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ABSTRACT 

The process of convening arbitrary real numbers bito a floating poini format 

is formalized as a mapping of the reals into a specified subset of real numbers. 

The structure of this subset, the set of n significant digit base ß floating point 

numbers, is analyzed and properties of conversion mapp.ngs are determined. For 

a restricted conversion mapping of the n significant digit base ^numbers to the 

m significant digit base 6 numbers the one-to-one. onto, and order preserving 

properties of the mapping are summarized. Multiple conversions consisting of a 

Composition of individual conversion mappings are investigated and some results 

on the invariant points of such compound conversions are presented. The 

hardware and software implications of these results with regards to establishing 

goals and standards for floating point formats and conversion procedures are 
considered. 
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A FORMALIZATION OF FLOATING POINT NUMERIC BASE CONVERSION 

I.   INTRODUCTION AND SUMMARY 

The necessity of base conversion of numeric dalu during some stages of computation on a digital computer is 

a de facto component of practical numeric compulation that must be recognized in any complete analysis of 

digital computation. On the hardware level the trend towards establishment of computer networks with possibly 

differently based machines and. on the software level, the mixed-base flexibility inherent in the PL/I language 

specifications, both suggest tnat internal data of certain jobs may be necessarily subjected to multiple conversions 

before job termination. Thus, references to a purportedly constant floating point datum occurring at different 

points during program execution might encounter altered datum values. Both hardware and software designers 

must recogni/e this problem, and each can benefit from the fundamental principles obtained by considering base 

conversion as a mathematical transformation. In this report we shall follow the notation of our previous 

work'", integrating the mainstream of results from those articles with a general formal development of 

conversion, and providing new results particularly in the area of multiple conversions. 

A fundamental analysis of base conversion is concerned first with determination of the theoretical limitations 

inherent in any implementation of base conversion. The actual algorithmic mechanics of any theoretically 

rcali/ahlc conversion procedure is then a secondary (albeit nontrivial5 )problem which will not concern us in this 

article. The formalization we introduce provides the vehicle for studying the properties and recognizing the 

inherent anomalies of the conversion process, which must necessarily then guide the performance specifications 

for floating point representations and base conversions at both hardware and software levels. 

Converting integer and fixed point data to an "equivalent" differently based number system is generally 

achieved by utilizing essentially logg ß times as many digits in the new base 5 as were present for representing 

numbers in the old base ß system. This simplified notion of equivalence does not extend to the conversion of 

floating point systems. Actually, conversion between floating point number systems introduces subtle difficulties 

peculiar to the structure of these systems so that no such convenient formula for equating the "numbers of 

significant digits" is even meaningful. Thus, our formalization of floating point base conversion is preceeded in 

section 2 by a careful analysis of floating point number systems. 

Following our previous work1"4, a system of floating point numbers of n significant digits to the base ß is., 

characterized as a significance space, S^, and in theorem 1 the number of elements in S% relative to the number' 

of elements in S^ within a specified interval is shown to converge to ((6-1)6"-'/((/J-1) /}"-')) logg/J as the 

interval grows to include the whole real line. This relative density of "total membership" of two significance 

spaces provides only a gross comparison of the two number systems, for   actually there is considerable local 

variation in the relative density. The gap function1, Vf (x). is defined as the relative difference between nearest 



neighbors of S", ai x. A compariton of the yrupl^ of I"!] and 1'^" provides more insiglii into the comparability of 

two different!) based floating point systems than any simplified "equivalent digit" formula. 

Htving dtsracterized floating point number systems and the gap function, the conversion of the real numbers 

into S!j both In rounding and by !run^.lion procedures are then formalized in section 3. The order preserving 

properties of these conversion mappings are detailed, and the Base Conversion Theorem is stated, which gives 

the   necessary and sufficient conditions loi a conversion mapping from SS to S?1 to be (I) one*tO-onP and (2) onto. 

The important pioblcms associated with multiple conversions of a datum are analysed in section 4. The 

composition of repeated rounding and oi truncation conversions is termed a ampnundconversion, and the 

associated invariant points (i.e., the points mapped into themselves) of such a compound conversion pupping are 

analysed, lor s compound truncation conversion it is shown that the only invariant points of the mapping are the 

numbers common to all of the significance spaces involved. Thus, consideraMe importance must be attached to 

the intersection ot signilicance spaces. :i!id in theorems 10 and II these intersections are shown to exhibit a 

crucial dependence on the commensurability of the bases. Specifically, significance spaces with commensurable 

bases will always jomlK contain a common signilicance space. For example the d-digit hexadecimal numhers and 

the H-dign octal numbers both contain all 21-hit binary numbers. On the ottrer hand the members common to 

significance spaces with incommensurable bases (e.g. binary and decimal) will be finite In number and, for cases 

of computational interest, these members will typically all fall in an Interval much smaller than the interval range 

provided bs current exponent ranges on digital computers. 

As a consequence ol the limited membership of points common to two incommensurable significance spaces, 

the multiple back-and-lorth conversion of a "constant datum" between two incommensurable significance spaces 

by truncation conversion can accumulate error so as to invalidate even the leading digit of the value of (his 

"constant datmn"'. Practically, the process of updating a B.C.I), tape on a binary machine might well subject 

stored data which is never updated to multiple binary-decimal conversions, so B.C.I) tape updating is very 

sensitive to such anomalies of compound conversions. Fortunately, we can show that under very general 

conditions iterated rounding conversion of a datum between two significance spaces quickly generates a stable 

pair ol values each of which is a reasonable approximation of the initial datum. Under the stronger conditions 

given in the In-and-Out Conversion Theorem'1 rounding conversion (hrough an intermediate signilicance space can 

be guaranteed to regenerate the initial datum of the original significance space. 

In the presence of more than two incommensurable bases the possibility of cyclic conversions" accumulating 

error in a datum is shown to exist even under rounding conversion. Our final result resolves the problem of 

controlling the overall growth of accumulated conversion error within a mixed base computational environment 

by a process which standardizes a datum's value in each of the significance spaces involved. 
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II    FLOATINGPOINT NUMBER  SYSTEMS 

A lomuh/aho,, ..I n,..1in,.i; pomi mnnlu-r ^Mcnis must M.„I w,ih , Ommmimim oiiU, m ol lloutinj- 

poim iiun.lHMs. Fef«r«Wj divoual I,»,,. H,. aunluMMun. d,.,, s^ucna- 1opK-sl-1,la(M..K1| „ul;l|,n„. In prc-vu.u, 

■rtietei llns mi IUIN k-on U-rmod y BpuUcsfloe spnav 

ncinn^,  f,., ,i,. te4HW, ^ . :. ^„.j „„ /W(, ;1Mil „ > , ^„^ ^ w/^.(y//(.(, (()r /jm,A/<)//) ^ ilic 

siamjiai'iii s/)j,r. S|, Iv MM foUowiflg id .,1 rcil niiinliiTs: 

S| ■  {hth = k/i1 UM Miriif mlcnors k. | WIKTI- |k|<(j"} 

•<" cHrfit) ^ M uuluc ,1K. („.ok lett«« „. ß mi A „. d.n.M. tem; tfe I n^hsh kMKMs ..h.c and d NMII 

dcuou- tkmmU n, ,, HpHficw« spaev. , . ,1,. v, ..died ■•fl.uh,,. p.,,,,," ****** M» k-IUTs M.k.l.m.n.p and c, 

\MII dem«« ini^eis:   -md \.\   ,iiid / \MII im** .iihiii.ii\ io.il immheis. 

