 | 00001 | 00009 | 00051 | 0.0210
PIOH | 00000 | 00000 | 00000 | 00000 | 00000 | 0.0001 § 00005 | 00036 | 00178
PIOS) | 00000 | 00000 | 00000 | 00006 | 00000 1 00000 { 00003 | 00025 | 00150
L= 1.262 1327 L4 1.533 1705 1932 | 2436 | 3395 6.39%
7 RNO1=2.0 ’
Ploor 01037 | 00976 | 00897 | 00811 | 00714 | 00600 | 00183 | 00315 | 0.018
PICH 103140 | 02927 | 02692 | 02432 | 02143 | 01818 | 0452 ! 0031 | 060536
PIC2) | 02310 | 02372 | 02397 | 02371 | 02288 | 02120 | 0igss | 0430 | 00834
PHC3). | 058 | 0542 | 00633 | 01722 | 01790 | 03807 | 00725 | 0146 | 0.0953
PICH | oosie | 00938 | 04009 | 006 | 04217 | 04320 | oasel | oz | 0095
PICS) | 00511 | 00516 | 0059 | 00668 § 00768 | 0.08%6 | 0.0029 | 0.2093
PIC6) | 00292 | 00313 | 00343 | 60389 | 00462 | 00573 | 0072 | 0.6862
mMen 00164 | 00176 | 00193 | 00222 | 0020 | 00353 | 0087 | 00658
PICBY | 00091 | 00098 | 00108 | 00124 | 00151 | 00212 | 00320 | 06892 | 0.0613
PICY) | 00050 § 00054 | 00059 | 00069 | 00087 | 00123 | 00206 | 00362 | 0.0528
PICIO) | 00027 | 00029 | 00032 | 00038 | 00038 | 00072 { 60130 | 00263 ! 0045
PI(1Y) | 00015 | 00016 { 00018 | 00021 | 00026 | G.0041 | 00081 ! 00190 | 0.0384
PrO2y | o008 | 00009 | 00009 | 00011 | 0000 | 00023 | 00056 | 00135 | 00336
PIO3) | 00003 | 00005 | 00005 | 00006 | 00008 | 00013 | 00031 | 00097 : 00277
PICEY L 00002 | 00002 | 00003 | OMKN3 | 00004 § 0.0007 | 00019 | 00069 | 6.0258
PUsy 00001 | 0001 | 00000 | 00002 | 002 | 00004 | 00011 | 000 | 0019y
1= 2293 | 2384 | 2499 | 2652 | 2865 | 3082 | 3701 | 474 7.852
RIOL- 5.0
PICO) | 0017 | 00131 | 00120 | 00105 | 0.0089 | 0.0073 | 00056 | 00038 | 00020
Fic WI659 1 00505 | 13H 1 00177 | 00002 | 00820 | 00629 | 00829 | 00220
PIC2) 1 0JR9% | 00597 | Q1567 | 01504 | 01402 | 00252 | 01086 | 0077 | 00932
FIE3 01360 | 00388 ¢ 0412 | 021 | 00403 § 0340 | 01208 | owr2 | 00588
ey 16Nz 1 o0dIs0 ¢ oons2 | o0d216 | 04293 | 00247 7 0119 | 01036 | 00682
Pic3) L 00908 | 00932 | 00962 | 00vwy | 00012 ¢ 00081 | 01091 | 61013 | 0072%
PG 100725 | 0074 | 00770 | 00203 | 00BIT | 00900 | 000R ! 0003 | 0032
: - .
PICT) O0RT2 1 00588 ;085608 | 00AIT | 0.0CT6 § 00731 | 00707 | 00837 | 00712
Plery ; O0KR | 006160 | 00437 | 00199 | 06533 | 00583 | 00653 | 00727 | 60671
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RH(Y=5,0— Cantinued

RHO= | 0.0 0.20 .30 0a6- | 030 0.60 030 0.80 0.9¢
Privy | 00318 | 00337 | 00370 | 00380 | 0005 | 00459 | 00328 | 00618 | 0.0626
rraoy | o028 | 0026 | 0026 | 00300 | 00322 | 00338 | 06120 | 00517 | 00332
rron | 006 00212 | 00209 | 0021 | 06248 | 00277 | 00331 | 00827 | 00517
rrozy | omat | 00162 | 0063 | oomize | 0o | 00213 | o3 | ooz | o062
Prazy | oon9 | omzs | oozs | 00134 | oons | omes | o020 | ooz | ooue
rrivgy 3 o000 | 00003 | 00097 | oofoz | omio | 00121 | 00151 | 00226 | 00361
Prasr | oooes | 00070 | o007 | 0007 | ooosz | ooows | oons | ogise | 00316
1= a2 Loamw | oavi | sa3 | saw | ses2 | 66 | rzio {10366

Two interesting side computations fall out nicely from Equation (7], namely the expected system

size and waiting time. since

and

Therefore

HI. ESTIMATION

Clearly. the analysis of any problem along the lines indicatedin this paper depends on the ability

3
L=sk In patisa—1) Y Inti—pa

fact that the density may L= written as

EIN] = L=11"(1).

Ki(1)=p:.

W=Lix.

i the event of a small sample the reade.r is reterr=d 0 [8]

and thie expected waiting time # follows from Little’s formula as

ba(t)=pintra=le~Fnlf(ss—1)!

DL dapn

=1

=0

Ko™ -

SuF Su

and hence the log-likelihood based on & observations as

1

= 5pkiitn—

g . R
‘ti—kIn s=—1)L

>

L is found by the successive application of I'Hopital's rule and use of the facts.that-

K;(1)=1

1o obtain =stimates of the parameters (@,.. sa) for the Erlangian dénsity 16 be-used. It turns sut-that
maximum-likelihood procedures are not 100 difficult for this preblem. and would be recommended,

especially in-light of their desirable large-szmple properties. An outline of this procedure follows. In

The parameters, can assume only integer values and for a given value of s.. it can easily be shown
that the maximum-likelihood estimator tor ¢+, 5= simply s./7. I the sample mean. This follows from the




110 . M. HAHHEIS

and

Now to get the complete pair (.. 5,.). consider s, te be a continuous variable and proceed in the
usual way to obtain the 3JLE of x for the pamma distribution

Fiy=p e =i {x]).

A deseription of this problem appears, for example. in a recent article by Choi ar ette [1]. The esti
mate £ is found as the numerical solution to the nonlinear equation

Llogx+ily+hix—ix S" {iti=x)} ' =klogi—% logu,.

i=f =%

where ¥ is Euler's constani. So. finally, the MLE of s,

£
T
i

est integer in x). depending whieh gives 2 higher va

V. €§S€£€Sﬁ}§
Techni
hility sﬁ;gik

on an invento i

8-1 5} gi, sne-lor-one e ,. ten the orde iéﬁféféiiﬁéé-‘{’ftiﬂ’ {gaeﬁe ané gg?ai

would be us

of 8. If. in addition. ii;c §ea€§¥;n§t:i have Jings‘

approach to staté-dependent gueuing deseribed he 20 ﬁé i;:* a~z=é to ob ;;; '§§é €§§i{*£‘§{fi§ invenlory
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ASYMPTOTIC INFERENCE ABOUT A DENSITY FUNCTION

AT AN END OF ITS RANGE*

i.ionei Weiss

Cornell University

ABSTRACT

For eact
variables. with commen prebability density funetion
JGay=0forx<d

fist=cia—-0y[l+ra~M) ] fora =8

absut o #. and o when ris § -amﬁr‘ mild cnm*ﬂmrs.

