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OPTIMAL INTERDICTION OF A SUPPLY NETWORK

Alan W. McMasiers
and

Thomas M. Mustin. LCdr., USN

Naval Postgraduate School
Monterey, California

ABSTRACT

Under cerlain condilions, 1he re-supply capabilily of a combalani force may he limiled
by the characlerislics of 1he 1ransportalivn nelwork over which supplies musi flow. Inler-
diclion hy an opposing force may be used to ;educe 1he capacily of 1hal nelwark. The effecls
of such efforts vary for differing missions and 1argets. Wilh only a limiled 1012l budgel
available. 1he interdiclor musi decide which 1argels 10 hil, and with how much effort. An
algorithm is presenled for delermining 1he oplimum inlerdiclion plan for minimizing nelwork
flow capacily when 1he minimum capacily on an arc is positive and 1he cosl of inlerdiclion is
a linear funclion of are capacily reduclion.

The problem of reducing the maximum flow in a network has received considerable interest
recently [1. 3, 8, 9], primarily as a consequence of the problem of interdicting supply lines in limited
warfare. In this paper an algorithm is presented for reducing the maximum flow in such a network
when the resaurces of the interdicting force are limited. A typical problem is that of the strike planner
who must determine the best way to allocate a limited number of aircraft to interdict an enemy’s
supply lines on a particular day.

The netwark is assumed ta be capacity limited and to be representable as a planar connected
graph of nodes and undirected capacitated arcs. Further, it is assumed to have a single source through
which flow enters the network and a single sink through which flow leaves. The maximum flow through
such networks is easily determined by finding the minimum cut set where a cut set is defined as a set
of arcs which, when removed, causes a network to be partitioned into two subgraphs, one subgraph
containing the source node and the other containing the sink node. The value of a cut set is the sum
of the flow capacities of its arcs. The minimum cut set is that cut set whose value is the minimum of
all cut sets of a network. The max-flow min-cut theorem states that the maximum flow possible through
the network is equal to the value of the minimum cut set [4, 5].

In the interdiction problem, an arc (i, j) is assumed to have a maximum flow capacity. u;; = 0, and
a minimum flow capacity, {;; = 0. At least one arc of the network is assumed to have /;; > 0. As a conse-
quence of interdiction, the actual capacity, my. on an arc will be somewhere in the range
0</ij< my< .

If we assume that the interdictor incurs a cost, Cj;, per unit of capacity decrease. then his total
cost for reducing an arc’s capacity from uj; to my; will be Cy[uy;—m;]. If we assume the interdictor
has a total budget limitation, K, which he cannot exceed, then

2 Cu[u,j-mij] < K.
an(i.j)
The cost, Cij, might represent the number of sorties required to reduce arc capacity by one unit

and K might represent the total number of sorties which can be flown in a 24-hour period.
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262 A, W. MeMASTERS AND T, M. MUSTIN

The interdictor’s problem is to find a set of m;; whieh minimizes the maximum flow in the supply
network subjeet to
> Ciluy—my} <K
allGiuj)
and
lijs my < uy for all (1, ).

Topological Dual

In resolving the interdictor's problem we will make use of tue topological dual. This dual. when
defined. is another network in which the ares have lengths instead of capacities. A one-to-one cor-
respondenee exists between the cut sets of the original or primal network and the loopless paths throngh
the dual. The problem of finding the minimum cut set in the primal 1~ cquivalent to finding the shortest
path through the dual {4).

l.et the original maximum flow netwerk be called the primal. To construct the topological dual we
begin by adding an artificial arc connecting the source to the sink in th~ primal. The resulting network
will be referr:d to as the modified primal and the area surrounding this network will be referred to as
the external mesh. A duai is defined if and only if the modified primal is planar: a planar network being

“one that can be drawn on a plane such that no two arcs intersect except at a node.

When defined. a dual may be constructed for the interdiction problem in the following manner [9]:

1. Place a node in each mesh of the modified primal including the external mesh. lLet the
sonree of the dual be the node in the mesh involving the artificial are and the sink be the node in
the external mesh.

2. For each are in the primal (except the artificial are) construet an arce that intersects it and joins
with nodes in the meshes adjacent to it.

3. Assign each arc of the dual a length equal to the capacity of the primal are it intersects.

Preview of the Algorithm

The algorithm begins by ignoring the budget restriction. All arcs of the primal are initially assigned
capacities l;; and the shortest route through the topological dual is determined. The length of the route
corresponds to the value of the minimum cut set of the primal when my;=1{;; for all arcs. A check is
then made to determine if the interdiction cost for obtaining this minimum cut exceeds the budget
constraint. If not. then the problem is solved. If. howevr -, the budget constraint has been exceeded
then a reduction in expenditures is required.

The algorithm seeks to “‘unspend”™ as carefully as possible so that the amount of flow through the
network increases as little as possible. The first step in this unspending operation is to find which arc
of the minimum eut set “*gives back” the largest amount of expense for the smallest increase in capacity.
Unspending takes place until mj;= u;; or the budget constraint is satisfied. i mi;= u;; then the algorithm
continues working on the minimum cut s¢t until the budget constraint is satisfied. The final value of
that cut set is then determined and retained for later comparisons.

The algerithm looks next for the second shertest route corresponding to the second lowest valued
cut set when all arcs have m;;=1[;;. It repeats the budget check and the unspending process. After
the budget is satisfied on this cut set then the cut set value is compared with the final value of the cut
set of the “shortest” routes; that cut set having the lower final value is retained and the other is dropped

from further consideration.
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The process continnes with eonsideration next of the third shortest ronte or third minimam ent
set with all ares having mi;=1,, and then the fourth and =0 on. If. at any time. the length of the next
shortest route nsing all /;'s is greater than the final length of the best previons route. the algorithm
terminates. There is no point in continuing the next shortest route investigations sinee all further

rontes will have lengths greater than the feasible length of the best previous ronte.

Feasible Min-Cut Algorithm

1. Construct the topological dual of the network and set alt my;=1/;;. Set r=1.
2. Determine R,. the rth shortest loopless route through the dual when mj;=1;;. and determine
its length L from
L= 2 li;.
(i, eky
If 1 = 2 rontes qualify for the rth shortest route because of ties in total length. arbitrarily select
one of these routes as the rth. another as the (r+ hith, another as the (r+ 2)th, and so on. with the last
of the group being designated as the (r+ w— 1)th shortest route.
Compare LF with L7-9, the length of the shortest feasible route from the set R;. R.. . . .. R, 1.
{Let L= x),
(a) It L¥ < L'7-" then go to step 3.
() If L} = L'V then terminate the algorithm, The rowes R, Ryiy. Rr.a. . . .. Ry will have
feasible lengths which are no shorter than L7 and need not be considered.
3. Compute the interdiction expense. £, associated with L from
Er= 2 Cij[llij-lij].
(i, ekty
(a) If E, < K. terminate the algorithm. Route R, has the minimum feasible length of all routes
through the dual.
I E,> K., go to step 4.
4. List the n ares in R, in descending order of Cj; valnes: let (/i(r) represent the largest C;; and
Catr). the lowest. Beginving with ¢=1 and L,= L}. inerease the length of the are (i, j) corresponding
to Cy(r) and the route length L, by

Er-K
Ci

Am;j= min{u;,-— I,'j, , Lir-n —Lr}.
Decrease the interdietion expense E, by Ci;Am;.

(a) If Amy;=u;;—1;j increase q by 1; compute Am;j; and the new values of L, and E, for the
next arc on the Cj; hst.
E,—K

Cij ‘
and record the current value of ¢. call it 5. Delete the route associated with L7~V from further considera-
tion. if L, > L'r-V, set L= [ir-1 and drop R, from further consideration. Increase r by 1 and return

(b} If Am;;= the interdiction expense for the route is E, =K. If L, < L't-V set '"=L,

to step 2.
te) If Amj;=L"-V~L,. the length of route r has been increased to L‘"~", but it is still not
feasible since E > K. Delete R, from further consideration, set L' = L{"-1_and return to step 2.
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Er—K
ij

If there is a tie between u;— ¢, and L' V' — L, apply part (¢).

If there is a tie between uy— 1 or L' -V — [, and for value of Ami;. apply part th) above.

Optimal Allocation N ,

The value of L7 at the termination of the algorithin is the minitnum value of all the feasible cut
sets, This is the minimum acnievable network capacity. The interdiction effort is assigned to the ares
of the primal which are “‘cut™ by the feasible route R, of the topological dual associated with the valne
of L', The optimal number of sorties to allocate is

nij=Ciu;— 1]

& for the ares of the primal cut by the dual ares of R, associated with C,.(p), Ci.2(p). . . .. Co(p)
where s is the index from the Cj; list of the first arc on R, having Am,; -~ 0. For the arc (i, j) associated
with Cip):
ol
n;,-=K— 2 ni;.
Caorti
Finally. nj;= 0 for all other arcs of the primal network.
EXAMPLE: Figure 1 presents the network information for the example. The value of K will he 5.
Node 1 is the source and node 5 is the sink. The numbers on each arc represent l;;, uj;;. Cj;.
The topological dual is formed as shown by the dashed lines in Figure 1. The artifical arc added
to the primal for constructing the dual is arc (5, 1). The completed topological dual is shown in Figure 2:
the numbers on the arcs represent the upper and lower bounds on arc length and the unit costs for
shortening them. These numbers correspond directly to the numhers on the ares of the primal ent by

the dual arcs. The source and sink of the dual are nodes A and D. respectively.

— —— g ——
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When mij=1;; on all of the ares of the dual the complete set of loopless routes frem source to sink

with associated lengths LF can be obtained by inspection. It is:

Ry:(AB.BDD =3

R, (AC., CDy =4

Ri:(AC, CB,BDl) L¥=4

R.:(AB. BC.CDy L¥=7

R. :1AB. BD2) L¥=8

R 1 (AC, CB, BD2) F=9.
The designation BD1 is associated with the upper BD are in Figure 2 and BD2 is associated with lower.
Altheugh the algorithm would not evaluate all routes R, through R, and their associated LY values
they are presented for the sake of discussion.

The algorithm begins by finding K, and computiny L} =3. L'9'= x is set so that L{* < 1'%, Hecause
E,=17> K, the cosi ~oefficients for R, are ranked, C;(1) =2 (for arc BD1) and C:(1) =1 (for arc AB).
The evalnation of Amyy,y results in
Ei—K_

(‘ BDU

6.

Amyin =

1,=9, and E,=5=K. The analysis of R, is complete because £, = K, therefore L'"'=1,=9.
After finding K., the value L} is computed. Because L¥ =4 < 1), the value of E, is next deter-
mined. £2,=14> K so the cost coefficients for K, must be ranked. €,(2)=3 (for arc AC) and

Amy =iy — Iy =2 resulting in L., =6 and F,= 8. Next Am¢,= h;,_ k2 Y250 L,=7Y2and E.=5=K,

s
<D

completing the analysis of R,.

Because L, < L' we drop R; from further consideration and set 1'2'=L,= 7Y,

K3 is next on the list. L§ < L'2'so Ey is determined. E3=22 > K and Am , must then be caiculated.
We get Aniye=tpe— 4 =2 resulting in ;=6 and F3=16. Next, Amyy = L'2'— Ly;=3%2 and R; can
be disregarded. Set L'3'=[2)= 7",

Route Ry has Lf=7<L®* and E,=13. Then Amep= L™= Ly="2 and we can disregard R,.
St LW'=[31=T1,,

Because Rs has 1§ =8> L4 the algorithm terminates,

The dual route which is used to determine the optimal allocation of interdiction effcrt is R,.
L= 72 is the value of the minimum cut of the primal network after optimal interdiction. Arc AC has
length my.=uy-=3 and arc CD has a length m¢,= 4Y2 < u¢p. Therefore arc (3, 5) of Ul primal has a
final capacity of mys=us;=3 and arc (4, 5) of the primal has a final capacity of mg;= 4Y2. The entire
budget K =5 is allocated to interdiction of arc (4. 5). This optimal interdiction gives a maximum possible
flow through the network of 72

An rth Shortest Route Algorithm

An algorithm for finding the rth shortest loopless route through the dnal network is a necessary
part of step 2 of the Feasible Min-Cut algorithm for large problems. Such an algorithm can be derived
by minor modifications to the “*N best loopless paths™ algorithm of Clarke, Krikorian, and Rausen {2]
(their algorithm will be referred to as the CKR algorithm from this point on). In seeking the N best
loopless paths the CKR algorithm concentrates on paths which have at most one loop. The procedure
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begins with the determination of an initial set S of N loopless routes along with a set T of routes having
one loop, but lengths less than the longest of the A routes of S, Special deviations, called “detours,”
from routes in the et T are then examined to see if any loopless route arises which is shorter in length
than the longest of set S. If so, then this route replaces the longer one in 8. When the elements of sets
S and T cease changing the algorithm terminates.

The modification for converting this procedure to an rth shortest route type is quite simple, Use
the CKR algorithm to find an initial set of V = 1 hest loopless routes. If, during the course of applying
the Feasible Min-Cut algorithm additional routes beyond NV are needed, use the existing |V routes to
initiate the construction of the new set S. The new set S is initially established when a specified number
of loopless routes, K( = 1), has been added to S. Those detours of routes in new S having loops. hut
total lengths less than the maximum from S form the new set T. The CKR algorithm is then applied 10
find the final set of ¥+ K best loopless routes.

If more than V+ K routes are needed after returning to the Feasible Min-Cut algorithm then
another set of K additional routes can be added in the same way as the first K. The second new set §
would be initiated with the existing N + K best loopless routes.

The values of N and K are a matter of personal choice. The use of K=1 does not however seem
very efficient becaus< of the possibility of multiple routes of the same length. With K > 1 such tiex
become nore quickly apparent. In any case. a complete list of all routes of a particular length should
be evaluated before returning to the Feasible Min-Cut algorithm. For example. if there are three
shortest routes through the network and N=2 was used then an additional set of K = 2 routes should
be evaluated to pick up the third route and to show ! it there is only one more shortest route prior
to going to step 3 of the Feasible Min-Cut algorithm.

Modifications when all ;=0

The Feasible Min-Cut algorithm was designed for problems where at least one are has /;; > 0.
The reason for this was that in most real-world interdiction problems it would be virtually impossible
to reduce an arc’s capacity to zero for any extended period of time [3. 6{. Often hand-carrying of supplies
can begin immediately after an aerial or ground attack. If one considers /;; 1o represent the average 24
hour minimum capacity then hand-carrying and minor repairs would definttely result in /;; > 0.

If the Feasible Min-Cut algorithm is applied to a network having all /;;= 0 it would evaluate the
feasible length of all loopless routes through the dual. The following modifications in steps 1 and 2 of
the algorithm are suggested as a means of possibly avoicng this complete evaluation. Step 3 would be
by-passed completely.

1. Construet the topological dual of the network aid set all my=u;;. Set r=1.

2. Determine R,. the rth shortest loopless route through the dual when m;= u;;. Then set m;;=0
for all ares on this rouie and determine £, from

Er= z C,')ll,'j.
ek,
(a) If E, < K. terminate the algorithm. Route R, has a minimum feasible length of zero and
ny= Cyu;; for all arcs on R,.
(b) If E, > K, go to step 4.

Comments
The algorithm terminates in a finite number of steps since the number of loopless routes through
the dua! network is finite for finite networks and each route is examined only once.
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Walll,. u: €. as well as A are imteger valucd then ng;, will be imteger also. If any of these parame-
ters i not integer then there is wo gmarantee of an integer sobtion. i a problem invobves allocating
sorties then integer solntions shonld be songht after the Feasible Min-Cut algorithm is completed. 1f,
however. the problem involves allocating, sayv. tons of bombs. then noninteger result= might be guite

reasonable.

Extensions

The law of diminishing returns suggests that actual interdiction costs for an are (4. 5) may follow 2
curve of the type shown in figure 3. The Feasible Min-Cut algorithm caa solve problems having this
type of nonlinear cost funetion if the function is replaced by a piecewise linear apppximation sueh as
that shown by ti.e dashed lines in Fignre 3. This linear approximation can be ereated in the primal
network by rplacing are (i, j) by three arcs having 1. w;;. and C;; values as sbown in Figure 4. The
construction of the topological dual will then require that a node be placed in each mesh of Figure 4.

A furtlier extension of the interdiction problem with nonlinear costs has been made by Nugent [7].
He consicers an exponential cost function in continuous form and presents an algorithm <imilar to
the Feasible Min-Cut algorithm for solving the problem.

ARC
CAPACITY

ARC INTERDICTION
cosT

FIGIRE 3. Arc capacily as a function of interdiction cost under the law of diminishing reierns

My, U (€, €, M HU-My)

LM (G, -C,)/ ML)

FroiRe 3. Replacement of are ti. ji fur the linear approximavon to Fig. 3
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OPTIMAL MULTICOMMODITY NETWORK FLOWS
WITH RESOURCE ALLOCATION

J. E. Cremeans, R. A. Smah and . R. Tyndall

Research Analysis Corporation
Mcl.ean, Virginia

ABSTRACT

P

‘ The problem of determining mullicommedity flows over a capacilaled network subject

1o resource consirainis may be solved by hinear programming. however, the number of

potential veclors in mosi applications is such 1har 1he standard arc-chain formulalion be-
comes impractical. This paper describes an approach—an exiension of 1he coluinn genera- i
lion technique used in 1he mulicommodity network fow problem —1hair simulianeously
considers network chain selection and resource allocalion, thus making 1he problem both
manageable and optimal. The flow anained is consirained by resource availabilii» and ne1-
work capacily. A minimum-cost formulalion is described and an exiension 19 permil the
subsiiation of resources is developed. Compuiational experience with 1the model «s discussed. !