FOT an demon, h = & , s;i ,1,0 .OP,.,! H..,,,,,,. p,.,,,, wptmimkm o, h e« bo vsuah/od H h.vn,. ,1,0 „xod 

pn"" intef51 ^  k "P'^nu.d  in ., M.„ ..„d „ m less d,.,,.   to ,ho mm* ** $, Wll,, u» «p,^ 

P'""- th*« u.p.osoMK.d In ,1,0 „„0,0, , Iho Ho.,,,,,, p.,,,,, .op^onKmon .us, downbod w,ll „„, „, .oncul bo 

'""quo. with ,!,,„   „(uonoo  u-ahAmnns ,„  b  oono^md,,.,  to ln„l,  »mmMT and -unnomu.h/od" Unms 

' hk' "' S""K■ «^ ( ""-^•'■""•^ ****** '-' tto „on „„,.,„0 dou-nnuK,,,.,,, u, k,, in b - ^ w,II bo „oated 

wl,o,o nocoss.„v. IH^ONO,. „u, ,„..,„ o,„oo„, « «„I, n,ombo,sl„p .., b ,„ ,l,o so, ol roal „umbors & ,u, winch 

the fo™ ,„ ^«enlm, b « .„olov.,,,, N.,,0 ,1,.., ,1,0 s^nhoanoo spaco S^ Mfm tmn, m aou.al tloa,,,., po,n. 

""■",1^ ^'^ m ,1,,,, ,1,0,0 .s m bound o„ ,ho oxponon, po„,o„ | o| .ho mombors b - ^ , M. T,U1S « ls 

.K-ualK an „.,„,„, so, Sn.oo «o sh.JI ,„„ oo„oo„, oursolvos wnh undoMlow and overllow problems, ihe 

s,,,„noa,uo spaoe S^ n a poMooHs aooep.ablo model ol a lloa,,,,. pom, „umhe, svs.em to, our purposes. 

I- .s «WJ ,0 Msuah/o ,l,o ol,a„,o ,n ,l,e so, S^ caused by vary,,,, ,1,0 s,,„,(,canoe. s-noe ,no,eas,ng n ,0 „+I 

"'■'■■"-^ «« ..K'„,bo,s o, s;] and adds ^ „e« members „„„or.nK spaced beuveen everv ncghbor,,,, pa,r ol 

mmhtn o, S«, ||,o dependence .., ,l,e .„o.nlHMslnp o, ^ on ,l,e base $ ,s Iar more sub.le. In prac.ce ,, has 

Ivon co„vo„,o,„ to ,don„t> a „on decm.al Hoa,,,,, po„„ „umbe, sys.em wnh ,1,0 "appropruMe" decimal based 

svs,on,. ho.evo, .e now sho« H.a, such a purpor.od o.pnvalence ^losses over cer.au, mherrem anomalies 

bo,ween dillo,o,i,l\ based fl ui,,,,, point number sys,ems. 

A gross compar,so„ ol ,wo d,llere,,tiy based signilicance sp.,ces can be obiamed by delermimi,, the relative 

„umbe, ot members of each space over .1 comparable lani-e. Kor example the .?(s,gnil'icant) bit binary numbers 

between uimy and o„o thousand are I.. I.()l2 = 1,25. |.|()1 = 1.5, 1.1 |    = 1.75. |Q,0   = 2., 10.1    = 2.5. I 1.0 

= 3.,  II.ta = -v5. I00: = 4.  [OIj =5 I 100000000, = 7(>S.  I I 10000000, = S4(v. and the I (significuni) 

digit decimal numbers over the same range are I. 2, 3, 4, 5. 6, 7. X. '). |(). 20. 30, 40. 50. (>0. 70. «0. 90. 100. 

200. 300. 400, 500, 600, 700, SOO, 400, 1000. In ligure I these members m indtcated by tickmaiks ot. the real 

toe plolled on a logar,ll,m,c scale so that the log periodic miture ol the spacing between floating point numbers 

,s evide,,,. The ratio ol the tujmbers of members of these systems over Ibis interval is 40/28=1,43. Now ibis ratio 

of membership density will vary with the dio,ce of interval, howeve,. a reasonable overall compatison of any two 

floating point systems can be calculated by determining the limit of such a ratio as the interval grows to includc 

the whole real line. 



16 M        i:s      :5(       512 

I I ||  I I l|   I I l|   I I l|  I ll|  I I l|   i i l|  I M|   I I l|  IN 

-I—I   I  II lll| 1—I   I  I I lll| 1—I   I  I I III 
10 KM) 1000 

I it: lit.' I. iKkiiLirks ploltrd mi .) l'«t! Male shim.nn (u) llu- lurlv 1|M|iiiitK üIIII Mt 

hiiun iiumlH-rs MM! (h( llu- I\M-IIU fi^hl MMnnilujul) Ji(!il Ji'iini.il imnibi-is MMT llu- 

r,i i|!f  | I.   HI   | 

Tjwurem I    Lei S*! and S^'  ho .nn  iwn Mj-iiilicaiKC ipteet. llien loilini; |.s| denote ila- IHIHIIHM of iiKMiihcrs i>t 

IIR-     • S. 

|{di d«S^. ^ <  Idl < M}( {h    I) ftr 

luti 

M.x     \{b' bfS^M c ihl^ V1H *   '^ 
n    I 

H^ III 

PHHII    Lei  [xj denote ilic m-jU'-i  mtafn  in x   Ihcn llu- closed mk-ival lyj. M    ma\  be divided mlo 2 

IIHUJMI  di^oinl  h.ill-upen  hall-elnsed  imervjN ol  ihe turni \ß'. ß1''}   and two Mih mleivaK olMieh iniervals. 

hadi inlerval Li1, ft* ')  eotttaMM ifi   1 M"    '  dislmel iiiembeis ol S']. Noiiny ilia!     beSS • luSÖ  we   liave   lor 

M 

l^hi hcS'l. | < |b| *:  M}| =   :|{b|beS^ ^ < b < M)| 

= :i: [log^VlJ   + t IKi   DU"    '   where 8<f <3 

= :i: bfcM + t ) i^ \)ii" ' wheie k K: 

Ihe lalter resullm^ trom removal ot ihe pwiN) mleger brackets   liiKilly 

lim |{d|dfSg'.^<ldl<M}| 

M-»       |(b| beS^. ^<lbK M}| 

=  lim 
2(2log6M+t2t(6   i»fir 

  where k,! .|f2l<2 

M*»      ZCIog^M+e,»!^   D^""1 

(ft   l>6 

iß   \)ßn 

m     1 

logfiß 
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In -IK- h.lkluK- on a.nvcsu.n .IKMV i, an of. cuou-d notion that a decimul digit is equivalent to log 10=3 32 bits 

".-a 3y decnnal wsten, should he only shgh.lv less numerous than a 10 bit binary system. However, If we 

m SS Sj,] ^mboheallv denoie the Imnimg ratio given in equat.on (I l.then |Sf /S*0| = 529 so thai there are 
•-■alls  onK   . v; * ma„y ,.., wmktn ,<pmlMc Wltll 3 8igninc8nt ^ ^ ^ ^ are ^ ^^ 

-P—uahle -h  l(. Mgmtieant bus. lurthermore the ratio of the number of members of S^ to S'    over the 

Z W,'? T ' *" n,,,   :"yP,C:"    SmCC IS^S-1 = l■47(, • • • • —"* * ^ '- the« .i-lre about 
**** 3 sienihean, bit h.nary numbers than I s.gnificant digit decimal numbers, and provide a clear 

-madicnon ,0 the digit = 332 bits rule. This anomally preva.ls even with more digits, since for large integral m 
■'"d n chosen such that 11)"' 2" approaches unity. 