I. INTRODUCTION

For each n. X:in}; - . .. Xa{n) are independent and identically distributed random variables.

with common probability density (with.respect to Lebesgue measure) f(x}). distribution function F{x).

satisfying

wherec, 8, o

some interval {0

a. X:iri. . . .. XAn} are independent and identically distribuied random

m

variely of den si& functions wh ign zero pmbabxht? to the fefi of some zaiue §

conditions. For ex

parameter 4.

= tions about r

il

2. THE ASYMPTOTIC DISTRIBUTION OF THE SMALLEST ORDER

R

il

pasitive integer nol greater than n. Define Qi{n) as

gt

joint probability density fuaction for Q:{n}

H

*Research supported by NSF Grant GP 21184,
i

than these already inade. It seems clear that we will have to use

1+ r{x—8}]. where w(x) is a Weibull density wgﬁi §€¥€3£ii}ﬁ

We are interested in making inferences about ¢, 8. and a. without making any stronger assump-
{v} only the smaller
vhservations. or else the particular unknown r{y) will influence our infersnce about ¢, 8,
we will lose conirel over levels of significance and confidence coeflicients. Bat we would §;§§€ 1o use
as many of the siraller observations as pessible. to aveid wasting iuformation. The main purpose of
this paper is to investigate how many of the smaller observations we can use. as 7 increases.

. =Yain} denote the ordered values of Xin}, . . .. Xaoln).
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« « ou Yemsh. The standa

rd formaula gives that &g, .« . gy is equal te
H 1 .
1 e e (o+ et Dasen —‘} aita)
(n—ki{n}}t{a+ll L ct ;

<y <

= -

Let &, ..

3 be independent and identically distributed rand
density function e for u > 0, zero for u < 0. Define Z; as U,
Joint prebahility density function for Z,. . . _. Lty w

...+l fori=

Wy
b
L
T
.
m!
I
¢

to e n i O A

E{m} . g s . .
im —===0 for every § > 0. and if for each 7, G5 is any Lebespue
sz 125 ~

measurable region in £ I z2pace. then

iim f:; - s . if:f.igr“

B X )

PROOCF: First we
we have
2.1
where

and therefore

Now, by using the £xp
o Z2Z1e . Zag
P;fgf.:z:. = - ==

wo can write

{2.2)

(2.3)
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2.4
(2.3) FATRN
fr—
In absolute value. expression 2.2) is less tha {

) X
fug {1 *A}E‘i —. where {8 < {xl. we find that in abse
-x

w

F{n)—1
, 5 . _Kiny~1 .
i{nYir——=—-f. where le{n}: < ———— Since by assumption
i—etln} n

follows that (2.2 converges 1o zers as 2 increuses.

zﬁg:—f.{.ﬁ;

Define I, as o The asvmpiotic distribution of I, is -

VEInY W, Zﬁﬁ; fie ¢ e
+ ———=_ and thus = converges stochastically to zero as # ine

probability approzching one as n increases, expression 2.3 is kess in abs

r
£

En) ;;.;( - s;i

Y

{a+ z}fml“”“g .
/

o
gn
hi!
———

and the last expression is easily seen to comverge stochas

=0 for any & > 0. Thus (2.3} converges stochastically to zem

Using the fact that Zpm=A(n)+ VE{n} F.. the p

cere k(n) .. .
vergence ﬂfa;; to zero. the expansion of the login

where A{n} converges stachastieally to zere as n increases

Cullecting the information about $2.2).12.3), and 12 4j developed above, and 1aking 2.5

sﬁ{{.- . o ex Jiiﬁii

we have shown that log £ =~ converges stochastically te zero 35 n increases. The
BolZee o o oo Ziay)

the theorem is now completed by using the argaument given sn pages 261-262 of Ref.

In the sext seciion. we discuss the application of the thesrem 1o inference abont
application iz based on the fact that the asympiotic distribution of Yeind. . . . ¥

depend on riy}.

£,

3. APPLICATION TO LARGE-SAMPLE INFER £ CE

There are many ways to choose a sequence ¢
Einy .

lim =0 for every § > 0, For one example. L{r} = the larzest integer in joz=
oL

Lin)= tiic largest integer in 2= *7'% Suppose that we ~llai choose
s En

{Lin}} satishyine §m' itn)==, izm —L— { fr. every 3 > 0. Then the theare
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that for all asvmptotic prohability caleulations, we can assume that

-
i
=

for i=1. .. -‘é'ii

density function ¢
tribution of Yiin

_’_
oae

i
iy
wl

“y,

-,
[ |}
e
L
wuﬂ'
Moy "
o

za our ohjeciive o
Even usinz only
rid of r{y} asympt
very difficult. beinz
unknown barameler

semtation of hﬁz;i .. sy 1o consiruct £o

sient estima-

and the expression
follows directly that 2

‘I»
1
| u

= imcreases. It

Alsn, assamin

1) +1)&{n}
—Feln)jo?

is a consistent estimate of o 5t estimate of #, Once azain, we emphasize that these

estimales are cansisient. hut

The same a

anupprranda §f

f1} L. Weiss, =

Annals of the Instilsies

of an Increasing Number
ematics 21, 257- 263 (19691,

o
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Com<ider 2 fnventary <
Eeld, Earh petisl 1en decis :
aud how mach 1o ship te the B3, The Sz &
stk thon 31 the we inasiiatiens, Next 2 fareras
sent freen the Seld 1o the erilng ol B

twer deviiens on as In minimize ;ﬁﬂéé
tios Bdra of £lark and Searf
tathe comypurailie tothase r

1. INTRODUCTION AND SUMMARY

he Gieldy F.ariz :aziw& 1w deeisions are
the zvitem and how much ta ship
made Arst based on the amounts +

is delivered immediatels 16 the
ic zent fram the feld to the ?&%E::-siﬂﬂ

instaliations, a decivion 1o Jhip 2 rena

to the field immcdintehy, Our goal §
wial a-periad cost for this inven

There 1= 2n alternative inferprefat
erpre

iy
B,
g,
s
5
7
g
-
';11
o
s
g
-
g
]

Frequently the requisitiuns received &1
= ransmission errurs. of ¢rfors in pre
= may prucesz a demand comsiderak

E the knnwledge of the assel positions 2
are vorrecicd at the heginninz of

mm the freld as being our demand forecasi 2

recied. we are led 1o models of g differen

= ment of imperfect demand informaiion,
Qur cost structure is ax follows, 321

———

-

Tkt~ rrerarrh wEs suppesind In
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with 2 set-up cost for any positive order and a gencral convex one-period expected holding and
rtage cast. In the field dinstallation 2 we assume s lincar cost for shipping from the stockinz point
a zeneral convex one-period expected holding and shottaze cost conditional on the demand fore-
s demand in the field is completely backlogged.

his cust structure we find that the optimal n-period

ordering
<} form and i;e u;}%:ma. thpan, ,:e;;t:? of iizg- iif};‘?}rﬁ eri

-y

ghly origi a§ paper. {}ur muéei is essentially zi}e*r‘ with the add
Thiz trick of factorization has alse been exploited in Clark a0d Scarf §§§-

IKtcr-z. z>0
eiz)={

lo. =0.

