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A FORMALIZATION OF FLOATING POINT NUMERIC BASE CONVERSION

David W. Matula

TECHNICAL REPORT NO. 17

March. 1970

Computer Systems Laboratory
Washington University

St. Louis, Missouri

The process of converting arbitrary real numbers into a floating point format is formalized as
a mapping of the reals into a specified subset of real numbers. The structure of this subset, the set of n
signiticant digit base 8 floating point numbers, is analyzed and properties of conversion mappings are
determined. For a restricted conversion mapping of the n significant digit base 8 numbers to the m
significant digit base & numbers the one-to-one, onto, and order preserving properties of the mapping
are summarized. Multiple conversions consisting of a composition of individuat conversion mappings
are investigated and »ome results on the invariant points of such compound conversions are presented.
The hardware and software implications of these results with regards to establishing goals and
standards for floatiig point formats and conversion procedures are considered.
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ABSTRACT

The process of convertmg arbitrary real numbers into a floating point format
i formalized as a mapping of the reals into a specified subset of real numbers.
The structure of this subset, the set of n significant digit base 8 floating point
numbers, is analyzed and properties of conversion mappings are detenmined. For
a restricted conversion mapping of the n significant digit base § numbers to the
m significant digit base & numbers the one-to-one, onto, and order preserving
properties of the mapping are summarized. Multiple conversions consisting of a
composition of individual conversion mappings are investigated and some results
on the invariant peints of such compound conversions are presented. The
hardware and software implications of these results with regards to establishing
goals and standards for floating point formats and conversion procedures are

considered.
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A FORMALIZATION OF FLOATING POINT NUMERIC BASE CONVERSION

1. INTRODUCTION AND SUMMARY

The necessity of base conversion of numeric data during some stages of computation on a digital computer is
a de facto component of practical numeric computation that must be recognized in any complete analysis of
digital computation. On the hardware lavel the trend towards establishment of computer networks with possibly
differently based machines and, on the software level, the mixed-base flexibility inherent in the PL/1 language
specifications, both suggest that internal data of certain jobs may be necessarily subjected to multiple conversions
hefore job termination. Thus. references to a purportedly constant floating point datum occurring at different
points during program execution might encounter altered datum values. Both hardware and software designers
must recognize this problem, and each can benefit from the fundamental principles obtained by considering base
conversion as a mathematical transformation. In this report. we shall follow the notation of our previous
work! =4, integrating the mainstream of results from those articles with a general formal development of
conversion, and providing new resulis particularly in the area of multiple conversions.

A fundamental analysis of base conversion is concerned first with determination of the theoretical limitations
inheient in any implementation of base conversion. The actual algorithmic mechanics of any theoretically
realizable conversion procedare is then a secondary (albeit nontrivial® )problem which will not concern us in this
article. The formalization we introduce provides the vehicle for studying the properties and recognizing the
inherent anomalies of the conversion process, which must necessarily then guide the performance specifications
for floating point representations and base conversions at both hardware and software levels.

Converting integer and fixed point data to an “equivalent™ differently based number system is generally
achieved by utilizing essentially log B times as many digits in the new base & as were present for representing
numbers in the old base § system. This simplified notion of equivalence does not extend to the conversion of
floating point systems. Actually, conversion between floating point number systems introduces subtle difficulties
peculiar to the structure of these systems so that no such convenient formula for equating the “numbers of
significant digits™ is even meaningful. Thus, our formalization of floating point base conversion is preceeded in
section 2 by a careful analysis of floating point number systems.

Following our previous work! =4, a system of floating point numbers of n significant digits to the base § is,,
characterized as a significance space, SE, and in theorem | the number of elements in Sg‘ relative to the number
of elements in SE within a specified interval is shown to converge to ((5—1)6"~'/((B-1) " 1) log § 8 as the
interval grows to include the whole real line. This relative density of “total membership™ of two significance
spaces provides only a gross comparison of thie two number systems, for actually there is considerable local

an

variation in the relative density. The gap function’, lﬁ (x), is defined as the relative difference between nearest



neighhors of S;} at x. A comparison of the graphs of I'B and 13" provides more insight into the comparability of
two diftferently: based floatimg pont systems than auy simplitied “equivalent digit™ formula.

Having clinacterized Toatmg pomt number systems and the gap function, the conversion of the ical numbers
mto SB hoth by roundmg and by trunc.tion procedures me then formalized in section 3. The order preserving
properties of these conversion mappings are detailed, and the Base Conversion Theorem? is stated.which gives
the cctssany dad sallicicnt condiions Tor a conversion mappiig o 5‘3 (uﬁg' wihic tHy vac-iotins and {2F out.

The important problems associated  with multiple conversions of a datum are analysed in section 3. The
et o iapenetd EealllAn gl Elbeieon. Cibetemdbl b ocemmed o o] cemmaeilm  wil adee
associated invariant pomts (ie.. the pomts mapped into themselves) of such a compound conversion mapping are
analysed. For g compound truncation conversion it is shown that the only invariant points of the mapping are the
. Ulld‘!”.l-\ L\illl.ll\ii (AN lllll \'i' I.II\ ‘.blll{l\.cll'\.L .\' ULy Illi\l\f\.d. T.‘illh. \.\lll.ﬂd\l‘l"l‘t lllll»l”ldll\.\. [YLIYRLY lll dlld\.llk\l wnr
the antersectton of significance spaces, and in theorems 10 and 11 these intersections are shown to exhibit a
T R e e commme Rty o e neeen BpecieaTiy  smiiliceser apees mETI LT L ok
bases will always jointly contain g common significance space. For example the 6-digit hexadecimal numbers and
the Xahigit octul wmumbers both contain all 21-bit binary numbers. On the other hund the members common 1o
significence spaces with icommensurable bases  (e.g. binary and decimal) will be finite in number and. Tor cases
of computational interest. these members will typically all fall in an interval much smaller than the interval range
provided by curnent exponent ranges on digital computers.

As o comsequence of the limited memberstip of points common to two incommensurable significance spaces.
the muttiple back-and-forth conversion of a “constant datum™ between two incommensurable significance spaces
by truncation conversion can accumulate error so as o invalidate even the leading digit of the value of this
“eonstant datum™. Practically. the process of updating o B.C.D. tape on a binary machine might well subject
stored data which iy never updated 1o multiple binarv-decimal conversions, so B.C.D tape updating is very
sensitive to such anomalies of compound conversions. Fortunately, we can show that under very general
conditions iterated rounding conversion of a datum between two significance spaces guickly generates a stable
pair of values each of which is a reasonable approximation of the itil datuem 1 gider dip siromger conditions
given in the In-and-Out Conversion Theorem® rounding conversion thiough an intermediate signiticance space can
be guaranteed to regenerate the initial datum of the original significance space.

