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NOTATION

Symbol Definition Dimensions

2
A Aspect ratio b /S

b Span measured perpendicular to the plane feet
of the root section

Mean geometric chord, (Chordtip +

Chord root)/2

CD Drag coefficient, D/1 pSV2

1 2

CL Lift coefficient, L/I pSV2

Torque coefficient about the mean
C Mgeometric quarter chord,

C/4 1 - 2
MC/ fpSCV -

D Drag parallel to flow pound

ndue to gravity feet per square
g Acceleration dsecond

L Lift normal to direction of flow pound

MC Rudder stock torque pound-feet

Mb Rudder stock bending moment pound-feet

P Static pressure pounds per square

P Vapor pressure pounds per square
V foot

R Reynolds number VC/ve

S Rudder planform area square feet

iv



Symbol Definition Dimensions

V Velocity of free stream feet per second

a Rudder angle (angle of attack) degrees

square feet per

V Kinematic viscosity se fond
second

pound-square second

p Mass density per feet 4

a Cavitation number (P- Pv/ PV

v



ABSTRACT

Six rudders with a geometric aspect ratio of 1.5 and
widely varying section shapes were constructed to determine
the effect of section shape on the cavitating performance of
high-speed rudders. Experiments were conducted in the 24-
in. variable-pressure water tunnel at cavitation indices
between 4.0 and 0.5 and an angle of attack range from -5 to
+35 deg. Section shape had little effect on the lift curve

slope or on the maximum lift coefficient. However, the
blunt base sections had substantially higher drag coeffi-
cients throughout the normal operating range of rudder
angles. Rudder stock torque was significantly affected by
section shape and cavitation index.

ADMINISTRATIVE INFORMATION

This work was funded by Naval Ship Systems Command Code 03412B under

Program Element 62512N, Project F35421, Subproject SF 35421006, Work Unit

1532-100.

INTRODUCTION

The increasing cost of naval ships in the last decade has heightened

interest in small high-performance craft, particularly for coastal and

inshore warfare. The resultant demand for higher performance, better han-

dling, and improved motion characteristics in a seaway has created a need

for better predictions of speed and power, turning and maneuvering, and

motion for such craft. This investigation of high-performance craft rudders

is intended to provide much needed information on the force characteristics

of rudders under the cavitating conditions experienced by high-performance

craft. The purpose of this report is to aid in the design of rudders and

steering gear and to provide rudder force characteristics for turning and

maneuvering predictions.

A geometric aspect ratio of 1.5 was selected as representative of

the current trend in rudder design. The two parameters chosen as vari-

ables were rudder section shape and cavitation number.



THE RUDDER SERIES

Rudder profiles and typical section shapes for the six rudders

tested are shown in Figures 1-6. The rudders were constructed of brass and

polished to a smooth finish. They were fitted with 5/8-in. stainless steel

stocks located at the mean quarter-chord point. All had a span of 7.5 in.

and a mean chord of 5.0 in.; this gave a geometric aspect ratio of 1.5 and
2a projected area of approximately 37.5 in . Since Rudders 2, 3, and 5 had

very thin leading edges, it was necessary to increase the width at the root

so that it was thick enough to house the rudder stock. The normal rudder

sections were maintained to a point 1 in. below the root on the model;

above this point, the sections were thickened near the leading edge and

were faired into the root section. This fairing is illustrated in Figures

2, 3, and 5.

METHOD AND PROCEDURE

The experiments were conducted in the NSRDC 24-in. variable-pressure
1

water tunnel. The rudder angle was varied from -5 to +35 deg in 5-deg

increments. The tunnel pressure and velocity were set to correspond to

cavitation indices of 4.0, 2.0, 1.5, 1.0, and 0.5 for each rudder angle.

A water velocity of 23 ft/sec for cavitation indices of 4.0 through 1.0
6corresponds to a Reynolds number of approximately 1.02 x 10 . The tunnel

velocity was increased to 25 ft/sec for the 0.5 cavitation index, resulting

in a small (about 8 percent) increase in Reynolds number for this condition

compared to the other cavitation indices. The lower velocity at higher

cavitation numbers was necessitated by the capacity of the force balance.

Table 1 summarizes the experimental conditions. The cavitation patterns

were observed and sketched for each condition.

