
———————

A I) - 7 71 7 5 8

ENCAPSULATION: AN APPROACH TO OPERATING
SYSTEM SECURITY

Richard I. . Bi s bey, II, et a I

University of Southern California

Pre pa red for:

Ad v a nce d Re s earch Pro j ect s A g en cy

October 197 3

DISTRIBUTED BY:

KTiJi
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

«Ml ■■ aMaMVpBOTNPF*

1
SECURITY CLASSIFICATION OF TMIS PAGE rWh.n Dmia ^^le^ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COh.I LETING FORM

l REPORT NUMBER

ISI/RR-73-17

]: OOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

« Ti TLE mnd SuhlliUt i TYPE OF REPORT » PERIOD COVERED

Encapsulation: An Approach to Operating System

Security

Research Report

6 PERFORMING 0R0. REPORT NUMBER

7 .«UTMOR'I;

Richard L. Bisbey
Gerald J. Popek

• CONTRACT OR GRANT NUMBER'«)

DAHC 15 72 C 0308

9 PERFORMING ORGANIZATION NAME AND ADDRESS

USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey. California 90291

10 PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

ARPA Order *2223/1

'I CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

12 REPORT DATE

October 1973
13 NUMBER OF PAGES

16
14 MONITORING AGENCY NAME « ADORESSfl/ dlllirmnl tram Conlrolllni Olllcm) I». SECURITY CLASS, (ol Ihlt r.poro

None

ISa. DECL ASSI r ICATION DOWNGRADING
SCHEDULE

16 DlSTRiai TiON STATEMENT 'ol Ihlt Rmpatl,

Distribution unlimited. Available from National Technical Infonnation Service,
Springfield, Virginia 22151

'7 DISTRIBUTION STATEMENT tol lh» mbtlrmcl »nfrtd In Block 10, II dlll»r»nl from Rupvrl)

16 SUPPLEMENTARY NOTF.S

19 KEY WORDS 'Continue on rmvrt» mldm It n»c»»»mry mnd Identity by block number)

Computer security, encapiulation, hvpervisors, minicomputer, operating systems,
program verification, protection, retrofit, software security, verification,

virtual machines.

20 ABSTRACT (Continue on reveree elde It neceeemry end Identity o> block number)

(OVER)

■

NAI (tCHNICAL
INFORMATION SERVICE

<\

DO 1 JANM73 1^73 EDITION OF 1 NOV 6» IS OBSOLETE
S/N 0 102-0M- 6601 t

SECUWITV CLASSIFl "A . ION Or THIS PAG! (When Oat« tnleredl

L ASSlFlC A * tON »< T M i , i A -t Hhmi limtm K nitrfJi

20. ABSTRACT

Currently, there does net exist a certlflabty secure,
multiuser operating system. No operating system has been
able to withstand malicious attacks by ski lied penetrators.
Nevertheless, there exists a strongly felt need, both In the
military an< civilian sectors, for reliably secure operating
system software. At the sjme time, any solution to the
security problem must take Into account the enormous
Investment In existing equipment and software.

Hypervlsors are discussed
retroflttlnc security, but are reject
and complexity Involved In their Ins
equipment. An alternative solutl
proposed for batch and RJE bystems.
a small amount of additional hardware
The resulting system can be certified
suitable for stringent military requ
Is applicable, essentially unchanged,
haruware and software, and It Is
versions of, or changes to, ope
Operating efficiency and costs of con
In this paper to demonstrate
encapsulatI on.

as ar
ed our to
tallatlon
on, encap
It Involve
and verIf
to be sec

I rernents,
to a wl
Insenst tl

rat Ing s
struct I on
the fea

approach to
the high cost
on existing

sulatlon. Is
s the usf of
led software,
ure, ano Is
The solution

ae class of
ve to special
ystem code,
are discussed
slblllty of

This work has been perrormed under Advanced Research
Projects Acency Contract DAHC1S 72 C 0308. It Is part of a
larger effort to provide securable operating systems In ÜÜD
envlronments.

SECURITY CLASSIFICATION Of THIS PAOIfWftM D«'» Bnitrtd)

ABSTRACT

Currently, there does not exist a certfflably secure,

multiuser operating system. No operating system has been

able to withstand malicious attacks by skilled penetrators.

Nevertheless, there exists a strongly felt need, both in the

military anc civilian sectors, for reliably secure operating

system software. At the same time, any solution to the

security problem must take Into account the enormous

Investment in existing equipment and software.

Hypervisors are discussed as an approach to

retrofittlnc security, but are rejected due to the high cost

ano complexity involveu in their installdtion on existing

equipment. An alternative solution, encapsulation, is

proposed for batch and RJE systems. It involves the use of

u small amount of additional haruware anc verified software.