In the jgresence of mmae ke b illewmmentitialme S e possiey of eydinc comversions’ aLLUTHOlaTiTE
error ina datum is shown 1o exist even under rounding conversion. Qur finaf result resolves the problem of
controlling the overall growth of accumulated conversion error within a mixed base computational environment

by u process which standardizes a datum’s value in cach of the signilicance spaces involved,



ll._FLOATING POINT NUMBER SYSTEMS

A fomalizaton of floatmg pomt nunber systers st start wath a characrerization of the set of floating
pomit nwmbers, preterably divorced tom the cumbersome digrt sequence representational notation, previous

articles' s set bas been termed o stignthicance space.

Defimuon: For the mtegers § = 20 called the base. and 1 = 1. called the significance (or precision), let the
T LR

sgnificance space, \E be the following set of real nunbers:
S;j' = {hib = kg for some mtegers K, j where Ik|<b'"}

For clinty we shall unhze the Gieek letters a B and & 10 denote bases: the Eaglisis letters ab.e and d will
denote elements of 4 sigmificance space. e the so called “loating pomt™ numberss the letrers K lnrnp and g
will denote mtegers: and xv - and 7 will denote arbitvary real numbers,

Faran element b = Rg' ¢ \:3' the actual loating pont representation of b can he visualized as having the fixed
point anteger portion K represented by g signeand noor less digits o the assumed hase 8. with the exponent
portion then represented by the mreger 1. The Hoatig point representition fust described will not m general he
umhque, with digit sequence eshzations of b cortesponding 1o both “normalized” and “unnormalized’ forms
passible m some cases. Considerations related 1o the non umique determmation ot kj in b = kg will be treated
where necessary, however, our mam - concern  with membership of b the ser of real numbers 23' for which
the torm of representmg b s nrelevant. Note that the significance space S"j' differs from an actual floating point
number svstem i that there s no bound on the exponent portion 3oof the members b = kg ¢ SE Thus SB is
actually anmtunre set. Since we shall not concern ourselves with underttow and overflow problems, the

U

sigmiticance space S v pertectly aceeptable model of o floating pomt number system for our purposes.

Hos easy to visuahize the change m the set S"j' caused by varying the significance, since mnereasing n 1o n+l
menntams all members of \3 and adds g-1 uew wembers untfoniniy spaced between every neighboring pair of
memhers of S;j' The dependence of the membership of 83 o the base § is tar more subtle. In practice it has
been convement to wentify a non decimal Moating pomt number system with the “appropriate” decimal based
swstem. however we now show that such o purported equivalence glosses over certain inherrent anomalies
hetween differently based 11 ating point number systems.

A gross comparison of two differently based significance spaces can be obtained by determining the relative
number of members of cach space over a comparable tunge. For example the 3(significant) bit binary numbers
between unity and one thousand are 1., .01, = .25, PR, SIS, (W 1 RIS HC =0 = IO.I2 = SR II.O2
T Laiinl, =958, 100, =4, 101, =5,..., 1100000000, = 706K, FEH0000000, = 896: and the | (significant)
digit decimal numbers over the sume range are 1, 2, 3, 4,5, 0. 7, K. 9. 10. 20. 30. 40. 50. 60, 70, 80. 90, 100,

200, 300. 400, 500, 600. 700. 800, 900, 1000. In figure | these members e indicated by tickmarks on the real
fme plotted on a logarithmic scale so that the log periodic uature of the spacing between floating point numbers
is evident. The ratio of the numbers of members of these systems over this interval is 40/28=1.43. Now this ratio
of membership density will vary with the choice of interval, however, 4 reasonable overall coinparison of any two
floating point systems can be caleulated by determining the limit of such a ratio as the interval grows to include

the whole real line.
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Figure 1. Tickmarks plotted on a log scale showmg (ai the forty Magnsficant) bit
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Theorem |: Let SE and Sg' be any twa significance spaces. Then letting ISI denote the number of members of

the v 8.
!
Rl desp. 55 < W< M) Gt
‘ = (4 1)
hm g o B (
Mo [P hes 35 < b1 < M| B 13

; : ! :
Proat: Let L\J denote the greatest mteger i X, Then the closed nterval [Ti‘ M{ imay be divided into 2

Il“FJMJ disjomt half-open half-closed mtervals of the form [ﬁ’. g’ ') and twa sub intervabs of such intervals.
Each mterval |, 8 1) contams (6 D™ ' distinet members of 8% Notimg that - beS3 = heSp we have for
B . B 8

M2t

bl best. & < |b| < M}| = 2|{bbest. T <h< MY}
B M 5 M

= Z(Zl_l('gﬁMJ +e) (B 1B" ' where 0<e<?
= 202 IngﬁM + e (B D" " where 12

the latter resulting from removal of the greatest integer brackets. Fmally

lim ”d' deSg'. y <SWI< M}'

M- '{hl thB.

i
M
T
i < Ihi< M|

YR - m- 1
= lim "'I()35M+62H6 p8 where |c|{.|62|<2

M- '.’('.’IugBM te, ) B | g !

m-1
= Mb_— Iog63

@ !



tn the folklore on conversion there is an oft quoted notion that a decimal digit is equivalent to log 10=3.32. .. bits.
Thus o 3 digit decunyl svstem should be ouly slightly less numerous than 4 10 bit binary system. However, if we
let IS'" le ssimholically denrote the limiting 1atio givenin equation (1),then [5‘ /9'0[ =.529 .. 50 that there are
actuatly only 337 us nany real numbers representable with 3 significant dccuml digits as there are real numbers
representable with 10 sigmificant bits. Furthermore the ratio of the number of members of 53 to S o over the
tange shown m figure 1 was not atypical  since IS S' ol = 1476, attesting to the fact that lhuc are about
SO more 3 spniticant by binary numbers than | significant digit decimal numbers, and providire 4 clear
contradiction to the digit = 3.32 bits rule. This anomally prevails even with more digits, since for large integral m

and i chosen sueh that 10™ /28 approaches unity,

Q
ST /8= R log, 2 = 5418

m—soo

0™ /20|

The vesults just obtiamed are not mexplicable on intuitive grounds. The relation “digit = logzlﬂ bits™ comes
from an entropy argument where ll different states (values) of the system (digit sequence) are distinguishable.
Despite the applicabihie of this notion 1o mteger and fixed point number systems, floating point systems have
redundant representations for some numbers. generally resolved by normalization, so that the B" patterns of
digits associated with k for each jin k@ do not vield 8" new different numbers for cach j. Furthermore, the
collection of normahzed numbers corresponding to a fixed power of the base dre spread over an interva! whose
tength depends on the base. and both of these conditions are reflected in the (inal form of equation (1)

