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treatment of these topics, has heen presented in an earliier report. Thercin it was
., shown that the surface characteristics of the scattever can be reluted to the en~
: -semble average power spectral density of the scattered radiation, Huwever, since
: -the measurement of the power spectral density is di1fficult ond a more practical ob-
; servable ls the ensemble average szeattered intensit) dgistribution, an analytieal
expression for the latter is developed from hasic principles and related to some
Juverage properties .of the scaticering surface,

By assuming a Gaussian distribution for the surface clevation, the average intensity]
distribution is related to the second-orider statisties of the surface, It is shown |
fthat this relacionship is similar toc that obtained in the case of high-frequency
microwave backscatter, The mathematical parameters related to the covariance fune- -
tion of the surface are shown to lead to the meun square clevation, slope, and
jcurvature of the surfsace,

: In order to apply these theoretical results to the ocean surface, a wind-dependent
' two-dimensional power spectral density for the ocean surface elevation (based on a
large amount of empirical data) is assumed., The surface covariance function i1s de~ .
termined and it is shown that the average scattered intensity distribution is de-
termined solely by the slope statistics of the surface for the case of optical
il2umination, An analytical expressicn for the scattered internsity distribution is
derived for a general geometry, 7The detailed distribution is cialeulated for the
backscatter geomctry and its behavior 1s exazined as a function of wind speed, It
is found that as the wind incrcases, the backscattered intensity is reduced and
| spread over luarger angles, It is inforred that the sdownwind siopes increase only
slightly faster than the crosswind slopes,

A reasonuble parametriscd form is asaumed for the spectral shape of a perturbation,
A pargmetric study was porformed and it was found that the effect of the perturba-
tion on the intensy:  diastribution 8 most pronounced in the cepillsry regilon, The
. energy content of the perturbation required to see significant changes is on the
same order as the energy content of the natural spectrum in the capiliary region
and insignificant compared to the total cnerygy of the waves. The viscous cutoff
does not have much cflcet on the intensity., The angular shipe and the orientotion
of the perturbation affect mainly tho symmetry of the ‘ntensity nattern with rocpeoct
to the wind dfrection, Sore mathematical details regarding the surface covariance
function are presented in the two appendices,
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SUMMARY

There hag been considerable controversy in the optical literature
concerning the theory of “speckle patterns” resulting from the diffuse
scattering of coherent iight and the information obout the scatterer
obtainabile from the speckle pattern, 7The resolution and reconciltiation
of these theoretical differences and the application of the theory to

scattering from the ocean surface were the objectives of this study.

A brief historicdl review of some previous theorsetical work and a
description of the apparent discrepancies which have now been reconciled
are given (Section IX), A more complete treatment of these topics, has
been presented in an earlier report. Therein it was shown that the sur-
face characteristics of the scatterer can be related to the ensemble
average power spectral density of the scattered radiation. However,
since the measurement of the power spectral density is difficult and a
more practical observabie is the ensemble average scattered intensity
distribution, an analytical expression for the latter is devecloped from
basic principles and related to some average properties of the scattering

surface (Section II-C).

By assuming a Gaussian distribution for the surface elevation, the
aversge intensity distribution is related to the second~order statistiics
of the surface, It is shown that this relationship is sgimilaxr to that
ohtained in the -»cc of high-frequency microwave béckscatter {Section
11-0)., The mathematical parameters related to the covariance function
of the surface are shown to lead to the mean square clevation, slope,

and curvature of the surface (Section II-E),
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In order to apply thesc theoretical results to the ocean surface,
a wind~dependent two-dimensional power spectral density for the ocean
surface clevation (based on a iavje amount of ompirical data) is assumed
{Section I1I~B). The surface covasiance function is determined and it is
shown that the average scattered inlensity distribution ig determined
solely by the slope statistics of the surface for the case of optical
illumination (Secction II1-C). An onalytical expression for the scattered
intensity distribution is dérived for a general geomeétry. The detailed
distribution is calculated for the backscatter geometry and its behavior
is examined as a function of wind speed (Section I1¥~D}, It is found
that as the wind increases, the backscattered intensity ig reduced and
spread over larger angles, It is inferred that the downwind slospes in-

crease only slightly faster than the crosswind slopes,

A recasonable paramctrized form is assumed for the spegiral shape of
a perturbation (Section III-E). A parametric stwly wns performed and it
was found that the effect of the perturbation on the intensity distribution
is most pronounced in the capillary region, The cnergy content of the
periurbation required to sce significant changes is on the same order as
the energy content of the natural spectrum in the capillary region and
insignificant compared to the total energy of the waves, The viscous
cutof{f does not have much effect on the intensity, The angular shape
and the orientation of the perturbation affect mainly the symmetry of
the intensity pattern with respect to the wind direction (Section 11t-F),

Some mathematical details regarding the surface covariance function arc

presented in the two appendices,
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Lol Sekg:

i

This technical report covers the activity during the period 23 April
1973 through 31 August 1973, The principal investigator, Dr. Kamala S,
Krishnan, was responsible for the rescarch activity under SRI Project
ISE 2618, The technical direction of the program wae provided by
Dr. Richard F. Hoglund, Chief, Advanced Concepts Division, Strategic
Technology Office, Defense Advanced Research Projects Agency, Arlington,

Virgina,

The research program discussed in this report was supported by
Detsense Advanced Research Projects Agency of the Department of Defense
and wss monitored by the Office of Naval Resczrch under Contract Ne,

NOOO14-73-C~0445,

The views and conclusicns contained in this document are those of
the authors and should not be interpreted as necessarily reflecting the
ofticial policles, cither exprrssed or implied, of the Defense Advanced

fesearch Projects Agency or the U,8, Government,

Reproduction of this report in whole or in part is permitted for any

purpose of the U,S. Government,
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I INTRODUCTION

A, Motivation

Scalar diffraction theory has bheen applied with considerable quanti-
tative success to numerous microwave and optical problems for which
spatial coherence 1s preserved, However, confidence in theoretical pre-
dictions is not high for problems involving scattering from rough sur-

faces, Often, analytical solutions to scattering problems can be obtained

only by invoking simplifying approximations that are known to he rather
crude, Moreover, experimental testing of scattering theory is difficult
because of the dual problem of not only obtaining a surface for which
the theoretical approximations are valid but also specifying the statis-
tical characteristics of the surface, In the case of optical scattering
from a rather calm sea, the usual gentle slope and gentle curvature
assumptions seem to be reasonably well justified and one weuld expect
guantitative predictions to be moderately accurate provided the Fresnel
and Fraunhofer conditions--as well as the small angle conditions--are
met. Although experimental testing of these predictions cannet yet be
accomplishedvbccause there ie nc technique now available to measure the
statistical characteristics of the sea with the accuracy and resoiution
that is required, such techniques exist in principle, and when available
in hardware form could provide the means to perform this important test.
The recognition of these facts, and the desire to develop praciical
methods of utilizing the powerful coherent light sources that are now
available for measuring ocean wave statistics, have motivated this

research,

R
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B. Outline of the Report

There has been cousiderable controversy in the optical literature
concerning the theory of "speckle patterns” from dif{fusely weattered
coherent light, A bricel historical review of some previous theoretical
work is included here as well as a description of some of the apparent
discrepancies which now have been reconciled, This is done in order to

demonstrate the foundation of the theoretical approach taken here,

Starting with the Huygens-iresnel principle, a prineciple familiar
to optical physicists, we develop an analyticnl expression for the ob-
served ensemble average scattered intensity, and relate it to statistical
characteristices o. the scattering surface, ‘This result is compared with
the microwave backscatier cross section that is derived {rom the Helmholtz
integral formalism and leads to a new physical interpretation of the back-
scatter cross section, We place a physieal interpretation on the im-

portant mathematical parameters that determine the scattered inteasity,

Finally, beecause sufficlently accurate experimenial data descpribing
the stutistical characteristies ol the ocean are aot available, we use a
recently rcportcd’* theoretical dezeription of the vcean~-wave-height
power spectral density to make numericenl enleuilations of the scattered
intensity distribution as a function of wind speed and direction, In
addition, we calculate the scattered intensity distribution when cortain
assumed perturbations having arbitrary angular oricntation with respect

to the wind direction arce superimposed,

*
References are listed at the end of this report,
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C. Definition of the Problem

The problem that is addressed in this report can be outlined with
the help of Figure 1. A plane monochromatic wave, Ei(u,v,z), is incldent
on the surface of the ocean at the origin of the coordinate system,
(u,v,z). The mean planc of the ocean surface is taken to he the (u,v)
planc, and the angles A and B define the plane of incidence and angle of
incidence respectively, The observation plane, the (x,y) plane, is

parallel to the {u,v) planc and is located a distance h above it, The

ohservation point, Qo’ is defined either by the coordinates (x,y,h), or

s

INCIDENT > = —8y
PLANE 7 e -~
WAVE ran LR NG

x
(xo. h
o v
" A
)
7 s
u PLANE OF /‘\
INCIDENCE Unit Vectors SA-2618-1

FIGURE 1 COORDINATE SYSTEMS AND GEOMETRY OF
SCATTEFRING PROSLEM
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l"
3
e
3 : the vector X and angles ¢ and 8. The incident plane wave has the
3 H
% . specific form
% Ei(u,v,z) = g(u,v,z)Eo exp(j 51 . 5) (L..1)
1
; : wvhere g(u,v,z) is an amplitude aperture function limiting the extent of
; the plane wave and
-
- . 51 = ~kisin B cos A1 + sin B sin A § + cos B k] (1.2)
7 and
r=ui+viI+azk (1,3)

with (i,ﬁ,ﬁ) being unit vectors along the (u,v,z) directionsg respectively.

The arbitrary aperture function g(u,v,0) defines the finite portion
of the ocean that is illuminated and permits infinite 1imits to be used
on integrals over the {u,v) plane. For example, the power, Pi, incident

on the (u,v) plane is given by

2
o2
1 2 o 2
P, = EE; |E1(u,v,o)‘ dudv = EE; [glu,v,0)] " dudv  (1.4)

had~ ]
where Zo is the impedance of free sppce (120 nw ohms). In the specific
case for which the incident beam has a Gaussian cross section, the inte~
2 2
gral Eq, (1,4) has the value nq , where Eo is the peak intensity and q

is the e-l intensity radius,

Figure 2 will aid in further defining the geometry of the scattering
problem, he point Qs is located on the surface of the ocean within the
aperture function gl{u,v,0) and has coordinates [u,v.w{u,v%,. where w(u. v}
is the elevation of the water surface above the mean (u,v) plane, Alter-
natively, the point Qs may he defined by the vector Ss and the angles a

and b,
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11 GENERAL THEORY

A, Historical Background and Review

After the operation of the first CW ile-Ne laser, considerable
interest arose in the speckled appearance of typical diffuse surfaces

iiluminated by coherent light, It was soon recognized that the origin

of these granular patterns lay in the optical roughness of the surfaces

from which the light was scattered,® 3

Thne first detailed statistical treatment of this phenomenon, now
known as laser speckle, was that of Goodman.% Treating the scattering
or reflecting surface as a statistical enscmble of many point-scatterers
with independent and uniformly distributed phases on (0, 27), Goocdman
showed; among other results, that the power spectral density {(or Wiener
spectrum) of the intensity pattern of reflected light was, up to scaling
factors, identical with the autocorrelation function of brightness (i.e,,

intensity) distributlon across the scattering spot.