%ﬁf;f = is the amount ordered. Let L;{3:} be the one-period expected holding snd she

tailation i when §!s§ tatal system ﬁi&e%; af:e: the current i>3‘§tf has ﬁ‘é = 5. ?ﬁ?

ii‘i{fz?ﬁf sl at :ngaéaiam 2= i.-{ wigh w%fr ¥ is ;ﬁ? §§¥F§§t‘f? fevel in ‘§§E % after receipt of
any stock <hipped and n is the demand forecast for the period. Let i,

n-per ié cost when the telal sysiem stock at the beginning of
nsizliation 2 is x. Similardy we let Zlx. x:. i be the i=§~§§§3€§
system slock after ét:iit‘{*! of the order placed at the %@3 ing of the &r
fevel at installation 2 is x. and the demand forecast s . M

£ is the demand in the first period, then the sequences . :n =0 and [ =

",
i
J]
:«n v
!I

aif<as

]

and

§,‘§§§§§5 §: f.f: {sgf;;ig- a rm:’ ﬁfssé conrex functiopan {—=

min

&
3'32.‘55_"

F§X:. S—-§ =

[}

;{Ix. .,% {;§§.¥§§ +{;
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where G is conrex nondecreasing -

emma, we easily
obtain Theorem 1:

THEOREM i [/ L s uvmrer &

Bt the first torni on the right-hand sid

secodd term is clearly convex. Thus we |

el
i

i

Azain the Brst term on the right-hand <ide of
function of x=. The second term iz K-convex. §

tien 1= K-convex, {1} follows for 5= for s=A. Bar this

As ‘
COROLLARY 1: Under 15 bspothesi

pping-policies.
ypothesis Zeores | £ rdering policy iz the nperiod

F
EHL

i x> X.A5j, ship nothing.
Farthermore. the policy parameters s,
Junctions of oaly one variable.
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MACRO-INVENTORY POLICIES
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E. HABER

Mention needs to he made of the usage rates used in generating submarine demands for repair
paris. Expected item usage rates per patrol were developed from technician’s estimates contained in
the Navy files just referenced, For consistenev, these patrol usage rates were used in both the computa-
- tion of jiem stock levels at each echelon and in the simulstion of units demanded per item per patrol.¥
~ Since our purpose was to estimate the effectiveness of alternative inventorv policies. rather than to

méasur{f eflectiveness for the reai life system, the technician’s estimates were used without modifica-
tion in asses sing the adequacy of supply to meet demand.

L2 ALTER\ATWF INVENTORY POLICIES

m é‘s:s section we dme‘nbe several ahemame inventory pahczes. In chm}mg the policies to be
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of various reiés for s!m‘kmg the :ender echeicm. and (2) o assess :he effects uf a reduc ion in stock
levels at zhe end- -consymer, i.e.; submarine. echelon. Thé decision te focus on theze aspects of mulii-

. echelon mncm-m-;enturv nolicy wus based on the structure of the Pélaris logistics system. As noted

i)fehaus!h for-ibe Po?ams logistics system, resupply of sibmarines is periedic. While *-ubr:l&ﬁnés are.
~j,{f3§§ :uaim{_z,—ihey have n't dceess to the © apply system, | This characteristic -of the logi tics syst
" suggests %h’éii‘cénsxs,em with -déilar and storage conriraints, the raage and dcgth of itéems,- ie., the
niz‘fﬁi' or of 5iﬁ‘ﬂtﬂn! paris stocked and.number of ‘units stecked. respectively, at the submarine ez:i}{imz
should be as Iarﬂﬁ ag pofzsmle On t}’e mher hand the basxc tree»-tmctun- (»f the. ?nfar }uﬂ S

egﬁehm. {' iven *heae pmmisﬁ. we exammed :he impact on iag;ims systeni eﬁiﬂﬁene‘ii sf Pﬁiiﬁ;e*
‘whoge intent was to reduce system costs by reducing stock levels. first dt the tender echelon and then
at the submarine echelon, No simulations examining the effect of reduced depot stock levels on &
eﬁ}:gm ness were possible during the time available for the study. Some implications of the analysis
“for this aspect of multi-echelon inventory policy are made at the end of the paper.

A mu?ii-enhékm policy: denoted ds the “standard™ policy. was chosen against which alternativ
policies could be compared. The particular policy chosen as ihe standard was, with one excepiivn:
the policy defined by [0}, It would be beyond the scope of this paper to describe the rules for determining
item stock levels for submarine, tender, and depat echelons as found in detail in {61 1t is sufficient 1o
note that in the standard policy, the tender is loaded. miiﬁ safety level stock, economic-add-on steck (1o
redyce the number of tines material is shipped te the tender). and endurance stock. Moreover. in the
standard policy. the tender is given parity with the depot as a resupply point. This parity is indicated
nat se much by the dollar investment in stock at thé tender vis-a-vis the depot. but by the. ;ﬁiﬁn«a;m*.«
-~ underlying the way in f.vht h the tender is simi-.ﬁi

-
m

- Inthe e.:ani:larfi-;m}wt' the icnder is re..anivd as a mobile. miniwtie;}m. While. in practice, tenders
are-anchore close to shore, they have the eapability of operating at sea The objective of s tocking the
tender as a mini-depat is ae?rmed in [6] by establishing the same item stockour prohabilities at the

;i:-nder as at the depot. and by providing the tender with endusance stock in addition 10 aafety level

St e e H e

¥xamination of actual -submaran usage Jata indicates that the average namber of different repuir parts used per patral
vver the entite population of pans was spproximately equal to the nember fenerated per patrad by the simulator {.;; e paris
coniained in the saniple, -

*Ree fovtnete on rage 122, .

EThe opporiunity 1o exercise this capubility dvgn-mf- on strategic consideration<. the svahiation of shich must ehviously
B feft 1o others,
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stock. In the alternative tender policies examined here. the role of the tender is quite differ ent from
the one just deseribed.

In all invenory policies including the standard pelicy, stock levels at each e;h&iu are compuled
using @ model which is a generalization of the model applied to the “newsboy pmsie i::ié"‘f;ﬁ* This
medel provides optimal ite, 3 stock quantities for a single echelon. but when it is used sequentially ai
each echelon in a logistics system, the overall distiibution of stocks within the

stem need not be
api:znal hiis :m;mriam to note here iitat all nlhu‘ tinngz- heing t:{}ti&i ﬂw mu{i cu ﬁ;;}iﬁif% ihij proba-

the next lower m‘hclun. -

Whereas the standard policy just described stacks a large number ﬂf units at the tender. in the
next two nolicies no stock is placed at the second echelon.

'

§n ane policy the tender is treated -as a loading platform. hut it still retains its capability of op-
erating at sea. In this poliey. denoted by “tender as a loading platforn.” * the tender is maintained as

an mi{*grai part of the logistics system. but.no mw:-nmm is made in Ie;ider stock. iii demands giégé{}

on i%u» k-ndﬁr are "-3§§~ﬁed dl*‘i-eliv fmm ﬁevut

in su imanne ﬁe-t-ﬂ:ﬁ: stock’ ie&eis ami eubmanm- i“ﬁ}‘i‘iﬂv{'“eﬁs vis-a-vis the case %‘E%it‘
prepusitioned at the tender. By use of the simulator, ehanges in iﬁ!nugmﬁaﬁﬁﬁ gz%é

-

ogistins system effectivencss, implicit to this policy. are estimated. ’ cos S

1 mw

-

tem is treated as if it con-

sisted of only twe echelons—submarines and a depot. In practice, however. au advanced land base
situated in the same general area where the tender iz normally siationed would be needed 1o perform
minor repair work and assist in the installation of repaired components aboard i&%ﬁéﬁﬁ&i hiis

A very dilTerent approach is taken in a second policy. The logistics sys

assumed that an advanced land base exists.? and that no steck is kept at this base so it 106 may isg

considered as a loading platform. The difference between this policy. git:ﬁs‘siéé as the “no tender™
policy. and the previous one is the luss of the capability of mobility associated with the tender. Addi-
tionally, one mizht expect some increase in trans-shipment time between depot and ~§§¥ﬁ§a?¥f§§§

sither heeause the loading of material aboard submarines will require more time in the absence of the
tender andfor sume repair work normally done at the tender will be shifted backwards 1o the depot,
To take account of the possibility of increased trans-shipment time. it is assumed in the no tender

policy that material cannot be furnished to submarines during the refit period in which they request

H
- resupply. This last assumption is equivalent to assuming that the probability of late arrival of material

in the forward staging area is LO0.Z Since material always arrives late, only normal air transpontation
is used in this policy.

