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e initially, after vowels, and
en written as ¥ in Russian,
The use of diacritical marks

Transliteration

hcbvtvsettnowsn\

...'Q"‘“Qh‘%.“‘

Sheh, sheh
"

¥. y

E, e

Yu, yu
Ya, ya

after o, b; & elsewhere,

may be omitted when expediency dictates,
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transliterate as y¥ or ¥,

is preferred, dbut such marks-




FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

Russian

sin
cos
tg
ctg
sec
cosec

sh
ch
th
cth
sch
csch

arc sin
arc cos
arc tg
arc ctg
arc sec
arc cosec

arc sh
arc ch
arc th
arc cth
arc sch
arc csch

rot

English

sin
cos
tan
cot
sec
csc

ainh
cosh
tanh
coth
sech
cach

sin-1
cos~1
tan-1
cot’i
sec”™

celc'1

sinh-1
cosh-1
tanh-1
coth-1
sech-l
csch-1

curl
log
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! Torrelatlon metnods are widely used In different branches of
! Sorlenee ani oancineeringc, particularly in radic electronices,

- :..‘0:(‘ ‘-",‘—.¢-'_m.

, und gentral and rearurdas techinclogy.

1,7 preblems, whileh are Lased on the uge of the

correlation methicd, the correlator is of primary interest. Tn this

(]
3

1o we study prlrmarily the syectematlce error in correlators cf
oo tyres operating witiout Interference and under conditlons
; wroeres i ceeondary unlts of the cystem (amplifliers, fllters,

Cyrancducers, #t2.) do not introduce additional error.

in ezarinine systemz for detecting and measuring the parareter:s
~f wear cirnalc attentlion is focused on analyzing the potentilals
vie cuvrter for ceparating the uceful cifnal In the presence cf
1 oot leviations froem optimal design in the system whiceh result

frer productlion technology are penerally Ignored. !

In the= monograph an attempt 1sc made to study the effect of

~ont oy factors resulting from deviation from the 1deal of the

.
.

c:inleal parameters of the system, which leads to a breakdown in

rorrelation processing, on the parameters and nolse characteristics
ct correlation cystems. The flrst three chapters are dedlcated to
individual procblems of the technical application of correlation {
methods,  The characteristics of perlodlc noise signals are }

vi




b

cxamined, dlony with paseudonotse slenals on a base of maximal
Clont ] binary chIPE po, lstration sequences,  The propertles of
Prary oand cornary ceuences are dlceusced, The results of
Ll Uer g ffect f nonlinear Lransformations of random
cotcctan procecoor on the shiape  f the envelope for the enrrelation
i, et tom o8 ey peegorhon are cummarized, A Lrief survey is
ctyver o ocorrelator conctraetlion methodr,  Discussed are the
ot et L an gt neh les af oorlEd o orn wlel el Jdnstead af Aaroducing
Al raniidy megegrrhses forn aaesdde fuarsiom of YHRce processe s

’

"Munetienal accrrelators), 4 correlator with oan ideal multiplier

P cgeaup wheen e Sgpefiead pinlioe phacetges ars narrvow=tand and
crEmoalaErs mal Jdlngivies goncxmEivator o gl ffRrent Creguencs rani:
THEETE sy feegarner earrelpter) s wmalyzzserd. Sinplified dlarrom
© e et e o e el omrrania garesl atars axe aresented,
LA O RS GO Sl T el eal cerrplitdr I exeaminad,
Fogmined Lrdefly o the thivh chapcsr ave examples of 2crrclation
ey ffoy M Pferant purposer: radar ctaticns operating on neise

e poeninnclae Cirnals, pacsalve zyrttems which obtaln infermaticon
ai vt ke enviranment throwph roeeint and correlatlon analweis of

emicted Ly cecondary coureos, antl-fading conmunications

;._4

cocters paoed on the ure of wide=tand cipnuls., Generallzed Llock
PLAl-rans aare Slvern fe tme maln tipes &Ff corvglation @ks&ems.,
]

Al 1o s Yo anglysE e

oy f the cvstem rerarvrdless of

Trow Poarsh antt 03Ul chapiars analrvze the work of functional
aopee o T e o ouned that aidditive noclse enters the
correclgteor Copanner with o the cifnal througrh one of the cl.annelcs,

Moo bl /ncize ratio oat the ocutlet of functicnal eorrelatcerc

Wity 1ifference frenuency, which ferm- “'. depree or exponentlal

fronetion of the Inlet prcoecesses, are ctudied. The ncolze charac-
toplotios of functional correlators are compared with the
~raractorictics of a correlator contalning an ideal multiplier,
oot e studied In owh!ieh the noise characteristics of the

Tinet Tongl coperelat-re are only clivhitly Impalired as wel™ as




functlonal dependences which greatly impalr the nolse character-
torlos. Discussed are the reasons for additional losses and ways

lnowhiieh they can be decreused,

hapters € and 8 are dedicated to analyzing the effect of
Tivear Jictertions in the spectral dencity of the studled procesces
n thelr cross-correlated and autocorrelated characteristics.
Siuear dltotortions appear in the absence of agreement between the
freguency characteristic of the filter and the spectral density of
the oivnal, when there 1s a scale shift in frequencies relatlve to
tie cpectral density of the studied processes, ete. Lilnear
ot ortlons may te different In ench of the investigated processes,
wilen leads to o a chanpe in the cross-ceorrelation function of these
D ATy e, ‘hangrer In the malin lcobe of auto- and cross-correlation
fun~tlieons and lve shift along the delay axls, the inerease 1n the
SJite lotes, the deterioration 1In the slgnal/noise ratio, and other
doaraetertistics are examlned.,  llolse and phasc manipulated signals
wre analyced,  The distortions examined in the monograph by no
meent.s oencormpass 2all quertlions concerned with the development and
~ornctryesion of eorrelaticn systems., A number of guestions not

Lreated In o thie monopraph are clited in the literature.

Jumerous graphlec reprecentations of the investigated depend-
aneeyg are presented in this study. This, in the opinion of the

autors

, 2hould facilitate underctanding and use of the material

noviic teck arnd, furthermo.re, make 1t poscible tc abbreviate some

St awevard mathematical transformations.

Luccstlons of protatility theory are not discussed in the
renograph. A chort list 15 pgiven of the basic ideas on which the
material i0 based., The material 1o diccusced In relation to the
trot lems of radloelectronies, althosugh seneral methods and some
ct talned results may be extended to other branches of technology

related to correlation analysis.

V=T = b=V 1= viid
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The results cited in the text frequently refer not to the
work 1in which they were oripinally obtalned, but 1n later works.
Froblems of priority require special analysls, and no analyslis is
made here. We realize thit the llterature presented in the monograph
is Incomplete.

The proposed hco. was Intended for a wide circle of speclalists
Invelved in processing complex signals In the prcoonce of nolse
1nd correlation csystenic and devices, as well as graduate students
and students of senior coursces specializing in the fleld of

radioelectronies, control, and measurements,

The authors are extremely grateful to Professcr S. I. Bychkov

for hiisc constant assictance in this work, his advice and criticism,

We weare also very grateful for the advice and comments bty Profescor

' Yi. Ya., Yurcv, which he rave us 1n dlscussing Individual phases cf

a wors,., The book was rreatly improved by the valuable advice and

comments given during editing by Professor I. N. Amlantov and
Frofescor Ty V. Olyanvuk, advlice which the authors were very happy 4

te recnive,

The authors are pratoful to the colleagpues of the department

=

f radio shiy equipment of the LETT (/3TH) [Leninprad Electro- i

tecinical Tnotitute] for thelr creative discusslon and help 1n

formmulatine the manuscript. 3
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FIRST CHAPTER

CORRELATION PROPERTIES OF SIGNALS

1 1.1, STIGHIFICANCE OF CORRELATION
ETHODES TIDOANALYZTHA RANDOM AND

ced e N~ -
. e ve P . s
o0 Hof2d% & .r Iy |

i

I ccelence and rectnmnloegy a very 1important role 1s plaved by
rencersoe which are determined by a number of factors and Inter-
relatieonciips, detalled study of which requires the use of
crtatlictical analysisc methods. The statistle approcach refrains
: rom o prealetineg an exact result for each individual experliment and
1 Loovased on the study of a group of exveriments. With this
2riroach cne can dloecver regularit! s and quantitative relatlion-

reeowihiieon rnan te decerlied by reans of the probability theory

Acal pagheretlicidl statist ies,

handom processes are -often procezses which occur in tire.

e onathematical apparatus of the theory of random functions is

ure i for the characterdstics of such processes. Function x(t)

————

o
B

ir;cument ©o1o called random 1f 1t value 1s a random quantity
it any roceible value of ¢ [24, 37, U417. Sometimes 1t is convenient

vo wlve a random function ac an anelytileal formula 1n whiceh certaln

rarameters are randem gquantities (fo» example, in the form of
triconometric theor'es wlith random amplituues and phases). It {is
standard practice to call x(t) a random {stochastic) process 1if

argument t changes constantly. Tf t takes an even set of values,

FTD=MT=2U4=716=77 1

et e T
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then x(t) fo called a random sequence. In observing a random
rrocess experimentally we are dealing with an indlvidual reallzation
r with a sample dlstribution finction. A set of these realirzations
forms a random functlion. A random functlion 1s given 1f for any
numter of arbltrarily selected values t], 4o ope tn the n-dimensional

density off the probabtility of this funetlion pn(xl, tl’ el ol X tn)

n’
I3 ¥known. 'The preater the value of n, the more detalled will be

the azcdynment of the random function.

T place of probabllity density the characteristic function,
whiel 1s Adetermined as the Fourler transform from probabiility

denclty, may be assigned, i.e

0n(u,. b, ... tin, ty) = 2 Pa(X,. by ooy Xy 1) X
LA
xel Wg+ .. +u ) dx,. oo d X, (1.1)

Witely uced In the theory of random functions are the charac-
teriztlies of probability distribution, which are called the
iiztrituticn mements., A particularly Important role is plaved by
tre flirst and recond momentz, which determlne the average value

and correlation lunction, respectively, 1.e.,

x(0)= S x(0) p(x.t)dx,
K(t.s)=|c() — s} [x(t —x) —x(t—7)]=
= (" S (v - 2 (x,_—2,_)p(xe, x,_,jdxdx,_ (1.2)

where p(x, t); p(xt, xt_T) are the one-=dimensional and two-
{irenslonal probabillity densitles., The 1line above indicates

averysing over a set of occurrences.,

Thie correlation function between the values of a single random

process which are separated from each other by time t is called

FTD'MT—;)“—'/I(J-Y 0




e stoe et lon tanetlton. The correlation function,

te determined for the values of two random processes

oenlled the ercrr=correlation function and
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x{t)

15 determined

which ecnn
ani v(t)

Ly the

(1.3)

cf the btwe rondon

the

n function)

can le

L)

intenscity

fehh 1le

~correlation

dependence

correlati«

Sy e by Y e -
lonship ic

creffflelent to zZero Indlieates that the correlation relat!
woent ., Fororandomn precesces wltho g oyraucssian distribution this
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Tndependenee,
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non=r-aussian distributions, the equallty of the correlatlion
ccefflelent to zero does not indicate the absence of a statistical
~onnectlon between random processes.

Jtationary processes represcent an important clasc of random
processes, A random process {o staticonary 1f 1ts probabllity
1§
i ieng ity pq(xl, Tys wees X tn) of the arbitrary order n does not {
‘ irrend on the celection of a reference point for moments in time, 1
b0, ,
Pa(Xyi by oos Xnoty) =palx, b, 42, ot X tn %) (1959 )
- ‘
St merent of g otatlonary random process depends only on -
: Pl fPereness 1 0 -t -t o, while the averare value is a constant
3 NI )

V-
st

Itoocolving many technical problems the mere knowledee of tie

] averate value and the ecorrelation funcetion 1o sufficlent. The
checry whlch considers the properties of the random processes
wrlch are eternined by othe momentc of the first and second order:, |
Tevay b otwo=dimensional disctritution, i cnulled the correlation |
vhecry, wWithin the 1lnmits of the correlatiorn theory random

1rocecces are concidered staticnary (in the bread sense) If thelr
werace value 1o constant, whille the ceorrelation function depends

iy oon the differerce in momontn of time v and acquires a final

Runder procencen which are strictly stationary [relaticonstip
(1.5)° w111 Le ctatlonary in the hread sense. Reverse confirmaticon
g not valli.

ssprecclene for autocorrelation and cross-correlaticn functiens .
~f statlonary random processes with a zero average value have the
KN

L




K (7)== f So xxp(x,.x,)dxdx,
--o0 —Qp
Ky (3) = j S xyp(x, y,)dxdy,. (1.6)

"y,

Phe aut wcorrelation functlon of a stationary random pre e

,

unctton, Ty, #l1) = Ki=1t), acquires o maximal valwue

. I
38 Bo\’ebBa

Wweew U= and ncually o yeverts te o zers when o o, A decrease
Y L carrdlation functien fx v Ineredvis dosr fiov exclude BAT
Ao gl DY bl wfl ootk - ailider lad de, e claracterictic of the

wrrelation function (and rhmise peneecs) fe tha coreelation time

N ﬁl—(ujS!K(“Hd" (1.7

Vol s D AuEra ooy lued o f L v ime Interval o owsylele the

Lt lat ban airpnendenes Motweon thee random preéesss valuss occur.

TwRr rawigin prrcgiafsies have A Statllorary relationship if their

ity dencity does not depend on

[

w1lgd timentienal onml ined prolatd
coelent o 2 che referonce polnt for the moments in time.
Sihat gl limier of the carrelEtlion thegrs (statiorerity In tie

1

el cence ) randjom rrocesses nave a stattonary relationshiip 17

iy e co—carrelatlion function deoeh not depend on the srlection

¥ Smn Cima rofErdnce point,

At Deamd e Wandalm pnTeeR s e AT ar® engountered in practlce
Mg o8 gludst have an grredic preparty., Por errodic randon
FrRtecses B Sratlonary probabilitr of untate (1.,e., prohability
Wit relpeat tooa a8t of cececurrencet) 1o equal at the limit te the

.

plat vy tige of stmalndne In 2 siwen state.
The protabllity characteristics for erjodic random procesces
ctered Ly oaveraring a cet of occurrences are equal with a

-t ab 11ty at any dicstance from ocne to correcponding probability

earactoeristie ol talned frem one occurrence of the random process




Yyoaverapdng for a sufflelently larpge time Interval. Thus, time
averaoed random process values found from individual occurrences

2 LRls proeess;,

™
(xe()) = f x(t)dt
“tn

ent orandom juantitles, but whnen T » « all within the limlts

.

tent toward the same quantity - the stattstlosl averape (i.e.,

: cheoaverayse tor the cet of oceurrences)., "hls means that In

igrernininr the average values It 1o nok necescary to econcider the
o epuprences of the random process; 1t 1s ~ufficlent to study

2= crknpeenet sxiztline for @ prolonfted gime. The conditions

e H ol diile g lop S peonety Bl ogclirE arelealled  the
il Sl S F BETRG 2 LTH L Har Frncdle -randor racesges Ge

. 1 A * el - p - 1 al 3 - M i . . .

d rreeiavicn Tunetion ean be found on the bosls of one event

T2
R()=lim 1 [ xx@e -, (2.4
T -+ -—'713

wits 4 prebankrility of one. Sirn'larly the croco-

creraelagtt o unetion can ve determined on the bLasis of a single
Bk v L O - R B ool D o & dor. o Yol-Sode IR
feenk of kne zsvatlonary randeor preocesss
T

R,y(t)ff,l'i..n:l.—r- x()y(t - (1.4%)

Y, howover, there processes topetoer ferm an erirodic process,

ween, wlitioa yrobability egual to one,
Rsy(v) — Kiy(1).

The eryndle property 15 extremely important in practice.

rryoervimental determination of the characteristlics of random

i ettt e i it
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]
processes 1o generally done on the basis of a single occurrence ofl
the proceca.  The obtailned characteristics are regarded as
statistical characteristics. Tn mathematical analysis »f random
processes we uce statistical overapging (for a set of o surrences) .
althourh the phenomena occur in time and represent separate
courrences of the studled process. Tn all such cases the ergodic
} property 1o presumed to be valid,
rrelat!ion methods are also sipnificant In that the
> rrelaticn functlon 1o related by the Integral Fourier transforn
* *he rrectral characteristics of the random process [24, 27, 417,
o ot ationary random procec: this relationship 15 deternined i
l i the Wlener-Fhincehiin theorem:
[
i 2 i2 e 2
Rizy=( Siye™" df; Sh=§ R(e™"ds, (1.107
E -9 -9
woers D(FY 1 tne speetral density of the random process, ]
3
Yor n onotatlonary procecses which have finite power, l.e., j
7 q
lim ;S,\ (Hdt L oo ;
T+x
¢
[ ‘tie eneriy of the stynal may be infinitely pgreat), relationships ?
'1.17) are valid for the time averaped value of the correlation |
funotion determined ty the formula [26] 1
A | riz2
R(z)=lim-- j Kt <)dt.
Jox
-r2
voprocecoses havinge flnite enerey, i
[
j’ X (1) dt < oo,
-—oD

. s e i i e Jp—— S W TP T T O T P CED VT TS PR Ip o r A W vaegoe
= = R — i i ke e, Aol i et oy i oy i, -




the relationships of (1.10) are valld for the function R(1), which
{s determined from formula

R(z)-= f K (t. v)dt.

-0

nothte cace B(F) represents the spectral dencity of clpnal energy.

Me relationchiips of (1.10) are also valld in studying the

(=1),

xrocs=correlation function, However, in thils cacse Fyy(T) 7R,
1 LYy
rov d

1o che enerpry cpectrum SyV(F) becomes a2 complex function.

rrelact o dependences play an ‘mportant role In analvzinge

ey e mptE s pnd claracteristlien of revular processes ao well at

SN RO
Ty pemidess 00 wdiiel Qe pagrapeters’ @8 Tonldon arg mitured
. e . oo b s . N . - - - 4 S . el Y] -
cnal owiniceh 1o reflected “rom the tarpet 1o distingulched from

erivtted sienal net only Ly dts time zhiift but by 1tz freaquency

tre, wWilch 1G acquired by tihe Doppler effect. The rropertles
vie olhinal in this cise are descerited bty the reneralized
arvyelation funetion (the function of uncertalinty), determined by
Coml) Y. oy [ Ty Mo » (,1-
ool Lot , o, :
. .
R(s, I)=S x(s) x® (s—v)e'*"/ds, QLTS )
—a
wiere k() 1k the eomplex modulating function which considers the

g litude anid frequency modulations of the probing slienal; x#{(t) -
e eonplex-e onjurate function; 1 - the difference between tlic
wotaal and cxpeected siypnal delay; f - the difference between !
actutl ant —xpected Doppler frequency shift. The peneralized
correlation funeticn can be standardized, 1.e.,

p(t, f) = k(t, £)/R(0, 0). In detection problems the modulus of
functions |R(t, £)] o» |p(1, ) 1s examlned. In the rectangular

coordinate system o p, T, [ the uncertalinty function is expressed

LA Soaaile - Lalf ALkt & o » -
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In the form of the surface. A body bounded by this surface and
the coordlnate plane p = 0 1s called a body of uﬁcertainty. The
“hape of the body cof uncertainty !s solely dependent cn the shape

" the sipnal., The best signal for measuring the parameters of
motlon of che tarpret would be a siegnal whose body of uncertalnty
it one narrow peak at the oripin of the coordinate and the lexu.
~1de lobe level at other values of t and f. Systems which tran:o 1t
nformatlion under multi-team conditions have similar sirnal
reitirerents,  Analvzinge the uncertalinty (or 1ts square) makes it
i oottt le te determine the range and rate revolutions of a given

chmal, ~stimate measurement aceuracy, etc.

The change In the emitted sifnal may be caused not or
ot ler offoct but oloe by a change (frequently stati:
Inorne prageetios of the medium in whieh the electromagietic waves
e prerorated,  Cuech changes occur, for example, in a case where
ceoantenna 1o rurrounded Ly a plasma whose temperature and
turbulence are different over the aperture. Attemptc have been
rade [77] to use correlation relationships for analyzing the
- ~yeratlional peculliaritiec of radlo units taklng Into account the
yropertier of the opace in which the electromapgnetic waves are

rropajrated. For thic reacon the "transcorrelation function" was

Introduccd, which 1s the time and space averaped correlation

furction of the electromarnetic fields. The space in which the 1
rodicowaves are propasgated 15 treated as a system which has a }
transmission function and which connects an undistorted wave front

1t the inlet (tranrmitter) to a distorted wave front at the outlet
‘recelver),  The correlation propertles of the electromagnetic .
feldr are related to the possibility of transmitting information
by means of these flelds. Thus, the addltions of the maximum
trancceorrelation functlions describe a system with a configuration
in whiich Information transmission conditions will be optimal

(for example, optimal distributlon of the field in the aperture

of an antenna working in an lonized medium).




‘rrelation analvsis 1s uced to study the properties of a

Atur In whalceh mechanicenl vibrations are propagated [3%7]. For

exary ley, the studled space of an ocean may be rejarded a5 oa

ertaln syotem dn which an acoustieal sipnal 1o trancmitted o the

"input" and the respense 1s measured at the "output" (1.~., at

e ther point In the ocean). 'The correlatlion connection Letween

o "output" and "input" effects can be found. The positions of

e "ot oand "output”™ o In the mediam are diverse and the

wonrerent reculte for di Sferent casec can be different. Analvels
revlaticn dopendences for cnput and output sirnals glven a

Shatte mnmber of diffeorent cpatial measurements carll he the matertial

St Lo v ey an d slhssulate shd Graeztdon condlitiong of
sy el R I G ste T A ad S Bafan Tt ke of the medium
;mEIZe am rad

g~lonati lps are very Luportant 1 we are

e avcgess i whilch infarmdtion g sramsmdtted (4, 1§57,

RN 2 carry different Informatlieon can he reparded as
o opy doh B sl FZpace, VYeetor elfardgue™icotise include the norm

f e o P veeter) and dliotance hetween vecicrs. For & sisnal
“Iats in 2w time interval of < fE £ T e nors 45 eogwal to

CHL WnRaAre r2ot @f EnevEE. The cauare c¢f tue dlztance tetueen

“ioooorectors wWhen clinal energles are the same 1s expressed as

voorgas=correlation ceoefficlient

43;32E(|-Pﬁh (1.13)

-+ 1 {8 clsnal enercy; Py iz the creca-correlation ccefficient
‘)
=12 Sleaals.
fralystis shows [4) 18, £17 that the rreater the signal energy
ancd jlotance tetween the vectors, the smaller the probablility of
~»ror in recelving the communication. In the case of limited

“1inal enerpy, the preater the factor 1 - pij’ the greater will be

tre Alstance between vectors. For two signals the best will be




those In whilch 011 = -], In the presence of a great number of

Stenale the best value of 15 close to zero.

ij

(23]

hus, bty means of analyzing the cross-correlation _ocefficlent
Jdoeooan letermine how close the studlied sipnals or corrclation
“oadey Are te the ceptimal.

The examples rpiven above are Tar from comprehensive in
»erard o the application of the correlation function in radi--
wla2rtrontes, ‘orrelation analyslis plays a very sipgnificant role

tnoovsotems witn varial le parameters, in the theory of object

oertnination, In colving many zu'omatice repulation and control
Pt Jated @i Py allyg =68

Vol JEEETWEC AMD REPHAKED

o gy

A fation 10 culled periodic If we can find for It a certailn

wantlity T. fer whicn the condition f(t) = f(t + TO) e Mlfillied
SENm g kel e Coarveument L, The least value of Tq 15 called a
{“Y'f Ve

Trooesces whiel oare dealt with (1n radloelectrenics exicst in

1 finite tire Sepment.  In a number of cases during the time that
tie vt ratlon cxlsts the numter of repetltions can Le great and
ti,e correlatlion propertiec of the ctudied process can be close to
the rropertien of the corresponding periodic prccess. Tn cases
where Lhe numier of repetitions 1s small, the correlation
vropertien of the nrocecs change substantially.

"he correlation functlon of a perlodic process 1s determined
by formula (1.8), where % (t) ic the periodle time function. For
a harmonic vibtration with a constant amplitude A, frequency w, and

artitrary initial phase
Ai
R(%) = coswr. (1.13)

11




A complex pertodie vibration can be reprecented in the form
Pothe Fourter theopy, In this case the exprescton for the

e Iatton functlion will have the form of
l” [} -
R(z) = »‘—“-}- 2«Ea:cosnm. (1.14;
n |

e . amg 1, are e amplltades of the hiarmonic component,

Yrom the ot tatned relaticonstiips it follows that the corrclation
et ton of the periodic procecs 1o perdodlic with the same perilod

o Do thee time function, and dees not contaln information on the

Fooos ST R - Gt usih el Bt oGl
- B ., T e, e 3 N - . - . v . -~ ?
G Br co-f e @ Ve Suma@ilom e f twn pordodl e proc@sses
Praeiminl o Permmln [].%) anll EAnAain® orl cpupdnesits ol (Mo
BRE A ROTE B Sl wh el ars presest dn both proceszes.  The erogs-—

Q= . L S Y o L [N bxale 8 & X b
Covhe-Tadiien Cetedon eomtring informarien on the phase of tle
rronent s a7 vie aame freequencey In the studied processes.

e p i aetdari e foa vt gt ko carre )l aiory fumiction ean g

oogd W Rt aoge o el meyd e ctiyvnal @gralamt g backrroun gf

LT @ o2 amine sicnal which repeat® within a 1im'ted 4ips

-
o

rtervyal avoltaee wlith 1 complex shape, feor exarple, a pulse
Dleedtizes . LEL Ve ARt At the pulbes are gepdrated t'y enqual
v"\;

tinee Drtervalo, forrdne an even ceqguince,. The length of the pulses

. P o a AT t q - i . O S
e tian alf o e Intervonl Letween them,

Pihiure 1,1 shoows b eccrrelation function of an even pulce
cecpeenen,  The gpeat-ot peak ecrrespondr te a zero delay time.
drners the delav chanpec, the peak amplitude decreases according to
tho lau 1 - |m| /i, where m 1c the inteper of pulse repetition
yvervals contained in delay 13 N ic the number of pulces in the

cennence g, mo< gl

o it bt i

e it i el i e i
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of uniformn pulce cequcnice,

e 1.1, Correlation function

The decreased amplitud:
of the gspilkes i=s explalned by
the fact that when the delay
is changed for the repevition
interval the number of pulse-
participating In the forma*'
of the correlation integra:

In each sequence 1s decreacec.

The correlation funection af a sipnal consisting of one pulse

Bas o only one maximum at T = O, and reverts to zero when |1]| > v ]
‘wiere t. 1o the length of the pulse). !
g
The repecition of pulces in time 1z the reason for the
ay pearancee of repetition with recsrect to 1 in the correlntion
funct’ n, :
¥
i
The uneertainty function of a uniform sequence of pulses when ]
~ o= e~incides with the correlation function (Fig. 1.1). 1In
section T o= 0 the uncertalinty function has the greatest side spikes

at polnts f = q/T (Flg. 1.2), where q = 0, 1, 2, ...; T, is the

e fl o

oy, 7, f

Vicc. 1.0 Jection of uncertainty

funiction in uniform pulse
sequence (1t = 0),

neerval betwesr pulses in a uniform sequence,

0

The appearance of
several splkes for the
uncertainty function in a
uniform pulse sequence
indlicates uncertainty in
determining distance to
the target and speed (1if
additional limitatlions are
not used, for example,

Tmax < TO; f‘max < 1/TO)'

L e e



The side lobes of the
uncertainty function can be
greatly reduced if the repeti-

ticn of pulses in a sequence

Itey at equal time intervals i1s
eliminated. TIf the 1nterval
tetween pulses In the sequence

&% T« 1s increased linearly, then
E;Féuiég.segﬁgﬁi;aﬁigﬂ {?:ggig; conditions can be created under
ascending Interval. which all impulses of main and

delay sequences [formula (1.8)]
will colnelde only in a zero time gshift. When 1 > to they will
colneide only in one pulse of the main and delay sequences,

#l-ure 1.5 chows the typlecal appearance of the correlation function
f pulce cequence with a linearly ascending repetition interval.
I thls ecace the level of cide lobies has been decreased N times

compared to the maln maximum.

There are other methods of decreasing the level of side lobes
In the uncertal..ty function. These are based on removing the
poriodicity of the pulses in the sequence, and can be achieved,
for example, in the Sherman sequence [371.

1.3. RALDO!I AND PSEUDORANDOM
PROCESSES

1. Randon Procesces

In mary processes which are dealt with in radioelectronics
the probab 111ty density has a gaucsian distribution law. Such
processes inelude; for example, thermal nolse, fluctuation, and
useful sisnals in a number of cases [77]. The prevalence of
yrausslan random processes can be explained by the central limiting
theorem of the probability theory, according to which the sum of
a rreat number of random processes having arbitrary distributions
has a normal probabllity denslty distribution at the Timit

14
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(additional conditions requiring that each of the terms making 1o

the sum have a small, uniform effect are not rigid)

Amultid imensional normal distribution function depends only
on the average value and the vnalues of the correlation coefficlents,
Tl means that the correlation function and the average densit:
value determine the normal random process. For a ncnstationary
random process the average value and the correlation function

depend on time,

In order for o stationary gaussian process to have the
er;rodic preperty 1t is sufficient that 1ts energy spectrum be
continucus, 1.e., that the followlng integrals converge [24]:

5 |K (z)|d=< M; 5 [S(t)|df <P, (1.15)

where M and P are finite constant values,

From the spectral density shape wide-band and narrow-bani
random processes can be distingulshed. For the studled narrow-band
random processes the frequency tand which 1s occupled by spectral
dersity 1s much :smaller than the average frequency. A narrcw-
band process can be convenliently described by a random function

in the form of
x(t) = E(f)cos[wol —¢ (1)), (1.16)

where E(t), ¢(t) represent the envelope and phase of the random

process.,

Thic representation 1s based on the possibility of determining
random process x(t) by means of the conjugate n(t) process, which
1s related to the original Hilbert transform:




T e -’

—

t -

wl=tlim (265,

% gty oy

)= - fim 20 4,

t—¢
. -7
In the case of E(@) -‘~.|'.-\"?l)‘-i—-'?7l.).-
!
() wt  P(1) - arcty ;‘{,:-
Two=dinensional protability densitv of the envelope and random

rhase of the gauscian brocerss 1o determined by the formula

EE,
[)(E. E‘- ?. ?,) = ;r_.—.(l—_—Pi,-X

N . --1 2
)(t-.\p{,_,a,“ oy |E'HED - 20EE, coss, nsa)l}. (1.17)

where 0 Lo tne mean cquare value of the random process,

The qutocorrelation function of the narrow-band random

procesr i determined by the relationship

R (1) = o7rc (t) cos wot + 7, (1) sin weT] =
=r(t)€05[0)ol’+((t)'], (1.19)

“hLe factors r (1) and r (1) have the form of

| sin wf

o
re (1) ] cos wl
r.m:""“.j Ste e de.