Goldfischer® independently derived the same result using essentially
the same model as Goodman.? Again the scatterers were assumed to be
infinitesimal in size and independent, and were taken to have phases
urlformly diseributed on (0,2n), This assumption is mathematically
equivaleont to assuming that the spatial coherence of the fields hehaves
similarly to a f§-function; that is, the spatial coherence has value unity

for zero displacement and value zero for finite displaces ant,

In an extension of his previous results, Goodman® later discussged
the properties of speckle patterns as they affect the performance of

optical radars, In an appendix te this paper, he presented a penersiized

Praceding page hlank
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theory that allowed a finite correlation area to exist v the fields at
the secattering surface. ‘Thus, the assumption of infinitesimal scattcrers
was removed, but, significantly, the phase of the scattered light ayr any
: point on the objeet was still assumed o be uniformly distributed on

(0,2qa), Hence, the theory applies only for suxfaces that are quite rough

on the scale of the wavelength of the illumiuation,

Following this early werk that deait with the intensity patterns

existing in the scattered light, other investigators--notably Lowenthal

and Arsenault” -~have studied the propertics ol simiiar patterns sbserived

in the images of cohereatly illuminated diffuse objects, These treat-
ments have assumed that the complex ficlds in the image plane obey cir-
cular Gaussian statistics; i,e,, the real and imaginavy parts of the

ficld are zero mean, uncorrelated Gaussian random varianles, with identical
variances, Such an assumption is valid if the corrclation area of the

diffusely transmitted or reflected wavefront is small comparcd with the

arca of the pointe-spread function of the imaging system and if the phase
of the light at cach point on the object is approximately uniformiy dis-
tributed on (0,27), Since the current discussion will be limited to
speckle patterns observed by direct measurement of intensity in the scat-
tered light, without any intervening optics, the problem studied by

Lowenthal and Arscinault will not he addressed.

The next imporfant picce of work dealing with directly observed

speckle patterns is that of Crane,?

He derives results that appear in
various respects to conflict with carlier results of Goodman®'” and
Goldfischer, Crane's comments are directed at the paper by Guldfischer,
bul his chiof criticism is as follows: Goldfischer assumes that the
ficld preduced by a small subsectlion of a diffusc surface is proportional

tn the gaunpo ront of the areg of that cubenction; but far cahorint

light, the ficld must be diveetly proportional to the area because the




field contributions add on an amplitude basis, Thus, Crane concludes
that CGoldfischer used a physically incorrect model and that this is the
reason for the apparent differencesg between the results of the two
theories, 1t should be mentioned that Crane's theory has the merit of
allowing for a finite cerrelation area of the diffuse surface, Of the

work preceding Crane's, only that of Goodman® allowed for this possibility.

Crane's criticism of Goldfischer's work was answered in a letter by
Arsenault,® Arsenault asserts that the differences between Goldfischer's
and Crane's results arise because the former theory derives statistical
average results while the latter is entirely a deterministic theory,
Arsenault addresses his comments only te the early part of Crane's paper
and in particular, to that portiun through Crane's Eq. (18), In a later
portion of his paper leading to his Eqs, (38) and (39), Crane has derived
expressions for the statistical average powor spectral density, the same
quantity derived by Goldfischer., ‘The important differences between these
two expressions were not reconciled by Arsenauli's comments. However,
in 1973 Goodman*® showed that tac discrepancies are only apparent and not
real, and that they have resulted from improper interpretation of results
rather than improper development of the theory, Specifically, Crane's
result as expressed by his Fq, (39) can only be applied to relatively
smooth surfaces, that is, surfaces for which the rms surface roughness
is much less than one wavelength of the scattered radiation, On the
oth.: hand, the results of Goodman's and Goldfischer's analysis can only
be applied te truly rough surfaces, that is, to surfaces for which the
rms surface roughness is much greater than one wavelength of the scattercd
radiation, Moreover, Goodman®? -~starting with Crane's Eq, (38)~-~derived
an approximate expression for the statistical average power spectral
gensiiy, valid for iruly rough Suriices, that iz

with all previous theorctical work. Thus, the apparani discrepancies
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have been reconciled and all theories are mutually consistent when
properly applied to their regions of validity,
B. Approximations and Assumptions
The mathematical statement of the Huygens~Fresnel principle is
‘ L Es(u,v,w) exp[jk{go - Es‘ °°5[B’(£0 - Es)]dss
E(x.y) = ' " . (2.1
JN ]r -r
S ¢ -s

Implicit in the use of this principle are zpproximations and assumptions
similar to those used ir the Helmholtz integral formalism--the usual
starting point for microwave scattering calculations. A more complete
discussion of these approximations and assumptions will be found in

Beckmann and Spizzichino,*-

As in the case of all scalar theories, the results obtained here
are valid only for small angles of incidence and small bistatic angles,
We make the approximation that the field Es(u,v,w) reflected from the
surface can be represented by the product H(u,v) Ei(u,v,w), where Ti(u,v)
is the surface reflectance. This is a reaschable approximation since
the minimum water wavelength Amin is known to be much larger than the
optical wavelength +, The amplitude reflectance, T(u,v), is taken to
be ~|{T(B)|, where W(B) is the Fresnel amplitude reflectance at the inci-
dence angle B; the surface elemental area, dSs, is taken to be the same
as the elemental area dudv in the (u,v) plane, The obliquity factor is
taken to be cos 5, The preceding threc approximations are reasonable
for a rath enlm sea with gentie slopes, Finally, the factor iso - 35\
is approximated by vo in the denominator of Eq, (2,1), and also by the

first few terms of its binomial expansion

2 2
) Xu ¢ yv u kv
r -r}-r - | =
-0 -8 o r 2r
o 0

- w cos j3 (2.2)
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in the exponent of Eq, (2,1). X this regard it should be noted that
there are different ways of grouping the terms in the binomial expansion

that result in slightly different approximations, In one case, the small

Caee 6

angle is approximated by its tangent while in the other case it is approxi-

é mated by its sine. The Huygens-Fresnel principle, in its approximate form,
f is stuted here as Eq. (2,3).
1 ikr o
s (o]
: os B e .
: E(x,y) = — TS J Es(u,v,w) exp{3kly(u,v) - w cos 3]} dudv  (2.3)
] X4
with
u2 i v Xu  yv
1 " A ’
glu,v) = on - - . (2.4)
o o)

The basic statistical assumption is made here that the ocean wave
height statistics are wide-sense stationary, at least over the patch of
ocean illuminated, and the wave heights are Gaussian distributed,’>?+18
The effects assocciated with sampling only a finite patich of the ocean
both in the wave height statistics und the optical field statistics are
accounted for, The statistics of the scattered fields at the cbservation
point are taken to be circular complex Gaussian, Such statistics arise
only when the scattercd field components generate a complex random walk,
with approximate uniform phase associated with the various field contribu~
tions, This amounts to assuming that the rms surface roughness is com~
parable with or greater than the wavelength of the scattered radiation,
an assumption that is well justified even for a calm ocean, [t does mean,
however, that the present results cannot be applied to perfectly smooth

surfaces, such as polished mirrors,

11
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c. Ensemble Average Scattercd Iatensity

In this section an evpression is derived for the ensemble average
scattered intensity distribution, (I(x,y)), as a function of the nor-
malized ensemble average spatial coherence function of the fields in the
(u,v) plane. Subsequently it is shown how the spatial coherence ¢an be
expressed in terms ol physically observable ensemble average surface

characteristics.,

An explicit expression for the field Eq(u,v,w) can be written with

the lielp of Eqs, (1.1), (1.2), and (1.3).

Es(u,v,w) =~ E(u,v) exp{-jk[?o(u,v) 1 w cos B]} s (2.5)
with
1
Yy (u,v) =usinBcos A + v sin B sin A = < (ux Fovy ) (2.6)
o R ° o
and
E(u,v) & -|1(B) |g(u,v,0) E . (2.7)

Equation (2,3) now may be restated as

Jkr o

2 -
cos B ¢

E(x,y) = E(u,v)

exp}jk[?(u,v) - ¢o(u,v) - w{cos B t+ cos ai]} dudv . (2.8)

As an aid to interpreting these results, note that the Huygens-

Fresnel principle may be stated in the equivalent form®

12
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E(x,y) =25 B¢ I g (u,v) expliky (u,v)] dudv (2.9)
Jah P o

where Ep(u,v) is the mathematically equivaleut field in the (u,v) plane

as opposed to the field on the scattering surface. The terminology
"mathematically equivalent' field is used here to emphasize the fact that
Ep(u,v) is not the physical field in the (u,v) plane but, rather, it is

equivalent to a physical field which, if present in the (u,v) plane,

2L AN T L

would produce the field E(x,y). A comparison of Eq. (2.3) ' th Eq, (2.8)
yields the result

Ep(u,v) = E(u,v) exp

~jk['j;o(tl,v) - w(cos B + cos 5)}} (2.10)

| .

L s L R L R e b R
TR DR

The ensemble average scattered intenslﬁy, {I(x,y)), is, by definition

(e, 1Y & (B, I EX(x,y)) (2.11)

where the carets are used to indicate that an ensemble average is to be

performed, Equation (2,9) may be used in Eq, (2,11) to yield

4 [
cos 1 e
{Hx,y)) = —™—= j <ﬁ (u v, }E¥u_,v >
MR 2 1771 2’72
om” JJJ P P

1

o) = (o] ons :
X cxp’jkl‘,; ul"l ¥ uz,vzj ’ duluvlduzdx{2 . (2,12}
The quantity in carets in the integrand will be recognized as the mutual

intensity J(ul,vl,uz,vz) of the equivalent fields in the {u,v) plane, and
from Eq. (2,10} {35 given by

(é(‘“l’vl’“z"'zb = E(“l’vl)ﬁ*(“z’vz) °xp‘""k[""o("1’v1} B ""o("z"’z”;

<exp{3k(w1 - wz)(cos B + cos 8)]) . (2,13)

13
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Using the new variables

= Ay U = u au
h =" 2 "% "2 ¢
(2,14)
v1 =V t > s Vo=Vt s
Eq. (2.13) hecomes
<J(u0,vo;3u,ﬁv)> = JO(UO,VO;AU,AV>(V(Au,AV)) (2,15)
with
. A . é!) * Jbduw o Av o s
Jo(uo,vo,Au,Av) s E(u0 e AL E u A > (2,186)
and
(Y(Au,Av)) é expi-jk(Au sin B cos A t Av sin B sin A)}
X <cxp jk(wl - wz)(cos B ¢+ cos 5)> . (2,17
Equation (2,12) now takes the form
=
cos4 8
(I{x,¥)) = ————?§ Jo(uo,vo;Au,Av)(v(Au,Av))
(nh)
0
quu voAv xAu Av
X CXp Jk( - - ——- 1——) du dv djudpv . (2,18)
r r r r 0 o
o ) o o

It will he domanstrated subsequently (see Appendix B) that the func-
tion {y{Au,Av}) has a nonnegligible valuc only for displacements (Au,fLv)

than a few wavelengths of the scattered rad! i. Using this

14




knowledge and the approximation

expld gi (quu 4 voAv)] > 1 , (2.19)
o

Eq. (2.18) now can be written as

4 ) Au, Av
/ cos B .
(1(x,y)) > > I {u,v )dudv | - 3 {{y(au,av) )}  (2.20)
o\l o o o o
(A\h)
i) X
Ar ’ar
o o
where
I (u ,v )Q J (u ,v ;0.0) (2,21)
o\ o’ o o\ o’ o
c,d
and the notation 3. is used to indicate a two-dimensional Fourier trans-
a,b

form with respect to spatial frequencies (a,b) and spatial coordinatcs

(c,d).