INTRODUCTION

The problem of multicommodity flows in capacitated networks has received considerable atten-
tion. Ford and Fulkerson [3] sugges.ed a coniputational procedure to solve the general maximum-flow
case. Tomlin [7] has extended the procedure to include the minimum-cost case. Jewell [6] has pointed
out the strong historical and logical connection hetween this solution procedure for the multicom- 1
modity problem and the decomposition algorithm of Dantzig and Wolfe [2]. !

. A related problem, which has not been directly addressed. is the determination of multicom-
modity flows in a system constrained by resource availahility. For example, flows in transpertation
networks are constrained by available resources that must be shared by two or more arcs in the network.
The determination of the set of routes and the allocation of resources to these routes to maximize
multicommodity flows or to minimize system cost in mecting fixed flow requirements can be apphed

i to many problems in logistics and other areas. This paper discusses a solution procedure for multi-

commodity network flows with resource constraints in a minimum-cost case and develops an extension

‘ to permit the substitution of resources.

THE MULTICOMMODITY NETWORK FLOW PROBLEM

Consider the multimode, multicommodity network G(N, ). N is the set of all the nodes of the
network. . is the subset of all ordered pairs (x, y) of the elements of N that are arcs of the network.

Ay, . . ., Amis an enumeration of the arcs. Fach arc has an associated capacity b, = 0 and an k
! associated cost (or distance) d(,,) = 0. = o
i. For each commodity k(k=1, . . ., q) there is a source s; and a sink ix. The flow of commodity k A P 1
along a directed arc (x, y) is F&.pn, (k=1, . . ., ). and these F§ ), (k=1, . . ., g) must satisfy § '
the capacity constraints
i Féep <bupl(x. y)ed]. |
k=t i
{
269 o
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270 J. E. CREMEANS, R A SMITH AND G R. TYNDALL
The multicommedity network flow problem as formulated by Ford and Fulkerson [3] is as follows:
Define the set PX={P¥®|P¥ is a chain connecting s and t:}. Now let P be the union of the sets P*
(k=1, . . ., q). Further, let PV, PV, . . [ PW, . . . P@ be the enumeration of the chains P{¥el
such that the subscript j is sufficient to identify the chain. its origin-destination pair. and the commd-
ity with which it is associated. 0
Thus the kth commodity set is defined by

e=1{J IP}""’ is a chain from s; to &}, k=1, . . ., q. .
The arc-chain incidence matrix is
A=[ay],
where

;= :
710 otherwise

N { 1if Py

for i=1..., m j=1,.. ., n. Each column of the matrix A4 is thus a representation of a chain
P}k"

Consider the network used as an example in Ref [3], augmented by s; and & (k=1, 2). with
source s; and sink ¢, for commodity 1 and source s; and sink ¢, for commodity 2. Figure 1 illustrates the
network and Figure 2 shows the arc-chain incidence matrix A.

Ficure 1. Network A

P, Pa Py Py Py Py Py Py Py Py Py Py Py Py Py

[ Y [ | | 1
(1Y | 1 | 1 !
[N | 1 | 1 | |
oy | | | ! 1
cg ! | | | | )

9 1 1 (| 1

ay 1 1 ] | 1 1 . .-

LT T T T T R R T B T |

on T T T
COMMODITY | COMMODITY 2

FIGURE 2.  Arc.Chain Incidence Matrix A
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Letting x/ (j=1.. . .. n) be the flow ot < modity & in chain P (=1, . . .. n: k implicit)

and b; the flow capacity of .«/;, the multicommaudity. maximum-flow linear program is:
Maximize

n

(k)

2%

j=1
subject to capacity constraints

zn: aipx; < bi fori=1, . . ., m.
i

Thus the objective is to maximize flow over all possible chains from origizs to their respective
destinations subject to the capacity constraints of the arcs.

The number of variables in the aforementioned linear program is very large since the number
of possible chains is very large in most applications. The procedure proposed by Ford and Fulker-
s [3] is to treat the nonbasic variables impliciily; i.e., aonbasic chains are not enumerated. The
co  mn vector to enter the basis is generated by applying the simplex multipliers to the arcs as pseudo
costs and selecting the candidate chain using the shortest chain algorithm.*

Extension To Include Resource Constraints

In the linear programming problem stated previously, flow is to be maximized subject to the
constraints imposed by the capacities of the individual arcs of the network. In some applications addi-
tional constraints on flow are imposed by the limited availability of resources used jointly by two or
more arcs of the network. An example of this type of network, which will be used throughout the
remainder of this paper. is a transportation network. '

It is clear that the simultaneous consideration of both types of constraints is an important problem
in transportation networks. Roadways, rail lines, etc., have capacity limitations that may limit the
maximum movement of men and materials, particularly in less-developed areas. The vehicles and
resources available to use the network can actually impose a greater constraint on total movement
than the arc capacities. In a highly devcloped transportation system the capacity of the network may
greatly exceed that required; the effective limitations of movement result from too few vehicles or
other resources.

For the purposes of this paper, resources are defined to be men, equipment, or other mobile
assets that are required to accomplish flow on many arcs of the network. For example, trucks, loco-
motives. labor, etc.. are resources in a transportation network. To effect the simultaneous consider-
ation of resource and necwork capacities, we may represent resource requirements as follows:

Let the resource raatrix for commodity & be

Rk=[rk](i=1, .. .,m:s=1, ..., p),

where rf is the quantity of resource s required to sustain a unit flow of commodity & over arc i; rk = 0.

Note that for some arc commodity combinations
rk=wx(s=1, ..., p),
e.g.. if the arc represents a pipeline and the commodity is passengers.

*Professor Mandell Bellmore of The Johns Hopkins University and Mr. Donald Boyer, formerly of the Logistics Research
Project. The George Washington University. have developed computer programs to solve the problem using this procedure.
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Letting p, be the quantity of resource s available (e.g.. in inventory) for assignment to the network
(s=1, .. ., p), the minimum-cost multi-commodity network flow problem with resource constraints
may be formulated in arc-chain terms as follows:

Minimize
X )
Ak
2 A
J=1
subject to

(a) capacity constraints
n

Eag}x}"’sbf fori=1,..., m

=
(b) resource constraints

»
$3 Samrt<prs=l .o

=1 k=1 jeJy

and

(c) delivery requirements
21}"’=M~ fork=1,.. ., ¢q
g

where A, is the delivery requirement at ¢, (k=1, . . ., q), (A+=0).*
The cost coefficient, c;, may be defined as:

m m
¢j= Y Tiay;+ ﬁ z ¢irfai; (for j=1, . . ., n: k where ¥ connects sx and t,),
i=1

=1 i=1

where 7; is the cost (or toll) for a unit flow over arc i, and ¢, is the cost of using a unit of resources.

Define the matrices G and A as follows: G is a commodity delivery incidence matrix (g x n)

6= [gkj]
where
__{ 1 if jeJ &

ki~ 3
77| 0 otherwise

A is a matrix (m+ p+ qxn) formed of the submatrices 4, E, and G as follows:

. [A
A=\ E
G
The typical column of 4 is
/ij=col. (au. e s @mja Cljy o o oy Cpjs Bljy - .,gqj).

*The case where p=1 is eanivalent to the ““arc-chain formation™ of Ref [7].




-

MULTICOMMODITY NETWORK FLOWS 273

Solution Procedure Using the Column Generation Technique

The minimum-cost linear program with arc capacity and resource constraints and delivery requirc-
ments will be quite large for most applications and will, in addition. require considerable preliminary
computation to ohtain the coefficients of the 4 matrix. (The authors have solved several small problems
using a standard linear programming code.) The column generation procedure suggested by Ford and
Fulkerson [3] can be modified to apply to the problem extended to include resource ronstraints and
delivery requirements so that it is never necessary to form the 4 matrix explicitly. The shortest chain
algorithm [4] can be used to develop the 4; that will satisfy the simplex rule. Further. if the shortest
chain algorithm can find no chain satisfying the requirement. an optimum has been reached.

This formulation can be solved by adopting the standard two-phased procedure. Phase I minimizes
to zero the valus of

j=memipeg

20,

J
j=nemepsi

to obtain an initial basic fzasiple solution. This eflectively assigns a cost of 1 to the artificiai variables
and a cost of zero to the other variables in Phase I. Phase Il begins with the basic feasible solution
determined in Phase | and proceeds to minimize

i) i ijflk)'

=

in Phase I, Iin.,., may be used as the initial basis and the simplex rule is to enter a chain in the
basis if, and only if,
ci—csB-'4;<0,
where

B '=(ar, . . s Qm, T, . T, T, .. ., T,

so that the simplex multipliers a; are associated with the arcs, the 7, are associated with the resources,
and the o are associated with the artificial variables. Thus the vector 4 is entered if

m
—-2 a,-;[ a;+ i ﬂ,rf,] < o%.
i=1 2=1
Thus the contribution of each arc to ¢;—csB-' A; in Phase I is

d{‘=-—[ a;+i rr,rf,] <
2=1

We may use the shortest chain algorithm to find

mjil: [ 4%», d¥ ] = min [

J

s (—a;—g ﬂ,rf,)] over all k.

o e,
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Where .o/ is the ith are and P; is the jth chain from si 10 ¢, The minimum over all commodities
is selected as the candidate 1o enter the basis. The column vector to leave the hasis may be determined
in the standard simplex fashion. Should any a; or 7, be positive the corresponding slack variable could
be entered into the basis.

In Phase 1}

where
es=Y rkaij,
=
and
= { 1if jé.l k
%71 0 otherwisc
Thus

di=ri—ait+ ﬁ_"' k(s — )
may be . signed to arc i. The shortest, i.e., the chain with the least,
S di—oi <0
i

for k=1, . . ., q. may then be entered in the basis.
Phase 11 is terminated and the value of z is minimized when, for the minimum j,

E df¥ =z o

A,

Extension for Substitution of Resources

In the previous section only one combination of resources was permitted to be applied to an arc
in order to move one unit of commodity & over arc i. We now present a modification of the initial formu-
lation to allow for the substitution of resources. In economic terms the arc-commodity pair is similar
to a production function with constant returns to scale and fixed technical coefficients (see Ref. [1],
p. 36). In some applications this may be a significant limitation. Consider again a transportation net-
work. A highway arc might be considered for the transport of manufactured products. Closed vans
with a driver and an alternate driver might be the most efficient combination of resources. A combina-
tion of a van and one driver would be less efficient, perhaps, since more rest periods would be required.
but it is nevertheless a feasible combination. Siinilarly a third alternative would be the wtilization of
stake and platform trucks with containers, possibly more expensive than the first two alternatives. but
still feasible.
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Specific inventories of trucks and drivers may exist and (he objective might be to assign these
sets of resources in the most efficient way over all ares even if some ares or commaodities are assigned
a less than most efficient set of resources.

In the previous formulation, for each arc-commodity pair a single combination of resources is

required and represented by the vector. R¥== (rk . rk,, . . .. r}). of the matrix R*. ]

o

Define a new resource matrix: T=[tu](i=1, . . ., m:k=1, . . ., q). whore ti, = {R¥'R¥ is any
feasible resource vector for arc i, commodity k}; R¥= (7%, . . ., ).

In words, each element of T is the set of alternative resourr-e vectors for a movement of one unit
of commaodity & over arc §.

The contribution of each arc to ¢;—cxB-'4; in Phase 11 of the wminimum-cost procedure is ;

[
di=ri—a;+ i P (pe— 7).
=1
The possibility of employing alternative methods, i.e., alternative combinations of resources, affects
this by allowing for a number of vectors R¥. Thus to find the minimum ¢;— cxB~'4; one must find the
minimum
+
[ 3 ]
AP,
over the permissible RF as well as over all feasible combinations of ares. The elements ¢,(s=1, . . .,
p) are fixed for any problem, and the elements 7,(s=1, . . ., p) are fixed for any iteration. One may,
therefore, find the vector
e " min
Rf=Rf€[“‘.[ i ;ﬁ:((bx_ﬂ'*) ] f()l' l= l" o m k= 19 e q.
s=1
The kth matrix of these minima may then be defined as:
Ré=[rkY(i=1, .. .,m:s=1, .. .,p).
Each column vector R¥= (7%, . . ., 7,) is the alternative combination of resouices such that |
P B
2 if,((bx = Trx)
s=1
is minimized for arc i and commodity k. Now R* may be substituted in the minimum-cost procedure |
previously discussed and the appropriate zf, selected for entry into the basis. Thus new R¥ is con- \
structed for each commodity, each iteration. - .Y
P

Summary of the Procedure
To summarize. the proposed procedure is:
1. Calculate Cx)B'=(a1.. . ..Qm. T1a o - aTWpsO1e - . o Og).
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H 2. For each arc-commodity pair. find the least-cost applicable resource vector, “cost” meaning
cost in terms of the simplex multipliers and resources prites.
t = min
R}=Rf e'l'lu'[ i ;,A; ‘(bx_ﬂ'x’:l.
8=1 ' 4

{ ' 3. For commaodity k=1. . . ., q calculate .

df=1';—a+5: Fd—m)fori=1, .. ., m,
=1

[y

B e

and assign the d* to the arc i as a pseudo cost.
4. Using the shortest-chain algorithm, find the chain with least

dj‘=2 aij[Ti—ai+i P (¢,,—1r,.)] fork=1, .. .,q.
i 2=1

5. Find

m]i.n [df—O'k]‘

6. If the minimum [d¥— o] < 0. the vector A} is entered in the basis. If [df—a4] = 0. there is |

no chain that may improve the value of the objective function, and the procedure is terminated.

Validity of the Procedure
! e:'}’.;f(msider the linear programming formulation of the substitution problem. It is identical to the

. " . . . . . . . .
‘s origieal cost-minimization problem except that every column vector in the original problem will he

‘-: rep..ﬂc.cd by

. p; . N
vibj vectors applying to arc i],

alternate chains. The expanded substitution matrix will be many times larger than thc original matrix.

should either actually be enumerated.

|

f

} ™ , N N(M;) [where N(M;) is the number of alternate resource i
|

I It is claimed that the procedure outlined here will find the least-cosi (in the sense previously i
[

described) vector to enter the basis. It should be noted that if the procedure does not find the least-cost . k
| vector, but some other vector, say the nth least-cost vector, the algorithm will progress toward an opti- N
< ’
ul mum solution in the early stages but will terminate early. That is, any vector that satisfies the simplex : sk

rule may be hrought into the basis. but since the algorithm is terminated when the *‘shortest” chain
does not satisfy the simplex rule, the validity of the procedure depends on the validity of the shortest-

chain procedure.
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Suppose that the chain produced as a candidate is not the shortest chain and there is some other
candidate chain j* for which

dfy— o <df—on.

Two possibilities for this other chain exist:

1. The shorter chain consists of the same arcs as our candidate chain. but has different (allow-
ahle) resource vectors associated with onc or nore of these arcs.

2. The shorter chain consists of different arcs altogether with some allowable set of resource
vectors assigned to their respective arcs.

The first case is a chain that

dh < dj*

or that

i aj(ti—ai)+ i ajj i rE*(bs—m) — o

is less than

m m

Y aj(ti-ail + Y a; i Tiu* (s —m) — 0,

i=1 i=1 =1
but since the first and last terms of each expression are identical, that is a claim that for at least one
arc, common to both chains.

$ % (=) < 3 7 (=),

but since ﬁ T¥{d—m) (i=1... ., mik=1, .. .. q)isthe minimum available (step 2), the claim
a=1
that d%,— i+ < df—oy is inconsistent, and hence case 1 cannot occur. A true shortest chain :nust
employ the least-cost allowable resources on each arc that is a member of the chain.
Case 2 resolves itself to a claim that there is some chain that uses the least-cost allowable re-
sources on cach of its member arcs and has a lower (dj"*—ak*)lhan that ¢f the candidate chain. Since

the proposed procedure evaluates the pseudo cost of each arc incorporating the minimum resource costs
h

m
[i.e..ﬁ fﬁ,ld),,— rr,.)] and identical arc-use pseudo cosls[ i.e., z aij(7i —a,-)J. a claim that case 2 exists is

s=1 =1

simply a claim that the shortest-chain algorithm does not find the shortest chain.

Usefulness of the Procedure

In order to be useful in application, the routes selected and resources assigned must be feasible
in the object system. Routes through the network are composed of a series of arcs and the resources
assigned to them. Again using a transportation network as an example. it is undesirable to have different
vehicle types assigned to contiguous arcs of the same mode in a chain. That is. one wants the same
vehicle to carry the commodity over all contiguous arcs of the same mode in a chain. Quarter-ton and
12-ton trucks may be feasible suhstimites, but one does not wish to transfer from one to another at a =
node.