Now one approach for determining a floating point “equivalent digit formula® is 1o equate the right hand side

of (1) o unity and solve for m in terms of n, 8 and 8. Thus if Sg‘ is suid to be more dense than SE when
IS8’ 'Sﬁl>l. then from (1);

Corollary ||
=R AR

S:S“ 1s more dense than Sb’ if and only if

58 1)
>0l tlogg { ——— )low ()
m>n ngaﬁ %‘L( 56T ) lubalogaﬁ
Attributing meaning (o a non-integral number of digits, one may propose that
m =nloggB +logg [ 8(B-1)/B(5-1)] - loggloggf )

is the “‘equivalent digit formula for floating point number systems™. For binary-decimal conversion we then

would have

#bits = 3.32. . x(# decimal digits) — 884 . . . “)
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The variability of spacing of flocting point numbers of a given SE is such that the simplified formula (3) does
not really provide an adequate comparison of differently based floating point systems and more attention to
local magnitude dependent variability must be considered. In studying the internal structure of SE note that

every one of its non-zero members will have both a next largest and next smallest neighbor in SE.

Definition: The successor, b’ of beSE. b+#0, is given by

b= min{d|d >b, deSp} %)

and since distinct members of SE have distinct successors,b may then be referredto as the (unique) predecessor of
b’in SE.

Now the absolute difference, b'-b, will grow with b in S"}, however, the relative difference is bounded.’

Definition: The gap. I‘E (x), in SE at x is given by

forx>0

( min{blb > x, beSg} — max{blb < x, besg}
J X

raex) = (6)

( l‘b‘(—x) forx <.

Specifically then I‘E(a) = (a“-a)/a for 0 < aeSE. From the structure of fioating point number systems it is
evident that I‘E(ﬁx) = l‘"}(x), SO I‘E will experience a log periodic behavior. For 1 < x <8, the numerator of (6)
wiil have the constant value ' =", so that on a log—log scale the gap function appears as a saw tooth function.
In figure 2, sections of the gap functions [“I‘o and l“:6 are illustrated. Note that the variation in the magnitude

of the gap function is greater for larger bases,
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Figure 2: The gap functions !‘Ig {x) and |‘|2 {x) for 001 < x < 1000.
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From theorem 1 we can calculate that IS":O/S":OI =5.60 ..., s0 that overall there are more than five times as

many 4 significant digit hexadecimal numbers as 4 significant digit decimal numbers. Yet from the gap functions
in figure 2 it is apparent that over the interval (.0625..1000) there are ‘.ore 4 significant digit deciinal numbers
that 4 significant digit hexadecimal numbers since l‘l“o(x) < I“:o(x) over that interval.

From the log periodic behavior of I‘E the fullowing bounds are immediate.

Theorem 2: The function ‘8 attains both a minimum and a maximum value over the non-zero members ol SE
LUED Uk

given by

min (I3 (b) beSF. b #0} =1/ (")
(7
max {I'g (b) IbeS§. b # 0} =1/~
and over the non-zero reals the bounds on ‘E(X) are given by
inf {I'T(x)|x#0} =1/p"
(8)
max {Ib‘ (x) | x#0) =1/}

Thus the gap function presents a more complete picture of the structure of a floating point number system

as such as (3) and (4) must be used with extreme
caution in any comparison of differently based floating puint number systems.

than any “equivalent digit™ notion, and simplified formul



1lI. CONVERSION MAPPINGS

A conversion procedure determines a specific value in Si; for each real number x. Thus, a conversion process
may be characterized as either u function or a mapping. Formalization of conversion as a nmipping appeurs
preferable since it is often useful to invert the question and refer to the set of points which map intc a given
element of SE, and this notion is then readily available by considering the inverse mapping. Certainly any
conversion mapping of the reals to SB should be the identity ou SB and in addition it is desirable for this

mapping to satisfy certain order preserving properties.

Definition: A mapping. M, of a set Rof resl numbers into the reals is

. . 6 .
1) Weakly order preserving (isotone”, monotone) on R

it x <7y = M(x) < M(y) for all x. yeR’

2) Strongly order preserving on R 'ii x <y = Ni(x) < M(y)
for all x, yeR "’

Furthermore the mapping is said to be weakly (strongly) order preserving if it is weakly (strongly) order

preserving on the reals.

No conversion mapping of the reals into SE can be strongly order preserving, however, we can expect that a
conversion process should at least be weakly order preserving in addition to being the identity on SE. These
latter two conditions do assure that the inverse image of any beSE under a conversion mapping is an interval
containing b. Formally we shall limit our discussion to the rounding and truncation (sometimes called chopping)

conversion procedures usually encountered in computerized numeric processing.

Definition: The truncation conversion nmapping, TE, and the rounding conversion mapping, Rg. of the real

numbers into SE are defined for ali integers §= 2, n > | as follows:

Truncation Conversion

)

max {blb < x, beS} for x >0
T3(x) = S

min {blb X, beSE } forx <0



- :

— o o 4

9.

Rounding Conversion

min {b] h:—h'> x.beSl';} forx >0
RY (x) = min  {b] M? X-I)L-'SB} for x <0

‘O for x =10

(10)

The effects of these conversion mappings in the neighborhood of a power of the base are shown in figure 3.

Note that the distinctions in the definitions of the mappings of positive and negative values are required to

achieve the desired sign complementery relations:

T§(~-x)= rrTE (x).RE( Xx) = R"} (x).