It has hern sugzested that where the logistics sysiem is restricted to peridic resupply of end
consumers, stock levels at the lowest echelon should be as large as ;mfiishsé within the available deollar

FThe latter variable is used only af the submarine echelon wliere a space consiraint must be mel.

*In what follows questions concermmng the political feasibility of this poliey are izaored.

zIn practice. »ome pereentage of ftens, particularly consumable flems. shugld be deliversble s =obmarines dunng the
refit prriad, This assumplion. therefore, leads (o an averstatement of the loss of effectiveness associated with the no tender poliey.
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and space constraints in order to maintain a high degree of effectiveness.§ That is to say, when it is
important that no item. among severdl thousand items, lacks replacement units in-order 1o avert a
malfunetion in a larger system, in this case, the submarine, it may be necessary to stock eschitem at
this echelon in such quantities that the -probability of experiencing a shortage is extremely small.
In the contéxi of the present discussion, an example of a contrary policy would be to reduce initial
investment in-stock at the submarine echelon rather than at-the tender echelon. In particular, a con-
trary policy might assume the-acceptability of seme minimum probahility of stockout for any ilem. e.z..
one shortage of a repair part per 100 patrols. This policy is used in [5] and in unpublished Navy memor-
dnda deseribing echelon stoek level computations. It can be reformulated as a poliey which imposes a

. maximum repair part protection level of 0.99 and prokiibits stocking of units which raise the protection

level for any jtem above 0.99. This policy, which we denote as the “maximum protection level, 0.997
policy, is assessed here. To mainiain comparability, we assume that this pelicy is the sume as the
ﬁ!ﬁﬁéﬁiﬁ pelicy except that item protection levels at each echelon are constrained 16 a maximum value

- ui 0.99. Assessment of this policy provides a means of evaluating the proposition that centralization

ﬂf =i

cks at iu;.hcr echelons: achieved by reducing stocks of end consumer units, cin bv: non-optimal
-whe: }mmedmte r&;uppiv of t}m Iaiter is not p@:ﬁ:i}ie. :

§? i; were qi}tmﬁeé 3?3; muii;;}igmg the :xngmai eost data f@; é&eﬁ e’ch&i@é of the
%ig:i!:rs system by fivé. The use of a linear function for estimating initial investment costs
rst two échelons iz reasonable since the proxy system contains five times as many submarines

-: Tavig 1. Initial Dollar Investment in Stock ®

Palicies Sub- Tender | Deput Total

marine system
§. Standard 121 37 a3 23
‘?; Tméa* 88 2 Loading Platferm 121 0 8 o
b - 11 'ffﬁéef 121 ] <] 205
4. ’éﬁ:ﬂgﬁm i’ﬁ!‘eﬂﬁm Level. 0.99 93 33 4 203

2 In miflians of dullars per S-year perind for 2 logistics system of 35 submarines,
5 tenders. and | depat,

¥This propusilion does pet address the guestion of the mix of Hems to be stocked abnard submarines. Le., shouid sul-
& storked with 2 larze number of Jow priced Hems or 2 smaller number of fteins containing a larger propettion of Bizh
o7 This question requires sdditional analysis,

i§§§§ diffe

feronce between the standard policy and the sne defined by 6], The change in the standard palicy was made to zceentuate
e sl an the Iagistics system of changes in imventany policy, For the pulicies ennsidered. the effect is 1o ererestimate
transpuriation and depst srder onsts and to underestimate the effectiveness of the Polaris lagistics system,




W e AR

1
iy

bty

W
sl b
L i

I
iy

v“wlr' s

f

il

‘| gy |,.\.|‘.y i g

3. COST-EFFECTIVENESS EVALUATION

MULTLECHELON MACROIXVENTORY SIMULATION 125

and tenders as the simulated one. At the depot echelon, this procedure introduces an element of
difficulty. On the one hand. because of uncertainty of é&ﬁi&ﬁ&,é&fki stock requirements to suprpart
five tenders will be less than five times the requirement to support ene tender. On the other hand, the
Polaris logistics system contains two depats with seme duplication of stock between them. Given the
focus of our study. the estimating procedure used here seems adequate.

As can be seen from Table 1. the total initial invesiment in stock for the standard policy is larger
by approximately 18 percent than for the other inventory policies. In terms of costs aseociated with
initial investment in stock. the tender as a loading platform and the no tender policies are equivalent.
But ather costz associated with the construction. maintenanze. and speration of tenders which are
present in the former policy are absent in the latter one. Finally, we nate the different distributions of
stock between Policy 2 (and 3) and Policy 4. although the total initial investment in stock over zll
echelons is almost the zame.

The inventory policies defined in Table 1 are but several of a large number of multi-echelon policies
which could have been simuluted. The tender as a loading platform and no tender policies represent

i:mﬁmg cuses of a “light”™ tender load. However. it may well be that reductions in investment in stock.

_ if reasonable at all, should beé made at the submarine echelon.t In the next section, figures are pre-

sented which suggest significant reductions in logisties

= eness may result from a redue-
tion in stock at the-subinarine echelon. but-this may not hie the case if the reduction is made at the
tender echelon.

In any simulation, the problem of measuring cost and effectiveness is.as troublesome. if not more

=0. as the problem of design of the simulation. In the present context, the major difficulties peain to

the measurement of effectiveness of a military lesistics system and the translation of changes in effec-

tiveness into units which permit comparison with changes in costs. in general. the problems of measur-

ing effectiveness vutweigh thuge pertaining to the measurement of =

.. They are particularly difficult
to handle when there is nio market mechanism for measuring effectiveness. In this section. we first
present estimates of operating costs and measurements of system effectiveness. and then attempt a
recaiiciliation of the two sides of the cost-effectiveness relationship.

Estimates of operating costs. based on the simulation model, are shown in Table 2. These are
computed over a 5-year perind which is taken as the average duration between fundamental equip-

ment design changes for Polaris submarines. As in the case of the previous table. sll figures are com-
puted by multiplying the cost estimates for the simulated

vstem by a factor of five.

The least wroubleseme of the costs in Tabie Z, at least conceptually, are those relating to ans-
ponation. depot order. repair. and production costs since for the policies considered these consist
only of operating expenses. But even here one encounters the difficulty of obtaining data from which
reasonable cost estimates can be made. For example. no information conid be found fur the cozt of
repairing failed items. In this case. we assumed that rf*{:aif cost was a fraction—one-guarier—of the cost
of prodduction. As a proxy for the latter cost. the unit price of the tem as found in the Navy files was
used. The average depot order cosl was estimated from {3} a< 850 per inttial order and 825° perfollow-un

*Az soted earfier. no simulations hased on reduced insesiment in slock 2t the depet echebs w=-r performed <o this aspevt of
macr=invontory pulicy could mat be assessed,

“{xder onsts prr item tanged from $24 for purchase seders ;g-s-ﬁff—:f f:;s ssrw e stret
throagh advertised contract. The aseraze oost for all types of purchase

Talde ¥
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TABLE 2. Operating Costs®

Pulicies®
1 24 1 2B 3 1
FRYCH 0§ RO I | F 8 | h ik E8.6 g9
‘Fransporiation.....) 22 682 55 38 20
Bepat Order....... 14 233 216 6.2 0.2
Repair ... Sh0 565 5.3 5338 561
Productbt.. ..  HIEZ L ] iz ] 4.2
Tetaleersrennnand 28B4 it = R 2734 ZhE.2 8y
2 tn millions of dollars per S-vear perind fir a bog ,;t-ifé s3stem of 45 sulunarnines. 5 h’ﬁ*é??" aid I depei.
& Polivies:
i. Standard,
24, Tepderas g loading platform—~ prionty air
2B. Tender as a hading platform — normas! air transporiation for all parts.