The resulUrg system can be certified to be secure, anc is

suitable fcr stringent military requirements. The solution

is applicable, essentially unchangec, to a wide class of

hardware arc software, ano it Is insensitive to special

versions of, or changes to, operating system code,

operating efficiency and costs of construction are olscussec

lr. this paper to demonstrate the feasibility of

encapsulation.

This work has been performed under Aovanced Research

Projects Arency Contract OAHC1 b 72 C 0306. It Is part of a

laroer effort to provide securable operating syste-ns in DOC

envi ronments.

>4<H^^M|MMM| l^^k'

created with security as a major design | arameter are easily

penetrated. In general, retrofitting the muItIp1e versions

of various operating systems b^ revising their coce U

Impract!cal.

Nevertheless, the security problem of existing systems

is important and will not disappear in the coming years.

The only 5oh:tior. now available to those installations

requiring protection has been to compartmentalize: to have

separate operating systems for each security category or

level. For the military, this means having an operating

system for each of the four security levels: Unclassified,

Confidential, Secret, and Top Secret. For the typical

commerlcal installation, this might mean having separate

operating systems for payroll, accounts receivable, and

general computing. Security Is achieved through physical

isolation, but at a substantial cost. A considerable amount

of useful mc-chlne time is wasted changing systems (often

called charging "colors"), since It Is necessary for the

existing operating system to be shut down, all storage

cither physically removed or written over, and the next

system Initiated. For some installations, a single change

can require an hour or more. To minimize tost time, rigid

schedules must be established, meaning that the system Is

Inflexible to the needs of Its users. Also, sharing can

only be achieved through off-line proceaures, controlled

admi nlstratIvely,

4

INTKClDUCTIÜN

Over the pdst few years, the computinn community has

seer a stt aay Incredse in the number of applications using

Information that must be protected from accidental,

unauthorIzet , or malicious use. Today's multiuser computer

systems should be able to provide this protection uslnq a

combination of hardware ano software controls. In fact the

systems art unsatisfactory. Miile son.e progress Is

currently belnq made in the constructive design of new,

secure operatlnr systems, that work is not expecteo to bear

practical fruit I mmecil ate 1 y. In the rreanwhile, there

currently e>lst large numbers of olsparate computers ano

operating systems for which security Is an important

concern.

For someone skllleo in the art, penetrating tocay's

operating systems takes little more effort than solving a

hard Sunoay crossword puzzle, and It can be considerably

more lucrative. Retrofitting these systems. In the general

sense of repairing the respective operating systems In all

their various versions. Is an enormou-. task, which is not

well unoerstood. To date, all such attempts have met with

failure. In one case, several million dollars was spent tc

create a multilevel secure version of an existlrg operating

system only to have the result quickly breached by an

outside penetration team. Even systems that have been

3

A solution to the security retrofit problem for batch

and RJE «-vstems Is proposed. It is fairly simple, appears

economical, ana will provioe certifiable security across

various marufacturers, computers, and versions of cperatlnr

systems. That is, the same solution mdy be ernplcyeo,

req^rdlcss of which manufacturer's equipment is involvec or

what particular operating system version or modification is

being run. The method is related in spirit to virtual

machine oesiqns, in the sense of CP-67, VM/370 or UCLA-Vf

[2,M.

VIRTUAL MAC» iNhl:

A hypervlsor, or virtual machine monitor, is a proqram

whose task is to provide multiple program environments that

are logically Identical to the bare haraware on which the

hypervlsor runs. Normal operating systems, of course,

provide multiple environments, but those environments have

been altered from that of the original bare machine.

Certain capabilities, notably resource management and I/C

instructions, have been removed, while extensive user

services have been added.

Because a hypervlsor proviaes few services, it is a

much simpler program than an operating system. Its major

tasks are to provide separate environments, called virtual

machines, and to simulate the behavior of Instructions, such

■I !•■■■

ds those that change relocation registers, which cannot be

performed clrectly by programs running on the virtual

machine.

The programs run on virtual machines are usually

operating systems, which In turn provide the needed services

for conventional user programs. Hypervlsors are promising

candidates as a method for providing security via

separation, or Isolation of users, each with his own

operating system [*»,S].

Virtual machine separation Is not obtained without

significant costs. Complex slnulation of I/O Is a necessary

part of any hypervlsor running en a thlro generatI on-1 Ike

architecture. This simulation of all sensitive Instructions

slows program performance, but more Important, it requires

complexities In hypervlsor code that can make certification

difficult, at least at present. Furthermore, some existing

architectures do not have the characteristics necessary to

allow vjrtualIzatlon, and so machine-specific haroware

modifications are necessary [3J. Finally, a hypervlsor must

be written and certified for each model of the hardware.

