AD-771 758

ENCAPSULATION: AN APPROACH TO OPERATING
S YSTEMN SECURITY

Yichard L. Bisbey, 11, et al

University of Southern California

— _

Preparced for:

Advanced Rescarch Projects Agency

October 1973 L

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

SECURITY CLASSIFICATION OF THIS PAGE (When Nete tntered)

. READ INSTRUCTIONS
| REPORT DOCUMENTATION PAGE AEFORE COMPLETING HomM
1 REPORT NUMBER 12 GOVT ACCESSION NO.J 3 RECIPIENT'S CATALOG NUMBER
ISI/RR-73-17 |
4 TITLE 7end Subtitle S TYPE OF REPORT & PERIOU COVERED
Encapsulation: An Approach to Operating System Research Report
Security € PERFORMING ORG. REPORT NUMBER
7 AUTWOR(s, ' 8 CONTRACT OR GRANT NUMBER(e)
Richard L. Bisbey I DAHC 15 72 C 0308
Gerald J. Popek
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 ::(E)iRAA:OERLKESErTT.Pl:‘oBJEEé:sT, TASK
USC Information Sciences Institute Y
4676 Admiralty Way ARPA Crder #2223/1
Maring del Rey, California 90291
11" CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE
Advanced Research Projects Agency Ociober 1973
1400 Wilson Blvd '3 NULMBER OF PAGES
Arlington, Virginia 22209 16

-

MONITORING AGENCY NAME & ADDRESS/I! dilferent irom Controlling Ollice) 15. SECURITY CL ASS. (of thie report)

None

182, DECL ASSIFICATION DOWNGRADING
SCHEDULE

16 NDISTRIBLTION STATEMENT (of thie Report)

Distribution unlimited. Available from National Technical Infonnation Service,
Springfield, Virginia 22151

17 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, {{ differant from Report)

SUPPLEMENTARY NOTES

19 KEY WORDS (Contfnue on reveree eide if necessary and identify by block number)
Computer security, encapsulation, hypervisors, minicomputer, operating systems,

program verification, protection, retrofit, software security, verification,
virtual machines.

20. ABSTRACT (Continue on reveree elde If necessary and Identily o, block number) - 1

(OVER)

= &
e

A\

DD |, on'y; 1473 E0ITION OF 1 NOV 63 15 OBSOLETE
S/N 0102-014- 6601 -

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

Y OLA 3 BTN b THiL A e When Data Fntered

20. ABSTRACT

Currently, there does not exist a certifliably secure,
multiuser operating system. No operating system has been
able to withstand mallicious attacks by skilled penetrators.
Nevertheless, there exlists a strongly felt need, both in the
military anc civillan sectors, for reliably secure operating
system software, At the same time, any solution to the
security problem must take intoc account the enormous
investment in exlisting equipment and software,

Hypervisors are discussed as ar approach to
retrofittino security, but are rejected due to the high cost
and complexity involved In their Installation on existing
equi pment ., An alternative solution, encapsulation, is
proposed for batch and RJE systems. [t involves the use of
a small amount of additlonal bardware and verifled software,
The resulting system can be certified to be secure, and is
suitable for stringent military requirements. The solution
is applicable, essentially unchanged, tc a wide «class of
hardware and software, and it is Insensitive to special
verslons of, or changes to, operating system code,
Uperating efficiency and costs of construction are discussed
In this paper to demonstrate the feasibllity of
encapsulation.

This work has been periormed under Advanced Research
Projects Acency Contract DAHC1S 72 C 0208. It is part of a
larger effort to provide securable operating systems in DOD
environments,

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

ARPA ORDER NO. 2223/1

i ISI/RR-73-17
October 1973

Richard L. Bisbey Il
Gerald J. Popek

Encapsulation: An Approach to Operating System Security

INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way [Marina del Rev! Califorsia 90201

UNIWERSITY 0F SOUTHERN CALIFORNIA (213) 822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCIS 72 C 0308 ARPA ORDER
NOC 2223/1. PRCGRAM CODE NO 3D30 AND 3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH T

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

ABSTRACT

Currently, there does not exist a certifiably secure,
multiuser operating system, No operating system has been
able to withstand malicious attacks by skilled penetrators.
hNevertheless, therc exists a strorgly felt need, bouth in the
military anc civilian sectors, for reliably secure operating
system softwvare, At the same time, any solution to the
security problem must take into account the enormous

investment in existing equipment and software.