I 0    a3' 

iüm/:"-.| 

,  "'-"'•' " '"" "«'""-hl' " "'""""■ >'°**'- The „h , -m . to, .0H„" con« 
."■»» ™...P> .».,„„,,„ „,„.,, M mmM.,.,., (val,,csl ,„ the sysu.in (JIBJI sci|ucnce) jr;djsii 

1       ,    '■ ^""^   '  ■'•••' «* "^ P"" -*" ■y»™. flo-tm, poin, sys,ems Hav, 

**" —'" """ k '"■ '"" ' "' ^ J  ^ «" n.w m.,. „b„s to, each , F„„heLre  „, 

k"f   ■'"■ ""• bS>"- a"J "- »** s - '•"«"' • »«I form of tqUa,to„ „ , 
^" "« *"•"«" '"' "'- I ■ no.** p,  .-„„„vato,,, .,„ rom»!.- is ,0 cqua,. ,h. ngh, „and si(1e 

"I (U 10 .iioiv and .,,1«. |,„  „, ,„  tKm „f       .     d j » 

Ur/^Ol. Hi» l,„n, M,: *        ''"' '" be """■'■ *'"' ll"n SS «*" 

CoroUtrv l.l 

s f is more dense than S^j it and only if 

m>nlog^ + KVlli-l!Hug6|og^ (2) 

Attnbutmg meamng to a non-m.egral number of digits, one may propose that 

m = n log6/J + logg I 6(0   I) / 0 (6   I )1    logglog^ (3) 

t    12 LT*"d,e" f"rmuh"' n"a'ins""" ""'*" syslems■■F"'b-"^-™1»— *• *«. 
# bits = 3.32 . . .X(# decimal digits)     .884 ... (4) 



The v;iikiliility of spacing of floaung point numbers of a given SS is sucli that the simplified formula (3) does 

not really provide an adequate comparison of differently based floating point systems and more attention to 

local magnitude dependent variability must be considered. In studying the internal structure of SS note that 

every one of its non-zero members will have both a next largest and next smallest neighbor in S5. 

Del"i"'t'»": The successor, b ', of beSS, b^O, is given by 

b^ min (d|d >b,deS^} (5) 

and since distinct members of SS have distinct successors,b may then be referredto as the (unique) predecessor of 

b'in S^. 

Now the absolute difference, b'-b, will grow with b in SS, however, the relative diference is bounded.1 

Definition: The gap. FS (x), in S5 at x is given by 

rs |00 

( min{b|b > x, beS|]} - max(b|b < x, beS^} 

= J X 

I r|(-x) 

for x > 0 

for x < 0. 
(6) 

Specifically then r^(a) = (a'-a)/a for 0 < acSS.   From the structure of floating point number systems it is 

evident that F^(/3x) = F^(x), so FS will experience a log periodic behavior. For 1 < x < /}, the numerator of (6) 

wii) have the constant value ß]'n, so that on a log-log scale the gap function appears as a saw tooth function. 

In figure 2, sections of the gap functions F*0 aid F^6 are illustrated. Note that the variation in the magnitude 

of the gap function is greater for larger bases. 

1000 

.0625 16 

Figure 2:^   The (tap functions l\t (x) and F.^ (x) for .001 < x < 1000. 10 16 
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I 

From theorem 1 We can calculate that IS?6/S<0I = 5.66 .... so that overall there are more than five times as 

many 4 significant digit hexadecimal numbers as 4 significant digit decimal numbers. Yet from the gap functions 

in figure 2 it is apparent that over the interval (.0625..1000) there are i.iore 4 significant digit decimal numbers 

that 4 significant digit hexadecimal numbers since l"|
4

0(x) < rj^x) over that interval. 

From the log periodic behavior of PS the following bounds are immediate. 

Theurem 2'- The fWTCÖon 1^ attains both a minimum and a maximum value over the non-zero members of SS 
given by " 

min   (rjlj (b) IbeS^.b^o}   = l/(^n-I) 

(7) 
max   {1^ (b) IbeS^.b^O)    = I//)'"-' 

and over the non-zero reals the bounds on rS(x) are given by 

inf   (l^(x)lx^O}    = I//3" 

(«) 

vm (i^ (x)i x^o)   = i/f-1 

Thus the gap function presents a more complete picture of the structure of a floating point number system 

than any "equivalent digit" notion, and simplified formulas such as (3) and (4) must be used with extreme 

caution in any comparison of differently based floating point number systems. 
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III.  CONVERSION MAPPINGS 

A conversion procedure determines a specific value in i| loi each real number x. Thus, a conversion process 

may be characterized as either a function or a mapping. Formalizalion of conversion as a mapping appears 

preferable since it is often useful to invert the question and refer to the set of points which map into a given 

element of S^, and this notion is then readily available by considering the inverse mapping. Certainly any 

conversion mapping of the reals to S£ should be the identity on S£ and in addition it is desirable for this 

mapping to satisfy certain order preserving properties. 

Definition: A mapping. M. of a set R 'of real numbers into the reals is 

1) Weakly order presening (isotone6, monohme) on R ' 

if x < y =» M(x) < M(y) for all x. yeR' 

2) Strongly order presening on /?' if x < y => Ni(x) < M(y) 

for all x, yeR 

Furthermore  the  mapping is said  to be  weakly (strongly) order preserving if it  is weakly (strongly) order 
preserving on the reals. 

No conversion mapping of the reals into Sjj can be strongly order preserving, however, we can expect that a 

conversion process should at least be weakly order preserving in addition to being the identity on S5. These 

latter two conditions do assure that the inverse image of any beSjj under a conversion mapping is an interval 

containing b. Formally we shall limit our discussion to the rounding and truncation (sometimes called chopping) 

conversion procedures usually encountered in computerized numeric processing. 

Definition: The '"""«"'"' conversion mapping, T^, and  the rounding conversion mapping,  RS, of tlie real 
numbers into S^ are defined for aii integers ß> 2,n> \ as follows: 

Truncation Conversion 

Tn(x) =     ) maX  ^b|b ^ X' ^ ) for x ^ 0 

* X / min  {b|b > x, beS^ } for x < 0 (9) 
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RoundJng Conversion 

I 
i 

/ min 

)",r 

fo 

(bl b+b > x,beS|j}  for x >0 

R| (x) =     <f min   {b| ^-> x.btS^}   for x < 0 

tor x = 0 

(10) 

The effects of these conversion mappings in the neighborhood of a power of (he base are shown in figure 3. 