This is an important consideration if the results of the solution are to be used. It is simply not
feasible in practice to use chains that employ different vehicles on various arcs of the same chain unless

D
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the chain is multimode and transfer arcs are included. A procedire that is computationally simpler
than the general method just described is available, and it guarantees that the same resource comhina-
tions will be used on all arcs of a chain that are of a particular mode.

A “master” resource vector represeuting the resources required to sustain a unit flow over a stand-
ard arc of unit lengtk is provided for every commaodity, mode. and method. Each arc then has a mode
identifier, a condition factor, and a length factor assigned. The minimum-cost (in terms of the simplex
multipliers) method is then selected for each iteration, and the resource vectors for each arc are gen-
erated using the condition and length scalars. Thus a single master vector, representing a particular
method. is selected as the minimum-cost method for all arcs of that mode for each iteration. The soiu-
tion may contain several chains from si to ¢ each with arbitrarily different combinations of resources
used. but each chain will be internally consistent with respect to resources used. Centinuity of vehicle
type is ensured for all chains in the solution.

COMPUTATIONAL EXPERIENCE

A computer program in FORTRAN 1V for the Control Data 6400 has been developed for hoth
maximum-flow and minimum-cost formulations incorporating the substitution feature. The program
uses the product form of the inverse and will acconimodate up to 150 commodities, 1,000 arcs. and 50
resources. Up to 20 modes are permitted and each mode may have up to three alternative resource-
requirement vectors. Thus each arc may use any of three feasible combinations of resources to ac-
complish the move. A series of applications has been solved successfully and the results are eacouraging
with respect to accuracy and speed of solution. The use of the substitution feature does increase the
time required for solution, but this increase has been small in the cases tested to date.
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ON CONSTRAINT QUALIFICATIONS IN NONLINEAR
PROGRAMMING

J. P. Evans
Graduate School of Business Administrution
University of North Carolina

ABSTRACT

In this paper we examine lhe relationship between 1wo constraint qualifications devel-
oped by Abadie and Arrow, Hurwicz, and !!zawa. A 1hird consiraini qualification is discussed
and shown to be weaker than eilher of those mentioned above,

I. INTRODUCTION

In this paper we are concerned with constraint qualifications for the nonlinear programming

problem
(P)
min f(x)
s.t. gi(x) =0 i=1, ... m,
where f. gi. i=1, . . ., m, are real-valued functions defined on n-space. A constraint qualification,
such as that of Kuhn and Tucker [6], places restrictions on the constraint functions of (P) such that if
xo€E™ is an optimal solution for (P) and fand g. i=1, . . ., m, are differentiable at xo, then there
exist scalars u;, i=1, . . .. m, satisfying the Kuhn-Tucker conditions*:
m
Vfxe)+ 2 ui V gi(xo0) =0,
1) =
(2) uigi(x) =0, i=1,....m,
3) u z0, i=1,...,m

Section II contains necessary background and notation. In Section Il we also state the constraint
qualifications of Arrow-Hurwicz-Uzawa [2] and the concept of sequential qualification due to Abadie [1].
Two examples then show that, although both of these qualifications are more general than that of
Kuhn-Tucker [6], neither subsumes the other. In Section III we introduce the set of directions which
are weakly tangent to a set and show that this concept leads to a weaker constraint qualification then
either that of Arrow-Hurwicz-Uzawa or Abadie.

1. BACKGROUND AND NGTATION
For problem (P), let
S={xlg(x) =0, i=1,....m};

*We denote the gradienl of f evaluated at vo by V f(1t0): V [ is considered 10 be a column vector trr ).

281




282 J. P. EVANS

and for veS. let
1= {ilgi(xo) =0}.

the set of effective constraints at xo. Henceforth we will assume that f and g;. iel®, are differentiable
at vo. For completeness we now summarize relevant definitions from Abadie [1] and Arrow-Hurwicz-
Uzawa [2}

DEFINITION 1: The linearizing cone at .o is the set of directions Xek»

C={X|XTVai(x,) S 0. iel"}-*
DEFINITION 2: A direction XeE* is attainable at xo if there is an arc x(8)eE", such that
(@)  x(0)=x.
(b) x(0)eS. 0=0=1,

(c) x'(0) = AX for some scalar A > 0.1
Now define

A=1{X|X is attainable at xo!"

DEFINITION 3: A direction XeE* is weakly attainable at xo if it is in the closure of the convex
cone spanned by 4.1 Define

W ={X|X is weakly attainable at xo}"

DEFINITION 4: A direction XeE'" is tangent to S at v if there exists a sequence {t”} in $ such
that x»— xo and a sequence {A,} of nonnegative scalars such that

lim [Ap(x?—x) j=4X.
,)—’7‘

Let
T={X|X is tangent to S at o}

Some properties of these sets are explored in [1) and [2] Using these definitions we can sum-
marize the constraint qualifications of interest.**
Kuhn-Tucker constraint qualification: € C 4.1t

(CQ) Arrow-Hurwicz-Uzawa constraint qualification: C C W

(SQ) Abadie scquential qualification: C C 7.
If any of the above conditions holds at the optimal point .vo. then conditions (1), (2). (3) have a solution
(see [1), [2).

By definition of the set W, it is clear that the Kuhn-Tucker constraint qualification implies (CQ).
The following result establishes that condition (SQ) is implied by the Kuhn-Tucker qualification.

*This set is called the sel of locally consirained direclion by Arrow-Hurwicz:-Uzawa |2} The superscript T denotes trans-
position.

t¢'(0) denotes the derivative of the arc v(0) a1t =0

$An example in |2] shows 1hal 4 need not be closed.

**For convenience of reference we will denote the Arrow-Hurwicz-Uzawa gualification hy (CQ) and that of Abadie by
(SQv.

t*The original statement of the ichn-Tucker consirainl qualification involved the entire constraint set. 8. In this note. as
in |1} and {2]. we are concerned with a local restriclion which only need hold a1 the specitic point 10,

————




[~ )
CONSTRAINT QUALIFICATIONS 283
] LEMMAL: ACT.
PROOF: Suppose XeA; then chere exists an arc x(8} such that
(a) x(0) = xo,
{
(b) x(0)eS, 0=60=1,
i te)  x'{0)=AX. some scalar A > 0. T

Let {8,}.0< 6, <1, be a sequence such that 6, — 0. Define A,=1/A8,.p=1.2, . . .. and x?= x(6,).

lim Ap(x?—xo) =llim (x?—xo)/NO, = X.
psx p—= 4}

Thus XeT. Q.E.D.
L The converse of Lemma 1 does not hold in general; see Example 2 below.

In the following examples we establish the lack of any ordering between (SQ) and (CQ).
EXAMPLE 1:

gilx)= xi x2<0
&:(x)=—x, <0
&alx)= —x.=0.

The constraint set. S, is the union of the nonnegative x,- and x:-axes. The following can be verified
easily for xo= (Y):

C={X|X z0}

4=S: )
, W={XIX20}:

T=4

Thus condition (CQ) holds, but (SQ) does not.
EXAMPLE 2: Define ifollowing Abadie [1])

s()=1ttsinlfe if ¢#0
0 if =0

—
ey

c(l)=ll‘ cos 1/t if t#0

i

é 0 if t=0.

i

i As Abadie [1] observe: these functions are continuous with continuous first partial derivatives. The | l

: functions and the derivatives vanish at t=0. Now consider ]
glx)=x2—x}-s(x,) S0 . e L

gx)=—x2+x3+c(x)) =0

&ix)=x}—-1=0.

"\ | |
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The set S is a collection of nonintersecting compact sets, one of which is the origin { (§)}. For xo= ().

we have

C={X|X:=0} =the x, — axis;
A={X|X=0}=W;
T=C.

Thus condition (SQ) is satisfied, but (CQ) dnes not hold.
These two examples show that neither (SQ) nor (CQ) implies the other condition.

1. A NEW CONSTRAINT QUALIFICATION

The constraint qualificaticn which we introduce in this section is a natural extension of the concept
of tangents to a set used by Abadie[1].

DEFINITION 5: A direction XeE" is weakly tangent to S at x; if X can be written as a convex
combination of tangents to S at xo. Define

R={X|X is weakly tangent t0 S at xo}.*

In (1] (Lemma 3) it is shown that T is a closed nonempty cone; hence R is a closed convex cone.
In the same paper it is shown(Lemma4) that T C C. Since C is a closed convex cone and R is the ~onvex
cone generated by T, this establishes

LEMMA 2. RC C.

The constraint qualification of interest in this section can now be stated quite simply in terms of
the sets C and R for the point xo:1

Q CCR.

Since the set R is generated from the set T it is clear that condition (SQ) implies (Q). In the remainder
of this section we show that condition (CQ) implies (Q). and that if condition (¢) holds at x,., and x, is
optimal in problem (P), then the Kuhn-Tucker conditions hold at x,.

LEMMA 3: Condition (CQ) implies condition (Q).

PROOF: Suppose X is a direction in C: since condition (CQ) holds, then XeW. ¥ is the closure of
the convex cone generated by A, and, by Lemma 1,4 C T. Since T is closed. R. the convex cone gen-
erated by T. is also closed. Thus ¥ C R. and condition (Q) holds. Q.E.D.

Lemma 3 together with the remarks preceding it establish that if either (CQ} or (SQ) holds at a
point xe. then (Q) holds there also.

THEOREM: Suppose f, g, i=1, . . ., m are ‘afferentiable at xo, x0 is optimal in problem (P). and
C C R. Then there exist scalars u;, i=1, . . .. m, such that

+' iV &i(x)=0
- V £ (x0) E"vg(’“)

*Varaiya inlroduces 1he sel R in [8] in a slightly differen] context.

*This qualification appeared in |4}; independenily il appeared in a paper by Guignard [5). and subsequenily in a foolnole
in Canon, Cullum. and Polak [3]. For compleleness of 1he exposilion we presen a proof 1hal 1his qualificalion is sufficient for the
va'idily of 1he Kuhn-Tucker necessary condilions.
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2) uigi(x)=.0. i=1.....m
3 uiz0 i=i,...,m

The proof follows that of Abadie’s Theorem 4 closely. We will employ the following version of

Farkas’ lemma.* Of the two linear systems

: m (Dt
Au=b 4=0
uz0 x>0,
one and only one has a solution.**
i PROOF: Now suppose (1), (2), and (3) have no solution. Then the system
} u 20, iel

Vf(xo)+2 uiV gi(x) =0

iefo

has no solution. But then by Farkas’ lemma (identifying V f with — b and V g;, iel®, with 4), there is a
direction XeE™, such that

) X"V f(x) <0
X"V gi(x) =0, el

Hence XeC, the linearizing cone at xo. Since CC R and 7 is closed, X can be written as a convex combi-

nation of elements of T. That is for some collection {X!, . . .,X¥} C T, we have
[ &
3 X=X
j=t
{
$ &
%) 2 7 =1
j=t
.\ w20 j=1 .. Lk

‘ Since XieT, j=1, . . ., k, there exist sequences {v/:?} C § such that
lim xoP=xq, j=1, . . ., k
p-’&

and sequences {A;, p} of nonnegative scalars such that

lim [ plxdP—xo) =X, j=1, . . ., k.

p— =

Now for each j=1, . . ., k, by the differentiability of f at x¢, we have

flxdp) = f(x0) + (X9 P —x0) ) TV (x0) + || P~ xofle;. a0

J 1 where ¢; is a scalar which depends on p and j, and ¢,— 0 as p — = for each j. Thus for j=1, . . ., &, L
e .
} ﬁ’ - i
*See Mangasarian (7).
i trZz0meansx;20, j=I,....n;x=0meansx;Z0,j=1,.. . nandzx;>0 for at least one j.
& **This is called the Secona Transposition Theorem in Abadie {1].
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©6) L3Py —f(2a) N p= Ay, p( 2~ xg) TV (x0) + A, pl T 2 — xo )€
In (6) multiply the jth equation by 5, and sum over j=1, . . .. k. Then
K i X
) Y nif(-#) = f(xa) JAjp = ( Y nikj. pldp— .ro)T)Vf(x..) +3 N (P = xo)lle;.
Jj=1 =1 j=1
Now since XJ.j=1, . . .. k. is tangent to S at xo, for sufficiently large p the right-hand side of (7) has
the sign of X7V (xs) which by (4) is negative. Thus for large enough p
K
3 ndi. o (69:#) = f(x0) ) <0,
j=1
But ; 20, j=1. .. .. k. and A;,, Z0 for each p and j. Thus for some j and p
S ?) < f(xo).
Recalling that if X/ is tangent to S at xq, then xJ-P€S for each p=1.2. . . ., yields a contradiction of

the optimality of xo. Thus the Kuhn-Tucker conditions ((1), 2), (3)) have a solution at xo. Q.E.D.

By an appropriate combination of the features of Examples 1 and 2 a case can be constructed for
which conditien (@) holds, but neither of the qualifications (CQ) or (SQ) hold.
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INVENTORY SYSTEMS
WITH IMPERFECT DEMAND INFORMATION*

Richard C. Morey

Decision Studies Group

ABSTRACT

transmitted from 1he field to the stocking point. The stocking point employs a forwarding
policy which allempts to send oul 1o the field a quaniity which. in general, is some function
of the observed demand. The optimal ordering rules for the general n-period problem and 1he
steady slate case are derived. In addition orderings of the actual reorder points as functions
of 1he errors are presented. as well as some useful economic inlerpretations and numerical
illustrations.

# An inventory syslem is described in which demand information may be incorrectly

1. INTRODUCTION AND SUMMARY !

Standard inventory models assume stochastic demands governed by known distribution functions.
Superimposed on this inventory process is a known cost structure relative to which an optimal order-
ing policy is sought. Implicit in these models is the assumption that the demands are always accurately
transmitted to the inventory stocking point. In practice, however, this assumption is frequently violated
due to a variety of reasons which include improper preparation of requisitions, errors in keypunching
and errors in transmission of data. The main effect of these errors is that the supply point may process
a demand for an item which differs considerably from the true demand. This will, of course, increase }
the cost of an n-period m.del, say, and will lead to a different ordering policy. A study of the increased |
costs as a function of the variability of these errors would permit a rational evaluation of the effect of
these errors.

Little research has been carried out on problems involving errors in inventory systems. Levy
[4], [5] and Gluss [1] have published papers dealing with the general problem area, but from the stand-

; point of inexact estimates of the discount rate, penalty cost, and other constant parameters. Karlin

‘ j |3} has studied inventory models in which the distribution of the demands may change from
‘ - one period to another and obtains qualitative results descriling the variation of critical numbers over !
time. lglehart and Morey [2] have studied multiechelon systems in which optimal stocking policies :

are derived for the situation in which demand forecasts are used. In contrast, the problem suggested

here deals with errors in the flow of real-time information from the demand point to the stocking point.

Our model will cansider a single commodity. A sequence of ordering decisions is to be made peri-

; odically, for example, at the beginning of each quarter. These decisions may result in a replenishment

of the inventory of the commodity. Consumption during the intervals between ordering decisions may
K cause a depletion of the inventory. The true demand in the field in each period is assumed to be a

—_— -
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random variable. £. with a known distribution function. In addition. the transmitted demand back at
the stocking point in each period is a different random variable, say 4. Any differences between these
two random variables arise due to human and mechanical shortcomings in the transmission of the de-
mand. Finally. the stocking point employs a forwarding policy which attempts to send out to the field
a quantity. say gn). which is. in general. a function of the observed demand. 5. Since the stocking point
is further constrained by the amount it has on hand, y. it forwards the smaller of y and gtn). Figure 1
illustr#*~= tire flow of information and the flow of the stock. The dashed lines denote flow of information,

and solid lines the flow of stock.

INCO“'? ORDERS
TRANSMITTED

— ol STOCKING | y(AMOUNT ON HAND)

|
INFORMATION AMOUNT FORWARDED
CHANNEL (SMALLER OF y, g{n)}

1
| IR O—— T
TRUE DEMAND, §

§ FIELD REQUIREMENT

FIGURE 1. Informalion and Siock Flow.

The following costs are incurred during each period: a purchase or ordering cost c(z), where - is
the amount purchased; a holding cost h(x), associated with the cumulative excess of supply over
transmitted demand, which is charged at the end of the period; a shortage or penalty cost p(x), asso-
ciated with the excess of the true demand over the amount actually forwarded, which is also charged
at the end of the period; and finally a salvage cost r(x), which is associated with the excess of the for-
warded amount over the true demand and can be interpreted as a credit or a revenue factor. Hence,
the cost structure differs from the classical model in that the stocking point may forward more than
what is actually desired in the field. In addition, although the penalties are still based on the difference
between the amounts desired and the amounts forwarded, the amount forwarded is no longer limited
solely by the amount on hand, but rather also by the amount which is thought to be desired. Throughout
this paper we shall also assume that it is less costly to make purchases than to incur any shortages.
Trivially, the optimal policy in the other case would be to never mrs '~ + any purchases.

The paper is organized as follows: We state and prove in Secti - 2 some general theorems which
will subsequently be applied in Section 3 to various loss functions. These results permit qualitative
orderings of the critical reorder points as functions of the particular demands and losses involved.

~ Sectivn 3 is concerned with a more detailed discussion of the particular loss function arising
naturally from an explicit consideration of the errors in the transmission of the demands. In this section,
the general results of the previous sections are applied and various useful economic relationships and
interpretations obtained.