1 Brownell, W. F. and M. L. Miller, "Hydromechanics Cavitation Research
Facilities and Techniques in Use at the David Taylor Model Basin," David
Taylor Model Basin Report 1856 (Oct 1964).
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TABLE 1 - SUMMARY OF EXPERIMENTAL CONDITIONS FOR EACH RUDDER

(Superscript numbers indicate the rudders on which
cavitation first appeared for the indicated test
condition)

Angle Tunnel Angle Tunnel
of o Velocity of a Velocity

Attack Attack

deg ft/sec deg ft/sec

-5 4.0 23 20 4.0 23

2.0 2.01,2

1.5 1.5

1.0 1.0

0.5 25 0.5 25

0 4.0 23 25 4.0 23

2.0 2.0

1.5 1.5

1.0 1.0 1

0.5 25 0.5 25
0 4.0 23 30 4.0 23

2.0 2.0
1.5 1.5

1.0526 1.0

02-6 0.5 25

0.51 25

135 4.0 23

2.03-6 
2.0

1.5
l1.5 2-6 1.0 I

1.0 05 0. 5 25

1i0.51 25

15 4.0 23

2.0 2

l1.5l1

1.01

0.5 25

3



The rudders were tested below an 8.0-in. x 21.5-in. aluminum plate

with a gap of approximately 0.005C between the top of the rudder and the

plate. Forces and moments were measured with four 2-in. modular force

gages and with a transmission dynamometer mounted above the plate and housed

in a faired strut. A schematic diagram of the measurement system is shown

in Figure 7. All gages were calibrated individually, assembled in the sys-

tem, and then calibrated as a total system. Lift and drag forces are accu-

rate to ±0.5 lb, rudder stock torque to ±0.5 in-lb, and rudder stock bending

moments to ±1.0 in-lb. Lift forces on the model rudders varied from 0 to

150 lb, and the drag varied from near zero to approximately 75 lb. Maximum

rudder stock torques were in the order of 100 in-lb.

All data were reduced to nondimensional coefficient forms compatible

with the coefficients presented by Whicker and Fehlner. 2

RESULTS AND DISCUSSION

Figures 8-13 show representative cavitation patterns for the six

rudders, and Figures 14-19 indicate their lift, drag, and torque coefficients.

Figure 20 presents a comparison of the lift and drag coefficients of the

six rudders at a = 4.0 and 0.5. It is apparent from Figures 14-19 that the

NACA 0015 section rudder (Rudder 1) was the only one that showed any

appreciable loss in maximum lift coefficient for cavitation indices of 1.0

or greater. This deterioration occurred mainly at rudder angles greater

than 15 deg; such angles are probably beyond the normal operating range of

a high-speed rudder. The effective angle of attack of a rudder operating

on a real craft will generally be somewhat less than the rudder angle once

the craft starts to turn.

The lift curve slopes (dCL/da) of the six rudders for a = 4.0 and

1.0 did not vary significantly from one another for angles of attack less

2 Whicker, L. F. and L. F. Fehlner, "Free-Stream Characteristics of a
Family of Low-Aspect Ratio, All-Movable Control Surfaces for Application
to Ship Design," David Taylor Model Basin Report 933 (May 1958).

4



than 15 deg. The maximum lift occurred between 22 and 25 deg for all

rudders except Rudder 6 where the maximum was at approximately 27 deg.

Rudders 2, 3, and 5, which had their maximum thickness at the trailing edge,

had both higher lift slope and higher maximum lift coefficients than the

other three.

The flat plate had the lowest maximum lift coefficient; however, the

lift slope was equal to the NACA 0015 section up to an angle of attack of

15 deg. For angles less than 25 deg, the drag of the NACA 0015 section

shape rudder was substantially less than that of any of the other five

rudders tested. If the lift to drag ratio of a rudder is used as a figure

of merit, then the NACA 0015 rudder performed best. This can be seen from

Figure 21 which shows a comparison of the L/D ratios of the six rudders for

a = 4.0 and 0.5. The NACA 0015 rudder exhibited high negative torque on the

rudder stock over a wide range of angles. This means that once the rudder

started to turn, it would turn further on its own until it reached a high

angle of attack. This can be rectified by increasing the sweep angle or

moving the rudder stock forward.