The approximation indicated by Eq., (2,13) is reasonable as long as
the angle subtended by the aperture function «t the observation point is

vsaller then about une degree,

‘fThe integral in square brackets in Eg, {2,20; may be evaluated with

the help of Egqs, (2.%21), (2.18), (2.7), and (1.4),
o
2 .
J I (u Y ) du dv_= 22 |T(B){P =22 P (2.27)
ot o’ o o o o 1 or

where Pr is used to indicate the reflected power. Finally, Eq, (2,20)
may be rewritten as

au, Av

(I‘(x,y)):z—"—-g(2zopr) 3 {{v(au,av) Y] . (2,23}
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There is an interesting interpretation of Eq. (2,23) that is con-

sistent with the understanding of the propagation of spatial coherence,

For the case of an infinite aperture, Eq, (2,15) reduces to
2 2
<J<uo,vo:£;u,1_\v)>m = | B)y| E_Cy(au,av)) ‘

in this form, (y{Au,Av)) will be recognized as the space invariant,
normalized, ensemble average spatial coherence function, Thus, Eq,
(2,23) indicates that it is the spatial coherence that primarily deter-
mines the distribution of scattered intensity, It is therefore important
to be able to relate the spatial coherence Lo surface characteristics in

a manner that will enable numerical calculations te be made.

1t is possible to derive expressions for other ensemble average oh-
servables, such as spatial coherence and power spectral density.14 The
ensemble average spatial cohkerence in the observation piane can be shown
to be the Fourier transform of the aperture function on the scattering
surface and is therefore not related to surface characteristics, More-
over, while the ensemble average power spectral density of the scattered
radiation can be related to surface characteristics, the experimental
technique of measring this quantity would be intensity interferometry
and thercfore, in a practical sense, it would be more difficult to measure
than the ensemble average scattered intensity distribution, Finally, it
should be mentioned that since the intensity averaged over many speckles”
is cquivalent to the intensity for tomporally incoherent light, the ex-
pressions derived here are valid for incoherent quasi-monochromatic light

sources, such as filtered sunlight,

16
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D. Spatial Coherence as a Function of Surface Characteristics

The probability distribution function plw(u,v)] for the surface

heights w(u,v) must be known in order to perform ensemble averages, An

12

assumption that is in reasonable agreement with experimental evidence
is that the surface height is a stationary zero~-mean Gaussian random

variable with distribation

SRR BT e YR

-1 [w(u, )12
plw(u,v)] = (o /Z7) = exp{- LLALIAA TN (2.24)

9
20°

b e

pod

where

RSl

2

02 Q [w(u,v)]zp[w(u,v)] dw(u,v) = <[w(u,v)]:2> . (2.25)

~ -0

The covariance function R(Au,Av) and the normalized covariance func~

tion p(Au,Av) for homeogencous (stationary) processes are defined by

R(Au, ov) a (w(u,v)w(u + fu,v + AV)) (2,26)
and
oCau,av) 4 55553931 : (2,27)

bt

The joint probability distribution function p[wl,wz] is given by
2
1

2
— 1 W~ 2w wW_ W
2 2 12 2
p[w oW ] = [Zno '\/1 - p-] exp{- (2.28)
L1 2 2 2
20 (1 -0 )

where, for convenience, "he following notation has been adoptod:

" 8 wiu,v)  w, & wlu v oau,votoav) (2.29)

2
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] The quantity in ensemblc brackets in Eq, (2,17) can be interpreted
i as the characteristic function for the distribution p{wl,wo} and thus

: 2

5 Egq., (2,17) can be written

4

g

E (y(Au,av))Y = expl-jk{au sin B cos A + Av sin B sin A)]

X cxp:~k2(cos B 1 cos B)z[R(0,0) - R(Au,Av)]

k
exp[—j R (ﬁuxo & Avyo)]

X exp%-kz(cos B + cos S)ZIR(O,O) - R(Au,Av)]i . 2.30)

Throush Eq. {2.30) the spatizl coherence function is related to the
surface height covariance function which, with the known (or assumed)
probability distribution, completely characterizes the surface, Finally,

using Eq. (2,30) in Eq. (2.23), we get

2

(1(x,y)) = 228 (22 p )

(o)’
O (e

-kz(cos B+cos B)Z[R(O,O)-R(AU,AV)]

) .

1/« xo 1y yo

...._..}.—.- .-.......!.—-

Nr  R’Alr R (2.31)
o c

It is of some interest to compare this result with the high fre~
o
quency microwave backscatter cross section ¢ ., 1In our notation the bank-

scattered (monostatic) intensity, I, is given by Frost and Jackson:'®

22 P o
I = °2 o (2.32)

dnyp
o

[ s

18
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where

ik kS A e

1 = |19 -%) cos(2kAu sin 8)

Eult by d oM

X exp‘-dk B[R(O 0) -~ R(Au, Av)]‘ daudpv . (2.33)

T

&y

When the backscatter conditions, B = 8, A =0, x = TS sin 8, y = 0, are

R il

T

used in Eq. (2,23), the result is

cosZ e(zz P ) fu,av

<I(ro sin s,o)) = ;’r B: E(y(Au,av)d) . (2.34)
("” ) sin 8
,\‘ 3

We may construct a backscatter cross section o’ using Eq. (2.32) for

the defirition and Eq, {(2.34) for the backscattered intensity

3
;%.
i
!
S
)
3
E
< i

‘d,-v
I
. %

:
i

1
oy

35 §,

R Au, Av

2 2{4n ;
o’ = cos” 3|N(BII (——2- 3 [{y(au,av) )] . (2.35)

! ~ sin B

{ ~ P

i

§ Since the covariance function is even in Au (for Av = 0), the Fourier

- cosine transform can be used in place of the Fourier transform, tc¢ oh-

tain from Eq., (2.35)

. [-+]

{ o = cos s|ﬂ(a)| .[ cos(2kAu sin B)

¢ =0

X expg-4x cos BIR(0,0) -~ R(Au Av)]} dAudAy (2.36)

4 2

f which is identical with Eq. (2,33) except for a factor of cogs 8, This

§ factor, which is approximately unity for small angles, arises from the

S

b3
& 1’;
o
'.: f
n
i ¢
|
.

obliquity factor in the Huygens-Fresnel principle, and appears to be the

19
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only difference bhetween our results and the results of more rigorous

3 scalar diffraction theory.xg

k. The Surface Covariance Function

e e { alizati randon proccess representing
Let w(u,v) be a realization of the rand esenting the

clevation of the ocean surface. Evidently wi{u,v) is a real zero-mean

random variable. The surface covariance f{unction R(Au,Av) of the random

B SRS R R At 1 g

surface elevation is defined by
R(u,v,Au,Av) b (wlu,vIwlu ¢+ Au,v + Av)) . (2.37)

When the process is assumed to be homogencous (stationary) in the wide
sense, R depends only on the displacements (Au,pv) and not on the co-

ordinates (u,v); i.e,:
{w(u,v)w(u + Su,v + av)h = R(Au,Av) . (2,38)
Further, R must be symmetric about zero displacement; i.ce,:
R{Lu,sv) = R(=3u,~_") . (2,39)
Or, in polar coordinates
R{sr,8) = R(ar,9 ' ) . (2,40)
Since the measurement of the surface clevation is feasible over only a

finite area of the occun, it implies the presence of an aperturce gq(l,v),

25 that tho mensunrad aun=faep olevation is ulven by

pied Re

w {u,v) = w(u,v)gn(u,v) (2,41)
K
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where ga(0,0) =1, ga(w,m) = 0, and [lim(a - m)gq(u,v)] = 1, so that
wg(u,v) = w(u,v) as a — =,

If wg(zu,zv) is the Fourier transform of
wg(u,v),

(-]
Wg(lu,lv) =.[ wg(u,V) exp{'J(uzu + vzv)] dudv . (2,.42)

The ensemble average power spectral density of the functions w (u,v) is
£
defined as

, 2
s*(«% Iy ) & m<l“ﬂ(£u’zv)‘ >

.
I od

J lga(u,v)l2 dudv

(2,43)

If R is

continuous, then by the use of the Wiencr-Khintchine theorem, it
follows that

[<<]
1
R(Au,pv) = > S*(z 5L ) exp[J(Auz + Ave )] dg ds (2.44)
u’ v u v u v
(2m) J
and
s* = ( ) exp| (2.45)
(zu’2v> = R{Au, Av ehpluJ(Auzu i Av}v)] daudav .
where
s*(,e. 52 ) = lim s*(z iy ) (2.46)
u v g\ u %y
a~w

and s"(zu,zv) is known os the power spectral density of the ranaom process
w(u,v)., It may also be shown that

_ E, R &
3 1(5*(2, 8 )] = R{AU,4V) .
L eVuy

2 b ” 0 (2'47)
ff Iga(u,v)] dudv  ©
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If the covariance of the apertured functions w (u,v) is defined as
&

A ’ -f\g ; g . .
Rg(u,v,,u,A\) t <“g(u,v)ug(u Lu,v i Av)> s (2,48)
then
X
P .
Rg(u,v,&u,Av) dudv
— Yo
R (Au.Av) = . (2,49)
5 ~
2
‘gq(u,v)i dudv
o

These equatlions express the result that the covariance function
R(Au,Av) and the power spectral density s*(zu,zv) of the random process
w(u,v) form a Fouricr transform pair. The covariance function Rg is not
the Fourier transform of s:(zu,zv). However, the space average of Rg
forms a Fourier transform pair with s:(zu,zv). It is to be noted that
Rg is not homogencous and that [lim(a - m)Rgl = R(Au,Av). Figure 3 shows
the geometrical relationship between the several domains between which

the transforms are defined.

Frequently, the surface covariance functien cannot be obtained from
the power spectral density since the Fourier transformation indicated in
Eq. (2.44) is difficult to perform, FYor this rcason, as well as to ob-
tain a more direct physical insight into the various operations, we de-

velop R in a Tayior series about the origin,

X n
I 1‘ —a—-xa 2 o 0
i -3 w2 s wo] e

=0 p=q=0
Because of the symmetry wmplied by Eq. (2,39), it can be shown that in
kq. (2,50). the terms lor which n s odd are identicaliy suru,  In viba

words, all odd order partial derivatives ol R are zero at the origin,
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R(p,q) = 0 for n odd . (2,51)

Thus Eq. (2,50) becomes

® 1 N 5 2n l
¢ C
R = — —_— — . 2,52
(Au, Av) E ot [Au 5p Av aq] R(p,q)} ( )
n= p=q=0
Using vector notation, we may write Eq. (2,52) as
[e o]
1 2n
R(Ar) = E — [(Ar . v ) R(p)] (2,53)
— Zn. ————— p -
0 p=0
where
Ar = 3 Au + 3 Av (2,54)
and
+ 9 o
vo=1iT=+ 3= (2.55)
p op 3 ol

The investigation of the region of convergence of the above series re-
quires much morc information about the partial derivatives and has not
been pursued in detail, However, it can be shown that the maximum value
of R occurs at the origin, Further, with the help of the Taylor formula

with remainder, we may write

m
R(Ar) = ZZ’;— [{“ﬁ . vp)z" n(g)]
oo T p=0
1 2m+2 i
" em r2) [(-A-E * ) ’“2)] (2.56)

where Bo =t Ar and 0 «~ t = 1,
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Writing Eq, (2.44) in vector notation, and using the definition

S(4) = s"(&)/(zn)2 ) (2.57)

we get

R(Ar) = S(4) exp(j ar « £) dg

plane

Substituting in the right hand side of Eq., (2,53), we get

!
m

|
2n
j 2
R(AD) = z '(—;-31—-— s(o)ar - 0 ag
n=0 plane
2mi-2
(j) L 2m+ 2
o e - ; . T .59
Com + 21 S(L(ar - L) exp(g P &) dg, (2,59)
plane

I1f we use polar coordinates to describe both R(Ar,8) and S({£,¢), we have

Ar ¢+ 4 = Ar 4 cos(g - ¢)

and
m 0 S

R(AT, ) =Z (-1)"(Ar “/2n:) S(2,0)[¢ cos(o - 0)1°" 4 dide
n=0 o Y-

- 2m2 2mi 2
+ (-l)m*l[Ar ™/ (om 2)!] S(L,¢)L4 cos(p ~ m)sz1

X exp(J po 4 cos 9) 4 dide (2,60)

e
[41]
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. -»" 2n (-1)mél 2mi-2
R(Ar,8) QZ ot Mz“(O)Ar i m MZm+2(p)Ar (2,61a)
n=0
where
PR
M, (0) = S(4,0) (4 cos(g - 931" 4 dede . (2.61b)
o *en