Finally, Section 4 calculates numerically for some special cases the actual impact on the inventory
system costs of various demand errors. Several strategies and their resulting costs are compared as a
function of the standard deviation of the transmitted demand and as a function of the correlation
between the true and transmitted demand.

2. CRITICAL NUMBERS FOR ORDERED LOSS FUNCTIONS

In this section we prove several theorems which relate critical reordering numbers to both the
ordering of the loss functions and to the demands. These results will be applied in Section 3 to the

= ‘M
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particular loss functions arising from a consideration of the errors in the transinission of the demands.
We first consider the one period case in which the ordering cost includes a set-up cost A > 0.
We take
K+cz.z>0
c(z)=
0 ,2=0.

For the standard one period model with a convex L function, the optimal policy is of (s;, S;) type,
where S, is the root of ¢+ L'(y) =0, and s, <, satisfies

C'S|+L(5|) =K+("S| +L(S|)

In our situation we wish to consider two one-period expected holding and shortage costs, ., and
L.. Let the corresponding optimal policies be [si(i),Si(i/)].i=1, 2. Then we easily obtain Theorem 1.

THEOREM 1: If L, (y) = L;(y) for all real y, then (£)S;(1) < $:112) and (ii)s\(1) < 5,(2).
PROOF: Let Gi(y; i)=c-y+Li(y), i=1, 2. Then by our hypothesis, G| (y; 1) =G| (y: 2) which
implies (i). Define 5;(2) < S,(1) as the solution to

Gi[51(2): 21= 6,8 (1) 2] +K.

Then by definition of s,(1). we have the equation

., 5,0 CRT)
J’ G, (y; 2)dy=J’ Gi(y; 1) dy.

5:42) s (1)

But since G (y; 2)< G (y; 1)< 0 for y < 5,(1), we know that 5,(2) = s,(1). But since S,(1) < 5,(2), we
have s,(2) < 5,12) which yields s,(1) < 5,(2).

Assume now, that we have two inventory systems. The one-period expected costs (exclusive of
ordering cost) are L, and L,. The amounts of stock demanded from the inventory each period for the
two systems are ¢, and £:; with density functions ¢, and ¢, respectively. Making the usual assumption
that L, and L; are convex, that the ordering cost for both systems is linear with unit cost ¢ > 0, and
that excess demand is completely backlogged, the optimal ordering policy for an n period is to order
[£a(D) —x]* (i=1, 2). If we let Cy(x: i) be the optimal expected cost for an n period model starting
with initial inventory x: then ,(i) is the smallest root of the equation G, (x; i) =0, where

Gn(xl l)‘_‘C 'x+L.'(x)+a J’: Cn—l(x—f; l)d’l(f)dg'

Our next result requires a stochastic ordering of the demands ¢, and ¢.. A random variable ¢,
is stochastically less than &, written &, < &;, if ®,(y) = ®2(y) for all y, where ®; is the distribution
function of &;. The proof of Theorems 2 and 3 are direct extensions of Karlin [3] in that they permit an

ordering of the critical reorder points as a function both of the ordering of the demands, and of the '
loss functions. The details of the proofs are therefore omitted. i
THEOREM 2: IfL; (y) = L,(y) for all real y and ¢, < &, then
o,
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4 ' () Co(x: =20 (x:2)
and
T (ii) aty s o) foralln= 1.
The above result assumes complete backlogging. The next result generalizes Theorein 2 to include
the case of lost sales. .
THEOREM 3: If L, (y) —cdi (y) = L, (y) —-cd2(y), €1 < & and there is no backlogging of excess i
& demands. then
' () C (x:1H=2C.(x;2)forx=0
i
and
(it) Zn(l)< %2V foralln=1, :
where
Zn (i) is the smallest root of the equation
v
et B e e f C!(y—&: D)bil€)dE=0.
Consider now a fixed time lag of A periods (A = 1) for delivery of ordered items and complete
backlogging. Define
|
| L® (y)=Li(y)
and
: |
‘] Li(y)=« fo Li-V(y—€)di(£)dE, j= 1.
|
| 1t is well known in inventory theory that the optimal ordering policy in the case of time lags is governed
! by a functional equation of the same type applicable in the case A=0, except that L{}(y) replaces !
Li(y). So, to obtain a result like Theorem 2 when A = 1, we need only demonstrate the following result: k
LEMMA 1: If L;(y) = L,(y) for all real y, and £, < &,, then =iy
W ' [
- dLY(y) dLY(y) o ‘e
>
dy dy

for all real y, and j=0,1,2 . . . .
PROOF: The result is true for j=0 by hypothesis. Assume that it is true for j—1. Then ;

A\ ) . I
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x

y dy dr

= 2Ly "
fafo dy? (y—&)D(£)dE,
bat since
d2Ly-n

di(0)=0.  bdi(x)=1, i _(x)=0and
dy?

&, (&) = %2 £) for all ¢, it follows that

dLY'(y) _ dLY'(y) for all y.
Sees

dy dy

3. A LOSS FUNCTION ARISING FROM CONSIDEPATION OF ERRORED DEMANDS

In this section. we shall examine in detail a particular loss function arising from discrepancies in
the true and transmitted demand.

The overall objective of this section is to develop qualitative rcsults describing the variation of
the critical numbers over time as a function of the forwarding poligy g(7). Therefore. we will be
primarily concerned with investigating functional relationships between the case of no errors and
various treatments of the errored case. We shall also assume in what follows that the holding, shortage,
and salvage cost are all linear. This assumption, whilc preserving the basic structure of the model,
greatly facilitates the proofs and economic interpretations.

With this simplification, we find the loss function arising from employing a forwarding policy
which attempts to send out to the field an amoung g(7). whenever it observes at the stocking point a

demand of 7, is given by
Lety)={Eh-[y—g(n)]*} +E{p-[—yNgn) ]} —E{r[yne(n)—€]"}

Here, x* is x if x =0, and 0 if x is less than 0, « A b denotes the smaller of a and b, and y denotes the
inventory on hand at the stocking point at the beginning of a period after an order is received.

It should he noted in the case in which the true and transmitted demands are identical, and
&(n) =7, that Ly(y) reduces properly to the classical no error loss function.

To facilitate the investigation of Ly(y). it will be convenient to define

1—Q(x)=Pr(¢ =2xandg(yn) = x)
and
1-G(x)=Pr(g(n) = x),

where it will also be assumed that G(0) =Q(0)=0. Then it can be shown that

() Ly(y)=pE(&)+hy—(h+T) J;” [1-G(u))du~— (p—r)'fy [1=Q(u))du.
2) Lyyy=h—=(h+r)[1-C(»]-(p-r[1-0(»],

and

(3) Ly(y)=(h+1r)G' () + (p—r)Q' (y).

Observe from expression 3 that a sufficient condition for Ly(y) to be convex is that p=r: this will
generally be the case since typically p=c=r.
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Recalling also that the optimal steady state reorder level, call it x(g). is the solution of Ly(y) =0,
it is clear that x (g) is positive. This follows since L, (0) =—p, and Lg(®) =h. Also it is interesting to
observe from (2) that the optimal steady state reorder point increases as r, the salvage credit. increases.
This result agrees with our intuition since we feel more disposed to keeping larger amounts of stock
on hand (and hence. being in a position to send out larger quantities), if we can recover more of the
amount by which we exceed the desired request.

It will be convenient to rewrite (2) as follows:

L,',(.V) =h[Ay(y) +Dy(y)] — pCyly) —rBy(y)
where
By(y)=Pr{é<y=<g(n)] Ayly)=Prig(n) <y<§]
and

Coy)=Pr(g(n) =y: £ 2], and Dy(y)=Prlg(n) <y: €<yl

Now, define L(y: v) to be the classical single period loss function if the demand is repr..ented
by the random variable ». Then, substituting £=»=g(»), in expression (2), we obtain

L(y;v)=E(h-ly—v]*)+E(p:-(v—¥)*),
and

L'(y;v)=h—(p+h)Priv=y).

Note that the oversupply credit factor r is not needed since in the classical formulation the stocking
point never forwards to the field more than that which is actually desired.

Then the following qualitative relationships are available which will provide comparisons of the
critical reordering levels for the perfect information case, and for various treatments of the situation in

which transmission errors are present.

THEOREM 4:

(a) If g(n) < 7. then L, (y) =L'(y; n) for all y.
(b)  1f g(n) <& then L,(y) =L'(y: ¢) for all y.

PROOF: Sincep=r,
Li(y)=h-[A,(y)+ Dy(y) ] — pCy(y) —rBe = h-[Ay(y) + Dg(y)] — p- [Cy(y) + By(y)],

but

Ay(y) +Dy(y) =Prin<g'(y)]=Pr(g(n) <y].
And since g(n) < 7. we have Ay(y) + Dy(y) < Pr(n <y) and Cy(y)+ B, (y) < Pr(n=y).
Hence. Ly(y) =2 h-Prin<y)—p-Pr(nzy)=L'(y: n).

The proof of part (b) follows similarly.

Upon applying Theorems 1, 2, 3, and 4(a) we find that if the forwarding policy is to send out to
the field an amount stochastically less than or equal to the transmitted demand, then the resulting
critical numbers are always smaller than or equal to those obtained using the classical formula with a
demand of n. This result is correct regardless of the distribution of the errors, regardless of the numbers
of periods involved or delivery lag times, and finally, regardless of whether backordering or a lost
sales philosophy is used. A similar interpretation can be given to Theorem 4(b). It is also noteworthy
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to stress that the results do not depend upon having r greater than 0, and of course apply to the realistic
forwarding policy of simply sending out. if possible, the transmitted demand 7.

The next result provides a useful tool for determining, for any particular forwarding philosophy.
how the steady-state critical numbers in the errored and perfect information cases compare.

LEMMA 2: Let x denote the optimal steady-state reordering level with perfect information. Let
x(g) denote the optimal steady-state reordering level using a forwarding policy which sends out an
amount g(n) if the transmitted demand is 1. Then, x(g) is less than or greater than x depending on
whether

4G
By(x)

h+r.
h+p

is larger than or smaller than the constant.

PROOF: It is easily shown that

L' (y; €) = Ly(y) = (h+r)By(y) — (p+ h)Ay(y).

Hence. since the steady-state solution satisfies L’ (y) =0, the result follows directly.

Up to this point, we have assumed that knowledge of the transmitted demand was available before
the decision had to be made as to the quantity to be sent out to the field. However, this is not always
the case, especially in time of emergencies. The following result is useful in those important situations
in which this transmitted demand information either is not available, or is of no value in forecasting
the actual desired demand.

LEMMA 3: Assume the random: variable £ and 7 are independent. Then the optimal stationary
forwarding policy is to send out to the field the constant amount

0=k (3=7)

and to reorder up to Q. In particular. the optimal fixed amount to be sent out in this situation is the
Bth quantile of F; whenever c=gr+ (1—B)p. The proof parallels directly the classical stationary
single reorder level analysis and will be omitted.

4. NUMERICAL RESULTS

This section is concerned with attempting to isolate the cost or dollar consequences of errors in
the demand for a particular case of practical interest. Two distinct types of analyses are presented.
The first investigates how the inventory system costs vary as a function of the errors involved. Such
knowledge is very useful in determining the amount of effort that should be spent to reduce the
errors in the flow of demand information. Quite possibly in some situations the expense of eliminating
the errors may be such that the savings resulting from having perfect information are rot economically
warranted.

Proceeding in a different spirit the second type of analysis is concerned with investigating the
relative efficiencies of various stocking and forwarding strategies whose purpose it is to reduce the
impact of the errors without requiring the costly elimination of the errors. Such strategies are definitely
of interest due to the possibility that their use might enable a large portiun of the costs currently
associated with errors to be recouped with relativcly little additional effort.
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Figure 2 depicts how the steady-state ane periad inventary system cost graws bath as a function
of p, the correlation coefficient between the true and transmitted demand, and as a function of o,
the standard deviation of the transmitted demand. The cost savings were computed assuming the joint
true and transmitted demand are distributed according to a bivariate normal random variable (properly
truncated to preserve the nonnegativity property) with equal means. This steady-state cost is computed
using the loss function L.(&n) of expression (2), where g(n) =7, and #» is the scutian of L' (y: ) =0,
Hence the difference between the dashed and solid line represents the actual incurred penalties result-
ing from naively using the classical reorder levels and are useful in determining 1o what degree it is

1

economical to eliminate or reduce errors in the informational flow.
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FIGURE 2.  One period inventory systems cost as a function of the correlation coefficient with c=1, h=0.25, r=0.30, p=5,

} E)=E(y)=75, and o(¢) =10

. The second type of analyses is concerned with the relative efficiencies of the following four for- .
‘ warding strategies. In each case the optimal stocking policy for that particular forwarding policy was '
computed by solving Ly(y) =0, and the corresponding cost calculated.

1. Send out the amount cbserved, i.e., g(n) =7.

2. Send out the optimal fixed amount, i.e., g(n) =Fz!' (ﬁ::)

|
3. Send out the best estimate of the average demand, conditional upon the observation of the “
transmitted demand, i.e., g(n) =E(&/7). .

4. Send out a combination of strategy 2 and 3, i.e., g(n) =F} (”—:}E)

In general, as might be expected, strategies 3 and 4 generally outperformed strategies 1 and 2.
As proved earlier, the optimal stocking policy for strategy 1 resulted in lower reordering levels than |
those determined from solving L'(y; n) =0, and generally recovered about 10 percent of the cost due
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to the crrors. Strategy 2, while easy to implenent. is obviously not efhicient if there is a high correlation
between £ and . Similarly, strategy 3, while having a certain heuristic appeal, does not perform as
well as one might hope, mainly because it is independent of the various costs involved. On the other
hand, the use of forwarding strategy 4. together with its appropriately derived ordering level. per-
formed quite well and generally recouped from 50 to 58 percent of the costs incurred due to the errors R
in the demand. This is due clearly to strategy -} heing dependent hoth on the observed demand 7
’ as well as on the various inventory costs involved.
: There is no doubt but that the implementation of some of these strategies would necessitate the
use of extensive tables and probably would represent a realistic option only in case of a fully automated
system. However it is felt that these and other strategies should continue to be investigated to the

point where an economic balance can be achieved between the reduction of the errors on the one hand
and the rational treatment of the remaining errors on the other.
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CONTRACT AWARD ANALYSIS BY MATHEMATICAL PROGRAMMING
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ABSTRACT

A large manufacturer of telephone directories purchases about 100,000 tons of paper
annually from several paper mills on the basis of competitive bids. The awards are subject
to several constraints. The principal company constraint is that the paper must be purchased
fromn at least three different suppliers., The principal external constraints are: 1) one large
paper mill requires that if contracted to sell the company more than 50,000 tons of paper,
it must be enablcd to schedule production over the entire year; 2) the price of some bidders
is based on the condition that their award must exceed a stipulated figure.

The paper shows that an optimal purchasing program corresponds to the solution of a
model which, but for a few coastraints, 1s a linear programming formulation with special
structure. The complete model is solved by first transforming it into an almost transportation
type problem and then applying several well-known L.P. technigues.

INTRODUCTION

This paper is based on a project directed by the writer on behalf of a large manufacturer of tele-
phone directories. The company prints each year over 3,000 different directories in 20 printing plants
across the nation. The individual directories, which vary in size from 50 to 2,000 pages, are printed in
lots ranging from less than 1,000 up to 1,500,000 copies per year. For this purpose, the printers utilize
paper in rolls of different widths. The roll widths, which range from 13 to 68 inches, depend upon the
widths of the particular printing presses employed. The printers order the required paper from the
Purchasing Organization of the company and Purchasing, in turn. distributes the orders among several
paper mills, where the paper is manufactured in large reels ranging in width from 112 to 220 inches.
Purchasing buys the paper on the basis of annual term contracts. The contracts are awarded in
Septenber. at which time both the requirements of the printers for the coming calendar year* and the
terms of the paper manufacturers bidding for the business are known in detail.

The size of the individual awards depends on several factors. As a mattcr of policy, Purchasing
strives to maintain multiple sources of supply. Specifically, at most, 40 percent of the total annual
paper requirement of all the printers may be purchased from a single paper maker, regardless of how
low his price may be.t Second, one major paper mill bids on the condition that if contracted to supply
an amount of paper which exceeds half of his production capacity, he must be enabled to schedule
production over the entire year, which, in slow periods, will tend to lower the awards to some of the

*In brief, the telephone directories are printed on presses which range from 11 to 68 inches in width and from 23 to 57
inches in cireumference. Depending on the size of the press and the method of folding the printed sheets, a packet (known
as a signature) which may contain from 24 up to 72 printed pages can be produced in a single revolution of the drum on which
the text is mounted. Normally, the smaller the number of revolutions required to print « directory, the smaller the production cost.
For example, a 720-page directory will be produced most economically on a 72-r.age signetuse press. Knowing, then, both the
capacities of the presses he owns and the size of the different directories which he must print, each printer is able to determine
how to schedule his presses most effectively, and, consequently. the amount of paper of a given width that he will require.

tSee footnote on page 298.
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298 A. G BEGED-DOV

other bidders. Third, the price «f sume bidders is based «n the conditian that they will be contracted
to supply at least a given tannage.
The typical coniract obligates the company to purchase from a paper mill a specified amonnt of
pater at a fixed noit cast, with provisions te compensate the supgdier Tor excessive trim loss *
H This means that the cost of ordering x tuns of paper fram supplier. s. fur printer. p, cannot he less than
x(ci+dy) dollars. ilere ¢, the unit cost of the paper f.o.b. mill: d,, is the unit transpartation cost
between the location of the seller and the location of the user. The cast may be higher. depending
bath «n the actual trim loss incurred and the trim loss alluwance stipulated in the contract. Suppuse
x* is the trim loss incurred to fill the order. and a, is the agreed allowance factor (nsually 0.05). Then
cwlx). the total cost of the order. can be expressed as folluws:

Colx) =x(cet dip) + Aexlx* — aux).
} where

= 1if x* > xa,
0 «therwise.