Note thai the distinctions in the definitions of the mappings of positive and negative values are required to 

achieve the desired sign compiementery relations; 

T|(-X)-    T^(x).R^(   x)=    R^(x). (ID 

Reals 

I 

I 
f 

I 

I 
I 

^(1+.^' 

ß'iUlß*   ") 

Reals 

(a) (b) 
ligure 3: Conversion of the real numbers to the ii(signitic;int) digit hase ß numbers in the 

neighborhood of a power of the base by (a) truncation conversion. To, and (b) rounding 

conversion. Ho- 

ßl(l+3/J,-n) 

Pil+lß1-") 
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Note K'j(-^v-) = h loi all positive licS,". so thai we have not imposed the additional symmetric rouwiing 

condition foi mid'points dependent on the "parity" of b that some researchers prefer. Although (his refinement 

could he added without materially affecting our results, we prefer the definition above. 

It is evident that TO and Rlj both are weakly order preserving mappings which are identities on S!l as desired. 

In practical numeric computation we often need to convert data already expressed in floating point form to a 

differently based Moating point form. Thus we are interested in the properties of the restricted mappings RßlSj-1 

- Sß and T^IS|   - Sß. 

From consideration of the algorithmic mechanics of conversion there is evidently a considerable difference 

between binar) hexadecimal conversion and binary decimal conversion. Since special relationships between 

bases do affect the properties of restricted conversion mappings there is need to characterize this important 

"commensunibility'- relationship between bases. 

Del'initioii: let ^i > 2 be a root free integer, i.e. ß has no integral i root for any i. Then the numbers (3. j32, 

(J ,. . . form a commenmrable family of bases termed the ^-family of bases. Two or more bases belonging to 

the same commensurable family of bases are comntensufäbk bases. Two bases which do not belong to a common 

commensurable family are termed Incomtnensurable bases. Furthermore, two or more significance space.-, will be 

termed citinniciisurablv whew their bases are commensurable. 

Thus two. eight and sixteen are Commensurable bases, whereas base ten is incommensurable with any member 

ol the binary family of bases. The root free condition on ß in this definition simply assures that each base is in 

precisely one lamiK. 

,A useliil equivalent characterization of commensurable and incommensurable bases avoiding explicit mention 

of the respective families to winch the bases belong is provided in the following. 

L»-'1""^ 3: The bases 0 and S are commensurable if and only If (J1 = ft1   for some non-zero integers i, j. 

("r"ILlr> -l: T,K" bases 0 and h are commensurable if and only if log^ ß jg rational. 

Thus, the gap functions   1^' and 1^"'   plotted on a log-log scale will share a common period when ß and 6 

are commensurable, as in figure 4. and otherwise will not (see figure 2). 

-,    20 

65536 

1 i^üiirc 4: Seilions ill the (äup luiulinns I .-. f"r th» 6 (significant) digit hexadecimal numbers anJ I', for the 

H (tignificant) digit octal nun.hers. Hexadecimal and octal are commensurable bases and share a common 
period of 2 on the log scale. Note that the h digit hexadecimal numbers and the S digit octal numbers are 

not equivalent floating  point  systems. 
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I. i* readily verified thai the conversion by rounding or truncation iron, fl fixed point number system with n 

ß ary digits to .ho right of .he radix point to another fixed poinl system with m 6 urv digi.s to .he right of 

the radix ^inl will he one-to^ne If m > n log^ and onto if n, < n log^. Thus a conversion between fixed 
po,,,, ^umbe, ^stems ™* ^ either one-toone or onto, however a conversion between floating point „umber 

sterns need he „either one-to-one nor onto. as seen in figure 5. The necessary and sufficient conditions for 
rounding   and   truncation   conversions   between   incommensurable 

Significance   spaces   to   be   (1)   one-to-one   mappings   and   (2)  onto                                       Rlo 

mappings have heen determined2 In the Base Conversion Theorem. Sa     ^ S' 

Iheorem 4 (Base Conveisu.n Theorem): For incommensurable bases ß 

and 6. the truncation (rounding) conversion mapping of     SI to m 

pin  it-"— eni\ 

i- isone-tooneifandonlyifS™   '^S" 

''• is onto if and only ii^"   ' ^ft1"   i 
(12) 

The details of the proof of this theorem are given in |:|, however. 

an   intuitive   understanding   lor   the   result   can   be   gleamed   from 

comparing   the   gap   functions   (see   figure   2).   Certainlv   il   IT'   is 
o 

uniformly  less than  r|, then  the mapping of Si  to Sf  should be 

one-to-one. Conversely, if the maximum of ff falls above the 

minimum (restricted to S|) „f |- ,|1CI1 ,ri)m ., lhmmm 0, 

Kronecker (that the mtegei multiples ol an irrational number mod I 

are dense  in  the unit interval) it can be shown that lor some beSi 

Iffb) > I|fb), W 

in summary the essential ellect of formulae (12) regarding the 

conversion of the initial system S| to the target system S^" is that to" 

assure one-to-one conversion a digit must be sacrificed in the target 

system and to assure onto conversion a digit must he sacrificed in the 

initial system. 

The   conditions   for   one-to-one   conversion   guarantee   another 

desirable   properly   of   the   conversion   mapping,  since  it   is  readily 

shown that a weakly order preserving mapping on R' is strongly order 

preserving on R  if and only if the mapping is one-to-one from R '  to 
the reals. 

256 

64 

32 

1000 

I 

ligurc S: Conversion hy mundinit of the 

3 (siKniricanl) bit binury numbers to the 

I (significant) digit decimal numbers 

over the range I 1,10001. indicating that 

K 10l S j is neither one-to-one nor onto. 

-""^ 4 - ^ :1,,d "*' we Mch s,r<,"S'y ofd«r preserving „„ sS if and only if 6"- ' > ^_,. 

I 
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li IN instructive to consider the iroplicatlons of the 

Base Conversion Theorem for decimal u« binary 

conversion. It follows that the mapping by rounding or 

truncation conversion of a decimal based significance 

space to a binary based significance space will be 

one-to-one (and strongly order preserving) if and only if 

~ bits > 3.32 . .    x («digits) +1 (13) 

and onio if and only it 

(* bits < 3.32 ... x {#di|it8) 3J2 .. (14) 

Relating these inequalities (13, I4i to the membership 

density formula (I ). we conclude that decimal to binary 

floating point conversion will be (i) one-to-one and 

strongly order preserving if and only it the decimal 

system has less thai .9 (log 2) = 271 limes thu 

membership of the binar) system and (ii) onto if a.id 

only it the decimal system has more than 18(log.02)" 

5.418 times the memberhip of the binary system. Iluis 

conversions  between  tloati'it;  point  systems of nearK 

equal densitv  will be neither one-to-one nor onto. 

