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SUMWh!RY

There bas been considerable controversy in the optical literature

concerning the theory of "speckle patterns" resulting from the diffuse

scattering of coherent light and the information about the scatterer

obtainable from the speckle pattern. The resolution and reconciliation

of these theoretical differences and the application of the theory to

scattering from the ocean surface were the objectives of-this study.

A brief historical review of some previous theoretical work and a

description of the apparent discrepancies which have now been reconciled

are given (Section 1I). A more complete treatment of these topics, has

been presented in an earlier report. Therein it was shown that the sur-

face characteristics of the scatterer can be related to the ensemble

average power spectral density of the scattered radiation. However,

since the measurement of the power spectral density is difficult and a

more practical observable is tle ensemble average scattered intensity

distribution, an analytical expression for the latter is developed from

basic principles and related to some average properties of the scattering

surface (Section II-C).

By assuming a Gaussian distribution for the surface elevation, the

average intensity distribution is related to the second-order statistics

of the surface. It is shown that this relationship is similar to that

obtained in the :', c of high-frequency microwave backscatter (Section

II-D). The mathematical parameters related to the covariance function

of the surface are shown to lead to the mean square elevation. slope,

and curvature of the surface (Section II-E).

v
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In order to apply these theoretical results to the ocean surface,

a wind-dependent two-dimensional power spectral density for the ocean

eurface elevation (based on a large amount of empirical data) is assured
(Section II1-fl). -The surface covar-anep function is determined and It is

shown that the average scattered intensity distribution is determined

solely by the slope statistics of the surface for the case of optiesi.

illumination (Section 111-C). An analytical expression for the scattered

intensity distribution is dorived for a general geometry. The detailed

distribution is calculated for the backscatter geometry and its behavior

is examined as a function of wind speed (Section I1I-D). It is found

that as the wind increases, the backscattered intensity is reduced and

spread over larger angles. It Is inferred that the downwind slopei in-

crease only slightly faster than the crosswind slopes.

A reasonable parametrized form is assumed for the spectral shape of

a perturbation (Section III-E). A parametric study was performed and it

was found that the effect of the perturbation on the intensity distribution

is most pronounced in the capillary region. 'rte energy content of the

perturbation required to see significant changes is on the same order as

the energy content of the natural spectrum in the capillary region and

insignificant compared to the total energy of the waves, The viscous

cutoff does not have much effect on the intensity. The angular shape

and the orientation of the perturbation affect mainly the symmetry of

the intensity pattern with respect to the wind direction (Section III-F),

Some mathematical details regarding the surface covarianlce function are

presented in the two appendices.
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I INTRODUCTION

A. Motivation

Scalar diffraction theory has been applied with considerable quanti-

tative success to numerous microwave and optical problems for which

spatial coherence is preserved. However, confidence in theoretical pre-

dictions is not high for problems involving scattering from rough sur-

faces. Often, analytical solutions to scattering problems can be obtained

only by invoking simplifying approximations that are known to be rather

crude. Moreover, experimental testing of scattering theory is difficult

because of the dual problem of not only obtaining a surface for which

the theoretical approximations are valid but also specifying the statis-

tical characteristics of the surface. In the case of optical scattering

from a rather calm sea, the usual gentle slope and gentle curvature

assumptions seem to be reasonably well justified and one would expect

quantitative predictions to be moderately accurate provided the Fresnel

*: and Fraunhofer conditions--as well as the small angle conditions--are

met. Although experimental testing of these predictions cannot yet be

accomplished because there is no technique now available to measure the

statistical characteristics of the sea with the accuracy and resolution

that is required, such techniques exist in principle, and when available

in hardware form could provide the means to perform this important test.

The recognition of these facts, and the desire to develop practical

methods of utilizing the powerful coherent light sources that are now

available for measuring ocean wave statistics, have motivated this

research.

P-W 771



B3. Outline of the ReportI Th~,ere has been considerable controversy Iin the optical literatre
concerning the theiory of' "speckle pat Levis" from dl fIusely .1cn Itured

cohierent l ight . A brief histLorical review of' some previous theoretical

work is included here as well as a dscrvi p Lion o1r some of thle apparent[ discrepancies which now have been reconciled. T1hi s is (toile in order to

demnstateLherouclaionof he heoetialapproach taken hiere.

Starting with the lituygens-iFrestiel p~rinciple, a1 principle familiar

to otclphysicists, we dlevelop -I anayil expression for thie ob-

served ensemble average sca ttered Intensity, and relate it to statist ical

characteristics o, thev scattering surface. This resuilt, is compared withb

the microwave lbacksCatteir cross sect ion that is derived t'rin the IlllhOltZ

intLegral formalism and leads to a1 ne4w phys ical In terpre La itonl of tile back-

scatter cross sect ion. We pl ace :t physical interpretation oil thle im1-

par tantt ma timat ica I parameters that deCtermine tile Sca ttered intensity.

Finally, beutso suflicien t.y aecurate exIperinin'al data describing

kk the s tntistica I charac Loris tics of' the ocean are not available, we Use It

r-ecently repor te(I7 theoretical demcr ip Lion of tile ocul'-u ave- le 1gilt

power spectral density to make numerical calculations of thle scattered

intens ity distribultionl as a function of winld speed anid direx t ion. III

additLion, we calculate the scattered Int-nsi ty dlistribution whent certain

assumed perturbatLions having arbitrary angular orientation %%ith respectI

to the wind directLion are superimposed.

Iteferences are iIs tud at the end of Lis report.

2



C. Definition of the Problem

The problem that is addressed in this report can be outlined with

the help of Figure 1. A plane monochromatic wave, E (u;vjz), is incident

on the surface of the ocean at the origin of the coordinate system,

(u,v,z). The mean plane or the ocean surface is taken to be the (uv)

plane, and the angles A and B define the plane of incidence and angle of

incidence respectively. The observation plane, the (x,y) plane, is

parallel to the (u0,v) plane and is located a distance h above it. The

observation point, Q, is defined either by the coordinates (xyh), or

z

INCIDENT-
PLANE 

ell

WAVE .. x' .

i x, y, hi

x . Yo, h)V! h

R,

INCIDENCE Unit VectorsS

FIGURE 1 COORDINATE YSTEMS AND GEOMETRY OF

SCATTERING PROBLEM
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the vector r and angles (y and . The incident plane wave has the~-0

specific form

E1 (u)V Z) =g(u.,v,z)E exp( *) (1.1)1 0

where g(uvz) is an amplitude aperture function limiting the extent of

the plane wave and

k, = -k[sin B cos A + + sin B sin A 3 + cos B f] (1.2)

and

r :u i + v 3 + zk (1.3)

with (i^,J,) being unit vectors along the (u~vz) directions respectively.

The arbitrary aperture function g(uvo) defines the finite portion

of the ocean that is illuminated and permits infinite limits to be used

on integrals over the (uv) plane. For example. the power, P., incident

on the (uv) plane is given by
2 co

P . (UvO)I' dudv = E if [g(u'v'o)2
'i 

1E V- dudv (1.4)
if JJ

where Z is the impedance of free space (120 r ohms). In the specific
0

case for which the incident beam has a Gaussian cross section, the inte-
grlEq i4)hs h ale 2 E2

gral Eq. (1,4) has the value rq 2, where E is the peak intensity and q
-1

is the e intensity radius.

Figure 2 will aid in further defining the geometry of the scattering

problem. The point Qs is located on the surface of the ocean within the

aperture function g(u,v,o) and has coordinates [u.v.w(u.v,. where w(u~v!

is the elevation of the water surface above the mean (u~v) plane, Alter-

natively, the point Q may be defined by the vector r and the angles a
s -s

and b.

4
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I I GENERAL THEORY

A. Historical Background and Review

After the operation of the first CW He-Ne laser, considerable

interest arose in the speckled appearance of typical diffuse surfaces

illuminated by coherent light. It was soon recognized that the origin

of these granular patterns lay in the optical roughness of the surfaces

from which the light was scattered.
'2,

The first detailed statistical treatment of this phenomenon, now

known as laser speckle, %as that of Goodman., Treating the scattering

or reflecting surface as a statistical ensemble of many point-scatterers

with independent and uniformly distributed phases on (0, 2-T), Goodman

showed, among other results, that the power spectral density (or Wiener

spectrum) of the intensity pattern of reflected light was, up to scaling

factors, identical with the autocorrelation function of brightness (i.e.,

intensity) distribution across the scattering spot.

Goldfischer independently derived the same result using essentially

the same model as Goodman.4 Again the scatterers were assumed to be

infinitesimal in size and independent, and were taken to have phases

uniformly distributed on (0,2), This assumption is mathematically

equivalent to assuming that the spatial coherence of the fields behaves

similarly to a 6-function; that is, the spatial coherence has value unity

for zero displacement and value zero for finite displacei ant.

In an extension of his previous results, Goodman later discussed

the properties of speckle patterns as they affect the performance of

optical radars, In an appendix to this paper, he presented a generalized

7
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theory that allowed n finite correlation arva to exist in the fields at

the scattering surface. Thus, the assumption ol infinitesimal scattc.rers

was removed, but, signiclantly, the phase of the scattered light at any

point on the object was still assumed to be uniformly distributed on

(O2M). Hence, the theory applies only for surfaces that are quite rough

on the scale of tile wavelength of the Illuminalion.