In principle. to minimize cost one only need to determine
Crp(x) = m‘in C,,,(X) .

and then order the paper from supplier r. However. x* (and hence ¢,,(x)) cannot be computed with
sufficient accuracy at the time the allocation decision must be made since the manner in which the
different suppliers will choose to trim the order from stock of reels of differeut widths they make is nat
known at this time. However. this difficulty can be resolved. Though it may be nearly impussible to
forecast x* accurately, the more general question of whether the stipulated trim allawance will, «r will
not. be exceeded can be answered. The reason is that the recurds of Purchasing show that throughout
the years not a single request for additional payment has ever been submitted by a supplier. This means
that the value of A can be set to zero.

MATHEMATIZAL FORMULATION |

The fact that trim loss considerations may be ignored for the purpuse of cantract allocation makes
it possible to formulate the problem of how to purchase the paper (required by the printers t print the

} directories assigned to them) econumically as follows:
! s P K i
) (A) minimize: Z = 2 2 (ce+ dup) 2 Xephs
=1 p=1 k=1

tThe principal purpose of the policy is to increase avadabilly. Clearly. shonld a steike or power breakdowi, o ather emer-
geney oceur i owe place, at least pant of e paper can still be ablained from tle other. Should demand merease. it ¢an be met
with greater ease by calling upon the unused capacity of several. insiead of only one or wo, facilities. By the same tokew. the possi-
bility of some paper nill becoming excessively dependent ou the business, with the subtle respousibilities whicle suele a position !

entails, is diminishec. There are other advantages. A source of supply in close proximity 10 some printers way be secured. witle 0 & !
d a corresponding opportunity to save in iransportation cosl. Also, knowing thal other conpadies are conpeting with hine tends ’ \ '
3 to keep cach supplier alert to the needs of Purchasing. (Reterence on page 297) .’ ’

<

*The trim problem arises from 1he fac 1hat the paper manufacturers must cut the large recls in whiclothe paper is priduced
into smaller rolls of the widths ordered. Since the roll widths cul from a single reel rarely add perfectly to equat the (eel width,
a certain amount of paper st the edge of the reel is wasted. This waste. wlich s bro w.. as trim loss, is reflected in the cost of
the paper.

l —
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suhject to
roK
‘A.]) 2 Ex";kle s=1,2.. . .,S
p=1 k=1
roK
(A2) S um<0 §=0,2, . - S '
p=1 k=1 . <
S
(A.3) Ex"lk=bpk p=1,2, . . .,P k=1, . e .,K,
£=1
P N K’ {
(A4) E Xpk S e s=1,2,....8 K=1,...,K, 1
p=1 k=1 k=1 i
POK
{A.5) 2 E Xapk = My some s,
p=1 k=1 i
P t
(A.b) 2 erk < 81‘(/4") 7. k= 1, 2, o o ey K,
r=1 1
|
Le & .
(A.?’ Xrpk 2 a'r(Ar) 7. k= 1, 2. o e ey K,
|
(A.8) Xa = 0 all s, p, k.
DEFINITION OF SYMBOLS '
Xy — the amount of paper shipped from supplier, s, to printer, p, for use in period. £. |
b —the amount of paper required by printer, p, in period, k.
M, and m,—the maximum and minimum awards which bidder s will accept.

Q,—the maximum amount Purchasing will buy froni him.
. —the average production capacity of supplier, s, in period, k.
L A,—the amount of business actually awarded to supplier, s.
T and t; —the annual and the periodic requirement for paper of all the printers.
} ™~ r—the index of the supplier who insists on a continuous schedule. :
5. and 8, — positive constants to be determined later. The formulation assumes S-suppliers.
P-printers, and K-periods (of equal duration). )
The objective function Z consists of SPK linearly additive terms. It represents the annual cost
of supplying the printers with the paper required to print the telephone directories assig.ied to them.
As rhown. Z must be minirium, subject, of course, to the constraints stated. That a bidder cannot be

contracted to snpply an amount of paper which exceeds either the maximum quantity he is capabie of t '
N making. or which Purchasing will buy from him is expressed in {A.1) and (A.2) respectively. That each .
) printer mnst receive the paper he needs is stated in (A.3). Implicit here is the assumption that . 2
P h

s s s
by < min(Zr,k. %,E%)k=l.2,....l(.

p=1 -1 =1 =1 ‘
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Otherwise. of course, a feasible solution cannot exist. That the cumulative production capacity of a
bidder must not be exceeded is stipulated in (A.4). That some bidders will not sell less than a specified
minimum amount of paper is stated in (A.5). Finally, (A.6) and (A.7) provide, if there is a need, supplier,
r, with a schedule which in any one period is proportional to the phased requirements of all the printers.

SOLVING THE MODEL

The above system of equations can be simplified considerably. To begin, Egs. (A.1) and (A.2) can
be readily combined into a single equation by letting

P K
Y Y up<a,=min (M,.Q,) s=1,2,...,58.

p=1 k=1

This, in turn, wnakes it possible to reduce Egs. (A) to (A.3) into an ordinary transportation problem*
with S origins and KP+ 1 destinations:

S n
(B) Minimize Z=Y ¥ cijxij,
i=1 j=0
subject to
(B.1) i Xij=a; i=1,2,...,8,
fe=r
s
(B.2) Y x=b; j=1,..., n and
i=1
(B.3) xij=0 all 4, j,
where

bo=max (0, i ai—i b;),
= j=

cij=ci+di; i=1,...,8 =1, .. .n,
Cjo=0, and
bj=b,,l.- p=l, oo .,P k=1, % I .,K,
such that

p=j module P allj

j/P. if j/P is integer for all §
k=4[] !
Pl otherwise, for all j

[N] meaning the largest integer contained in N.
By noting that a fictitious destination (j=0) has been added to drain the excess of supply over demand
at zero unit cost, we can represent the tableau for this problem as in Table 1.

This transportation problem can readily and efficiently be solved with a special algorithm. In
recognition of this fact the systems of Egs. (B) to (B.3) will be referred to hereafter as the favored
problem,

*The quaniities M,, Q, and b,, are assume:! 1o be inlegers.
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TaBLE 1. Transportation Tableau for Favored Problem

Crigin be b bs ... by bror . . . ba Availabilily
1 0 o Gz ... Cp cn R Y a,
2 0 [+]] €22 ... Czp €y .. . Cep [ 3
S 0 ca €51 . Cxp €51 cxp as

In terms of the notation used to define the favored problem, the remaining constraints of the general

award model are as follows:

5 S S K'=1 K
W=y i=1, , '=1, , K,
(B.4) PR
(B.5) 2 %ij=m;  some i,
jl:
(B.6) xr,jl’+|+xr,jl’+2+ s .. +xr,jl’el'sar£%lj=09 ly © e ey K”-l’ .
(B.7) e ot Bt .+x,,,-,.+p>s;ﬂ;—'j=o, I, . . K=

Now an approach suggested by the Method of ‘Additional Restraints (12}, [5]) in which a smaller
system (i.e., (B) to (B.3)) is solved first without regard to the other constraints (i.e., (B.4) to (B.7)) can
be employed to solve the general award model. This approach offers an important computational
advantagc over procedures which work always with the complete systeni in a case where a priori
considerations suggest that the solution of the smaller system, upon substitution, will satisfy the re-
maining constraints as well. Then, of course, the complete problem has been solved ([6]. pp. 384-385).
For example, it is easy to see that Eq. (B.4) is amenable to the method since M; normally is nearly
twice as large as a;.

Constraint (B.5) can be handled by means of the method used to solve the (well-known) single
price break problem of inventory theory ([4], pp. 238-241). To employ the method, let u be the index
of a bidder who has placed a misnumum award restriction, and assume that upon solving the favored
problem, the result indicates that A, = my. Then bidder u should be treated as if he had not placed
the restriction in the first place. Suppose, however, that A, < my. Let Z,,(g) be the solution of a new
favored problem such that the row corresponding with bidder u has been changed from

}": Xyj == My 10}": Xuyj=g&
j=1 j=t

and cyo has been changed from zero to M. a very large positive number. Then, if Z.(m,) <Z 4(0), the
bidder should be awarded a contract for exactly m. tons; otherwise, he should be awarded nothing.
If b bidders are allocated originally less than their minimui, 2° different combinations need to be ex-

amined in this manner.
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302 A, G. BEGED-DOV

Suppose then that this constraint has been taken care ol and that the entire problem has been
lormulated in terms of the (remaining) active bidders only. Now. upon solving the resulting favored
problem and examining the allocation awarded to supplier. r, it is possible to determine if he should
be provided with a stable production schedule. There are two cases to consider. If 4,, the amount -
awarded to the supplier is less than half his production capacity, M,. Eqs. (B.6) and (B.7) can be elimi- T
nated. Otherwise the values of 8, and 8’ must be stipulated to fix the bounds within which production
will fluctuate throughout the contract year. From (B.6). it is easy to verify that 8, cannot be smaller
than 4, since

— % b _
41—Exr_,$6r E_ 'f '8r
j=1 k=1
# i Similarly, Eq. (B.7) indicates that 8, must not exceed A,. Therefore. why not let

8=+ a),, 8= (1—a) 0sa<l i

As an example. let ¢, =100, ¢, =95, t;=110, A,== 80, and a = 0.1. Then the shipments of mill r
will be contained within 23 to 29 in period 1; 22 to 27 in period 2; and 26 to0 32 in period 3.
At this stage of the analysis the favored system will contain m rows (m < S, depending on whether
a supplier has been dropped or not) and KP + 1 columns; Eq. (B.4) will containt mK rows and KP
columns. and in the event that A,> 0.5M,. Eq. (B.6) and (B.7) will contain K rows and P colunns.
Now the original award model is readily solved with an appropriate lincar programming code.
This is not recommended. however, since a more efficient and accurate solution method can be
employed.
There are two cases to consider. |

If A, < M,/2 the comple.e contract award problem can be expressed as follows:
(C) Minimize Z = ¢x + dy

subject to

] (C.1) Fr=a
} " (€.2) Rx+ly=r
x,y=20,
where
C=(Cm, o ofch Cmn)n d= (0 « e ey 0)-
; Here F is the matrix of coefficients of the favored problem, R is the matrix of coeflicients of the system : l
i of equations dealing with the suppliers’ capacity constraints, I is the unit matrix. and y is an mKx1 Na
‘ 2 3 e . » - =
‘ column vector. The elements of y are slack variables corresponding with the rows in R. ;

Suppose that upon substitution of xo, a feasible optimal solution to the favored problem, inspection
reveals that Rxo+Iy=r, y 2 0. Then it is easy to show that xo is an optimal solution for the complete ,
| problem by noting that the optimality condition ([6], p. 244), !

| ) o
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(w 0) [2 0] (c d),

where e is the vector of dual variables corresponding with the optimal solution, will be satisfied. On
the other hand, if one or more of the elements of y are found to be negative, the Dual Simplex Algorithm
can be initiated. but with some modification, as the algorithm requires “knowledge of an optimal, but
not feasible solution to the primal, i.e., a solution to the dual constraints™ ([7], p. 36). (An important
advantage of the method is that the go-out vector is chosen before the come-in vector, so that if there
is a choice, a go-out vector which does not alter the favored basis, say B, can be selected, with con-
siderable reduction in computing effort.) The modification is necessary because B is not a square matrix,
and consequently, the dual variables cannot be obtained in the usual manner. However, the current
value of the dual variables can be determined readily as shown by Bakes [1],
On the other hand. if A, > M,./2 the larger problem:

M) Minimize cx+dy+diy: + day: + dyys

subject to

F 000 O]l]Xx a
R+ =1 0 1 O} yi=lr

R~ 07 0 -1 Ya r-

X, )’. yln )’2, )’:120

need be considered. Here ¢ and x are defined as before, and y, ¥1. Y2, ¥, are defined as in Ref. [1].
d=d,=(0, . . ., 0), ds=dy=(M, . . ., M), R* is the matrix of coefficients of Egs. (B.4) and (B.0),
and R~ is the matrix of coefficients of Eq. (B.7). This formulation makes it always possible to construct,
starting from 3, a primal feasible basis for the complete problem, say B*. That is, knowing B

B 0
*_
5 “[Rf: 1*]

can be determined by inspection. Here, analogous to the notation used in Eq. (C.2), R} is made of the
columns in R* and R~ which are continuations of the columns of B, and the elements of I'*, which can
be determined by inspection, are either + 1 or — 1 in the main diagonal, and zero elsewhere. The basis

will be optimal if .
00

(100*) [;* ; _1] < (cddidody),

subject to

Gwt) [Re 1] = ().

where the elements of * are chosen from (dd,dxds) to correspond with the columns of I*. How to solve
for {ww®) and then, if necessary, proceed until the complete problem has been solved, is shown in

detail in Ref. [1).
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If desired. R* can be further reduced in size. “If we feel that some secondary constraints which
are not active for the optimal solution to the smaller problem will remain inactive. it is unnecessary to
add them into the new basis™ ([6]. p. 400). Thus. so long as Q; is much smaller than #M;. all i, the con-
f straints on the cumulative production load of the suppliers can be omitted. Furthermore, Eq. (B.6)

may also be deleted from R* using a method of H. M. Wagner [Y]. The method requires that for each ‘

deleted row, a new origin and a new destination are added io the favored system of equations in accord-
ance with surprisingly simple rules. The advantage of the method resides in the fact that with available
computer codes, very little additional time will be required to solve the 'arger favored pioblem. As an
example, if both schemes are carried out, F will have m + k rows and m -+ k ¢! imns, but R * will ontain
only K, instead of (m + 2)K rows.

L SOME RESULTS
The model described above was tested using actual data from a recent year. In that vear, Pur-
chasing bought 94,481 tons of paper at, as shown in Table 2, at a cost of $17,200,000. This cost was paid

according to the (coded) price schedule shown in Table 3.

‘TABLE 2. Monthly Paper Usage — Recent Year (Tons of Paper)

Printer | Jan. ‘[ Feb. Mar. Apr. May | June July Aug. | Sept. | Oct. | Nov. | Dec. Total
1 4473 | 3553 | 3.782 | 1201 14,140 | 3.025 | 2386 4,116 802 | 2350 | 3.455 12 | 33295
2 4890 | 4319 | 2,121 141 828 922 1.981 3075 1845 553 20,675
3 456 489 4 409 187 413 358 169 470 374 504 191 4,765 .
4 091 989 681 702 922 675 3251 1,670 190 | 2409 399 [1.836 | 11487 l
5 68 68 117 85 84 21 24 39 130 9 93 3 741 |
6 141 69 108 82 67 33 38 91 126 23 108 1 887
7 208 380 47 | 1.033 10 57 672 171 432 977 175 206 4368
8 I 1.009 5 37 11 553 53 251 19 616 400 19 69 3.042
o 9 388 467 953 1.266 288 523 299 977 | 1.894 | 1,118 8.174
10 454 337 540 54 11,827 194 | 1.927 63 510 333 190 281 6.710
11 48 9 10 64 33 18 35 15 42 49 10 4 3317
Toral...| 12826 [10.685 | 9.140 | 5.048 (8651 | 5699 | 8520 | 4.727 | 6.140 | 9371 | 6071 | 2,603 { 94481

‘ Upon solving the contract award formulation represented by the system of Egs. (B) to (B.7), the l
‘g allocation shown in Table 4 was obtained at a cost of $17.063,.999. (To facilitate comparison, the figure TRy
. . 5y 1o Tk Sl
also shows the actual awards assignment made by Purchasing for that year.) The values of the decision _ x

parameters employed in the solution are summarized in Table 5. It is important to note here that the
very first solution of the favored problem yielded the optimal result. which testifies to the power of the
Method of Additional Restraints.

‘ - i '
)
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The overall savings. about $142.000. clearly indicates the value of employing an assignment model

in award analysis (8]

TABLE 3. Price Schedule (per ton). c;;= ¢; + d;; — constant

it is conceivable that efficient allocation could be obtained using some trial and error method ot
analysis. However, considering that the amount of directory paper purchased by the company is
enormous and the cost of implementing the assignment model is practically nil (altogether, about 15
minutes of IBM 1620 Computer time, and about 2 hours of human time were expended to achieve the
results reported in this section) there is little justification for not taking advantage of a tool which can

yield maximum results at a minimum of cost and effort.