Hypervisors are di scussed as an approach to
retrofittinog security, but are rejected duc to the high cost
and complexity involved in their installation on existing
equi pment, An alternative solution, encapsulation, is
roposed for batch and RJE systems. |t involves the use of
a small amount of additional hardware anc verified software.
The resulting system can be certified to be secure, anc is
suitable for stringent military requirements., The solution
is applicable, essentially unchanged, to a wide class of
rardware ard software, and it is insensitive to special
versions of, or changes to, operating system code,
uperating efficiency and costs of construction are discussec
ir. this paper to demonstrate the feasibility of

encapsulation.,

This work has been performed under Advanced Research
Projects Acency Contract DAHC1S 72 C 0308, It is part of a
larger effort to provide securable operating systems in DOD

environments,

2

Created with security as a major design parameter are easily

penetrated. In general, retrofitting the multiple versions

of various operating systems by revising their code is

impractlcal.

Nevertheless, the security problem of existing systems
is important and will npot disappear in the coming years.,
The cnly solution now available to those installations
requiring protection has been to cempartmentalize: to have
separate operating systems for each security category or
level, For the military, this means having an operating
system for each of the four security levels: Unclassified,
Confidential, Secret, and Top Secret. For the typical
commerical installation, this might mean having separate
operating <ystems for payroll, accounts receivable, and
general computing. Security is achieved through physical
isolation, but at a substantial cost. A considerable amount
of useful machine time is wasted changing systems (often
called charging “colors*), since it is necessary for the
existing operating system to be shut down, all storage
either physically removed or written oveir, and the next
system initlated. For some installations, a single change
can require an hour or more. To minimize isost time, rigid
schedules must be established, meaning that the system i|s
inflexible to the needs of jts users. Also, sharing can
only be achieved through off-line procedures, controlled
administratively,

4

INTKODUCTION

Over the past few years, the computina community has
seer a stecady Increase in the number of applications using
information that must be protected from accidental,
unavthorizec, or malicious use. Today s multiuser computer
systems should be able to provicge this protection using «
combination of hardware ang software controls. In fact the
systems are unsatisfactory. hWhile Some Lroaress i s
currently being made in the constructive cgesign of new,
secure operatince systems, that work is not cxpectea to bhear
practical fruit immediately. In the wmeanwhile, there
currently exist large numbers of «isparate computers and
operating systems for which security is an important

concern,

For someone skillea in the art, penetrating tocay s
operating <systems takes little more effort than solving a
hard Sunday crossword puzzle, and it can be considerably
more Jlucrative., Retrofitting these systems, in the gereral
sense of repairing the respective operating systems in all
their wvaricus versions, is an enormou‘ task, which i« not
well understood. To date, all such attempts have met with
failure, In one case, several million dollars was spent tc
create a multilevel secure version of an existirqg operatinc
system only to have the result quickly breached by an

outside penetration team. Even systems that have becn

3

A solution to the security retrofit problem for batcl
and RJE <vstems is proposed. It is fairly simple, appears
economical, and will proviage certifiable security across
various marufacturers, computers, and versions of operatinc
systems, That s, the same solttion may be emplcyea,
regerdless of which manufacturer™s equipment is involved or
wvhat particular operating system version or modification i<
being run, The method is related ir spirit to virtual
machine designs, in the sense of CP-67, VM/370 or UCLA-VV
(2:4.]=

! VIRTUAL MACHINES

A hypervisor, or virtual machine monitor, is a proqr arm
whose task is to provide multiple program environments that
are logically identical to the bare hardware on which the
hypervisor runs. Normal operating systems, of course,

provide multiple environments, but those environments have

! been altered from that of the original bare machine.

Certain capabilities, notably resource

management and 1/0

instructions, have been removed, while extensive user

services have been added.

Because a hypervisor provices few services, it is a

much simpler program than an operating system. Its major

tasks are to provide separate environments, called virtual

machines, ard to simulate the behavior of instructions, such

)

as those that change relocation registers, which cannot be

performed clrectly by programs running on the virtual

machine.

The programs run on virtual machines are usually
operating systems, which In turn provide the needed services
for conventional user programs. Hypervisors are promising
candidates as a met hod for providing security via
separation, or lsolation of wusers, each with his own

operating system [4,5],

Virtual machine separation is not obtained wlthout
significant costs. Complex sinulation of 1/0 Is a necessary
part of any hypervisor running cn a third generation-like
arcritecture. This simulation of all sensitive instructions
slows program performance, but more Important, it requires
complexities In hypervisor code that can make certification
agi fficult, at least at present. Furthermore, some existing
architectures do not have the characteristics necessary to
allow virtualization, and so machine-specific hardware
modi fications are necessary [3]. Finally, a hypervisor must

be written and certified for each model of the hardware.

While the intent of separation is promising, the
virtual machine approach encounters di fficulties 1in
retrofitting because of the frequent need for special
haroware, Inefficiencies due to complex simulation, and the

overall complexity of the hypervisor code.