Bi( l+33' ‘

Bi(l+:B| II’

e My

i
g™
-2 "
LT

(a)

(1)

Hﬂ 5;
— gi(1+3p' ™)

ﬂi(l"'zﬁl —n)

il =7

3

At ™ ‘
Al -2 ")
-

(b)

Figure 3: Conversion of the real numbers to the n(significant) digit base ﬂ numbers in the

neighborhood of a power of the base by (a) tcuncation conversion, TE. and (b) rounding

. n
conversion, Rﬂ'
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Note Rg(ﬂ-p—) = b’ tor all pusitive th,j. so that we live not imposed the addnmnal symmetric rounding
condition l'o-r mid-points dependent on the “purity™ of b that some researchers prckr Although this refinement
could be added without materially affecting onr results, we prefer the Aefinition ahove,

It is evident that | '! and RB both are weakly order preserving mappings which are identities on Sﬁ as desired.

In practical numeric computation we often need 1o convert data abready expressed in tloating point form to a
UL CTCIY based 1().hlllg punn fonme Thus wo e mcesied i die |,.\1|L.HL of e vosticd Wiy Hnbs kBIS"'
- SB and 15 : ‘(3‘

From consideration ot the algorithmic mechanics of conversion there is evidently a considerable difference

L 2 . 1 . "] = ] s . i
OETWCCH ThiTtai's RCRGICSINal © T Aot i doonld COITVUT AT ..‘v.,y«.\ Preidi i Giliolig Lotweail

hases do affect the properties of restricted conversion mappings there is need to characterize this important
“commensursbility™ rekrtionship between hises.

B root for any i. Then the numbers g, 62,

Definition: Let g 2 2 be a oot free integer, i.e. ﬁ has no integral i!
B0 form a commensurable Jamily of bases termed the f-fumily of bases. Two or more hases belonging to
the same commensurahle family of bases are commensiirable bases. Twao bases which do not belong to a common
commensurable family ave termed incommenstrable bases. Furthermaie, two or more significance spaces will be

termed commensurable when their bases aie commensurible.

Thus two, eight and sixteen are commensurable bases, whereas base ten is incommensurable with any member
of the binary family of bases. The root free condition on g in this definition simply ussures that each base is in
precisely one tamily,

A useful equvalent charactenzation of commensuable and incommensurable bases avoiding explicit mention

of the respective famihes to which the bases belong is provided in the following.

Lemma 3: The buses §and & are commensurable if and only it 8 = 8 for some non-zero integers i, j.

Coratlary 3.1 The bases 8 und § are commensurable i and only if '“56 B is rational.

. i o0 N “n o, *m a . P : . q
Thus, the gap functions lB and T3™ plotted on 4 log-log scate will share 3 comimon period when Sand §
are commensurable, as in figure 4. and otherwise will not (see figure 2).
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Figure 4: Sections of the gap tunctions l(l)()' for the 6 (signitficant) digit hexadecimat numbers and 18' for the
8 (significant) digit octial nanbhers, Hexadecimal and octal are commensurable bases and share 9 cammon
period of 2l2 aon dhe log scate. Note that the 6 digit hexadecimal numbers and the B digit octal numbers are

not equivatent flomling point systems,
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s readily verified that the conversion by rounding or truncation from a fixed point number system with o

B ary digits to the right of the radix poitt to another fixed point s

the radix point will be one-to-one if m > n loggB and onto if m <

ystent with m & ary digits to the right of

N loggB. Thus a conversion hetween fixed

point number systems must be either one-to-one or onto, however a conversion between floating point number

svstems need be ueither one-to-<ie nor onto, as seen in figure 5. The necessary and sufficient conditions for

rounding and  truncation conversions  between incomimensurable
sigiiificance spaces 1o be (1) one-to-one nappings and (2) onto

. . H) B . . -
mappings lave been determined® in the Buse Corversion Theorem.

Theorem 4 (Buse Conversion Theorem): For incommensurable bases g

and &, the truncation (rounding) conversion mapping of ﬁ o S"‘

ln..1m|5" S'"(R B_. sm

i iy one-to-ome 1f and ounly if & P gn oy

(12)
i isontoif and only i g" t=em

The details of the proof of this theorem are given in |2]. however,
an ntuitive understanding for the result can be gleamed  from
comparing the gap functions (see figure 2). Certamly if 173" is

uniformly less than l’b‘, then the nupping of Sﬁ to Sg' should be

one-to-one.  Conversely, if the maximum of g ull.\ above the
minigtum  (restricted to ﬁ’ of Iﬁ then from g theorem of
Kronecher® (that the integer multiples of an irrational number mod |
are dense in the unit interval) it can be shown that for some thﬁ
I'g'(b) > l"'i'th)

In summary the essential effect of formulae (12) regarding lhe
conversion of the initial svstem 96 to the target svstem SP' is that B
assureone-to-one conversion a digit must be sacrificed in the target
system and to assure onto conversion i digit must be sacrificed in the

mnitial system.

The conditions for  one-to-one  conversion guarantee  another
desirable  property of thie conversion mapping. since it is readily
shown that a weakly order preserving mapping on R is strongly order

preservig on R il and only if the niapping is one-to-one from R
the reuls.
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Figure 5: Conversion by rounding of the

bl

3 (significant) bit binary numbers to the
1 (significant) digit decimat nambers
over lhc range | 1,10001, indicating that

IOI S5 is neither one-to-one nor onto,

Corollary 4.1 T2 and RE" are cuch strongly order preserving on SE if and only if ™~ > gn.
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It is instructive to consider the implications of the

Base Conversion Theorem tor decimal to hinary
conversion. 1t tollows that the mapping by rounding or
tuncation conversion of o decimal based significance
space to a binary based signilicance  space will be

one-to-one (and stronghy order preserving) il and only il

= bits > 332, x {=dgits) + | (13)
and onto if and only if
=ity < 332000 x (=digits) 332 (14)

Relating these inequalinies (13, 14) to the membership
density formula (1), we conclide that decimal to hinary
Noating pomt conversion will be (i) one-to-one and
it and onlv it the decimal

””gm:) = W7l

strongly  order  preserving

svetem has less tha 9 times the

membership of the binary system and (n) onto it aad
only 1t the decimul system has more than 18 (log | 2) =
S48 times the member: hip of the binary svstem. Thus
comversions between floating point systems of nearly

equal density will be neither one-to-one nor onto.