It is thus seen that the various terms in the expansion of Eq, (2,56)

correspond to various moments of the power spectral density. These
moments may also be related to the ensemble average propertics of the
random process w(u,v). The first term of the expansion, or the zeroth
moment, is
o mn
M = [ 5(L,¢) 4 dide s (2,62)
o ‘Ln

using Egs., (2.61a) and 60), From Eq. (2,38) it is seen that
2
R(0,0) = {Iw(u,v))°) . (2.63)

Thus the zeroth moment gives the mean square clevation,

The second moment is given by

w 0
[ 3 2

Mz = j S(L,9) £ cos (g ~ ¢) dide , (2.64)
0 Serr
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i From Eq, (2.38) it can be shown that,

N 2 2 2

- [(Ar Y ) R(p)] = ~Ar <[(Arfﬁr) v w] > (2.66)
: P -— p—() ou—— u

or

12
mz = <[([_5£/5r . ‘}“w(u,v)J > . (2.67)

[(Ar/Ar) Vuwl is the component of the gradient in the direction of the

unit vector (Q_x;/é,r). Stnee

¢ dw ’
(QI;’[,r) . iuw - o2 cOos § (5-—) sin a}

o 5 8 ) (2.68)

512 may also bhe expressed as

AV

}\!2 = [((%)2> cos2 e r 2<(§%)(%)> sin g cos g @ ((éﬁ'-)z) sin2 9] . (2.69)

Thus the second moment, M, is scen to be equal to the mean squarc of the

slope component in the dircction 3,

The fourth moment, M4, may be similarly related to the partial de-

rivatives of wiu,v), which are related to the curvature of the surface.
Thus,

4
M, = l (Lr/Lr) ¢ f?] R(p)'
4 = jller |
p=0
[ 2 :
- aey - 7 P owol)
<(I—(£ Lr) u] \\(u,\)‘
2
2 .2 2
f/r__ﬁmﬁ- 2 in t Lo s 2% 2w .2 ] (o 70y
...\l_ 2 - & DLV 4 () kv auav 2 2138 _,J / \Nwe t
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II1 CALCULATION OF THE SCATTERED INTENSITY OISTRIBUTION

A, General

The theoretical relationships developed in the foregoing are applied
in this chapter to the scattering of optical radiation from the surface
of the ocean. A specific power spectral density is assumed for the sur-
face elevation of the naturai sea surface, and an expression is obtained
for the scattered intensity. Subsequently, a specific form is assumed
for the power spectral density of a perturbation on the ocean surface,

An expression is obtained for the intensity distribution duce to the per-
turbed ocean surface, Numerical calculations are made to evaluate the

effects of the various parameters of the perturbation,

B, The Power Spectrum of Occan Surface Elevation

In a recent report' a large amount of experimental data were digested
to develop an analytic representation of the spectrum of a wind roughened
sea, This spectrum, which is a function of wind velocity, has heen used
in the present study as the power spectral density of the surface cleva-

tion of ocean waves,

For a friction velocity u, greater than a minimum value u, = 12 cm's,
m

the spectrum has been defined by the following equations,

*
s .
__S_j.‘._c_ = S(I,,C)

(2~)

. . 0< 2L -
S(RF(L,0)  for _ 77T (3.1)

]
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1 4 © 2,2 )
FOL,¢) = (41 37) cos cll - cxp[mg /207y ]‘

l? —
—
—
=

p—

p——
c

*

S —
(27
Q
w
e

Y 2 4
0] exp[—gz’2£ u ] (3.2)

and

=

. q 2, 24
S1 = (a/ZZ ) exp|-gg 74 U ] 0 AR ?1 (3,3a)
1/2 772
s = arf2t %7 TR 3,31
0 1 ( 2 { ) 1?1 4 1?,2 ( y)
Ao P =D
g ={(85 = aD (24 2 ' 3.3¢
(1) =8, = al ( e ) 8,0t (3.3¢)
4 ‘;
S = ui)/(izf, ) R ) (3.3d)
4 3 v
6 10
S_ = ab2 /<22 ) £ £~ © (3.3¢)
19} .,

wvhere a

H

-3 -1 -1
8,1 x 19 , 3 =0,74, £, = 0.3588 cm £3 = 0,9437 em , and

' = the wind velocity at an altitude ol 18.5 meters

— 9y = s ( s / ) D) -5 2 = ) q
= -2,5 u*lln 0,684 u, V4,28 £ 10 u, 0.0443] - 1n 1950 (3.4)

Y ;

21 = gz(u*m u*) (3.5
12 1’6
L = 0.5726 u Em'D (3.6)
172
. = (I—!.)/')
m

-] ,
= 3.672 cm (3.7)

. e -5 2 .
D = (1.274 « 00,0268 u* ¢ 6,08 ¥ 10 u* (3.8)
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= log Du u )‘10' ( £ ) (3,9)
P “10( wm ) TR\ 4y
1 * )
a. = 0,214 log u 0,036 . (3,10
1 Blo M«

Thus it is scen that S(i,¢) is dependent on the friction velocity,

or indirectly on the wind speced.

In this description of the spectirum, the dircction »1 the wind has

been assumed to coincide with the u-axis or the direction ¢ = & = 0,

We note that

F(g,¢) d¢ = 1 . (3.11)
In Figure 4, 2 S(2) is plotted against 2., The area under the curve
18 equal to the mean square clevation according to Eg., (2.62). Figure 5
presents the proven spectral density on a log-log plot, accentuating the
dependence on wind speed in regions of interest to this study. 1t is to
be noted that a negligible contribution is made to surface roughness
from wave numbers larger than 0,01 cm-l. Figure 6 shows the factor

%
It is scen that the factor is almost unity for 2 > 21. Figures 7 and 8

2 2
expl-g 722 '] as a function of {, as well as il as a function of u

present the angular dependence of the power spectral density for 4 < ’1

and £ > zl, for various values of the parameter ai.

C. Covarilance Function of the Ocecan Surface

The surface covariance function R(Ar,4) is given by the Fourlier

transform of the power spectrum of the wave clevation as given by Eq.

*

This relation for a) is an approximate analytic expression for the wind
speed dependence of 2y obtaincd from the data in Pierscn's report.”
Though a4y could depend on {4, this dependence is {gnored,
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SOURCE: Referance 1,
SA-2618-4

FIGURE 4 POWER 3SPECTRAL DENSITY OF OCEAN SURFACE ELEVATION
FOR A RANGE OF WIND SPEEDS
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(2.58). 'n‘us,
@ "
R(Ar,8) = L S(%) F(Z,¢) explispy cos(e ~ 8)]1 do) dg o (3.12)
0 -1t

The integral over ¢ may be performed analytically and expressed in terms

ol Bessel funciions oi wven order, J The deiaris of the integration

2m°
are presented in Appendix A,
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R(Ar.g) = 2 S(JZ,)[J0 - (4/3) cos 2§ J2 + (1/3) cos 49 J4] day

(<]

) S(,Z)E(z)[(l/S)(«l - 3“1) cos 29 J, = (1/3) cos 4 J4] dz

° (3.13)
where
2 2 4
E(L) = exp|-g /24U ] (3.14)
for Ar =0, Jo = 1, and J2 = Jd = 0. Thus
&0
R(0,8) = j. 4 8(8) dg = Mo . (3.15)
o]

For larger values of Ar, R undergoes oscillatory behavior governcd by

the particular combination of the almost periodic Bessel functions,

Examination of the g dependence of R as given by Eq. (3.13) shows
that R is periodic in 9§ with a period of n/2, In other words, R is sym-
metric about both cartesian axes, It should be emphasized that this is
not a general property of covariance functions but derives from the

chosen power spectral density, which was chosen with the same symmetry,

Although analytic integration of Eq. (3,13) to obtain an expression
for R(Ar,q) is difficult, numerical cvaluation is possible, However, for
the purposes of this study, the method of moments described in Chapter II
turns out to be morc fruitful, From Eqs. (2,60), (2,61), and (3,1) we
get

) (5.2 § 2n, in eaes
M = J S{IriiL,%)E COs (g ~ 9 ugue .

—
[}

-
oy
[<}}

~—r
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Equation (3,20) is the result of the choice of wind direction

the definition of the power spectral density. The values of

M., as well as Go for ¢ = 0 are plotted in Figure 9 as a func

6

tion velocity and wind speed, (Note that Fo + Go = M2 for §
course, Mo is independent of angle g, The angular dependenze
seen from Eq, (3,17). The angular dependence of M4 and MG 58

however, they all have maximum values at § = O,

It is of significance to consider these numerical values
momentis, along with the Taylor’'s formula for R{Ar,0) given iy

and (2,61).
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] In the further development, we shall need only the sccond moment, which

A has the form

E 2

3 M2 = bo(u*) cos @ 1 Go(“*)

9 . 2 .2 ,

1 ={F +G Jcos 9§t G sin ¢ . (3.17)

. o o o

: The details of the evaluation of the spectral moments as well as

3 the forms of Fo(u*) and Go(u*) are also given in Appendix A, On compari~
son with Eq. (2,69) it is evident that

TR TNy L

T f"«’-’ ‘}‘?"’" %?{V.’-q
7/

(3,18)

(3.19)

(3,20)

nad2 in

MO, Mz, Md’

tion of fric~

= 4,5 0of
M 5

of hz i

complicated;

for the

Eqs, (2,5€)
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2

R(Ar,8) = M L M ArT ¥ L M Ard L M 6 (3.2)
290 =8, T e My 24 4 120 s(po)Ar ‘ -

% e

Consider the approximate representation of R(Ar,s) by only the first two

3 terms of Eq. (3.21). Taylor's remainder theorem indicates that the

4 : » . 2 0 s :

3 maximum error resulting from this truncation is given by the next term
after the truncation, For u = 192 em/s and Ar = 0,1 cm, the terms in

the series are numerically given by

L2

> MzAl = 3,64 x 10

1 2 -5

-] + = 9,63 10

54 M4A1 X

1 6 -5
—_— = 3, 0 .
120 MGAX 3.34 x 1

2
Thus, M =~ (1/2) M _ar appears to bc a very accurate rcpresentation of
- 0 %z

R(Arie) for displacements Ar up to 0,1 cm,

D, Intensity Distribuzion of Optical Radlation Scattered by the Sea

The ensemble average sputial voherence function is given by Eq.