The   properties   of   decimal-binary   conversion   are 

succintly presented in figure 6. The lattice point n. m 

corresponds  to the bmarv  system S" and the decimal 

system S™. Lattice points ftUtag to the left of the  line 

n=(loj;,10i  m-i 1=3.32m+l   coirespond    io decimal  to 

binar)   conversions which  are one-to-one and strongly 

order preserving, as weii is bmarv to decimal conversions 

which are onto. Lattice points rallinj.' to the right of the 

line n = 3.32m   3.32 correspond to decimal to binary 

conversions which are onto and  to binary to decimal 

conversions  which  are  one-to-one  and strongly  order 

preserving. Lattice points falling between n ■ 3.32m+l 

and   n   ■   3.32m   3.32   correspond   to  uecimal-binary 

conversions which have none of these iluec properties. 

The  equal  density line n  ■ 3.32m    Mi sepai    es the 

lattice points so that  those to the Icti correspond to 

binary systems which are more dense than the decimal 

systems and lattice points to the right correspond to the 

decimal system being more dense. An  increase of one 

unit tin the n axis increases ISS/SfJ by a factor of 2. 

and a one  unit  increase on  the m axis decreases this 

density ratio by a factor of 10, so ISj/Sj^j may be easily 

estimated   by   determining   the  distance of the  lattice 

point n. m from the equal density line. 

Decimal  to Binary: 

Onc-lo-on 

Strongly o 

Binary  to l)e 

Onto 

m 
# decimal digits 

I iliutc 6:   A sMinmary of the propertics of 

floutini! |ioinl Jecimul-hinary base conversion. 
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IV.  COMPOUND CONVERSIONS 

The preceding müm deatl only With the properties of astogk conversion mapping. We luve indicated previously 

thai computing environments such as PL I language programming, multi-computer networks and B.C'.D. tape 

updating on a binary machine present situations where data may be subjected to multiple base conversions during 

overall job execution. Considerable care must be provided in such mixed base computing environments to avoid 

excessive accumulation of error in purportedly "constant" data. To critically analyze this problem the notion of 
compound conversion is formally introduced. 

Dermitioii   For all n > 1, (S> 2, 

i) \ß and R^ are I-fold compound conversiom thfouih $2 

k 

Ü) torüa   k-told compound conversion through S.J'.S,
2 sök 

1,0 and R^O are (k+lj fold cunipounJ conversions through 

H.-hortno.e Q is a compound truncation froundin,) conversion if all the individual conversions composing Q 
are truncation (rounding) conversions. 

Tims R|Ä| « 8 2.foW comp(nmd rounding conversion through Sf. S|, and R^'T^^R" ,s a 4.foId compound 

conversion tttfot# Sg. Sf. S^, S^" (see (igure 71. 

A compound convera« is a composition of mappings, and many properties of individual mappings readily 

carry over to compositions ol such mappings. Thus the following important properties of compound conversions 
are immediate. 

Lc""nj v "  0 » a compound conversion, tlienO(   x)=   ©(x) for ail x. 

ifmmüi  Compound conversions are weakly ordei preserving. 

An   evident   property  of  truncation  conversion   is  that   the  magnitude  of T|(x)  is  never  larger  than  the 

"^m.ude of x. Thustruncahon conversion performs a contraction of the reals towards zero (see figure 3a). 

JM11Ü-: The function M:Rcals-.Reals is a auction if M,x, has the same s.gn as x and |M (X)K,X| for all 
x. 
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Reals 
0 

Reals 

(b) 

Figure   7:     The  composition   of  a  compound   tonversion   from   successive   conversions; 

(a)   the   sequence  of conversions   ko,   Rf,  71,   K T ■ 
P 0        (i        o   ' 

(h)   the   4-fold   compound   conversion     Q        RJPT   RITRIS. 
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(learly a composition of contractions is ;i contraction. 

lamm 7: Compound trunr^tion conversions are contractions. 

The nie mappings 1^ and T| are identities on ■hen image space, SS. however T* T2   (1.8) - 1 75 and T4 T2 

(KTS) - ,625 so tha, members of .he image ^ce of a compound conversion 0 are not necessanly carneclin" 

"-- -s I, the mapping 0. For the compound conversion 0 illustrated in figure 7 note that q . q   and q  arc 
mappe   mto themsdves .n 0. whereas qa and ,,, are p s of the „nage space of Q which are   ot L      " ' ,,  ^ ■,.        i ■ >■■ "« >..«8= space oi y winch are not mapped into 
ineniseives. rr 

in ,eneu, ,,,e ponus mapped inlo themselves by a compound conversion may be difficult to de.erm.ne but 

us 
;""";";'" ■ "va, bMwe'n"" -" ■ ™' ^-f»= r-^ -..-,„„ „,, * mmi ,lu,side »'at interval by thai compound conversion. 

mappings as invariant points. P 

EsSHiia:,,., M ,H,., ,„a|)pi,ls ,„ „„. ,,a, e ti,a|s Then i|ic /uiÄn/ IOT ^ M ^ ^ ^ ^ ^ ^ 

/(M) ={x|M(x) = x} 

and for xt/i.Mi we say thai x is an fnvmkntpoint of the mapping M. 

Our ßrs. result characterizing .he mvarian, se.s of compound conversions s.a.es .ha, anv elemen. common to 

ail s.gn.hcance spaces through winch a compound conversion passes i. an invariant point of .ha, compound 
conversion. 

UaHlJJf  Q   's a k-foid compound conversioiMhroughS^sJ2 S^. .hen    O    S^'C/tO). 
2 k i=l        ' 

to F,„ „„ x . n S;:. „c ,„c co„«„  „„„p,™, o .„»p., ,„ nV sjnM .., ,„„ T", are iden|i|jes 

S^forl»! k.TluisO(x) = x.and xe/(0). ' P' 

R.r.her.nore. it ,s now shown .ha, if 0 is a compound truncation conversion, .hen .he poin.s in .he 
mtersection of the SJ are the only invariant poin.s of .he mapping. 

T'1C"rC"'C):   lf 0 lsak-fold ^pound trunwtion conversion through Sj\sj^...sjk.thffl /(0) = n   s" 

^ForO = T^T;k-;...T;;,by,e„m1aS:n S^C/(Q, NüW assumc x , ^ s^, and j us show 

0(x^x. From s.gncomphmen.arhy of Odemma 5,. x > 0 may he assumed. Le, j be sonle'inde^ .ch .ha. x, B 

Compound truncation conversions are con.rac.ions and truncatton conversion is weakiy order preserving so tha.^ 

't>Tjj,(x)>Tjj(Tjj-»...Tj;»(x))>Q(x) 

.hus x # 0(x), proving .he .heorem. 
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Leirana 8 and theoreni '' show tte importance of the int'erwctton of sipifictnce »paces with rcgurds to 

determining the invariafii points of compound conversion mappings. In turn the character of the intersection 