3. Notemden
4. Maximum prateciion level 099,

order.t The cost of normal air transporiation was estimated at 58 per item delivered to the tender.
This estimate was bhased on 185 schedules of the Material Air Transpart System and tonnage and
transaction data supplied by the Strategic Systems Projeste Office. Data on the cost of priority air
transporiation. however, were unavailable. It was suggested to the author that 2100 per Hem delivered
1o the tender would be a reasonable estimate for priority air delivery, and this was the assumption
used here,

One component of vperaling costs associated with transportation is handling charges. We have
made no attempt 0 estimale incremental handling charges at the depo! resulting from reduced in-
vestment in stock at the tender. In effect. we considered this element of
for 1aking this sp;;rsach are twofeld. First, the exira manpower requirec
te some extent by a reduction in manpower at the tender for advanced lan

Ay

cozl fo he zera, The reasons

depot can be offset
e}, Second. by reducing
tite volume of material to be stored at these latter siies. it mav be possible 10 zlter their physical con-
figuration. therehy effecting a reduction in investment in plant. Although it is net clesr that there would
be a complete caneellation of costs, we procecd on this assumption.

Iu estimating operating costs. conceptual problems. as well a= data problems. are encountered.
For example. shueuld cost of inventory be measured in terms of initial investment in stock or in some
other manner. We estimated inventory costs by measuring the cost of material consumed and assuming
an allowance for the return of unused material after an accounting peried. which in our case covers
5 years. The amount allowed would depend on aciual arcounting practices asd on 2 var
the mast important being the rate a1 which material becomes shsolezcent. For the sophist
system, we assumed that one-half of unused stock thased on figures prvided by the sim
be recuvered alter 5 vears.

.Q'.I

e

A fedlawen wder b defined as 3 meadification o an nitlal arder =
erder, Any additianal srocurement inftiated after the docfierv date & f“i&ﬁ?s{i 2= 2=

sebedd for the inftial
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Our approach to the empirical and conceptual problems is typical. In the absence of the required
infermatien. a number of assumptions have been made whose only justification is that they do not seem

unreasonable. Should the reader have more information. he can medify the estimates in Table 2 and
reevaluate our conclusi

1i}ic

4,

Several vbservations can be made concerning the fizures in Tabie 2. Losking at the structure of
operaling cosis, p!‘:ﬂh"‘imﬁ and repair costs account for hail or more of operating costs.*® but they vary
very little amongz policies. The latter finding is not unexpecied since these costs are related only to
onsuraption and are independent of the total investment or distribution of initial investment in stock.

Perhaps the most surprising figure in Table 2 is the cost of transportation for the tender as a loading
plutiorm policy Policy 2A) when priority air transportation is used to resupply all highly essential items.
As can be seen from Table 3. the extremely high cost of transpontatien for this policy i= due to twe
factors: the large number of shipments from the depot due to the zero stock levels at the tender and
the heavy use of priority air transpontation due 1o the large proportion of hizhly essential tems in the
sample. i

™y

TasLe 3. Namber of Shipments 1o Tender by Mede of Transportatior and Number of Depot Orders
iy Tape®

Palicies®
H 24 be 3 3
H
Tender:
Nema! Afr 544653 H469 1356 909 35248
Priosity AR o 134458 g a 1537
Testaf 53571 1399457 38505 G55 56,83
24598 31863 3355 31518 582
xEiz {21087 s 5] £3539 3142
Feaal 3838 15839} {3065 =% i1 6533

»
'
v

£

wol) {nﬂ

W
(]

4

The effect of the former factor is alsa seen on depot ordering cost. Since depot stocks were purposely
Iimited te only zafety level stack. anefor one srdering socurs at the depot when a demaud is placed on
the tender. The poiat of interest here is the strong interrelationship between infiial investment in stock
f operating cost. These relations are often overloaled. not because they are nat
¢ of the difficulty of obtaining estimates of the variables and parameters influencing

s e-timsted sre wad res! Bie procduction and repair costs, best thels cnunier-
smpaste eohebn ok quaniities,

“The Goures i tAncinwistom and dopst ander conds in Table 2 e drrhved from Table 3 by uwnz the cn? factons c8ed in
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'i'i; i‘a{int'e the total npéﬁim_ cust Taffé*’;gzéé with §§‘=§ itéﬁés*‘ as a %ssésa, platferm fiiﬁiz? wi:&;i

i-ar the ne ieaifef §3{§§!§’§. one noles §§33£ §§§3§ sperating cost is even less than for Policy 2B. despl
the fact that normal air transporiation is used for all tems in both pelicies. More thag hall the dif.

fe

ference in total oneraling cost beiween these policies is aecounied for by Jepot order cost whichis a
function of the number of requests for stock placed on the depol. The explanation for the reductio
found in the construction of the simulation mi:ciei-

in resjuests for stock undder the no teader palicy =

As mentioned earlier. vhen material assizned to 2 submarine arrives after the submarine has de-
parted for its next patml. it hecomes available 10 other submarines on a first-come, first-served basis.
When more than one customer is given the unils assizned 1o anather. hatehing of requests vecor reduc-
2 snedur-one ardering at the depnt) depaot orders o
praduction and repair faciiities. For the no tender policy. where it was assumed that materiad always
arrived late. batching of requesis occurred freq ge??%- This happened aise. but less often in Policy 2B
where the probability of late a.:ival was much sma

‘ \N

ing shipments to the advanced land base and ¢

The rule that material ordered by one customer may br siven io other coslomers Is, iself, an
example of 2 niscro-inventory pelicy. i=§:: th= :-zgzggggss agm&. i+ would appear that this rle
wottld be an effective one in reducing of sysicm eifeciiveness may alwn be re.
duced, however, i the matedal siven io 2 *eé%}‘ig customer is more urzently necded by the first cus-
temer. The probability of this event occurting can be miaimized i “tradinz™ of material is prohibited
whee the need of the first customer is u . . when material i= neaded by the first customer to
replace fuiled units of 2 repsir part as contrasied 1o the case where the stock level for an Hem is positive
Iun below the allowed quantitv. A similar rule for tradine of stock may be applied in 2nother context.
Sinee more than one submarine s in refif al one time af 2 given site. repair parts could be traded amonz
submarines. In peneral. it should nat be 1on difficult 16 extablish rules by which the implementation of
tradling resuliz In reduced sperating cosis and even an &3 pectad net zain In effectiveness.

Of all the policies simulated. sperating cost was least for the maximam prolection level policy.
XNut only was inventery cost less for this palicy. but in addition transporiation and depet ereder cosis
were kzpt low duc 1o the carrving of stock at the tender.

511l to be discuseed is the Iogistics sysiem effective

sa, B Is worth pointing vut that §;§§;
can be substantially reduced for the & £ =
casts for this policy ii;a%éﬁﬁéﬁ%ﬁiiﬁﬁiﬁemgéﬁ This can be accomplished. for
example, by stocking the tender with items having 2 Inw unit price and 3 hish expected demand rate.