Following this early work that dealt with the intensity patterns

existing in the scattered light, other investigators--notably lowenthal

and Arsenault7--have studied tile properties of similar patterns )bserted

in the images of coherently illuminated diffuse objects. Those treat-

ments have assumed that the complex fields in the image plane obey cir-

cular Gaussian statistics; i.e., the real and imaginary parts of the

field are zero mean, uncorrelated Gaussian random variables, with identical

variances. Such an assumption is valid if tile correlation area of the

diffusely tra.s'ni tted or -el lected wavefront is small compared wtth tile

area of the point-spread function of the imaging system and if the phase

of the light at each point on the objct is approximately uni formly dis-

tributed on (0,2-). Since the current discussion will be limited to

speckle patterns observed by direct measurement of intensity in the sent-

tered light, without any intervening optics, the problem studied by

Lowenthal and Arscnault will not be addressed.

The next important piece ofi work dealing with directly observed

speckle patterns is that of Crane." Hte derives results that appear in

various respects to conflict with earlier results of Goodman 4 ' and

Goldfischer. Crane's comments are directed at the paper by Guldfischer,

but his chizf criticism is as follows: Goldfischer assumes that the

field produced by a small sub.ectLion of a diffuse surface is proportional

t+ I I Yn ! '-fI 014. nrt- ,F !hn ! NIis!no!! f-!" e.h 4 oI,.,

light, the field must be directly proportional to Q.;10 i'rea because the



field contributions add on an amplitude basis, Thus, Crane concl*,tdes

that Goldfischer used a physically incorrect model and that this is the

reason for the apparent differences between the results of the two

theories. It should be mentioned that Crane's theory has the merit of

allowing for a finite correlation area of the diffuse surface. Of the

work preceding Crane's, only that of Goodmannf allowed for this possibility.

Crane's criticism of Goldfischer's work was answered in a letter by

Arsenault.9 Arsenault asserts that the differences between Goldfischer's

and Crane's results arise because the former theory derives statistical

average results while the latter is entirely a deterministic theory.

Arsenault addresses his comments only to the early part of Crane's paper

and in particular. to that portion through Crane's Eq. (16). In a later

portion of his paper leading to his Eqs. (38) and (39), Crane has derived

expressions for the statistical average power spectral density, the same

quantity derived by Goldfischero The important differences between these

two expressions were not reconciled by Arsenault's comments. However,

in 1973 Goodman") showed that the discrepancies are only apparent and not

real, and that they have resulted from improper interpretation of results

rather than improper development of the theory. Specifically, Crane's

result as expressed by his Fq. (39) can only be applied to relatively

smooth surfaces, that is. surfaces for which the rms surface roughness

is much less than one wavelength of the scattered radiation, On the

oth&: hand, the results of Goodman's and Goldfischer's analysis can only

be applied to truly rough surfaces, that is, to surfaces for which the

rms surface roughness is much greater than one wavelength of the scattered

radiation. Moreover, Goodman"--starting with Crane's Eq. (38)--derived

an approximate expression for the statistical average power spertral

aensiiy, valid for Lruly rcgh suifae, tlhat IS C.ti.cly . .

with all previous theoretical work. Thus, the apparant discrepancies



have been reconciled and all theories are mutually consistent when

properly applied to their regions of validity.

B. Approximations and Assumptions

"he mathematical statement of the lluygens-Fresnel principle is

E( E(u v,w) eXp~ji j.r - Ir i] coS4 ( 0 - Sid s
E(xy) =X (2.1)S :" -s

Implicit in the use of this principle are approximations and assumptions

similar to those used ir. the Helmholtz integral formalism--the usual

starting point for microwave scattering calculations. A more complete

discussion of these approximations and assumptions will be found in

Beckmann and Spizzichino."

As in the case of all scalar thcories, the results obtained here

are valid only for small angles of incidence and small bistatic angles.

We make the approximation that the field E (uvw) reflected from the
s

surface can be represented by the product 11(uv) E (uvw), where fl(uv)

is the surface reflectance. This is a reasonable approximation since

the minimum water wavelength A is known to be much larger than he
mi 11

optical wavelength ,. The amplitude reflectance, (uv), is taken to

be -I(B) where I3(B) is the Fresnel amplitude reflectance at the inci-

dence angle M, the surface elemental area) dSs, is taken to be the same

as the elemental area dudv in the (u,v) plane. The obliquity factor is

taken to be cos a. The preceding three approximations are reasonable

for a rath calm sea with gentle slopes. Finally, the factor -

is approximated by r in the denominator of Eq. (2.1), and also by the

first feu terms of its binomial expansion

2 2

I r I r - xu yv u F v. % Cos (2.2)
-o S r 2r

0 0

10



in the exponent of Eq. (2.1). 1% this regard it should be noted that

there are different ways of grouping the terms in the binomial expansion

that result in slightly different approximations. In one case, the small

angle is approximated by its tangent while in the other case it is approxi-

mated by its sine. The Huygens-Fresnel principle, in its approximate form,

is stated here as Eq. (2.3).
kr

Cos u ew
E( = - .h Es(U VW) exptjk[v(uv) - w cos ]) dudv (2.3)

-00

with

2 2
u - v xu I- yv

- 2r r (2.4)

0 0

The basic statistical assumption is made here that the ocean wave

height statistics are wide-sense stationary, at least over the patch of

ocean illuminated, and the wave heights are Gaussian distributed.1 , ;'

The effects associated with sampling only a finite patch of the ocean

both in the wave height statistics and the optical field statistics are

accounted for. The statistics of the scattered fields at the observation

point are taken to be circular complex Gaussian. Such statistics arise

only when the scattered field components generate a complex random walk,

with approximate uniform phase associated with the various field contribu-

tions. This amounts to assuming that the rms surface roughness is com-

parable with or greater than the wavelength of the scattered radiation,

an assumption that is well justified even for a calm ocean. It does mean.

however, that the present results cannot be applied to perfectly smooth

surfaces, such as polished mirrors.

11



C. Ensemble Average Scattered Intensity

In this section an e .prtasion is derived for the ensemble average

scattered intensity distribution, (I(xy)), as a function of the nor-

malized ensemble average spatial coherence function of the fields in the

(u~v) plane. Subsequently it is shown how the spatial coherence can be

expressed in terms of physically observable ensemble average surface

characteristics.

An explicit expression for the field E (u,v,w) can be written withs

the help of Eqs. (1.1), (1.2), and (1.3).

Es(uvW) ' E(u.v) exp1-jk o(u,v) . w cos DI (2.5)

with

(uv)= u sin B cos A t- v sin B sin A = i (Ux i (2.6)

and

E(u,v) -111(B)jg(u,v,o) E 0 (2.7)
0

Equation (2.3) now may be restated as

jkr

E(xy) = COS BC E(u,v)

expljk[ (uv) -. ' (11v) - w(cos B i- cos dudv (2.8)

As an aid to interpreting these results, note that the Hluygers-

Fresnel principle may be stated in the equivalent form6

12



E(Xy) Cos e Ep(uv) exp[jk o(U3V)] dudv (2.9)

where E (u,v) is the mathematically equivaleut field in the (uWv) plane

as opposed to the field on the scattering surface. The terminology

"mathematically equivalent" field is used here to emphasize the fact that

E (uV) is not the physical field in the (u,v) plane but, rather, it is
p

equivalent to a physical field which, if present in the (uv) plane,

would produce the field E(x,y). A comparison of Eq. (2.9) th Eq. (2.8)

yields the result

E (u,v) = E(u,v) exp-jk t (uV) - w(cos B + cos (2.10)

The ensemble average scattered intensity, (I(Xy)), is, by definition

(I(x,y) 4 (E(.,y)E*(x,y)) (2.11)

where the carets are used to indicate that an ensemble average is to be

performed. Equation (2.9) may be used kn Eq. (2.11) to yield

(I(x,y)) - (OS E P (1  v

x C-x k I v I du dv du dv (2.12)
p L'l, l) ('2,v2 1 1 2 2

The quantity in carets in the integrand will be recognized as the mutual

intensity J(u1 'vlu 2,v2 ) of the equivalent fields in the (u,v) plane, and

from Eq. (2.10) is given by

E= lvE e' jk U V U

( u2 v2 ) (u2,v2) 0[ ( 1 ) 1

12)( 
(213)

13



A-

Using the new variables

Abu Auu 01 - 1 0 U i - U - "2 22

(2. 14)

Av Av
vi 2 " o 2

Eq. (2.13) becomes

KJ u, V;Au.Av)) = Jo(u,v;AuAv)Y(Au,Av)) (2.15)

with

A~ u -) (2..1.6)Jo(uv;AuyAv) E(u - o, 2/L - )

and

(Y(Au,Av)) A exp[-jk(Au sin B cos A i Av sin B sin A)'

x (exp jk (i - w2 )(Cos B f cos (2.17)

Equation (2.12) now takes the form

(I(xy)5 = Cos J Jo(u 0ov o;A t Av) ((AUAv)),t-) 2 Jf

x exp J du dv dIAtdAv . (2.18)
r r r 0 0

It witll hp (|innng ftrod gih geqtontl (see Anendiv B) that Lilnc func-

tion (y(Au,Av)' has a nonnegligible value only for displacements (Au,Av)

less than a few wavelengths of the scattered rod' 1. Using this

14



knowledge and the approximation

exp jo iuu i V (2.19)

Eq. (2.18) now can be written as

C2 -if EJ u ,v ) du dv 0 ((y(Au,Av))) (2.20)

0 0

where

I (Uo~ 0 AJ (u ,v ;0,O) (.1

~c~d
and the notation U is used to indicate a two-dimensional Fourier trans-

form with respect to spatial frequencies (ab) and spatial coordinates

(cd).