öl significance spaces depends in large pan on the commensurability or incommensurability of the sipifleance 

spaces involved. Specifically the base sixteen is in the binary family, and every hexadecimal number may be 

easily converted '■> binary by writing each hexadecimal diyn as the appropriate four bits. For beS'' , the 24 bit 

binar) representation of the six hexadecimal digits of b may have up (o three leading /ems. so some 22 bit 

binary numbers may nol be representabie in S*6, e.g. (1+2 2i)i S'^. howevei every 21 bit binary number will 

be contained in S'^ In generalizing this notion it is evident thai if )S»SP, then each base ß digit may be represented 

by p base 6 digits Thus ,in n-digu base ß inleger yields an np-digil hjse A represenialion of which no more than 

P   l leading digits may he zero Setting m = (n   lip * I, we then have SJJ'C Sj. Sf' ' t S|, and the following 
theorem is derived. 

llk'"K'"1 l": lc[ ^i ■ ^:       • ^K 
,u' commensurable bases of the h family, Then tor m = I + min{(n    I )logt/3.} . 

s^cn   sVmdsr^n   sji (16) 

Actually   theorem   10 can be sharpened  if we also consider the different IntemJs [ß'.ß1*1]. Reasoning 

above it can he shown that In letting p, = log^l. and setting m = l+m.n (p^n,   I) +(j mod p). then we h 

sgnißKß***]'  n   *ß'n\ß'.ß',,\ (i?) 
i=l       Hi 

n 
Furthermore it i| is the minimizing value oi i in the above definition of m, then also Sr = Sg4 over the interval 

[ßKß^l 
These observations along with theorem l> yield important properties of certain compound conversions. If Q is 

a compound truncation conversion through commensurable significance spaces, then 0(x) c/(0) for all real x. 

Hence 00 = Q, and if 0* is any compound truncation conversion through the same commensurable significance 

spaces as 0 but in any oider. then 0'  = 0- Furthermore when 0 = TJ     • •  Tok with ß   ■ ■ ■ • ßk in the same 

as 

ave 

commensurable family, then |x   OixH'x < max IV(x). so accumulated conversion error is effectively controlled. 
i      Mi 

Now  it   will be shown that  the intersection of incommensurable .significance spaces docs not contain any 

comimm significance space, for such an intersection has only n finite number of elements. 

Theorem I 1: If 0 and h are incommensurable, then S!j D SJJ' has no more than 2(0"    I )(6nl    1 )+l members. 

Proof: Let P be the following set of ordered pairs of integers, ^ =| (k, k*) | |k|<|3n. |k*|<6m    and kk*>lor k=k*=o[ 

Define a mapping P: S|nSf ■*? as follows. P(0)=(0,0). Suppose beS^DS^'. b # 0, Then b = kßj where k and j may 

be chosen uniquely such that |k| < ß" and ßdoes not divide k. Similarly, (here are unique k*,j* such that b = ^S1* 

where |k*| <hm and 6 does not divide k*. In this case P(b)=(k.k*). Thus P yields the nomalized (right shifted) 

integer portions of the representations of any clement common to SS and S^'. It is now shown that P is a one-to-one 

mapping of S|n Si1 into/?. 

Clearly only zero is mapped into (0.Ü), so let a, bcSgH SjJ1 be any two non-zero elements where P(a) = P(b). Then 

there must exist k.k* ^0. and j. j*. i. i* such that a = k/3J = k*6J*. and b = k/3'= k*6'' where/3 docs not divide k and 

6 does not divide k*. Then k/k* = ft'*//?'=A,,/ßi, so that Äj*i* =/?'   '.Then j* = i* and j = i since ß and 6 are 
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I 

mcorMtjemurable.soa-band P ,s on^to^e. Now S^HSf  can huve no mou n.cnbc,. than P wind, 1K.S 

-«i    I Kö"1   I)+l elements, proving th« theorem. 

Utilizing the fundamental th«orera of arithmetic (unique prime decomposition l. much more can be sind about the 

members of S^HS^ fm particular $ gad 5. If ßtnd 8 are retotiwly prias, thou all members of SSHSf arc integm, 

With the largest such integer strictly, less than ^^".1, the greatest common djvkor of the incommensurable ß and 

is a prime numhei (as in the hinaiy-decm.al easel, then the smallest positive element of SSPlSg1 can be shown to he 

a negative pouer of that prune. This smallest positive number exactly lepiesentable in both systems can he 

considerably larger than the underflow bound on a typical computer, for example 2 l0 = .0009765625 is the 
smallest positive member olS^DS7  . 

For a compound truncation conversion 0 through S,'!1. j = 
1 k, We have shown that 0(x) = x if and only if X'IS in 

the intersection of all significance spaces. Furthermore if at 

least   one   pan   of ihe ^  aie  not  commeiisuiable. then  the 

intersection is 'nine and 0(x) 4 x foi any positive x lower 

titan the minimum positive element oi the intersection. Foi 

such an x the compound truncation conversion 0 would have 

Otxi > 00(x) > OOCXM >  . . . >0<«J(x) >  . .   .and in fad 
llm

l-« OMX) " 0 since /cio is the only finite accumulation 

Point of S^. Thus lor all i. Q1 ^ Q'    ' lor an> compound 

truncation   conversion   0   involving   at   least   iwo 

incommensurable  bases,   m   sharp  contrast   to  a compound 

truncation   conversion   through   commensinable   significance 

spaces where the iterated conversions immediately converged. 

Hracticullv speaking, the successive updatmgs of a LCD. tape4 

on   a   binary machine could cause some of the  "constant" 

floating point data to be iteralively converted back-and lorth 

with each updating. 11 truncation conversion were adherred to 

as a standard, some of this data could drift lower in value (see 

ligure 8), losing all accuracy, with no error indication provided 

by the system. Thus truncation conversion should be avoided 

in mixed base computation unless all bases are in the same 

commensurable family. 

With loundmg conversion the error accumulation upon 

successive conversions of a datum amongst incommensurable 

as well as commensurable bases is much belter controlled. For 

example, it has been shown'*-' that with suitably high 

significance in the intermediate space Sg1, the 2-fold 

compound conversions R^Rg1 and R^Tg1 can both reduce to 

the identity on S5. 

I igure 8: Ihe po&sihle drift in value of a 

"constant datum" under iterated truncation 

conversion between in co mmensurahle 

significance spaces. 
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[hgorem I- (In-niJ-Oui Conversion HK-QK'III)    FOI (Jaod S incomtmnsuraW«, 

il RM IMIIL-KIL-MIIU onSS  <> im   ' >if 

in R|Tf it the identity m S& <> 8*   ' > If   \ 

iiuis tiom theorem I- we see that foi certain cun^ound conversions the invarianl set will be the whole image 

space. 