7y (%)

P e, ) arcg 20

Since the spectral density of the random process 1is concen-
Erated in a narrow frequency band near w,, function S(mO - w) 1is
marxtmal In the low frequency range. If the spectral density can be

PR W L —




considered symmetrical tn relation to frequency Wg s then rs(r) =

(olnee we have the product of the even times the Uneven function

under the interral sipn) and, consequently, r(t) - r_(1); z(t) = 0,

s
The expression for the correlatlion function in this cace will be

R(x) = or(v)cos wer. (1.19)
1, The correlation funetion
- of a random procecs has only
l_ one maximum when 1t = 0 and
=¥L r s close to zero when
It] > Ty The body of
ill._ uncertalinty of a sigfnal has

one hirh correlation ranre
Yiee 1.4, Docetion of uncertainty

fianetton in nolese siynals.,
rrrountd of a field of low
intensity spikes (Fir. 1.4)

. Poeudorandom Processes

Sharp maximun and low level of side lobes In the tody
Touaneertalitv oare pocsessed not only by sound sirnals, bur also

by olrnals formed ty amplitude manipulation and by frequerncy or

ihace modulation of a carrler within a pulse according to a certain

Tvw. In oyateme with frequency modulation the linear law of
frequeney chatre 1o widely uced.,  The sectlon of the tody of

]

merertainty o g o clennl with 1inear frequency modulatlon fermed
P hiorteoontal plane has an ellliptical shape, and {ts axes are
Courreed gt o certaln anrle relative to the Ye-axes, Sipnals with
Tihue e frequency modulation do not have properties which are

dnilar to trose of raniom procesces

LAA =N

'o achieve amplitude- or phase-manipulated sipgnals the
dlvercte Taw of change In the appropriate parameter 1s widely uce
Tn thilzs cace n styrnal of length T would consist of N 1dentical

0

when 1 = £ = 0 arFainst a taog-

d.
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pocitions = symbols, on each of which a harmonic oscillation with
an amplltude of A1 and phase @1 o rormed. JSets of values A], o80T
A“, ®1, 5 0 aps @n form codes, which are selected such that they
assure the necessary uncertainty function (and, above all, a low
sode lobe level)., The difficulties of achieving signals with

a rreat diverslty of A, and @1 have led to the wldespread use of

1
shnals with stepped phase changes for ldentical amplitudes or
svepped amplitude chanpes when there 1 no change in phase., 1In

moect o cases the phase change 15 by quantity w,

'‘iave< or amplitude-manipulated cifnals can convenlently be
wrltten nc 2 sequence of symbols bty making +1 correspeond to an

elllavion witi an ampllitude of one and a zero phase and makinr

-1 (or zerd)

N

correspond to an osclllation with an amplitude of :
neoany rhace v, The correlation propertiec of the sifnal are ‘

i>termined by the type o> binary cequence controlling the phase

(~r amplitude) cuanye. In the following discussion attention will

P foeused on phacve-manipulated sipnals.

e

low l1evel «f side 1oles in the uncertainty function can

bee provided v the Marker codec {not more than 1/H, where N 1s the
rumteer of o~ode symrols),  Barker seguences are known for N < 13,

] whodcks [l s Ghelr paz. “urrently there are codes of greater

duratlon wniich have a side lote 1level and the uncertainty function

il

£ uc omore than 1//1.  For example, bfnary m-sequences, technically
ratuer cinmple *o actileve through shift registers, are widely urced.

The chift repicter Lo a device conolisting of cascade-connected

Plrary storaye elements. The nurmber of ctorase elerents determinecs ]

ﬁ oo econfiiuration of the repicter.,  Under the Influence of the

~1oev yulees, which are supplied to the replster frem a separate
setllator, the electrical state of the binary cells shifts ‘
(moves) across the replster to (successive) elements. The

soequence of voltage values, which 1 set at the register output, |
lepends on the Initial state of the cells., The length of one i
symbol of the code being formed is determined by the repetition

14
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perlod of the clock pulses. The length of the entire cequence,
whleh ean be deseribed by the number of rymbole, ie equal to *the

N

nurber of cells in the repister, 1.,e., N = k.

»’ »” For a given number of
2 cells considerably lengrer
sequences can be obtained .t
(s \-’/ ———t>g ogilc feedback 1 introdu
Fle. 1.5, The simplent block In the feedback element the
tarram of 4 blnary sequence lopic function of the state

ceterateor: 1, 2 - shift

) iy . S . of several cells 1s calculated,
etiotor eelle, which provide

telay for ko= v oand v ointervalog and the recult 1s fed to
- ~1e feedback eleme ’ g '
14;-1; :”11 gi)a Jctemenc Rt tich reglster input. Units with

feedback can be characterized
by an operator with del=y
rrecpondinge Lo g delay of one [evele] unlt., A delay of v
anits arrespondt te operator Dv. The work of suech a system,

stown in Miy, 1.5, can be charact.erized by an operator such as
2 - xDD2PD, (B2

coome g enctes ad iine modulo two (Table 1.1); x and 2 are the

tanat o ant o ontput seaquencen,
{1 R s In an autonomous rerime,
Lddinge modalo
: Y wlhere from a certain time the
o,

& slgnal i1z not obtained (x = 0),
Terms |Recults .
L = | the operator has the form of

[ | |
1 0 [ :
? ? g Dr2@D’2(Pz =0.

boe delay o operators can be uced to represent the work of sycstems

J

et qIninge ceveral logple feedbacks.

. — — . . J—
= L R e e s Y 5 " "




Yor the celected k-blt of the reglister feedbacks can be
Introdiced tn iHfferent wavs. Tet not all feedbacks will provlde
the longest sequence,

The preatest sequence length which can be obtained 1s equal
1.
e . 1

- )

=27 - 1., A the clock pulses continue the sequence will te
repeated, ‘equences lasting ?k - 1 are called maximal length

Joquenees or mecequences, and they have properties similar to tnnse
Uoranden tlnary preececces. The polynomials which determine the

o Ay

Tormulatlon or binary m-cequences have been found for a number of

aser [32], and some of them are glven in Table 1.2.

R Turle 1,00 Delayv polye- The rcystems of the shaping
R N .
i S R o unit ccrrecpond to the scheme shown
’ Tl iy Toneer In Fleoe 1050 The valuez nf k and v
I T should correspond to the type of
3 MHnPI 7
1 »HOLDI 5 polyncmial selected (Tabtle 1.2).
5 DDPDPI 31
6 D®DPI 63 i
7 D DG 127 Iinary m-cenuences have
2 DNy 511 Interestin, properties; the maln
10 DepIny 1023

nes are presented below,

Plrayy nerequence cymbols 41 and C are cften

Lrastictlliy LUhE came,  For a seguence of any period the numher of
Ve ole o of 2 cinicle sien ocan differ from the number of symbicls

e ctier ol by oonl one,

. In w oiIngle realization of the cequence half of all
ROSC TN ) [ Ty ave oo lonpth of one symbol, one aquarter have a
ctoof tvio symtols, one elpgnth - of thiree symbels, ete.

v If the cequence 1o compared to 1ts cyvelical time shift
for = ceprtaln number of symbhols, then the number of corresponding
symb~ls Alffers from the number of noncorresponding; symbolsz by

ne more than one.  In the case of a zero shift all symbols
correspond,

20
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4, The sum (modulu two) of two sequences which are time

shifted by oany number sffleyclesJunits (within tihe limits of the

perlod) represent a sequence of the same polynomial but with a

i1rfferent time displacement. The given property 1s the hasis of

thie cejuence storage systems,
. The normalized correlation function of a blnary m-sequ :@ce

12 determined on the bacis of ‘ormala (1.8) and has the form of i
Proven 1ine.,

=t 1o now dwell on the correlation properties of the

seguences,.  Digerete time shifts con be easlly studled., The

expr—osion for the correlation function in this case has the form

] o
=) ]
pU) = ¢ 2 X (i) x (i + ). (1.21)
i<l
the S5t dAnereases in time the number of terms in the

? i (lsel) dperrates.

The e orraelatl on funetdon has 1ts maximal value at zerc time
LIt (0 o= 0). At shifte of 1 < j < N - 1 there are side lotes,

wiore maximal level for preat sequences (N > 13) does not exceed

1//0. ¥or il < 1% there are mesequences for which the side lobe
leve]l of tne correlation function does not exceed 1/N, as for the

Vi, W " £}
Rt code, 1.,e,,

: 1,V ups N<13,
Gy =V 7
P50 ¥ upw M 1. {hob e

[npy = when]

{
Figure 1.6 chows the form of the correlation function of a binary {
m-ceaquence for the particular cace, !
o
L

4)1




Lol In a number of technical
prob:lems slignals formed ty
periodically repeated m-
sequences are used wlth an

AAAAL r averaging time equal to the
-Ne

e period. The correlation
., Jorrelation function

‘equence (#1, -1). function of such a sipnal 1s

determined for discrete delays

tv the relationchip

N
P(i)-‘-‘-—,:,-zx(i)x(i-{-i). (1.23)

i=]

secpmpdie o the propertles of 3 and U, a5 & result of the
ummationc in feormmia (1.21) we et the nm-sequence of the same
rolynomtal, in which the number of symtcecls with different sirns

Wefter from ane anctit.er by one. Thur

BILEY
l - ——LN—'.-——-)- npy l!l".,

P=1 (1.24)
— N e S| <4V 1)

[rpe = when]

Tre covredg ton st ion of the perioidic nm-sequence has repoeated

wikes (Mo 1.7) and a clde lote level of 1/N.

{r) The spectral denslty

cf the seguence I- feound ars

the Wiener-Khinchin trancform

from the autocorrelation

i r function. The cSpectral
b : 2l A denclty e o] ani the
“1-. 1.7. Cerrelaticn funetlon LRIV CHCHICDE REE et
£ 1r+riodlc m=sequence, position of 1ts zero are

determined by the shape and

lenpth of the cymbol.  The flrst zero of the envelope corresponds
to a frequenc: of l/tn. The spectral density of the periodic

i




sequence has a discrete nature, The frequency Interval betweer
neighboring spectral lines depends on the length of the sequence
and 1= equal to l/NtO. In the case of a single sequenr~ the

spectrum becomes solid, and the shape of the spectral density

2nvelope 13 preserved,

The uncertalnty function of a phase-manipulated signal has
one maximum at the origin of thre coordinates, and in the section

S e S o

' plane £ = 0 it repeats the correlation function. At different
nonzero values of 1t and f the uncertalnty functlion has side lobes
wi - -a-nitude hardly exceeds 1//N. The form of the uncertainty

 a pseudorandom signal consisting of seven symbols is
:'"lf":- 1.‘%. E

k.5l

S \[\\

e 1 2 35 o §5 0 7 éﬂ:

Fig. 1.8, lncertainty function of
rhase-manipulated scignal (Il = 7).

M=-sequences are called pseudorandom, which points tc their

Sirilarity to random sequences, A random sequence 1c a sequence

for whieh only the cppearance of a certain symbol or grovp of

svrbole carn te shown., The M=sequence belongs to regular siegnals,

wivieh are formed on the basis of codling rules. TIts regularity

i1ec In the fact that under known initial conditions 1ts values

can be calculated and predicted for a given moment in time. 1If,

tiowever, we compare t inary m-cequences, for example, with a random
senquence, then we rotice a similarity between their structures.

The oimilarity appears, for example, in the frequency of the diff-

erent symbol combinations (properties 1 and 2) and in the form of 1

the antocorrelation function. }

23
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] For the purposes of autocorrelation processing the possibility
; of delayiryr pseudorandom sipgnals 1s very important. 1In the case of

an m=ceauence delay can bie achleved by some complication of the

! ~haping cystems., A delayved binary sequence may be obtalned, for

| example, by taliny voltage of varlous shift reglster cells. The

i numter of delayed sequences in thils case 1s determined by the
c-nriruration of the regicster, and does not include all possible
strnale in time.  To obtailn sequences correspondine to missing

! ifelqys an addltional device must be intrcduced which forms logic

; Tunetional operatiors over sequences obtained at the varlous

roister eell outputs {70, 817, The action of thils device 1s based
c: prorerty L: the sum (modulo two' of twe m-sequences of a riven

velevnomtal 10 aloo the m-sequence of the same polynomial [P0, LE],

Trhe taoie crcorten of ottalnins delayved sequences 15 shown in

Rioe 1. by ocom inlne the terms (l.e., voltapes from the reprister

crlls) and addine medulo two,

seqguencers e obtal
2 p o' equIenee can te obtalined
7 * which are time shifted Ly
/!
V. } different numbers of units
- b
\ l (within the limits of the
| P | period) in relation to the
W/ -
= a . Ol ur .
Pt 1.0, Bleer dlarram repre- ORIBIEH
Jentinge shaplinge of delaved
equence: D - register cells, o -y -
1 - rcdulo twe adding syctem, The sequencez diccussed
- delay contrel block., al ove are far from ~omprehen-

sive with respect to the

S SEEAN iiV"‘I'."*x“_’/' 30 }111'1!'_',' cequences with clde lobe levels of
]
.

“lrnary ceguences with a larre number of symbols can be obtalned
boroecotinines cnort m=cequences [(12]. The elements of the combined
ceyuenes are formed by Iopie operations performed on elerients of

thie oriyinal cequences. An example might be a combined sequence ;

formed according to the law w=x®wp2, where x, y, and z are binar.

~eequencen of chorter duration., It tne perlods making up the

)}‘
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Scquences do not have a common denominatcr, then the period of the
combined sequence is equal to the product of the periods of the

components, i.,e.,
4\’v=" AV‘N'NIO

‘he autccorrelation function of a combined sequence has s
at all de lay values which are divisible by the period of any of the
comprnent cequences. The greatest splke corresponds to zero delay;
2 idttional spliees have a cmaller value., Comblned sequences are
noed tn ocvctems for measuring the distance to an obJect, and make
v posstile to reduce thie time of determining the phacse of a

v NTeet ol olienal .,

Tovnnrr cequences with levels of +#1, 0, =1 [80] have intercr--
oo v Tt ten rroperties,. The symbol O corresponds to the
b oot It teons (amplitude zero), +1 and -1 correspond to
Tt Doy wtths qg amplitude of one and an initial phase of zerc
b oy recreettively, A ternary m-sequence can be described by
Play crerators addinge modulo three, The number of symbols in a
ternary cequenee of maximal lenpgth 15 determined by the formula

ey

= - -« ], The autocorrelation function of a periodlce ternary
recoanenee has a4 posltive maximum at a zero time shift and is
nerative for a shift of half a period (Fig. 1.10). In other delayvs
reater symt ol duration the “fvrelétion function 1s equal to

mero,  The precsence of a nerative lote In the correiation function

[

not desiratle ) particularly for cipnals whiech are used 1n

rddeteection cyaotems.,

Froemoternary m-sequences Change found sequences of nonmaximal
lencti, [=07 whose periodle correlation function had only one

maximun when 1 o= and zero lobes for other delays. The length of

the cequence 15 determined by the relationship




_—

o)

/e

Figre 1,10,
of ternary

Correlation function

periodlc m-sequence,

There are generators for ternary cequences of length Nq whose

~orrelatlion function has

zero side lotes [R0O]., Table 1.3 shcws

me of the polynormials which determine the shaping systems cf

Tk nenuence T,

Table 1.3, Telay
rolvnomial of
tarnary ssgupnices.

] 110.3un 9 '1.:,'2‘;:‘
DGR 2 13

5 DYheDEP 2 121

7 DpMPp? 1093

Table 1.4, Fre-
auency cof svmbol

courrence,

A Voim M.y
3 13 6 3
5 121 45 36
T 1My KYT.) o

The propertles of the ternary
cequences of Chanyg are simllar to those
of the btilnury sequences studied above.
For example, the number of +1 and -1
symbols 1In the sequence differ very
little, particularly when the length

of the sequence is increased (Table 1,45,

The symbols used in Table 1.4

are:

myq = tiie number of symbols 1n a

sequence corresponding to +1;

m_oq - the number of svmbols corre-

sponding to -1,

A ternary sequence can be time delayed by adding modulo three

seauences of a single polynomial which, however, are time-chifted.

For the Chang sequence which consist: of 13 symbols the methods of

attaining time delay are determined by cperators such as [80]

PRI oo
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Dx=DxDx; Dx=:DxPx;...00"%c=DxP2x,
vhere # denotes addition modulo three.

The studled ternary sequences are Interesting for a number °
correslation electronics preblems, since thelir correlation fun.
{s the closest to the correlation function of a single pulse ai
at the same time, they can be used to assure the glven energy
spectrum distribution on a larpge time interval, which 1s essential

in detection and communications problems.

1.4, CORRELATION PROPERTIES OF
TAUSSTAN RANDOM PROCESSES IN
JONLTHEAR TRANSFORMATIONS

.onlinear transformations of random processes can te s.puces
t  lead tc a chanye In the cross-correlation function. The
4l~crithm for the work of the correlator according to formuls (1.9)
can be writter as

LY
!
R = lim - ;E. ()Y (4.

Instrument readings at the system output (Fig. 1.11) depend on
*te ~orrelatieon cof iInput random processes. The greater the
coinecldence probabllity fer the values.of processes shifted
rclative to one another 1In time 1, the preater will be the
reuarilnso, The oifn of the terms of the sum is determined bty the
yolarity of the co=-factors. When R(t) = 0 the polarity of the
cr=fuctors on the averape will be ldentical for half of the terms
and opposite for tihe remalning terms. The sums of posltive and
nerative terms are equal on the avarage., In the case of nonzero
1) the welpght of terms with the same or opposite co-factor
polarity 1ncreases. Corresponding to the maximal value of R(T)
iz the maximal quantity by which the sum of terms of one sign

erceeds the sum of another sign. For the autocorrelation function




bl §

) [, .
E g . '—-L/ e when 1 + 0 the polarity of
co-factors cérresponds (or

ylt) [ 102) E

is opposite), and the absolute
Mro 10,11, System for analyzing
nonlinear distortions. value of the terms are

maximal.

In the case of nonlinear transformations the terms represent

the product of functions of random process values, 1l.e.,

hix(t) -yt + )

For most transformations polarity agreement among the co-factors

4 will Influence the mapnitude of the sum Just as 1f the transforma-
tion were abroent, althourh the abscolute values of the co-factors
will chanpe, thur leading tec a chanre In the values of the corre-
lation functlion.

| |

How let ur exandine the effect of nonlinear transformations

o i Akt

on the correlation function of random procecses with zero averayge
values. A degpendence muct be established between correlation

function: before and after the trancformation [24, 45, 507,

Let uc ascume that extraneous nolce and interference are

Abzent ; the ergodic property is valld. #
We decignate:
x(t), v(t) as random processec of the correlator input;

¥ (1) - the correlation function between inlet processes

(prior to nonlinear transformations);

p(1) -~ the correlation function of random processes after

nonlinear transformation.




degsery

relat

where

t

utput o each nonlinear unit can be reprenented by means of the

Ly 1

- Lciag

Nonllilnear transformations in the system (Fig. 1.11) are
tbed by function fl(x), Fg(y).

The main stage of the study 1s proving the valldlty of the

fonship
1 ¥J e
AT R PP (1.25) |
F(ﬁ)(x) 15 a k-th order derivative from function f(x).

Proof consicts essentlally of the followlnpg. Voltages at « e

ce trancform in the form of !

|
I (x) '.’::7{‘. b ()™ du ¢ [ b (u)e™du . (1.26)
Cis én’ o

',+, fj are the corresponding Intepration circults; hi+(u)
i -

io the Luplace transform from the system characteristics, which

:-:

il

ad
by ) = [ 1 (e rag,
0

.0
B tmy= | [, (x)e"5gx. (1.27)

IT we cubstitute (1.27) in (1.6) and change the order cof

Interration, then the expression for the correlation function can

o reprecented in the form of the sum of interrals

t

v () x

'XE I du, j‘ by, ()l (1) % (0, @) dusy, (1.28)

Cig Cy¢




where O(UI, u,) 1is tie characterlstic function of the second order,

I All possible comblnatlons of + sipgns are added., The 1.ft part
of formula (1.25) when k = 1, according to (1.28) equals

de(t) ¢ 1 \? o (u,, iy) )
A (1)”'('.':-.: y 2 du, 5 l'lx () 1y, (1) —0.A“—" duy, (1.29)
36, Oy
i
Low 1ot us fing the rivht part of (1.05) by using (1.26). We
i PR
" pn , Ly
1 \:&;) 2 du, \ by, (a) by, (u:) X
£ C,  Ca.
& V(u,. uy)uun,duy. (1.20)

e liiet s Ghowa Liset the eguality of (1.29) and (1.30) takes
phiceee eamtmy @f R arE puambitien h], hz, I.e., under ar! itrary
funections of £, (%), and when the following condition is valid:

1

'_'9 ‘"l' "1)
oK (3)

+ u,u.h (u,, ug) =0, 1Tl

o valld for random processes whose characteristice
fiieglon Hateafdes squatian (1,.31).

e s find *he oxprecsion for the characteristic function.

luticu te oquation (1.31) has the form of

InG(u,, ay):: —au,K (2) {0, (1.32)
whers oo L Poactlion cubtect to determination.

ry

Yo determine function G we will use the initial conditions:

30
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o lonal

Tl larly oen thee bactis of (1.25) and (1.32) we

a) whon

NP e

eiat anship.

p = 1., By substituting the formula for the two-

normal distribution, which In thils case has the form

p(r. §) =p(2)8[(y—j)--(5—i))

N . oiuEtivg g (u, |- ny),

- 0
G, | uy) = {/"-" 2)e 6T wiag) d(x - #);
a0

p = <=1, ty usins tne analorcus

Hotrlitutlion, we ot tain the

cetotie funetion

9o Gy, — u,) e F vy
(1.32) and

G(uy, ug) =i(uyé +u:g)+Gy(u),
G|(ll) -In G(M| +ll:) H.llg.

G(uy. ug) =i(usa +u:y) +Gy(u),

G|‘N) I“ G‘u. —ll:) -y,

rrmla

(1.33) we pet:

slton for the characteristlc function, we pet

G130

(1.34)

fer the two-

f 1llowling expreccion for

(1.35)

(38

rot

Frpresclons for functlon G which are found on the basis of

cnditions a

Atove are villd for arbitrary random processes x(t), v(t).

u uy ean t

l’ [z

e regrarded as Independent

) and L) should be equal.

variables,

The relationships obtatined
Thuc,

Inder thece




condltions the equality of expressieons (1.326) and (1.37) 1s only

possti le when
Gi(u) =consl=Q,
e expresslon or the characteristic function In this case
O, ) enpl--uuK(1) + i + uzip) + Q) (1.38)

orresponds to the two-dimensional pauscsian distritution of [247,
onstant L oean te consldered equal to zero when the appropriate
mien ] teat Lo, Grandards are ful Ml led.

Siwe, oo snlutdon and #halvasis of sxzpressiocn (1.31) have

wh, LAY tae P aate melationshiy of (1.25) 1% fulfllled wunder

the condition thut random procesves x(t) and vf(t) are rausslian

e jepern benes tetween correlation functions of gaussinn

it SN T e SR 4 a2id after rnionllirear trancfornaticons are
RS 2 T ST Ll Lxert . nstderinge the averaring of the
ot vicie part of [(1.2%8) we sot

-] o
"y (2) ! \
b&qﬁ SJ‘ SH"(OI?Nwr(Ly)JL (1.36]
» @®

where pluy ) 1o the twe=dimensional nermal prebability density,

dullinesr trancformations and prececses whiceh can te performed
tofore correlatton lead o a changre in the form of the correlation
furicticn., For dxample, in the case of & Wilaterad restriqtion,

wioele

W =lame | 00X 0 (1.40)

[npn = when]

— e K - . adeilbiaab

st



*he relationship between the correlation functions before and

after noniinecar tranaformation will have the form of
2 ,
Y (3) = o arcsdn (K (v). 1,081

“easurement error (the difference (1) - K(1)) 15 deseribed t v (0
“arves shown in Fipeo 10,12, Correlators in which there is a
transformation of the studled random processes according to (1.

are c1lled correlators with polarity coincldence. The value o7

tie ontput ef'fect of the correlator 1s determined bty the probatility

T ~oinetdence (or lack of 1t) in the polarity of the studied
v o ces, TY 4 techinleally easier to produce correlators
e gl [ o e Indieated principle than corrclatcrs with ldeal

Y IRl lgat g (g8 5§ 2.1).

ofx)- v(c) Tt 1s alce poscitle to uce
02 . the polarity ccincldence method
o ’ to create correlators with a
P T nonraussian distribution ol the
¢ i.1e . Moeazuroment error studled random processes,
APaes S correlation unetion
At ! el nr althourh the difference Letvween
B SR -0 A o polaricty coin-
Y heage.., v{t) and ¥(t) iIn this case may

Le ccencideratle [65],

It » v 1laticn levices with a nonllnear transformaticon in
iy oo clhiarne]l when certaln conditlons are met for the dictri-
tattn funetion o f the probability density of the procecses and
tioo e formatiorn echaracteristie [48, 497, correlation function.
wlt1) and (1) iiffer only In a constant factor, i.e., in ccale.
The dndleatea recult 1o valld for more than the paussian distribu-

3o,

Thls analysic does not enable us to Judpe the deterioration
in the nolce characteristics of correlation devices which contain

nonlinear trancformations.,

53

pra———




Xy == :— lx+y) - (x = g)).

3

SECOND CHAPTER
CORRELATORS
ol C SlaH SHTSCTPLE @Y CARBERANORS
Eamdtn on thee alooriime nf (1,7) oar (1.7) the earrglator
t PEwde. gl s g epleinldcatd on avetem far Inpit
inlE ozl 2 IntEbpaTir wndch intesrate; £ resultz af tha
vty tioas o, The presonee of nostatistical connectlon bLetween
SHAE IEEANE TG Canek results in a d-¢ component at the multiplier
SaE. Do dem ca@mpenznt pasies throus®d the inssgratcr whilch
§ b Eaesimerafep Clugtysnelicn Bt the glitput .,
DoRertelatsr oo P i froguentl ededunters Sarlgus
X0 zuley i oachilevine a mufflceliently rapld multiplication device,
Tarrent analo.s maitiplicat!on methods can be broken down into twe
SRR - ez and dndirect. Twe flest Ercup contalns yvslems
v B ] 1o tleal offects proporticnal te the product of the
Suooomensure-d o gjuantities < dual econtrcl of thie ancde current bty the
mRogl mepn tuhe, e ligll effect, atce.
trrdlreet multiplicazicn syoteme perform =such riultiplication
=g ok &t
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The cperattons of adding and subtracting can ve performed .
rransformers, celectronia systems, reslistors, etce. The Inltial
Jectlon of the anode-prld characterictice of the tube triode or
seqtlon of the volteampere choractericstic of the semic aductor
{tede, rpeelal electron tubes with a parabolie characterictic,

to b ettty ctes, may ve uced as the square-law jgenerator.

weornust nmentlon a proup of devices whiceh belong to the dir
ity ieat o sncters - Tinear four-pole networks with varlab o
P b o T wark of these devices is based primarily on thee
Pl 1 = wEr vt rallings thie tranvmlssion coeffielent af the four-

be ok, Tie o waltaye of one factor 1s supplied Lo the Inpo?

Corelo = 1y annd the trancmiscion coefficient o varied

TS L T Rpee v Tkt o sag othinr factolr. These syabehs
N 9f 43 i D © omeil ate s,
Ot v dloeub el ol ayve nake 1t potslhile to multiply the

vite b vy mec e eontinuglly btz rimple methods which provide &

ot o f o acrrelatore can be facilitated 1f a deviaticon

ey @ b AT el Bt ol (L") cand (1.%) {s permlited and 4f in
B R Rl Ll Btadlicd rrcepsces thae functions of these
proseeocer e rultinlled, There axist varlous methods of decigning

o2 rredat vy tneluding tlme- and level-digitlzation of the

ot oue o cxarnine 4 ocorrelat sr whoce action can be dercerited in
phegpegem . (2100 TF.1)., Curves 4y and 11 represent reallzaticns of
s ctadled randonm procersses,  Graphs a, and b, show the two
tortodlie puloe tralne wlith o repetlcion perlod of AT, obtained
Crevooa slingle couree of harmenie oselllations. We will asoune
vt Intevrvals AT are conclderably smaller than the correlation
times of the studled procesces., 'The cecond pulse train 1s time-

shifted by means of the delay device relative to the first by delay
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B,
A /"2 ﬁ: P ¢ hy ﬁg Ay Py ¢
e, 200 . Cormeersidn off gtirticd
RUILIRGTIEESH o S SIS 3 2 [ R et O
SEcee T Ml vty e i 1E GG wml s a0 Ahe oflrst randeos
P el T izt G tn Ui, Wdde rectanpular pulsen W
el R 1 CREell SomE Wi ol ey ke Bk mragortinnal e el renghn
g By e ., &l BRI @R Jen,gil Lo eonFtant . gnt eaqual
A N 1
: 1
b oef o Smat e p et AT 0 Wilder AT < T, thrci-h transformatdon centinuous

vt B prdge s gy b Tapmedd dngoe preoeess a.n with a diserete
; ! 2

eatie W vhe ghwel pe. Wimilarin the sequence of wikbde pulces l?