The

suceintly presented in figure 6. The Tattice point n,m

properties  of  decimal-himary  conversion ure
corresponds 1o the bmary system S§ and the decimal
svstem S'I"O. Lattice points falling to the left of the hine
n=(log, 10} mi1=3.32m+1 correspend o decimal to
binary copversions which are one-to-one and strongly
order preserving, as weni 28 binary to decimal conversions
which are onto. Lattice points falling to the right of the
line n = 3.32m 3.32 correspond to decinal to binary
conversions which are onto and to binary to decimal
conversions which are one-to-one and strongly order
preserving. Lattice points fulling betwien 1 = 3.32m+|

and 3.32m 3.32 correspond to decimal-binary

n o=
conversions which have none of these thiee properties.
The equal density line n = 3.32m 58 sepatates the
kattice points so that those to the left corrospond to
binary systems which are more dense than the decimal
svstems and lattice points to the right correspond to the
decimul system being more dense. An increase ol one
unit on the n axis increases IS'z'/S'I"OI by a factor of 2,

and @ one unit increase on the m axis decreases this

m
10

estimated by determining the distance of the lattice

deusity ratio by u factor of 10, so IS'z'/S | may be easily

point . m Irom the equal density line.
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IV. COMPOUND CONVERSIONS

The preceding section dealt only with the properties ol a single conversion mapping. We have indicated pieviously
that computing envitonments such as PL/I language propramming, multi-computer networks and 8.C.D. tupe
updating on a binary nuchine present situations where daty siiay be subjected to multiple base conversions during
overall job execution. Considerable care must be provided in such mixed base computing environments to avoid
excessive accumulation of error in purportedly *“constant™ data. To critically analyze this problem the notion of’

compound conversion is formally introduced.

Definition: Foralln > 1, > 2,

1) T"g' and R"g' are {-fold componnd comersions through S E

n n

n )
i) Tor Qa k-fold compound conversion through gﬁ ' SBE‘ Cos Sﬁ".
| 2 k
TR0 und REQ are (k+1) fold componnd conversions through

St' gn2 Snk gn
lBl.‘ﬁz-".. ﬁk.lﬁ

Furthermoie 0 s g cotipornd maication (rounding) conrersion if all the individual conversions composing Q

are truncation (rounding ) conversions,

Thus RERE 15 0 2-fold compound rounding conversion through S8’ S"g'. and Rg‘TiuRg‘ RE is a 4-told compound

b
conversion throngh Sg. S Sil. Sg' (e figure 7).
A compound conversion 1y g composition of mappings. and many propertics of individuul mappings readily
Ty over to composttions of snch mappmgs. Thus the following important properties of compound conversions

are immediate.

+
4

Lemma 5: ¢ Q is a4 compound conversion, then QC x)= Q(x) for all x.
Lemnia 6: Componnd conversions are weakly ordei preserving,

An - evident property of truncation conversion is that the magnitude of Tg(x) is never larger than the

magmtude of x. Thusiruncation conversion performs a contraction of the reals towards 7ero (see figure 3a).

Dcl'iniliﬁ: The function M:Reals—>Reals is a coutraction if M(x) has the syme sign as x and M (x)I<Ix] Tor all x.
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Figure 7:

The composition of a compound conversion from successive conversions:

; 3 e I S nom ooio,m
(a) the sequence of conversions RB, R6 ' 10.' R6 :
(b) the 4-fold compound conversion Rg‘T'aRg]RE.



Clearly a composttion of contractions is g contraction,

Lemma 7 Compound trune .on COnversions are contractions.

The muppings Rb‘ and Ib‘ are identities on their image space, S/" however T.j Tfo (1.8) = 1.75 und Tg Tfo
(L75) = 1025, so that members of the image spuce of conponnd conversion Q are not necessarity carried into
themselves by the mapping Q. For the compound conversion Q iltustrated in figure 7 note that 4,4 and g, arc
nupped into themselves by Q. whereas q, and Uy iare points of the image space of Q which are not mapped into
themselves,

fn general the pomts mapped into themselves by 4 compound conversion may be difficult 1o determine bui
they are none the less important, since the weakly order preserving property of compound conversions assures us
Dt no point i an interval between two suel iovariant points of 4 compound conversion can be mapped outside
that interval by tha compound conversion.

Formally points x sueh that M(X) = x are generally referred 10° as fixed points of the mapping M. However,
to avoid confuston with the compttational notion of “fixed point numbers™, we shall refer 1o fixed points of

NUPPINGs as invariant points.

Defimtion: Let M he mapping of the reals to the reals. Then the invariant set of M, denoted f(M). is given by
SIM) = {xI M(x) = x} v15)

and for xeftM) we say that x is an invariant point of the mapping M.

Our first result claracterizing the invariant sets of compound conversions states that any element common to
all significance spaces through which o compound conversion passes ii an invariant point of that compound
conversion,

n n n k n,
Lemma 8 If Q s a k-fold compound conversion through SB:, 8322' c 'SB:’ then n] SBi'Cf(O).

n, N I, n ) .
Proof: Forany x € N Sﬁ" each of the conversions composing Q maps x into itself since RB' and TB' are identities on
i 1 i

S;_i fori=f,. . k. Thus b(x) =x,and x € { (Q).
1

Furthermore. it is now shown that if Q is a compound truncation conversion, then the points in the

n,
intersection of the Sgi are the only invariant points of the ma ing.
8. \ p

H

k ,
Theorem 9: If Q is a k-fold compound truncation conversion through S;'. SEz C oo S;k.then 1Q)=N SE'.
[ 2 k =1 P
n n n k g k n,
Proof: For Q = Tﬁk Tﬂk‘I o TB', by temma . iol SBi C f(Q). Now assume x ¢ N SB'. and let us sh?w
: k- 1 = i

k | = n,
O(x)y#x. From sign comphmentarity of Q(lemmia 5), x > 0 may be assumed. Let j be son%e index such that x¢ Sﬁ"
i

Compound truncation conversions are contractions and truncation conversion is weakly order preserving so that,

n, n, Il._l IlI
X > TBjJ(x) >TB,-J (TB;—I Tﬁ, (x)) = Q(x)

thus x # Q(x), proving the theorem.
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Lemma 8 and theorem 9 show the mportance of the intersection of significance spaces with regards to
determming the mvaremt pantts of campound  conversion mappings. I turn the character of the intersection
of significance spaces depends i arge part on the conunensurability or incommensurability of the significance
spices mvolved. Specificalty the base sixteen is i the binary family. and every hexadecimal number may be
castfy converted to binary by writing each hexadecimal digit as the appropriate four bits. For chM. the 24 bit
buwary representanion of the six hexadecimal digits of b may have up to tlnee leading zeios, so some 22 bit
bmary numbers may not be representable in S‘I’h. e (142 Ty ¢ S'I’(‘. however every 21 bit binary number will
be contained m S‘I‘h.ln generalizing this notion it is evident trat if $=6" theneach hase 8 digit may be represented
by p base & drgits. Thus an nadigit base 8 integer Vields an np-digit buse & representation of which no more than
p P leading digits may be zero Setting m=(n Hp + | we then have Sy C S3. 83" '¢ Sb’, and the following

theorem s derived.