WhHe the Intent of separation is promising, the

virtual machine approach encounters difficulties In

retrofitting because of the frequent need for special

haroware, inefficiencies due to complex simulation, and the

overall complexity of the hypervlsor code.

6

tNCAPSULATICN

A slmpller approach than the above is to remove tht

hypervisor from the host machine, and construct

externally-enforced user separation and device access

controls at the peripheral devices, rather than within core

memory. Such a technique both removes the high costs ot

simulation, and eliminates the related complexity that can

make virtual machines unattractive from the point of view of

certification. A description of the encapsulati or uni t

follows.

To a currently existing configuration, a small

minicomputer Is added that controls several large switches.

These switches are connected at^ the device to tape drives,

«.iisks, and ether similar units of original equipment. These

switches art physically placed in the read/write circuit of

the devices and allow the mini to enable or cl sable these

peripheral cevtces. As In the virtual machine case, each

encapsulatec user program will run with its own operating

system. Depending on which operating system Is currently in

control of the production CPU, the rnlnl sets the device

switches accordingly, so that the operating system can

physically access only those devices that the mini has

allowed. For many existing peripheral devices, these

switches are already present.

How does the ,ulni knew which operating system is

running, . nd how are operating systems switched? The

trl nl computer Is connected to the original equipment through

an I/O pott, and. In addition, controls the usual hardware

clrecteo Initial program load sequence (IPL). To change

operating systems, the mini initiates IPL, which is arranged

to load a bootload program from the mini through the I/O

port. This bootload program first copies out the core Image

of currently operating software. Next, the mini switches

the mooe of the devices connected to the original computer.

Finally, the bootload program swaps In the core Image of

another operating system. The swap process should only take

a few seconos, and the newly loaded system can continue

running immeaiately. The process Is simple and

straightforward, two of its virtues.

There are a number of points worth srakim about the

ncapsuiation unit. First, all mechanisms and code

responsible for security are Isolated In the minicomputer,

leading to slnplicity ano relative ease of certification.

Full use of the original hardware Is available to user

operating systems and application programs. The complex

simulation routines of the virtual memory approach are

el I mi nated.

Second, since the mini has an I/O port to the original

equipment. It may well be practical for the mini to control

8

spooling of input anü output. Currently existing I/L

devices, such as printers, card readers, ana punches, can be

disconnectec from the original hardware and connectec to the

mini. In this way, the installation obtains spooling at

little extra cost, and hence may be able to cut down on

certain other expensive resources. Also, if operating

systems are swapped relatively frequently, this variacior

eliminates the necessity of switching card decks, printer

paper, ribbons, and the like ir synchrony. The spooling

requires the mini to have its own disk for temporary

storage.

Third, the system can be extended to allow read-only

sharing. This can be achieved by allowing the mini to set

the device In one of three modest off, read-only, or

reac/wrlte. This extension enables the sharing cf common

operating systems and libraries. In addition, whenever a

partial oroerlng of security levels exists, a level n

security system can be allowed read-only access to level k

disk drive spindles, for all k _< n. Of course If one

operating system Is Interrupted while in the process of

updating a file on a device that Is available In read-only

mode to another system, that second system uses the file at

Its own risk. This situation should not be bothersome,

since In many Installations the sharing of files among

operating systems Is used primarily with regard to common

code and data, which are Infrequently updated. As a further

9

refinement to the disk switch, physically-enforced

"mini-disks" can be created by introducing a simple cylinder

address relocation register setable by the minicomputer.

Fourth, to minimize the context that must be saved and

to simplify the swapping program, operating systems should

only be swapped when In a "Standard state". Peripheral

cevlces shoulc be In a quiescent state, and any registers or

oata that might be destroyec In the bootloac process should

be saved. This requirement In no way effects fie security

of the system. If a system does not enter the "standard

state" befcre being swapped out. It may not be able to b'

restarted when It Is subsequtntly swapped in.

Other embellishments might Include:

• A hard wired bypass switch to allow peripheral devices

normally connected to the mini to be connected directly

to the original system for maintenance;

• A crots-bar «-«Mtch to allow perlphera s to be

physically cc mected to different I/O porf . for systems

that lack hardware or operating system lexlbility in

assi gnlng dev cost

• Separate operator's consoles attached to the mini for

each operating system for ease of operation;

10

IH^——■fM^M—<■ ^MlMM III ■ I 111! II I ■ I 11

Disk drive

l Disk switch i

\r"x
IPL h T

I Mini- I
 ' computer

/O port • J

/

I
I Tope switch I

S
,^Mini-1
• disk)

Operator consoles

Card readers
Cord -lunches
Printers

Original installation equipment

 New equipment

FIGURE 1. SECURITY ENCAPSULATION UNIT

11

• A secuML/ status panel which displays the current

security level, device assignments, etc. of the

system.