The approximation indicated by Eq. (2.19) is reasonable as long as

the angle subtended by the aperture function i.t the observation point Is

'.,.aller than about une degree.

The integral in square brackets in Eq. (2.20) may be evaluated with

the help of Eqs. (2.:A), (2.16), (2.7), and (1.4).

f-f10u,)o)du 0dv 0= 2Z IT (B) iP1 = 2Z oP r(2.2' )

where P is used to indicate the reflected power. Finally, Eq. (2.20)r

may be rewritten as

(i~x~y2 ' (2Z P) . t6yAuAv)) (223)

(N 0 ) x y

xr ' , r
o 0

15

X-~'- ~ .--- _ ___-



There is an interesting interpretation of Eq. (2.23) that is con-

sistent with the understanding of the propagation of spatial coherence.

For the case of an infinite aperture, E.q. (2.15) reduces to

)v~~~ t-lv II(,) E2"2y(tju,6v))

In this form, (y(AuAv)) will be recognized as the space invariant,

normalized, ensemble average spatial coherence function. Thus, Eq.

(2.23) indicates that it is the spatial coherence that primarily deter-

mines the distribution of scattered intensity. It is therefore important

to be able to relate the spatial coherence to surface characteristics in

a manner that will enable numerical calculations to be made.

it is possible to derive expressions for other ensemble average ob-

servables, such as spatial coherence and power spectral density. The

ensemble average spatial coh.erence in the observation plane can be shown

to be the Fourier transform of the apertuArc function on the scattering

surface and is therefore not related to surface characteristics. More-

over, while the ensemble average pouer spectral density of the scattered

radiation can be related to surface characteristics, the experimental

technique of meas,-rng this quantity would be intensity interferometry

and therefore, in a practical sense, it uould be more difficult to measure

than the ensemble average scattered intensity distribution. Finally, it

should be mentioned that since the intensity averaged over many "speckles"

is equivalent to the intensity for temporally incoherent light, the ex-

pressions derived here are valid for incoherent quasi-monochromatic light

sources, such as filtered sunlight.

16



D. Spatial Coherence as a Function of Surface Characteristics

The probability distribution function p[w(uv)] for the surface

heights w(uv) must be known in order to perform ensemble averages. An

assumption that is in reasonable agreement with experimental evidence1

is that the surface height is a stationary zero-moan Gaussian random

variable with distribution

p[w(u,v)1 = C ) -1 fFp- Iw et (2.24)

where

[wOuv)!2p[w(uv)l dw(u,v) w(u,v)12 (2.25)

The covariance function R(AuAv) and the normalized covariance func-

tJin p(AuAv) for homogeneous (stationary) processes are defined by

(AuA") (w(uv)w(u + Auv f AV)) (2.26)

and

O(Au=v) 2 (2.27)

The joint probability distribution function p[w ,w 2 ] is given by

jr
-1 2 2w w A- w

p[Ww J P 1F - J exL ( (2.28)

where, for convenience. he following notation has been adopted:

w w(u,v) w2 
= w(u - Uau v v) (2.29)

17



The quantity in ensemble brackets in Eq. (2.17) can be interpreted

as the characteristic funetton for the distribution p(w 'w2) and thus

Eq. (2.17) can be written

(y(u,v)) = exp[-jk(Atu sn 11 cos A + Av sin B sin A)]

x exp -k 2 (cos B 4 cos ) 2[R(0,0) - R(Autv)]

=ext-i ) j R ux o vy

x expL- 2 (cos B+ C 2 ( (o,) - R(Au,Av)Jj . (2.30)

Through Eq. (2.30) the spatial coherence function is related to the

surface height covariance function which, with the known (or assumed)

probability distribution, completely characterizes the surface. Finally,

using Eq. (2.30) in Eq. (2.23), we get

(l(x,y)) = Co ( 2ZP)j02

iu, Av

x 3 (expL-k 2 (cos B3cos ) 2 [R(0,0)-R(Au,/v)]I)

(2.31)

It is of some interest to compare this result with the high fre-
e

quency microwave backscatter cross section C . In our notation the bank-

scattered (monostatic) intensity, I, is given by Frost and Jackson: E

2Z P
I - (2.32)

,T r 2

0

18



where

a. .j01 0I f cos(2kAu sin 8)

2 2-

x expl-4k cos~ O[R(O,O) R(Au,Av)]1 clAud~w (2.33)

When the backscatter conditions, B ~,A = 0, x =r 0sin ~,y =0, are

used in Eq. (2.23), the result is

2 ~(Z) Au,Av

(i(ro sin 0,o) x( r / [ (y(Au,tLv))j . (2.34)

$X ) sin B

We may construct a backscatter cross section a' using Eq. (2.32) for

the definition and Eq. (2.34) for the backscattcred intensity

Aju, AV

ai =Cos 2  ;y()2(2 [(y(Au,Av))1 .] (2.35)

sin

Since the covariance function is even in Au (for Av = 0), the Fourier

cosine transform can be used in place of the Fourier transform, to ob-

* tain from Eq. (2.35)

ci' cos cos(2kAu sin ~

x exp[.4k 2 COS2 0C R(OM - R(Au A)'dAudav (2.36)

2

which is identical with Eq. (2,33) except for a factor of cos 8.This

factor, which is approximately unity for small angles, arises from the

obliquity factor in the Huygens-Fresnel principle, and appears to be the

19



only difference between our results and the results of more rigorous

scalar diffraction theory. l

E, The Surface Covariance Function

Let w(uv) be a re.,lization of the random process representing the

elevation of the ocean surface. Evidently w(u,v) is a real zero-moan

random variable. The surface covariance function lt(uAv) of the random

surface elevation is defined by

I(U~,.,)AV) (W(uv)\t(u' 5U)v Av)) . (2.37)

When the process is assumed to be homogeneous (stationary) in the wide

sense, It depends only on the displacements (6u,Av) and not on the co-

ordinates (u,v); i.e.-

Kw(u, v)w(u L \,v v ) = R(Lu,Lv) (2.38)

Further, R must be symmetric about zero displacement; i.e,:

l(LuLv) = (-.u,- .') . (2.39)

Or, in polar coordinates

R(1hr 1 G) = (hr9 * -') • (2.0W)

Since the measurement of the surface elevation is feasible over only a

finite area of the ocean, it Implies the presence of an aperture g (0,v),

+ m, nt,| ztt-rneo ,lev.-tion is aiven by

g 
a

20



I'I

where g a(OO) = 1, ga (w,) = 0, and [lim(a -c )g (uv)] 1, so that

w (u)v) = w(u,v) as a - o. If W g( Ut v ) is the Fourier transform of

w (u,v),
g

Wg9(A u It) =JJ V? (Uv CxP [+u~ + VI)A dudv . (2.42)

The ensemble average power spectral density of the functions w (uv) is
g

defined as

12g(u'V dudv

If R is continuous, then by the use of the Wiener-Khintchine theorem, it

follows that

R(Au,6v) )2 ff S*\2~v 1cXpijItuA Iu +Av2I A di d2(1 (2.44)

and

*A'1 = ffWUAv) expLJ(Aut2 Lvlv)] dtmd~v (2.45)

where

S )= urn S*(£,2 (2.46)

* g
a-' 9

and S U( A V) is known as the power spectral density of the ranoom process

w(uv). It may also be shown that

-IS Ru,.v I(AuAv) 'a ' a

i~'~ -- 2 -gfIg a(uv)j dudv
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If the covariance of the apertured functions w (u,v) is defined as

g g g

It ,Lu,'L) t (w (uvw (u , u, v i AV)) , (2,48)

then

It(Auv') 2gU,V) '

l"{-(u~hv = .(2, 49)

2ft g(u,v) I dude

These e'uations express the result that the covariance function

R(tAu,Av) and the power spectral density S (U ,) of the random process

W(uv) form a Fourier transform pair. The covariance function It is not
*g

the Fourier transform of S *(2 ,I ). However, the space average of It
g Lu V g

forms a Fourier transform pair with S ( , .) I t is to be noted thatg u'v

it is not homogeneous and that [lim(a - c)ll I R(uLv). Figure 3 shows

g g

the geometrical relationship between the several domains between which

the transforms ar'e defined.