Coroilar) 12.1   Foi ßandS incommensurable, 

i» ARlRfl-Sl « ««•   i>0 
(18) 

n,     I   ^ (19) 

i«) «8|Tf)«Sj| " V"    l>^n    | 

ilu' ln-aiul-()ui C.MIVCIMOU Theorem3 has beta stated foi  ilio ca« of inaimmciismnble bases, however. 

iiKorpor.ilmi!   ilu-   t«chll«iUW  of liu-orcm   10,  a   more  general   lesiili   eneompassing hoih  commeiisuiable and 

iiieommenMirable haves can be eonvenienllv derived for the Mold compound rounding conversion case. 

lorollaiA   12.2: Fof (I, S > 2. lei 7  be the greatest common root of ß and A when 0 and A are commensurable. 

anJ lei "> =1 otherwise. Then 

R'IRJJ' is the identity on S^] • >ft 

Proof: Wben ,) and h are incommensurable 7 = 1. and hm ' * f. so (19) lollows tiom llieorem 12, Otherwise, 

when 0 and ft are commensurable with greaiesi common root >. llien ft = 7'./i = T ' where i and j are relalivcK 

prime Hence SfCSf and S^"1 ' "• 'C Sf Now 7 ft"' ' > f implies thai (m lli+l > jn. so S|] C Sf and 

R'!KJ|, is clearK the identnv on S|. Alternativeis assuming '»'ft1"' ' < f means that (m lli+l < jn. Now since i 

and | are relativeK prime, there exists a k such that k = j I mod j, k = 0 mod i. But then S| = Stover the 

interval [7 k. 7^'] and alsoS^^S1"' l"*1 over the same interval, so that (m l)i+l< in means S^1 is 

contained in but not equal to IS over the interval [7 k. 7^ '] Thus R|jR^ can not be the identity on S|, 

completing the corollaiv . 

When the condition 1 hm ' > f is not obtained, then clearly S^HSfC f (R|Rf )5;Sj, and it is of interest 

to give some alternalive properties sufficient to characterise an invariant point of the compound conversion 

R|Rf. 

In general if the image space ol the compound conversion 0 were exactly equal to f(Q), then 00=0,and a desirable 

situation controlling accumulated error is obtained, if the k-lold compound conversion 0 imds with a truncation 

conversion, we have shown that 00 may not equal 0- Iveir if the final conversion of such a 0 is a rounding 

conversion, the image space ot 0 can contain some points which are not invariant points of Q. For example, let 0 = 

R2R4. Since :4 ' = H = 32 I, by theorem 4 the mapping R2,|.S4 -• S2 is onto, so 0 covers all of S2. However 

from corollary 12.1. KK2R4) * S2. 

Some detailed criteria for determining invarianl points of R^R^J' will now be considered. 
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[l'""";i !1: A,8Uw« thai beS||, b ^ tß1 for any i, and for some deSf, R^(d) - b. Then R|jR^"(b) = b. i.e. be/CRSRg1). 

iW Ut 0 and 6 be commensurable of the 7  family, Let beS8, b^±^ tor any ,:..:;! assume 7 1 < |b| < y r t 
Over the mieivalsp) ', 7 '' H and f 7 '     7 j* H .-,.1,., eor-e«      cm/-on L J Jnu L '   •    '     J «»therSICSf or Sg'CSl, and In either case with deSS*. 
^ (d) = b implies that bcS^TiS^. Tlierelore b t /(K^R^11. 

Alternatively lei us assume thai ß and A are Incommensurable, Let 0<h eSÖ have predecessor b and successor b ", and 

assume that b '*ß' for any 1. Then b '■ b = b ' b. We assume there exists a deS^1 such that R!](d) = b '. so 

Id bK (b1 b)/2 (20) 

from the definition of rounding (10). it is evident that |x   RP(x) I = min  {|x  a|}. Therefore with x = b 
aes.s 

lb' R^(b')|<|b' d| 

and again with x = Ri'(b ') 

l^(b')     ^R5m(b')l<|R|-(b-)  b'| (::) 

and linally combining (20   22) 

lb'    RlRfUb') |<b' b 
P   A (23) 

if W were an quality, tl.en d^K^b  , and (20   22,wouldall be e.uahties. Therefore !d   R"'(bH = b    b   .„d 
'-"—■ 'iK-re could be no members off between d and R^b  ,. Also then ' 

b   = (d+R^'lb  )) 2 
(24) 

so that R£'(b-»would be the successor of d in sm   H«* ,„.    1 S0 • Nuvv m> eleimm and its successor in Sf must differ bv m 
amount ft ' lui some j   SinnlirK  b    h - n> 1  , , 6 ■ 

.      , fl , ' ^  ,", i0m '■ so ,l,:l1 w"1' eqwlity in (23) 6 ' - ^, But then ( M - 0 
-ce ft and /ibavek-en assumed  incommensurable. W  b'      b - ß0 •  I  onlv if b Jd h 
-^•rs.andsimilarKdandd ^^(b'.wonllb. "-'ly .1 b and b   are consecutive 

Ö       RA (b , would be consecutive integers, contradicting (24). Therefore (23) must 
k   Y"-   -"-"'>•   »   "- ^(b)   must    „ua.   b    Tbe   case   far  negative  b cSl]   folbws  from  sig 
complementarity, completing the lemma. ß g 

As a consecuence of this lemma It   is now shown that a comparison of the gap functions PJ and Pf will suff.ee 
to delcrmme many of the invariant points of R^'. 

ComHaryU.l: Assume bcS^, b^ 1 ß' for any 1. and ^(b»rf(b). Then bti(R^R-). 

Proof:  if ü<bcS^ with b ^ tor any I. then b' b-b" b. and the interval mapping intob under R^ is the half 

open-halt closed interval |(b ' b,/2.(b " b V2). Suppose no member of Sf falls in this interval, then 

maxjdld    <    ir,dtS^| v(b' b)/2 

min |d| d    >    b'  .dcS^}> (b ' b)/2 

so that evaluutmg ff »t the real number b (sc-e defi„i(io„ (6)) 
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Thus it Vß{h  ) > Vf (b'). then some member of S§  must map into b' under RJ§, and by lemma 13 b e/ (RßRg1 )■ 

The result tor negative beS^, b^ ß1. then follows from sign complementarity. 

Thus it is readily possible to find sequences of invariant points r.| RoRg  from a gap function comparison. 

Corollary 13.2: For ß' < 6 '. assume that    Vp^f over the open interval iß'. min|/3l+'. 6 ' |).  Then 

(/J1. minjr'.ö jj)nSß
nC/(R^ Rg1) 

Referring back to figure 2. it is evident from corollary 13.2 tha» all members of S^6 greater than .0625 and 

less than 0.1 are invariant points of R^6R^0- 'jenerally not all members of So from an interval, 1, where T^IT, 

will be members of/(RgRg1), but certainly any point of RjjtSß ) other than a power of |3 must be an invariant 

point of RjjRg1- Since R5 restricted to S^fli is one-to-one to SS, we may surmise that the number of members of 

/(RSRg1) in a neighborhood of x is comparable to the lesser of the numbers of members of SS and of S? in that 

neighborhood. Hence although the members of/(RSRF) are more erratically spaced, the relative difference between 

neighboring points of ((RSRg1) will still be bounded with a bound larger but not by an order of magnitude than the 

worst case in S5 and S™. 

The preceding lemma and its corollaries do not quite provide the full story about /(RgRg1), since the integral 

powers of ß and 6 represent break points in their respective gap functions and by the preceding theory they 

must be treated separately. We have already pointed out that the image space of Q need not be identical to/(0) 

even for Q = R^Rg1. so the question of whether the iterates of Q. namely 0, 00. 000 0(k) will 

converge is still unanswered for Q = RßRf. This question is a very practical one since we would like to 

know if iterated rounding conversion between binary and decimal based systems will allow indefinite drift in the 

value of a "constant" as did truncation conversion, or if a stable pair of values must be achieved after a fixed 

number of rounding conversions back and forth. The following theorem is a surprisingly general and reassuring 

answer to this question. 