Considering manufacturing costs, particularly on a craft of medium

speed, the flat plate rudder is probably the best choice. The drag coeffi-

cient lies about midway between the high and the low values obtained with

this rudder series. The drag coefficient of the flat plate rudder at 0-deg

angle of attack could probably be reduced by fairing the trailing edge with

straight line sections so that the trailing edge has a 20- to 30-deg

included angle.

At high speed (a = 0.5), the lift curve slope for the NACA 0015

section was equal to the noncavitating lift curve slope up to approximately

10 deg. Beyond a 10-deg angle of attack, the lift slope dropped sharply

and the maximum lift coefficient was in the order of 60 to 70 percent of

the maximum lift coefficient developed at cavitation indices of 1.0 and

larger. At cavitation indices of 0.5 and below, the NACA 0015 rudder did

not perform as well as in the 1.0 to 4.0 range. The lift on this rudder

started to drop rather drastically at approximately 18 deg and continued

until it reached a minimum at approximately 24 deg. At low angles of

attack, however, the drag was still substantially lower than that of any

of the other sections tested. At a = 0.5, the performance of the flat

5



plate rudder again suggested that this rudder is a reasonably good selection.

However, it is likely that under cavitation conditions, both rudders will

have cavitation erosion problems. At a = 0.5 and lower, Rudder 2 (the

parabolic section) is probably the best choice. Its thicker leading edge

will be less subject to damage than Rudders 3 and 5 and it does not require

as much thickening to provide adequate strength in the area of the rudder

stock. The parabolic section was less susceptible to cavitation erosion

damage than the flat plate or the NACA 0015 section.

The effect of cavitation on the lift, drag, and rudder stock torque

characteristics has already been discussed. It is interesting to note that

cavitation actually began at considerably lower (simulated) speeds than

the speed where any detrimental effects in performance were first observed.

Unfortunately, cavitation inception studies on these rudders were not con-

ducted; however, cavitation patterns were observed at each test condition.

The summary of experimental conditions (Table 1) indicates the point at

which cavitation was first observed for each rudder. Since both the

cavitation number and the angle of attack were varied in discrete incre-

ments, the actual cavitation inception point will probably occur at a higher

value of a than indicated in Table 1. It is shown, for example, that cavita-

tion was first present on Rudder 3 at a 5-deg angle of attack and a = 1.0.

Since no cavitation was indicated at Y = 1.5, it can be assumed that the

actual inception point for Rudder 3 at a 5-deg angle of attack was between

a = 1.5 and 1.0.

The stepped rudder (Rudder 6 shown in Figure 6) was designed to

operate with the after portion unwetted at high speeds, in order to reduce

the drag, but flow separation did not seem to take place. At a = 0.5 and

a 0-deg angle of attack, a very small cavity in the order of 1/8 in. long

formed behind the step. At higher sigma values there was no evidence of

cavitation at the step and the drag results do not indicate that flow

separation occurred. Since this rudder was designed to operate very near

the surface where there is a distinct possibility of ventilation, it was

decided to try to ventilate the rudder by injecting air at the step. Air

was injected by leading a tube (inside diameter of approximately 3/32 in.)

from the bottom of the tunnel. Several locations of the air tube as well

as several angles of attack on the rudder were investigated. It was not

6



possible to ventilate the rudder at the step in this manner, providing

further evidence that flow separation was not present. When ventilation

did occur, the rudder ventilated from the leading edge. Thus, it was not

possible to obtain the characteristics of this rudder with the afterbody

unwetted. If it does not ventilate, Rudder 6 offers no significant advantage

over Rudders 2, 3, and 5. These experiments are not conclusive proof that

the rudder will not ventilate under full-scale conditions.

For this series of rudders, the spanwise center of pressure was

between 40 to 50 percent of the span from the root. For the purpose of

sizing the rudder stock, the spanwise center of pressure may be assumed to

be 0.45b from the root. The rudder stock bending moment may then be calcu-

lated as

MB = VL2 + D2 x 0.45b

COMPARISON WITH OTHER EXPERIMENTAL DATA

The lift and drag coefficients for Rudder 1 (NACA 0015) obtained

from this series of experiments are compared in Figures 22 and 23 with

data for similar rudders. 2 ' 3 The water tunnel results from Kerwin et al. 3

are for a rudder with an NACA 66 section of aspect ratio 1.4; they agreed

quite well in both lift and drag and with the results obtained here for

angles of attack of less than 20 deg. The lift slope of the NACA 66 rudder

was slightly lower than for Rudder 1 of the present study; this is what one

would expect since the aspect ratio was lower. Figure 23 shows that the

drag characteristics of these two rudders began to deviate considerably at

angles of attack larger than 20 deg. This lack of agreement between the

drag coefficients is due to the difference in stall angles. The lift

breakdown occurred at 20 deg on the NACA 66 rudder and at 23 deg on the
NACA 0015 rudder.