Frequently, the surface covariance function cannot be obtained from

the power spectral density since the Fourier transformation indicated in

Eq. (2.44) is difficult to perform. For this reason, as well as to ob-

tain a more direct physical insight into the various operations, we dc-

velop It in a Taylor series about the origin.

rn_1A --- M v ]Rp~q) (2.50)

. op ('tq Ip=q=O

Because of the symmetry implied by Eq. (2.39), it can be shown that In

hq. (2.50). the terms I r whi iclh n is odd ar identica ii Zeru. in uLh,:i

words, all odd order partial derivatives ol It are zero at the origin.
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Domain Functions
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(u, v) a) w Wg gaA
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x
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(AV

U

DIRECION OF
PERTURBATION SA-2618-3

FIGURE 3 GEOMETRICAL RELATIONSHIPS BETWEEN TRANSFORM DOMAINS

23



p R(pq) = 0 for n odd * (2.51)

6p Oq p=q=0

Thus Eq. (2.50) becomes

R(Au, Av) = 2n- rAu _ l- AV )]2, R(p,q) (2.52)

;n _=2n: o aq p=q=O

Using vector notation, we may write Eq. (2.52) as

CO

R(Ar) E __I_ .rR(p)] (2.53)

where

Ar i Au F j Av (2.54)

and

p 2 Lq (2.55)

The investigation of the region of convergence of the above series re-

quires much more information about the partial derivatives and has not

been pursued in detail. However, it can be shown that the maximum value

of R occurs at the origin. Further, with the help of the Taylor formula

with remainder, we may write

m

R(Ar) = - [(Ar . V2 R(p)

n=0 P=0

(2m1- 2)! 2 )] (2.56)

-0

where p = t Ar and 0 -= t : 1.
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Writing Eq. (2.44) in vector notation, and using the definition

S(J) = S*(I)/(2n) 2  (2.57)

we get

(r) = f SU,) exp(j Ar .) d12 (2.58)

plane

Substituting in the right hand side of Eq. (2.53), we get

m 2n 2n
(Ar) )S(M)(Ar • 1) d1A

-
2 n!

n=O plane

+ ( 2 J S(A)(Ar Z) 2n' 2 exp (i p C I. (2.59)

plane

If we use polar coordinates to describe both R(r,e) and S(UO), we have

6r • . = Ar I cos(a -

and

, n I 2
R(Lr,e) = (-1) n  r n/ 2 n! S(jO)[j cos(O - o)] 2 n A 1do

11=0

CO TT

t (-I) mlil[A6r 2m12 !/2m 2)] SL4'L cos(O -) 2m4 2

x ep(i p 0 Cos A didd (2.60)
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or

m n1,i 1(-1) 2n (-1)mI rm2

2n2 2nl 2m+2-R(Ar,0) hi (0) ar 2 + 2' M 2(p) Ar (2.61a)
n=0

where

M 2n(0) f d',dO (2.61b)

It is thus seen that the various terms in the expansion of Eq. (2.56)

correspond to various moments of the power spectral density. These

moments may also be related to the ensemble average properties of the

random process w(uv). The first term of the expansioni, or the zeroth

moment, is

M = ff S(1,0) A dido , (2.62)

0 
- 1

using Eqs. (2.61a) and 60). From Eq. (2.38) it is seen that

R(0,0) = ((w(u,v)3 2  . (2.63)

Thus the zeroth moment gives the mean square elevation.

The second moment is given by

M 2 = j S(U,0) A3 cos 2ie - ¢) d~do , (2.64)~Jo -TT

and the second term of the expansion is

2 -2r 2 Lk r - Yp) ,t P.Jk ,
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From Eq. (2.38) it can be shown that,

[(Ar V) R(P)___ = -Ar K[(Ar/Ar) Vu (2.66)

or

" M= /[(Ar/Ar •w(uv) (2.67)

[(Ar/Ar) * V w is the component of the gradient in the direction of the-- U

unit vector (Ar,/r). Since

(Ar/.r) • w - cos j Sill (2.68)

M2 may also be expressed as

~ ~ 2 ,low Sil Cos\I \

k9 ~ I/cos 2 \ 2q, j sin 2 o (2.69)M2 = cos 0 ) \\u\v/ V\AV/)

Thus the second moment, M 2 is seen to be equal to the mean square of the

slope component in the direction 0.

The fourth moment, M,, may be similarly related to the partial de-

rivatives of w(u,v), which are related to the curvature of the surface.

Thums,

M4 = ( r) ' qp]4 R(p)

p _0

22

=([ ( Ar / A r ) ° 7 ]J2 \w(utv) 1

r___ - _ 2 2 12~
- L 2 ou~ ' b 2 \/ ( . .
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III CALCULATION OF T11E SCATTERED INTENSITY DISTRIBUTION

A. General

The theoretical relationships developed in the foregoing are applied

in this chapter to the scattering of optical radiation from the surface

of the ocean. A specific power spectral density is assumed for the sur-

face elevation of the natural sea surface, and an expression is obtained

for the scattered intensity. Subsequently, a specific form is assumed

for the power spectral density of a perturbation on the ocean surface.

An expression is obtained for the intensity (listribution due to the per-

turbed ocean surface. Numerical calculations are made to evaluate the

effects of the various parameters of the perturbation.

B. The Power Spectrum of Ocean Surface Elevation

In a recent report a large amount of experimental data were digested

to develop an analytic representation of the spectrum of a uind roughened

sea. This spectrum, which is a function of %,ind velocity, has been used

in the present study as the poner spectral density of !he surface eleva-

tion of ocean waves.

For a friction velocity u* greater than a minimum value u, = 12 cm's,

the spectrum has been defined by the following equations.

I SI)F(2,M ) for (3.1)
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F(2,) (4 3-) cos - exp 2 ,2 21J]

1 [ al(U,) cos 2o] exp - 2 '2U' 2 1] (3.2)

and

S (a/21j') exp Ig2/e.'U4 ]  0 A el (3.3a)
( 1 U 71. 1 " 33,

S1 2 a2 2

= a'(21
" I) £2 . 1 (3.3b)

S, ai)/(2) l " ) 1 (3.3d)
4 3

S = aD£6/(211() - (3.30
(33e

-3-1 -1
where a = 8.1 0.7,1 0.3588 cm 0. 9,137 cm 'Ind

U the \'ind velocity at an altitude o: 19.5 meters

= -2.5 u Iln 0.68,1/u) A 105 u2 - 0.0.143 - In 1950 (3.4)

,. =  2(U *m /U,*)2  (3.5)

0.5726 1 1'2. 'D16 (3.6)
m

1/'29. = ( .' ) /

-1(3)
= 3.672 cm (3.7)

1) ( 27.1 0.0268 u* 6.03 Y 10- u (3.8)
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1o0 (nu is *i'og (z. 21) (:3. 9)

., 0. 214 log 10U 0.036 (31. 10)

Thus it is seen that S( ,,O) is dependlen t on the frviction velocity,

or indirectly on the %iiid speed.

In this description of the spectrum, the direct ion of1 thef- %%ind has

been assumed to coincide %kith the u-axis or the direction C :zC.= 0.

We note that

j F(j, () dIC I . (3.11)

In Figure -1, 1 S( ) is plot ted against 2.The area under the curve

is equal to the mean square elevation according to Eq. (2.62). Fi gure 5

presents the proven spectral (lens ity on a log-log plot, accentuating tle

dependence on wind speedI in regions of interest to this study. I t is to

be noted that a negligible Contribution is madle to surface roughness

from wave numbers larger than 0.01 cm . Figure 6 shows the factor

expt-g 2 2, 2U 4 as a function of e, as uil as 9 1 as a function or u*.

It is seen that the factor is almost unity for 2, > 2 ., Figures 7 and 8

present the angular dependence of the power spectral density for 2<

and , > Al, for various values of' the parameter a.

C. Covariance Function of the Oceian Surface

The surface covariance function R(Ar,9) is given by the Fourier

transform of the power spectrum of the %%ave elevation as given by Eq.

rhis relation for a1 is an approximate analytic expression for the wind
speed dependence of a, obtained from the data In Piersen's report.'
Though a 1 could depend on P., this dlependence is i gnored.
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(2.58). Thus,

R(Ar,p,) A f U) F(1,0) exp~jjLv cos('Z - 6)] d .1 (3.12)

The integral over 0 may be performcd analytically and expressed In terms

of Bet "I iuncLionii of uven ordur, " Th dutaiib of Chu iinwration

are presented in Appendix A.
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IMT

(( - (4/3) cos 20 J2 + (1/3) cos 40 1J41 dj

CD

S(2EM(1[o/3) (i 3al) co 29 J2 -(1/3) cos 49 d

(3.13)
where

E(U) = (3. /2124] (3.)

for Ar = O, Jo = , and J 2  J = o. Thus

R(O,0) = f s( ) d = M . (3.15)foo
For larger values of Ar, It undergoes oscillatory behavior governed by

the particular combination of the almost periodic Bessel functions.

Examination of the 9 dependence of It as given by Eq. (3.13) shows

that R is periodic in 9 with a period of T/2. In other words, R is sym-

metric about both cartesian axes. It should be emphasized that this is

not a general property of covariance functions but derives from the

chosen power spectral density, which was chosen with the same symmetry.