Theorem 10; Let B, 85 B, be commensurable bases of the & family. Then for m = 1 + min{( n, »I)Ingbﬁi} .
_ i
k
m My m¢ | N
S e DI S5 and st ¢ IF_W! Sp! (16)
Actually theorent 10 can be sharpened if we abso consider the different intervais [ﬁj. g '], Reasoning as
above 1t can be shown that by fetting p lngbﬁ and setting m = F+min {p'(ni 1) +(j mod p). then we have
}
. q l\ n. .
gLt = N osgins it (+7)
i=1 i

Furthermore tof ¢ iy the mimmizing vatue of i in the above definition of m. then also Sg' = S;“ over the interval
[81.8], 4

These observations along with theorent 9 yield important properties of certain compound conversions. If Q is
a compound truncation conversion through commensurable significance spaces, then Q(x) € f(Q) for all real x
Hence QQ = Q. and if Q* is any compound truncation conversion lhruugll the saume commensurable significuncc
spaces as Q but in any order, then Q" = Q. Furthermore when Q = T{} . TB with 8, . ﬁk in the same

n
commensurable fumily, then |x Q(x)]/x < nu\c '{3 Y(x), s0 accumulated wmcrsmn CITOT is clfccllvely controlled.

Now it will be shown that the inlcrseclion of incommensurable significance spaces docs not contain any

commen significance space. for such an intersection has only a finite number of elements.

o . n m 3
Theorem t1: I 8 and & are incommensurible, then Sb‘ N Sg‘ has no more than 2(8" 1X8™ — 1)+1 members.

Proof: Let P be the following set of ordered pairs of integers, P ={(k. k*)l |k|<{3". Ik*(<6™  und kk*=lor k=k"‘=0}
Define a mapping P: 53 MSg' =P as follows. PO)=(0,0). Suppose bcgﬁ .h#0.Then b = k@ where k and j mij
be chosen uniquely such that |k < 8" and § does not divide k. Similarly, lhcrc are unique k*, j* such that b = k*§)*
where [k* <6™ und & does not divide k*. In this case P(b)=(k k*). Thus P yiclds the nomalized (right shifted)
integer portions of the representations of any element common 1o 96 and 96 It is now shown that P is a one-to-one
mapping of 86 Sg' into .

Clearly only zero is mapped into (0,0), so let a, bc—SEﬂ Sg’ be any two non-zero elements where P(a) = P(b). Then
there must exist k.k* # 0, and j. j*. i, i* such that a = kg = k*8* and b = k8! = k*6"* where B does not divide k and
& does not divide k*. Then k/k* =51 /g1 = 8" /8F, s0 that 3" 1* =g~ i Then j* = i* and j = i since § and & are



mcommensurable, so a=h and P 1s one-to-one. Now s;;nsg' can liave no more members than 27 which has
2" IHE™ i+t elements. proving the theorem,

Utitizing the fundamental theorem of arithmetic (unique prime decomposition ) imuch more can be said about the
members of SIS for particukar Band 6. 16 and & are relatively piime. then alt members of Sb’ﬂ Sg' are integers,
with the kngest such integer strictly. fess than g™ . i the greatest common divisor of the incominensurable g and
is @ prime number (as in the binavy-decimal case ). then the smatlest positive element of Sb'ﬂ S('g)" can be shown to ke

4 negative power of thar prime. This smallest posttive number exactly aepresentable in hoth systems can be

considerably knger than the underflow bound on typreal computer, for example 2 'Y = 0009765625 iy the
10’

o s N

smatlest positive member of §230 S
- n

For o compound timcation conversion Q through S{il° 1=
i

Foooo o Kowe huve shown that Q(x) = x 1f and only if X is in

i
the intersection of all significance spaces. Furthermore f a I
———
least one pan of the B are not commensmable. then the 1"
[} H-I- i |‘I|':I
aenection s fimte and Qx) # x for any positive x lower _‘J
than the minimun positive clement of the mtersection. Fon
such an X the compound truncinon conversion Q would have i
. -
Q1 > Q0x) > QQO(N) > .. >QUx) > . and in fact
b, Qx) = 0 smee zcr0 s the only finite aceumulation
LI i - X il
pomt of Sd"', Thos for alb . O # Q' ' for uny compound
K
truncation conversion Q involving at least 1wo B
incommensurable bases. in sharp contrast 10 4 compound e
truncation conversion  through  commenste slife significanee
-
spaces where the iterated conversions immiediatety converged. il
Practically speaking, the successive updatings of a B.C.D. tape? i =
on a binary machine could cause some of the “constant™ o x
. . . . . -
floating point data to be iteratively converted hack-and-forth -+
. . o . . ) g =
with each updating. If truncation conversion were adherred to =
as a standurd. some of this data could drift lower m value (see o 2
% ——
3 ’ _ ‘ o , = e —— o
figure 8), losing all accuracy, with no error indication provided =L
) . . . - —
by the system. Thus truncation conversion should he avoided = i =
= 5 3
in mixed buase computation unless all bases are in the sume - —
- {.ﬁ—_ f=
commensurable family. I -
: . , . |
With rounding conversion the error accumulation upon |
successive conversions of a datum amongst incommensurable
as well as commensurable bases is much better controlled. For Figure 8: The possible drift in value of a
example, it has been shown®? that with suitably high “constant datum” under iterated truncation
significance in the intermediate space S§'. the 2-fold conversion hetween incommensurable
compound conversions RBR:S“ and RBT:S“ can both reduce to significance spaces.

the identity cu SE.



Theorem 12 (In-and-Qut Conversion Theatem). For gand & meommensurable,

1 R"R'" is the wWentity an Sb’ o pM gt

" Rﬁ TP ix the identity on SB e gt oty

Thus from theorem £2 we see that for certam compound conversions the imvarant set will be the whole image

space.

Corotlary 12.4: For g and & mcommensurable,

D RERY ) =S5 < 5™ 1 gn

1) .’(RB1£"=SB <> 6"1 | > :ﬁ" | ‘Ix'

The In-andOut Conversion Theotem™ hias been stated for the case of incommensurable bases. however,

meorporating the techmiques of theorem 10, a4 more general result encompassing both commensurable and

incommensurable hases et be conveniently derived tor the 2-fold compound rounding conversion case.