(2,30) av
(v(Lu,av)) = expl-jk(pu sin B cos A ' Av sin 8 sin A)]
X exp}-kz(cos 8 + cos B)2[R(0,0) - R(Au.ﬁv)]i . (3.22)
It is argued in Appendix B that ihe factor [R(0,0) - R{pau.AV)] in

2
the exponent in Eq. (3,22) may bhe replaced by (1’2)M2Ar when k is the

wave vector of optical radiation, Thus




2w

(Auxo t Avyo)]

D) €

-k 2 2
X exp Y (cos B 1 cos B) M Ar . (3.23)

(y(au,av)) = exp[}j

CLie AR ovried

3 From Eq. (3.17),

2 2 2
MAr- = (F F G JAu" 1 G Av : (3. 24)
2 o 0 0o

From Eqs, (2,31), (3.23), and (3.24) the average intensity distribu-

tion of optical radiation scattered by the surface of the ocean is given

by
2
2ZoPr cos B
(I, M) = 5
() *
o
[+2]
kz 2 2 2
X exp{- — (cos B + cos B) [(k rG)Au +GAV]
2 o) o] o)
=
x expl=jk(Aug + AvT))] dAudAv (3.25)
where
X \
——94--—}(— -lxcosa%*{ cosB) (3.26a)
S = R r | h ( "o ’
(o)
and

= o

.Vo y
n:(—[—{--}-;—):
o

We note that xo and yo are the coordinates of the laser beam at the tar-

(y cos B + y, cos B) . (3.2861)

get plane, Performing the Fourier transformation, we get

11
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Zop‘ 2 1
(g, my = =2 cos B

T2 2 G
nro (cos B + cos B) WVKEO Go)Go

2 2
6t 1 (k. o)
OS (IO O‘

X expi- (3.27)

2
2{(cos 8 t cos B) G (F t G )
(¢} (o] o]

or
ZP 4
or cos B8

H
2 2 Yk
nh  (cos B + cos B) '\/(lo } Go)Go

{1(x,y)) =

2 2
G {x cos [ S s B F{F O} ¥ d B
o( B Yo co ) ( o Go)(y cos B y0 cos )

< expl-

L5

2
2h G (F + G )(cos 3 + cos B)
o\ o o
(3,28)
This general expression for the intensity distribution, may be specialized

for the backscatter case by making the substitutions x =x , y =y , and
o o

S = Bo
2 2 2
2P cos p G x (F t G )y
or 0 0 o .
(I(x,y))B = > I} S ] P (3.29)
4th™ '\/(G FF )G 2h"G (F + G )
o o/ o o\ o o
or
Zopr cos B t n2 0052 sin2
'a
(1(:«,8))B = Py == exp|~ 5 B P— G°’ # G ") {3.30)
arh” (G r F IG 0 o o
o o/ o

2, 2 2 2 2, 2 2 2
where the substitutions h /(x +y ) = tan 3, x /(x t y ) = cos q, and
2, 2 2 . 2
y /(x +y ) =¢gin o as evident from Figure 1 have been made., From
Figure 1 it is also seen that the same cxpression results if the laser
iransmitter and receiver are situated at the origin in the receiver
1ann n

Iy the spherical coordinates (ro, o, - B).
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For normal incidence (3 = 0}, Eq. (3.30) leads to

we>

<I<0’0)$B Ipeak(u*)

2
Z P /Pknl G O’ t G )} . (3,301
or ol o o

We note that I is a function of the wind speed, since ¥ and G are
o o

Qa

functions of u,. For a moderate wind speed of 7.4 m/s, corresponding to

-2
u, = 24 em/s, /G(F 1+ G = 3.47 X 10 ., Assuming a range of onc km,
* o o 0

a laser power of one watt, and a reflectivity (of the water) of one per-
2 -7 2 -2
cent, the factor (Zopr/4“h ) has a value of 3 x 10 ~ volts m . Thus,
. -6
the peak backscattered intensity under these conditions is 8,66 x 10O

2 -2 -3
volt m , or 1,15 x 10 watts per square meter,

At any other wind speed we may write

1 (u) 6 (2'1)[»‘ (24) + G (24)]2
peak\ * (o] [} o
G
o]

T eart 20 = Go(u *>{ "'OE) (u;)] g . (3,32)

In Figure 10, this ratio of the peak inten: [, to the peak intensity

12

at an arbitrarily chosen friction velocity (u* = 24 em’s) is plotted

against U, and U19 5 It is noted that with inereasiup wind, or increasing

roughness of the surface, the peak intensity decreases,

I{ we approximate cos 3 by uasity in Eg, (3.39), 1t can be secen that

contours of constant backscuttered intensity arve ellipses descraibed by

2 2 ]
cos sin 2
X . & [ tan 3 = constant (3,33
(x-' ‘G) G |
o s} o
or
2 2
£
. %— = constant . (3.3

13
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Such lines of constant backscattered intensity--or isophotes--are

shown in Figures 11 to 15 for various wind speeds. In each figure, the

isophotes arce shown in a polar plot against o, for values of

(I/Ipeqk) = 0.8, 0,6, 17c, and 0.2, The 1l/c¢ isophote is shown dotted,

e T 4

The value (I,’Ipe k) = 1 corresponds to the origin in cach case, The
ak
L3

radial distance to the isophote at the azimuthal angle ¢/ is proportional

TR

D
__

to tan 3, the tangent of the angle of incidence at which the intensity

is the shown fraction of the peak intensity at the same wind speed, ‘The

absolute intensities at the isophotes may be compared by using the ratio

[Ipeak(u*

)/t (24)] shown on cach figure,
peak
The semimajor and semiminor axes of the ellipse of the 1l/e isophote
are characteristic of cach wind speed. In Figurc 10, these values are
e e . .
also plotted as tan 8| and tan 8| . against wind speed, From these
max min
figures, it is evident that as the wind spced increases, the intensity
distribution becomes broader as well as lower in absolute value, This
is consistent with the intuitive notion that as the wind inecrecases, the
mean slope increases, spreading the incident energy over a larger angular

c e
spread, We note that the tan 3|m and tan al in curves have approximately
mi

the same slope, In other words, the eccentricity of the cllipses changes
only to a small degree vith increasing wind spced. This implies that
with increaging wind the downwind slope increases only slightly faster

than the crosswind slope.

At low wind speeds, the values of tan 8 are small cven at small
yvalucs of (I/Ipcak). So for thesce cases, the approximation c052 3 =1
is valid. However, at higher wind speeds, tan 3 becomes appreciable even
tor (I/Ipeak) = 0.8, and the approximation is no loager valid., Thus, in
these cases the isophotes will he ¢llipses only near the origin (small 3),
and at larger values of tan 5 the curves in Figures 11 to 15 do not repre-~
sent isophotes, The qualitative obscrvations about the backscaltercd

intenstty made above arc still valid.
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2
When cos B can nc longer be approximated by unity, and to the ex-~
tent that the theory developed is applicable at such angles of incidence,
the curves shown in Figures 11 to 15 may still be used to determine the

backscattered intensity as a function of « and 8,

Equation (3,30) may be rewritten as

2 2
cOs (v sin o 2 1
{- t = -2 1lpnj—mmmm— . .
(Fo F Go) Go P " 1 c052 B 9.5
peak

For a constant value of the right-hand side, this equation still describes
the ellipses of Figures 11 to 15, with ¢ equal to the polar angle and

tan 8 equal to the radial distance., 1In Figure 16,

2]
I/]1 « cos’ = constant
[ peak 3]

is plotted for the same values of the constants that are plotted in

Figures 11 to 15, Tan 8 is also shown as a function of 3, Thus at any

point on the curves shown in Figures 11 to 15, we can determine ¢ and

tan B, and from Figure 16, the values of g and I/Ip may be read off.

cak
It should be emphasized that the validity of the theory is questionable

when the small angle approximation is no longer valid,

E. Power Spectral Density of Assumed Perturbation

In order to investigate the possible cifects of various types of
changes at the surface that might occur as a result of various ill-
defined and possibly unknown interactions, the following power speciral
density was assumed for a perturbation to be superimposed on the natural

"pierson spectrum’ discussed carlicr,

§/(s5,0) & 8" (¥ (o) (3.36)
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1
F/(0) = E; [l + a. cos 2(¢ - ¢)] for en< o< (3.37)
2 2
. A A
EGaD ex Si{_max} [ “max 1 for 0 g ¢
2 PR ) a " v
v £
s’ () = (3.38)
EGaD G 1
e for 3/ « 4< o
2 Vv 10 W
A
where
2 2
iax /° 82;0 * 323
i 2\’ S ) (3.39)
82°° + 3
23 Javo zv Emax
-3 . -1 -1
and a = 8,1 %10 , D = 3.81, 4, =0.94949 cm , and 2 =82 em . 4 s
3 VO max

E, z’, ai, and ¥y are the variable parameters of the perturbation whose
v

reference values are chosen to be: 2 = 2

max 3’

7 7
E=1, !,V-—-ﬂ, ,a1=0.5,
and ¢ = 45°, The reference perturbation is thus

VO

s (4,9 A s (F (o) (3.40)
(o) o] (8]

1
F/(¢) = =— {1 + sin © cos ¢] for -n < © « (3.41)
0 2n
. 2 2
2 2,
ab BB Sy L for 0 < 4 - 4
2 *PY2 2 4 4 BT
VO y
s’ (g = . {3.42)
0]
6
aD “vo
v —— f «
2 10 orbo  E<®
)
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The following general consideraticns were used to guide this choice,
The general shape was chosen to be essentially similar to the Picerson
spectrum, However, since the capillary range ({ = 1t to 10 cm_l) is be-
lieved to be influenced by internal wave and other interactions with the
surface, the spectral peak of the perturbation was chosen to be at the
beginning of the capillary region at 23 = 0,944 cm-l, whereas the gravity
range is dominant in the Pierson spectrum, 1In order to obtain a few
finite initial moments, the spectrum was assumed to have a power law he-
havior similar to the Pierson specirum for the viscous cutoff, The spec-
trum was chosen to coincide for E = 1 at g = g’ = zvo = 8,24 cmml with
the Picrson spectrum for (an arbitrarily chosen but moderate) friction
velocity of u, = 24 c¢m’s.  The angular dependence chosen was again sug-
gested by Plerson's report,: except that the direction of the maximum
wave energy has been chosen at an angle © = %; i.e,, at an angle ¢ with

the wind direction. (See Figure 3,)

The integrated "energy’ under the reference perturbaticn spectrum
is calculated to be 5,804 v 10"3 cm2, composed of 1,314 x 10"3 cm' in
the range O to 23, 4,161 ~ ].()"3 cm2 in the range 23 to zvo, and 2,84
2,84 x 10"5 cm2 in the raage zvo to », For comparison, the Picrson spcce-
trum for a friction velocity u, = 24 em/s contains an "energy” of

-3 2 -5 2
8.55 x 10 em in the range z3 to ivo’ 2,84 x 10 ~ em  in the range

2
A o to «w, and 844,5 cm over the entire range.

Let us now consider the various parameters and their effccts on the
power spectrum of the perturbation. The defining equations have been
arranged so that a change in one parameter does not change any ol the
others, The value of E determines the energy content of the perturha~
tion with respect to the reference perturbation. The value of zmax de-
termines the position of the peak of £S/(4). 2; determines the location

of the cutoff, (ﬂm x should always be less than £’.) The range of 0 to
v




N 3 * N i !

1 in the value of the parameter ui changes the angular dependence from
an isotropic behavior to a cosine behavior (see Figure 8), It has no

effect on energy content. The range of § is evidently {rom -n/2 to n/2,

; However, due to the symmetry inherent in the Plerson spectrum, it is ade-
3 quate to investigate the range 0 to v ’2,
é We now consider the perturbed power spectral density

Ll A A

5,.(2,°) 4 s(s,9) + 5°(g,9) . (3.43)

The perturbed covariance function resulting from the Fourier transforma-

tion of ST is evidently

R.(ar.g) = R(Ar,9) ! R'{ar,q) (3.44)
where
' "
R'(Ar,5) = J 2 s’ F/(9) expljiar cos(g ~ ¢} do) dg . (3,45)
o -5

In a manner analogous to the method for Eq. (3,13) explained in Appendix A
o
R'(Ar,8) = L S'(i)[do(ﬁar) - u; cos 2(¢ - ﬁ)J2(2Ar)] dg . (3,46)
o
Once again we note that as long as a; is less than unity R’ is also mono-
tonically decrcasing near the origin, and the relative maxima do not

approach the value at Ar = 0, It is, however, interesting to note that

for a value of a; = 1, the first reclative maximum of R’ will occur at
Ar = 6.9 cem. Whether RT has a maximum at this position depends on the

relative values of R and R’,

$a
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The second moment of S’(£,6) has the form (sec Appendix A)

i, r 2 . . . .
% M2 = 11 cos 8§ t 3"1 sin § cos ¢ 1| G1 . (3,47)
\ Using Eq, (3,17), we may write

2
4 < . - -
Mt M2 = (bo § l1 i Go ¢ Gl) cos § * 2H1 sin g cos §

¢ (GO } Gl) sin 9 . (3.48)