Although analytic integration of Eq. (3,13) to obtain an expression

for R(Ar,q) is difficult, numerical evaluation is possible. Hlowever. for

the purposes of this study, the method of moments described in Chapter II

turns out to be more fruitful. From Eqs. (2.60), (2.61), and (3.1) we

get

CO . . . . 2n l 2n .
M2n J j )*FZV)Z. Cos kta , d~d4 . (3.16)
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In the further development, we shall need only the second moment, which

has the form

A2 = F' u) cos 9 1 u

= I- G) cos 2 G s2in 2 (3.17)

The details of the evaluation of the spectral moments as well as

the forms of Fo(u*) and Go(u*) are also given in Appendix A. On compari-

son with Eq. (2.69) it is evident that

2

\-i Ii 0 (3.18)

2(Qv) = G (3.19)

and

(('W)ul0-o . (3,20)

Equation (3.20) is the result of the choice of wind direction made in

the definition of the power spectral density. The values of M 0'2! IN4l

M6' as well as G for e = 0 are plotted in Fi.gure 9 as a function of fric-

tion velocity and wind speed. (Note that F + G0 = M2 for e = Ofo o

course, M is independent of angle 9. The angular dependenc, ofd M2 iso2

seen from Eq. (3.17). The angular dependence of M4 and M 6 is complicated;

however, they all have maximum values at 0 = 0.

It is of significance to consider these numerical values for the

moments, along with the Taylor's formula for R(Aro) given hy Eqs. (2.56)

and (2.61).
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1 2 1 4 1 6
R(hr,G) =N - N2 6~r [- -N6r - M6 Po . (3.21)

Consider the approximate representation of R(hrO) by only the first two

terms of Eq. (3.21). Taylor's remainder theorem indicates Phat the

maximum error resulting from this truncation is given by the next term

after the truncation. For u = 192 cm/s and hr 0. 1 cmi, the terms in

the series are numerically given by

1 2 -3
- MAr = 3.64 x 10

1 2 5
M- r = 9.63 X 10

4

1 6 -5M1 r = 3.34 X 10
120 6

Thus. M - (/2) M Lr2 appears to be a very accurate representation of
0 L

R(6r,e) for displacements r tip to 0.1 cm,

D. Intensity Distribution of Optican Radiation Scattered by the Sea

The ensemble average spitial coherence function is given by Eq.

(2.30) a*

(y(Lu,&v)) exp[-jk(Au sin B cos A , Av sin 1B sin A)M

x exp -(cos 8 1 cos )2 [(OO) - R(u,v)j (322)

It is argued in Appendix B that the factor [R(0,0) - R(hu,hv)I in
2

the exponent in Eq. (3.22) may be replaced by (1 2)P4 2r when It is the

wave vector of optical radiation. Thus
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4k

(Y(6u,Av)) expE~ Au I-X tvy1

F-k2  , ~b1)
X exp[- (cos B r cos B). 6r2  (3.23)

From Eq. (3.17),

M2r = (F 0 GO  I G Av . (3.24)

From Eqs. (2.31), (3.23), and (3.24) the average intensity distribu-

tion of optical radiation scattered by the surface of the ocean is given

by

2
2Z P cos 2

(I ( ,Tp)> = 0 r

(Ir)
2

xff exp{ -2. (cos + cos B)[(F 0 G1 U 0) u G 0v]}CO !1

X exp[-jk(Au + tAv)] dhudAv (3.25)

where

" +(x cos I- x cos B) (3.26a)

and

=y + = -y Cos + YoCos B .(3. 26b))

We note that xo andy are the coordinates of the laser beam at the tar-

get plane. Performing the Fourier transformation, we get
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ZP 2
, o r cos 1

2 22

Sr (cos B cos B) o 0

o ] (3.27)

2(cos, cos B) GF 0 GO

or

Z P ,Z r co

nh (cos $ + cos B)2  G o

exp G(x co )G)( 2 12

2h2Go(Fo 4- Go)(cos c- B) c 1 3)

(3 *28)

This general expression for the intensity distribution, may be specialized

for the backscatter case by making the substitutions x = X0, y y0 and

=-B.

2 2
Z P cos G 0 (F 0 G

or-I(x Y) B = o _____rc (3.29)

ITI n(F 2h 2 -or

2V)) o r . [xp 2 COS S, 1 (3.30)([(.',$ = 2V( )G \F

d4Th F G 2 o
~0 0

where the substitutions h 2/(x 2 t- y = tan 2 x2 /(x2 f y) = cos 2, and
2/ 2 y2)

y 2(x 2- y ) = sin 2c as evident from Figure 1 have been made, From

Figure 1 it is also seen that the saie expression results if the laser

transmittor and receiver are situatel at the origin in the receiver

p!a c :d th* 1. . . . .~t *It t'1 n,- n1 F.' ''S>Z 11f k-a '.C',! **S.51 d

by the spherical coordinates (r, 0 ( -)
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For normal incidence (3 = 0), Eq. (3.30) leads to

1i (0 ,0 ) B I pe a k ( U )

Z P1 / [47 G)] (3.31)

We note that I is a function of the wind speed, since F and G are
peak o o

functions of u,. For a moderate wind speed of 7.,4 m/s, corresponding to
-2

u = 24 cm/s, /G (F 0 G ) = 3.,47 X 10 . Assuming a range of one kni,

a laser power of one watt, and a reflectivity (of the water) of one per-
2 -7 2 -2

cent, the factor (Z P /4-h ) has a value of 3 x 10 volts in . 1h1s,o r
-6

the peak backscattered intensity under these conditions is 8.66 x 10

Vol( m , or 3.15 x 10 watts per square meter.

At any other wind speed we may write

IkU* - G (24)[F (24) G 6(24) ~1 2

I opeak (2 4) G u ) ri ju *) G 0(u* ) (3.32)

In Figure 10, this ratio of the peak inten. to the peak Intensity

at an arbitrarily chosen friction velocity (u1 = 2,4 cm's) is plotted

against u* and U 19.5* It is noted that \ ith increvsitig %tind, or increasing

roughness of the surlace, the peak intensity decreases.

2
If we approximate cos 3 by uiity in Eq. (3.30), it can be seen that

contours of constant backscattered intensity are ellipses described by

2 *2 s c 2
I tan 3 = constant (3.33)H7-y. ,(F *Go GJ

or

2 2
S•= constant (3.3.0l
o S o
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Such lines of constant backscattered intensity--or isophotes--are

shown in Figures 11 to 15 for various wind speeds. In each figure, the

isophotes are shown in a polar plot against i, for values of

(1/1 peak 0.8, 0.6, 1/0, and 0.2. The i/e isophote is shown dotted.

The value (/I peak) = I corresponds to the origin in each case. The

radial distance to the isophote at the azimuthal angle ie is proportional

k€ to tan 3, the tangent of tile angle of incidence at which the intensity

is the shown fraction of the peak intensity at the same wind speed. The

absolute intensities at the isophotes may be compared by using the ratio

[I peak(u )/1 pak(2,) shown on each figure.

The semimajor and semiminor axes of the ellipse of the I/e isophote

are characteristic of each wind speed. In Figure 10, these values are

also plotted as taand tan I against wind speed. From thesealoplteda tn8max min
figures, it is evident that as the wind speed increases, the intensity

distribution becomes broader as well as lower in absolute value. This

is consistent with the intuitive notion that as the wind increases, tile

mean slope increases, spreading the incident energy over a larger angular
c e

spread. We note that the tan 31m and tan curves have approximately

the same slope. In other words, the eccentricity of the ellipses changes

only to a small degree %,ith increasing %%ind speed. This implies that

with increasing %wind the downwind slope increases only slightly faster

than the crosswind slope.

At low wind speeds, the values of tan are small even at small
2

values of (II peak). So for these cases, the approximation cos Q =1

is valid. However, at higher wind speeds, tan B becomes appreciable even

for (I/I peak) = 0.8, and the approximation is no longer valid. Thus, in

these cases the isophotes will be ( 1 lipses only near the origin (small 3),

and at. larger values of tan 3 the curves in Figures 11 to 15 do not repre-

sent isophotes. The qualitative observations about tle backscattered

intensity made above arc still valid.
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2
When cos 2 can no longer be approximated by unity, and to the ex-

tent that the theory developed is applicable at such angles of incidence,

the curves shown in Figures 11 to 15 may still. be used to determine the

backscattered intensity as a function of a and .

Equation (3.30) may be rewritten as

2i 
2v ][Cos s) tan 2 (3.35)

0 o) 01 Cos
peak

For a constant value of the right-hand side, this equation still describes

the ellipses of Figures 11 to 15, with cy equal to the polar angle and

tan 5 equal to the radial distance. In Figure 16,

I/Ilpeak • cos = constant

is plotted for the same values of the constants that are plotted in

Figures 11 to 15. 'ran a is also shown as a function of a. Thus at any

point on the curves shown in Figures 11 to 15, we can determine c, and

tan , and from Figure 16, the values of a and I/Ipeak may be read off,

It should be emphasized that the validity of the theory is questionable

when the small angle approximation is no longer valid.

E. Power Spectral Density of Assumed Perturbation

In order to investigate the possible effects of various types of

changes at the surface that might occur as a result of various ill-

defined and possibly unknown interactions, the following power spectral

density was assumed for a perturbation to be superimposed on the natural

"Pierson spectrum" discussed earlier.

S'(2,O) 4 S'(I)F'(O) (3.36)
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F = 1+ a' cos 2(0 - ') for -T1 < 0 < (3.37)

M. _.x

2 

21)EGaD 

-3 
-I 

mx)

Sa(d = (3.38)

EGaD 6G 1 foi- < C

where'

22 2 32

6 maiavo 31G = VI\2 A22/ 82 312 (339

3 o % max)
-3 -1 -1and a 8.1 Y 10 D = 3.1 = 0.944 cm , nd2 8.24 cm max

E, 12, a , and . are the variable parameters of the perturbation whose
reference values are chosen to be: = 1, P= a 0.5)

max 3 V VOa

and i = 450. The reference perturbation is thus

s (,) = S'(2)F''(Q) (3.,40)
0 0 0

F'(O) = [1 I- sin o cos 0] for -r, < 0 < (3.41)
0 2n

aD 3[ 3 2 A3 2]
2 2 for 0 . ..