0 D b, ke ampld swiles arr progertd ongl te reterences 61, )
[

evey 80y omeans of gawtocth veltage “hie amplitude-modulated

rulse realin of the cecond random procecs Vo 1s sransformed inte i

3

1ovirthi-modulated pulsez £, . The wililth of the pulses obtained io
| potEgrgiongl o B], «evpn B By weant af tha colncidenee System j
puloe current: (a,, 1) are multlplied, forming a new pulce current,

oo spaml ltude i propertional te references a a ey vhille
s H 5 1’ H n’

tieowiirh or the ruleenr ts preportional to references B,, .., Bn.
i

i Bt 2B

et it o pulce traln for a large nater of references pives

oot ity owhiteh 1o proportlional to the value of the correlation

The operations performed In the correlator may be brilefly

represented ao follows. For cach of the processes respective 1




values of u\tl) and h(ti) are acslpned, which are then multiplicd

nid added over time NAT, J.e., Lhe sum

N

R()= - 2«:(!.->b(u+=)- (1)

i=1
oo tormed, whilth represents an approximate expression for the

»rrelaticn interral (1.9),

Jertain correlation functions may be similarly perfermed, 1-
we tade our references at time Intervals of AT > Ty In this cas~
the randonm proces-es we can assume that subseguent

-~

oy Tae)
roferences are not correlated with one ancther. Fach of the
rrozecses lo brocen down into N ocerments, each of which has a
Tonsvio 20 AT, The segnents of the random process may be repar i

1o 1to cepirate occurrences. In each of these reallizations ve

e e ference, wirielh for the firct process corresponds to the

cosdan i, wnelde & diime HRIft 1% introduced Tor the second process.
wheeocan o assume that the sum of (2.1) In this case expresses the
“rel ot (1.9 for the correlaticn functicn when the set 1s

wyern e, For o the stordied random processec the erpodic property

! J

5 Computer methcds make it
J possit.le te acnieve the

correlator desirn method

! 2

discussed above by other

ol o g Yloew diag—am of
itiital correlator: I = analopr- means. In the correlator
ilerftal mitnwverter; 2 - délay

e ‘ shom in Fileg. 2.2 the values
Bevize; 3 - arithmeti= unit, e € -

of the studied processes whice!

are assifrned at discrete
roerents of time are converted into a digital form and enter the
arithmetle unlt, whicn performs operations equivalent to multipli-
itlen and Inteprration,  One of the studied processes can also be

layed vy means of dleltal devices, for example, chift registers.




In decigniny correlators greater deviations from the algorithm
(1.%) can be tolerated than in the case discussed above; for
exampley Information concerning only tihe moments when the prncesces
pa-c throurh zero would be considered and information concocrning
the envelopes dirvcarded. An example of cuch correlators (see
5 1.4) would te ot correlators (or polarity-coincidence
«orrelators),  The simplified functional syctem of a sign correlator

timilar 4o tiat shown In Fip., 2.2, The purpose of the blocks
dde weild Fe different: 1 - llmiter, @ - delay unlt, 3 -

ol maltiplication Yleeck, Violtaros correcpendlne to the studied

.

-

-
-
]

rhamion pracornes @re empl itude-limited, In this cace only

L magtieit seacorandng 1o EEn chana e nt Whe mandom proeess IS

Yoreewlo o bipoed o RISl Recat e 3 dans b prEng of the cofncldence
Jeiies oy Fak e, =g i Pialned wih relatively 1ittle difficulty.
Broo-a® o #im fmgeatitier =8 give 21 ar compeient o the autpiut
3 0 e gt correlatian bhevwern random prpcesceor gcan bie
HEAR R BRI, T

Iroostuldyines mauscsian rrocesces by means of a sien correlator
srereyc ewEIal In Tmeazurdine the correlation functlon, seome of which
e dtmowusoEd T T L,u (mee Fir. 1.12).  In analyzing processes

3o meanas i loinution, whne connecticn itetween correlation
SHETEE STanteaz v mlcerlewes(1.8) ansi (.19) and wicge oltalned

meers 00y cten ocorrelator becomes mere complex [665].

Aometnond e Argun for measaring correlatlon functlons In which
e ul®a o are ol talined whiich are glass o the jdeal multiplication
re-whiord, This 1o achiloved Py Introaucine special auxiliary randem

procsscen, and reaults in ecmplicatian of the system [28].

[} the 2ase of crosc-correlation reception of weak oiprnals
'r, v presence of noise, food recults can te obtalned frem a
correlacor design [28, 9] in which only cne stored signal is
cui teect o 1imitation. The random procecs which is recelved (a

mizture of cipnal and nolse) 1s not subjJect to transformation. In
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thls casce the output voltape of the correlator 1s proportional to
the value of the correlatton functicn of the studled processes.

Cerrelators of this type are sometimes called relay ccrvelators

Fandom process transformation corresponding to the action

principle of siyn and relay correlators, cannot be performed

qocurately In practice due, for example, to the presence of non-
1tnear and inertial elements In the asystems. The actual funeti nal
trancformations may be more complex than one might assume 1n

stuiyines the actlion principle of the correlators,

ne method of desipning correlators is based on representir,
the erreelatticon function in a corles In a complete system of
Fanntvions [0, 52]. The function whiech exlsts in the interval

=) qr.d wilceh caticfies the conditions

jSays Rt
lim f (1) — O; Sc it ! | F(u)|du < M,
0

toj @

o0

wiere i o2 finlte number, can e represented in the form of a

Jarieg, of Lasv-uerre polynomilils, for example:

1

a
[ (1) ==Y CuL(u). (2.2) ]
n=0 1

wiarse m > -1

"' = 1
Cii = _";('T-i—-:rf‘li - S jlne® u'L: (u) du, 1
° 3

wirtle T(z) 1 the ;-amma=function, which is determined by formula

P(2) = ( e-ter-vat.
|
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Interest alco are stmple Lajuerre polynomials corresponding to

) .

Jertes (2.2) converypes at all points where function f(u) is

1
ntlnuous, At the break polint the series converpges to 54[@-&0}}

(- . "o Daruerre polynonlals are determined by the formula

L:(u):-—-e" = :’:‘. {fe va®™ %), n=012.. (2.3)

ni
- + -y LR ~ 4 I N \ . 2 ’ a =-u
i orthorenal on the interval (0, «) with a welght of ue .

Semo o1 > tihoor 2errelation funeotion catisfles the alcve

et o EYEEr 0 o tig Serles reprercntatilon.

e tank of the correlator

e e Aetgttine Ghe caBEl fllciants
x(t) i ‘
e - - of expdnrion , from the studled
. . S A ‘B 1
VRITRR G Dl ot T S A gecurreleg of the sdgral , :aumd
~ :'. e . v 2 / . ) . ] .
vheén te thape thne unknown
rorreclation functioen from the
e G Sl e ecrefMictiente can e determined Yy reans

e CRTEF e ey il Z.3. Yoltape: at the output of filter
wo el o @ pulkd charactarlistic of & (%), &8 equal to
[

y() = og X(f — ) hp(2)d.

orslviriteanian amd averarcring, assuming that the =2ppldice

decETe onh we Vil BE R tlid uaned
—— @
z,(0) = J R (=) hp (=) de.

-8T

it gecordin, £c the condition that hn’r) Be Ln(BT) 1s equal

. X=-p—=- Here B 15 a constant, which is determined from the

Lo

el i




condltlons of obtaining the least error with a finite number orf

' 1tera.,

Tt 1s technically possible to produce filters with this

hariacteristie, By means of simultaneously workine devices suen
ar that shewn In Fig. 2.3 1t 1s possible Lo obtaln Pn coeffic.eunt

corresponding to different n values.

The correlation functlion can be found by means of a device

suci. as that shown in Fig, 2.4, 1t also contains filters, just

v chown in Pir. 2.3, Voltage in the torm of Be-BTLq(BT) is

forrned bty stimaulatinge the filters with short pulses ké—function). ;
The ocutput voltares of the filters are multiplied by correspond.ni ;
o ~ffeienteo ot tained by means of the systern. shown 1in Fig, 2.>” 4
anctoare adied,  The cecond multiplier ic needed to eliminate th %

walrhit factor in the sum which 15 formed. As a result a voltage %

wivlen represents the correlation funetlon according to formula

.2), where u = 87, wlll te obtalined at the ocutput. The advantarge

of ccrrelaters of this type 1is tire reduction in analyzing corre-

qticn 2haracteristlices of random processes.

— Indirect methods are
/) known for measuring the

normalized correlation

function. for example, Ly

! b
__J analyzing the level curves 1

Wi, 2.0, Oystem for shaping for two-dimensicnal probability

vu1ltage proportional to correla- i - :

£ U dr A e LTS distributlon density. For :
rgausslan random processes k

curves p(x, y) = const have
~111ptical chapes, whose axes are turned in relation to the ]
coordinate axes of random variables x and y. (For other distribu-
tlon laws the shape of the region will be different.) The ratio
of a small elllpse axls to a large axis under identical process
dispersions depends on the correlation coefficient: p=(l—a)/(14q). ;




where a 1is the ratio of the axes of the ellipse. The position of
the elllpse on the plane determines the sign of the correlation
coefficlent. The sign "+" corresponds to the position of the large
axis 1n quandrants I and III; the sign "-" corresponds to quadrants
IT and IV.

This method can be accomplished 1f a cathode-ray tube is used.
The studied processes (in the form of voltages) arrive at plates
X and Y. PBecause of the nonlinear properties of the luminophor
on the screen, one can observe the outlined boundary of the
slowing reglion, which consists of one of the curves of equal
brightness, 1.e., function p(x, y) = const. For gaussian processes
the correlation coefficient 1s determined by the formula presented

above.

This method 15 of secondary importance, since it requires
additional calculations and has a low degree of accuracy. Its
advantage liles in itz simplicity.

2.2. CHARACTERISTICS OF IDEAL
DIFFEREIICE FREQUENCY CORRELATOR

As an 1deal correlator we mean a correlator containing ideal
multiplication according to algorithm (1.8) or (.19). Averaging
ls done in finite time. An interesting case is one where the
spectral densities of the studied processes are frequency-mixed.

In actual multiplying devices there occurs not only multipli-
cation, but also signal detection. Detectlon leads to a d=-c
voltage component at the output of the multiplier which 1s unrelated
to the presence of correlation between input processes. If the
input signals are sufficiently powerful, the d-c component of the
detector effect can considerably lncrease the d-c component causing
cross-correlation between weakly correlated input processes. 1If
the processes at the correlator input are strictly stationary, then




the d=-c¢ component of the detector effect can be excluded by means

of compensation voltape., However, actual radloengineering unit.
n1lways have nonctationarity. For example, the passage of a weax
ciprnal through an amplifier Is accompanled by power uo ulutton of
thils signal because of unavoidable fluctuations 1in the amplifieacton
coefficlient. Thus, the above compensation method 1is not effecti-.
in an overwhelming majority of cases. The situation in this ca~

ls analoyous to zero drift in amplifliers with d-c voltape.

To eliminate the influence of the detector effect mutual
displacement in the spectra of input processes can be introducec.
In most technical applications this does not result in serious
difficulty and even makes it possitle to create correlators for
studyin,s. processes with a wlde energy spectrum of hundreds of
Iz, Correlators which function under a shift 1n the spectra o’
crne cipnal relative to another we will call difference frequency

correlators.

LLet us analyze the work of an ideal difference frequency

correlator under the following assumptions:

1., Two correlaticn processes are transmitted to the correla-
ter: the signal uc(t) and the reference voltage ur(t), which
qiffer in thelr ctrength and time delay by T, The sifnal enters

with extranecus nolse,

2. The signal and the extraneous noice uw(t), which is not
correlated with the signal and the reference voltage, enters one
multiplier input additively; the reference voltage enters a second

input. At the multiplier output there 1s an averaging filter whose
band pacs 1s much narrower than the energy spectra of the input

vibrations.

3. The spectrum of the reference voltage is shifted by

0

f'requency w, = 2nf0 relative to the signal spectrum. This ]
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chift miyht be achleved by the single-band modulation methods,
for example,

4. The studled processes reprecent occurrences of nzrrow-band
raursian noise wlth enerpgy spectra which are symmetrical in relation
t the central frequencies, We willl deseribe them by the random
funet Lomnms: aif (1163 .

5, The average values of the processes are eaqual to zero,
wirlle the correlation function under the assumptionc which we have
made are determined by expressions suech as (1.19). Thur, for the

sStrnal we have

Re (1) =30rc () cos e, (2.4)

vhere j«m.rek) 1= dlspersion, the averape frequency, and the

envelope of the autccorrelation function »f the signal.

The autocorrelation functions ¢f . reference voltage and
extranecus nolse are expresced by simllar relatlonships of the
type of (2.4), althourh the subscript "c" is replaced by "r" and

" respectively.
The final roal of tre analysis 1s to determine signal/noice

ratios at the correlator output. The studled problem has a direct

»elatlenchlp, for example, to the analysls of the nolse character-

totles In a radar ctation operating under a nolse signal.

let uo exandne the correlation properties of oscillations
cnterine tie multipllier input. The cross-correlation function of
the -irnal and the base voltage has a nonstationary nature. To
prove thic let us first say that the correlated reference voltage
and signal have the same central frequencles, 1.e., W, T oW T Wy,
while T, T 0. Then, after writing the reference voltage and signal

in the form of random ¢ime functions of the type (1.16), we get

by

ke i s e et A e e e e A
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= Byt cosfolt, 4 5 (L[ Ec ) cos[afy 49 ()] =

== -y {E U Ec (1Y €08 (20 T1) — 70 (1] cose, (fy = £,) —
- E (1) Ec(tysin[pe (1) - 9, (1) sinw, (1, — 1) 4
+ E (L E (L) cos[2e () 4 9, (1] cosm, (t, 4-1,) -
— E, IV Ec(f)sin[9c (1) V7, (8)] sine, (1, +-1,)). (?.ha)

ITn thla pelationchip the 120t two terms are equal to zZero, since
when w o= W = oW,y the reerenee voltape aud the siynal have a
ctaticnary relationshiy and, censequently, thelr cross-correlation
Sunetion cnoul i o derend rolely on the difference t? - *,1. Thus,

E A1) E (L) cos[p. (£) 42, ()] -—O,

E()VE(1)sin]3: () 4 2,(1)]—O. (2.4b)

e ocpuently, Inocxpresclion (2.4a) there remain two terms, which

e teeduced ot the fcpm nf

ll,~(’|)ll: .‘-_-) = (T ﬂ,»fg(lz ’l) X(’OS[(-NU:' -‘lc)+
-5 (f—11)], (2.53)

whersz r (¢, - "1), (“(?.ﬂ - tl) is the envelope and the phase of
tt.e normalized crosc-correlatlion funetlon of random processes
'1{_(*.) and u(,(t). I ow # w., then the crogs-correlation function

o™ the olynal and tie reference veoltare will have the form of

R, (1, 1)) =
e Er ?'n—) ('6;'0,', ""'—';:.(’;Tl—;Ec (t.)cos l"c’: + Pe “:)I:-:
o {E VST €08 (96 (8) — % ()] cos (ot — wyt,) —

E (1) Ec(L)sin |7 (f,) -- 9, (1) sin (a1, - wt,)+-

E; (60 Ec{T)sin |7, (1,) + 9 ()] sin (¢, |- «cL,)}.

Iy,

il el




According to the equality of (2.4b) the mathematical expectations
in the luast two terms are equal to zero, Pinally.we can write

Ree(ty, tz) = ar0crs (la—1ts) X
X c0s [wcts—wrls + Lo (fa—1s)). (2.5b)

Tty Ino the cace aralyced the time dependence of the cross-

g 2

c rrelatioen functicon ch(tl’ t,) has a perlodic nature,

et ur ctudy the characteristics of the random process at the
multipller output. The regular response component of the multipller
will 2qunl

. e

If we concider relatlicenship (2.5b), as well as the fact that the

o feren

» voltare and exztranecus noice are Independent, then we

- 4+
AR

ua(t, 1)) = a0 (13) X

X cosfuml —w ta+ ru(ta)},

WLEPD g, = W m oW 17 the intermedlate (d4ifference) frequency.

“hue, under the indicated conditions the regular component of the
cutput voltage of the multiplier indicating the degree of correlation
between the signal and the reference voltage 1s 1solated at
differernce freqgquency W . The amplitude of harmonic voltage is
vroportional tc the envelope of the crccs-correlation function of

random processecs uc(t) and ur(t).

et us examine ncice at the correlator output. The correlation

function of the process at the multiplier output will have the form
of

K, it =) ==ut, L) (t 4= <)
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fowe remove the parentheces and ascume that for normal random

processes with cerc averape values the follewing relationship [27,

K I8 PR T0 FR T SRR NS N

Kot =)~ R (IR =) 4 R ()R, (7) +
A+ tag (e (¢ - 7) 1, (€ F 2yt f 1k 2) +
i (e} 24 2) (- e (- %.).

‘croDderins £ie faot that tne autcceccorrelation funetlons of the
Soudter poresi e are eterndned by relatlonships in the form cf
(1.1¢Y, wtl» the ecrasc-correlaticn funection of the gignal and the
raferencs yeltaire qre determined by a relationcship in the form of
T )y wee et Lo fclleowing expreccion for the time-averaged

cavrelaticon funcuicdn of the sutput voltage of the multiplier:

(Ry(t,2)) = :::fr, (=) T (=) cuswz cos ot -
- ::Ji
ez 2 s l(‘"r + o)t i‘ ':n (< +“.a) e

. 1 222
—olt— )+ 5 337, () cosm, 1,

r (2 () ceses cns:w,,.'. -4- —‘2 o::: ry(z

witere <

\I
3
2
:
]

rnates time averaging.
To f£lnag the eneregy Srectrum o the response of the multiplier
we muct caleuwlate tne Fourler trancform from the time-averaped
correlaticn functlcn. From the expression for this function it
follows that the eneryy cpectrum of the response 1s concentrated
near frequencles wo tow o, wo # w . ienerally the intermediate
freaquency w, whilch 1s selected 1s much smaller than the average
sifnal frequenciec, the reference voltage, and extraneous nolse,

Since amplification 1: eacier at relatively low frequencies. At

T - P R Sy




the same tlme, In order to eliminate the harmful effect of detector
tvpe nolse, which occurs in actual correlators, we muct select an
intermediate frequencv which 1s considerably wider than the enerpy

specetrum of any of the Input oscillations,

et us accume that these condittions are fulfilled and, conse-

4
v

veently, only nolse whose energy spectra are conecentrated near
lifference frequenciecs wo o= W and wo o= W enter the band pass of
theo averaringe f11ter at the multipller output., The time-averaged
errelation function of the response of the multiplier, which
ieserites the cutput voltare In the intermediate frequency range,
1oow7ual tce

R:'(-.) (Kl 1)) = -;—- .!:‘J:I:(t.) coswz 4

b alalre(2)ry (3) cos @z 4 37l (5) 1y (1) cos (m; — @,

Tre flrcr twe terms ¢f this egquation reflect the correlation
Suncticon of o cirnal whilicn has been transformed by the reference
volvara, In thic case only the first term corresponds tc the

> rrelation Cunction of the rerpular component., The second term
ietermines tho correlatlion functicn of nolse whieh develops as the
~-uls of the Tluctuating nature of the ztudied processes. Fer the
cage of sirplicity we will call noice of thls type nelf-noise,

(In analyzinr extremely weak input sigrals 1t may be necescary to
concider the internal noise of the correlator, l.e., nolse caused

e

occes in the elements of the svotem and by the discrete nature

[

~

I tne current carriers. UWe ccnsider internal nolse in the same
manner ac extraneous nolse.) From the ottained expressions it

fcllows that the enerpy sprectrum cof these nelses does not depend
n time delay T, of the =1rnal relative to the reference voltage
(Ehia N

viloa

ac alco beern confirmed experimentally). Let us find the
«ffectivenese of an ideal correlator for a rarticular case, where

re(t) =ro (1) =ra(v) =r(1).

fa'.-:o' (,,m-?-(c)c. ;.(t)ﬂo. (2 . 50)
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In fulfilline the condlittons of (2.5¢) the time-averared correlation
funetion of voltayre at the mult!plier output for the intermediate
frequency ranye s equal to

2
R () == o coswg L () 31 () ru )l
( ]

The corresponding energry range 1s found by means of the
Wiloner-fhinchin transform:

Sulpy=: 432 JEd T2+ + 1S — 1)+

“
+ :Sc(f ""o'l {‘ = l.'snu (’ Io' ! :Snn (I ‘*‘ f.)l}- (2 . 6)
.
where 8(f) 15 the delta=Dirac function;
;. Int o ' *
Se(h ;j r(z)e 35;“"(“.-‘] "’)'.u(’-)e—“""'dt.
© —»

ote thiat In thilc determination the energy spectrum 1is assigned

for ¢ia envire axic of the frequencles (-w, o),

In (2.,0) the f£irst term In trackets determines the spectral
denctiy of the power of the regular output voltage ccomponent,
wi.izh appears In the precence of a correlatlon connection between
the reference voltare and the sipnal; thie second term describes
zelf-noize cauce? by the fluctuating nature of the signal; the

thiird extrancous noire transformed by the reference voltage.

In examining the output effect of the ccrrelator the question
arices: does the self-nolse of the signal belong to the signal
cnmponent of the output voltage or to the noise component? This
apparently depends on the type of unit which follows the averaging
f1lter, If it 1s a threshold system with a two-alternative test
for the hypothesis of the presence or absence of the signal, then

b9
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celf-noise which appears only in the presence of a signal and thus

fncreases the probability of correct detectlon should belong to the
In many ca=ses gself-nolse impairs accuracy in

in which case 1t must be referred to the

In our calculations we will

slrnal component.,
parameter measurenents,
noise component of the output effect.
second case In mind.

nave the

Let the narrow-=band averaging filter which stands behind the

multiplier have an amplitude-frequency characteristic H(f) with

naximum on frequency . On the basirs of exprescsion .6) we
1 on freque fye On the basi f 1 (2.6) w

g
pcwer of the harmonic voltage at the output of the

o .5
find the

- P Y AP i
avoragsine Sllter

S o R AR RNV
0,53'5H* (f,).

noderivin,s thic relatlonchip the property of the delta-function

concldered, 1.e.,
(]

[t = ramwagap=nq,).

2c well as the parity property of the amplitude-frequency charac-

teristic of the averaging filter H(-f) = H(f). The power of

celf-nolse at the cutput of the averaging filter equals

o
P 2 I [Se (F 1)+ Se(f 4+ F)) 12 (f) df.

|ve

The tand of the averaping filter 1s assumed to be considerably

crmaller than the enerpy spectrum band of the processes at the

correlator output. Thus, the integrand represents the product

of clowly changing frequency functions 2SC(I‘ - fo) or 2Sc(f‘ + fo)
pl
times rapidly changing H°(f) with a maximum on frequency o Under
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We

L crut chymal s loe ratlo foroan Dieal difference freaquency

dhvaee gtasy o jagern i agd an sihe rat 1 »© the power of the regular
oo NPy 3. thg tctoi power of nelse @t the output »f the.averaging
BT o cazed cn the aleove exprosoicens we ret:

‘s
b b
N Pt

the values af *he slowly chaneinge function on frequencles f

Al

=% T we eonctder the parity property of the energy

N
et

0 7
IS 9.9,
Pt

.S 2fo) 1 SC(UJIS 11 () df.

With sleilar reacon g wee £ toe exrrescion for the power

extrancou.s noloe at e averg-ins fllter output:

P S, 2l s...,wrlj 1 () df.

P,

q h I‘l‘l;. + I lll

wheers = lr vt effecttve band pasa of the averaginge

-
§ o
By = —ay —

suanple, the off~ct ive hand pass cof an averarine

Sinele ocelllatery eircult 1o equal t

e Arens Rl

‘_’52 ,
= { ‘§ 10) l ql"“?[o’l i‘l.-srm'“; 3Slul (2,0“}4'

sooeendttions the value of the Intejsral 1s practically determ'ned

0

(290

flter, =qaun

filter witi

spectrum,
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where Af 15 the Land pass of the clrcult at the level of -3 dB.

Relationshlip (2.7) reflects the known situation, according
to which the tlpnal/noise ratio at the correlator output depends
only on the energy of the sipnal (during the accumulation time of
the output averapin, filter) and the spectral density of the
interference. The self-nolse of the sipgnal belongs to interference.
The taeal correlator represents the technically attainable

limie, and can serve as a standard in evaluating the degree of
rerfactior 1n actual correlator device:

2.3, FuRCTIOHAL CCRRELATORSE

i ~fctaicn Principle of Fur~tional
wELRyR Lat s

Let uc examine devices which instead of multiplication under
e 1rtepral Sipn form a function from the studied voltages:

g [ The o algorithm for the work cf such a device is determined

r/2

RGY=— [ vy, (2.9)

._I)

B o

r, .f we assume that the erpgodic property is valid and shift to
wreraring of the set, then 1t 1s determined by

K(»‘)—.—.""'f(.\,y)p(.\'.ybdxdy. (2.10)
() :

evices which work onn the basis of algorithm (2.9) will be called
functional correlators in contrast to correlators containing ideal
multiplication. The term "correlation detectors" i1s sometimes

used for devices of thls type in detection systems.
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The most commonly used functional correlators are those fo-
which f(x, y) = fl(x)fz(y). An example of this might be polarity
coincidence correlators (or sign correlators) for whict functions

fl and F2 have the form:

I npu x>0
H.\'):Sg'nx-z{ 0 npn x==0, (2.11)
—1 now x<O0.
[Apu = when]

Transformation (2.11) transforms the studied random processes into
random processes with a constant amplitude. Information about the
phase !s preserved. This transformation or one similar to it can
only occur for one of the studled processes; the second random
process dces not change [55, 597.

Some interesting facts in studying functional correlators are.

a) errors in measuring the correlation function, which are the
result of nonlinear transformations in the studied processes; b)
deterioration of the nolse characteristlics in a case where, along
with the studied processes, additive noise affects the input.

Particularly interesting 1n designing functional correlators
are dependences f(x, y) for which:

1) function K(t) differs little from the correlation function
found under ideal multiplication of KM(T). The criterion might,
for example, be the maximal value of the relative difference

KsﬁilxﬂtL—Kh)l or its square;

2) the nolse properties of the functional correlator do not
decline significantly as compared to the 1deal correlator. The
decline in the signal/nolse ratio at the output of the functional
correlator can serve as the criterion,
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3) the functional correlator is technically simpler and 1its
dependability higher than a correlator with i1deal.multiplication.

The first condition can be written analytically. It leads to
the integral equation

{1 ix. oot ) dxdy = K, () 4 x (2, (2.12)
Lt

where function « (1) describes permissible error in measuring the
correlation function. By solving equation (2.12) it is theoretically
rccsible to find the forms of functional dependences f(x, y) which
wi1ll give the necessary accuracy in the work of the functional
ccrrelator (if such a solution exists). The next step should be

tc ctudy the nolse properties and to examine the conditions of

technlcal realization.

In the method which has been formulated for analyzing functional
correlators there are great mathematical difficulties associated
with solving the uniform integral equation (2.12) [31].

Thus, 1n analyzing functional correlators it 1s best to use
the simplest approach, which is as follows:

1) Examined are functions f(x, y), corresponding to the
characteristics cf nonlinear elements which have broai technical
application;

2) for the selected characteristics f(x, y) the ‘orrelation
function is found acccrding to formula (2.10) and poss'ble measure-
ment error 1s estimated;

3) the noice properties of functional correlators are studied

and compared with the nolse properties an ideal correlator.
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The simplified analysis method wlll be used in the fourth and
fifth chapters in studyling functlional ccorrelateors.

-

~+ Simplest Functional Correlator
Systems

Varlouc construction methods and systems are known for

rerrelators which contain electron tubes and semiconductor element:

lomme |

2y 19, 23, 28], Let us dwell briefly on simple functional
orrelator systemc whese work algorithm is determined by relationship

(2.9).

[e]

In the low {reauency and rad!o frequency ranges a correlator

cu2ten based on a balanced ring mixer gives pood results [56, 597,
ne desi,n vardlation of such a syster 1s chown In Fle. 2.5. The
mixer can work In a nonlinear transformer regime ac well as in a
llnear oyster with variable parameterc. The first working mode
occurs 1In the cace where the intensitiez of the studled voltages

In the first approximation are the same. In the second working
mode the Intencity of one of the voltages is consideratly greater
tnan that cf the other. A bridge balance syst<em 1s used to prevent
the studied randem voltages from passing directly to the output.
Jirect pascagpe creates additional error in measuring correlation
lependences., In this case, where the averaging fllter at the
correlator cutput doces not transmit the spectral components of the
studled cignals (for example, in difference frequency correlators),
the cvstem may not be balanced and may be used to switch just one
ilode, This moide mavy be used, for example, in microwave correlators.