Using arguments similar to those employed in the unperturbed case, we

write

<Y'1‘( Au, Av )>

k
exp[—j E (Auxo Avyo>]

2 2
% exp}—k (cos 3 + cos B) PM&0,0) - RT(Au,Av)]:

k
QXP[_J E (Auxo ' lvyo)]

2 : )
¥ exp[—(k '2)(cos 3 t cos B)Z(MO ! M;)Aer (3.49)

wherce we have neglected terms in Ar of order higher than 2 for reasons

based on the behavior of (YT} and R as discussed in Appendix B, It 1s

rr)
noted that the expression for lRT(O,O) - RT(Au,Av)j is a quadratic form
which may be diagonalized by a suitable coordinate transformation, Using
Egs. (2,31), (3.49), and (3,26), the scattered intensity distribution is

giver by
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k 2 2
X plexpy~ —(cos 3icos B) (F VG G )Au i 24 AuAv((G tG
2 o 1l o 1 1 0

w?]
L

S

Xexp{-jk(Sautav) ] dpudav . (3.50)

The quadratic form in the exponunt may be diagonalized using the rotations

- . / A < .
§' € cos & ¢+ {} sin & , Au Aw cos £+ Av sin 4

(3.51)
i} = -& sin § *+ cos | y Av = =~Au sin § Vv cos
1 = -g si I 5 Av/ = -pusin 54 A ¢
to obtain
l" ‘l
) ., Zéolr cos 3 k2 5 )2 ,2
<}T(§ P )> =Ty expi- (cos 2 - c¢os B) |C.u - Dav
) -
x expl=jk(Z gu’ + WavH)1 dia’adav’ (3.52)

where

c L r(v F 26+ 3G ) ! (r i ¥ )2 } mz] (3.53)
- - T _— N .
2 {\'o 1 o 1 I 1/ 1

I—
s F - 2 L2G - | N O b4l 3.54
[(Io FLor G, (’1) \/( o 11) ’1] (3.54)
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é /e
3 ) 172
k 2H
cos 3 = o5 172 (3.55)
1 [( 2 (1 1 (1 b )') e
Fo+ o . - {r ¢ ¥ s
1 l 0 1) 1 o 1) o 1
/l
172 172
[( 2 1n2] ¥k )
{ F 13 b - :
E . o 1) 1 o 1 .
5 sin 5 = > > . (3,56)
4 2[(1‘ ' 1-) : 411‘]
. Vo 1
‘T [N N ~ N . : . ! nt .
z ‘¢ note that ¢, D, and *» are functions of U, zmax’ ﬁv, E, dl’ and 7y,
} Performing the Fourier transformation, we get
; Zopr cos‘l 3
G0 = — P
3 7h” /CD (cos & + cos B)~
3 1 §'2 “,2 .
3 ¥ exp|- S\ o . (3,57)
f 2(cos 53 ¢+ cos B)™ '
For the backscatter case, it may be shown that
’; §' =2 sin 5 « cos(, - %) y W' =2 sin % « sin(y - ) (3.58)
L; and
3 2
3 Zopr cos J
: (IT(a,B))B = >
A=h" /CD
2 2 2
Y ox ( tan_ 8 |cos (o~ &)  sin (o - 5) (3.59)
‘p? 2 c D R
E On comparison with Eq. (3.30) for the intensity in the unperturbed case,
EE it is scen that the major change is a rotation of the distribution by an

analo
angl N
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Once again we make the approximation c¢os 8 =1 to rewrite Eq,

(3.59)

c bz( ) 2( £) 2
0s - sin (o - 2
g “— m tan $ = constant (3.60)

and, as for the unperturbed case, the isophotes are ellipses but tilted
to the coordinate axes by the angle =, (When the approximation

2
cos & =1 is no longer valid, considerations similar to those in the

unperturbed case apply.) The effect of the various parameters are con-

sidered in the next section,

It is of interest to rewrite Eq. (3.49), using Eq. (3.23), as

<YT( Au, Av) >

y 2 2 2
{y(au,dv)) exp[-(k 2)(cos g + cos B) M;Ar ]

e~

oy o'y (3.61)
From the convolution theorem, it follows that
/ -
1) = (1) * B (3.62)

where * denotes a convolution in the space domain,

From the form of the functions y and y', both y and y' are scen to
be two-dimensicnal Gaussians, even though it is not immediately obvious
from the expression f{or ’y') since a coordinate rotation is required to
cast it in the standard form, Their Fourier transforms (I‘ and F{(vy' ™}
then must also be Gaussian, The convolution of a two-dimensional Gaussian
with another results in yet ancther Gaussian (IT>. In this case, it turns

out to bie analytically more convenient to perform the Fourier transforma-

tion directly than the convolution,
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F. Parametric Analysis of the Effect of Perturbations

As indicated in the previous section, a parametrized power spectral
density was chosen for the perturbation, largely on heuristic grounds,
and an analytical expression was developed for the average backscattered

intensity. The variable parameters of the perturbation spectrum are:

L

, the position ol the maximum,
max

. zf, the position of the short-wavelength cutoff.

+ E, the cncrgy parameter of the perturbation,

. a;, the factor controlling the angular dependence of the

power spectrum,

« %, the angle the perturbation makes with the wind direction,

Since these parameters can be varied independently of ecach other, it is
evident that an infinite variety of conditions 1s possible, To limit
this variety to a reasonable number, it was decided to choose a standard
condition and vary cach of the parametiers aboutl this condition. Table 1

summarizes the conditions studied,

In Figure 17, 287 () is plotted against log £ for various valuces ol
zmax and E to show the spectral shape of the perturbations, lLor purposes
of comparison, the Picrson spectirum is also shown for several values ol
u. Since it is difficult to appreciate from this log-~log plot, that the
energy is held constant while the parawmeters are changed, 228'(2) is
plotted against log ¢ in Figure 18, In this case the area under the
curve, equal to the energy, is the same as the arca under the curve of
287 (2) versus 2, even though the spectral maximum is shifted, Note that
u£ and > have no influence on this plot of the power spectrum: i.e.. for

all valuces of ai and ¥, the power spectrum of the perturbation is the

same as the standard, Figure 8 conveys the effect n; on the specirum,
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Tabie 1

PARAMETERS OF THE PERTURBATION

Parameter
Description Symbol | Standard Value | Range of Variation
-1 -1
Peak position zqu 0.9441 cm 0.01-10 cm
Energy parameter B 1 0-10
-1 -1
Short-wavelength cutoff 2 8.24 cm 1-20 cm
v
Angular dependence ai 0.5 0-2
Orientation with
respect to wind N 45° 0°-90*

4 rotates this pattern about the origin of the angle y. Note also that
for E = 0, the perturbation is identically zero, and the results corre~

spond to the unperturbed case,

Figures 18 to 28 show the effects of changing the various parameters
on the quantities entailed in determining the backscattered intensity
distribution., [n Figures 19, 21, 23, 25, and 27, Ipeak refers to the
backscattered intensity at normal incidence (B = 0), relative to the
value for the standard perturbation, ‘Tan B‘:ax and tan Bl:in respectively
refer to the semimajor and semiminor axes of the (L/¢) isophote, In
other words, they correspond to the value of 8 when the intensity has
fallen to (1/¢) of thz value at 8 =0, The angle § is the angle by which
the symmetry axes of the isophotes are rotated from the dircectlon of the

wi ndo

The effect of the various parameters is portrayed in a different

manner in Figures 20, 22, 24, 26, and 28, where isophotes for which

y Standard . . . o e oo . .o R .

L B 3 K aerivea izyom nLg, (9,0U) are shown 1or iwo selecied
pea

values of the parameters, in addition te the standard., The intensity on

- 2w 7
1 = \i.

61




WL

wFE

-

e

R

o

HORRER I TV TARACTE NS R R PO ORI 2t s e S S R

L

B

SH3L3NWVHVd 3HL 40

S3NTIVA SNOIYVYA HO4 NOILYB8HNLYId IHL 40 ALISNIQ TvHIO3dS HIMOL L1 AENDIA
L1-8192-vS wo —— 3 4
t-
00t ot Lo 100 1000 m
k:
N ] _ _ -0 :
\R w vz'g N ;
\ =
\ i=3
— / LW ppE0 = T —! 4.0t
\ y .QYVANVY LS.
\
\
- / — .0t
L Y\N
\
- . a/// —~] -0t s
| B\ \ =
N\
PAN
. .G = e w
OWXQE
3
S0 = 3 ot
QUVANYLS &
=3
__ * — .0t
WNH1D3dS
NOSH31d ~
xXew
s/wd 96 = (W2 100 1
] L
v2)°"

TR AR, PRI a3 F:...s..&_.\;f !




1
.

S

R

-

i £3pes 2ol

SHILINWVHYL IHL 40 S3INTIVA SNOIYVA HOd
NGOILVEHN1Y3d 3HL HO4 ) 601 40 NOILLONNS V SV (LS ;3 30 LO7d ONIAHIS3HL ADH3INI 8L 3¥NOIS

<

81-819Z-VS

» boy

J T AL

THY

Z

(=}
SR,

TRF IR AG

R TR e LR IR TR
T

!
<
et

6

:
:

st T
o

et

QW — 0L X (S

o IR T P

W pZ'8 = D -

ot =3
wopeo =" 1%
.QUVANVLS.

i~

S o

t

TR R RS S T R R A S

L S/wd pZ = *n HOJ WNHL034S NOSHIId .
e

xew
_

— ot = 3

Bl K S Servady oRY n RGN s i Sl il L i e b ﬁiﬁ




NOILYE8HNLHAd AHL 40 NOILISOd TvHL03dS 3HL 40 103443 61 3€N9NH

61L-8192-vS xew

y oy
3 0 t- z- £€-

SRS IS ARt ONTES 3 ST RS

4]
|

_m.w c:“ ¢ uey ] .

‘ - oL —f 20
2 - 02 — PO

3

; ~ oe — 90

J <

W g uey — - ©
mr.
1
¥ — OF —1 80

1 L XNmu07

{ — 0t
Wa

v 3
‘ — 2t ;
W 4
¢ i
1
N
wvw. xﬂwﬁ— — 't 4

SUAY SNty
i
1

W

R L g A

.

IS

IO i 3 4 i e S iy a0 o




lal D Y St S AR A e S e i

PLEZ AT LS IR X0 AT S TR P T b SR O S e O % & RSSO Ny AT N B O SN I T I AR Y R T S M

E )

0.6

T l T l T I T T l | I T l T
2 por ~d
%
i1
\ 04} Movan 0944 em™' _
o -
0. j— —
vih ~ -
0
- -
-0.2 p— —
-0.4 — —
-0.6 £ l Il l ! ! 1 Il | i ] 1 | Il
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04
x/h SA-2618-20

FIGURE 20 EFFECT OF THE SPECTRAL POSITION OF THE PERTURBATION:
{1/e) ISOPHOTES FOR SELECTED PARAMETER VALUES




) 1T-819C-VS

340914

(3

NOILY8HNLY3d 3HL 40 LNIINO2 AOY3N3 3HL 40 103443 £

01

; 0

€0

»0

S0
v
?

b

1 uver

90

~ X euwi

L

L0

nead

mﬂ ue)

|

T ues

ot

oy

Q0

90

32 TH

—

80

6’0

-
£ S

|
|

A 2

SR r

E Y



T T S R R T ey N P T -
k.