Printer ' |
1 2 3 4 5 6 7 8 9 10 11
Mill
1 950 13.10 | 1790 | 10.10 | 2180 | 1760 | 1600 | 2840 | 28.00 | 17.80 19.40
2 960 13.00 | 1290 | 10.10 | 2400 | 1760 § 16.00 | 2600 | 24.20 | 17.80 1140
3 10.40  13.10 | 1830 4.40 | 2310 [ 1530 590 | 31.00 | 29.30 17.30 | 20.30
4 2893 13.83 | 13.43 | 3033 | 17.23 13.43 14.03 17.63 1843 | 2533 § 22.73
5 20.60  10.30 . 20,10 | 21.60 | 22.60 | 19.80 @ 16.70 | 2920 ] 28.00 | 11.90 15.30
TABLE 4. Values of Decision Parameters
Mill 1 2 4 b}

Parameter

m (tons) 30,000 - 10,000 - -

M (tons) 100,000 20,000 40,000 35.000 43.000

Q (tons) 45,000 20,000 20,000 22,000 25.000

K (periods) 12 12 12 12 12

o .

R
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TABLE 5. Model vs Actual Allocation (tons)

e M g % r O =
Mill 1 2 3 4 5
Printer
1 33.295
2 20625
3 4.765
4 11487
5 8.174
6 6.7110
7 4.368
8 887
9 337
10 3,042
11 741
Model 33,295 5,506 11487 20.476 23.117
Actual 40,901 19.521 16.687 9.191 8.181
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A FINITENESS PROOF FOR MODIFIED DANTZIG CUTS IN
INTEGER PROGRAMMING

V. J. Bowman, Jr.
Carnegie-Mellon University
and
G. L. Nemhauser

Cornell University

ABSTRACT

Let
2=yw—Y ¥4x;, i=0, . . .. m
jeR

be a basic solution to the linear programming problem
max xo=Zjc;x;
subject to: Liayxj=bi, i=1, .. ..m,

where R is the index set associated with the nonbasic variables. If all of the variables are
constrained to be nonnegative integers and x, is not an integer in the basic solution, the linear
constraint

Y x21, Ri={jlieR and y.; # integer}

JeRY

is implied. We prove that including these *‘cuts” in a specified way yields a finite dual simplex
algorithm for the pure integer programming problem. The relation of these modified Dantzig
cuts to Gomory cuts is discussed.

Consider the pure integer programming problem

1) max xo= ¢;x;
J
subject to: 2 aijjx;=bi, i=1, ..., m
j

xj = 0 and integer, j=1, . . ., n.

It is assumed that the c; and a;; are integers and that xo has both an upper and a lower bound.
Let xo, x1, . . ., Xxm be basic (not necessarily feasible) variables and R be the index set associated
with the nonbasic variables. Expressing the basic variables in terms of the nonbasic variables, we have

2) xi=}'50—2 YijXj, 1=0,.. ., m

Preceding page blank
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310 V. 1. BOWMAN. JR. AND G. f.. NEMHAUSER

Suppose at least one yi given by 2) is not an integer. Then the integer constraints imply the linear
constraint (3), which is not satisfied by the current solution

3) Y x=l

Jjek

Equation (3) is a Dantzig cut [2]; however, (1) implies tighter cuts of the kind in which all coefficients
are + 1. Specifically, suppose x, is not an integer in the basic solution given by Eq. (1). Then, as noted
by Charnes and Cooper [1], the requirement that x, be an integer implies that

@ 2 =1,
JjeRy

where R D R,= {jljeR and y,; # 0}.
The cut of Eq. (4) can be sharpened still further by noting that

(5) 2 =1,
JeR?
where R. D R¥= {jljeR and y,; # integer}

is also implied by the integer requirements.

Gomory and Hoffman [5] have proved that Dantzig cuts (Eq. (3)) are not sufficiently strong to
guarantee convergence of a linear programming algorithm to an optimal integer solution. We will
show that the tighter cuts, given by Egs. (4) and (5), when included in a certain way, yield a finite dual

siraplex algorithm.

THE ALGORITHM

1. Using the objective function as the top row of the tableau. solve (1) ignoring the integer con-
straints. If the optimal solution obtained is all-integer, terminate; otherwise add the redundant in-
equality 2 x; < M (M is positive and very large) as the second row of the tableau to insure that the

jekt
columnsjare lexicographically positive. Then go to step 2.
2. Let row u be the topmost row in which the basic variable is noninteger. Adjoin the constraint
(5) to the bottom of the tableau, i.e.
s—y 5=—1
jeR?
and execute one dual simplex iteration with the new row as the pivot row. The pivot column must be
chosen to maintain lexicographically positive columns. If the solution is all-integer and primal feasible,
terminate; otherwise go to step 3.

3. If the solution is primal feasible or if yo0. . . .. yu-1,0 are integers and y.o has not decreased
by at least its fractional part, go to step 2; otherwise go to step 4.

4, Execute dual simplex iterations in the usual manner (lexicographically positive columns must
be maintained) until primal feasibility is attained. If the solution is all-integer, terminate; otherwise
2o to step 2.

The branching rule of step 3 can be modified in several ways without affecting convergence;
however, we have not been able to prove that it is always possible to go to step 4 when there are primal
infeasibilities.

J— : y ﬂ
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FINITENESS PROOF

THEOREM: Application of the above algorithm to a pure integer programming problem as given
by (1) yields an optimal solution after a finite numbcr of dual simplex iterations.

PROOF:* Clearly, the number of pivots in step 1 is finite.

Let yi;(0) be the entries in the tableau associated with an optimal linear programming solution
(the solution obtained from step 1) and yi;(¢) the entries in the tableau after ¢ dual simplex iterations
beyond step 1. The yuo(t) form a monotone nonincreasing sequence bounded from below. Let A be
the greatest integer such that yo(¢) = A for all . For some ¢ suppose we have

yoo(t) = A+ foo(t), 0 < foo(t) < 1.

5=y xj=—1.

iR}

In step 2, we add the cut

In the transformed tableau, we have
Yoo(t+1) = yooit) — yox(2),

where £ is the pivot column and yox(t) < foo(t).

From the definition of R it follows that yo:(2) > 0 and consequently yoo(t+1) < voo(t).

We now show that there exists a T = ¢+ 1 such that yew(¢*) =A for all t* = T. Let fo;(t) be the
fractional part of yo;(t) and fu;(t) = ew;(t)/D(t). where D(t) is the absolute value of the product of all
previous pivot elements. Note that, since the a;; are integer, D(t) and e;;(t) are integers. Since the
pivot element is —1, D(¢+1)=D(t) and
eno(t) —eox(t)

y.m(t+1)=A+ D(t)
= eoo(t) —1 .
A+ _—D(t)

M yoo(t+1) > A, we add another cut from the objective row and again reduce the value of the
objective function by at least 1/D(t). Consequently, after at most ew(t) cuts have been added, the
objective function reaches A. Since the columns are maintained lexicographically positive, a similar
argument can be used to show that the remaining variables become integers in a finite number of,

iterations.

i Discussion and Comparison with Gomory Cuts
The proof just given for cuts from Eq. (5) applies as well to the weaker cuts from Eq. (4), but not,
of course, to the Dantzig cuts of Eq. (3). The cuts of Egs. (4) and (5), when derived from the objective
1 row, reduce yoo(t) by at least 1/D(t). This reduction is crucial. The Dantzig cut, on the other hand,
yields no reduction in yse(t) whenever there is dual degeneracy. .
A Gomory [4] cut taken from Eq. (2), when x, is not integer, is {

-
]
7

(6) 2 Suixi 2 fuo £

jeK?

*We assume, for simplicity, thal the constraint sel of (1) conlains al least one lanice poinl. An empty constrainl s~1 will be
indicaled by unboundedness in 1he dual problem.

~

oy
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where fij is the fractional part of y;;. Thus, the cuts given by Egs. (5) and (6) involve different inequalities
on the same subset of nonbasic variables. The constraint (5) cuts equally deep into each axis of the

variables associated with the index set R}. The Gemory constraint (6) cuts a different amount into

each axis, depending upon the fractional parts of the ceefficients in Eq. (2).
! One might argue that for a randomly selected row !

i Pr(fy = fu) = Pr(fi; < fi) =112,

so that on the average constraint (5) should do as well as constraint (6). However, a reason for believing
that (6) is superior to (5) is that (6) can have fio/fix large (>1) for the pivot index k.

The finiteness proof for the cuts of Eqgs. (4) and (5), when conipared with the very similar proof
+ for Gomory cuts, highlights this point. When a Gomory cut is taken {1 n the objective row, the objective
function decreases by at least its fractional part.

For the modified Dantzig cuts, only the much smaller decrease of 1/D(¢) is assured. In fact, to
prove finiteness, we had to add cuts in certain cases when there were primal infeasibilities (see step
3 of the algorithm) to prevent the product of the pivots from increasing. When using Gomory cuts,
primal infeasibilities can always be removed (and therefore further reductions can be obtained in
the objective) before additional cuts are made. Conceivably, the constraint of Eq. (4) may represent !
the weakest cut for which a finitely convergent linear programming process car be constructed.

There is a much closer relationship between cuts (5) and (6) than the mere fact they are linear
inequalities on the same subset of nonbasic variables. Specifically, the cut of Eq. (5) is a linear com-
bination of two Gomory cuts. Glover [3] has generalized the representation of Gomory cuts to yield
cuts, from row u of Eq. (2), of the form*

™ 2 ((h}'uj)_(h))’uj)xj? (h}’uo)—(h))’um :

JeR

where (x) denotes the least integer = x and & must be cursen so that {(Aywe) — (h)yuo > 0 (yuo is not
an integer).
Choosing the parameter h to be integer yields the finite abelian group of Gomory cuts of the
‘ method of integer forms [4]. In particular the cut of Eq. (6) is obtained with A =— 1. Settingh =+ 1
yields

} (8) > A —fuy)z = 1—fe

M

*Glover aclually uses the 1wo parameler represenialion

J (B =pYrat T, ((hyw) = Pyey)z; & (hywo) — pyue. & .
JeR -\,

If (h) —p is nol zero, xu=yo— 2 ¥ujx; musl be subsiiluled inlo the cul equalion 10 oblain a basic solution. This substilulion
JeR

is equivalent to requiring p= (A). For praclical purposes then, Glover's generalized culs are one parameler. Many of Glover’s

argumenls for deriving properties of 1hese culs can be simplified by sening p= (h). However, 1he use of p does emphasize 1hal |

iwo differenl quaniilies (h) and A influence 1he nalure of 1he cul

e —a— X ——-——-—-——-—“
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Adding the two Gomory cuts of Egs '6) and (8). we obtain

E (l _fuj)xj"'zfuj =1 _fuo +fuo
#R? R

which is precisely the cut of Eq. (5).

Finally, Glover has observed that the sum of two cuts taken from (7). one haring A= h, and the
other having h=h, with (h,)=—(h,), yields a cut with integer coefficients. Such cuts can have all
of the coefficients = + 1 but with even fewer nonbasic variables appearing in the sum than in Eq. (5).
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A SOLUTION FOR QUEUES WITH INSTANTANEOUS JOCKEYING AND
OTHER CUSTOMER SELECTION RULES
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and
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ABSTRACT

This paper presents a general solution for the M/M/r queue with insianlaneous jockeying
and r > ] servers. The solution is obtained in mairices in closed form without recourse to
the generating function arguments usually used. The solution requires the inversion of two
(2" =1) X (2" —1) matrices.

The method proposed is extended 10 allow different queue selection preferences of
arriving cuslomers. balking of arrivals, jockeying preference rules, and queue dependent
seleclion along wilh jockeying.

To illusirate the resulis, a problem previously published is studied to show how known
results are obtained from 1he proposed general solution.

1.0 THE PROBLEM
1.1 Queue Selection Rules

We consider the following queueing situation. There are r servers. The probability distribution
functions of service times are negative exponential distributions with parameters s, g2, . . ., fr
Arrivals form a Poisson stream with parameter A. Initially, we will assume that all customers that
arrive will join a queue (see Section 5 for other queue behaviors). Each server is assumed to have his
own waiting line. Arrivals will join a queue according to the following rules:

1.1(a) If all queues are empty, he will choose any of the open queues with equal probability.

1.1(b) If several, say ¢, but not all queues are empty, then an arrival will join any of the empty
queues with probability 1/c.

1.1(c) If all queues are occupied. then the custoiner will join the shortest queue.

1.1(d) If all queues are occupied, and if several queues, say s < r, have numbers in them equal to
the number in the shortest queue, then the customer chooses any of these equally short queues with

probability 1/s.

1.2 Jockeying Rules
Once a customer has joined a queue, he will be allowed to change queue (jockey) in accordance

with the following rules (see Section 5 for other jockey rules): =
1.2(a) If, a. any time, n; — n; = 2, then tiie customer in the ith queue will jockey to jth queuc "
instantaneously.

1.2(b) If, under rule 1.2(a), it is possible for the customer in the ith queue to jockey to several
queues, say s, then he will jockey to any of the eligible queues with probability 1/s.

Preceding page blank 315
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1 1.2(c) Hfforr > 2,1, — n; = 2 for fixed i and j and ny — n; = 2, then a jockey from i or & is equally

' likely.

! This problem has been studied by Haight [2] and Koenigsberg [3] for r = 2. It is called a queueing

T system with instantaneous jockeying

2.0 SYSTEMS EOQUATIONS
2.1 The Transition Diagram
! The simples: way to view this problem is to ccnsider its transition diagram. Using the usual “steady
state” arguments one can develop the “steady state™ equation (if necessary) from this diagram. From
the transition diagram it will be evident that the coefficient matrix for the “steady state™ equations :
exhibit a considerable amount of regularity that can be exploited to solve the problem. l
L The random process of interest to us (“the number of customers at each server at time ¢”) will
have a state space consisting of r-tuples whose jth element gives the number of customers before

server j. We define the vectors

n=(n,n,...n.n=0,12,...
ni=(n,n...n+1...n0),n=0,1,2,. ..
Jth
element ;
ng.a= (B0, . -, B+l o Bmtlo . n+l. . n)n=0,1,2:5. - '
elel':len( ~')‘ tement i=12,...r
j>i
h>j

We define the following state probabilities for r=2,

po= probability that the sy: : :m s in state 0
P.= probability that the s,...em is in staten,n=1,2, . . .
Pn, = probability that the system is in staten,,n=0,1,2, . . .

P., = probability that the system is in staten,,n=0,1,2, . . .

L The transition diagram for r=2 is given in Figure 1. We omit transitions from a state to itself.
) Such transitions do not contribute to our later work. Generalizations for r > 2 are obvious. The indi- !
} cated transition rates follow simply from the queueing rules given in Sections 1.1 and 1.2. Thus, for !
example, if the state of the system is 1, a transition to 1 occurs either by server 1 completing service
on one of the two customers in his queue (rate u:) or server 2 completing service on the only customer

he has (rate u;). In the latter case a customer immediately jockeys from server 1 to put the system

into state 1.

2.2 State Equations i
d Using the usual methods of equilibrium analysis one can write the steady siate equation from =R
3 L3
Figure 1. — P o
(a) For O

—Apo+ pipo,+ p2py, =0
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F1GURE ). Transition diagram for r=2

(b) F0r0|

A

9P~ (A1) po,+ p2p =0
, (c) For 0,
] A

2 Po— (A pz) poy+ pipr=0.

For n > 0 it is apparent that equations for n, ny, n; do not depend on the particular values of n. Hence
for each n > 0 one has

(@) Form+1,

A(pay+pny) = (A + s+ 12) po+1+ (pa+ p2) pa+an+ (s + pz) Pa+2, =0
() For (n+1),

e

A
-2-p-+1—(.\+p.,+y»¢)p(.+n,+mpn+z =0 o
(c) For(n+1),

%pn+l—(A+p1+ﬂz)p (+1) + )P ne2 =0.

.
-
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2.3 The Coeflicient Matrix

For later purposes we define the following matrices:

—A 1131 M2 0
A
No= 3 —(A ) 0 I
A
3 0 — (A p2) i
and for n >0
A A — A+ + o) (1 + p2) (1 + p=) 0
Au=] 0 0 b —(A+,1|+[L2) 0 M2 ,n=|,2, 5
2
A
6 0 2 0 —Atpmtp)  m
We partition these matrices as
A= /—A Nex= ' M2 0
A
3 | —(A+wm) 0 Mz |
A
E 0 — (A pu2) JTh
Am= /A A —(A+ i+ p) An2= (1 + pz) (1 + p2) 0
0 0 % . and — A+t ) 0 ™
A
0 0 3 0 —(A+ g )

Then the coefficient matrix for the general “steady state” equations AP =0 can be written as {for r=2)

Ao Aex 0 0 0
(21) Ne 0 An A 0 0
0 0 An Ap O

0 0 0 AYTRRAY S

[T i

The matrices Ani. Aaz, n >0 are independent of :* and hence the par:itioned matrix is siinply a bi-
diagonal matrix with Aj;= A and Ajz= Az w0 i,j= 1,2, .. .. The important consideration, however,
is that this partitioned form of the matrix dep - 1ds o - (he existence of the instantaneous jockeying rules
of Section 1.2 only. Except for the size of the submatrices, the number of servers has no effect on the
structure of A. Thus, the fact that we have chosen to carry the structure through for r=2 is irrelevant
to the construction of the partitioned matrix above and to the solution below. All results are valid for
r =2, Our choice of r=2 was pedagogical only.