Tkis approach was employed in 6] in the computation «of cconomic-add an stock veing the formulation

i Fronomic-adden

s;g,?;;;v%-ré aﬁ!m;!'vg.ai.a%ﬁ
Fer example, the 88ins of hachoarders conls
dered slexk w3 posithe, bl Enafirirn! s oupp
= aiwars warched by ahdpmras, 1 drpes stacl £
feed ediers, 0 iy o dluple Backorder sbinenes
apprexizmately egoac
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where U is the expected montlly usage of an item st the tender, and F is the ftem’s unit price. In €1},
an item’s stock level is higher the kigher ils =xpecied monthly gsage and 1he lower its unit price. As
can be seen from Tabie 4. for the standard policy. the stock placed at the tender usins (1) {:zsmgésxsf
muost of the ranse bot i?1§§§ a fraction of the totz] inftial investment in steck, Thus. for s minimal invest-
ment of $3.41 million. orders on the depot can be subsrantislly reduced. The cost of ecking thie depot
as aminidepnt k= §§§§5§§3§§ insher. e 8370 million. Of particular interest_too, 55 that the economice-
add-on steck socupies a space of 351 cufl. Le.. a space which measures only alitle more than TR in
vach dimension,

Taniz 4. [Iaitiaf Investment in Tender Stock, Standacd ?;g;;g

. 3=z 53 B
S e eeereenaraosaes A 841 . -
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euf Eor Eve tepders, . -

_-%zi%sz%ggs‘%ﬁr : £33 only ggfx%i&eie&iﬁes;kég%ézeé; éfigé%gi%ﬁﬁ
which does rst depant in prine Eﬁé ﬁ&gﬁéagﬁséﬁﬁfﬁﬁﬁﬁﬁ%@:"

cost and increase effectiveness. It misght be added that a similer effect conld be aclie
tender policy §$7m:ﬁm%méﬁfﬁﬁ§%ﬁa§§ﬁ%
usaze at advanced land sites.
To this point in the discussion, reference has beer made te lngistics
definiiton ?@&ﬁﬁjﬁé?igﬁ%;gﬁﬁﬁéﬁfgﬁ%m§mi each g@i&
: mﬁii@

é?;ﬁé%is for replacement uniis, %@@gagﬁééaém
sufficiently lavze sincks on hand and demapd is relatively low, These twe conditions sﬁ?@f i&s
Polaris system. To svold misinterpretstion. we cefine lozistics system effectiveness sole
of submarine effectivenese, althansh even for this singdo ochelon, o number of gﬁs %ﬁﬁ%
measurenents sre possible. The measures of effectures provided by the simulsior for the submarine
echelon are shown in Tables Sand 6

The most common measure o a@gﬁg%@ﬁ%}ﬁfﬁm‘sik@géﬁﬁz?ﬁ
5. In praciice. suppiy éﬁ%ﬁﬁg s defined a5 the percentaze of demands for repar g‘
patrof f*‘g ﬁi@ﬁ'ﬁ %‘3;323;& siesck = snfficient fo satisfy all unils demanded. In 1hic defnitin
ﬁ?ﬁrﬁ%ﬁ;‘f@%ﬁ%ﬁﬁ’éﬁﬁ%%i%m%@é%% placed.
ki in that doring exch patrel E§§%&$§;§g§§é§ﬁ§ﬁ§§:ﬂ
actions for gggﬁ sagsr% §m then Jemand. Tﬁa our é?éiﬁzﬁs of sapply f’?ﬁ‘ﬁ ::éa alower

supply

— e e e e SR




7 itive to large chanzes in the level and distribution of stock In the lagistics s¥sien.

s In particular. considering 1his measure aly and neglecting the problerr -7 translating changzes in effec-

1 i tiveness into dollar terms, the maxinium prolection jevel poli.y compar=s rather favorably with the
4 -signis £ gﬁf}’;
I 2a | om | s 1 .
= Sepedr Effrethieness.on... ... 8595 85 [ 8698 s9r7 -
sfity. The level icenesd-gppedrs to foll somewfiat <~

of i -

. of highest essemt sfiy items which cause a,
i€ answer were twa, then ne patrols wenld be aboried for Palicies -

= 7 8. the level of effectiveness aitained duving a patro! will depend on whether the second

= shottage occurs on 1he first or last day of the patrol. If one assumes a uriform distsbnting of shartazes

Eebaiir el s pand beip termdnmei when 12 5, L L L Bichesr
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TABLI O, Pereont of Patrols With Shortages of Highest Exeentiality Parts
Number of Highest l'nlh"i;'n " T
l‘:‘“‘l'"”"'“y 'l“". et e e e e e A N e h 1 | AR o M WILT Rah o 15t 908
With i Shortape i 2A 2 4
REt R TR BRI AR I 5 Hlt VAV MO o By P5 T BFCL- TN ovd FANDE SR AT IS Vi ANSE St dtied DGR w T 357 45 AIRANN I 00 300 CEDEOTEp NN
i} 10,0 H1.4 94,4 0,0 0.7
I 24 N ] 2.8 2.7
P 0,0 [{) 2h0
R 2.4 I#,
B .0 4.4
) 7.4
O 44
h [A1]
# 0.0
U] 0.0
HRLO e 1H), 0 LRI TN
L . i - N v [

@ Seep Fable 2 tor poliey delinitions,
W nded 10 1000,

within uny patrol, the expected loss of effectivencss woubd he oneshalf that indicated by the figuees
in Table 6.8 Thus, for Poliey 28, 0.0 pereent of the patrols would he terminated (ussuming o eritieal
vitlie of two shortagesy, on average, at the mid-point of a patrol with a consequent expeeted reduetion
in effectiveness of 0.3 percent, This convention in computing expecied loss of logistic system effective
ness is adopted helow,

The problem of 1ranslating loss in Jogisties system effectiveness fnto dollur terms s adminedly
even more diffiealt than the nitin] problem of measuring loss In effeetiveness, Yet, diseussion of the
former problem area is unavoldable, Our approach was to estimute the incremental outlay in dollars
roquiired 1o maintain logistios system effectiveness for an alternative policy at the same level achiceved
by the stundard poliey, To compute this Ineremental outlay, we used the following expression:

AlY

2 Ineremental Capital Outlay = [ .I':LA_I?— 1 J : I--l--:-- IR

AL

whore AF i the veduction in logisties system effeetiveness (or the alternutive policy vissaevis the
standard one, and 1 the estimated capital Investment in plant and equipment per aceounting time
period for the alternative poliey, In applying (2). we note that iff A7 equals 1/2, the ineremental capital
outlay equals 1, The incremental inereuse in capital outlay per sceounting perod is then compared
with the incremental decrease in - rating costs per accounting pertod, I the former i less than the
Intter, the performunce of the alternative policy is judged to be better than that of the standard,