Theorem 14: (Iterated Conversion Theorem): Let 0 ' Rg'RSwhere m, n > 2. Then 000=00- Furthermore this 

result is best possible in the sense that there exists |3,6,n,m > 2 such that RSOO # RgO- 

Proof: For any real x, Rg^P^R^x) = R^R^x) unless Rg'R^x) =±6' for some i by lemma 13. Similarly 

with 0 = Rg R|j, OQO(x) ■ 00(x) unless 00(x) = ±5j with j * i. Assuming 000(x) # 00(x), the definition of 

rounding conversion assures that 

IR^RjjU) - R^x)| > |R|Rf R|(x) - R^R^x)| 

> IRg'R^R^x) - R^R^x)! 



so (hat with IO(x)| = ö1,   |00(x)| = fij ^ 6* 

und also 
IOO(x)    Q(x)| < 2|R|f RJ!|(x)    R^xIKS^l+S'-"')    6' 

IOO(x)      0(x)| = 16'   - 6j| = S'll      S1-'] 

and since in > 2 by assumption  in  the theorem 

II     6 j   'KS' -m < |/5 < |/2 

lb Nowll     6 '"'I ha« a Positive Integer value for j> Land for j< I. the smallest value of |1 - 5 J-i is I 
> I 2. and this is a contradiction. Hence 000(x) = 00(x) for ail x. 

The remainder of the theorem demonstrating that R^OO^O lor some n.m.ß,6 > 2 is shown in the example 
of   (igure 9. 

*; 10 

(I.()üi)2x22ü=|| 7%48 

--   12 00000 

(l.OOO)ax2ao- 10 4X576 

(.mi)ix230«9 83040 

I 00000 

«loWoR^loW' 
K2^„^«fo^^„(x) 

I igun- 9:   llcriiled iniivt-rsions of i,i2ü,ooo hy the compound 

«R'0,8hOW,n««h,'1K?o«34RIO«Mo't«lo«Mo- 
RV 

10 00000 
l) J)0000 
l> 80000 
970000 

9 60000 

convorsjoii 



Computer hardware involving the bases 2, 8, .md 16 of the binary family and the base 10 is in popular usage. Our 

results so far discuss accuinulated error under compound conversion (I) within a commensurable family and (2) 

between two incommensurable significance spaces. The modification of our results to cover compound conversion 

between more than two significance »paces all from just two different commensurable families is straightforward, so 

thai our theorj does cover the current situations where one might expect to encounter mixed base computation. 

If a suitable 3-staie device were perfected for use in computer hardware, a ternary based tloating point 

system would undoubtedly be implemented and the possibility of mixed base computation amongst the bases 2, 3 

and 10 would ensue. Our final thoughts will then be concerned with compound conversion through a collection of 

incommensurable significance spaces 

For the significance spaces SJpS^4, and S^, we have 1,960,563 • (11 IA000),, eS^,, l,960,576 = (l 11011 
I101Ü 10100 00000)2eSJ4, and 1,960,500 = (10002 I4000)s eS^,and the absolute difference between an element 

and its successor in this neighborhood is 121, 128, and 125 respectively (see figure 10). Thus the iterates of the 

compound rounding conversion 0 = R^RJ4!*, in this neighborhood will be different for a number of cycles. As 

seen in figure 10, Q(7>(1,960,563) ■ 1 ,%1.375, and 0(k)( 1,960.563) = 1,961,500 for k > 8, hence 0(k) ^ 0<k-^ 

lor at least all k < 8. Examples such as this one show that utilizing rounding conversion is not enough to successfully 

restrict the drift in value of a constant datum under compound conversion. From the generalized result on 

ln-and Out Conversion given in corollary 12.2, a resolution to the problem of controlling overall error growth in the- 

presence of more than two incommensurable bases by intermediate reconversions to a standard significance space is 
feasible. 

n. 

Specifically let S^, 1 < i < k. be a collection of significance spaces representing the different tloating point data 

formats of a mixed base computational environment. Suppose we introduce an intermediate space, S?1, with the 

significance m small enough such that KfRj is the identity on Sg1 for all .. Then let all data introduced into 

the mixed base^ computational environment first be converted by rounding to S^, and let subsequent conversions 

from Sj1 to SJ, be preceded by a reconversion to S^1, (i.e. RJR^ISJ
1
 - s"j). Note that the conversion from S*1 

■ J n       n      ^j Pj 

to Sg1 always regenerates the same value, R^fx), in Sg1 for an initial datum x, since RJ-'IV is the identity on 

Sj1. Thus the value of the initial datum x whenever encountered in SV, even after numerous intermediate 
" i n 

conversions, is given by R(3
lI<j1(x),and this standardization of a constant's value with regards to each Sg' provides 

a highly desirable property for mixed base computation. ' 

Now the range of possible values achievable in S^1 is R^Sg1), and it is of course desirable to have as large an 

m as possible so that the conversion through Sg1 does not introduce too much error. Yet it should be kept in 

mind that if m is chosen so large that one of the R^R^1 is not the identity on Sg1, then conversion error may 

accumulate and generate a greater overall error than if a 'smaller m (meaning less initial accuracy) were chosen. 

These observations can be formalized as an additional corollary to theorem 12 and corollary 12.2. 

n. 
Corollary 12.3: For S^, 1 < i < k, let 7. be the greatest common root of 6 and ß. when they are commensurable, 
and let 7. be unity otherwise. Let 

m<min     j (nrI)  log6/J. + log^ [ (25) 

and let Q. = R^Rg for I < i < k. If Q = 0 jO' for any I < j < k where Q' is composed from the mappings Q. 
1 < i < k. then 0 = 0. ' 



.. 

19 61652 

19 61531 

19 61410 

19 61289 

19 61168 

19 61047 

19 60926 

19 60805 

19 60684 

19 60563 

19 60442 

1^ 61625 

19 61500 = 0,k'(l^ 60563), k>8 

19 61375 = 0(7,(|9 60563) 

19 61250 = (/'"(I«» 60563) 

19 61125 = Q(,i,(|9 60563) 

19 61000 = Q"'{|9 60563) 

19 60875 = 0(J,(19 60563) 

19 60750 = Q(2,(|9 60563) 

19 60625 = 0(19 60563) 

19 60500 

showing   the  drift   in   value   of a  "oonttant   datum"  under   sucicssivc   innvi-rsioiis. 

figure   10.     Iterates   of   the   compound   rounding   conversion   y        R ?, M i   R 



IIK' fad iliai in imisi be bounded from above in (25) in order to guarantee control of accumulated error und 

avoid situations such as that exhibited in Rgure 10 demonstrates dial the phrase "carry more digits" does not 

always mean that greater overall accuracy will follow, and such cliches should not be used as a substitute for a 

true understanding of the formal structure of floating point number systems and base conversion. 
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