6

ENCAPSULATICN

A simplier approach than the above is to remcve the
hypervisor from the host machine, anc construct
externally-enforced user separation and device access
controls at the peripheral devices, rather than within core
memory., Such a technique both removes the high costs of
simulation, and eliminates the related complexity that can
make virtual machines unattractive from the point of view of

certification, A description of the encapsulatior unit

tollows,

To a currently existing configuration, a small
minicomputer is added that controls several large swiiches,
These switches are connected at the device to tape drives,
disks, and other similar units of original equipment. These
switches are physically placed in the read/write circuit of
the devices and allow the mini to enable or disable these
peripheral cevices, As in the virtual machine case, each
encapsulatec user program will run with its own operating
system. Depending on which operating system is currently in
control of the production CPU, the mini sets the device
switches accordingly, so that the operating system can
physically access only those devices that the mini has

allowed, For many existing peripheral devices, these

switches are already present.

How does the mini know which operating system s
running, .nd how are operating systems switched? The
minicomputer is counnected to the original equipment through
an I/0 povt, and, In addition, controls the usual hardware
girectea initial program load sequence (IPL). To change
operating systems, the mini initiates IPL, which is arranged
to load a bootload program from the mini through the 1/0
port. This bootload program first coples out the core image
of currently operating software. Next, the min] sw] tches
the moce of the devices connected to the original computer.
Finally, the bootload program swaps In the core image of
another operating system. The swap process should only take
a few seconds, and the newly loaded system can continue
running immedi ately. The process is simple and

straight forwvard, two of its virtues.

There are a number of points worth wmaking about the
ncapsuiation unit. First, all mechanisms and code
responsible for security are Isolated in the mi ni computer,
leading to sinplicity anc relative ease of certification.
Full use of the original hardware is avallable to user
operating systems and application programs. The complex
simulation routines of the virtual memory approach are

eliminated,

Second, since the mini has an 1/0 port to the original

equipment, it may well be practical for the mini to control

8

spooling of input and output. Currently existing 1/C

devices, such as printers, card readers, and punches, can be
disconnectec from the original hardware and connected tc the
mini. In this way, the installation obtains spooling at
little extra cost, and hence may be able to cut down on
certaln other expensive resources, Alsc, if operating
systems are swapped relatively frequently, this variacior
eliminates the necessity of switching card decks, printer
paper, ribbons, and the like in synchrony. lhe spooling
requires the mini to bhave its own disk for temporary

storage,

Third, the system can be extended to allov read-only
sharing. This can be achieved by allowing the mini to set
the device In one of three modes: off, read-only, or
read/vrite, This extension enables the sharing of common
ojerating systems and librarfes. In addlition, whenever a
partial orcering of security levels exists, a level n
security system can be alloved read-only access to level k
disk drive spindles, for all k < n. Of course If one
operating system is Interrupted while in the process of
updating a file on a device that is avalilable in read-only
mode to another system, that second system uses the file at
its own risk. This sltuation should not be bothersone,
since in many installations the sharing of files among
operating systems Is wused primarily vith regard to common

code and data, wvhich are infrequently updated. As a further

9

refinement to t he dlsk switch, physically-enforced

“mini-disks" can be created by introducing a simple cylinder

address relccation register setable by the minicomputer.

Fourth, to minimize the context that must be saved and
to simplify the swapping program, operating systems should
oniy be swapped wvhen in a Ystandard state¥. Peripheral
devices shoulc be In a quiescent state, and any registers or
cata that might be destroyed in the bootload process should
be saved. This requlremert in no way effects the securijty
of the system, If a system does not enter the %¥standard
state” befcre belny swapped out, it may not be able to be

restarted when it is subsequently swapped in

Other embellishments might include:

e A hard-wired bypass switch to allow perichera! devices
normally connected to the minl to be counnected directly

to the original system for maintenance;

° A cross-bar cwitch to allow periphera s to be
physically ccinected to different 1/0 port . for systems
that lack hardwvare or operating system lexibility in

assigning devices;

° Separate operator”s corsoles attached to the mini for

each cperating system for ease of operation;

Disk drives

N

1 Disk switch |
| V. g -J\
] =
N
N
~
~
N
~
g
IPL -————-
! [PeSy "z :: -:- ------- - == Operator consoles
Original R t Mini-
'computer ! Card readers
[CPU + Memory -—~'=====1 :—'-=== Cord nunches
1/O port A== qmio Printers
rd /’ !
”~ ,'L~
e / \
4 |\s Mini-1
o = lala _..;/ ' disk ;I
t Tope switch_: e

Tape drives

Original installation equipment

-~ == New equipment

FIGURE 1. SECURITY ENCAPSULATION UNIT

° A security status panel which displays

security ievel, device assignments, elc.

system,

An encapsulatiorn hardware configuration is shown in Figure 1,

HARDWARE COSTS

Hardware costs for the encapsulation unit are estimated

to be approximately $53,000. Figures below are based on

current commercially avallable equipment.