Given the published figure of $100 million for constraction of o Polaris submarine, we estimated
the Hifetime cost of construceting and maintaining (including maintenancee of personnel) o Polaris sub-
marine and Polarts tender ot $200 mitlion and $400 million. rexpectively, Thus for a force of 45 suby.
marines and 5 tenders, total capital investment would he $11 hillion, or $2.2 billlon per 5-year period
asstning un economie life for the system of 25 years, On the basis of these extimates, the incremental
cupital ontlay for a | percent reduction in logisties nystem effectiveness would e $22,2 million,

b e S bt 2 b S

AP wime pesudt Jo obtgine iF partol elfectiveness deelines ot the eate e dueiog a pateol, wheeen b the mmmbor of shotiages
whiel i dnewreed fewds o torminathon of a pateol,
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As noted abive, the expected loss In logisties system offectiveness depends on the assumion
made vegarding the numher of shortages of highest exsentiality ftems thist lead to termination of w putrol,
For eximples if o patrol is terminated when shortages are inenrred for two or more ftems with the
highest military exnentiatity, the expected loss of effeetiveness for the tender as g loading platform
poliey (Poliey 28) In 03 pereent, und the ineremental eapital outlay per Segear perdod reguired (o offse
thin lons in 86,6 million (see Table 7, From Table 2, one notes that the Ineremental deereane in operating
vost (per Beyenr period) for Poliey 218 ix 85,0 million, 1t snondd e peenllod, however, that the luter
figiree may e substantinlly inereased by a teivial dollar investment in ivens with low unft price and
Wgh expected demand at the tender eebielon, Assaming that the shortage of two or more fieme of highs
et ensentinlity b eneeded to terminate a pateols 10 would appear thet the tender aw o loading platform
poliey compures quite favorahly with the standard policy,

Tawew, 7. Estimated Inevemental Capltal Outlay as a Funetlon of the Critieal Numbher of Highest
Lissentlality Parts Needed to Terminate a Patrol

Polfey *
Critieat pumber ; .
2A 20 A +

| A2 Oid A 1.0 1927.0
2 " (’l" | '”I" ’22‘):"
B )} 0 329 0701
4 ] 0 b7 ant, |
h 0 0 e 43,0} 108.7
H {) 0 = 3000 0.4
7 0 1] = 40,0 20,0
[ 0 ] = 300,0 14,2
Y 1] 1] = K0 0.0
10 o more 1] {) = B, 1) 0,0

* Lo millenn of dollare per Beyeur period for a loglstios system of 4%
sthimarines, & tesders and | dopot,
W See Table 2 for policy definitions,

The estimted ineremental capital ontlay per Seyear period for aliernative assumptions regarding
the number of highest essentinlity items leading 1o termination of o patrol is shown in Table 7, In
computing the figures for the no tender policy, Poliey 3. the life-time costs used are $200 million for o
Polaris submarine and $100 million for constenetion and maintenance of a repair capability at an ad-
vaneed land buse, The negative figures indicate the reduetion in capital outlays for this policy (vik-a-vis
the stundard polley) when logistios system effectiveness is equal 1o that for the standard poliey, Coms
paring the figures in Table 7 with the inerementul operating costs for each poliey, we find that Poliey
3 ranks higher than the standard i the ceitical number of shortages is four or more, The same ix troe
for Policy 4. but only if the eritical number of shortages is eight or more, Note, here the savings are
restricted to operating costs whereas in Policy 3 there is also a reduction in capital outlays, 1§ interest.
ing to note thut whereas Policy 2A ranks lower than the standard for all assumptions heeanse of s
higher operating cost and lower effectiveness, the former ranks bigher than Poliey 4 i the eritieal
number of shortages is hetween 1 and 8, In general, Policy 4 ranks lower than the others §f the eritical
number of shortages is small,
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~

Netwithwtanding the diffieultion of estimating loxs of effeetiveness and converting this foss into o
monetary equivalent, the data In "Tables 6 and 7 suggent the followlng tentutive conelustons, ‘e
stunddard policy, in which submarines are stocked with an wide a range and degth of fems as possible
consistent with dollar and «paee connteainte, provides o very high level of logiatios systom effeiveness,
For this venson, improvements Ineffoctiveness from polieies which would plaee still greater emphasis
onthe tender or depot ux o stoek point would e difientt to achieve and nlvo expensive, On the ather
hand, although substantial reductions In Investment in stoek ean e realized by plocing loss stoek uf
the eondsconsumer cehelim, this poliey Is likely to vesnlt In o marked reduetion i loglstios system effoes
Hvenens, Finally, the tender as o loading polley and no tender polieies appear (o rate favorably with
the standard poliey ninder not too restedetive assimptions regarding the mamber of shortages of highest
et fality lems needed to terminate o pateol,*

These conelustons rest on two busie eharneteristios of the Polaris loglsties systen = resupply s
perhdie tonly onee after caeh pateol) and item usage rites, even when secumuloed over the entive
syntent, are low, The latter characteristie i of special fmportanee in explaining the tmpressively small
ninsher of shortages for the tender as g louding platform and no tender polieies, The effect of low de.
mand rates on logistien system effectiveness can he lostrated by the following example, Assume that
sthmarine aud depot stock levels for an em are such that the probabllity of supply exceeding demand
s 0,997 and 0,993, respeetively, when the stocks ar eaeh eehielon ave considered separately, Then the
probabifity of ineneving a shortage of stock over the entire supply system during a twopatrol period
covering 0 months, axsuming that submarine stoek is the only stock available during the first patrol
and that depan stoek i the only stock avallable for the second pateol, will be approstimately 0,010, Sinee
for most ems, the return thine from production andfor repalr fucilities 18 6 months or less, this means
that stock at the endsconsumer and depot echelons alone would be sufliclent (o cover 99 owt of 100
demwimds during the period In which material can be replenistied throsghout the mulib-echelon inventory
systen,

The characteristie of low usage rites suggests that for o large proportion of ftems, stock need he
kept only at two echelons and for a not unimportant elass of ftems ope echelon may suflice, As noted,
we have econcluded that In eeder to malotain a high level of logisties system effectiveness, item stocks
should be placed, in general, at the end-consumer echelon, For ftems that are bulky and/or expensive
bt which also have the characteristle of high essentiality, the lowest echelon of support may he the
peneder or advaneed land base, Given the poliey of stocking an item at the submarine or tender depend.
ing on ite cost and its military essentiality tor at both echelons if 1t b ineluded among thie ltems for whieh
ceonomieswdd-on stock is computed), the primary resopply responsibility falls 1o the depot, But all
ftems need not he stocked at the depot, 1an tem bs expensive and lias low miflitary essentiality, hut
most important, if s usage rnte s low, it probably can be deleted from the depot stoek list with only o
trivial effeet on logisties system: effectiveness, Because of the low failure rate, there tsoa high prohs
abllity that anether unit can be obtained from the mannfacturer before the supply system esperionces
another demand for the item, And even if this is not the case, I the em §s of low essentiality, the
expected deeline in system effectivencess shoulil he small,

I coneluding this paper, o final observation should be noted, Although s large number of assump-
tone were required thironghout the analysis, an explicit effort was made 1o he conservative in the chofee

D shonbed D noted that 3 the fmiting aesampiion thi all shortages ovenr at e hegloniog of i pitrol e made, Poliey 31
compirres e fuyerably and Poliey 4 moeh Jese Gnenrably with the standand poliey, "Fhe genern) eonelusions, however, wouli|
remain tnelunged,
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of the sample. in structuring the simulator, and in estimating boih operating cosis and incremental
capital outlays to offset loss of effectiveness. In all policies. one-for-vne srdering was imposed at the
depot echelon, thereby increasing depot order vosts: the Impact. bowever. was primarily oa the two
palicies for which stock was eliminated a1 the middle echelon. Additionalh. the extreme version of
the tender as a loading platform polier and the assumption of late delivery for the no tender pslicy results
in 2n ever-estimate of loss in effectiveness for these palicies. Becapse of the complexity of cost-efec.
tiveness analysis. # is semewhat humbling 1o realize thar when all is salid and done. evaluation of the
findings presented bere ulimsately depends on the individusl reader’s expertise. both in terms of
information at hand and experience in the sperating characteristics of complex systems.
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ABNTRACT