The reference voltage which switches dlodes ﬂl-ﬂu enters
input 1. “When the voltage cn the cathode of phase-inversion stage
“1 exceeds the voltape on the anode, the dlode pair Al’ A2 is
trigpered; otherwise diodes ﬂ3, Au are triggered. In this case
the sirnal transmitted to input 2 enters the grids of tubes ﬂ3 and
The triodes of ﬂ3 and ﬂu convert the voltage which 1s taken

)u-
s

2D

ikl Sanmisisbaidiiocominiioniblis vt luvicsied. R =




+200 V off points 6 and B of the
bridge, which is symmetrical
with the ground, into an

Tnput 2 asymmetrical voltage,
°

separated at resistance RU'

i Diodes Al-ilu work 1in an
"on-of f" mode. This is

A (Fig. 2.6) indicating the
' dependence of voltage at the

value of the reference

Fig., 2.5, Simplifled scheme of
functional correlator, ampllitude of the voltage at

voltare at Input 1 when the

input 2 1s econstant. 1If

reference voltage exceeds aquantity u the system works in a "key"

s
mode, 1.,e., the conductivity of diodgs in the first approximation
acquire only two dlcscrete values correcsponding to the direct and
reverse voltages applied to the dlode. The effective value
selected for the reference random vceltape which 1is supplied to
input 1 1s considerably ereater than U - The averare frequenciles
) the studied voltage spectra should te different., In thic case,
when there 1s correlation between the signal and reference voltage
at the output, a difference-frequency voltare develops, whose
amplitude 1s proportional to the envelops of the correlation
coefficlent. The cutput voltare in ¥i;-, 2.5 1s supplied to a
narrow=band ampllifler, which also ceparates the harmonic component
of the difference frequency At the output, in addition to the
harmonic oseclllation, there will be 3 ncise voltage, which is
caused by the fluctuating nature of changes in the envelope of the
input signal and by the finite averaging time. When R(t) » 0 at
the output only nolse voitage 1: present.

Sutput confirmed by the characteristic

ﬂ system cutput on the effective
R




oW .. The studied system makes

af - ——pr g |

1 N AR SS? 1t possible to-measure correla-

wh4-- = tion dependences for rausslan

S - - random processes with an errcr

’ e 7] qﬁb close to that of a correlator
Pl 2.0, Amplitude of output with 1deal multiplication,

Slrnal ac o a functlon of ampli-
tude of reference voltagre.,
In a case where the input

and reference voltages are phase-
manipulated sirnals, the following voltasge is formed at the

correlator output

() = Ax (1)x3(1) - cos (enl +84) - cos (ol +82),

wheme 4 = const, x](t), x5 (t) are modulating pseudorandom vide

&

G a1z ‘l and &, are the 1nltial phases.

i at voltare 10 averar«d Ly meanc of a fllter. Fach of the
iul- vt video clpnals acqulirez a value c¢f +1 or =1. Table 2.1

shows the possible values of

Taunle 2.1, modulating video =irnals and
L) utput the value of the cutput
g ! vorltase

!
| - voltare (product) correspcnd-
Fl

i: :*: il ing to them., If the modulating
f: ;: i: voltares are coherent, i.,e.,

= — 1f the time position of thelr
cvmbols coineldes and 1f the

crpctin 13 the came, then output veltare will Le harmonious with
constant amplltud.-, In the case of a time shift In the modulatine
veltares Ly more than one cymbol, the pseudorandom nature of cutput
voltayrre modulation is precerved. 1In the case of a time chift ity
lerss than one cymbol 1In the modulatling voltages, there will te o
harmonle voltape at the output, and its ampllitude will chanre as a
functicn of delay according to the law of the envelope of the

rrelation functlon., In addition to the regular component, output

07
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voltage also contains a variable component, whose intensity

decreases as the correlation coefficlient increases between the
rtudied voltarges.

The system described above 1s advantageous in that test
recults are independent of the characteristics of nonlinear

~lenents, work 1s possible in a wide frequency band, and the system
s oimple and dependable.

alanced functlonal correlator systems which are used to
study narrow=band random sipnals and pseudorandom signals in the
radic frequency range :thould be created in the form of resonance
jevices (Fig. 2.7), whose operational principle is analopous to
the one diccucsred abtove., 1In the superhigh frequency range the
cimplest correlator could be made, for example, In the form of a
talanced mixer bazed on a double-T connection or similar
arrangement.s. 1

!Output

Nutput )

Tirnal ! [signal 3 0 :

:3 : :
g, =

i

Reference Reference *
voltage voltage
a) b)

Fig. 2.7. Simplified functional correlator
system fer analyzing narrow-band random 1
procecces In the radio frequency range.

Flectronic correlator systems are extremely diverse and
teserve a cpecial discussion.
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L%, CORRELATTON DEVICES FOR
TRACKTNG A STGHNAL DELAY

anoexamp le of a cyctem whiel, tracks a delay mipht te 2
taryet trackinge radar stavicon with correlatlion processing of the

received 1inal.

eeesoary clerente In oo o traeninge cystem are the correlatior

tevio Afcerivtnater), whie:n rvencrates an error signal accordinge
I s erntteclled mordmete=r, and o Ciecllndck clreult. Let us examine

come exampler of correlat ton devices whicech track a sipnal delay.

“a Figure 2.8 [54, 57, 21]

showe the bloek diagram of u

tacrininator qperating under
R ,
- J r—-{ 2 5 a noice clrnal.

Wlee, 205, lmchk dlapgwan of
Lresg i N Jeedigiaatar e nc s i c
= . - o The sienal, containing
sl wigElzwh 1 - multiplier;

- contrallen delay llne; 3 - Information about the param-
FIE AR ATINE COCOR SR LT INE  P Anytan e u - ] ~e,e
et TRTCNIW. T e OGN eV ICR ., . .
E ol 5 e a eter whieh {0 telng automatic-
SPEDERET D T - =2l ank
o Rragnitis | 21y tracked is transmitted

to the dlseriminater along

riannel 1T oalonge with noise

1
o} 2 [
wW(t)=Au (1-~1,) +um(1), (2.13)
1 Ehebe Tp o vl Cime ana A Lo o tne 2reflficient which describes
i b SRS O,
e ference v ltare uoft\ = wc’t - 1.) is conducted to input
e Thiic o owaltare pacoes throurh the differentiating block and
tarout the line with controlled delay L which may differ fron
i
the actual delay T Ly a small quantlty e(t) = Tp(t) - Tn(t)'
)
1
The dependeonce on t Indlcates that r¥ and Ty chanye In time
luiring: the workine process of the syotem. We will assume that i

duringe the averagine time there changel are neglivibly small.,




Let us find the voltape at the discriminator output. Let us
represent the sipnal in channel T In the Taylor series:

,(f)=:A [u,(: - g) - (l — )+
+ et — <)+ ] -t (1),

frine 31yns Indlecate a derivatlive with respect to e. If we
acsume that averaging time 1s preat 1In comparison to correlation
©!me and that the ergodle hiypothesis 13 vallid, then we get the
following expression for voltage at the discriminator output:

d ¢ —‘..- —— ‘—‘:—::.—-
"J (" !)::“"c “ o ..’ L;(I'T_ ‘+“Ill (” L ‘:“ .‘ )

!

Tlie secont term determines extraneous noice, which 15 not
analyred, For the flirgt term, if we put the expression for the

nput cirnal In the form of the Taylor serles, we get

Une(ts 0) = B gl + 1 (Wo) ++ Wi ..}, (2.14)

wrLeTe He==ule (I — %) b'e== #. B=:const

[adl!

Jhe cecend term, whose slen and quantity are determined by

the deviation In the actual delay cslgnal from that established in
ti.e line, hac the taslc meaning. The error signal, which is
jependent on difference Tp - T,, acts unon controlled delay line

¢ wrrouph feedback clrcult 5., Delay trecuing accuracy depends

crio 2 nunter of factors, including nolse ntensity, the amplification
crefficient in the feedback circuit (block 5), and the discriminator
ch.aracterictic, i.e., the form of function (2.14), The
diseriminator characteristic can have different forms. Figure 2.9
chows the diseriminatlon characteristlices for nolse signals of two
types: narrow-ctand and broad-band.
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[}
sif)
4
f ‘ ho !
al
3(f)
7Y
. b =
b)
Free, 2L DMierininator character-
Istick faor pedse rnal delay: aj
narrow=t and notcey 1) troad-band
ncioe,
Ve parrow-tand noelise tie workinge cection of the diseriminator
wreactericeic correiponds teo 4 nelce zirnal lying in che range
'L.<5<:J.. T weriine Becti6n of the eharaecteristle has a
yoootc e Sllre. For onarrcw-tand notlse there may be several sections
Wi o voclcive olope In the characterictic. This meanz that the
tormocan word In oa eontrel mode at ceveral values c¢f Tq (in
measurins croten: ciils leads to error In determininge the distance
© Ctarees) . Fer owldetand nelse there 1s only one working section
votne ocrargeterictice, Tn o tihe case of zmall error sipnals the
Hoeriminator charazteristic can be considered linear,
The direriminator can be created not only for a nolse cignal,
tut for o cifnals formed on o the basis of a pseudorandom sequence [57]
for examrle, arn m=cenuence), Flpure 2,10 shews a bloek dfagram
: af cuet, a HMecerimlmator, The alirnul dn €e ferm of (2.13) 1s
E conoupted throuh enannel T te the dlseriminator. Vaeltagpes
] R 2 LA o 8 K0 VSl oll HIRE 115 i=laye are eonliucted to the multipliers frem

rtorgm nystem f: o (t - 1, - t,) - alcng channel Tia,

s (t = 1. 4+t ) - along channel TT1, where 1

0 1s the expected

*tme (controlled parameter), exprecsed ac the number of

ymbols In the ceaquence, Voltares from the output of the multipliers
are- caleulnted und are averared bty means of fllter 3 (averaging

time I much greater than correlatlon tlme). Voltare at the output

nft filter 2 1o determined Ly ‘he relationship

»,1

i it i s Atttk e, e




1y (t,8) - Bluc(t - zp)ue e el —

—ttgU = el =5 1 1] | R ' (2.15)

The last term descrilbes

1 . the effect of nolse for which
| -—— _’ 2 3 nc analysis 1s made. Let us
' }- examine the first term
”:} d uo(l, #) =B{R(e 1) -R{. +15)}), (?.16)
Flee 2,10, Ptlocek dlapram of where R(t) 15 the cross-
Lraciing dizeriminator fo 3
S Sl Riena gy correlation function of the
n rseudorandom cequence: 1 -
multipliers; 0 - adding cystem; sirnal and the reference
- hi 1 ('In- T W@ 4 t £ e u -
1 [ il e el voltage,
suaping and delay of pseudorandom
Lecubneey 5 - delay cantrel
ticeky ¢ = foediack circuts,

Relationship (2.16)
determines the discrimlnator
cr:aracteristic wiich 1o shown in Fip., 2.11. The vorklng segment
o7 she clarasteriotic corresponds to -t < € < tg; vhen le] > 2t

atrut o voltase 1o enqual to zero. Whereas the studled sienals

0

reryerent a rertolically repeated m-seqguence, the discriminator
hoaracteristic 1o oa periodle funeticon of error slignal e. The
aharAeteristic derplcted In Flg, 2.11 corresponds to an 1deal
receudorandom cequence and thuc contalns treaks. The actual
cr.aracteristic would not contaln breaks because the pass bands of

ti« 1lnear t locks In the syotem are finite,

The voltage of the error
slgnal from the output of
filter 3 acts through feed-
vack circult 6 on delay
system 4, changing 1, in

0
accordance with the change

By, 2011, Dicerimlnator charac-
teristlc of pseudorandom sequence in 1t .
’iela_‘;’ . p
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Jute VETTCAL CORRELATOR

At operation correcponding to a correlation inteirator can te
rorformed rot only by electronic systems, but by means of optical
lovicos [83 0 va, 7157 which use both coherent and noncohereri

roedlar o, et ur awell on coherent optical devices. The use

relieal tevices In o cveat iy correlators ic based on the use of
cae deplems ta perfarm aultipllicatien land Intepratlion operatilceng.
I thils ence we wse the property of the chanpge in the amplitude and

e of the 11iht as Lt passer throusrh an optically heterogenecous

el rd vhe foeubing s ffect of tile lenzes. :
rtcocptieal cystenm can te oncrily analyvzed using the method
Freco te the vy of i fleld and comprex chiape presented by an
cleertrra,netic osetllation,  The optical sycterm will Ye -compleie,
oy tiaeecadirenctonally) coherent 3£ the wave fronts represent
2 wrfag £ toth conctant phace and constant amplitude. For a
4 rreralliel ) somorencous 1ight team fa laser team, for example,) we
cavee o= exp (lwt), where w plave the role of the carrier. A
~rreereers T wave o miforn implitude 1 reprecented in the j

E . Aix,y)e?to,

The yhace factor oxp (twt) 10 dropped, since tne system 1s
nehierent, ) 1., the place relatienchiips for lirht waves at
5 S Iferent points v ospace are not time dependent,

(2411

Mo studied o!onnl ear be talken on oa transparency.  The

trgrtmittivity of the transparency daserilibres tle amplltude, for

crarny ey whille 1te tiilekness deceribec the phase., The fllters

i o i

may alco Le nmade In tne form of transparencles.

e

[rie trancnmittlivity and thickhess of the trancparency are

ft(_.t.yl
z(n--1)°'

trcerited ty functlons t?(x, ¥) and

respectively, where ?




n tc the refractive index of the material. After passing through
the trancparency, the light wave underpgoes an amblitude change

In accordance with the type of function t2(x, y) and additional
E rhace shifts according to function a(x, y). A transparency with

the Indlcated parameters can be described by the function

ﬁ S(v.y) =1t (x, y)e 19 (2.17)

the 1t,ht wave travels through the modulating medium (served
Iy the trancparency) the following complex inultiplication operation

‘5 RErformed

E, S,E, A(x,p)l(x.me el (2.18)

Inticators In *tie optical ranpe (photocells and others) are

censitive to 1leht enerpy, and tiius thelr Indlications are propor-
*lconal to the sguare of 1ight wave amplitude. TIn recording light
waver Ty mean: of complex functlons, the expression for wave energy

will rave the form of

W..kREE",

Lers i 1o g conostant coefflelent; the astericsk denotes a complex-

zenJupate value,

[=t us examine the syctem of an optical device by which the

Yourter “rancform (File. 2.12) can bte rmade, Lens ﬂl creates a

parallel, monochromatic beam

A(z,.9,) #(55.9,) of rays. The spatial distri-

4 E “ i bution of the fleld on plane
_(} : <(}7 :2 z Pl w11l be designated as

g ) E;(xy, ¥3). Let us determine

Flego 20,12, Cptical system which

Her i sl T et pans Bt ql’ the distrlbution of the fleld

Pyo= ideal lensecs., on plane P2 In systems of

coordinates X5 and Voo

kit akiudalt,




T Y T r—T—

analycts of the processes 1s based on the use of the Huyrens

prinelple. A complex representation of the fleld at point x.,, v,
[4 «

n plane | 1o ot talned as the cum of the components 7 all polnts

noplane Vl. In a directlon cloce to the axis of the -ptical
device the voltaye of the electromapnetic field created by the
~lement of 1 lane Pl at the point with coordlnates x, and y, is
fetermined by the relationship

RELIL )

- AF A
dE, ~ — ""Ti;(,'i " dxdy,,

Wiere aio= cfncty o, o the Initial phase, a - optlical distance

Petwe-n points with coordlinates Yis Yy and Xos Vos A - wavelensth,

*

The i fferances Iin pnaces constitutine the field in plane F
are intercotine, and thus we can drop thae factors whicn des cribe
adiitiondl phare chifts whieh are common to all points, Attenuatilon
in the flell during wave proraration can also be 1gnored. The

violrare of +he fiel i nt point »., v, can he determlned by the

)

Ml el e LA
Y :I}!.: (G.v,0,.1,)
E(x.y) [V Evagge dxdy,. (2.19)
[
SJew o let ur calculate the gquantity 1(11, yl, X5 yp).

Wwe will draw a straiycht line frem point X5s Vs through the
centnr o0 tie lenc to the fntersection with plane P1 at point Xq -
Plrene 7 1o perpendicular to the strairht line and forms the angle
4, Wwhese normal 10 toward the axis of the system (Fip. 2.13). The
1 lane wa whoce phase front lies In plane Pn will be feocused at
the pnint wlth coordinate ¥o = f tr 8, The optical lensth of the
path Letween the polints of plane Pn and the point X5 is equal to

the ¢onstant value C, where

Ce=r,d-r, =V - r o’ 6+VI’

P




Fle. 2013, Path of rays in lens.

LLet us represent the terms In the first part in the form of
v Jerles and 1lmit ourselves to the firct two terms. Let us also
4o oume that %,/ = x,/f, where f and y are the front and rear

fras]l dlctances of the lens,

For small angles 8

] 2
x

C= g+ (1o [

Acceridinm te the Huyrenc-Frecnel principle all points on
= 1 aue ?1 leecated to tie right of the studlied plane Pn’ l.e., along
tiie propajration rath of the light wave, should participate in the
fcrmation of the 1mage at polint X Points to the left of Pn in

3 *h!y cace shculd not be considered, since oscillations from
ceondary (virtual) emitterc in the plane are damped by the
: rreceding echelon of waves emlnating from the wave front to the

laft of Pn. thyriecally thils denotes the absence of waves to the

The dictance from the points on plane P, to point x is

1 29 Yo

found by adding to C the term -x, sin 6. For small angles 8

sin 8 = x?/F is valid.

1
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1
Ac a rerult we ret
a(y, xy=g+f+{1-* :4 ALt
Ny < g | 2f T‘.
b
1 the case ~f a taree-dlimensional cpace, the exprescsion for
itotanee a3 will be
2
X3ty
:ummﬂxw)~cmd+(h—7)(_a_3)_
& ]
E
-"J-.\' .y.' y.. (?.2n)
f [
Theowvoltape o f the fleld on plane 7, 1o determined with an accuracy
up tc 4 cenmznant factor By tlhe relawlonshiip
Jr
. ] )7 (o vg-m0) .
- SPS E (x. y)¢ dxdy, e 74, (2.21)
LR T W '-‘ . _ i q’ - u ,2’_ 2
DO L ! . f ‘-\.' "_) ', \I ’ )'.\l ! !I_. )' E
1 Weoer, o= the factor behind the Lrackets in fermula (2.21) is
~iu1l ©e cne, In this cane relationship (2.21) represents the
Trveerze rourier trancform, T the thecry of the Fourler transfornm, ]
SLiftine fromoa froequency range to @ tlme range, the kernel cof
Tt ]
e tranrformation has the form of @77, 1.e., 1ts sign corresponds ]
i , 3 -lwt
: <o vhe yernel in formula (2.21). Conjurate kernel e is
ccocontial in chiftinge from o time ranpe to a freguency range. In
1 “ia mage of an optical trancformation the sign in the kernel can
e 2haneed U8 the dipection of vhe coordinate axes of the trans- ]
frrad furetion zystem is chanyred.  Filpure 2.14 shows the simplest
cptlieal devieo which can make forward and reverse Fourler transforms.
The rparallel ream of 1iynt rays from a coherent source falls to

the left onto plane Tl. Quantity F](xl, yl) describes the

4istribution of the fleld on plane Fl. The 1deal lens, in which

at! erations are absent (abberations impair output resolutions, since
thiey decrcase intepration effectiveness), performs an operation
correspondini© to a transform in the form of (2.21) when B = 0, TIf

v, (2.21) we designate




-

o had v o L e

g Xy 28!“

Wy =< —xr and @, =———-ﬂ-c

then we get a formula which
coinclides with the forward
Fourier transform (when the
directlion of the coordinate

axes 1s changed), i.e., the
i e = 1 rtical .ystem which
vrerforms forward and reverce

~—

rourler transferms. Lty lens “1 Is equal to

kernel of the transform made

expl — i (enxy+ o).

Zdenal lens 7, jerformo an operation corresponding to the reverse

“ourler trancform.  Here the Jdlreecricn of the coordinate axes in

rlame ¥, le the Come 85 #n plane P The studied optical devices

5
sk 1t poccitle o rerfecrm transformations for both the x-axis and
e vearxic, by nature the gcipnals are functions of only one
vartable -« time, In thils case the second coordinate can be used
f-r zimultanecur processing of a great number of signals [53, 69].
Tte cne-dlmensional Fourier transform can be accomplished by means
£ a suyctem zimilar to that shown in Fir, 2.14 by introducing
~vlindriesl lences whilch foecucs only In one plane. Cvlindrical
i 1 and the flirst lens

lenscec muct be introduced between the plane P
wrd tetween plane P, and the second lens. Through the combination
(=

2]

~

of cylindrical and spherical lenses a single {[one-time] Fourier
“rencform 1s achleved along the x-axis, and a double [repeated]

transform along the y=axis. Plane PP in thls case has coordinates

..;{ N o
The device which achleves the Fourler transform is the basis
f the optlcal correlator shown in Fig. 2.15. Let us see how the
erosc=-correlation function of two narrow-band random processes f(x)
and g(x) are found. J3patial coordinate x can reflect time in a cer-

I3

tain seale. A transparency with variable traasmittivity, corre-
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4 % % )
Figp. 2.15, Simplified optical corre-
lator systen.

sponding to function FO + f(x) is placed in plane Pl, where fo ‘L the
reference level, relative to which the transmittivity of the
transparency chamnyes in accordance with function f(x). The
introduction of a reference [base] level 1s necessary, hecause the
trancparency cannot have a negative transmittivity value and is
capable of reflecting only unipolar signals. Radio signals are
bipeclar, When a reference level 1c present the reading is begun

-

at ., and the yolarity of the cilfrnal I1s reflected. In plane P2 vie

et the Fourier transtorm:

sz‘&“h!‘“Mﬂﬁlmﬁdﬂmdxﬂm.

The precence of the reference level 1n subsequent multipliica-
tion operationc may lead to additional parasitic backeround. To
rercve the backpround 1n plane P, a filter - a nontransparent plate,
whlel dees nct transmit thne speciral components of the sipgnal fO
anl cuppresaes the carrier frequency component on the optical axls
cf the zystem - ic introduced. In plane P3 function f(x) 1s formed,
which 1o superimposed on the transparency which determines the
meccnd studled function g, + F(x - xO), where XO(T) is the space
cniift in the second transparency, which corresponds to a time
st It

1t by quantlity 1 in the second rtudied process. A product in

the form of vof(x) + f(x)r(x - xo) 1s formed. In plane P, we get
the Fourier trancform:

So= fad (e g S [ R (x —x)e = dx. (2.22)

’.
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A cylindrical lens integrates only for one axls. The slit in plane
Fu fllters out the spectral components determined by the first
term in (2.22) and separates the components of the second term when
w, = 0, which corresponds to the cross-correlation function of
processes f(x) and g(x - xo), i.eks

Ru)-——'flt-\‘)&’lx—-\'.‘ﬂl"-"- (2.23)

If r(x =~ xo) = f(x - xo), then we get the autocorrelation function.
The integral of (2.23) corresponds to expression (1.9) for the
correlation function, but 1is obtalned by optical devices. An output
lens (not shown in Fig. 2.15) 1is placed behind plane P,, and
projects the signal from the cutput slit to the indicator.

ptical devices make it rather cimple to create multichannel
coerrelators. In thls case the transparency, which 15 piaced in
plane I?, contains a large number of recorded signals, which are
diztributed alon;® the vertical (along the y-axis). In detection
systems these recordings may correspond, for example, to different
Doppler frequency chifts or different signal delays. A flltered-
out light distributiecn, corresponding to function f(x), is
rrojected onte all of these signal recordings, i.e., the product
of studied signals 1s formed in each channel. The next lenses form
a sSeparate integral transform for each channel. 1In plane Pu the
imares are focuzed such that the channel division 1s preserved.

In optical signal processing the number of channels can be
very great, which Indicatec the promising future of optical
correlators.
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THIRD CHAPTER

CORRELATED SYSTEMS

i e findvion of 9 correlated zysten 1s a cystem hased on
tio 2crryelatvicon method of proececsinge oirnals. Almo:st all radio-
~lectronle cvotems process uceful osignals in the presence of

.
InLerlgranes

. Tie value of this Interference in moct caces cannct
v opresdtetad, and thus It 1s virtuaily Impocsiple to completely
21l irdingse harmful «ffects,  In radicelectronlc systems an attempt
18 teinr matle to achileve a methtod of processing useful signals
Trpowbilch tie effect of Interference wilil te minimal. One of these

sieenal proezssing methods Ia the cerrelatlion method.,

Lot o 1o at rome exarmples of different types of correlated
systen.
3.1, GREREL RESETECTT N  SYSTEVS

The purpcse of any radar or scnar system I to obtaln
nfcrmacsion on the leoecation of targets In the surrcunding area and
r. thedr current coordinates. Thic Information in an active loeatinre

methcod can be ol talned Ly analyzine sirfnals reflected from targets.

The main purpose cf the locator 15 to determline the actual
precence of a tareget in a certaln replon. In view of the random

nature of Inherent nclce, the essence of our information, obtained
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by proceccing an additive mixture of reflected slgnals and
fnterference, ic the probabillity value for the presence (or absence)

" a tarret In currounding space.

If interference 1s "white" paussian noise [5, 8, 40], then
*1ts probtablility 15 a functlion of the cross=-correlation value of

| tivoo Inteerral

r
. R(z)-= —;~Su, =, (ndt,
3

wiore u (t = 1) 1¢ a delayed copy of the proting signal; Uy (£) 1s |
troeoaddivive mixture of the recelved reflected signal and

.

Ty s oy S TR olre Pan
St g @R eE, |

The recetver which calculates the cross-correlation interral
roecalys all Informastion centalned in the received mixture of

Tnls type of optimal receiver can be achieved

IR 3 ¥ . 2~
i nd riclre,

[

i means of ccrrelators and coordinated fllters,

The delnr lines or chift-repicter devices (see § 1.3) may
aprve s thie Gtorare system for the probing signal, which is the
taste plenent of tie correlated svstem, If the delay value Is
~haneed, tren different elements of the space can bte scanned., The
similtanecus scanning of several elements 15 possible If a set of
cocrrelators are used, which coperate with reference signals of

31 fferent delay:, 1.e., In a multichannel system,

fincther method whlch enables optimal signal reception consists
-f uclng enordinated fllters. The pulse characteristic of such a
ftlter 1: coordinated with the probing slgnal according to the

relationchlip y

h(t) =au.(te—t),

12




wioore g Ytsoa congtant factor, to - length of signal delay in

réiltore u () - profing st imal.
1taee at the output of the coordlnated fllter

Hypy (1) S e (S)R(I - s)ds
i~

2o oaelme Pinedlon ashich rop®ats the crois-correlatien Tunction
S othee rr oty Slrnal oand the procesced mixture of the reflceeted

~rmal o oand interference,

Favi 3 0 prveur optinal reception methods has Lte adwantagpes and
dloadvantaeer, T omaln dicadvantare of correlated cystemsc 1s that
renove it Suceescive seannine of ranee elements; a cimultaneours
swear of s entire diztance I only pocsitle with multiohanneds

e

nal proceccine, The tasle advantares of correlated systens

o
D
—d
s
oA
:,
4

9
(9]

L Bevdie:

1, T« L. ronsitle to ure cipnale which have a larege zpectrum
dti-ctore time product,  Thlc s pessitle because storare time

oa correelated yotem 1o determined by integrator parameters and

NSt radeatss to Rienal de by,

Ve Lorrelator i simple as compared to the coordinated
looar,  The more cormplex the olrnal whilceh 1s used, the preater

1T Pt adyyntaroe,

=) Iv 1o peccottle to ure noice and pseudonoise sirnals whose

atrogesdres enn e varled as the system works,

The gqunlity of detection 1s described by two prebabilitiles:
corrzet detectlion D and false alarm F. Usually the false alarm
probability 1o flxed at a rather low level, In that case the
ccrrect detection probabllity will be a4 nondiminiching function

f the parameter q,
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In the cace where a reflected signal 1s detected in the

precence of "white" paussian noise

where B 1o the eneryy of the received signal and S is the spectral

lensity of jraucclan nolse,

Thne possitility of detectlon depends solely on the ratlio of
Ge enerey of the useful clgnal to the spectral density of nolse
an! deez not depend on other signal parameters (for example, on

Syectrum width, steepness of pulse, ete.).

in the precence of a laree numbter of tarpets in surrounding

~f Intinse reflecticns from local cocbjects, the problen

oAt tneulichtngs ureful reflected signals from undesirable signals
wnt Teveral ureful cifnals from one another 1s very important,

The dizeriminaticn, parameter measurement accuracy of the reflected
csirnzl, and ambiculty of the measurements are described by the
Jtriecture of the uncertalnty functicn of the probing radio signal.

The uncertainty function can be determined by different methods:

v Inverce proial 111ty nmethod, the probability function, or by the

method cf rean cauare errcr [8, 3G, U407, For example, if we take
2

the gtcoclute value of the averape cquare value of difference e

becween twe complex sifnals (reference sigrnal and signal reflected

from o tarret), then we can write
[}
¢ = S|u¢m-- ul(t—-)|'dt.
—

Hewee () 1 the reference sipnal
() =1y () T

where uM(t) 1s the complex modialating function.

T4
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The sirnal ug(t - 1) reflected from the tarret differs from
the ctored stinnl v oa de-lay of time T and a Doppler spectrum
shlfe by quas

: i g1y (£~
ufU =) Gl -2 leplel | “.

Ity tie expanded form we can wrilte

3; »
¢ ‘ S )t S g ({ — ) dl —
o "
et e % ile
2R l ool funthiuau spe I dl].
—a

deves t 1 et ol RO aanates tne meal part of the corresponding

The flret twe terms represent cipgnal energy; consequently,

lyovre lacst term omay cerve an o a meacure of the mean sauare
Ve nicle™

tetweern the r-ference ~ipnal and the recelved sifrnal.
17owe tynore terrs P a hirher corder of cmallnesc In the last
term of the equatlicn, then we et an uncertainty function In the

O yan o

a .y
Ri= i." Su\.(!lu‘“u ,)‘.’ LTS

L

r, after the Fourier transform 1:s used,
aC
R(." fs" S (’“\l‘i)(;\-""‘ ,;" "”""’,.
- W

wioore % () 15 the modulating voltare spectrum,

-4

'he chape of the body of uncertainty, which i1s bounded by

plane v, f , and the surface corregponding to the modulus of the
[




uncertainty function, 1s determined by the structure of the signal
and can have a different configuration. The connectlion between

the shape of the tody of uncertainty and the reference character-
istics of the slynals can be explained as follows. From a
determination of the uncertainty function 1t follows that 1f two
~1nals of cimilar types must be diseriminated, then their shift

wlti, respect to 1 and f_ should be such that the uncertainty function

g‘
verts to zero (or deces not exc~~d a certain given value). Thre

rrecerce of larse turste In the body of uncertainty in cddition
to the reference Indlcates that slgnals reflected from local i
ot Jeets or from tarretc with a highly effective reflection area
may mask the uceful echo cipgnal and, consequently, hinder

dlcerimination, i

The uneertainty functlion characterlizes the accuracy of
meaourins range and function which a iiven siegnal can provide.
The greater the conecentratlion of the t ody of uncertalnty at the

O

ricsin of the coeordinates, the more accurate the measurement of
ielay time and the Doppler shift.