S'(2) = 4(3.42)
0

6

D Vo for2 < C
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The following general considerations were used to guide this choice.

The general shape was chosen to be essentially similar to the Pierson

spectrum. However, since the capillary range ( i = to 10 cm- ) is be-

lieved to be influenced by internal wave and other interactions %kith the

surface, the spectral peak of the perturbation was chosen to be at the

-1beginning of the capillary region at A3 = 0.941 cm , whereas the gravity

range is dominant in the Pierson spectrum. In order to obtain a few

finite initial moments, the spectrum was assumed to have a power law be-

havior similar to the Pierson spectrum for the viscous cutoff. The spec-

trum was chosen to coincide for E = 1 at , = 11 = j = 8.24 cm with
V VO

the Pierson spectrum for (an arbitrarily chosen but moderate) friction

velocity of u, = 24 cm's. The angular dependence chosen was again sug-

gested by Pierson's report, except that the direction of the maximum

wave energy has been chosen at an angle 0 -. ; i.e., at an angle , with

the wind direction. (See Figure 3.)

The integrated "energy" under the reference perturbation spectrum
S-3 2 -'3 2

is calculated to be 5.804 W 10 cm , composed of 1.311 X 10 cm in

-3 2the range 0 to ' 1. 161 ( 10 cm in the range I3 to £, and 2.8,4

-5 2
2.84 x 10 cm in the raage t to C. For comparison, the Pierson spec-

trum for a friction velocity u* = 24 cm/s contains an "energy" of
-3 2 -5 2

8.55 Y 10 cm in the range 13 to , 2.84 x 10 cm in the range
2

A% to '4 and 844.5 cm over the entire range.

Let us no% consider the various parameters and their effects on the

power spectrum of the perturbation. The defining equations have been

arranged so that a change in one parameter does not change any el the

others. The value of E determines the energy content of the perturba-

tion with respect to the reference perturbation. The value of £ de-
max

termines the position of the peak of AS'(1), 2.' determines the location

of the cutoff. (A should always be less than 2,.) The range ol 0 to
max "
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4

I in the value of the parameter a changes the angular dependence from
1

an isotropic behavior to a cosine behavior (see Figure 8). It has no

effect on energy content. The range of ( is evidently from -- /2 to T7/2.

However, due to the symmetry inherent in the Pierson spectrum, it is ade-

quate to investigate the range 0 to r'2.

We no\u consider the perturbed power spectral density

S (1,o) A S(L,p) I S'(j,O) (3.43)

The perturbed covariance function resulting from the Fourier transforma-

tion of S is evidently
T

RT(Ar.) = R(Ar,9) R'(Lr,@) (3.44)

where

R'(Ar,)= jA S() F'(0) exp[JiAr cos(O - O'll dO dA . (3.45)

In a manner analogous to the method for Eq. (3.13) explained in Appendix A

R'(Are) = f S'(4j 0) Ar) - a cos 2(e - ,))J2(£Ar) d2 (3,16)

2

Once again we note that as long as a' is less than unity R' is also mono-

tonically decreasing near the origin, and the relative maxima do not

approach the value at 4r = 0. It is, however, interesting to note that

for a value of a' = 1, the first relative maximum of 11' will occur at

LAr = 6.9 cm. Whether tT has a maximum at this position depends on the

relative values of R and R'.



The second moment of S'(1,0) has the form (see Appendix A)

21 1 2

N1 F cos 9 P 211 sin 9 cos 1 I G (3.4l7)

Using Eq. (3.17), we may write

IN]9 IN= F F I Go G cos 1- 211 sin cos

(Go  G) n (3Sil48)

Using arguments similar to those employed in the unperturbed case, we

write

( uv = [- (Aux %,o vy

Y xp It 2(cos S t cos B) 2 [ lj(OO) - ,,( A u'Av)]

= ox[-,j k (A~' Vo]

exp-(k2 '2 ) ( cos cos B) 2 (M M) 2] (34)

where we have neglected terms in Ar of order higher than 2 for reasons

based on the behavior of (y ) and ., as discussed in Appendix B. It is
Appendi

noted that the expression for [iT(OO) - RT(Au,6V) is a quadratic form

%%hich may be diagonalized by a suitable coordinate transformation. Using

Eqs. (2.31), (3.,19). and (3.26), the scattered intensity distribution is

given by
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- 7 /

2Z P cos'l

(IT ,I) = o r 2
(\h)

x xp 'ces Sicos B) [(,. .,I I U)ALI2i1f A\AIG (ic)6V 2]

Xexp[-jk(Autfl6Vay)I dAud6v (3.50)

The quadratic form in the exponent may be diagonalized using tile rotations

os= C o ' I Sin , u/ = Lu Cos A V Sin

(3.51)

sl =T-i sn ;- cos5 v = -Au sinll A cos I

to obtain

2Z , ,> oPr Co--so~ k2,-¢., - 2 22]
eZP co (Cos 8 .. os 3) C-11 D 21)

(T h ) 2 f 2

xL xp[-.jk('U' d'2.v')I lLl'jdv, (3.52)

where

C = F F1  2G i 2G) (F )2 .u1 (3.53)

1) = F 2G -G 2G ,11, (3.5,4)
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11/2

COS___2] 2 1112 (.5

2 2 ] 1 /2 9 ~ '

sl 2[(F J2 - 1 (3,56)

lWe note that C, 1), and j, are functions of u, £a ,\)' E) a and .

Performing the Fourier tran.formation, we get

Z P 1
IT( or Cos

rh 2 U (cos 10 cos 13)

(,2 -H (3.57)
2(cos cos B)2 C

For the backscatter case, it may be shou~n that

=2 sin S cos(G, - 5) =2 sinS• sin(,- ) (3.58)

and

2
Z P Cos

(IT(C 3) B  = 0'l 1h2  ,/ '

t anl Cos2(ri sill2(a-5(.9
Sexp 1 2 C D '

On comparison %,ith Eq. (3.30) for the intensity in the unperturbed case,

it is seen that the major change is a rotation of the distribution by an
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2
Once again we make the approximation cos 3 = I to rewrite Eq.

(3.59)

c - ) tan 2 constant (3.60)

and, as for the unperturbed case, the isophotes are ellipses but tilted

to the coordinate axes by the angle 1. (When the approximation

cos 1 = is no longer valid, considerations similar to those in the

unperturbed case apply.) The effect of the various parameters are con-

sidered in the next section.

It is of interest to rewrite Eq. (3.19), using Eq. (3.2:3), as

=.u /Y(LAu,-%v)) CXP[.(k 2)(cos 1) ,r

KY) (y'' \  (3.61)

From the convolution theorem, it follows that

(1) = 1!) * 9(Ty' ). (3.02)

where * denotes a convolution in the space domain.

From the form of the functions y and y', both y and y are seen to

be t%%o-dimensional Gaussians, even though it is not immediately obvious

from the expression for /y') since a coordinate rotation is required to

cast it in the standard form. Their Fourier transforms (I and ;Y[y",l

then must also be Gaussian. The convolution of a t%%o-dimensional Gaussian

with another results in yet another Gaussian (I T ). In this case, it turns

out to be analytically more convenient to perform the Fourier transforma-

tion directly than the convolution.
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F. Parametric Analysis of the Effect of Perturbations

As indicated in the previous section, a parametrized power spectral

density was chosen for the perturbation, largely on heuristic grounds,

and anl analytical expression %%as developed for the average backscattered

intensity. The variable parameters of the perturbation spectrum are:

Z max , the position of the maximum.

: the position of the short-wavelength cutoff.

E, the energy parameter of the per turbation.

a a the factor controlling the angular dependence of the

power spectrum.

the angle the perturbation makes with the wind direction.

Since these parameters can be varied independently of each other, it is

evident that an infinite variety of conditions is possible. To limit

this variety to a reasonable number, it uas decided to choose a standard

condition and vary each of the parameters about this condition. Tab e 1

summarizes the conditions studied.

In Figure 17, 2' () is plotted against log I for various values or

2 and E to show the spectral shape of the perturbations. ior purposes
max

of comparison, the Pierson spectrum is also shown for several values 0l

u.. Since it is difficult to appreciate from this log-log plot, that the

energy is held constant whi!.e the parameters are changed, 22 S'() is

plotted against log I in Fisure 18, In this case the area under the

curve, equal to the energy, is the same as the area under the curve of

2S (2,) versus 2, even though the spectral maximum is shifted. Note that

a. and have no influence on this plot of the power spectrum: i.e.. for

all values of a 1 and ",, the power spectrum of the perturbation is tlhe

same as the standard. Figure 8 conveys the effec! f al on the spectrum.
( 1
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Table 1

PARAMETERS OF THE PERTURBATION

Parameter

Description Symbol Standard Value Range of Variation

-1 0-10
Peak position p t0.9at.1 cm . l- cm

Energy parameter 2 1 0-10

Short-wavelength cutoff It 8.2,1 cm- 1-20 cm-

Angular dependence ad i. 5 0-2

Orientation wi th
respect to wind 450 0 -90 'p

rotates this pattern about the origin o the angle . Note also that

for E = o the perturbation is identically zero, and the results corre-

spond to thee unperturbed case.