- S I I I R BN B B B
i
% p= -
E g
&
]
£ - 0.4 }— —
g
%
0.2 p— .—1
yih - .
]
-0.2 — —
- =
0.4 f— -
3 -
-0.6 i [ 1 l { l i 1 l 1 i i I L,.,___J
«0.4 -0.3 0.2 ~0.1 4] 0.1 0.2 0.3 0.4
x/h SA-2618-22

EIGURE 22 'EFFECT QOF THE ENERGY CONTENT OF THE PERTURBATION:
{i/e} iSOPHOTES FOR SELECTED PARAMETER VALUES

Tl e el
(]
~3




4340-1A0 SNOJSIA JFHL 40 NOILISOd 3IHL 40 103443 €2 3HNOIS

€2-eLot-vs 101N

3
oz 8t 9t 148 (43 [4]8 8 9 k4 Z o]
0 Y T T I T | T I T I T [ bl T T _ Y _ T _ T o
: oA {
4
o l.c:“ ¢ vl =0l — 20 N
- ew |II\\\ - - 3
e v :
|
LA ¥ -~ oz — vo
k)
. ® L
(=3 s 3 . —f Of ~ 90 0 m
o uel - . N xwea_ J_
3
90 — 0y — 80 ,_‘ﬂ
end
L . ;
J]I’I
Lo - — —J s - ot 3
¢ .
3 ) 3
80 — —j 2zt ﬁ
R7
- o P
3
I 3
60 L ! 1 | ) | 1 ] 1 | ] ] ; ! 1 ] 1 ] ; ] 1 vl 3
i
X
H
Mr

TSN ET bk Bl st bys 2000 bt sy it it sdaih syt b fesdb] PR ITR LAY [T




aslnl gl 4 S MR R G R U M QLU M L U R LR LB LG L e S

B e e e S T s R e e e

4

R

e

P

B 0.6 ™ r T I Y l T 1 | l H I i I T
04 p— _—
0.2 p— -

yih - \ pe
\
1
1]
[ ]
0 i
!
]
'
[

- -

0.2 p—— —
8.24\

- P -
~0.4 b —
-0.6 1 l . 3 J 1 l i 3 l L I 1 l 5

-0.4 ~0.3 -0.2 9.4 0 0.1 0.2 0.3 0.4
xih 5A-2618-24

FIGURE 24 EFFECT OF THE POSITION OF THE VISCOUS CUT-OFF:
{1/e) 1SOPHOTES FOR SELECTED PARAMETER VALUES




e
Sose

X

T
P>

o

o

St

N ae

A

NOILNBIYLSIQ HVYTINONY JHL 20 103443 GC 34NOLd
SZ-8192-vS
N<
(1)rd St ot S0 3
20
| | | | \
lc.ch 4 uer \\\\ -
£0 p— — T
|xnch_n uel N -
vo — — 0z -
i ) ¥
S0 — —_— O
?
¢ uel L . =
90 — -d Op
Q

SR PPN

L a AL B

S S i i s b e 322

[¢]
zo
0 3
&
g0 & N
o2
ae 1
g0 3




0.6 T T l T [ T T l T ] T l T
04 p— —y
0.2 — —
y/h - .
0
-0.2 }— -
oo \b_—‘ -
0.4 fom —
-0.6 1 l i l ' ! 1 1 l 1 l 1 ; i
-0.4 -0.3 ~0.2 -0.1 0 0.1 0.2 03 04
xh SA-2518-26

FIGURE 26 EFFECT OF THE ANGULAR DISTRIBUTION: (1/e} ISOVHUES
FOR SELECTED PARAMETER VALUES
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all the isophotes is (1/¢) of the value of the peak intensity (normal
mcidence, 3 = 0) when the standard perturbation is superimposed on the
Pierson spectrum (E = 0), The change in the angular spread and the

rotation of the symmetry axes are to he noted.

While each of these perturbing functions contain an almost insigni-
ficant amount of encrgy when compared Lo the total energy contained in

the Pierson spectrum for u, = 24 cm/s, it is clear from these figures

*
that some of these perturbations can greatly alter the scattered inten-
sity distribution, especially when they are situated in the capillary

region,

‘or example, in Figure 19 as the peak of the perturbing function 1s
it »d from outside the capillary region to well witiiin the capillary
re,:on, the peak of the scacttered intensity drops rapidly, and therc 1is
a corresponding broadening of the distribution as indicated by tan al;ax
and tan 3 ;in' Morcover, while a perturbation outside the capillary
region has little cffect on the symmetry of the scattered radiation, a
perturbation well within the capillary region can rotate the symmetry
axes of the scattered radiation by a large angle 5, Thus, it can be
concluded that, at least for the perturbations assumed here, the scatterc.
intensity distribution is more sensitive to perturbations within the

capillary region than to perturbations at lower wave numbers,

On the other hand, ¥Figure 23 indicates that moving the high wave~
number cutoff to even higher wave numbers has relatively little effect
on the scattiered intensity, However, moving this cutoff to lower wave

numbers docs affect the scatlered intensity, particularly for (w1 em .
K]

ilowever, this may be due to the large contribution made to the perturba-

-1
vion by the spectral region near 1 oem

Increasing the -th {amount ol energy) of the standard perturba-

tion also greatly u{ ‘v arattered intensily distriimtion, uaa

~ oy
4
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indicated by Figure 21, Again it is clear that adding energy to the
capillary region of the spectrum causes more scattering, as cvidenced by

e e
the peak intensity falling und tan 3| and tan 5| . increasing.
max min

;A We note trom Figure 25 that changing the angular shape of the per-

g, turbation from isotropic behavior (ai = 0) to cosine-square bechavior

§ (ai = 1) essentially leaves the peak scattered intensity unchanged but

%i affects the symmetry axes of the scatltered intensity indicated by & and
;e. makes the distribution more elliptical,

g Similarly, Figurc 27 shows that changing the orientation of the per-
§ turbation relative to the wind direction has essentially no eifect on the

peak scattered intensity but does affect the eccentricity of the ellipti~
cal intensity distribution (causing it to be more circular) and the

orientation of the symmetry axes,

The change of 5% with ¥ in Figure 27 is interesting. [t shows a
maximum and decrcases toward zero, In other words, cven though the
direction of the perturbation continues to greater angles, the intensity
distribution returns to orientation along the wind., On closer examina-
tion, 1t i{s found that the bhchavior of & at % > 45 is dependent on the
relative values of Fo and Fl in Eqs. (3,48) and (3.53)-{3.56), which is
governed by the valuc of the energy content of the perturbatfon, It is

found that % returns to zero at . - 90 , when E< 1,675, and that * con-

<

tinues on to 90 at ; = 90 , when E » 1,675, At E = 1,675, Fo z ¥ It

L'

133
should be noted, howover, that tan 3 and tan 5‘m1n are approaching each

e
Umax
other, meaning that the intensity distribution is very nearly circular,

For this rcason quite possibly, no great practicsl significance vould bhe

attaclked to thig chservation.

g' Copparigon of these results with thuse nccompanying Flgures lU=13,

shows that, except for symmetry, the chanpes in intengsity distribution

e e |
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brought about as a result n! perturbations are similar to thosc brought
about by changes in wind speed and therefore these two causes cannot be

distinguished hy measurements of intensity alone,

It has been assumed, of course, that the occan suriace 1$ homogencous
under the “"scan" in both cases, In other words, the occan surface has
been assumed to present the same statistical behavior over the entire
scan arca, which is much larger than the spot size, This, however, will
rarely be the case, Local {luctuations will always be present, Changes
of interest in the natural ocean surface due to internal wave, current,
or other interactions would of necessity he inhomogenecous, While the
technique will be insensitive, unreliable, or inapplicable to inhomo-
geneities smaller than a spot size, the variations on scanning over an
inhomogeneity will be significant and interpretable given appropriate
additional environmental data., With the development presented here, it
is difficult to assess these cffects quantitatively, lacking empirical
data on the spatial and temporal variaticns in the ideal spectra assumed

in this study,

The results »f the parcmetric study can be summarized as follows,
The effect of the perturbaticn on the intensity is most prouounced in the
capillary region, ‘lhe cnergy content of the perturbation required to
scoc sipgnificant changes is on the same order as the cneyrgy content of the
natural spectrum tn the capillary region and insignificant compared to
the total encrgy of the waves, The viscous cutolf does not have much
cffec on the intensity., The angular shape and the orientation of the

pertur . ‘lon affect marnly the symmetry of the intensity pattern with

respect to the aand direction,
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IV SUMMARY AND CONCLUS1ONS

The theory of "speckle patterus” from diffusely scattered coherent
light has been examined and extended to apply to scaltering by the sur-
face of the sca. We have determined that the surface characteristics
can be related to the ensemble average power spectral density of the
scattered radiation, However, since measurement of the latter gquantity
is difficult, it would be more practical to measure the ensemble average
scattered intensity distribution, It turns out that the expression ob-
tained for that distribution is similar to that for highk frequency radar

backscotter,

Assuming a natural power spectral density for the ocean surface
elcevation, the average scattered intensity distribution is determined
solely by the slope statistics of the surface in the case of optieal
Jllumination. The detailed distribution was calculated and its behavior
at different wind speeds was examined, We found that as the wind in-
creases, the backscattered intensity 1s reduced and spread over larger
angles, We also found that the downwind slopes increase only slightly

faster than the crosswind slopes with measuring wind,

A reasonable purametrized form was assumed for the spectral shape
of a perturbation, and a parametric study was performed. The effect of
the perturbation on the intensity distribution is most pronounced in the
capillary region, The energy content of the perturbation required to sce
significant changes is on the same ovder as the energy content of ihe
natural spsotrum in the capillary reglon, and is insignilicant compared
i e wial energy ol lhe waves, the viscous cuteit does not have much

effect on the Intensity, The angular shape and the oyientation of tre
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perturbation affect mainly the symmetry of the intensity pattern with

respect to the wind direction, 7
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Appendix A

EVALUATION OF SOME INTEGRALS

1. Integration of the Aungular Part of the VFourier Transform of S(f,¢)

The Fourier transform of the power specetral density of surface cle-

vation S(4,6) gives the surtace covariunce function according to Eq,

(2,58)

R(ar) = S(L) expljAr - L) d4 . (A1)
plane
Using Eq. (3.1), Eq. (2.58) becomes ir polar coordinates
o (n

R(Ar,8) = £5(2) F(2,0) expljarsd cos(e - 8)] dep di

. (Ao 2)
(o} T—or
If we use the definition
2 4
E{$) = exp[-gz/zz U ] R (A, 3)

Eq. {(3,2) may be written as

F(4,0) = (é{;)( *gd[x—zumm)al}gcos 20+[1~E(4} cus 4c) (A

It is known*” that
1

1
Jm(x) == ( cos{me - X sin &) de (m = 0,1,2,,,.) » (A,5)
e
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From Eq. (A.8) il can be shown that
/2

J2m =

DN

cos 2me cos(x sin ¢) do

[

{m =0’l,2,..')

. {A.6)

By using the symmetry of the trigonometric functions involved, 1t can be

shown that

T

cos 2mo expljiar cos(o ~ g)}] de¢ = (-I)m 41 cos 2md

n/2

= (1" 20 cos 2med. (44r)
2m

Usying Ey, (A.8), and substituting in the angular

had

¥(2,¢) expljari cos(o - 9)) do = JO(JzAr) -

-1

s Jz(ﬂbr)

¥ J4(2Ar)

|

i

part of (A,2)

- 14[1 - E(L)]

cos 2m® cos{jAr sin

t

. (AT

. |
JE(ﬂ)al‘

cos 26 % {1 - E(g)]

cos 4¢

(A.8)

2) do _




PTLT E TER R T

e

Thus

: 4 L \
P A = K - - 269 - . dj
R(Ar,8) £8() (Jo 3 cos 6;2 1 3 ¢os 49141 i

|
o]

&

) 1/, ) oot o L ]
i J £S(2)E(2)[3 ‘4 Jal cos 29J2 3 cos 49J4 al . (A.9)
o

IR A . A [ g
8

TR

2, Evaluation of the Spectral Moments

th
The 2n  woment of the power spectral density $(4,9) given by Eq,

- {3,16) may be rewritten as

® iy

w, = | sl ra,0 cos®™™ 9 - o) dof ag . (A.10)
o A

Considering at first the integration over ¢, we note that

Tt

2 2n - 1)/ in.2g
cos 2me cos n(e - ©) AY = ¢ ) d cos 2mg (A.11)

2“(n ~m)i(n + m)!

for 0 “m+<n

i

0 form>n .