An tncapsulatior hardware configuration is shown In Figure 1.

hARLMRt COSTS

Hardware costs for the encapsulation unit are estimated

to be approximately $53,000. Figures below are based or

current commercially available equipment.

1 Mnl Computer CPU with 16K memory $11,^00

3 Consoles with controllers $ ^ 000

2 Switches with bus mounting $ 900

i Disk with controller $11,000

1 high-speed paper tape reader $ l»f0C0

(for maintenance of mini)

1 Channel Interface (estimated) $10,000

1 Channel simulator (estimated) $10.000

approx. $53,000

Not Included In the hardware cost estimates are:

a) remote IPL links;

b) mini bypass switch for 1/0 devices

(card reader, punch, etc.);

c) security status panel.

12

SOFTWARE COnS

Program Ver i fIcation

In adelt Jon to the hardware, the code in the

minicomputer that makes security decisions must be proven

correct. Security assertions must be constructed and

program verification techniques applied. The task requires

a significant effort, but It is essentially a one-time cost.

The amount of code that muse be verified is of a size ano

order of complexity within th« limits of already

oemonstrateo ability. Roughly two-man years of work by

highly competent professional personnel is required to

perform the necessary proofs, given the state of currently

available verification support tools [1]. Thus, the

constructlor of the necessary verified minicemputer code is

a practical task.

Oper ati nq System ModifI cat ion

Because of certain practical considerations, additional

software costs may result from modification of the original

operating system. These modi f Ir.atl ons fall Into two

categorlesJ those necessary for system quiescence, and those

for read-only sharing.

As stated previously, systems should be swappea when in

a "standarc state" to minimize the context that must be

13

saved by the boot load program. Thus, the operating systen

must be modfled to include routines to quiesce and restore

1/0 and to save and restore registers or data that would be

cestroyed in the boot load process. For most operating

systems, this modification is trivial. In ÜS/360, for

example, the only changes necessary are the incli-sion of a

software setable switch which Is tested in the channel

restart, routine, and a small routine to save and restore the

first few words of memory.

Software modifications may also be necessary to support

reao-only sharing. The system must include, or be modifieo

to include, the ability to control the allocation of logical

files on physical devices. Otherwise the system might try

to allocate a file on a read-only peripheral. Also, some

operating systems, such as DEC 10/50, Tenex, and GCOS,

require write access to all peripherals since they store

Information such as the date of last read and read-only lock

bits with the physical file. This software would have to be

cisabled for read-only peripherals in these systems.

OPERATING CCSTS

There will be some lost storage on the original

equipment cue to duplication of some operating system code

ano data. In addition, if a job of a given security

classification needs more I/C units than are currently

14

dedicated tc It, rPd.-.ual changes may be required, si owl no the

swap betweei systems and wasting computer time.

COST GAINS

There ^re a number of cost savings.

1, Spool Inc mny be provided nearly free.

2, More freedom Is gained in scheduling. An operating

system runring at level x can be interrupted for a high

priority Job of level y where y x x.

3, The security provided by encapsulation Is insensitive to

operating system type or version. Installation

modi f Icat I or s or updates can be r.iaoe freely and have no

effect on the security of the system.

k. Once a machine has been secured for a given operating

system, the incremental cost for securing a different

operating system for that same machine is small, limited to

the changes mentioned above in Operating System

f-'odi f Icatlor, So, for example, after an installation has

encapsulatec IBM's OS/360, securing IBM's DOS/360 is likely

to be inexpensive.

15

M^^M^**

CUICLUSION

EncapsUation provides riony of ci.e benefit, of the

virtual machine approach, without most of the headaches

involveo in retrofitting, ana the cost appears economical.

The usual lost time currently devotee to scrubbing one

level security system to prepare for another is

significantly decreased. Most important however,

encapsulation provides a certifiable. reliable means for

rnulti level computer security on existing systems. possibly

endi r.g the retrof i t problem.

REFERENCES

1. Good, C. 1973 (Oct.). Private Communication. At
USC/Information Sciences Institute.

2. International Business Machines Corp. 1969 (June).
CF-67/CMS, Program 360D-05.2.005. Hawthorne, New
York,

3. Popek, C.. and Goldberg, R. 1973. "Formal Requirements
for Virtualizable Third Generation Architecture,"
ACM/SIGOPS Fourth Symposium on Operating Systems
Principles, Get. 15-17, 1973. Yorktown Heights.
New York.

4. Popek, C, and Kline, C. 1973. "Verifiable Secure
Operating System Soft-are". (Submitted for
publIcatlon.)

5. Welssraan, C. 1973 (Oct.). Private Communication. At
System Development Corporation, Santa Monica,
CalIfornla.

16