3Kerwin, J. E. et al., "An Experimental Study of a Series of Flapped
Rudders," Mass. Inst. Technol. Report 71-19 (Jul 1971).

7



The results of the wind tunnel lift data2 corrected to a Reynolds

number of 1.02 x 106 agreed reasonably well with water tunnel data from the

present study. The lift curve slope (dCL/da)obtained in the wind tunnel

was 0.0506 compared to 0.0467 for the water tunnel studies. This represents

a difference of approximately 10 percent in the lift curve slope. The

maximum lift coefficient, however, was about the same for both series of

experiments. The drag data in Figure 23 show about a 10-percent difference

between the wind tunnel and water tunnel experiments. No corrections for

Reynolds number effects were made to the wind tunnel data for the drag

coefficient because Whicker and Fehlner2 had indicated that a change in

Reynolds number from 1.02 x 106 to 2.26 x 106 did not significantly affect

the drag.

The agreement among the three experiments is quite reasonable. The

data presented in this paper are therefore considered sufficiently accurate

for use in designing rudders for high-performance craft.

CONCLUSIONS

1. Rudder section shape has little effect on rudder effectiveness

(lift curve slope) for angles less than 15 deg.

2. For cavitation number values of 1.0 and larger, Rudder 1 (NACA

0015 section) has the highest lift to drag ratio and the lowest drag.

3. For low- and medium-speed rudders, the flat plate rudder is a

good compromise between cost and performance.

4. For high-speed application (a = 0.5 or lower), the parabolic

section (Rudder 2) appears to be the best choice.

8
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Figure 7 - Details of the Rudder Force Dynamometer Used to Make Force
Measurements in the 24-Inch Variable-Pressure Water Tunnel
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100 a = 0.5 15°0 a=.5 200 = 2.0

200 a =.5 25 0 = 2 .0 250 = 1.0

7-4

30 a = 2.0 35 0 = 2.0 35 0 = 1.0

Figure 8 - Representative Cavitation Patterns on Rudder 1
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50 Ca 0. 5  10°0 a= 1.5 15°0 ar 1.5

15° 0 = 0.5 20 0 2.0 20 0 = 5

250 T 2.0 300 a = 2.0 350 a = 2.0

Figure 9 - Representative Cavitation Patterns on Rudder 2
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5 0 C= 1.0 10 0 2.0 10°0 =0.5

150 (T 2.0 15°0 1.0 20°0 cT 2.0

250 a , 1.5 30°0 (7 2.0 350 c = 1.0

Figure 10 - Representative Cavitation Patterns on Rudder 3
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50 O" = 0.5 10 0 = 2.0 100 a = 0.5

150 a =2.0 200 c = 2.0 200 = 1.0

250 a= 2 . 0  300 c = 2.0 350 c 2.0

Figure 11 - Representative Cavitation Patterns on Rudder 4
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5 0 a= 0.5 100 a =2.0 10°0 a- 0.5

150 ar 2.0 150 a 1.0 200 a = 1.5

30 a = 1.0 350 a 1.0 35°0 ar 0.5

Figure 12 - Representative Cavitation Patterns on Rudder 5
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Figure 13 - Representative Cavitation Patterns on Rudder 6
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Figure 21 - Comparison of the Lift to Drag Ratios of the Rudders at

Cavitation Indices of 4.0 and 0.5
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Figure 22 - Comparison of Lift Coefficient versus Angle of Attack for
Rudder 1 as Determined from Wind Tunnel and

Water Tunnel Experiments
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Figure 23 - Comparison of Drag Coefficient versus Angle of Attack for
Rudder 1 as Determined from Wind Tunnel and

Water Tunnel Experiments
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