I this note the awthors eall for w ehange of the optimality eriterin given by ‘Theorem 3
i weetion & of the paper of W, Sgware "On Some Sequeneing Peablems in NRLQ Val, 15,
No, 224 Fither, twer cameen oof e theee machine peobilem, namely, () Max Ay 8 M!'u g andd
(i Max Oy = M!u My are considdered, and provediges for olstaining np%‘mml sequenees fn

h :
thess cines dee ghven, In these vanes the theewmaehine problem s solvedd by solving n (the
nimber of job) twesmsehine prohlems,

INTRODUCTION

Section 5 of the paper of W, Szware "On Some Sequencing Problems in NRLQ Vol, 15, 2: 1968,
i 140=147 (2], deals with eertaln special cases of the well known Johnson's 3 X n sequencing problem,
The opthnality eriterin are subject to changes since several terms in L and R on puge 142 are simply
nissing,

Condidons 2a and 3o of the theorem are considered wlone and new procedures for obtaining optl
} mal sequences in cases satlsfying eithey of the conditions are developed, An example §s piven to
| illustrate the procedure,

Belore discussing the problems involved we assume the reader 10 he famillar with [2]: however,
no (umittarity with [2] is required for section 2 of this note,

1, Corrected L and R

We restute the following notations from [2]:

pe(l 2,000 n) denotes the sequence 1,2, ., 000 nof the n i,
Aie Biv G denote the operating tme of ftem £ on machines A, B and C respectively,

1ot
, W Wt
Ko= N Ai= 3 8 and
il =1
(1)

¢ rd
I,= Y Bi= "N G for sequence p,
-1 (B

For the sequence p'= (1, . . o, =1 j*1 0 j+20 ... o o) denote by K, I the corres
sponding expressions similar to (1),

Lot

(2) y(p)“’,i"m‘t}" (. Ry,

145
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In addition. we introduce a notation

{3} ;;‘mi_;.. ._. . @ e e e e a s .}.;;).

and K,. A, the ‘corresponding expressions suvilar (1) for the sequence p.
Now consider L and a‘i given en page 142 of !.’?j It is eosy to sce that the terms of H,.+ &, H.+ K,
for u=j. j+ 1 and j+2 % v < n are missinz The correct expressions for £ and R are given below,

=max (HrKu 1 Sasf B+ 14K 1 S usjd b Hot Ky Ho+ K,y j42 <0< n)

I

L
R=max (H/+K.. lsuexj H;,,-%—K;. tsu=j+ L H 4K H +K . j+2sr<n)

25 S

tthe underlined expressions indicate the miszing terms i L and K in [2].
This trivial error iz erucial
on page 14 of [2] i

The correct form of L and R changes all thn

«however, sinee it leads to ineorrect agiimality eriteria taee Theorem 3

ze ~riteria presented in the mentioned theorem. For
- instaﬁce;, eriterion 1 will'be as follows:

aj B;= consiant. bx*{:\—i_,.;.(ui' > foralif

4

u ,.,,u

2. ng;é Spécial Cases of the Three -Machine Prablem

_Ca sidér a sequence § defined by (3) and the cerresponding ;{_g and H,. thex,

gli)= max (H.+K,).

- traslica

-then .
}‘it‘:—’ !!(; {95‘ I'-sf‘:;ﬂ"‘}
and s
’ - gipy=max (H.+E)
- frres
. -4, - max H,
B . N - - 'frfs -
- . =d4;, +max {5, B;, + BJ;.;—C,’, He oL .. HD
- »7 T " i .i
- =4; By, —C; + L{, - max i"? B;,— ?C,t) I-
. - : - ‘ ren A& = J
ietf éermze *%*e«e if all exquences with j; =i. We are interested in minimizing 2{/3) overall possible

in i:max {Ei B, ~ 2 C:,}j

last machine C. for the two machine problem with machines B and

{ and the {n -'i'i-_ii;bs mher &‘;ﬁﬁ N

Heure, we cun develop the following nwocedure 1o obtain an optimal sequence. For i=1, 2,

S

=A;+ B, —Ci+max {CL 1),
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where [, is as defined above. Let 8; be the curresponding opfimal sequence.
Find  Di,=min D;.
i
Then an optimal sequence for the problem is given by (i,. 8.).
Example: .
Jobs A B c;
1 5 9 6
2 8 1 5 .
K 7 8 2
4 Y 12 4
Here. we have. using Johuson's rule.
Ii=22 and §5,= (2. 1. 3}
=19 and S:=(1. 4. 3}
1-;-— 21 and 8= (1.2, 4}
Ii=17 and 8;=1{1. 2. 3.
I; can be found, using the expression for idle time on the last machine in the 1wo machine problem or
Ganu chart.
Now ;i +B,—Cifori=1.2.3 and 4 are 3. 14. 13 and 12. respectively.
Az > G Vio we have, D, =30, D.=33. D:=34 and D,=29
Since D; is the minimum over Di's. (1. 1. 2. 3) is an optimal sequence.
CASE II: Let max Cr=s mm .. Consider the sequence = (.. j=. . . . fL
Then .
H<H.,
and
g(py=b—c+(C; + max Ky=@-c)+[C+ '&‘ias? (Ke.a—b+8B; 1]
EEE~
where " . .
a=¥y A4 b=3 B c=3 Cu.
iny i~ =t
Similar to caze 1. fixing j. one can develop the following procedure. Fori=1,2. . . . . ... ... ",

Caleulate

Di=Ci+max (I..a—b6+8B;)

when /; iz minimum idle time on the last machine B. for the twe-machine problem with machines A and
B and the {n—1) jobs cther than i. Let S; be the correspending optimal sequence.

Find Di=Min D..

1]
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Then an optimal sequence for the problem is given by (S,

k3

. Ia}.
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INTERNATIONAL CONFERENCE ON STOCHAST:C POINT PROCESSES

An Intcinational Conference on the topic “Stochustic Puint Processes; Statistical Analy
Theory and Applications™ will be held at the IBM Rescarch Center. Yorktown Heights. Xew York on
August 2-7. 1971. the week befors the International S1atistical lastitute meetings in Washington, D.C.
The organizing committee consists of D, R. Cox and P. A. W, Lewis. Chairmen. M. 5. Barntlent. J. Gani.
K. Matthes. P. A. P. Moran. E. Parzen. R. Pyke. W. L. Smith. and D. Vere-Jones.

The aim of the conference is to bring together mathematicians and statisticians working in this

field and workers 1 applied fields. such as ceology. neurophysiology, traffic studies. ri:iiab;izljg- Zeag

raphy. forestry. enidemiclogy, and zeophysics. Consequently. there will be three cais
presented at the conference:

o

} Survey papers on the mathematical theory. statistical analysis. and models of univariate point

ftd

processes. multivariate point processes. multidimensional point prucesses. and line processes;
iit Review papers on the types of problems involving point processes encountered in fields of ap- -
plication such as ecology. nevrophysiology, physics. forestry. reliability. traflic. geography. ete.

iii} A limited number of contributed-papérs on new work in the field, .

We hope 1o have the survey papers available before the conference and also to print a compilation

+f apen prublems for discussion at the conference. Problems for inclusion should be limited 10 one

typewritten page 16:1/2x11 in.} and he submitted before April 30. 1971, Each submission should include

o

the authar's mame and address,
Papers presented at the conference will he published either in Biometrika. or in the Journai of
Applied Probability and Advances in Applied Probability, subject to the usval acceptance and referee-

ing procedures,
Furthier information and submissions to the conference should be made to:

Dr. P AL W, Lewis

Mathematical Sciences Depaniment
IBM Research Center

P.0. Bux 218

Yorktawn Heighis. NUY. 10398, US.A
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