It can te zhown [8, 393, 40], tha<
»
S Slﬂnlﬂpduh
- a - "'l
|R (O, u)j® o
Toncequently the normalized velume of the uncertainty body 1

viour determinea i a ccnstant quantity which 1s independent of

vy othe lenicth of the cl1pnal and of the law of modulation of its

sy 1ltwle or phace, Attempts to compress the body of uncertalnty . ]
Lw celeectinge an appropriate law of modulation or signal shape can

lead elther to a distribution of the entire volume 1n a thin

layer on a4 large curface or the appearance of a series of additional
peaks on plane T, fp. For nolse and nolse-llke signals the mailn

splke is concentratéd in the reglon fg = 1 =0, and its extension

12 approximately equal to 1/Af along axis t and 1/T along axis fg.
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'o ascsure hiph dicerimination and measuring accuracy 1t 1ic
2coentlal that the tody of uncertainty of the strnal have a narrow
peak at the orlpyin of the coordinates, i.e., the signal should
have a sufflelently effrctive lencth T and spectrum widih AF,
lielze sirnales of rreat duration and spectrum width and regular
shrmnlas baced on pseudorandom seauences have a body of uncertairn-x
with thicr type of configuration. The magnitude of product AfT I -
of ereat cimnlificance fopr the sifnal characteristice, and is called
the olrnal bace.  The base of pulse signals which do not have
aiittional modulatlion within the pulse 1s a quantity close to one.

o

‘hese slynals are called simple, ani they do not assure high

ned dloeriminagt lon with respe:t to delay and frequency.

A S
Lo e S §

myleex climalc, which are often called wide-band sipnals,
terizeed by oa bace whilch considerably exceeds one. Thers
Shenale tave been wldely used in detecticn systems and In measurine

e noordlnarss of tareets [33, 60, 62, 79].

S

Yo Radavr Joets with oa tlolse Signal

fecnuse of thelr wide bana, constant emlssion, and random
nature, noice slenals have an uncertainty fincetion which approaches
the dres]l,  Thig assures catlsfactory noise locator characteristices.
Tuyrtierrcre, nolre locater: can work under a low sifnal/interference
ratio 2L fhe Tecond

ver input,

nnooracr to jeteet n shirmal refleeted from a tacpet against

o btnekicraound of Interfarence or determine the dictance tc a

areet o o tne yeloelty of the tavry-t, neolce radar cets employ

v correlat!lon procescline method or 1t varlatlions - the g
"tteocrrelatlion methiod” and the mettod of heats.
Flyure 2,1 chows a block diagram of a noise radar set used l
forr the correlated processinis method. Voltage from the source of i
wide-band noise 1 (3 pceudorandom pulce traln generator can also
te used) enterc linear filter 2, which forms a random process 4
]
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Fig. 3.1. Block diagram of
correlated radar set with noise
sifnal: 1 - wide-band nolse
source; 2 - linear filter; 3,
8 - transformers; 4 - power
' amplifier; 5 - delay block; 6 -
}{}[ﬂ@-—@ heterodyne; 7 - low=nolse
" "0 ’ amplifier of recelver; 9 -
[ ’ ]'{"' : multiplier; 10 - narrow-band
filter; 11 - gate.

with an autocorrelation funection corresponding to a given
diserimination. The formed cignal enters transformer 3 and is
transformed by means of the high-frequency harmonic voltape of
heterodyne  Iinto the range of working frequencies. After
amplification and pcwer amplifier 4 the signal enters the trans-
mitting antenna and 1: emltted., The sipnal which 1s selected from
the taryet passes throurh low-noice amplifier 7 and enters
transformer #. In order to ichlieve cross-correlation processing
the modnlatines noise cipgnal from the output of block 2 1s delayed
in rloeck 5 by time T and enters the Input of nmultiplier 9. The
siinal which hac been recelved and transformed enters the second
Input of thiz multliplier toitether with the inherent noise of the
recelving channel. The product of the signals 1s averaged by
narrow=-band filter 19 and i1c compared In Ulockx 11 to the threshold.
If a stationary tarret 15 located at a ranse corresponding to a
delay 1 which 1z clocse to Tgs then the voltage at the output of
bloek 10 will have a value whieh 1s close to the maximal. When a
corresponding threchold is selected, this will trigger block 11.
wnen T has a valiue which differs from L by more than the correlation
time at the output of multiplier 9 there will be no voltage
~vershoot, even if there is a reflected sipgnal. 1In the case of a

cinple-channel system the correlated locator must scan range
elements In succession, 1In this case total scanning time may be
very great, The multichannel set 1s required to reduce this time.

Here the number of multipliers and successive filtration blocks

should bhe the same as the number of range elements scanned

simultaneocusly. Thus, the arrangement of the set becomes complex.
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‘n order to select the velocity of the target block 10 mu.t
eomtaln a cet of narrow-tand filters whose central frequencles are
chifted to the Doppler frequency dicerimination interval, The
number of fllters 1s determined by the discrimination Interval
and ty the entire ranye of central frequency shifts In the
reflected c1mnal due to the Doppler effect,

The use of a difference freqguency correlator in a nolse radia

cet maces 1t poscible to improve tle actual response and to selec
tarrets which lie at equal distances from the set and are the same
in slze, tat have radlco velocltiec of opposite directions. To
qehileve thils replime reference veltages of different frequencies

ract Ye conducted to block:s 3 and 5 and the adJustment of the

frlters In Wlock 16 must Le changed.

T dork of the nolce locator In a constant emlisclon mode
or i odetectineg neardby taresets is rather complex. In the case ¢f
tie concstant emiccion node the emitted sipgnal component enters the
reoecelver., The intenslty of titls component, even W th the moest
carsful separaticn Letween transmitter and recelver channels,
considerally exceeds $he sirnal reflected from the tarpget. In
wory invelwin- nearty tarcets, penetrating emlsslons may correlate

witi, the reference v-oltage In the recelver,

Come modifications of the correlated locator make 1t possible
te decreace the effeect of the emitted slpgnal which penetrates the
recrivery such modificaticus include the "anticorrelation”

reenedyer qnd the "beata" methiod [777.

T, the "antlcorrelation” nolse radar set the signal 1is

°S)

ree«~ssed o follows. A mixture of the recelved signal, noise,
and the reference oscelllation (part of the emitted signal serves
in this role) enter the input of the subtracting device. The

obtained difference 1s cquared and integrated. The followlng ]

voltare 1o formed at a output of the integrator:
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r
u(=,, )—=A4 f Juc(ty - kuctt —<)) —u, () dt,
0

where A 1s a constant; k - ratlo of the power of the received
cignal to reference voltage power; uc(t - TO), uw(f) - received

simnal and roise of receiver, respectively.

If nolse has a lcw Intensity and the correlation time of the
rret ine slgnal 15 much smaller than Integratior time, then we get

aprroximately

u(re) = AL L EHR(0) 2%R. (v4)).

utput voltare depends not only on delay 1, but also on signal

attenuation. If we ascume that k = 1, we et
u(1y) =~ 2R (0) ~R¢ (1a) ).

Wwith an accuracy up to a constant factcr this expression represents
fulriliment of the autocorrelation function of the signal up to

itz maximal value., Tre appropriate power spectrum and bandwidth
for the nolce stgnal can be selected by the unique determination

~f distance directly from the value of the output voltage, which
maxes 1t possible to do without the controlled delay line. The
lerendence cof cutput voltage on reflected signal intensity can be
~1iminated 1f the probliny signal is shaped by modulating fregquency

yecordlng 1o the random law.

A varlatlon of the correlation processing method is the
Feats method, In order to determine the range and veloeclty of the
target bteats are formed In the recelver hetween the recelved and
emfitted slpenals, which are compared with "local" beats, formed by
a special system. If the signal cos [2nf0t + ¢(t)] is emitted,
then the recelved sipgnals will have the form of

cos[2afa(l —v0) —2aful + 4 (1—1)],
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where Fg 1s the Doppler frequency change.

At the mixer output, to which the emitted and received sipgnals
are conducted, we obtain in the difference frequency range the

so=called "received" beatso
cos{ afut + 23fora+q (1) —q(1—va)}.

h cpeclal syctem forms "local" beats, which are described by the

function
cos[y (1) —-¢({—1)].

where 1 10 the delay time of the reference voltage relative to the

emltted cipnal in the "local" teat shaping systems,
In mizine "local" and "received" bteats we get
cos[2af ol + 23jutu 4 ¢ (1 —1) —4 ({—10)}

From thiz exprecsion It fcllows that In the general case
cutput volta-e 1z a mixture of a harmonle signal of Doppler

frequency and random nolse, When 1 = 1, the output signal becomes

0
purely harmcnic, whileh makes 1t poscible to determine delay T and

Deppler frequency f.
)

2 Radar Jtatlcn with Pseudonoice
S1vrnal

The uce of a pcseudonolse sipnal in correlated locators is
interecting primarily because of the fact that {t 1s easler to
renerate and delay this sipgnal than a noise signal [60, 79].

Figure 3.2 shows a simplified diagram of a continuvous-wave short-
range radar which uses an m-sequence generator to shape the probing

sirnal. The set 15 based on the "beats" method, which was discussed

in the precedling section,
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The pseudorandom video
signal from generator 5 ecnters

the superhigh frequency (SHF)
modulator (block 2). The
harmonic oscillation from
the SHF generator (block 1) ]
is cupplied to the second

Fir, 3.2. BRlock diagram of input of the modulator. At
ralar set with pseudorandom sig- '
nal: 1 - harmonic SHF generator; cliCm O ZRLIS O MG LDV O

2 - SHF modulator; 3 - circula- 2 a phase-manipulated signal {
tor; 4 - antenna; 5 - pseudoran-
icm sirnal generator; 6 - delay

15 shaped. The oscillation

Llock; 7 - device for shaping phase Jjumps by m according to
" ~1 " ) 3 Qo . f‘

POGE - LR 8 AiaeT o the law of a pseudorandom
recelver; % - correlator; 10 -
narrow=tand lcecw~frequency fllter; train. Through ecirculator 3,
11 = pate,

which divides the transmitter
and receiver channels, the
~haped cipnal is conducted to antenna U4 and is emitted.

~

Th2 slfgnal which i1c reflected from the target passes from the

antenna throurh clrculator 3 and erniers tne balance mixer of

B et

receiver %, DPart of the emitted si,nal is conducted to the second

input of the talance mixer., Let us desipnate S, as the pseudorandom

o
cequence which determines the moduletion of the emitted signal. The

received signal 1s modulated by pseudorandom sequence Sn, which I
differs frcem modulating scequence Sl ry a shift 1In the propagation

time of the radlowave to the target and back.

At the output of the balance mixer a pseudcorandom signal
will Le obtalined which varies accordinis to the law of the pseudo-

random ceguence SJ = SIQSH. The sum of the two m-sequences of a
#lven polynomial will also be an m-cequence of the same polynomial,
but with a time shift different from S_ (see § 1.3). The obtained
beats are comparecd with "local beats,”" formed by adding sequence
Sl with the sequence corresponding to the expected propagation

time of radlc waves SO. Formed and "local beats" are conducted
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to correlator 9. When the expected and actual delays are equal,

voltare at the correlator output 1s maximal in magnitude and

changres In time according to the harmcnic law with a frenquency

equal to the Doppler change in the frequency of the emitted signal.

To reduce scanning time parallel analysis of the slgnal with

! recpect to time (distance) ac well as frequency (velocity) is
nececsary, l.e., arrangineg the set according to the multichannel

3y stem,

Generallzed Block Diagram ol
“orrelated Detection System

Different correlated detection systems can be represented

arrreximately by the block diapram shown 1n Fig, 3.3. The
flltration and transforma-

tion devices in actual csets

v can be divided into two
= —"'""‘3} proups: 1) devices which
% T L5 % % f have the same effect on both
S T - the emltted signal and on
6 s - X e stored reference voltage;
e I . 2) devices which affect
iediden Al S O only the probing signal or
"u - source of noise or nolse-1ike only the stored reference
siynal; mo - filter 1n general voltage., Devices of the
channel; ml - filter in correlator first type in an equivalent
channel ; m2 - fllter 1In reference system belong to general
ve.ltare channel; mn - filter in filter mo. This 1ncludes
transmitter; ¢H - filter in primarily flilters in the
recelver; ma - f1lter which con- signal generator block.
siders signal transformation Devices of the second type
R ons faner ™™ are repressated in tne |
ference and internal nolse of equivalent system iIn the
recelver. correlator channels @,, ©,.
Filter ©, includes the ’ H
devices contalned In the trancmitter and receiver (before the

correlator) as well ac sipnal transformations ocecurring in radio
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wave proparation to and from the target and during reflection.
Fllter @, includes devicec contalned in the reference signal

channel,

*.2. PASSTVE CORRELATED MEASURING

[S Pg A
[P S S ]

In a numbter of cases the ccrrelated system does not have
certtte ] and reference signals. The action of the system is based
¢t analyzing and measuring the characterlistices of a signal ~reated
v an outside source., In this case “he outside signal, which
enter: the correlator together witlh interference along one of the
Jwotem channels, serves as reference voltage. These conditlons

~cur, for example, in radar [(30] in meas.iring fluctuations in
CHF Instruments [26], in passive radar, ete. Systems of this type
will be called passive correlated systems, which emphasizes the

t'n1ect that these srstems do not emit,

The most general example of a passive correlated system is
the correlated radiometer whose block dlagram is shown in Fig., 3.4,
Tie radiometer recelves emission along two independent channels.
“he internal nolse of the recelving channels 1s not correlated.
Jhe voltaves of sifnals recelved by each channel are created by
ne source and are ctrongly correlated. Under these condltions
multipllication of internal nolse creates only a fluctuating voltage
*omponent at the output, while multiplication of input signals
reate alony with the fluctuating component a regular voltage
mpenent, whiel, 15 proportional o the value of the cross-
rorrelation functlon of th> input signals. Slgnals from a common
iree can enter the channels of the radiometer by beling propagated
aloneg practically the same path or along two completely different
pattic. In the second case one of the radiometer channels should
contain the delay line., The value of the output voltage, which 1s
proportional to the maximal value of the cross-correlation function,
can be established by changing the delay value. Under these

conditions the coordinates of the radio emission source can be
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determined 1f we know the magnitude of delay and the position of

the radiometer antennas In space.

p— " ol To increase the response
9—1“" . ! : - : of the radiometer a differencen
: 4 = frequency correlator should
9_{_,_- 2 s | 7 = be used. In this cace the
=l N 't. _;j spectrum of the 1nput signa’
[SEEE in one of the channels
™~ 2 =il A 5 s
cgiéeiégéd fi;;gméé:;iamlof high- receives an additional T
frequency amplifier; 2 - mixer; frequency shift. Useful

- hetercdyney 4 - intermediate
{'re tuency mixer; 5 - multiplier;
t = fl1lter; 7 = reglceter. separated on a frequency

output voltare will be

equal to the frequency chift;

Tt amplitude will te propertional to the envelope value of
th correlation Nuntion., The averaring filter nt the correlator
wtrut orhowld te 4o and-pacs fllter with a central freaquency equal
Tor T2 CYemuene SHUirt,

m

l'o incrrase the response of the radiometer and decrease false
trireerinys Wwe must have a pood separation between channels., The

Tqet 1 that the penetration of internal nolse from one channel

into the other will be repictered at the radiometer output as a

il

~lgnal.,

In correlated radiometers, ia place of the usual analog

i c rrelators, functional correlatorc, tfor example, a polarity
colneldence correlator (see § 2,.1), can te used. The polarity
coinellience correlator contains limiters In each channel, Orcllla-
tions from the radiometer receiverc enter the Inputs of these
limiterz. The output volfages of the limiters are conducted to

thie multipllier, whose responce 1s averaged by means of a low-
frequency filter., If limitine is sufficiently effectlive, then in
place of an analogs multipllication operation we can use logic

multiplication, which 1s convenient when digital processing 1s used.
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Ac a result of the limiting of input oscillations, which 1s done
In tle polarity coilncidence correlator, the response statistiles

of the device In the absence of a useful 1nput signal are
determined solely by the statistics of iInterception by input
oscillations of a certain level (most frequently zero). If the
rrobability distribution denslty of processes at the outputs of
ot channels are symmetrical with respect to the Y-axls, then the
level of false alarms will not depend on the probability distribu-
tion density of nolse values [67]. In almest all cases the noise
Statistics correspond to these condltions, and thus the level of
f4lce alarms in a correlated radiometer contalning a polarity
coincidence correlator does not depend on the power of internal
nolse, The ncise of the recelving part of the correiated radiometer
nac 4 nonstationary nature (due to the rotation of the antennas,
fluctuavion cf amplifier coefficients, etc.), and thus the
advanta;e noted above, which can be jalned by using a polarity

celneidence correlator, 15 useful,

Flgure 3.5 shows a

generalized block diagram of

a correlated radiometer.

S The system contains only
filters in correlator channels
ml and m2' The sycstem does
Fi,. 2.5, fGenerallized correlated noet contaln gpeneral filter
radlometer system. ®_., whose parameter selection

O,
would affect detection

characteristics and measuring.

3.3. ANUTIFADING COMMUNICATIONS

Tne factor hindering radio communications (particularly
short-wave) is the multibeam propagation of radio waves. Here the
transmitter signal arrives at the reception point along different
proparation paths. Interference from signals with different beams

—T———




on the reception side i1eads to fading. Attempts to reduce the
effect of cirnal interference have 1od to the development of
Infermation transmicsion methodc in which complex sirnal: and
correlated processing methods are used.

Time Adiserimination of complex aignals in correlated recept .-
can te used succescfully to Increase the effectiveness of multibes
communications channels. Tf we conslder the fact that the width
of the corrclation function of the sipnal 15 inversely proportional

to the width of the cpectrum, then for a complex signal (AT >> 1)

1
fu’"fTr << T.

low., the correlation functlion is5 considerably shorter than
Infermation tranrmiccion T. At the ocutput of the optimal recelvine
Jvctenm there 1ooa time comprescion In the signal. In usineg complex
~iennle It 10 pooclble to completely separate time-overlappling
silirnaley, 1f the difference In arrival time of the various informa-
ticn troencnicolone 1 rreater than the wldth of the compressed
lenalc. ThLc o the basls of using complex sipnals in communications
annels which have multlbeam propagation. The discrimination of
time-overlapring clynals makes 1t thecretlcally possible to divide
the cum multibeam signal arrlving at a reception point into indi-
vidual beam=5ignals, which travel along each of the proparation
routec, The cepa~ratlion of beams is complete 1f the correlation
time of the 5irnal i1s less than the least difference in propagation
times of ¢irnal-beams, In the case of a preater number of beams
the diviclon 1= consldered sufficlent i1f the fading of each
ceparated beam becomes small, l.e., the mixing effect of the fading

will not te greater than the effect of additlve fluctuation nolse.

In separating beams 1t 1s theoretically possible to add the

anerey of the beams (not vector addition, as in ordinary systems).
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Beam separation enables measuring the main parameters of each
cf the propagation paths of the signal. The results of the
measurements can be used to create a self-adapting signal reception

systen.

Dependat le receptlon of wide-band signals Is possible when
the power at the reception polnt 1s considerahbly less than nolse
power, Let us look at the dependence of the signal/noilse ratlio at
thie output of an optimal system for procecssing complex signals on

the 1Input signal/nolse ratio:

P _PET 1 9F
G A
where A7, T repregent the effective width of the spectrum and

lonyth of the complex sifrnal; & - spectral density of Interference

Lewer.

The quantity 2E/S 1s the peak ratlo of signal power to noilse
cower at the output of the optlimal system. Hence,

Py P

1
P T pra

“huc, if the base ¢f the complex signal 1is sufficlently great,
trancmission and dependable signal reception can be achieved. The
rower of the signal will be conslderably less than that of internal
noize or acting Interference. Thils fact is important if we want
the communlcations scystems to be electromapgnetically compatible

and concealed,

There are many methods of creating correlation communications
systems designed to operate with wide-band signals. We might
single out two maln types. Systems of the first type are based on
tlie uce of a group of wide-band signals. Corresponding to each
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sirnal or combination of signals is a certain communication., Systern-

' the cecond type are based on the use of one wide-band signal,
which represents the carrier oscillation. 1In order to transmit
nformation the noise=1ike carrier oscillation is modulated by the
usual modulation method (AM, FM, PM, changing 1, etc.).

The sipnals uced In systems of the first type should have t:
necescary correlation propertles. A coding sequence assembly
chiculd te ured In which, first, cross-correlation between any pair
of sequences would be as small as possible and, second, the
autocorrelation function would not have significant lateral spilkes.
['1fferent methods of creating and shapling such code sequence
roups have been scupprested. Nolse sighals and regular signals whiceh
follow definlite laws can be used In such sequences., Shift register
Jequences cf maximal length are widely used because they are eacy
to renerate, can be independently reproduced on the transmitting
and recelviny sides, and are not difficult to synechronize (see

& 0, 3),

In syrtems of the second type wilde-band signals of different
tyres are used ac the carriler oscillatlion. Tt 1is necessary only
chat the additlonal peaks of the correlation funcuion for these
o1mals be small. Otherwise false Information could result.,

The correlaticn approach of wid: irnals in communications
syctems can re achleved if the follov l1tions are fulfilled:
1) possibility of independent reprodu f code transmissions

n receiving side; 2) possibility of svnchronizing code generators
on transmitting and receiving side. A deviation from the above-
mentioned condlitions results in distortion and a decline in neoise
stabllity,

Let us examine a simplified block diagram of a communications
cyctem of the first type (Flg. 3.6). On the transmittings side
codes of the selected group of signals are generated. Depending
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Fty. 3.6, Rlock diagram of
communications systems with
noise=1ike cirnals: 1 I

1 n
Fenerators for complex nolse-=11ilke
simnalsy 2 - manipulator; 3 -
transmitters; 4 - communications
source; 5 - synchronization; ¢ -
amplifier; 7, ... 7n - corre=-
latoras; ‘31 +e. U = rmenerators

for complex sirnals; 9 - resolu-

+ 1
c.0Nn.

rlar voltars component appears,
at the correlater output there will
resclution device must declpher the

f a recelved mixture of slgnal and

on the type of communications
transmitted, the manipulator
switches in an appropriate
code generator or group of
rFenerators to the transmitter,
On the receiving side of the
set, after transformation in
the high-frequency blocks,
the signal enters the corre-
lators. A reference signal
Is fed to each of the
correlators from an approprilate
code generator. At the
correlatcr output, where
correlation exlsts between
the input and reference
signals, the peak of the
In the absence of correlation
only be neclse voltage. The
transmission based on analysis

neise.

The flinal value of the cross-correlation function between

code senquences leads to cpecifle nolse, which 1s called the noise

of nonorthogonality. The effect of the indicated noises 1s

particularly great when the useful signal 1s recelved against a

tackyround of a large number of other signals belongine to the

came code pgroup. 'The second factoer which results In decreased

vworking efflclency of the communications system 1s a disturbance

In the synchronous operation of code sequence generators on the

transmitting and recelving sides.

Let us examine a slmmplified block diagram of a communications

cystem of the second type, intended

for transmitting analog

information (Fig. 3.7). A nolse or a pseudonoise carrier, obtained
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anm-

- e o s ?

Synchronjzation

Fig. 3.7. Simplified t lock dlapram
of correlation communications system
witt rreudorandom carrier: 1 -
source of communicatlons; 2 - modu-
lator; 3 - complex cifrnal generator;
4 - trancemitter; 5 - high=frequency
recelver block; ¢ - correlator; 7 =-
complex ciinal renerator; 8 - system
adjuctment device; § - resolutilon.

means oft a complex Slenal perneorator, carries the communication.

=0h SEiEDR & traenomtt Information the nolse-like carrier oscelllation

means of standard modulating

[

gt o madtiul At |
metrods (aly, WM, PH, ote.). If a nolse gwenerator 1s usged in the
transaltter, then at the recrption rolnt an additional reference
Ional muct e tranrmitted,  This complicates the device and
irenerally cwe ldentical psecudonolse signal generators are used in
sueh communlications systams in the transmitter and recelver., These
seencerate ldentical, periodlceally rereated complex determined

1 Stinals. In this case ripgld synchronlzation of these fenerators

rejuired and can b2 sccomplished elther by transmitti.- a

sunehrenizine oselllatlion through a separate channel or by using

zpeclal coding methods.

The oyotem can 1lso bhe desclirned so that the transmitter

entalne only one wlde-band slgfnal yenerator, for example, a noise

iererator, and the emitted olpnal then represents the sum of two

it

stirnals - the olynal at the reneratcer output and the same signal
p-layed by time 1(t). The mapnitude of delay depends on informa-
tion concerring the communicatlions being transmitted, i.e., delay
modulation 1o performed. On the recelving side of the syvstem there
1c autocorrelated reception of the sienal, 1.e., there 1s no wide-

band reference clpnal in the receiver,

11
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Figure 3.8 shows a generalized scheme for a correlated

communications system.

signal sources -- in the
If we assume that ideal
present, then the block

The system contains two synchronized
receiver and transmitter, respectivel..
synchrorization of signal sources i-

dtagram can be represented in the foru

shown in Fig. 3.3, where the filter transmission coefficient mo
s equal to one The source of the communication 1s not shown 1in
Fig. 3.8. Tt 1s assumed that the generator of signal C1 was
selected according to the communication beinp transmitted, while
on the receiving side only the generator whose signal 1s correlated
with the transmitted signal is working
e ey

3 } 1%

, b1
b+ H ]

#F

Fig. 3 B, Generalized scheme of correlated
ccrmnmunlcations system Cl, C? complex sig--

nal generators in transmitter and recelver,
m], @, - filters in correlator channels; K -
filter in transmitter; ma -
filter which considers distortion in signal
during propagation; mH filter in recelver;

correlator, mn

bk

wl, U2 - source of noise 1n receiving channel

and in synchronization channel.
3.4, CORRELATED MEASURING COMPLEXES

Tne cosmic radicengineering complexes of [2, 64] might serve

as examples of correlated measuring complexes. The basic problems

which car he resolved by means of cosmic complexes include the
following: 1) measuring the coordinates and velocity of a cosmic
target, 2) transmitting telemetric information to earth; 3)

transmittirg a control command. The solution to these problems
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can te obtalned by means of a modern radioengineering complex
syvatem. Such a combination makes 1t necessary to use specilal
siynals., Let us dwell briefly on certain pectliarities in solving
Just the filrst problem of those mentioned above. Measuring the
mcvement parameters of a space vehicle 1s reduced to measuring
rane, rate of movement, and angular coordinates. The distance
from the grouna station to the space vehicle can be determined Ly
rmeasuring the proparation time of the radio signal. At great

1lstances the power of the reflected signals 1s extremely small

and can ve consliderably less than the power of the self-noise of

the recelver. Thus, to assure steady reception, the signal should
rave hiprn enerpy, l.e., the average permissible power should be f
of great duration. rFurthermore, to elimlnate uncertainty in '
meacsurling the propagation time 1t is dosirable that the period of
the probing cienal be greater than the propapation time to maximal {
range, The pseudorandom sequences and phase-manipulated sirnals
b tained from them, which were diccussed above (see § 1.3), have

the Indicated properties.

T

The reflected sipgnal 1s correlated with the ceopy of the
emitted signal whlich is In the receiver (reference signal). Since ;
“he penerated sequence can be very long, the maln problem becomes {
e of synchronlzing the reference sipgnal with the received signal. i
To assure synchronization a step correlation method can be used, "
which consists of the fcllowlng. A certain phase of the reference
cequence 1c selected (1.e., the work of the shift register which
3 formz the reference sequence bepgins when the cells are 1in a certain
state) and 1c determined by the presence of correlatlon between the
reflected and reference sifnals. TIn the absence of correlation 1
the next value of the reference signal phase 1s tested, etc. The ;
rnumber of tests necessary to assure synchronization in the studied

cignals may be equal to the number of symbols in the sequence, i.e.,
may be extremely great, Storage time in analyzing each test can
also be great. The step correlation method may prove uasuitable
necause of the great amount of time required to establish synchro- i
nization between the sipgnals. .
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| At the same time from the standpoint of the theory of
information for assuring signal synchronization we need logzN
tests., Tt 1s possible to approach thils 1imit by using combined
sejuences (distance-measuring codes) to create an emitted signal
(see § 1.3). The combined sequences are form:d of several m-
sequences by means of loplce operaticns. The autocorrelation
function of distance-measuring codes has several peaks of different
stzes, which are used to determine the phase of each of the
cecmponents In the combined sequence. The order of operations may,
fcr example, te as follows. The recelived signal is compared with

ne of the component short sequences and a phase 1s established

wiiieh corresponds 1o maximal correlation (if this occurs). Then,
comrarison iz made with another componert sequence, etc. The

succearive steps assure synchronization tetween the recelved and
reference c1lpnal. . The maximal value of the correlaticn functilon

rorresnonds to complete svnchronizatien., This comparison procedure

B

whiech 15 done by means of comblned codes, enables us to svnchronize
sirnalz after fewer tests than would be requlred 1n step

correla+“ion.

ne of the ctares 1n thls successive comparison of signals

0 St et el s et

1oothat of determining the frequency of the reflected signal and
meacuring 1ts [oppler shift. To facllitate the signal comparison '
rrocedure a ripgld relatlonship 1s established between the carrier
frequency of the emitted radio slgnal and tiie clock frequency of

ti.e pseundorandom code [54],

Ceterminine the anjular coordinates of an object in space
1 done by means of »1ther one multibeam antenna or by the inter-
ferometric method,  The work of the lnterferometer i1s based on
measuring the dlfferenes In arrival time of signals from an object
in zpace recetived by 9 maln set and by two additional sets
located a positlon dictance from the main set. As an example

Fip. 3.9 thows the block dlagram of a correlated measuring system
[£47. The master radar statlon emits a signal for which the ‘
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Fir. 3.9. Block diagram of
corr2lated complex for measuring
ortit parameters: 1 - master
radar station; 2,
stations,; 4 - space vehicle;
synchronization line.