Corollary 12.2: For 8.5 2 2. let 7 be the greatest common rool of § and & when g and 6 are commensurable,

and let Y =1 otherwise. Then

RERE' is the identity on SB o ysm gt (1
Proot: When 5 and & are meommensurable ¥ = Foand 6™ U ", sa (19) follows from theorem 12. Otherwise,

when g and & are commensurable with greatest conmmon raot ¥, then =7 g="7 I where i and j are relatively
prime. Henee S ABCS“' and S“" hilc S Now v 4™ ''> 8" implies that (m 1)+l 2 jn. so Sﬁ C Sg' and

/3 RE' 15 clearly the identity on Sﬁ Alternatively assuming Y8™ ' < 8" means that ¢m Di+1 < jn. Now since i
and j are relativel prime, there exists o k such that k =j 1 mod j. k = 0 mod i. But then SB = Sj" over the
mterval [‘Y 2 [] and  also Sg' = 87‘“‘ DT Gver the same interval,  so that (m D+t < jn- means Sg'is

contained in hut not equal 1o SB aver the mluv.ll['Y k ’7“"] Thus RBR'" can not be the identity on 5{3

completmg the corollary .

When the condition 78™ =1 = " is not obtained. then clearly SB C f(R )(_; S,} and it is of interest
to give some alternative properties sutficient to characterize an invariant point of the compound conversion

m

RgRS

In gene
situation controbing sccumulated error is obtained. If the k4old compound conversion Q ends with a truncation

rat if the image space of the compound conversion Q were exactly equal to f(Q), then QQ=Q,and u desiruble

conversion. we have shown that QQ may not equal Q. Fven if the final conversion of such a Q is a rounding
conversion, the image space of Q can contain some points which are not invariant points of Q. For example, let Q =
RzR;, Since 24 ' =8 =32 |, by theorem 4 the mapping RiIS; - Si is onto, so Q covers all of Si, However
from corollary 12.1, I(Rzk“):ié Sz.

Some detailed criteria Tor determining mvariant points of Rﬁ " will now be considered.
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Lemnia 13: Assume that hcﬂb' b # +6" for any i, and for some dc%'" Rﬁ(d)= b. Then RER"{'(h) =h.ie. hej(RﬁRg‘)

Proof: Let 8 and & be comnrensurable of the Y fumily. Let hLSB h#£8' for any i and assume y J g h| < ¥ i* 1

Over the """”“I\D Loy l] and [ YOI cither SgCSE or SP'C Sgo and in citlier case with desg'.
B (d) = b implies that I)CS"'rISﬁ Therefore b ¢ f(RBR"' )
Alternatively let us assume that g and & are incommensurable. Let 0<b cSﬁ have predecessor b and suecessor b, and

assunie that b ﬂi' forany i Then b b'=h" b. We assume there exists a dLS(S such tiunt RB(d) h'

[d bT< (b’ bhy2 (20)
Erom the definiticn ol rounding (10), it is evident that [x R "(x) | —Incnsl; {x ul}. Therefore with x = b’
b Rg(b) < b d| (21)
and again with x = Rg'(b")
IRg'(h") ngg'(h VI<SIRP(b) by (22
and finally combining (20 22)
h' B (h )| < (23)

11 (23) were an cquality, then d;‘R'"(h band (20 22)wouldall he equalities. Therefore [d P ") =b" b, and

furthermore thiere could he no mcmhcrsnl S‘S between d and R "(b ). Also then
C— Mk ')y 0
b (d+R5{h )) 2 (24)

so that R "(hywauld be the sticeessor of d n S‘S Now uny element and its SUceessur in 96 must differ by un
amount § ’ far some j. Similarly h' b = 8 for some i. so that with equality in (23) 6 ) = = 6" But then i =)=0
siee & and 8 have been assumed  incommensurable. Now b’ b =42 =] only if b and b’ are consecutive
mtegers, and smilarly d qnd = R'"(h ) would be consecutive integers, contradicting (24). Therefore (23) must
be a stiet mequality, so that RER b)Y must equal b’ The case for negative b cSB follows from  sign
complementary, completing the lemmg,

N

o . q o m
As a consequence of this lemma it is now shown that a comparison of the gap functions 'ﬁ and l‘ will suffice

to determine many of the invarinn points of RER
Corollary 13.1: Assume thb’ b# + ' for uny i, and IB(h)>l‘"'(h) Tlen hq(Rb‘R"'

Proof: If 0<b cSﬁ with b #4' for any i, then b b=b"” b’ and the interval mapping into b "under Rﬁ is the hulf

open-hull’ closed interval [(h" b)/24h"" h')2). Suppose¢ no membher of Sg' fulls in this interval, then

nmix {dld < h'.ch'“ ~(h' h)/2

min {dl d = b, ch"" 2 (h" h)/2

so that evaluating l’:S" at the real number b’ (see delinition (6))

B> byh = I“','(h’)



Thus it Pj(b ") =g (b"). then some member of Sg‘ must map into b under RY, and by lemma 13 bef (R"Rg‘ ).

The result for tegative beS§. b#-g', then follows from sign complementarity.

Thus it is readily possible to find sequences of invariant points o RERS‘ from a gap function comparison.

Corollary 13.2: For g < 8 1, assume that I‘EZFS' over the open interval (§', min;B“ ) j$)~ Then
(8'. min 35“ I s ip N s§ C/(R§ RY)

Referring back to figure 2. it is evident from corollary 13.2 that all members of S‘:b greater than .0625 and
less than 0.1 are invariant points of R‘:GR‘:O. tsenerally not all members of SE from an interval, I, where FE< "
will be members of f( RERg‘ ). but certainly any point  of RE(SS') other than a power of 8 must be an invariant
point of RBRg‘. Since RE restricted to S§'M 1 is one-to-one to SE, we may surmise that the number of members of
f(RERg‘) in a neighborhood of x is comparable to the lesser of the numbers of members of SE and of SF' in that
neighborhood. Hence although the members of f(RERg‘ ) are more erratically spaced, the relative difference between
neighboring points of f(RERg‘) will still be bounded with a bound larger but not by an order of magnitude than the
worslt case in SB and S

The preceding lemma and its corollaries do not quite provide the full story about f(RERg‘), since the integral
powers of B and & represcnt break points in their respective gap functions and by the preceding theory they
must be treated separately. We have alreudy pointed out that the image space of Q need not be identical to f(Q)
even for Q = RgRy'. so the question of whether the iterates of Q. namely Q, QQ. 0QQ, ..., Q™) ..., will
converge is still unanswered for Q = RERS‘. This question is a very practical one since we would like to
know if iterated rounding conversion between binary and decimal based systems will allow indefinite drift in the
value of a *constant” as did truncation conversion, or if a stable pair of values must be achieved after a fixed
number of rounding conversions back and forth. The following theorem is a surprisingly general and reassuring

answer to this question.