Figures 19 to 28 show te effects of changing the various parameters

on the quantities entailed in determining the backscattered intensity

distribution. In Figures 290, 26, and 28, ahr Ipeak refers to the

backscattered intensity at normal incidence ( =0), relative to tile
e e

value for the standard perturbation. Tan fmax and tan mi n respectively

refer to the semimajor and semiminor axes of the (1/0) isophote. In

othex words, they correspond to the value of 8 when the intensity has

fallen to (1/c) of thz value at $ = 0 The angle 6 is the angle by which

the symmetry axes of the isophotes are rotated from the direction of tile

wi nd.

Tile effect of the various parameters is portrayed in a different

manner in Figures 20, 22, 24, 26, and 28, where isophotes for which

• standard
u I I peak derived fromi Eq. (3.60) are -hoim~ ior t\uo selected

values of the parameters, in addition to the standard. Tile intensity oin
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all the isophotes is (1/c) of the value of the peak intensity (normal

incidence, 0 0) when the standard perturbation is superimposed on the

Pierson spectrum (E = 0). The change in the angular spread and the

rotation of the symmetry axes are to be noted.

While each of these perturbing functions contain an almost insigni-

ficant amount of energy whent compared to the total energy contained in

the Pierson spectrum for u, = 24 cm/s, it is clear from these figures

that some of these perturbations can greatly alter the scattered inten-

sity distribution, especially %khen they are situated in the capillary

region.

or example, in Figure 19 as the peak of the perturbing function is

Ii d from outside the capillary region to well wititin the capillary

r_.,on, the peak e1' the scattered intensity drops rapidly, and there is

C
I corresponding broadening of the distribution as indicated by tan flma x

and tan hsLi. Moreover while a perturbation outside the capillary

region has little effect onl the symmetry of the scattered radiation, a

perturbation well within the capillary region can rotate the symmetry

axes of the scattered radiation by a large angle S. Thus, it can be

concluded that, at least for the perturbations assumed here, the scatter..

intensity distribution is more sensitive to perturbations within the

capillary region than to perturbations at loxer %kave numbers.

On the other hand, Figure 23 indicates that moving the high wave-

number cutoff to even higher %%avc numbers has relatively little effect

on the scattered intensity. However, moving this cutofI to lo~er ;ave
-1

numbers does affect the scattered intensity, particularly for i' 1 cm

ilowever, this may be due to the large contributton made to the perturba-

-1
tion by the spectral region near I cm

Increasing the .th (amount ol energy) of the standard prtrtia-

tion also greatly at icattered tntent;ity distri butlon, :s

7,4
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indicated by Figure 21. Again it is clear that adding energy to the

capillary region of the spectrum causes more scattering, as evidenced byj tle peak intensity falling and tan $1 and tan fi"  increasing.

We note irom Figure 25 that changing the angular shape of the per-

turbation from isotropic behavior (a' = 0) to cosine-square behavior

(a' = 1) essentially leaves the peak scattered intcnsity unchanged but

affects the symmetry axes of the scattered intensity indicated by 6 and

-S makes the distribution more elliptical.

Similarly, Figure 27 shows that changing the orientation of the per-

turbation relative to the wind direction has essentially no effect on the

peak scattered intensity but does affect the eccentricity ol the ellipti-

cal intensity distribution (causing it to be more circular) and the

orientation of the symmetry axes.

The change of j with $ in Figure 27 is interesting. It shows a

maximum and decreases toward zero. In other words, even though the

direction of the perturbation continues to greater angles, the intensity

distribution returns to orientation along the wind. On closer examlina-

tion, it is found that the behavior of at '- > 45 is dependent on the

relative values of F and F1 in Eqs. (3.,18) and (3.53)-(3.56), which is

governed by the value of the energy content of the perturbation. It is

found that S returns to zero at , 90 , when E ,- 1.675 , and that 5 con-

tinues oil to 90 at 90 Y when E : 1.675. At E = 1.675, Fo = F It

ar apnoacin tanach
should be noted, however, that tan 3 an ta ie approacihing each

other, meaning that the intensity distribution is very nearly circular.

For this reason quite possibly, no great practical significance ou~ld be

attacl, d to ihis observation.

Comparison of these results with those accompanying Figures 10-15,

shows thait, except for symmotry, the change in tntensity distribution
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brought about as a result of perturbations are similar to those brought

about by changes in %%ind speed and therefore these two causes canUot be

di stinguished by measuremenk.s of intensity alone.

It has been assumed, of course, that the ocean surlace is homogeneous

under the "scan" in both cases. II other words, the ocean surface has

been assumed to present the same statistical behavior over the entire

scan area, which is much larger than the spot size. This, however, will

rarely be the case. Local fluctuations will always be p=.esent. Changes

of interest in the natural ocean surface due to internal wave, current.

or other interactions would of necessity be inhomogeneous. While the

technique will be insensitive, unreliable, or inapplicable to inhomo-

geneities smaller than a spot size, the variations on scanning over an

inhomogeneity will be significant and interpretable given appropriate

additional environmental data. With the development presented here, it

is difficult to assess these effects quantitatively, lacking empirical

data on the spatial and temporal variations in the ideal spectra assumed

in this study.

The results )f the parrmetric study can be summarized a. follows.

The effect of the perturbation on the intensity is most pronounced In the

capillary region. The energy content of the perturbation required to

see significant changes is on the same order as the energy content of Ohe:

natural spectrum in the capillary region and insignificant compared to

the total energy of the waves, The viscous cutoff does not have much

e fec" on the Intensity. The angular shape and the orientation of thce

pertui . 'ion affect mainly the symmetry of the intensity pattern %ith

respect to the %ind direction.
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[ LV MUMMhIAY AND CONCLUSIONS

'fie theory of "speckle patterns" from dliffusely scattered coherent

li ght has been examninedI and extended to apply to scattering by the suir-

-face of the sea. We have determined that thle surface charac teris tics

can be related to the ensemble average power spectral density of the

scattered radiation. However, since measurement of the latter quantity

is difficult, it would be more practical to measure thle ensemble average

A scattered intensity distribution. It turns out that the expression ob-

tained for that distribution is similar to that for high frequency radar

A backscot ter.

Assuming a natural power spectral density for the ocean surface

elevation, the average scattered intensity distribution is determined

solely by the slope statistics of the surface in the case of optical

illumnination, 'rhe detailed distribution was calculated and its behavior

at different wind speeds was examined. We found that as thle wind in-

creases, the backscattered intensity is reduced and spread over larger

angles. Weo also found that the downwind slopes increase only slightly

faster than the crosswind slopes with measuring wind.

A reasonable parametrized form was assumed for the spectral shape

-of a perturbation, and a parametric study was perforned. The effect of

the perturbation on the intensity (listribution is most pronounced in thu.

capillary region. The energy content of the perturbation required to see

significant changes is onl the sane order as thle energy Content Of the

natural Spuctrun in thle capillary region, and is insigni'icatit compared

utacL14. ktal eury 01 it: %UVUB. -111 VIZcotiS CUtOf (1does not have- mutch

orrrct on the illiensi ty. The angular shopc and LhU orientaltion of tie_
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perturbation affect mainly the symmetry of the intensity pattern with

respect to the wind direction.

[7
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Appendix A

EVALUArION OF SOME INTEGRALS

1. Integration of the Angdlar Part of the Fourier Transform of S(1o)

The Fourier transform of the power spectral density of surface Cle-

vation S~o,) gives the surface covariunce function according to Eq.

(2.58)

R(Ar) = f S(2) exp(jr •) dL . (A.1)

Using Eq, (3.1), Eq. (2.58) becomes in polar coordinates

R(Ar,9) = IS(M) F(,O) exp[jrl cos(o - 6)] dl (A.2)

If we use the definition

) -~ [_ 224 ]

E(J) = exp [ 2 U (A.3)

Eq. (3.2) may be written as

F(,o)= ll1-E()+-3E(A)ai cos 20+[1-E(I)Jcus 4o (A.4)

It is known" that

mJ(x) os(ro - x sin o) do (m 0, 1,2,,,.), (A.5)

#8
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From Eq. (A.5) it can be shown that

: - cos 2m€ cos(x sin 0) do Imn = 0,1,2,.) (A.6)

0

By using the symmetry of the trigonometric functions iinvolved, it can be

shown that

cos 2mo exp[jAAr cos(o - 9)) dD = (-_)m 4 cos 2me

"-I

r/2

x cos 2mO cos(,tr sin o) do

(-1) 2n cos 2n8J 2m(9tr) . (A.7)

Using Eq. (A.6), and substituting in the angular part of (A.2)

TV

F(,o) exp[jAr, cos(o - 9)] d0 J (Ir) - - 14[l - E(I)] IE
0 3 1

fil

1

Y J(gLsr) cos 20 + - [1 -E(,)]
2 3

Sj (JAr) cos 40 (A.8)
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Thus

R(r, ) f )(j o s iC Scos .