- -

ctation constantly tracks the delay 1In the received signal and
the distance to the target and the target's velocity.
of the tracking discriminators of the slave statlions the

calculatec

By means

di fference between delays In the arrival of the answer signal at
the master station 1n each of the slave statlions is calculated.
On the basis of these measurement:s the angular coordinates of the

target are determined.

3 - slave radar
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combined pseudorandom
sequence serves as the
The

space target re-einits the

modulating voltave.

received signal from the
ground station. The answe:
signal 1s captured by the
receiving antennas of the
master station and the slav:
stations. The tracking

discriminator of the master
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FOURTH CHAPTER

NOISE CHARACTERISTICS OF FUNCTIONAL
DIFFERENCE FREQUENCY CORRELATORS ON
NONLINEAR ELEMENTS OF THE v-th POWER

4.1. USE OF TRANSFORMATION METHOD
TO ANALYZE NOISE CHARACTERISTICS
OF FUNCTIONAL CORRELATOR

The work algorithm of a functional correlator is determined
] by relationships (2.9) and (2.10), in which under the integral
slgn we find, 1n place of the product of the studied random

| processes, another function of these processes, A functlcnal
dependence can be formed by means of nonlinear elements and

PIESPERNWE

devices. It 1s possible to represent a simplifled block dlagram
of a functional correlator, consisting of a ncnlinear element, an

averaging fllter, and an indilcator.

The function which approximates the characteristic of the
nonlinear device should be universal, i.e., when the individual
parameters are changed it should correspond to the characteristics
of the different nonlinear devices. In our oplnion good results
can be obtalned by approximating the volt-ampere characteristiles
by power or exponential functions. Certain types of functional
dependences, along with the simplest functional correlator systems,
are given in § 2.3. In analyzing the nolse characteristics of

functicnal correlators the half-wave characteristic of the v=-th 1
power should be considered: i
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& == ay‘ ".)“ y:O' (u-l)
0 npn y<0,

[Ppn = when]
where v 1s a positive real number, y - input voltage.

When v = 1 or v = 2, this represents a linear or a quadrac
correlated detector, respectively If we form systems of seve.
nonlinear elements, then we obtain nonlinear devices with full

wave characteristics corresponding to the even

l ay’ npu y > 0,
4 0 nmpn y-=0,

la( gy y < 0,
and uneven

] ay’ i y >0, 4
' 2= 0 npu y =0,
a(--y' npuy<LO

; The transformation when v = 0 and subsequcvt multirlication of the
] studied processes correspona to the work algcrithin of the polarity

coincidence coordinator. ]

In this chapter we study the functional correlator, which 1is
based on a nonlinear unit with a half wave characteristic of the
v-th power. The regular component of the input voltage which
3 describes the correlation connection between the studied random

processes 1s found, along with noise intensity at the output of

the fi1lter which follows the nonlinear element. The noise
characteristics of the functional correla.or are compared with the
analogous characteristics of an ideal correlator. é

Processes in functional correlators can be easlly analyzed by
the transformation method [14, 24, 35], since the characteristics
of nonlinear devices can be represented in the form of contour
integrals. Let 2z = g(y) be the characteristic of the nonlinear ?
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transformation; g(y) = 0 when y < 0, and increases as y increases,
but no faster than the exponential function, i.e.,

@ ()| < Me*?, (4.2)

where M, u, are constants.

-1 !
In this case function y(y) = g(y)e YWY where u' > u
’

10 is

f absolutely integrable, 1i.,e.,
€2 o :
{lew) ™" dy <+ cc. (4.3)
—o

and the Fourler transform exists

Q; a
1Y) == —'— _‘ err [S g e rmt dEl do.
- a0 v

If we multiply out the left and right parts of the equality by

u LY
e Y, then we get: i
i
« « | |
g(") _::_fl; j c(u‘-ﬂl') Y dy [Sg (E) iz (u* i) !‘IE ]
-~ @0 "

Let us introduce the complex varlable w = u' + iv, The 1ntegral
from the actual variable can be represented in the form of a
contour integral on the plane of the complex variable along line

w=u' + 1v, 1.e.,
2= 5- j [wyerdw; u' >u, (L. 1)
v -iem
where
@)= fatwevdy. (4.5) 1
v
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The transition function of the nonlinear device f(w) in this

case represents the unilateral Laplace transfornm of the character-
istic. Output voltage g(y) is determined in the form of the
reverse Laplace transform [(4.4)].

Cases are possible in which the characteristic of the nonlineer
transformation does not revert to zero on the half-plane, but at
positlve and negative wvalues of y increases no faster than the
exponential function. In these cases the characteristic should be
represented in the form of the sum of the tweo half-wave character-
Istics as in (4.1), which are valid for positive and negative
values of the 1lnput signal.

In analyzing the nolse characteristics of functional correlators
let us consider the assumptlons made in studying an 1deal correlator
(cee § 2.2) to be valid., 1In addition we w'll assume that:

1. The signal recelved uc(t + 13), reference voltage ur(t),
and extraneous noise uw(t) enter the input of the nonlinear device
additively.

2. The averaging filt-», which follows the nonlinear unit,

15 not coupled to it and “ore, does not have a reverse effect

on the trancformation m

The input voltage whici. enters the nonlinear element represents
2 sum of the following form:

y(t) =t (£) +uc (14 1) + 1 (). (L.6)

The autocorrelation function of this voltage has the form of:

Ky(t, =) =u, () u, (I+-.)+1-4¢—(7+-._,) Uc(l-+24-)+
F-uc(uc (3= F ) -Fuc (45 u, (1) +

'*‘ um",“m“"'f). (u-7)
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If we consider (2.4) and (2.5b), then we get the following
expression for the autocorrelation function of the voltage at the
input of the nonlinear element

Kyt =)-= ::p(!. <), (4.8)

In expression (4.8) we have

2

Pl D)= ri (s zd 2 r () eosmn 4
4

2

 J
+-'-—‘.,“ [ (=) Cimwg,e 'i" ’;:- ra (‘! + ‘!_,) cns lmol —w0 —
[4

— o, =0 (4 )+ —:." ry(z, = z)cos|mt —- oz, 4
+ox—G(n— 1), : (4.9)

where w, = w_ - W

Dicpersion of the 1input voltage equals

3 = 0) 3 =t 0), (4.10)

4.2. REGULAR VOLTAGE COMPONENT
AT CORRELATOR OUTPUT

Our problem 1s to find the regular component of the voltage
at the output of a functional correlator in the intermediate
frequency range (intermediate frequancy Wy 1s equal to the
difference in average frequency spectra of the input signal and
the reference voltage). Using the transformation method we find
the set-averaged value of voltage at the output of the nonlinear
element, which also represents the regular component.

Let us find the transition function of the nonlinear element

as the unilateral Laplace transform from its characteristic,which
can be determined by expression (4.1)
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[(w) =§ay‘e' v dy,

For nonlinear devices of the v-th power the Laplace transform
exists 1f Re(w) > 0 ana .s equal [14] to

v+
) =010, (4.12)
where (x) is the gamma-function.

The response of the nonlinear element can be calculated from
the known transition function and the output effect by means of

the reverse Laplace transform:

¢ :g%rh(w)c“‘dw. (4,12)
'

The Intepratlon rontour 15 a straight line on complex plane
v, 15 parallel tc the Imarlinary axis, and passes the other at a
distance at which all of the particular polnts of the transition

function remailn to the left of the contour.

The transition function of (4.11) is an analytical function
of complex varlable w except for the slinegular polnt at the origin
of the coordinates w = 0. The responce of the nonlinear element
to the effect 1n the form of the regular process can be found by
substituting y(t) in formula (4.12) and calculating the obtained
intersral ty means of the apparatus for the theory of the functions
of the complex variable, In the studied case the effect is the
sum of random processes whose relatlonship 1s unsteady. To
determine the regular component in the response of the nonlinear
element 1t is necessary to study a whole group of occurrences of
the random process at the output and then average thils set
appropriately [formula (1.2)]. Since response z represents the
single-valued function of the effect, then by considering (4,12)
we will get the followlng for the regular component of the response
~f the nonlinear element:
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Thus, the regular component of the response 1s found by
statlstical averagling of the function from the input effect, which
can be dene by means of the characteristi: function. In the
analyzed case the input effect represents tre superimposition of
the three gaussian processes and, consequently, the distribution
of the sum process willl be gausslan. For a gausslan random process
wlth a zero average value and with dispersion Oj(t) the character-
istic function will be equal [14] to

exp [l - esp [ o) |-

uln
where w = 1v,

Then, on the basis of (4,11) the regular component of the

response will have the form of

—_"_ nl‘(v»{-ll .y 1 L)
2(!) . ‘..v 'oxp[-:_,- g ](lu'J (4.13)
Calculation of the integral (see appendix) with formula (4.10)
considered for input voltage dispersion glves us the followlnge
expression:

— al (v 4- 1)}
A= — e e, W)

;."(|+7r)

Let us make a harmonic analysls of the regular component of
tne response., From expression (4.9) 1t follows that when 1 = 0

p(t, O)= -:?"{l +2%;Lr,(1,)COSl'ﬂ.f-,—?.t,—:. (‘-‘)I}°

r

where

102




e ————

N v /A
4

::——-::-{-s:-l-:’_.

(=t qe b 20N e g <

lett. O = (3 +‘f} _( T ')_ (__“:_":“ )

> [2 ;'-C;%L r, ('-a)] ) cust [ o7, — &y (1_-)'}.

-

et ous examine

B

e Intermediate

fraeauercy w, in the

o

r ouneven numbers

. o ~ ! [T c
PO s 1 Rl 2

135 B

1y

costm -1

e interny

the re;;ular compornent of the cutput veltage
frequency ranse W The first harmonic of

C 7
expression for [p(t, 01V [e1e] will only be

2k ="m - 1., 1In this case, If we use the
1

®
1 (2m--1)!
T ama 2(‘.’m -n--1)n cos(2m —2a — 1) x,

"=

ilate frequency range we get

le (t. 02 - \—) {l +2x

(G (o)

\ (m = 1)tml X

8.9 *m-1
Y [—5.7'— ra (':.‘l] } cosfayf - -mexy — §o(2,)).

this

function:

expression can be represented as the following hypergeometric
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we will use a representation in the form of
fcllowing serles [13, p. 35]:

- ]




o (t. O = " {l+v'°" ra(%:) X

Xcos|of —ac, --§, (1.!)]} .F, [2 : '; '4_-;'!: 2;
4322
—:,L'f(‘a)]. (4.17)

The last factor 1n the form of 5 1(a, b; ¢; x) represents a
nypergeometric function wilth two parameters in the numerator and

one in the denominator, which cain be determined by the serles [13]

b pe x) ab a(@+1)b(b4-1) l
lFI(a| bo c. X)—~l+‘-_-|—!-x+ f(c+l)2, x’+-..

The hyperceometric sa2rles 1c an analytical functlion of the
arpument X and converges when |x| < 1. Following this premise the

o]
<

rcwers of the signal and the nolse 0., 0, are much less than the

power of reference voltage o'.

Thus,

4!303
In == 3, N ra(z) <.
n

For a low argument value the hypergeometrical functlon is close to

one. Then, the regular component of the response of the nonlinear
element at Intermediate frequency will equal

.(-t.).':.: (:l'(v-{-l)C:. {l_'_v_’_c__’l(‘.l)x

14 - L
2 .

p |+{})

Xcos[“’ol""’c‘.i—:l(‘a)l}' (4.16)

Thus, when the small signal and the reference voltage exert
a comblned effect on a nonlinear element with a half-wave power
characteristic at the output, there appears a voltage component of i
difference (intermediate) frequency wg, Whose amplitude is
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rroportional to the envelore of the cross-correlation function

f the refereince volzage and the signal.

Let us examine the error which develops when we measure the

envelope of the normalized crosc-correlation function. From (4.14)
ani (h,17, we fini the expression for the amplitude of the regular

comrcnent

al (v ¢ l)c:‘"2

A= TR "”"’C’:’l(“a‘;x
2 ‘r(|+-}
2.2
2— > c
X. l( 4 V. \ 4__V; 2| “f’ ”(13))'
n

Thee maximal value of the ampliltude Amax 1s obtained at T, = O

—

¥or the errcr characteristic of the method we examine measure-

ment error, determined by the follow'.g expresslion:

e s v 4 10342 .
SRR Lo tin A = ) ?
A == == == -J—ﬁ -—1
ra () 2 .v 4 -y 45:0,‘.
,I-,( A (4.17)
n

Tre absence of tables for the hypergeometric function prevents us
from accurately calculating the expected measurement error. In
the case of a low 1nput sipnal we can limit ourselves to the two
termc of th2 hyperpeometric cerles. Then we will pot

[ ]
| ]

A (lﬂ—;—)(l—-})[r:(-.,)—ll. (4.18) ]

-

""lﬂ”

Consequently, measurement error has approximately the same order
cf smallness as the ratio of powers of the signal and reference
voltage. As we might expect, the use of a nonlinear element with

e A

a unlilateral square-law characteirristic does not lead to error in
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measuring correlation coefficients when studying gaussian processes.

Formula (4,18) dces not consider error caused by extraneous noise

and by the finltene:s of the averaging time.

4.3, AUTOCORRELATIC!N FUNCTION
AND ENERGY SPECTRUM OF VOLTAGE
AT OUTPUT OF NONLINEAR ELEMENT

At tihe output of the nonlinear element in a functional
ccrrelator averaring occurs over a period of time which 1s con-
siderably greater than the correlation time of the studled random
rrocesses, Averaging 1s done by means of a band fllter, which 1s
placed behind the nonlinear element and tuned to difference
frequency w,. Since averaring time 1s finite, along with the
refular voltage component (which exists in the presence of a signal)
vhere 15 always a noise component at the ti1lter output. Conse-
quently, the output voltage of the filter 1s a random process, and
one must have a knowledge of ctatistics 1n order to deseribe it.

The nonlinear transformations which occur above the gaussian

randorm processes lead to nongaussian statistices., In

case, which has preater practical interest, where the band pass of

the averapingy filter 1s much narrower than the bands

crectra of input ocelllations, the random process at

output "tends toward normalization," 1.e., the density of probability
distribution In this process 1is close to normal. For normalization

the width of the energy spectra of the 1lnput signals
the band pass of the averaging filter. Thils depends
to which the law of dlstributlion at the input of the
filter deviates from the normal. We can assume with

the particular

of the energy
the filter

must exceed
on the degree
averaging
sufficlient

practical accuracy this ratio to be on the order of 6=10 [24].

lLet us estimate the effectiveness of a functional correlator

from the ratio of the power of the regular component

to the power

of fluctuatlons at the output of the averaging filter. We will

compare a functional correlator with a correlator in

multiplication occurs.
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To solve the problem we must find the correlation function
of the response of the nonlinear element to the input effect in
the form of the sum of unsteadlly related random processes. The
unknown correlation function will be time dependent. The energy
spectrum of the output voltage of the nonlinear element 1s found
by applying the Wiener-Khinchin transform to the time-averaged
autocorrelation function [24].

By means of formula (4.12) the autocorrelation function of the
response of the nonlinear element 1s written in the form of

Kot 9= [ (20209l ot +vld: (dz(t4=

—» -

={z) U P W F Xy O F o) | @) (w,) dw,dw,,
]

Statlstical averaging expluny(f) +wywy(f+1)) reri-cesents the transformed
two-dimensional characteristic furn~tion, which for the normal
random process equals [14]

exp [ioy (f) + ivy (T )] = expliv, y () +
+io, g0+ — 50 O — 5 FOF D~

— 00,y ()-y ()]

If we assume w, = 1v1; w, = 1v, and consider (4.8) and (4.10),

1
then we get

=P ley 1)+ wy T+ = exp [ - o (t. O] +
+ (. Yo, + 5 (¢ O)ul).

By expanding the exponential function in a series, we get the

following expression for the autocorrelation function of the
response of the nonlinear element:
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0 ,p(r 9

Ky (t, 2= ’[ o f(w,)X
=0

y22e (1. 0) &F 112.:,:. (143, 0
e o, — T fw, f(w,)e dw,.
f !

Here let us substitute the expression for the transitional function
cf (4,11). Then, by means of contcur integral (P. 1.1, appendix)
| we get

» al‘(v+|) 5 \ |
K:(t, <) =—3— an (z - i-v) X

X[e@t. 0p(t 1= 0" %rat, =), (4.19)

Let us calculate the time-averaged autocorrelation function
for the response of the rnonlinear element. For every number "k"

we must average the following product wlth respect to time:

e M2, 0)pt M2 (1 41, O)p* (L. <)

-

sverafping 1s done for the most interestlnpg case, in which 0.
o << a_. Tne 1individual factors of the averaged expression

58}

should be written In the form of series

(=) |
[p(t. 0N =14 k()4

+(%£) g%. _') ef.m+.--. ;

(v—h)/2

!_:!
4 0" ™" =14 ( . ) L+
+(_;—k) (!;—.—') €+

2
el Dt =2*()+ 47 "a"'(‘)“' )+

FHD e, 94
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P ——

e e e e e e e e

In nmultiplying these expressions we average only those terms which
Lave an order of smallness of no less than s} o/, Finall' we ret

<lp(t. Op(t+= O "Myt 1)>=r(x)cort e,z |

+& % r'~' (x) cost-te,r, (x) comgt -
+& -:‘::4 e~ () costteptry () cos@gT 4
+4(5) ; ,: P (5) cost-Ymyar, (53) X
X ra(z+ ) cosfwez+-34,( + ) —Stn)l +
+ ra(z— 7 cosfmer +-C (1) — & (1 — D} +- 4

k(k—1) a2
+—T’ r,

Xre(t+ ")Cosl("t"i"‘e)"":.(‘a‘i")—
—&(n —1)|+r'(1)cos'o,1('—' b4

[ ] o«
QNIOUD

(x) cos ~ayry (1, — 1) X

o 2 . :
X2 -;i-r.(t,)cos'-.t. (1,2))

Let us assume that intermediate frequency w, 1s muci: cmaller than

the central frequencles or the -~1gnal Wy r':f‘erence veltare Wy and
the combined components iIn tine torm kw + w. Kw + SR

k > 2. Then (from 4.20) 1t follows tiat the compon" '
time-averaged correlation function (4.19) will c > "rc i ¢  he
region of low and intermediate frequencies only av cver n.mers of

k = 2n. Thus, 1f we consider the relationship [42, p. 4]

1 L a-.(2—n)
l‘(t—n) P(s)

and use the expressions for powers of trigonometric fiun-~ o
the multipl: argument function [13, p. 39]

=1 ..
cos™ x=-2—:.- {E —(F-miﬂ‘_k—" cos2(n —k)x+%
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1
} 1° L
cus’s 'x=§,-.-—',-~ (J‘—ﬁé—%-ﬁ-cos(h—%—l)x. .
=0

then we pget the following expressions for the time-averaged

correlation function of the response of the nonlinear element

corresponding to the resion of Intermediate and low frequencies:

R:'. (ﬂ == R.,‘ ’*‘ R.,]u + R”c

we have

R.,.—:D(v){l-}- f‘,C(v. ll)r:"(t)}: (4,21
A=l
Royy = D(v) L::"" cos (v, —wy )t 2"6 (v. n) '2,"“'(") ru (%)
! (4,22)

3’ '
R =D | v cosms o+ Y, rct e X

X{cns w,t -—IT— -)——r (‘t) r (1\) +re(z)re “)]+
+ ('.—;‘ - ") r, (‘-a) I (1)” '!(= '*' TJ)COS l“O‘ - :' (‘+1“) +

A 5 G -+ e (s — 7 cos [mgt 48y (5, — 3) — &y (=, )1:|+
+("“ ')'l("a—' )'l('s"‘ )COSIm.t-—

"":n(""""a)‘l'(n("a_‘)l}}; . (4.23)

a’l“(v)cr .2
DM:W, (4.2L)
. | C(v, n).'; (T:-).(ﬁ:——l).".(-;-_"-*').

o . (b,25)

Thus, the time-averaged correlation function for the response
of the nonlinear element in the low frequency region consists of
three components:
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1) Ron - correlation function of detected reference voltage
(terms of series (4.21) contain factors in the form cf Pin(T),
whi_.i describe reference voltage only)

2) Rom - correlation function of extraneous nolse transformed
by reference voltare [terns of series (4.22) have factorz 1in the

2n=-1
form of rrn (1), rw(r)],

3) ROC - time-averaged correlation function of signals,
transformed by reference voltage (serles (4.23), consists of terms
contalnineg parameters of cross-correlation and autocorrelation
functlions c¢f signal and reference voltage).

From (4,22) 1t follows that the time-averaged correlution
functicn of the signal trancsformed by the reference voltage and
also the energy spectrum »f the self-noise of the functional
correlatcr are time delay functlons of the signal relative to the

reference voltage.

In estimating the effectiveness of a functional correlator

we 1imlt ourselves to the simpler case, where

630, La(t) =0, ow=0c re(v) =rc(r) ==ra(t) =r(1). (h,26)

The assumpticns of (4.20) coineide with the limits of (2.5) used

earlier In analyzing an ldeal correlator.

This last equality 1Indlcates that the enerpy spectra of the

slgnal and reference voltage differ only in their central frequencles,

IUnder these conditions the application of the direct Wiener-Khinchin

transform to (4,21), (U4.22), and (4.23) pgives us the following
expressions for corresponding energy spectra:
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Su=D(v) {em+§ Clv. S, (n}. (4.27)

2 &
Sow =D(w .;" 2 nC (v, M aSew(f — f)-4- :nsrm(’ +'o)|: (4.28)

r

a=l
o v \?
Swe=00) 5 () (U =R+ + 1)+

+2-C(V' ”) lmso (f —io) '}‘ :nsc ‘, ’*' ,o)l}t ( I, 29)

where §(f) 1s the Dirac delta-function;
» "
mSelf)= [ rin () g
—
. [
wSeu ()= [ ()ru(s) e,
-0

We can find the slgnal/nolse ratio at the functional correlator
output by using the expression obtained.

h.h, SIGNAL/NOISE RATIO AT
COREELATOR OUTPUT

Our problem 1s to compare the signal/noise ratlo at the ocutput
of a functional correlator with that of an 1deal correlator with
other conditions remalning equal. Let us find the signal/noise
ratlo at the cutput of a functional correlator. The reasoning
and transformation will be absolutely analogous to those presented
in § 2.2 1in deriving (2.7). Based on relationships (4.27)-(4,29)
the signal/noise ratio at the output of a functional correlator
will be




U= = Bl{gcw. 1) lwSe(0) +

+usc@l+(5) = 2 C(v. m)aSell)+

2 of
+(—) ‘;:';‘ "C (v. 1)[:nSra (0) 4
+ iwSrm (2'0)]}- . (4.30)

This expression cannot be conveniently used in this form, since the
derree of superiority of the ideal correlator over the functlonal
correlator with the nonlinear element is not apparent. Expression
(4.30) will be written as

’
—_— { (|+» ')|s<0>+ Se 24

IS.... O+ Sra (2f.)l} (4.31)

where we deslgnate:

(Vg
; (v, 73S (1)

p:.—-;; H (u . 32)
Y COv 1) 11aSe (0) + 5aSe (20))
5 Se (0) + 1S (214)
—:EC(v,n R T (4.33)
2 \* £ (0) + 3oSew (2f) y.34
P=(5) 2,"C(v' M O e ozt

If we compare the signal/noise ratio at the output of an
ideal correlator [formula (2.7)] with the same ratio for a
functional correlator [formulas (4.30) or (4.31)] we will be able
to glve the following physical interpretation to the reduced loss
coeffl fent
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pj% shows how many times nolise at the output of the averaging
[

filter, which 1s caused by the detected reference voltage, exceeds

rnolce caused by the random nature of the signal;

A indicates the factor by which the signal/noise ratio at the
cutput of a functicnal correlator is Inferior to that of an ideal
rorrelator in a case where the noise of the detected reference
voeltare (which may occur when a balanced system is used) and
extraneous nolse are absent;

8 shecws the factor by which the signal/noise ratio at the
utrut of a functional correlator is Inferlor to that of an ideal
~orrelator In a cace where only extraneous noise transformed by the
refapence voltare is considered (in practical terms this occurs

when the spectral densilty of extraneous nolse 15 much greater than

the crectral density of self-noise and detected nolse).

et us examlne in more detall the coefficlient of losces B for

Bwie easers.:

1. The energy spoctrum of extraneous noise 1s much wider than
the roference voltage spectrum.

2. The energy cpectrum of extraneous nolise 1s the same as
the signal spectrum.

"ace 1. In order to calculate the values of the coefficlent
Fal

f 1loooes B we must know the spectral density in the form of

S (r). UYWhen n =1 we have
norw

Srull= [ru@rEe ™" de,

-

For the studled case the correlation function rw(r) 1s much narrower

than r(t). Thus, we can write approximately
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had

St (f) =~ .S.’m ()7 (0) e = s: .

Here the energy spectrum S:(f) corresponding to correlation function
rw(r) is the enerpgy spectrum of extraneous noise which has been
transferred from frequency w, to "zero" frequency. It 1is quite
cbvious that the approximation 2nsrw(f‘) S S:(f) will continue to
decrease in accuracy as number n increases, since in thls case the
correlation function r2n-1(r) continues to narrow. However, as we
will show below, series (4.,34) in view of its rapid convergence 1s
rractlically determined by the first terms alone. 1If we consider

this pecullarity, we assume that

wSeu(D== | ru 97 (" du m S5 (D).

Then the expression for the coefflcient of losses B with the
ccefficients of (4.25) considered will acquire the form of

p=1 +f: (i—%;) (i':ni'l);( ——;.).j A

Using a particular value of the hypergeometric function [27, p. 706]

P Bt B

TPy —a—p
Fy—e)F(y—-H '

we represent the coefficient of losses in the form of

— T
B r*(l+-§~) (4.36)

Case 2. The equality of the wldth of the nolse energy spectrum
to the width of the signal energy spectrum means that




I'm ('r) =r(t); :..Sm.(I) =2usc (’)

In this case formula (4.34) acquires the form of

(-]

=\ a5 (0) + 25 (2fs)

B= Yo O gy Sy (4.37)
n=)

Trom relationships (4.32)-(4.37) 1t follows that the loss
coefficlents u, A, B depend on the characteristic of the nonlinear
=lement (parameter v) and the shape of the energy spectrum of

osclllations actinyg on the functional correlator.

T ! SPECTRAD DENSITY CHARACTERISTICS
¥ RANDCOM TROCKSSES (PARTICULAR CASES)

T

Lors coeffliclents are expressed as functlons in the form of

.0 f), which depend on the shape of the energy spectrum of the

studled randcm processes., Let us find these functions for several
random processes obtalned, for example, when "whlte" noise passes

chrcoum:. cpeclific shaplng fllters.
1. Tdeal Filters
et us describe tle enerpgy spectrum by the following function:

o A [
o fe—-< 2l

S*(f) = {

0 at other values of f,

[npu = shen]
where Af 15 the wilidth of the energy spectrum.

We know [24, 37] that the correlation function of a process

with thils spectral denslity has the form of

2
R. (=)= ;;;; sinzAfz cosm .

116




FEVoTETT— T Bade e e T — = -

The energy spectrum corresponding to correlation coefficient r(t)

1s determined by the relationship

1 &
s,(n={a—r won (< (4.38)
0 at other values of f.

[npn = when]

Let us find spectral dersity 2nSc(f) by means of a convolution

type integral [147: s

Se(h= ‘fr’(t) P e =

= [ sda)s.( —2)d

After we have calculated the convolution integral for a rectangular

energy spectrum, we get

.scw={ 30—l ww <1,

0 at other values of x,
where x = f/Af 1s normalized frequency.

Similar calculations for convolutions when n = 2 give us

T‘,-(.o,s N — [ 4- -§—) npu 0=|x| <1,
Se (x)= _Alf-(:‘;'! W - 2 -;—) npu 1<|x}:2,

at other values of x.