Theorem 14: (Iterated Conversion Theorem): Let Q = Rg‘ RE__\'»{here m, n 2 2. Then QQQ=QQ. Furthermore this
result is best possible in the sense that there exists §,§.n,m = 2 such that REOO * REQ.

Proof: For any real x, Rg‘RERg‘RE(x) = RY RE(x) unless RS‘RE(X) =151 for some i by lemma 13. Similarly
with Q = Rg‘ RE, QQQ(x) = QQ(x) unless QQ(x) = *8 with j #i. Assuming QQQ(x) # QQ(x), the definition of

rounding conversion ussures that

IRF'RH(x) ~ RY(x)! > IRFRERH) — RERAX)]

> IRF' RERFR(x) — RERFR5(x)]



so that with [Q(x)l = &', [QQ(x)| = &' # &',

100(x)  QUOI < 2RF'RE()  RYx)I < 8i(145'~™) i

and also

1QQ(x) - Q(x)| = |57 51" = 51 6j_il

and since m 2 2 by assumption in the theorem
- 8i-ij<s'™< /8 <i)2

Now I 8 70 has a pusitive integer value for j > i, and for j <, the smallest value of || — & =i s 1/8
2 1/2, and this is a contradiction, Henee QQQ(x) = QQ(x) for all x.

The remainder of the theorem demonstrating that R";OO:#REO for some n.mB.8 = 2 is shown in the example

of figure 9,

S2
a 10
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== 1200000

(1.001), %20 = 1] 79648 eem

11 00000
(1.000),x22° = 10 48576
. i 10 00000
Al odn
ReR o R X R RORZ ROR? 9 90000
(.mnzx:"’=ox304o —— 10 2 102 '0"9 i
42 1412 A2 > 9 80000
R2R|0R2R|0R2Rm(")

9 70000
9 60000

Figure 9 trerated couversions ol x 1,120,000 by the com pound conversion
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1072 10 2RI0'



Computer hardware mvolving the bases 2, 8, aud 16 of the binary family and the base 10 is in popular usage. Our
results so fur discuss accumulated error under compound conversion (1) within a commensurable family and (2)
between two incommensurable significance spaces. The modification of our results to cover compound conversion
between more than two significance spaces all from just two different conmmensurable families is straightforward. so
that our theory does cover the current situations where one might expect to encounter mixed base computation.

If a suitable 3-state device were perfected for use in computer hardware, a ternary based floating point
system would undoubtedly be implemented and the possibility of mixed base computation amongst the bases 2, 3
and 10 would ensue. Our final thoughts will then be concerned with compound conversion through a collection of
incommensurable significance spaces

For the significance spaces S7,, S, and S7. we have 1960563 = (11 1A000), , €$5 , 1.960.576 = (I 11011
|1m010um(mmm)e§4.mmltmosoo-uomr|4mm)eSKamhheAnMuwdmkmmxbmwwndndmwm
and its successor in this neighborhood is 121, 128, and 125 respectively (see figure 10). Thus the iterates of the
compound rounding conversion Q = R;’R;"Rfl in this neighborhood will be different for a number of cycles. As
seen in figure 10, Q'7)(1,960.563) = 1.961.375, and Q%)(1,960.563) = 1,961,500 for k > 8, hence Q) % Qk—1)
for at least all k < 8. Examples such as this one show that utilizing rounding conversion is not enough to successfully
restrict the drift in value of a constant datum under compound conversion.  From the generalized result on
In-and-Out Conversion given in corollary 12.2, a resolutin to the problem of controlling overall error growth in the-
presence of more than two incommensurable bases by intermediate reconversions to a standard significance space is
feasible.

Specifically let Sgi. I <i <k, be a coilection of significance spaces representing the different floating point data
formats of a mixed base computational envnronment Suppose we introduce an intermediate space, Sé with the
significance m small enough such that R6 Rﬁ is the identity on Sg' for all 1. Then let all data introduced into
the nnxed bdse computational environment ﬁrst be converted by roundmg to S& and let subsequent conversnons

from SB to S | be preceded by a reconversion to ST, (ie. R ’R"‘IS i>g J:| Note that the conversion i S 3
) 7 Fi i |

10 S always regenerates the same value, R6 (x), in 56 for an initial datum X, since R5 Rﬁ is the identity on
Sg'. Thus the value of the initial datum x whenever encountered in Sﬁ even after numerous intermediate

n. n.
e B e ¥ R 'EU A, and s Stmdardization O @ oastant's varue witll f€gaids [0 eadl: Sﬁ provides

B

a highly desirable property for mixed base comput.mon
Now the range of possible values achievable in Sﬁ is Rﬁ'(Sa ), and it is of course desirable to have as large an
m as possible so that the conversion through Sé does not introduce too much error. Yet it should be kept in
mind that if m is chosen so large that one of the R6 Rﬁ is not the identity on S& then conversion error may
accumulate and generate a greater overall error than if a smaller m (meaning less initial accuracy) were chosen.

These observations can be formalized as an additional corollary to theorem 12 and corollary 12.2.

Corollary 12.3: For Sﬁ < k, let 7; be the greatest common root of § and B; when they are commensurable,
and let x be unity otherw:se Let

m < min i (n—1) loggh, + loga’rif (25)
i

n.
and let Oi = Rﬁ.IRB for 1 <i<k. 1fQ=0Q O for any 1 < j <k where Q'is composed from the mappings Oi
I <i<k. thcnIO=Oj.
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showing the drift in value af a “constant datum™ under successive conmversions.



The tact that m must be bounded from above in (25) in order to gnarantee control of accumulated error and
avourd situations such s that exhibited in figure 10 demonstrates that the phrase “carry more digits™ does not
always mean that greater overall accuracy will follow, and such cliches should not be used as a substitute for u

true understanding of the fornal stiucture of floating point number systems and base conversion.
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