Substituting from Eq. (A.4) and using Eq. (3.18)

r
2n-1).. {8 4 2
F(L,9) coszn(e-c)dﬁ L Lt JLE3 [7 n{n~1) cos u+Bn cos 9+2]
n L3
_ 2 (n+2)!
. N '
bnﬂ(z)[al(n+2)(2 cos  §-1)+(ni3)
I)
- 5 (n~1) cos4 n-8 cos" a]!
3 B
2 b ; 12
o II“ Ian(Z) (A,12)
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' 2 2 4
i From Figure 6 we note that E = exp(~g /24 U ) may be replaced by unity

% for £ > El, even for the lowest wind speed (corresponding to u*min = 12
1 em/s). Thus, for £ > &, Eq. (A.12) becomes :
: . ’
2n (2n - 1), 2 ;
F(4,9) cos (§ - ©) a¢ ?c-:r-~—-L—~[aln(2 cos § - 1) +n o+ 1] ?
2 2°(n + 1), !
, - :
4 ;
4 = 1 or 4 . a13
Iln & 12“ for ¢ > ,61 (A1)

Using Eqs, (3.3), which define S{{) over five scparate regions, Eq, (A.10)

may be written with the help of the approximation (A.13):

2 4

o1 2nil

M2n = Iln sl(z)z dg + 12n sl(z>n(z)z di
o} (o] :
2 y2 i
2 3 ;
2n+1 2n+l ;
2 2 I - H
y (Im ; Izn) S, dg S0 dL
21 22 é
£ ) i
v + 2n+1 g
+ sd(p,)zz" Yag 4 s, (047 i} . (A.14) :
23 £v ;

These integrations over f may all be performed in closed form for n < 4,

except for the integral over 0 £ % = 4 which has a series solution,

1
However, the series converges very rapidly and the first few terms are
sufficient, The integral over zv < 4 < o evidently does not ¢xnist for

values of n = 4 or higher, Thus only the moments up to tne seventh are

JO T Y T Uy

defined, und due to the symmetry of R(Ar,9), only the even w ments have

nonzero values, :

sl bewds
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5
) :
3 %i :
4 ;' Adopting the notation
;¢ 1 2n+1 i
SN ni :
E g = S (P4 dg :
2 n 1 :
;- [} :
B ;
£ 1
] 1 2n+l ?
3 ho= S (LE(L)L dg :
n 1 :
0 ;
3 1
: 22 2ntl
; q = S, (D4 dyp
A n 2
Y
(A.15) :
23 ;
2n+l
r = f S (.@)2 dz
n 3
22
A 2nil
ni
s = S (£ dg
n J 4
23 ;
- .
2n+41
t = ( S_(W4 dz .
n J 5
4
v
we have :
M o=1 +1 b 4 (1 + 1 )( Fr ks 4t ) . (A.16
xZn 1ngn 2n]n in 2n qn rn n n « )
Expressions for xln’ (Iln + IZn)’ B, hn’ 4. T sn, and t“ for
n=0,1 2, and 3 arc presented in Table A-l, The following cxpressions g
for the first two moments are obtained from the table,
85
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: o 3 2-p
4
g o3y o a [ ' . ("* : ab . (‘53)
o 4 2 \u v 2 "
8- 34, \"#n Y 2(p - 24, by
; 2
£
; a |5} ], a0 -
’ 2 2 " 16 2 (A.17)
;. 42 3 1
' v o v
j and
: aa X Qu u
: 2 a 1 2 * *m
3 M_ = cos pf- = (X + X ) j o e ] - e
R 0) ¢
r 2 6 1 2 2 4 u*m u,
- L
a D p D A\ D
5 [l - (12/%) ] VS 1n 2 ! v
2 a
4 a ) 0 1
- { ;}; — - —
i e (\1 Y2)t ( 2)
i ~X u u £
o 2 % *m D P D v D
4 X {ommm o (1 = = b — 11 - (z,/z,,)] P=lnp = — (A.18)
3 4 u*m< u*) 2p . 273 2 %3 12
5 where
&
- r t
N, =y Flnb E (h_) Jr o« orl s (A.19)
4 i i i
4 1
3
; 2,24 .
4 by = (ag /zlu s (A, 20}
and
1 ,
; ] b2 = [(a LS E) /8 U ] N (A.21)

On examination of the terms in Eq. (A.18) it is evident that, if

2, is independent of 4 as we hove assumed, the terms are functions only

7
7
7

<
o
i
"

¢

5 of wind speed or u,. Therefore, we rewrite Eq. (A, 19) as

2 .

7

- ;o Y ,
7 M. = F fu cos + G . {5, 80 ;
74 2 0( *) 8 0 i
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3. The Second Momont of 8/(%,%)

The second moment of the power spectral dengity of the perturbation

is

=0 7

Mz = 233'(2) dg - f F(e) cosz(e - 0) do . (4,23)

0 bt

Using Eqs, (3.37) and (4,11), we get

- 2 al cos 2% 0 a. sin 2y
J F/ () cos (¢ ~ g) dé = 2,' ~ cos8 § + 2 p - sin § cos £
~ty
¢
+ L i cos 2 {A.24)
2 4 4 > L
Using Table A,l, we get
& @ r
3., EGAD 1 1 5 (~X5
fﬁb(i)d.i- > %6 zexp},[y+1nx+§ r-rf]
0 . 1
A 4 ’ .
8 (,emx,zv,a) (A.25)
where
”~ 7 2
X = (a/z)(Ja /3 ) . (A. 26}
max v
Therefore
I'ni cos 2y 1’2l sin 2y A ay
= Ny D Y 3§ -y — 2,‘
NZ- > cos § + 2 " singcosg+12 2 cos 2y
2
4 l-‘l cos @ -+ 2}{1 sin g zco8 § + (‘«1 . {A,27)

It is noted that Fl, Gl’ and "1 are functions of zmax’ z\’), E, a;, and ¢.
B8



Appendix B

REPRESENTATION OF THE ENSEMBLE AVERAGE SPATIAL
COHERENCE FUNCTION

The ensemble average spatial coherence function is given by Eq,

(2.3G) as

k
{v(au,av)) = exp{—j Iy (Auxo + Avyb)]

§

2 ]
X expj~K'(cos § + cos B) [R(0,0) - R(Au,m’)]; . (B.1)
Consider the exponent of the second exponential factor; k is the wave
vector of the optical radiation. For 10.6 um radiation kz has a value
7
of 3.5 x 10 . Even for angles 8 and B as large as 60° [when the approxi-
mations made in the derivation of Eg., (2.35) are no longer valid]l the

cosine facter is on the order of unity, Hence the expenential has ap-~

preciable value only for very small values of [R(0,0) -~ R(Au,Av)}. Con~
versely, if ¢ is an arbitrarily small number,
2
expg-k {n(0,0) - R(Au,Av)Jz < e (B.2)
when
(12 o)
R{G.0) - R(Au.AV) > —-\1:» e/K | . (B.3)
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1.  Behavior of {v(Au,Av)) Kear tie Origin

Using Eq. (2.61), the condition (B,3) becomés, near Ar = O,

1 2 1 4 ,2) .
—.\ hand " ees R e/ b4 hd
> IZAr 1 M4Ar + > (ln e/ (B,4)

If we neglect for the moment terms in Ar of order higher than 2,

- 272
o 2
Lr >»(-2 in e/Mék") . £B.5)

If we chogse the smallest wvalue for M, (see Figure 9}, which will be the

99

valué of Gb (6 = 90”) for u, = 12 cm/s, and if we choose ¢ = 10 R

x

Aro > 0,027 em R

As discussed in Section II-C, at this small separation the contribu-
tion of the additional terms in (B.4) are negligible, which justifies
disregarding those terms in this discussion and in the expression for

[R{0,0}3 - R{au,av)].

Thus the spatizl coherence function (y{Au,Av}} iz a very narrow
sharply peaked function near the origin and may be represented accurately

for Bmall Ar by

k
(Y(au,pv)) = exv[*-.? R (Auxo + Avy )}

4
¥ m.fgrokzh‘aet R + ang R}

N

o]
u hr"‘e far Ar < 002 op
2 ) A

“~

{B.6)
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2, Behavior of {y(iu,Av)) for ar, = Ar < &

We recall the integral cxpression for R{Ar,G} given by Eq, (A.9).
Since E(£) S 1 for all £, by comdining the two terms in Eq. {A.8) wo may

write
o
alar,8) < f zS(z)[Jo - 2, cos 28 « Jz} dg . (B.7)
o

The value of 81 measured by different investigotors varies between 0 and

0.5. The variation of cos § is between +1 und -1, Therefore (Jo + Jl)
and (Jo - Jl) hound the variations of [Jo -8y cus 28 « Jé]. The values
of [Jo(zAr) 1 Jl(zar)} are plotted as a function of 4Ar in Figure B-1,

it 13 seen that the maximum positive excursions cccur for Jo - J2 for

2Ar = 0, 6,9, 13,3, and so on,
iAr

Further, the maxima at other than

¢ do not attain a value greater than 0.6,

These vheeryations mean the folliowing in intexpreting Eq. (B.7).
At Ar = 0, the integrand s essentially £S(4), since (Jo .4 J2) is unity
for all values of 7, Thus R{Au,Av} has the maximum value at the origin,
As Ar increases, the oscillationg in (Jo x J2) become important and in-
fluenpze the vaiue of the integral. From Figure 4 it is seen that S(4)
is positive for pll valyes of 4 and has a fairly sharp maximum, As Ar

increases from zero, the procuct 1s<z)<J° ¥ J2) decreases,

It is intuftively clenr that the integral will have a minfinum (nega-
tive} value when the first minimum of (Jo 13 J2) approximately coincides
with the maximum of the function £S(i). The minimum occcurs at (fAr) = 3.5
for (Jo - Jz) and at (Zgr) = 5.2 for (Jo + J,3. 1L the maximum of 48(2)
ogcurs at zmaw’ tner the minamum vaiues oif the wntegral occur {(iorx “1 = i3
at Ar = {3.5/2 ) and (5.2/f )Y=~for the directions § = 0 ani /2

min 1 max %
respectively. Similarly, the integral has a moximum vaiue of

74 8. . * ins e, for v, = 24 g
hrmnx g ® {6 ,zmax) and ( 5/zmnx> For instance, for u, = 24 em’s,
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£S{2) hus g maximem at £ = G,0612 cm‘l. Thus in the directjon ¢ - @,

the first maximum of R{Ar,8) occurs at approximately 57.5 meters, Noting
that the peak vaiue nf (Jo - Je) at 6.2 is 0,6, it is surmised that the
value of the integral wiil be ieas thon 0.€ R{0,0), and condition (B.3)

is amply satisfied.

The conslusion to be made from ilie above discussion is thar R(Au,Av)
is a function that smoothly decreases away froa ar = 0, where it has an
absolute maximum, and whose further maxime are significantly less than
its value at the origin. This implies that

exp{wkzm(ﬂ,o) - R(Au,&v)l{ <107

(or less than any other arbitrarily small value we wish to impose) over
the entiyve {fu,fiv) plane except near the origin, where it may be approxi-

unted by Eq. {B.6).

Since Eq, (B.8) also becomes arbitrarily small over the rest ol the
{Au,Av) pianc, we may extend the validity of Eq. (B.8) over the ontire

plane, Therefore, whon k 48 large, w¢ may write
{y(Au,av)) = expf-vj X (A‘ux + vy )}
: d [} c o
X oxp{(kzlﬁ){cns P+ cos 8)2 Mqarz] . (8.8}

Similar srgunents may be made in the case of the spatial coherenece

function of the peyturbed ceean surfage,
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