1 tini Computer CPU with 16K memory
3 Conscles with controllers

2 Switches with bus mounting

1 Disk with controller

1 High-speed paper tape reader

(for maintenance of mini)

1 Chanrel Interface (estimated)
1 Channel simulator (estimated)
approx.

the

of the

$11,400
$ 6,000
$ 900
$11, 000
$ 4,000

$10, 000

$10, 000

$53,000

Not included in the hardware cost estimates are:

a) remote IPL links;

b) minl bypass switch for 1/0 devices
(card reader, punch, etc.);

c) security status panel.

12

current

SOF TWARE COSTS

Program Verification

In adcition to the hardware, the code in the
miricomputer that makes <security decisions must be proven
correct, Security assertions must be constructed and
program verlfication techniques applied. The task requires
a significant effort, but it is essentially a one-time cost.
The amount of code that must be verified is of a size anc
order of complexity within the limits of already
demonstratea ability. Roughly two-man vyears of work by
highly competent professional personnel is required to
perform the necessary proofs, aiven the state of currently
available verification support tools [1]. Thus, the
constructior of the necessary verified miniccmputer code is

a practical task,

Operating System Modification

Because of certainr practical considerations, additional
software costs may result from modification of the original
operating system, These modifications fall into two
categories: those necessary for system quiescence, and those

for read-only sharing.

As stated previously, systems should be swapped when in

a Ystandara state” to minimize the context that must be

13

saved by the bootload program. Thus, the cperating system

must be mocified to include routines to quiesce and restore
1/0 and to save and restore registers or data that would be
gestroyed in the bootload process., For most operating
systems, this modification is trivial. In 0S/3€60, for
example, the only changes necessary are the inclusion of a
software setable switch which is tested in the channel

restart routine, and a small routine to save and restore the

first few words of memory.

Software modifications may also be necessary to support
reag-only sharing. The system must include, or be modified
to include, the ability to control the allocation of logical
files on ghysical devices. Otherwise the system might try
to allocate a file on a read-only peripheral. Also, some
operating systems, such as DEC 10/50, Tenex, and GCQS,
require write access to all peripherals since they store
infcrmation such as the date of last read and read-only lock
bits with the physical file. This software would have to be

cisabled for read-only peripherals in these systems.

OPERATING CCSTS

There will be some lost storage on the original
equi pment due to duplication of some operating system code
and data. In addition, if a Jjob of a given security
classification needs more 1/0 units than are currently

14

" e ———— o B i

AL

dedicated to It, manual changes may be required, slowing the

swap betweer systems and wasting computer time.

COST GAINS

There are a number of cost savings.

1. Spoolinc may be provided nearly free.

2. More freedom is qained in scheduling. An operating

system runring at level x can be intecrrupted for a high

griority Job of level y where y = x.

3. The security provided by encarsulation is Insersitive to
operating system type or VErsion. Installation
modi ficatiors or updates can be made freely and have no

effect on the security of the system,

4., Once a rachine has been secured for a given operatino
system, the incremental cost for securing & different
operating system for that same machine is small, limnited to
the chances meniioned above in Operating System

Modi ficatior, So, for example, after an installation has

encapsulatec IBM™s 0S/360, securing IBM s D0S/360 is likely

to be inexpensive.

COUNCLUSION

Encapsulation provides many of iie benefits of the
virtual machine approach, without most of the headaches

involveao in retroficting, and the cost appears economical.

The usual lost time currently devotea to scrubbing one
level securijty system to prepare for another is
signiflcantly decreased, Most i mpor tant however,

encapsulaticn provides a certifiable, reliable means for

multilevel computer security on existing systems, possibly

endirg the retrofit problem.

REFERENCES

Good, C. 1973 (Cct.). Private Communication. At
USC/Information Sciences Institute.

International Business Machines Corp. 1969 (June).
CP-67/CMS, Program 360D-05.2.0065. Hawthorne, New
York,

Popek, C., and Goldberg, R. 1973. “Formal Requirements
for Virtualizable Third Generatijon Architecture,”
ACM/SIGOPS Fourth Symposium on Operating Systems
Principles, Oct. 15-17, 1973. Yorktown Helghts,
Newv York.

Popek, C., and Kline, C. 19735 “Verifiable Secure
Operating System Snfruare®, (Submitted for
publication.)

Keissman, C. 1973 (Oct.). Private Communication., At
System Development Corporation, Santa Monica,
California.