+ J S(Q)E(Z)El (4 3a, cos 29J cos 40J (A.9

2. Evaluation of the Spectral Momentsr th
'he 2n mnoment of the power spectral density S(U,0) given by Eq.

-(3.16) may be rewritten as

- o 2n+1is

M2n f() VUnQ) Cfn ( ) do d (A.1O)

Considering at first the integration over 0, we note that

C 2n (2n - 1):.n: 2
cos 2mO cos e- 0) d i = cos 2tn8 (A.11)

2 (n - m)(n + m)!

for 0 m n

=0 for m > n

Substituting from Eq. (A.4) and using Eq. (3.]8)

j F(Zo) Cosn(e-)d ---- 'r n(n-1) cos k+8n cos 3+2

2ln2 2

4nE() [a (W2) (2 cos 9-l)+(n3)

-- (n-l cos4  -8 cos 2 a]

SI I L2 El) (A,12)
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2,

2 2 4
From Figure 6 we note that E = exp(-g /2 U ) may be replaced by unity

for 2> 91 even for the lowest wind speed (corresponding to = 12

cm/s). Thus. for 2 > 21 Eq. (A.12) becomes

21(n -W

F(J,) cos (0- ) ( 1- 1) 2 cos 8 - 1 + n 1
JT 2 (n + 1):

= I for >" (A.13)
in1 2n:

Using Eqs. (3.3), which define S(Q) over five separate regions, Eq. (A.1O)

may be written with the help of the approximation (A.13):

)2n+ d2n+
M2n I Iln S1  dL + I2n

2 3
2, t 2 n + l  2n-1-

X (Iln i1 )[f ()2 n 1+ j S3(22 
1 d

1~ 2

+ S 11+1 dj 4 S5(1)z 2n d . (A. 14)

3 V

These integrations over A may all be performed in closed form for n < 4,

except for the integral over 0 A I which has a series solution.

However, the series converges very rapidly and the first few terms are

sufficient. The integral over A - I < w evidently does not c,:ist for

values of n = 4 or higher. Thus only the moments up to tzhe ,evcnth are

defined, and due to the symmetry of R(Ar,q), only the even irnf.,7 ts have

nonzero values.
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Adopting the notation

tL

C 2n+d

n2ni-i
h = ((A. d)

n f;O

Cl q 2 $(1), 2 n + l dt

jA

Sn S 5 ( ), 2 n4

v

we have

M 19F1h 1 1 ) (q + r + s + t ) (A.16)M2n Ilngn +2nhn + ln + 2n n n n

Expressions for IIn' (Iln + I2n), 1nh , Cn , rn Sn and t for

n 0, 1, 2, and 3 are presented in Table A-I. The following expressions

for the first two moments are obtained from the table.
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4 { r 3

a U a U*~1 a 1) ]
t g 3 1 L 2

2a 3

-- - -
(A. 17)

2 216 2

and

2 a 2 4 u

D D D(

2p (A. L2 12

3 -

u, i- -. ,- (.s

X :1 m 1 21)[ (12/'3)p 2 12

where

Xi i~,/,.(A. 19)

1

bl ,, (A. 20)

and

b =/2213 (A. 21)

On examination of the terms in Eq. (A.18) it is evident that, if

a is independent of 2 as we hove assumed, the terms are functions only

of wind speed or u*. Therefore, we rewrite Eq. (A.i9) as

m 2  F v(t*) COS 2 0 a
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3. The Second JoMront of S(Z,0)

The second moment of the power spectral density of the perturbation

is

2= fo S(L) d, - F'(O) cos - 0) do . (A.23)

Using Eqs. (3.37) and (A,1), e get

2 d Ia( cos 2 a ' sin 2qF'(o) Cos2(o d) = cos Q + 2 4 sin 0 cos e
2 4

-Tr

4"I cos 2, (A.24)

Using Table A.1, we get

I S'(t d AD LSPX +I

fo2 (6 2 P[Y n r r.'

(t= $E) (A. 25)

where

X= (./2) (A maxl/Z )2 (A. 26)

Therefore

I 1 I 2/

M2 - cos 2s + 1 ( cos 2,

2

F cos e + 2H1 sin cos + G .I  (A.27)

It is noted that F1 01" nnd 11 are functions of A, A', E, a, and 4.
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Appendix 13

REPRESENTATION OF T1E ENSE1ML AVERAGE SPATIAL
COHERENCE FUNCTION

The ensemble average spatial coherence function is given by Eq.

(2.30) as

(y(Au,(1v_)) exp[- Au(xw + - (vl

X expl-k2 (cos 8 + cos B)[1R(OO) R(Aui()] .1)

Consider the exponent of the second exponential factor; k is the wave

vector of the optical radiation. For 10.6 tm radiation k2 has a value

7of 3.5 x 10 . Even for angles and B as large as 600 (when the approxi-

mations made in the derivation of Eq. (2.35) are no longer valid] the

cosine factor is on the order of unity. Hence the exponential has ap-

preciable value only for very small values of [R(010) - R(AuAv)]. Con-

versely, if e is an arbitrarily small number,

expl-k 2[R(0,0) - R(Au,6v)Jl < C (B.2)

when

RO.0) - R(tu.Av) > -(hn e/k 2 (B.3)
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I
1. Behavior of (yCAu, v)> Near the Origin

Using Eq. (2.61-), the condition (B.3) becomes., near Ar = 01

1 2_ 1 4CZ-4-Mr -- M r 4 . > elk (B.4)
2 2N.A 24 "4"- i

'P4

If we neglect for the moment terms In Ar of order higher than 2,

Ar > -- 2 In CA 2 2

If we choose the smallest value for M (see Figure 9)- which will be the
2

-99value ofC (G 900) foru = 12 cM/s, and if we choose € =10-9

Ar > 0.027 cm
0

As discussed in Section iI-C, at this small separation the contribu-

tion of the additional terms in (B.4) are negligible, which Justifies

disregarding those terms in this discussion and in the expression for

[R(0,O) - R(AuAv)].

Thus the spatial coherence function (y(AuAv)) is a very narrow

sharply peaked function near the origin and may be represented accurat-ly

for Small tr by

(Y(Au,Av)) =exp[ (ux~ + y

...... a~~i n12 I' u Jflv fe~y AV- A n rf*!

(B.6)
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S2. Behavior of -If(Au'pvo) for ero  Ar <

We recall the integral expression for RC(r,O) given by Eq. (A.9).

Since E(M) - I for all 1, by combining the two terms in Eq. (A.9) uv may

write

COr
U(A,8 ~J ~(D -a 1 cos 29 dt (B.7)

l0

The value of a measured by different investigators varies between 0 and

0.5. The variation of cos e is between +1 and -1. Therefore (Jo + J1)
0 1

and (J - J ) bound the variations of [Jo - a cos 28 • J 21 The values

of [J(J r) t J (14r)] are plotted as a function of tAr in Figure B-I.

It is seen that the maximum positive excursions occur for J. - J for
o 2

tAr = 0 6.9, 13.3, and so on. Further, the maxima at other than

.Ar = 0 do not attain a value greater than 0.6.

These observations mean the following in interpreting Eq. (B.7).
At Ar = 0, the integrand is essentially LS(A. since (J ± J 2) is unity

4or all values of 1. Thus R(Auav) has the maximum value at the origin.

As &r increases, the oscillations in (J 0_ J 2) become important and in-

flueie the value of the integral. From Figure 4 it is seen that S(Q)

is positive for all values of ) and has a fairly sharp maximum. As Ar

increases fro. zero, the proLuct IS(l)(J 0 J ) decreases.o 2

It is intuitively clear that the integral will have a minimum (nega-

tive) value when the first minimum of (J 1 J ) approximately coincides

utth the maximum of the lunction AS(U). The minimum occurs at (AAr) = 3.5

for (J - J ) and at (W=r) 5.2 for (J + J If the maximum of IS)
o 2o

occurs at a, tnern the minxmum vaiues e1 the integral occur k1or u 1 = t)

at Ar m = (3.5/ max) and (5.2/1 a )--for the directiona 0 = 0 and /2

respectively. Similarly, the integral has a maximum value of

4r 2 (6.9/1a) and (8.5/1 ). For Instance, for u* 24 cms,
max 2XMax3
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-- I

-S(U) has a ax.muj at = 0.0012 cm Thus in the direction 6 - 0,

the first maximum of R(ar'e) occurs at approximately 57.5 meters. Noting

that the peak value of (J - 4 ) at 6.9 is 0.6. it is surmised that the

value of the integral wll be les thnn 0.6 R(0,0), and condition (B.3)

is amply satisfied,

4. The conclusion to be made from tho above discussion is that R(Au,~v)

is a function that smoothly decreases away froo or = 0, where it has an

£ absolute maximum, and whose further maximo are significantly less than

its value at the origin. This i mplies that

-211(050) -99

expFk [ , R(t&u, v)1 < 10

(or less than any other arbitrarily small value we wish to impose) over

the entire (Au,av) plane except near the origin, where it may be approxi-[ mated by Eq. (B.6).

Since Eq. (B.6) also becomes arbitrarily small over the rest of the

(Au,.Av) plane, %o may extend the validity of Eq. (1.6) over the entire

plane. Therefore, when k is large, %e may write

(,y(Au,Lkv)) =c-P L- v
S)]

X exp [(k2/) (L cs82 ~

Similar arguments may be made in the case of the spatial coherence

function of the yerturbed ocean surface,
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