Finding convolutlons of a hlgher order involves complex and ]
tiresome calculations. For this reason we will use ugprroximate
methods. Let us use the central limiting theorem of the theory of
probabilities. We know [14] that the density of probability
distribution of the sum of Independent random quantities 1is
determined by the convolution of the probability distribution 1
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density of the terms. If the random quantities fulfill the
Lindeberg condition [11, p. 257], then the density-of probability
distribution for the sum of a great number of independent random
quantities will approach the gaussian distribution. The Lindeberg
condltion 15 the singular requirement that random quantities have

| deviations -~ uniform smallness from thelr averape value, 1.e.,
Waat th »oton of a random quantity be finlite., Let us examine

: relati .38) as the density of probability distribution of
randon o o f. In thir case , S (f) 1s the density of

I n c

protability dictritutiorn of the sum 2n of identical independent

random quantitiec., The distribution dispersion of (4.38) will te
I A 2]

ane

| °: =T

whiile the averare value 18 equal to zero, Since the dispersion of

('}

stun2n of inderendent random quantlties equals
b _ 1 __o,
3, =243,
1
then for ,qﬂﬁ'x\ we ret the approximate formula

V(v &)
L ov (V)
vE vl 2 npu x|~ a,
aSe (X) =1 V=4[ ‘/ n* pu x|
) at other values of x.
(4.39)

Tatle 4.1 shows the values of the convolutlons as a function
nermalized frequency x. For MSC(x)Af and hSc(x)Af in Table 4.1

two values are glven. The upper row of vialues was calculated by

I
i

aprroximate formula (4.39). Coincidence 1o pood even for a small
n number,
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Table 4.1,
z 0 os | 1o 15| 20 2.5 3.0 |40
RRETY ! 4,8 0 (] [ (] 0 (]
5 0.470] 0.159]1 0,025 | 0,908 0 [}
oSe(nat 058 i v foion | o 0 0 °
T0.59 v 047 N G.94- 4_‘-' =
I oSe(x13! il B B 18 e ol I St I H
4 —
| Seln)8} 0484 | 0.4M | 023 foon | 0 | eunet] o 0
MRGEY 0.0 ) 0.976] 0.zeans | vors | 00007 | 300 T
., Slngle Osciilatery Clrcult
i T =B enerpgy cpectrum is determined on the
Scllowing d
2
[ ]
sl\ _:__C__ | I
e (D=5 [2(1 —IeJ
L]
L [ -(l +le
where Af 15 the wlidth of the energy spectrum on a level of =3 dB.
i Tre enersy opectrum which corresponds to the correlation coefficlent
rit, 15 determined ty the expression
2 |
Selhy =g~y (4.k0)
+( i
In thic case \nF((F) can be more convenlently calculated by !
mean. of the direct Wiener-Khinchin transform, rather than throurh ~
3 the convolution. If we uce the theory of remainders 1n calculating
the correlation function corresponding to the energy spectrum of
b,40), we get

r (1)_‘_ = ?S‘ ‘,) V“."d, - e—lll I8 ]
—de
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Then

rd i
w3c()= Ir"‘ (x)e” L
—ap *

(] e i . ' )
-—le 2endy Iny ~ e} d‘-mml[l+(-,7'_,):)'].

I+t 1s interesting to note that 1n this case quantity 2nSc(f‘) does
not aprroach the gausslan curve at any value of n. This 1s because
the probtability distribution density of (4.40) is the Cauchy
diztribution density, whlich has Infinite dispersion and, corse-
tuently, does not satisfy the Lindeberg condition.

-

5. BandePass Fllter Consisting of
Twe Tdentlcal Cennected Circults

The autccorrelation functlon of a signal shaped by a band-pass
f1lter conslsting of two I1dentical connected circuits which have
2 critical bond between them 1s determined by expression [72]

R(z)=4 - . ';'5- i ces 2nfgr [cos (."LAL).'.

v
b ()

where Af 15 the wildth of the energy spectrum on a level of -3 dB.

The envelope of the autocorrelation function of the signal and the
energy spectrum corresponding to 1t will have the form of

r(y)= e L""-"!. [cos 2}"'21—) +sin (" 1;';’ ) ] .

Se(f)= 4] (4.41)

ST+
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2nSc(f) we use the Wiener-Khinchin

transform to the power of the autocorrelation function of the

When calculating quantities

signal rzn(r). The obtained integrals are calculated by means of
relationships [13, p. 491]:

(- 3
Je"'cosqxdx:-?f-;—
[
Je"' sin qxdx:—p,L_HT.
From the calculations we get:
VT (xt 4 3)

Se )= aron e TN

V2 | 3 4+ x?
«Se (x)='-'2‘;_‘j;' lg F T (4 x5 —8x? +

5—2x?
+ 2,54+ x)7 -2 f°
where x = f/Af 1s normalized frequency.

"he reduced expresslons show that the complexity of functions

nh (x) rapidly Increases as number n increases. For calculating

2n ]
developed in part 1 of thls section. The dispersion of distribution

(4U,41) equals

(x) at large values of n in this case we can use the method

3 =--7-
3/

3'——1.
—
' > i’
—
\_/
,\
w2
N
-

Then, the approximating gausslan curve for S (x) will be
2nc

—_— _LyZT)
:nsc(x)=ml/—:—e 2('/" ) (4,42)
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0,0161
0.0104

2.0
0.0103
0,0504
0.0347

5

L)

s
1,0424

0,1

1.9

0,15

9,:%
0,287
0,3011
0,306

52

0.5
0,159
0,384
0,264

0,29

0,

0,604
0,356
0,432
0,278

0,306

0,676
61

0,2825

0.316

-
. i

:Sd(x) 8f
oS (x) 8f
«S(x)3f
oSc(x)3f

Table 4

Table 4.2 gives values of
2nSC(x)Af at different normalized
frequencies x. The upper rows of
dual values forn =2, n= 3, n = 4§
correspond to those obtailned from the
approximate formula (4.42).

From the table it follows that
in thils case the approximaction is
rough, particularly at high values of
normalized intermediate frequency x,
which are the values of most 1lnterest
el ns;,

4,6, EFFECTIVENESS
OF FUNCTIONAL
CORRELATOR

1. Loss Coefficients

In order to estimate the
effectiveness of a functional
correlator we must examine loss
coefflclents. Loss coefflcient A is
determined by relationship (4.33) in
the form of an Infinlte serles. At
particular values of v = 2, U, 6, ...
the serles can be easlly calculated,
since 1t breaks. 1In the reneral
case the expression for the sum of
the serles 1In a clcsed form 1s not
found, and thus 1n the calculations
we 1limit ourselves to a finite number
of terms. In calculations and in
estimating possible error it is
convenlent to use an additional

series in the followlng form:
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Let us represent the auxillary series in a closed form by means of
ramma=-functicns [as done iIn deriving relationship (4.36)]. 5 a
recult we get

4T (v)

e e l.
M (-%-)

lnp ==

Calculations for the values of spectral power densities 1in

the form of quC(f), conducted In the preceding sectlions, indicate:

e

1) at any valuec of n, f auantity ?nS < 1;

C o=

) valueas cof ﬁnfc(f) diminish very rapidly as frequency f

roe

inecreasec, Phus
485 (0) 4 2454 (2/s) el
+5: (0) + oS¢ (2f5) )
wiere 2quallty ccecurs only when n = 1, Consequently, the *terms of

the series (4,33) are smaller than the corresponding terms f the
auxlliary ceries., BRased on the criterion ¢f comparing serie: with
prositive terms [9], 1t can be confirmed that the sum of seriec
(4,33) 1s alwayc less than the sum of the auxiliary series, 1.c¢.,
A< Anp' When a functional correlator with a nonlinear element

0 whict.
5 concsiderably greater than the width of the energy spectrum of

15 given practlical application an intermediate frequency f
i
the reference voltage must be selected. In this case

2nse (2,0) <zsc (0)
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while relationship (4.33) will have the form of

(&) (=) (—1=%) 2SO (4,43)

&S T 5o

s

Indirect calculations show that when fO is used in a frequency
range of 0 < fo < 4Af, the chanpge in coefficlent X 1s extremely
insignificant (less than 5%), unless fcr practlical purposes we can
assume that the loss coefficient \ does not depend on the inter-
mediate frequency value. The values of loss coefficient A
calculated from formula (4.43) with the first four terms of the
seriecz considered are shown in Table 4.3 alorg with the limiting
values of the sum of this serles xnp for the three studled enerpy

srectra.

Table U.3.

Value w
Spectran E 3
| 18] 20 25| 30| 40
Restanys ilar 0,26410,569] 1,0 11,57912,34 | 4,666
Rand-jas0 rilter 0,263 0'5“'9 1,0 11,58 12,35 | 4,682
sefllarory cireudt |0,23910.568) 1,0 [1,57612,322) 4,5
dp 0,27 10,573 1,0 [1,58G}2,3931 5,0

From Table 4,3 i1t follows that:

1) for practical purposes it 1s sufficlient to calculate the
surn of the four terms of the series (4.43) which determines loss

coefficlent A;

?) coefficlent X 1s virtually independent of the form of the
energy spectrum in the signal (reference voltage) and thus in
studving the difcerent random processes 1t 1s best to use values
calculated for a band-pass filter (the curve shown in Fig, 4.1);
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l'| j’ 3) there exists a
substantial ‘dependence between
¥ T | 4 ] A and the value of v, 1.,e.,
between A and the character-
5‘ istic of the nonlinear devic ..
— Sy
' e .
a7 7
o] e I It is an interesting
a5
ow—H— — fact that when v < 2 coeffi-
a cient X becomes less than one,
i.e., the output signal/noise
aQ—
ratio of the funectional
correlator can be better than
1 that of an 1ideal correlator.
iz, 4,1, Lows coefftclent X as As follows from Fig. 4.1,
a Munctlicn of the characteristic

LB o s S when v = 1 this 1mprovETen*
may cecnstitute (0.259) ° = 3.8f
(or 5.8 dB). This fact
contradlets the concluclons of statistical radio engineering, since
Toco coefflclent X deserlbes only the self-nolse of a functional
rrelator which !s calculated when there 1s a total correlation

tetween the reference volfare and the sirnal.,

Thee followling exreriment can te performed to 1llustrite at
a flance the effectlve reducing self-nolse, Let there be two
random procecses differines only 1n scale, 1.e.,, the cross-
correlatlion function between the procesces 1s equal to R = +1.,
Let us acoume that each of the processes passes throurh a "ripgig"
limiter (case v = 0), ro that the voltage at the output of any one
of the limiters can acqulre only the two values of +A and -A, while
the transcmission from one level to another cccurs as a Jump. If
the outputs of the limiters are connected to the Input: of an ldeal
correlator, then voltage at the multipller output will have only
the one value of +A?, since in the case of a cross-correlation
coefflclent equal to 1 there 1s a simultaneous shift in the

responses of the limiters from one level to the other. Consequentiy,
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felf-noise will be absent in an ideal correlator. If we assume

] that the unknown random processes can be time-shifted relative to
one another, then at the multipller output there will be a variable
component In addition to the constant component. This results from
the fact that the responses of the limiters will have opposite

rolarities on the 1ndividual time segments.

dow let us examine the processes which ozcur in a functional
correlator when v = 1, 1.e.,, when the functlonal correlator can be
rejrarded ac a "linear" detector., If the power of the reference
v~ltare 1s mueh ;reater than the power of the signal, then the
nonlinear element can be regarded 1n relation to the small sigral
ac linear with time-variable parameters. Here, if ur(t) <0,
trhen the cipnal will not pass throurh the nonlinear element

(acnductivity is absent); when ur(t) > 0 the signal passec withcut

41 stortion (conductivity ic constant and 1s determined by the
terived characterlistic of the nonlinear element at positive values
£ <he input effect). Thus, in the glven case passage of the signal
and reference voltage through the nonlinear element can be
rerresented as a process of multiplylneg an undistorted Iinput signal
'y an amplitude-=1imited reference voltare. TIf there 1s no sigegnal
i~1a; relative to the reference voltage, then at the output of the
functiconal correlator there will be celf-nolse, caused by the
randor. nature of the Input cigna® envelope. Obviously the self-
nolce *n this case should be less than in the case of an ideal
correlator, in which the supplled osclllations are not limited.
Thus, it follows from our examination that an increase 1in slgnal
delay relative to reference voltapge can lead to an 1lncrease in the
celf-noiszse of a functional correlato~, whlich has bheen completely

confirmed experimentally.

Study of loss coefficlent B, which 1s determlned when the

enerpy spectra of the reference voltage are ldentical, the signal,
and extraneous nolse by means of relationship (4.37) is analogous '
to the study of coefficient A. With the same reasoning used to




series for B:

derive relationship (4.43) when f, >> Af, we pget the following

(4 () o)

a=l+f}

‘or the

*treult, we have

formula (4.,44) coincldes with
found from formula (4.35) for
enerry spectrum of extraneous

of the energy cpectrum of the

x_"_t_ﬂsc (0)
WS

eneryyv spectrum, as at the output of the sinpgle oscillatory

! (m 4 1)

(4.ul)

_ﬂiascm) — ]
15¢ (V) m4)*
~t1le the value cf the loss coefficlent 1s equal ¢ 1
v ? v L v L]
| o (I—-?- 2--7—).. e ?T)
b=t I L
m-=}
! _4 () I
o\
The 1imitinge value of expression (U, U4) 1s determined by the sum
f the Serles In majorlzed terms
5 (-3) (o 5) 1)
'l'i' ! 2 _ 2» 2, .
fup = 2 Y TR T T
m=|
..  TM
r'(L+7f
Thus, the 1limiting value for loss coefficient B determined by

the value of the loss ccefficlient
the case where the width of the
noise is much preater than the width

airnal (r=ference voltage). Fipure 4,2
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Fig, 4.2, Leoss coefficient B as
a functicn of characteristic of
ncnlinear unit: a - wide-band
extraneous noise (limitiny value);
I = 3irnal spectrum In the ferm
of fregquency of tand=pass fllter
characterictic; IT - rectanrular
simrnal cpectrum; TIT - slgnal
cpectrum in the form of frequency
characterictic of oscillating
el ST

nolosry:

(curve a) represents the
graphic dependence of the
1limiting value cf loss
coefficient B on wlde-band
In the

same flpgure we see the

extraneous nolse.

values of loss coefflcient
B for the three studled
enerry spectra of the
sifnals. ?rom these graphilc
dependences 1t follows that
the loss coefficient relative
to extraneous nolse is
fgreater than one 1in all
caces., This is found 1In
agreement with the conclusions

of statistlical radio tech-

no functional correlator can separate a useful sipgnal against

a tacerround of extraneous nolse hetter than an 1deal cerrelator.

The mapnitude of loss coefficlent B for 1 < v < 3 does not exceer

1.275, 1.2., losses

in the sipnal/noise ratio relative to extraneous

noise for a functional correlator are not rreat compared to those

~¢ an 1deal correlator. When v > 3 and when v < 1 loss coe“flclent

B rices sharply. Loss coefficient B is most interesting from the

standpoint of the theory of detection and measurement of signal

parameters, since it 15 extraneous nolse that limits maximal

censitlvity and accuracy.

Tn functional correlators an intermedlate frequency is

~elected which 15 much wider than the energy spectrum of the signal.

Thur, the values of loss coefficlent v are of practical interest

cnly In a case where fo > LAf,

Here the exprescion for the

coefficlent of losses u according to rormula (4.32) can be

represented with (4.33) considered in a simplified form with an

error of less than 1.5%:
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L ]
_‘_.- 2 (v, n)yy sc (’0)

-] ‘
'171 ~——"——-——————-—_—_—. =-A_\‘.x

v \? v \? v \?
><§;(T) ('_."'_-’"_(),'!',.“(""'"T) Sell) (4.45)

n=|

ror an energy spectrum such as that of the slingle oscillatory

circult we ret ‘
|
s (1) (5] (o) -
F—T\»Tz mn—=1) X {
n=1
e (4, U46) i
nt 4 x3 #
where x. = . /Af 1s the normalized intermediate frequency. -
For convenience in analyzing let us look at the following
auxtliary seriles
4 !
Pap == o7 X 1
o (3)(1=F) (11— J
B SO A W47 ”
XE n — 1)l —a (h A7 :
n=] (1]
GCuantlties n°, xb are alwayvs positive, unless the terms of the
pcsitive theories are always greater than corresponding terms of 1
ceries (4,46) and, consequently, u < Hop The expression for the
sum of the auxilliary serles in closed form i1s found by the same
method that i1s used to derive relationship (4.36). As a result
we fet




Bup = i) = ke 2
A (~—:— x’o A‘:

Hcte that:

1) the closer the sum of series (4.46) to the sum of

auxiliary cerles (U4.47), the pgreater will be Xgs

D) series (4.46) converges more rapidly than auxiliary series
(4.67) Consequently, to obtaln the sum of (4.46) with the required
acouracy, we must consider a smaller or at least the same gquantity
' terme as we did In calculating auxiliary series (4,47).
"1lculatlions indlcate that in oraer to obtain the sum of the
auxiliary series with an accuracy to within no less than 5% 1t 1s

0 2tent te add the first four terms.

Pioure §,3 shows the valuec of loss cceffleient p calculated

froom fermula (4.32) taking into account only the first four terms
£ e ceries for the three sctudied enerpy spectra. From the
fleure 1t follows that coefficient u for an energy spectrum such
20 the single oseillatory circult with X0 > i 1s verv close tc the
value determined by relationstip (4.47) (shown as a dashed 1line).
tr the two other erergy spectra relatlonships in closed form
tetween loss coefficlzant u and relatlive frequency X, were not
cttalned, For calculation at hlgher values of vy we must consider
a rreater number of terms in the series, 1In the case of v = 2,
“«, «v. expression (4,46) represents a finite number of term: and

can be easlly calculated.
Analysis of the curves in Fig. 4.3 shows us that:

1) loss coefficient u decreases as the intermedlate frequency
creases., The rate of decrease 1s determined by the energy

n
spectrum of the signal (reference voltage);
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4;,_" _ 2) loss coefficient u
N (d=1 depends on the form of the
.np"---ﬁ : -
3 y 1 characteristic of the non-
L4
10 M ST linear unit, i.e., on
b - -F'
L Jul- D 9 parameter v. This dependence
o3
0! ; necomes ecspecially notliceab e
- . & for slpnals whose energy
i? spectrum is close to the
10*f J:: rectanrular
4 2t g R
[
“ A\
825 05 0 20 &40 80 1480 fyaf 2. Some
Fle, 4,3, Loss coefficlent u as Experimental
a functicn of value o1” dlfference Results
frejuency and charncteristic of
1 nonlinear unit: 71 - proctanrular
sirnal srectrumy TT - spectrum In Sone of the results
“he fecrm of freauency of tand-
: : obtaincc om e in
racss filter characterictic; 111 - ey s Xperimental
grectrun In the form of frecuency veriflcation of theoretical
characteristic cacillator:
ﬁ,ii?,f LSt l Llgtory proposals are interecting.
[P OV} Lo

In studying a functicnal

correlator the parameters of
the indfvidual unitc were celected to be as close as possibla to
the models of cirnals deceribed in §§4.1 and 2,2, With thils geal
“wo narrow=-band procecrec with frequency-shifted energy spectra
‘21r7nal and reference voltare) were chaped from the oripinal
raucsian noise ucing a method of flltration and frequency trans-
formation., The voltage of the sipnal (through the controlled
delay line) and the reference voltage were conducted to the input
of a correlator with a multipller or after the summatlon process
werae conducted to the input of the nonlinear element of a functlional

correlator. The nonlinear clement wac a serles-connected point-

contact cemlconductor dlode and a reslistance load. The type of
diode, load resistance, and Insligniflcant forward dlode blas were
selected with the intentlon of obtalning an lnertlaless nonlinear

characteristic when v = 1.
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The measured output signal/noise ratio of the functional
correlator in the absence of signal delay relative"to the reference
voltage was 4.9 dB higher than for the ideal correlator with
analeyrous parameters (oscillatory power, averaging time, etc.).
This confirms the above deduction that 1in the absence of extraneous
nolise the output slgnal/ncise ratic of a functional correlator
with a nonlinear element when v = 1 can be 5.8 dB better than that

~f o 1deal correlator.

From relationship (4.16) it follows that the amplitude of the
harmonic component of the output voltage of a functional correlator

when v = 1 1s equal to

! A (x)= _'!/’.;—._ ry ()

zr.10 A e not depend on the power of the reference voltage., This
crorersy 10 useful In correlation measurements, slnce the power
ct.anye In tiie reference voltage, which develops when the delay line
tched {(due to an unsteady transmission coefficlent) does not
affect (ocr only slifghtly affects) the reference accuracy of
ccrrelatlion function values. Table 4.4 plves the experimental

rerylt for the studled unit.

Tat le 4.4, 7 It 1s interesting to

e, |B] |l 06| 04| 0,2] 0.1 study the behavior of self-

~0.2]|-1.1 ] —-2.8 noise in correlators as a

| )
A|mq| 0 | o o

function of signal delay relative
to the reference voltage.

Thenretlcally thlc dependence 1s obtained from a rather ponderous
exprecsicn (4.23), Fipgure 4.4 shows the results of experimentally
measuring the relatlve spectral intensity of self-noilse in a
functional correlator for the intermedlate frequency range as a

functlion of delay.

132

o i i g gl




o ]
!

t
]
| '
e 4
o ‘
P R

¢ & w5 20avay
Flg. 4.4, Relative spectral
Intensity of self-noise ln a

correlator with a multipiler does

nct depend on signal delay.
(26 = dB].
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These results confirm
the advantage of using
functional correlators of
the given type in radio
electronic systems. They
can be used 1n developing
specific devices.
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FIFTH CHAPTER 3

NOISE CHARACTERISTICS OF FUNCTIONAL
CORRELATORS BASED ON NONLINEAR
ELEMENTS WITH AN EXPONENTIAL
CHARACTERISTIC

5.1, REGULAR VOLTAGE COMPONENT
AT CORRELATOR OUTPUT

Let us evaluate the effectlveness of a functional difference
frequency correlator in which a nonllnear device with an exponential
characteristic 1s used in place of the multiplier. The original
rremlices and proposals concerning the nature of the signals,
assumptiors, symbols, and method of analysis are all analogous to
thcoe formulated in §§ 2.2, 4.1, and 4.2,

Thls problem should be studied, since elements and devices
whilch have an exponentlal characteristlic are widely used and since
the properties of a functilonal correlator 1n this case are
different from the properties of correlators of the v-th power,

A nonllinear device can simply be regarded as a dlode whose

volt-ampere characteristic within the 1limits of a certalin input
voltare range can be described with sufficlent accuracy by the |
dependence [29] I = Io(evu - 1). Let us examine the noise |
characterlictlics of a functional correlator with a nonlinear element
in which the output voltage 1s proportional to the current which

flows through the semiconductor diode, i.e., J
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z=a(ev—1). (5.1)

The regular output voltage component is determined by averaging
the response of the nonlinear element for the set

z()=a(e" " 1), (5.2)

The statlstlcal average of e’ 1s found by means of the expression
for the unidimensional characteristic function of the random
process y(t), which has a normal distribution [24]

[r—

i _ 1 a2

If we consider (4.9) and (4.10) and use the Jacobl-Enger expansion
[14, p. 333]

a
exp(zcosb)= Y} e,/ (2)-cosml,
m=0

where

I npu m==0,
2npum-==1, 2, 3,...

[npu = when]

Im(z) 1s the modiflied Bessel function, we get

=¢
an
<Y tdn [0 a0 cosmint —wz G (5.3)
mz=0
Z) ) 8]
Here we have y° = v a’,

-
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For small values of the argument the following asymptotic
representation of modified Bessel functions is valid [42, p. 248]:

l,(.\'):? l‘.(v'!f-—lf (—%—)' mpn 0< x <€ 1.

(npn = when]

Then, when y%J,hg-}~<l the regular component of the response of
[ ]

the nonlinear element, taking into account terms with an order of

smallness no less than oC/or will have the form of

m -=q ’(_'l'l? ) l '*‘ .‘.c'.l?":_:— rl (‘.\) X

\

X cos [mf — @2, —3,(z,)] } .

Thus, when a weak signal and reference voltage have a combined
effect on a nonlinear element with an exponential characteristic,
a regular voltage component of intermediate frequency 1s obtalned
at the output, whose amplitude 1s proportional to the envelope of
the cross=-correlation function of the signal and ra>ference voltage.
This result 1¢ analogous to that obtalned in the preceding chapter.
Let us find this repgular voltage component at frequency Wy by using
relationships (5.2) and (5.3) and by assuming arbitrary signal

_;:(..%q’ )x

X1, [1’ L, (z.,)] COS [ — w3 — Gy (%,))-

amplitude

4

-

(), =2ae

If the correlation coefficient 1s measured from the amplitude of
the regular component of frequency Wy s then relative error in
measuring the correlation function determined by formula (4.17) is

expressed as
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e [re]

A= _°lc

1 . hows measura
0,2 04 05 0.8lrityl Flgure 5.1 s measurament

4 /'0./5 i error found using this formula.

i This error diminishes rapidly as

4 4g¥£* the power of the signal decreases,
12 l and does not exceed 37 when

16 . x; ygoc/or < 0.5,

201 mm:l’s"

5 I 5.2. Signal/tloise

Fi,-., 5.1. lonlinear error of ?igéstat Correlator

reacurineg correlatlion function
fecr nonlinear device with

exponential characteristic. Let us #1nd fodlse intems?ti

at the correlator output. For
thic purpose we wlll calculate the correlation function of voltage
at the output of the nonlinear element from our knowledge of the
response to the input effect. If we consider the presence of the
norctationary connection between the sipgnal and reference voltage,
then the functlon must be time-averaged. We get the following
rxprescion for the time-averaged value of the correlation function:

Ry () = a* (et P T T _

<< FTTS ) (5.4)

If we time average the expression (5.3) and consider our assumption

of smallness for the signal and nolse, we get

X1, [1 r.(e,)]~ T- (5.5)




Ill

Similarly we also get

<em>=e‘.l’. (506)

' If we use the two-dimensional characteristic function of the

normal random process y(t) [24, p. 243] and consider (4.8), (4.9),
and (4,10), then we find

TSI =exp [ [01t, 0 +0(t+1. 0)+ 2000 o}

In averaging this expression with respect to time we use the
expansion for exponential time functions in series

=0

In averaging let us retaln only those terms which have an order of
smallness of no less than 02/05 and oi/cf. As a result we get

o
T . '
<¢'” n et ">="——'C‘ 2 Emlm l"”l’ (1)1 X
mw0

2 o
X cosmogz- |1 4 1 -.:f,—re (=) cose .t 4 ¥* —.-','1- rg(t) X
[ [ 4

. 2
Xees "’m‘] {' + —1;‘ ‘._.';‘ ’: (%) %.o‘ +

1 3

‘l"-‘f". .-"u("l"‘.-)'n(’a' -2) €08 [(w o)t —

- 0-! L.

=) =Gt )+
2

505 eosfogz -t 4 - Caloll+ |

r

.’
+_;'". ._: ry (%) ry(z — “)c"sl”r""cl(‘a)—‘n(‘a—‘)l +
. 1
" |
+"'|2" i ’.‘;’ o) ra(z 4 <)) c08 O o wEtn) =4+ ]
1% . . 1
+-51° Rl (%,) Fa (23 — ) €08 [0 - $4 (2.) — &4 (=5 -~ )]}
¢
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Assuming that Wy << w_ w,, we separate the individual components
corresponding to the low and intermediate frequency ranges. Then
the time-averaged autocorrelation function of the response of the

nonlinear element (5.4) with (5.5) and (5.6) considered will have
the form of

R:‘ (*) == Rox + Reus + Rec:

where we have:

R" =a° (l . 2«:"”) + a’e" ’. l.‘l" (‘)h ( 5 .7 )
0 .2
Row=a'e"(* ‘."—j' L [e%re (9)) ru (3) X
¢
X cos (e, — @)% (5.8)

? . ;
R =a'e™ 5'-.:,— {0r () 1, |1're (1)) cos o4
+ 21, [1°rs ()] 7a (z) cos @y x4 (*1, [{°r "‘)I“n (=19 X
Xty (- <) cos l'o.' +8(x— t) — Caln + “)l +
+ 1, (1" )] ra(25) 24 (24 25) cos[w,z 484 (2,) +
8w 0, (11 ()] ra (=) 7o (35— 1) X
X cus [, T8y (2, — 1)=&, (z,)]}- (5.9)

In estimating the effectiveness of the functional correlator
let us 1limit ourselves to the case where

‘t;=0. c.(f) _—"‘—-0. My = ¢, rr(t) =rc(t) =f|(t) =f(1). (5.10)

Then, 1f we write the moc fled Bessel functions in the form of
series [42, p. 27]

(- ]
z\" (2, 2)»
’-("=(T) EHF(T FRFD
A=0
and use recurrent relationships [42, p. 248], then for the enerpgy

spectra corresponding to the correlation functions of (5.7), (5.8)
and (5.9) we get the following expressions:
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- (%l. [ [
Su:—_—.at(l-—el-ﬂ.&([)-l-a!\-t'z._(m)_.__;,,s.(f); ) (5211)

(=)

Sow =atp'e” ,,',' 2 —m;—l Srull — 10+
+,.sm.u+r.n. (5.12)
Sw=a'r'e" 5 " T B =R+ +h+
(5)
+2} T (14 ) nSe =10+
+ wSe(f 4 fl}s (5.13)

where §(f) 1is the delta=-function of Dirac;

wSe(f)= T:f"‘ (1) e ik de:

-9

wSu (D= [ ) rul) ™ de

On the basls of these expressions the signal/noise ratio at the ,
output of a narrow-band averaging fillter engaged after the nonlinear “
element, will be

"

l.. n-8
X uSe(f+Y) ((—2_)—.,1,1- (14 %) X

o
X [snSe (0) + 1 Se (20} + —.f-x

1 \1e-0
XE (_')—)!Tln St (0) + S rnl(zfo)]} (5.14)
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where By 1s the effective pass band of the averaging filter of a
functional correlator, determined by relationship €2.8).

For an 1deal difference frequency correlator based on pure j
sirnal multiplication the output signal/noise ratio is determined
btv relationship (2.7). Let us pive expression (5.14) a form which
15 more convenlent for comparison

. (7’%)..‘“‘:72“{ (' te g)l.S.(0)+

ol
52 21+ S (0) +.s,...¢2/.>1} . (5.15)

where we have:

> (%)

(,. ,l l.sl (’0)

p= L ' *  (5.16) I
= (—2—- 1. ] )
Z}jpz:ﬁ?-(l+ﬂzr)lu&ﬂbi-uﬁﬂmn
A=)
( )In-l |
7. .lus (0) + ns (2’“ . 1 i
L ')"’ (l + 2n ) _Sc (L) + :50 (270) ( 2Ll ) i
- A
5’=§ (2) 1Sem (0) 4 1aSere (2f0) (5.18)
1 A =N Seu (U F odea (20)

The Introduced loss coefficients for the functional correlator u,
A, B have the same physical content as in the problem for the
correlator of the v-th power (see Chapter 4).