—
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2.4 The State Probability Vectors
For r=2, let

Po1=po, a scalar,

PL = (po,, pos» P1)»

Pes is a column vector of lengih 3. In general, Py is of length 2r— 1. Further, for all n, let
Pl =(py, Pay Pa;on=0,1,2, . ... In general, P(y+1n is a column vector of length (r+1).
Plyi1)2=(Par111s Plnst)gs Pas1). n=0,1,2, . . . . In general, P(n.1)2 will be of length 27 —1.

2.5 The Steady State Equations
The steady state equations can be written using the above partitions as

where A is defined by (2.1) and P is the column vector whose elements are given in Section 2.4. More

importantly, however, one has
(2.2) /\0|Po| + /\osz-:O
2.3) AmPariin+ An2Pni12=0,n=0,1,2, . . ..

Again, this set of equations does not depend on r. Hence every instantaneous jockeying queue satisfy-
ing our assumption of Section 2 (and extensions given in Section 5) satisfy this system of equations.

3.0 THE SOLUTIONS
Using the partitioned form of Section 2.5 it follows directly that

3.1) Pe=— Agt NotPor.

for any r > 1.
Define
B=AgG' A

B is (27—1) X 1. Let B, be the vector of the first (2" —r—2) rows and B; the remaining (r+1) rows of
B. Then (3.1) is equivalent to

_ B|Po|.
3.2) Pyp= (Bsz )

From (2.3) one has
(3-3) P“'+l)2=—/\;-)/\MP(IH-I)I, n=09 19 29 e ..

Equation (3.3) defines the (2" —1) elements of P(n.}): in terms of the (r+1) elements of P(,. ). but
the elements of P(n.)): are known, since they represent the last (r+1) elements of Py,». We make the

following definition:
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Let: P¥,=the last (r+1) rows of P,.,. It then follows that

3.4) Pinein=Pg .

Using Egs. (3.1) and (3.3) and iterating, we find

3.5) Po=— A5 N Poy

and

Pi=—A l'zlAlan-
By (3.2) we have

P& =—BsPy,
but by (3.4)
(3.6) u=Pg=—B:Po.
Thus,
3.7 Pi= AR AuB:Po.
Since
(3.8) A'An= A Na for alli, j#0,
we let
A=A Am.

Ais a (2r—1)x(r+1) matrix. Partition 4 into 4,, A2 where A; is the (r+ 1)x(-+1) matrix con-
sisting of the last (r+1) columns of 4.

We can assemble these terms to find all the unknown probabilities in terms of Py — a scalar. Py,
is given by (3.2) in terms of known matrices and Py. Also by (3.6) and (3.7) one has the value of Py,, Py,
in terms of the given matrices and Py,. Using (3.6), 4, and 4;, (3.1) and (3.3), one has

P|2=—(Z;)Pn-

(AB:Py
Pa={ ”2(/12811%.)'

which upon using (3.7) gives

and by using the definition of P% : we obtain

sz=Aszpol=P2|-

And continuing the iteration

Pp=—AP;
(= 1)2(/41/4232’)01)
A2B:Py
P =—A3B,Po= P5,
Po = (A|A§szo|)
27\ ABoPw)

~
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In general,

— u s o 1A2B2P 0
Ponorp,=1(-1) l(A;‘z'Bsz) foralln=1.

(note: A7=1)
(3.9) P:z'—'(_l)"*'/l;Bsz.

Thus, a complete solution for all state probabilities is given by:

(3.10) Poz=_BPo|

) L i A,A;Bgl’m) =

(3.11) Ppirp=1(—1) l(A;“BzPol .n=0,1,2,...
(3.12) P+, = (—1)*(42B:Pa1).

Equations (3.2), (3.10), and (3.11) give us all state probabilities in a closed matrix form in terms of the
single scalar Po. The probabilities given by (3.12) are redundant and are included in other vectors.
Hence they do not comprise a part of the set of state probabilities. Py, is determined by requiring all

terms to sum to 1.
It is useful to note that all probabilities are obtained in terms of 4 and B and that 4 requires one

inversion, of the matrix A ,2, while B requires one inversion of the matrix Ag:.

4.0 AN EXAMPLE: THE CASE r=2 (Haight [2], Koenigsberg [3]).*

These equations and their associated matrices have been given in Section 2. Here we note:

[ Atp _ 1 B2
MmN+ + 2) (2R + g+ ) (20 + i+ )

A=l = A+}L| [13] — l
0 N (2N + pa+ p2) W (2hH g+ pa) (2N + 2)

A+ ) (A + pa) At ps At
Ntttz 2N+ pr + pz) 22N+ + paz) pa (2N + pas)

and from (3.2)
A
241
A
20
)\z
2 pt2

Por= At horPo= Lo,

*As pointed out by Koenigsberg (3: p 422] the results of this section are identical to those obtained by Gumbel {1] for the
maitre d'hotel system with two heterogeneous servers.
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A
I).’ =] %— I’ﬂn
2
P,= A Po.
Hipe

These values agree with those previously given.
Similarly, for the general equations, we find

/\—_1_—_ &2 # “2
= (it p2)? ()Nt p2) (o pe) A+ +p2)
M H _ Y2
(it p2)? (it p) (At pe) (ot pe) (N a4 p2)
A+ pe 1 1
(a1 + p2)? i+ pe it e
and
=L ApLy ApL1 2 (At ) M — )?
M= S pe)?t (i pe) (A ) 2(pat+ p2)> A+ + )
Atz _ A C2pa (A )2 A (i — )
(w+p2)? (it pe) N+ ) 2(pr+ p2)2 (N + 1 + )
AA+pi+ p) A (A s+ po )2+ A + )
(o + p2)? i+ (o + p2)?
Notice, for r=2 only,
/\;2'/\'"=A'=A2,

i.e., the last (r+ 1) rows of A comprise the whole matrix.

Thus, the general solution from (3.11) is

Ppip= (—1)"1A 1B, Py,,

which,. in the form given by Haight [2] and Koenigsberg [3], is:

and

where:

A2Ez(n+l) )\()\'*'2#192)92"
= 9Pn y = 2 . 111y Po,
2uz T T e (14 p)
AL+ 2puapt) p?
Pn =.___&B_P__ Do,
T 4 (1+ p)
- A A
P s+ e
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5.0 EXTENSIONS*

5.1 Queue Selection Preferencet
Suppose that the customer has some preference for one of the possible choices such that the
probzbility of joining an **‘open” queu: is not 1/s (see 1.1(d)).
“open” queue is not 1/s (see 1.1(d)). :
We give the following definition: An open jueue is one such that if an arrival joins that queue, it
will not give an impossible state. (Note: all queues in the state n are open queues; if all queues are
' in the state n+1 then those queues are also open.)
Let

imij . .. «= Prob (joining the ith queuelith. jth, . . ., sth queues only are apen).

- {1 if i=j
& =10 otherwise,

and

imi...s=0if i does not appear in both subscripts.

For r=2, the A matrices are given by:

—A a p 0 i

Ao= yy2A - (A+}l.|) 0 M2

2T i2A 0 "()\+ll-2) 231

and
AA (A ptpe) (1 + 2) (g1 + p2) 0
A={0 0 1Tz = (A g+ ) 0 M2 ,
i 0 0 27 2A 0 "(’\'*'ll-l +ll-2) M ‘
! These terms do not change the form of the coefficient matrix A (it does change some of the coefficients

of the state probabilities, specifically those terms that deal with arrivals to the system). The general
solution of Sectior: 3 remains valid.

5.2 Balking

/e defi
) We define ollj. .. s= Prob (balking/ith. jth, . . ., sth queues are open),

and ill;; . . . ¢isdefined as in Section 5.1, for i #0. If we require oI1;;. . ., =1 whenever all queues e
of size N then A represents the coeflicient matrix for the queueing system with finite (rV) capacity. We
note that balking probabilities do not directly enter into or change the state equations in any way, except
that the 7’s that do appcar no longer add to unity, as in Section 5.1. This merely reflects the fact that the

customer no longer joins a queue with probability one. Hence the general solution of Section 3 remains {
. valid. t

*In uddition to the extensions giver: explicitly here, one can imagine other possible behaviors that modify the transition
rates, but retain the hasic structure of the A matrix. For example, reneging can be incorporated without losing the structure.
Such inclusion is obvious and we do not explicitly expose the details.
+ Krishnamoorthi [4] has given results for this selection rule for the two server case. !
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5.3 Customer Jockeying Preference
Another generalization involves the jockeying discipline itself. It will be remembered that, if s

possible juckeys were available, then each would occur with probability 1/s. (Jockeying Rule 1.2(b)) We
note that such a situation could only occur (two or more available jockeys) for r = 3. For example, for
r=23 suppose the state was m;» and a service occurred in the 3rd queue, giving the instantaneous state
{n+1.n+1, n—1). Two possible jockeys could occur, from either the 1st or 2nd queue (but not both).
Initialiy, we defined each of ihese to happen with probability 1/2. But now let us suppose that there is a
probability distribution on these jockeying choices. In effect, we are now allowing jockeying pref-
erences: in turn, this allows us to consider the distance the jockeyer must travel; it is now possible to
tuke explicitly into account the fa-: *hat a person in an adjacent queue is more likely to jockey than a

person from a distant queue.

DEFINITION: An eligible queue i is one in which the difference ni—ni = 2; in other words, the
ith queue contains a customer who may jockey. Let us dcfine the following:

@i .. = Prob (jockeying from queue j to k/the queues i, j, . . ., ¢ only are eligible to jockey).

Furthermore, let
0 if j does not appear in both subscripts
1 ifj=k
ikij . e = ; : .
0 if k appears in both subscripts

jxij. .. otherwise.

The a’s only affect the equations for n = 1 since no jockeying occurs under the initial conditions since
all arrivals immediately enter service. Again the structure of the problem given in section 3 is unaffected
by this change and the solution given there remains valid.

5.4 Dependence on n, the Number in the Queune

Suppose that A, becomes a function of n. In other words, the arrival rates, the service rates, the
queue preference probabilities, or the customer jockeying probabilities now become dependeﬁt on the
number of people in a queue. By a development which parallels that of Section 3 it can be shown that
the solution is given by

- A.(n)A_»(l)Az(2) ...... Az(’l“l)BzPu
" A:(DA=(2) e A (n)B.Py |

This follows by dropping the condition (3.8) and leiting

AgA,=4(n).

Al(")
"(")'(A-.«n))'

By iteration. we find the solution to be as given above.

We then partition 4(n) into
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6.0 CONCLUSIONS
We have given a solution technique which seems to be powerful for a large class of jockeying

problems. A simple matrix equation has given us a closed form solution for any number of servers.

Simple extensions of the method allowed us to include the problems of customer queue selection

preference, jockeying preference, dependence on the number in the queue. and balking, where the ,

balking case included the finite capacity queue as a special case. '
The driving force in the system, in all of its forms, is the instantaneous jockeying principle. This

principle allows us to cast the steady state equations in their readily solvable form. This solution

requires a customer to jockey if it is possible. The refinements presented in Section 5 retain the special

structure of A and hence de not present important modifications to those solutions given by Egs.

(3.10) and (3.11). i
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THE DISTRIBUTION OF THE PRODUCT OF TWO NONCENTRAL
BETA VARIATES

Henrich John Malik

University of Guelph
Guelph, Ontario

ABSTRACT

In 1his paper 1he exacl disiribulivn »f the pmduct of 1wo noncenlral hela variales is
| Aerived using Mellin integral 1ransformi. The densily funclion of 1he producl is reprsented
as a mixlure of Bela disiribulivns and the disiribulion funciion as a mixiure of Im-omplere

Br1a Funeclions.

1. INTRODUCTION

Mellin transform is a powerful analytical tool in studying the distributian of praducts and quotients
af independent random variables. The operational advantages of Mellin transforms in prablems of
this type have been discussed by Epstein [3]. Following Epstein many authors applied the Mellin
transfurm in a number of papers on the distribution of products and quatients of randam variables:
a detailed bibliography can be faund in Springer and Thompson [8]. Examples of engineering applica-
tians involving produets and quotients of random variables can be found in Danahue [2]. The practical
usefulness of the results described above is limited by the fact that all the carrespanding distriliutions
have infinite ranges while in many plysical applications the mathematical madels aften have finite

j characteristics.,

The situatinn invalving praduct of independent Beta variates arises in many applications, for
instance. in system reliability. If it is assumed that the system cansists of a numher of subsystems
and the initial reliability estimated from each subsystem. R;. suggests a Beta density. then the tatal
reliability, R=R,R; . . . R.. is a random variable. and it is important to know the distributian «of
this preduct. This paper gives the exact distribution of the product of twa nancentral Beta variates.

2. THE DISTRIBUTION OF THE PRODUCT OF TWO NONCENTRAL BETA
VARIATES.

Let ¥, and y2 be twa independent random variables distributed according ta the nancentral beta

density function [4] with parameters pi, qi, A, and pz, g2. Aa. respectively. Thus the density function

ufy_,- is
i . |‘(2|+£;l+g!))\;
{ “e (M g0y pis 450 N) =2—_WP“‘J)‘”2"“P}‘2'4 lL—y;)re-2 j=1,2,0<y;<1.
AT L ATE i\t
¢ I(Z)I( 2 )I.

\

We want to find the probability density function of the variate u =y,y,, by the use of Mellin tran:farms.
The Mellin transfarm f(s). corresponding to a function f(x) defined anly far x 2 0. is

L | Preceding page blank i

;“" ot
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2) f(s) =f: 2 Y (x)dx.
The inverse Mellin transform enabling one to go from the transform f(s) to the function f(x). is
3) fa =g [ xoptsran
27 Je-ix
Therefore the Mellin transform of the density function of y; is

r(2i+p[-+g!-) O
* 2 Alc J
(4) j:'(s)=2 f yl/’(’np -2)+8-- l(x .'J}I'.’ltu‘- 2)dyj‘

i=0 |’(%)|’(2—l;—pl)l' o

Term by term integration is justified since the series can be shown to converge uniformly. Thrre-

fore, we have

[.(2i+gi+g[-)~.£_”l.(2i+gi+2s—2)
(5) fis)=3 : 2
¢ . l.(2:‘ +£j)l.(2i+p,-+q,-+2s-—2)i,
2 2 ’

If we take the limit as A;—0. the result is

g

F(%)( +q+2s 2)

which is the Mellin transform of the central beta distribution with parameters pj> and ¢

lim _ fi(s) =

The Mellin transform of the density function of the product of two independent random variables is
the product of the Mellin transforms of the density functions of the individual variables [2]: therefore,
the Mellin transform of the deusily function of u=yy is

S(5) = £i(s)fe(s)
NI (Zi +§, oy q,) r (2i+p, +2 — 2) AT (2/.- +p.+ q,) l,(zl.- +pa+ 25— 2)

= (A +A) 2 2 2
=e 1 2 5 a
2 S2A+p, N [2i+p, g+ 25—2) . f2kEpo 2k pyt g+ 25 —2
'=°l( : I : ).!k«-ol 3 )l( )/.-z
2 2 2 2
6)
A“l (Zln+[:,+q,)l, (2[.'4—[),;-25—2) ?
=e-h,* '22 . . — . |
g (2A+p,)l (ZA-+,),+q,-+Zs-—2)“ \
2 2 .
NET (21'—2k+p,+q2) r (21'-2k+p,+25—2)
— 2 2
l.(2i~22lr+p,)I.(2|'~2A'+p,;-q,+2.s—2)“,_“!
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where the sum over m comes from the hypergeometric function.
The distrihution function of u is given by

i=0 k=0 m=0 ,
B
A:A."."'I‘(”—'+ﬂ+k) |‘(ﬂ+ ) ‘(2k— 4B B2 diy )
il SRR g tm)! T2 2"
fop—syr P2, D\ (P2, O G2 P2 R iyt
| (ZA i+l L), (2+ Ly 2+k+m)B( 24 ik, 2)k.(l k) im!
(e 9 9:
l.,(2+k,2+2+m), ,
L where
1 "
lu(a, b) =— f - (1—t)b-'de
(@D =gn ) 07
is the Incomplete Beta Function. l
If we set Ay=A2=0 in (9), the density function of two central beta variates is
» M9 ’
l(2+2)l(2+2)" sk @ PP @ @4
h(u)= F e e toh s ol BTl
By
2 2 22
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where the sum over m comes from the hypergeometric function.
The distribution function of u is given by

».:Af,-kr(”'+"’+k) r(ﬂ+m)r(2k—i+’#—”—*+ﬂ+m)

an S s s 2 3 2'%
Aop_:qyPr_P2 o\ (P2, 91 G2 P2y -0 Q2N vir_ gy
|(zk i+l b2y I(2+2+2+k+m)ﬁ(2+z k.z)k.(z Wi

g (P, 9,2
l.,(2+k.2+2+m),
where
l u
l.(a, b)=— f a-1(1 =¢)v-dt
(a, 5) Bla, b) 0t (1=1)

is the Incomplete Beta Function.
If we set A\y=A:=0 in (9), the density function of two central beta variates is

; i AELLIR
|‘(%+ﬂ)r(’£+‘“)u2 "A-w)z 77!

2 272 qg: P P2 4 g, g2

h(u)= l'(_-T—'T+_;._+'T'Zl—")'
(P p: q1, 92 2°2 2 272 2
'(2)r(2)'(2+2)
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OPTIMUM ALLOCATION OF QUANTILES IN DISJOINT INTERVALS

OR THE BLUES OF THE PARAMETERS OF EXPONENTIAL
DISTRIBUTION WHEN THE SAMPLE IS CENSORED IN THE
MIDDLE

A. K. Md. Ebsanes Saleh®

Carleton University, Ottawa
and

M. Ahsanullaht

Food and Drug Directarate, Ottawa

1. INTRODUCTION AND SUMMARY

In the theory of estimation it is well known that when all the observations in a sample are available,
il is sometimes possible to obtain estimators that are the most efficieut lincar combinations of a given
number of order statistics. In many practical situations we encounter censored samples. that is.
samples where values of some of the observations are not available. Singly and doubly censored samples
occur when the extreme observations are not available and middle censored samples occur when
observations are missing from the middle of an ordered sample. Censoring in the middle of a sample
may occur due to mmcasurement restrictions, time, economy or failure of thé measuring instrument
to record observations or due to off-shifts or week-end interruptions in the course of an experiment.
As mentioned in Sarhan and Greenberg 8] in the space telemetry, where signals are supposed to be
sent at regular intervals we may expect a few of these signals to he missing during journey and al the
end of communication,

In this paper we shall consider the problem of best linear unbiased estimation (BLUE) of the
parameters of thr exponential distribution based on a fixed number k (less than the number of avail-
able ohservations) selected order statistics when the sample is censored in the middle. The study is
based on the asymptotic theory of quantiles and under type II censoring scheme. The optimal alloca-
tion of the k quantiles in the two disjoint intervals along with the optimum spacings of the quantiles
have been determined. The estimates and their efficiencies may easily be calculated based on ‘he
table of coefficients and efficiencies presented at the end of this paper, in Table 1, for various pro-
portions of censoring.

The problem of choice of optimal k quantiles in uncensored and singly and doubly censored samples
liave been dealt with by Kulldorff, [1, 2] Ogawa, [3] Saleh and Ali, [4] Saleh, [5, 6] and Sarhan and Green-
berg [7, 8] The present problem is an extension to censoring in the middle posing a new problem of
optimum allocation of & quantiles in the two disjoint intervals due to censoring in the middle.

*Rescarch supported by the National Research Council of Canada. This work has been completed while the autbor was a
fellow at the Summer Research Institute, MeGill University, 1969,
+On leave from Institute of Statistical Research and Training, Dacca University, Dacca, Pakistan,
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2. ESTIMATION OF THE PARAMETERS

Suppose we are sampling from the exponential distribution

Q2.1 F(x)=l—exp(—x—;E),zap,.a>0.

where u and o are the parameters of the distribution. The samble size. n. is assumed to be large: le
the interval (0, 1) | » sub-divided into three intervals: I,= (0, a], I:=(a, B). and I,=[8, 1) with
0<a<B<I. Define ps=0 and ps3=1 so that po=0< p,=a < B=p; < p=1. Under type 1l censor-
ing scheme in the middle. we only retain a and 1— 8 proportion of samples from the two extreme
intervals so that the proportion of censoring is 8 — a. Thus the ranks of all the uncensored observations
lie in the .atervals [1, n,] and [n2, n]. respectively, where n,=[na]+1 and n.=[nB8)+1 and [ |
is the Euler’s notation for the largest integer ¢ ntained in [ |]. In this section, we shall obtain the
BLUES of the parameters based on k arbitrary quantiles whose ranks are available from the two dis-
joint integer sets [1, n,] and [n:, n], respectively.

Let the ordered observations in a sample of size n be x(1) < x(z) . . . < x(x) and consider the k
sample quantiles xr,) < X, < . . . <Xk <Xwg) < . . . < X(ngx,» where the ranks n;; are
given by '
(2.2a) ny;j=[npy;]+1 i=L2 ...k
and
2.2b) ni={nps]+1  j=1,2, ... ks,
and the spacings p,;(i=1, 2, j=1, 2, . . . k) satisfy the inequality
(2.3) N<pu<...<pu,<pn<...<pa,<l;
also

0<pij<aand B<py;<1forallj.
Now if the spacings are redesignated as
M< ... <A k=ky+k,,

then the expressions for the BLUES ard their variances and covariance and the generalized variance
will coincide with the expression in (2.7a) through (2.8) of Saleh [5] with necessary restriction due to
censoring in the middle.

The symbols ui;=In (1—pi;) ', i=1, 2, j=1, 2, . . . ki explain the connections of the expres.
sions which are:

ky k2
o= E bijx(n'-j)"' 2 b2jx(n2)-)9
j=1 j=1
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(2.5' ﬂ:x‘.”)_&.”.
(2.6a) —— izl
b1 ——(e'lt—e'll)L'
(2.6b) b'~=L"{ Bij—lj-r _ W=y
17} f"lj—e"lj—l C.U'l-e'li
where

i=2,3, ... kiand urk, 1 =uzi, u10=0,

bu=L‘,{uzi_uzl-l o _Uz2jey T Uz }

(2.6¢) €'z — e"2y-1  eY2j+1 — e*3j

phese =02 . o k=1, U= kg Uzkger =0,
2.6d) bur, = L0 [t

and

I b= =

The variances and covariance of the eshimates are

2.7a) V() ="7" (L~'w?, + (e — 1)},
2.7b) V() =‘{'f B
and
a3 2
(2.7c) cov (p, o) ="7 (uul").

The generalized variance of the estimate is
at . _
2.7d) A = (e*n~—1)L-,

When u = 0, the estimate o based on the k quantiles is

R k1 k2
2.8 o= Z bl}x(n,j) + 22 b2jx(n2j)v
= j=
where
=1y BT R T By T U
(2.9a) by; le{euu._euu_, e"u'u—e“u'}

j=1, 2, ... ky with Urky+1=U21,
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2.9h) b,,;=()-.|{ Wai™Uaj .y _U2je1— Usj }
UK leuzi—enzio1t eMzjo1 —evsj

j=l, 2. ... ka—1 with U=1U1k,. llzk,u:O.

and

. kl"( o)t kz-l( 2jer1—Uzj)2 (1 — )2

(2.10) e Urjer ™ )" U2j+1 ™ U2j U T Uik,
Q« 12. e*1j+1—e¥j +j§, €e¥2j i1 —e¥2j e 21— e“1k

The variance of the estimate is given by

2.11) V(&)=£—-
k

We note that in all the above expressions the restrictions on the u’s are

2.12) 0<un<...<wg<lh(Q—a)’ }

In (1=8) ' Suar < . . . <sax, <+

3. OPTIMUM QUANTILES FOR ESTIMATION OF PARAMETERS

In order to determine the optimum k quantiies for the BLUES of 1 and o simultaneously, we have
to minimize the expression for A, the generalized variance of the estimetes. Equivalently, we maximize

(evn1—=1)-'L

for variations of u11, w12, 1k,, . . . Uz2k,, with the restrictions (2.12) on the u’s and for all combinations
of ky and k,, such that k=k, + k. (fixed). When u=0 and o to be estimated, we maximize QJx as in
(2.10) ac- ordingly.

For the two-parar eter problem, we observe that (e*1'—1)-'L as a function of &, is monotoni-
cally decreasing (Saleh [5]) and the maximum is attained at

1 1
u;",=ln{l—n+1/2} .

Thus the optimum spacing is p} :717-1—15 and the optimum rank of the quantile is n},=1. To de-

termine the remaining A—1 quantiles, we maxinize (e*11—1)-'L with respect to w2, w3, wir,,
-1

Usy, . . . Uz, keeping u3, =In {l _n+ll/2} fixed and for all combinations of &, and &z, such that,

ky+ k2= k (hixed). Thus we use the following transformations

3.1) ty-i=uy—uf,  j=2, ... k
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Then, (e"11—1) 'L reduces t where
( ) « e ] ”2 Qk 1 ¢
K12 (g, —t)* 2 (g — ) (b —tix, )2
& _ je 1j 2j+1 2j 21 (L]
) Qs ;:f, ej-1—ehj + ,2'. elzjo1—e'2j + ez1—e'ik -1’
where

ity Lizy o o oo Liky—1s B20, - . -, L2k, salisfy the inequalities

- n—1/2
0<tn<... <t'k"'\ln[(n+1/2)(1'—a)]

_n:_lL]< _ _
il '"[(n+1/2)(1—3) St s

Thus. the problem of determining the optimum quantiles reduces to chnosing the corresponding
spacings A$y, ASz, . . ., ATk,—1s A%1, . . ., ASk,, which maximizes Q.- for variations of ¢;,.
Lik,~1s 821y - . .y L2k, satisfying (3.3) and for all combinations of k, and k.. such that, k=k, + k: (hxed).

Therefore we should solve the system of equations

Wuarg =12, .. k=1

at,;

Q-1 _ .
3.4) —Bt-_»j =(, j=1,2, . .. ks,

for all combinations of k¢ and k.. such that k=k,+ k., snbject to the restrictions (3.3) on the t’s. Let
(=12, ... kf—=1) andt(=1,2, . . . k) be the optimum quantiles which provide maximum
of Qx-, among all combinations of integers k; and k., such that k,+ k2 =k. Then, the set of spacings
AGG=1, . . . kh—1) and A%(j=1, 2, . . ., k2) are determined by the relations

th=In(1=A¥) - j=1 ... k-1

(3.5) ti=In(1=A%)""  j=1,2, ... k.

The vptimum choice of spacings for the estimation of (i, o) are nbtained entirely by the relations

24 (2n— DA :
ERC =T\ U I £ (V] o
P =57 Ve j=1,2, ... ki—1

(3.6)
24 (2n—1)A}
*=—({'___)__21. =012, - . . ey

b 2+l
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The optimum ranks of the quantiles selected are given by
n’.". =1
3.1 nf=[npHl+1, j=2,... k
nf=[p5l+1.  j=1 ... k:
The asymptotic BLUES of u and o based on the optimum quantiles are
e r— G ln(2n+1)
I n—a 2" — 1 )
ky kg
o=>blixmy+ Y bijxwi+ Y bfix i,
j=2 i=1
where
kyq ko
bri=—[ 3 61+ 3 3 ).
Jj=2 i=1
where bf,, . . . b, and b}, . . . bi, may be determined from Table 1. The asymptotic joint

efficiency (JAE) and the asymptotic relative efficiencies (ARE) compared to the best linear estimates

using all observations in the censored sample (see Sarhan and Greenberg [7}) are given by

2n—1 Q- (B—a)

JAE (4, 0) = Fm ) (1 a—p) + (1=a) 1= A){In (1—a) " —Tn (1—B) '}’

(3.8a)
y) = Q:—I(B_a)
(3.8b) Gl (a)—(B—a)(1+a—[3)+(l—a)(l—p){ln (1—a)'—In (1—8)-'}2"
and
3.80) ARE (3) = p——2 -0
[(Zn—l) In? 2252420, ]

[1+l e ]
n(B—a)(l1+a—B)+(1—a)(1-B){Ir ‘1—a)-'—In (i —8)'}* ]’

where QF_, is the maximum value of Qx_, defined at (3.2). Thus, once Q}_, is kiown, the efficiencies
can easily be computed. We must note that the above asymptotic efficiencies have been computed
using the large sample approximation of the generalized variance and the vanances of tne estimates
using all the uncensered observations presented in Sarhan and Greenberg {7] (pp. 357-360). The
following example has been presented with finite sample size to illustrate the estimation proccdure.

EXAMPLE — Simultaneous estimation of u and o: Assume n=62, k=8. a=0.4096, 8=0,7048,
and B—a=0.2952. According to the theory stated in this section we first select x(,). To determine the




r
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remnaining seven quantiles we first compute the upper and lower bounds in expressions (3.3), which
yield new a’ =0.40 and 8’ =0.70. Thus, using Table 1 for these values with #=7 we obtain £, =2 and
k+=5 and optimum spacings as A},=0.2170. A%, =0.4000; A}, =0.7000, A}, =0.8354, A},= 0.9226,
A3, =0.9720, and A};=0.9943. Using formula (3.6), we obtain optimum spacings for both (u, b’) as
ph=0.2295. pk=0.109. p%=0.7048, p%=0.8381. p%=0.9238, p%=09724, and p¥ =0.5944.
The corresponding ranks of the quantiles are n12=15, n1a=26. no1=H. n22=352, nyz=>58. n24:=61,
and n:5=62. The BLUES are given by

. ., 125

p=xm—0oln 173

== 9135x,+.2067v( 15+ .2714v26)+ . 2043 x 44y + . 1127 x(52)+ 0681 x(58) + .0345x(61)+ .01 18x(62).

The coefficients b¥ and b3; are taken from Table 1 with £=7.

4. OPTIMUM ALLOCATION OF QUANTILES AND THEIR SPACINGS FOR THE SCALE
PARAMETER.
In section 3, we have reduced the two-parameter estimation problem based on k selected quantiles ;
to the problem of estimating the scale parameter based on 4 —1 selected quantiles when the sample
is censored in the middle. Therefore, we consider ihe problem of optimizing the related variance
function Q- as in (3.2) which is a function of & —1 variables. Thus we maximize Qi -, subject to the :

restrictions

(4.1) M 0<tn<...<tw ,sln[—"——”—z-—]

' = . (n+112)(1—a)

" PR (T FOP
(n+12)(1=pg) f =7~ " Tk

The problem therefore reduces to solving the following system of equations ,

Tris1+ 71— 26,;=0

4.2)
T2j+1 +sz—2t2j=0 } ¥
subject to the restrictions (4.1), where 7y; and 73 have. he same definition as (6.3) of Saleh [5] with addi-
tional subscript 1 and 2 in ¢'s, )
The theorems in the same paper guarantee that the system of equations (4.2) has a unique solution.
Therefore the optimum quantiles for the BLUE of the scale parameter, o, are uniquely determinable. |
The nature of the solution depends on the available restrictions and, accordingly, they are as follows:
(i) The solutions coincide with unrestricted optimization problem if the proportion of censoring
at the middle is such that

< n—1/2 ]
@3) g [ (n+172) (1—a) ,
}
and RN
L n—1/2 L. e T
Bk '3"'“[(n+1/2)(1—3>]

simultaneously, where ¢¢, and ¢3, ., are the solutions of the equations in (4.2), with no restriction.

) -1y
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(i) If the solution at (i) is not available. then we proceed as a simultaneous problem of right and
left ¢ensoring, Accordingly the solution is available following section 3 and 4 of Salel [3] for (4.2) simul-
taneously. The associated computation has been performed on a GE 415 Computer with 12-figure
accaracy and the iterated solution of the equation has been performed with 5-figure accuracy, for
E=201)10 and a=0.40(0.10)0.80 8==0.50(0.10)0.80, such that 8 —a=0.1000.10)0.40,

The optimum allocation of &, optimum spacings, the coefhicient of the BLUE of o, and the maxinium
value of Q- have been presented at the end of the paper. We mark with an asterisk where the solu-
tion is not different from the unrestricted case. The table has been prepared with k instead of £ —1 10
state the result for the scale parameter when the location parameter is known. In the two-parameter
case. we use the table for kA —1 instead of k. The efficiency expression for the BLUE of o is given by

Ay O ((B—a) .
+4) HRE, (o) B-—ay(l+a—p)+(1—a)(1=B){ln (1—a)-t—In (1 —B)-}2

Now, we shall present an example with finite sample size to illustrate the estimation procedure.
EXAMPLE: Assume a=0.40, 8=0.60, k=7, n=060. From Table 1 we obtain k&)=1, k,=86,

AN, =0.4000, A}, =0.6088, A}, =0.7625. A}, = 0.8697. A¥, = 0.9387, A},=0.9778, and A}, =0.9955.

The corresponding order statistics are 25, 37. 46, 53, 57, 59, and 60.

The BLUE of o is

&-: ().2()49.\’(25 ) +0. |85|.\”(31) + 0.1 327.\”(46) + 0.0889.\”(53) + 0.0537.\”(:,7) + ().0272.\”(39, + ().00()3.!'((;0).

ARE (0)=97.04%

5. SOME REMARKS ON THE SIMULTANEOUS ESTIMATION OF u AND o BASED
ON OPTIMUM QUANTILES

The simultaneous estimation of u and o depends heavily on the solution of the scale-parameter
problem discussed in section 4 of this paper. The example cited at the end of section 2 illustraies the
estimation procedure with associated calculations needed to arrive at the right results. Efficiency
expressions are based on the asymptotic approximations of the variances and generalized variance
in the finite sample case (Sarhan and Greenberg [7]). Therefore, if the sample size is reasonably large
to justify asymptotic normality of the quantiles, the asymptotic efficiencies will also be justified. Finally,
the coefficients in the estimation for the scale-parameter case remain the same in the two-parameter
case, as well, due to the linear transformations in (3.1) and the nature of the expressions for the co-
efficients (2.6a 1o 2.6d). In this regard, the reader is referred to the papers [4, 5] of the primary author,
where all details have been given.
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