The relatlicnships which we have obtained depend on the shape
of the energy spectra of the signals and parameter y = VO, i.e.,
on the characteristic of the nonlinear element and the power of the
reference voltage. 1
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5.3. EFFECTIVENESS OF FUNCTIONAL
CORRELATOR

In order to estimate the effectiveness of the correlator we
examine loss coefficlents. Loss coefficlient 8 1s analyzed for two

cases.

1. The spectrum of extraneous noise 1s much wider than that
of the signal. For this case, as shown in § 4.4,

:nsnu () = s:. th

and the expression for coefficient B based on (5.18) will have the

ferm
- ()"
.p.___.z _"?(-(-'-"-_;_)W---‘;,—l,('{'). (5.19)
a=y

The dependence of loss coefficlent B on parameter y 1s shown in
Fig. 5.2 (curve a).

Fig. 5.2. Loss coefficient

B as a functlion of the form

a of a nonllnear device

14 characteristic: a - maxi-

» mal value; I - spectrum in

%ﬁf the form of frequency char-
acteristic of band-pass

10 filter; II - rectangular

signal spectrum; III -

" spectrum in the form of

* o 2 vy frequency characteristic of

oscillatory circuit.

“»

2. The energy spectra of the extraneous noise and the
signal are ldentical.

In a case where ru(t) =r(t), 2aSu(f) =2Sc(f) , from expression (5.18)
we get +
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- __(__2_____‘_ _la_#l_sc_l_o):_"_'_l.. lec (._)'.)
B=1+Y wati Sosian e - (5:20)

In practical difference-freauency correlator systems intermediate

frequency fO 1s selected tr e much wider than the enerpy spectrum

of the reference voltage. .. this case

m425¢ (2’0) €ans2Se (0)

and loss coefflicient B can be represented in the form or

' ('i L[]
i i S, (0
p'—‘z. al(n 4 1) : ) ° SEEERY
In the case of an enerpgy spectrum such as that In the uni- F

dlmenslional cosclllatory circuilt we gpet:

1n415: (M) | .

TS AT -'

1! e +
) é‘%ﬁ(}’f)"”"""‘"' (5-22) |

For a rectangular energy spectrum or an energy spectrum such
as that of the band-pass filter the values of the loss coefflclent
are found by adding the first four terms of the series (5.21). 1
This approximation 1is possible for a range of y values from 0 to 2.0,
where the serles converpes very rapldly. Since 2n+2SC(O) < 2Sc(0)’
then the maximal value of (5.21) is determined by a series with

majorized terms

O
pnr—go Aagor =y Hr).
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which corresponds to the expressions of (5.19) for a loss coefficient
in the case cf wide-band extraneous noise. Figure' 5.2 shows the
graphic dependences of loss coefficiert 8 on parameter y. From

this figure 1t follows that coefficient B beginning at a certailn
value of y > 1.2 Increases very rapidly, which leads to an abrupt
decline in the output signal/noise ratio.

Let us examine loss coefficlent A. Assuming that the inter-
medlate frequency is sufflciently high in comparison to the width
of the reference voltage energy spectrum, then from (5.17) we get
the following expression:

2

i

o
2 L-T!Ta-ﬁ)'—(""znif)"ﬁ'fé;m- (5.23)
amd

The dependence of X on parameter y for the three types ol energy
spectra plotted from formula (5.23) is shown in Fig. 5.3.

loss coefficient A on the
form of the character-

’fTWiTwm'W—V‘ZIF _ Fig. 5.3. Dependence of
Tk
|

0 #_ . i1stic of the nonlinear

RS s e S g wr device: I - rectangular
J Sl ke signal spectrum; II -

c ] spectrum in the form of
I frequency characteristic

| T of band-pass filter; III -
E spectrum in the form of

2 - frequency characteristic
— of oscillatory circuit.

w L F 4

The maximal value of series (5.23) can be found by means of
a series with majorized terms

- £ ¥ s .
z,.=§—m);- (1 + 5g2) =200+ 100 1.
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The values of X obtalned from this curve when y > 2.0 are very
high because of the great welght acquired by second-order terms.

Let us examine loss coefficient u. From (5.16) and (5.17) we
get the following expression for the case of great frequency
intervals:

'l m-9
@ -
| (2) “saSe (fy)
"“TE' W 0
a==

For an energy spectrum such as that of the single oscillatory
clrcult we have

1S (%4) - n
¢ (0) n4x3°
F:.A.E (n—1pm "'+X=-' (5.24)

where X, = fO/Af is normalized 1:*ermediate frequency. As
intermediate frequency increases the sum of series (5.24) approaches
the value of the series with majorized terms

' - (-%.)lloi | ..'
».-o’-'—'TE (CE=NT T I Rl v R (5.25)
=l

Figure 5.4 shows loss coefficient u as a function of the
normalized frequency and parameter y for the three energy spectra
of the signal. The calculations were made according to formula
(5.16) with the four terms of the series considered. The value
of loss coefficlent u for an energy spectrum such as that in the
single oscillatory circuit at high normalized frequency values 1is
shown as dashed lines. No expression was obtalned for loss
coefficient y in a closed form for a rectangular energy spectrum
or a spectrum such as that of the band-pass filter. For the
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band-pass filter type of energy spectrum we can assume that the
future behavior of the curves in Fig. 5.4 can also be determined
by the asymptotic curves,

ML Il 1 [
3 |
-1
- NN 7
10 l\ \ 50
S 2.0
L \ (S
L 7201 b,la.’ ~,
01 ~q5 S
0" 0,51 \ ~1,0
0,21 \‘ \ \z'o
'o“ AI

Q25 Q5 10 20 &0 80 160 fyjar
Fig. 5.4, Loss coefficient y as a function of
the difference frequency value and the charac-
teristic of the nonlinear device: I - rec-
tangular signal spectrum; II - spectrum in the
form of difference characteristic of band-pass
filter; III - spectrum in the form of differ-
ence characteristic of osclllatory circuilt.

5.4, SELECTING PARAMETERS AND
ELEMENTS IN SIMPLEST FUNCTIONAL
CORRELATORS

The number of functional correlator parameters which can be
varied as the system 1s being constructed might include selection
of the nonlinear element depending on the form of 1ts characteristic
and, in a number of cases, selection of the difference frequency
on which the regular component at the correlator output 1is separated.
The correlator parameters should be selected to reduce as much as
possible the effect of extraneous nolse on work. The parameters
can be selected on the basis of relationships (4.13)-(4.34) and
(5.15)-(5.18).

When the spectral density of the signals has a fixed form,
intermediate frequency fo must be selected such that losses in the
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signal/noise output ratio from the detected noise of the referen-ze
voltage are small. From relationships (4.31) and (5.15) 1t is
apparent that the magnitude of coefflicient u, which depends
primarily on the intermediate frequency value, should satisly the

inequality

"
P<-.T,o
e

If the signal is very low 1n power, then we must select a
hirh Intermediate frequency in order to fulfill this inequality,
which 15 not always possible in a wide signal spectrum. In this
cace the use of balanced systems (see § 2.3) 1s of particular
Interest, 1In the output oscillation of an ideal balanced system
there are no harmonic components on the reference voltage frequency
or its harmonics. In an actual balanced system, due to the fact
that the characteristics of the nonlinear element are not identlcal,
the trancformers are asymmetrical, etc., these harmonlc components
are present, although weakened by a factor of p (where p is the
suppression coefficient in the balanced system). In balanced

systems in which special control [tuning] elements are used the
suppression coefficient can be brought to within 50-60 dB [63].

Thus, in a correlator which is balanced relative to the
reference voltage the nolse of the detected reference signal and,
consequently, the coefficlient of losses u are reduced by p times.
With recpect to the Input signal the parallel and sequential
balance systems (see Fip. 2.7) represent "key" systems in the
presence of a hligh reference voltage, and work in time with the
reference voltage, which corresponds to the nonlinear element with
a characteristic of v = 1,

Thus, in calculating the output signal/noise ratio of a
balanced functional correlator we can assume the parameter of the
nonlinear element to be v = 1 and the value of v to be reduced
p times.
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In functional correlators there are semiconductor elements
and devices whose characteristic can be approximated with a
sufficient degree of accuracy by power and exponentlal functicns.
The approximation of the nonlinear characteristic of a semiconductor
diode by an exponential dependence (5.1) 1s correct for a limited
segment of the change in input voltage. Thus, the relationship
obtained in Chapter 5 will be valid for an actual system with a
semiconductor diode in a 1imited range of values for parameter vy.
According to the data of monograph [29] silicon pulse semiconductor
dlodes have a region of the dependence of (5.1) in aa input voltage
below 0.6 V and have a coefficient of v = 20-25. If we assume that
the effective value of the gaussian process 1s on the average 1/3
of that of the greatest peak (which is correct with a prcbability
of 0.97), then we find that the relationships derived 1n Chapter 5
are valld for an actual system with a semiconductor dlode when

y = vo_ < h-g,

Let us estimate possible losses in the signal/nolse ratio for
a segment in which this approximation 1s correct for the semi-
conductor diode characteristic, namely vy = 3. In actual systems
with narrow-band averaging end fllters the energy losses of the
functional correlator cin be determined, if the intermediate
frequency 1s correctly selected, by the loss coefficlent relative
to extraneous noise., For "white" extraneous noise when y = 3
value of the loss coefficient based on (5.19) will be B 230. This
means that at a reference voltage power corresponding to this
value of y the energy losses of the output signal/noise ratio of a
functional correlator will be 24 dB, which is not permissible.

As the reference voltage continues to increase tne character-
istiec of the diode according to [29] is close to an exponential
function with an exponent of 3/2 and, consequently, i1t 1s better
to use an approximation in the form of a half-wave characteristic
of the v-th power. Hence 1t follows that in an actual system with
a semiconductor diode the increase in the loss coefficient occurs
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only up to a certaln reference voltage power. When this threshold
value 1s exceeded the coefficients either remain constant or
decrease in value. For this reason it 1s best to deliver fcrward
blas voltage to the semiconductor diode so that output will be on
the deslrable part of the nonlinear characteristic.

In using a superhigh-frequency diode as the nonlinear element
we must keep iIn mind that the characteristic of this diode 1s close
to square law. Consequently, 1f the intermediate frequency 1s
sufficlently high we need not expect a great decline 1in the signal/
ncise ratio of the difference frequency functional correlator
as compared to the ideal correlator.
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SIXTH CHAPTER

EFFECT OF LINEAR CHANNELS ON
CORRELATION PROCESSING OF NOISE
SIGNALS

6.1. ANALYSIS OF LINEAR
TRANSFORMATION IN CORRELATED
SYSTEMS

Here and henceforth we attempt to study the effect of linear
transformations on the characteristics of 2 correlated system.
Generalized block dlagrams of correlated systems of different types
(Fig. 3.3, Fig. 3.8) contain a filter in a general channel mo and
a fllter 1n correlator channels ml and me. There 1is no mo filter
In systems such as the passive radar and sonar systems. Signals
and nolse pass along two channels contalning filters ml and m2
to the correlator. Systems which store the emitted signal, for
example, systems such as the correlated radar set, have filter mo.
In addition, the channel along which reference voltage 1s supplied
to the correlator is free of noise.

After the presence of a signal has been detected the main
problem becomes that of measuring delay time of the signal in one
channel 1n relation to the other. Let us study the effect of
linear filters ml and m2 on detecting ability in measuring delay in
a correlated system. We will assume that fillter mo does not
introduce distortion. The studled problem is solved by means of
passive correlated systems (see § 3.2), for which our analysis is
also made.
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Figure 3.5 shows the generalized block diagram of a correlated

shift meter during noise signals sl(t) and sQ(t) against a background

of extraneous noises nl(t) and n2(t), which are uncorrelated with
each other or with the nolse signals. The signals and the noilse
are added, passed through the selectlive linear devices ml and m2
with transmission coefficients Kl(if and K2(if) and enter the
multiplier input. At the multiplier output averaging is done by

a narrow-band filter. let us designate xl(t) and xz(t) as the
studied random processes sl(t) and sz(t) transformed by the filters;

yl(t), y2(t) - interference nl(t) and n2(t) transformed by the
filters.

At the multiplier output we get the process

z=[x,(t) + () Ax2(1) +y2(1) )= xix2+ Y1y2 + Xiya + x2fh.

The first term 1s the product of correlated random processes
Xy and X5, and can be written in the form of the sum of the regular
and fluctuating components. The regular component determines the
value of the correlation function of random processes X4 and Xye
The fluctuating component represents noise at the output of the
correlation system, which 1s caused by the random nature of the

signals, 1.e., self-noise., Usually noise of thls type 1s ignored
for two reasons:

1) the band of the averaging filter 1s much narrower than the
energy spectra of signals at the output of the linear filters;

2) 1n processing weak signals the power of the self-noise at
the output of the averaging filter is much smaller than that of

extraneous noise and interference.

Considering the above statements, the correlation function of
a random process at the multiplier output should have the form of
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Ry(e)= (x_.i',)' + -'a.u.'z-y-g.‘" Eﬁ'ﬁu +
+ 09,0 =R, +RR, +RR +RR,. = (6.1)

Let us calculate the first term under the assumption that
signals sl(t) and sz(t) differ from one another only by a time
shift, 1.e., sz(t) = sl(t - 1), Let us represent an input signal
periodically extended in an interval [0, T] in the form of the
Fourler series:

s,(l)ﬂﬁ €5 COS (2xf,! — 9,), (6.2)

where

,'==Il'.==-;-.

while amplitudes €n and phases ¢n are random quantities,

It has been shown [35] that if we examine a group of occurrences

then phase angles ¢n and amplitudes €, are independent quantities.
Here

T
Tl::—_G(")_lr_ []

where G(fn) i1s the spectral density of signal power calculated for
positive frequencles.

If we consider (6.2), then the signals at the linear filter
outputs can be represented in the form of:

Xp(t):= 2 'nK’ (fa) cos l2"ut —P—9 (),

n=0

where p 1s an index equal to 1 or 2 for the channel of filter ml
or ®,, respectively; Kp(f), ¢p(f) are the amplitude-frequency
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and phase-frequency characteristics of linear filters ml and m2
(for corresponding subscripts). '

The constant voltage component at the multiplier output
depends on the delay and 1s determined by the value of the
correlation function of processes xl(t) and x2(t):

R = %%y = Y] G(f) K, (1) K, (1) - cos 2]t +
=l
+ ?. ‘,ll) - (’n)‘

In directing the period for achieving T toward infinity, we come
to the following integral relationship:

FODTRS

R, ==jo<n K, (D K, () cos [2efe-L94) 2, (N1 d].

Note that 1f the spectra of studied signals are shifted, then at
the multiplier output we will have harmonic voltage and 1t will be
necessary to engage the intermedlate difference frequency filter.

It is evlident that if the signal which 1s delayed for time =
1s signal sl(t), then this can be considered in the above equality
by reversing the sign of 1. Further calculatlons are reduced to
integration on the plane of the complex variable, and this sign |

change proves to be essential in the selection of the integration
contour., Henceforth we will assume everywhere that the delay 1s
, positive, and the expression for the correlation function will be
represented in the form of

R\, ()

0.1

) — 9.

} JG(’)K JAD K, (freos [21-[ +
2. (N — o))

J"" (6.3)
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where R,,(1) 1s the constant component of the output voltage of
the multiplier 1if signal sl(t) is delayed by time T relative to
sz(t); R2l(r) is the same, although signal s2(t) is delayed by
time 1 relative to sl(t).

If the energy spectrum of the input signal is much wider than
the pass band of the llnear filters, i.e., 1f in the fillter band
G(f) = GO, then the normalized cross-correlation function of

random processes xl(t) and x2(t) based on (6.3) can be written in
the form of

r, (t) ,( — ",(
’ll (‘) } . JK ", A (" € Izt,- - :J (;: - ;l (;:] d,. (6 . u)

i

where g, and 0, are determined by the relationship s,—-v/gh’qyﬁ
when the index 1s equal to 1 or 2. !

Tt is obvious that when Kl(if) = K2(if) the relationships of
(6.4) give us the expression for an autocorrelation function of a
linear filter excited by white nolse.

Let us assume that random processes S1s S5, Ny, N, are "white"
nolses with spectral power densitles xsl = 852 = Sc’ Snl = Sn2 = Sw' ¢
Signals sl(t) and s2(t) differ by 2 time shift of T, Then, on
the basis of (6.3) and (6.4) the separate terms of (6.1) will be

equal to .

R, = S35, 1),
R, = Se‘l: rizh R, = s": () R, = s"’: ay

R, = S,.,:!: r,(2),

where 9y and o, are the dispersions of the nolse processes at the 4
outputs of filters ml and m2 excited by "white" noise of a single f
spectral intensity; rl(r), r2(T) are the normalized autocorrelation
functions of the nolse processes at the outputs of fllters ml and m2, ?
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respectively, when these filters are excited by "white" noise;
rea(ra) is the value of the normalized cross-correlation function
of processes xl(t) and x2(t), which 1s determined by formula (6.4)
for delay 1 = L

Considering this assumption, relationship (6.1) will have the
form of

R;— 1": :_:': [S:r: (=) + (si + 25:Sw) 1y (z) 7. (<)),

and the corresponding energy spectrum

S: (=13} (S () 8()) +(S® } 28.S,,) j'r, () r, (1) X

x e I".'r,ld_.l.

Obviously the spectaal power density of the nolse, which is
determined by the second term of the expression 1in brackets, will
have an almost constant quantity within the limits of the pass
band of the narrow-band averaging filter, which has a maximal
transmission coefficient in the zero (or dif“:rence) frequency
range., Then the signal/noilse ratio at the output of the averaging
filter will be equal to

s? 2
T, S 7 SR
m / B
l\'+2'§m-)nu I'n(“)’l(’)"‘
. -t

v

®
fravinra

where By==2 1s the effective band of the averaging filter.

M,

The obtalned relationships are then used to analyze the
properties of correlatlion systems with linear filters of different
types.
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6.2. CROSS-CORRELATION FUNCTION
OF PROCESSES AT OUTPUTS OF n-STAGE
LINEAR FILTERS

Let us calculate the normalized cross-correlation function of
voltages ~t the output of linear devices whose transmission
coefficients are analogous to n-stage resonance amplifiers with a
sinrle circult, adjusted to the same frequency for all stages,

L Gt

Ko tify=|1 +i20=le) )]".

where p 1. an index equal to 1 or 2; fl and f2 are the central
frequencles of the fllters; B1 and 82 are the pass bands of each

stage at a level of -3 dB.

It 1s very tempting to use the mathematlcal interration
apparatus on the plane of the complex variable In calculating the
cross=-correlation function of (6.4). Here, however, we must
consider certain fine points assoclated with approximate expressions
used 1n radio englneering for the transmission coefflicients of
linear fllters. The complex transmission coeffliclent for a linear
circuit should satlisfy the relationship

K(—ih =K*(if).

The approximate expressions above for transmission coefficients

of n-cascade linear amplifiers do not satisfy these requirements
for a complex transmlssion coefficlent. In order to solve the
problem of using an approximate expression for the transmission
coefficient which would be valid for the positive frequency range,
let us represent relationship (6.4) in another form. Note that

in the case of narrow-band linear filters ml and @, the lower

2
limits 1in the integrals of (6.4) can be assumed infinite. Then
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ri(%) | Re ‘.“K. (i K’,(")ewd'- . (6.6)
2 e

o (‘) - 8,8y

-
where o,, 0, are equal to a,=‘/ “'|K,(if)|’dl when p = 1; 2,
—

For the sake of abbreviation we write

—i2efs

e
df.

—Re [K,GDK*, 0
I3 -

)em I

We wlll use the first of these integrals to demonstrate our
calculation method. After substituting the value of the transmission
coeffliclents, we get

! l,=Re (——'584)')(
—ifs]e

| BTG |

In integratling on the complex frequency plane we form a contour

consisting of the real axis and a semicircle with an infinite
radius in the lower half-plane. Then, according to the Jordan

lemma the integral for an arc with an infinite radius i1s equal to
zero, while the unknown integral according to the Cauchy theorem
is found from the sum of rema‘nders for the bands 1in the lower
half-plane:

st i

B.B. = (—'.,f-l',
’-=R°( T-) =i X

X g { T \l :
| =ty — -

EELY))
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If we use the Leibniz formula to calculate the derivative of the
product, we get

h=(2 ) () X
xg T fes B, + Bt X
xl|+[2u.—n ]} ~teenny

Xcos [2:;, (n—{—l)arctg'"' "’]. (6.7)

; According to (6.6) the power of the nolse process at the output {

of filter @, is found from (6.7) when £, = 1, B1 - By, T = 0.
Then we pget "
2 n—2
3} = xB,2 It __“(R'L. - T:L' . (6.8)

Integral 12 1s calculated analogously, except that the Inte-
gration contour consists of the actual axls of the frequencies and
the semicircle of infinite radius in the upper half-plane. The
calculations give us

w88, | e (BB '
"—(m = (arw) X
x}] e (xe (B, B X

i+ (R}

X cos [2:[,1 — (14 1) arctg "%—'l:-k)]. (6.9)
o =wB2-tmer (T, o (6.10)

If we substitute the found quantities in (6.6) and designate

T S [Ty (6.11) i
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then for the normalized cross-correlation function of random
processes at the outputs of n-stage linear amplifiers we get
relationships:

'u(’)=e
ru(y)=c

(n— 1) gn-008

2-nét (2,,_.2)! “.*.‘)I-Tl X

—~2eaw/(1 +a)
— 2uve/(l +a)

1 a—|

)(2 -l"l‘—i!— (M)’- (146" (nl)llx
=0

cos [2xx-+ (1 4 D arcig 8] |
X{ oo~ n gt (612)

| where lLi=(n+l—1); I_=(n—I-1).

From these relationships when fl = f2 = fO, a=1, b =0,

B1 = 82 = B = ¢ we get the expresslion for the normalized auto-

correlation function of the noise process at the output of an

n-stage resonance amplifier exclited by "white" noise:

R-]
j =G DA e s (6.13) |
.' =0
!

Now let us examine correlation systems wheose linear blocks have {
nonidentical characteristics. ;

6.3. EFFECT OF NONIDENTICAL

CHARACTERISTICS OF LINEAR DEVICES

A ON THE SHAPE OF THE CROSS-CORRELATION
FUNCTION

The nolse processes at the outputs of linear amplifiers can
be considered narrow-vand. Thus 1t 1s logical to write the
relationships of (6.12) so that they will be represented in the
form of the product of the envelope times the cosinusoldal function.
If we arrange the cosinusoidal factors in (6.12) according to the
formulas for the sum and difference of the angles and use the
expressions for trigonometric functions of multiple arguments in 1
terms of the powers of these functions [13, p. U41], we get:

159




'u“)— ¢ ieciilen) . (n—1)lan-08 3(
“(1)_ _2"‘“. +a) [2° nwl()n_'))'“.*.‘)!n l( )

xRt 11—+ X
lao

l cos2xf,c —

X costelun + ]«-‘m -G+ ]

where

-
o= m—n)m

According to this 1t 1s the envelope which is of the greatest
Interest, since the information contained in the "high-frequency"
f11lling of the cross-correlation function has no practical use.
Below analytlcal expressions are glven for the envelopes of cross-

correlation functions obtalned for particular cases from these
relationships.

1, Single-stage resonance amplifiers (n = 1)

2(-:)—-e IT.‘ 2Va 1

o [TFa TR 1
(1)-—e e ﬂ

where we have x = 2nte,

Calculations made from these relationships fcr certain
coefficlient values of band a and for the shift in resonance
frequency b are shown in Figs. 6.1 and 6.2. In these figures, ﬁ
as well as all subsequent filgures, values of r12°r lie te the
right of axis t = 0, curve rzlor is plotted to the left of this

axis. It follows from the figures that the envelope

1) retains a maximal value at point T = 0 at any values of 1
a and b;




2) has no derivative in the case of zero delay;

3) decreases in magnitude but does not change its shape when

there 1s only a mutual displacement in the resonance frequencles
of the amplifiers (a =1, b = var);

4) becomes asymmetric with respect ‘-~ zero delay when the pacs

bands of the linear amplifiers differ one another (b = 0,
a = var).
”
r Fr ) -
) ,." A
Y] | .
a
D-' nset
) a
' a=q6
W g. 0 /- A&
() ' os
4 »0 12
./ e N
o A ) 20 2 ’ 0 2xtve : .
Fir, 6.1, Envelope of cross- Fig. 6.2. Envelope of cross-
correlation function (linear correlation function (linear
distortions created by single- distortions created by single-
stare resonance ampliflers). stage resonance amplifiers).

2. Two-cascade resonance amplifilers (n = 2)

0 { (73] }x
f;';(") exp [1-;:7] c

X‘E;W R EXIE X
(I +apy T+ ¥p

In Figs, 6.3-6.8 the envelopes of the cross-correlation functions

for n = 2-4 are plotted fer certain coefficient values of band a
and for the shift in resonance frequency b. Based on these graphic
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Fig. 6.7. Envelope of
cross=correlation function
(1inear distortions created
by four-stage resonance
amplifiers).
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correlation function (1linear
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resonance amplifiers).

dependences and the study of the envelopes the following conclusions
may be drawn regarding the nature of the envelopes of the cross-
correlation functicn when n > 2:

1) The envelope has a rounded peak at the point of maximum
correlation;

2) the appearance of Jjust one mutual shift in the resonance
frequencies leads to a decrease in the values of the cross-
correlation function and to a considerable "flattening" in the
curve In the region of maximum correlation. In the case of
significant maladjustment (b > 1) the envelope has a slight two-
humped nature;

3) if the pass bands are nonidentical (a # 1), this leads to
a shift in the maximum of the envelope along the X-axls and to its
asymmetry relative to the coordinate maximum.

)y At any values of nonidentical pass band coefficient a or
resonance frequency shift coefficient b within the limits of
-1 < b <1 the envelope has a single peak and falls asymptotically
to zero as delay Increases. These graphic dependences have been
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plotted for b > 0 and a < 1. This was determined by the fact that
the envelope of cross-ccrrelation function, as we have learned
from the above relationships, is the mirror [image] of the Y axis
with a 1/a change in a and does not depend on the sign of the
coefficient of shift in resonance frequency b.

6.4, EFFECT OF NONIDENTICAL
CHARACTERISTICS IN LINEAR UNITS
ON ACCURACY OF MEASURING DELAY
AND OUTPUT SIGNAL/NOISE RATIO

The shift in the maximal correlation point, which 1s caused by
nonidentical characteristics in the linear units of a correlation

system, leads to systematic error in measuring the delay of nolse
: signals in channels. As we learned from the materials of the
preceding section, 1f the number of cascades n > 2 and the pass

e S i e

band of the fllter ml is greater than pass band mz, then the maxlimum
of the envelope willl be observed at a certain additional delay T,

3 in channel ml. The magnitude of additional delay can be found from
the graphic dependence of Fig. 6.9, which shows the systematic
error of measuring delay as a function of the coefficlent of
nonidentity of a and b. When a > 1 the maximum of the envelope

is observed at a certain additional delay 1n the amplification
channel m2. The magnitude of additional delay may be found by
means of the same graph, although in thils case we must use the
reverse quantity for the coefficlent of nonidentity of the pass
band. As already mentlioned, when n = 1, there is no systematic
error. This 1s a "degenerate" case, as 1t were.

Determining the signal/noise ratio at the output of the
averaging filter [formula (6.5)] involves calculating the integral

?'u (‘)’a(‘)d".

—-

where rl(r) and r2(r) are the normalized autocorrelation functions
of the nolse processes at the outputs of ml and m2, respectively. ‘
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By means of relationship (6.13) we get

S" (x) r,(x)de = [(_(._,"":_lz),"_]'x
-5

A=l a—| ]
14tk ' i
><2;2]7ﬁﬁifJ:x :

X Ie_. s (Bt B (2% |2 B,)- (2x || B,)* 0.5 X é

-

Xl¢°52'(f.-—I.)‘+¢°52'(f:+f.)*ld‘-

where k_ = n - k - 1, k+ = n+ k- 1.

In integrating we 1gnore the participation of the second
term in the integrand, since in view of the narrow-band nz:ure of 1
the linear amplifiers fl + f2 >> B1 + B2. In the 1ntegral we
exchange the variable z = nt(Bl + B2). Then, considering that the
integrand function is even and preserving the system of coefficient
designations of (6.11), by means of the table integral [13, p. 504]
we get 1

165




£

[r o mgl [

g
a—=1a-1 TR 2 \lL % \h
Xz .—,—"r;-’rT I a) (TTFT) X
=0 A=0
¢ Py —"*:).’_. cos |ipy -~ 1) arc1g b, (6.14)
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where P = 2n - k - 1.

The signal/noise ratio at the output of the correlation system
in the case of maximal correlation and identical characteristics
in the linear unit (i1.e., when B1 = 82 = c,a=1, b =0 and Pog = 1)
w11l be equal on the basis of (6.5) and (6.14) to

e ST

where

"—m +“ ”I’u "'2)'
(ln-l)' zg TR TH] ".
=l .

From thls expression it follows that the signal/noise ratio at the
system output 1s proportional to the ratio of mean arithmetic

band pass ¢ to the effective band of the averaging filter By and

the square of the signal/noise ratio at the input (at low input
signals when S_ << Sw). Coefficient £ in (6.15) takes into account,
depending on the number of stages, the narrowing in the band pass

of an n-stage resonance amplifier as compared to a single-stage
amplifier.

The signal/noise ratio at the output of an averaging filter
in the case of nonidentical parameters in the linear amplifiers
willl be represented as an analogous characteristic in the case of
total identity (6.15) and as a certain loss coefficient ¢ as
follows:
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P,
e=x(p R (6.16)

Loss coefficlient k can be determined from equality (6.16) if
we consider (6.5), (6.14), and (6.15)

RN
Y Y T X
X — =0 k=) -

P TR 20 _\b( 2 \F oy
GCIRX (|+a) (|+¢)
=0 ’

. X (Pay — 20!
B - 2) - . (6.17)
X (! .:_p;:,lr..)—lm cos [(pay — 1) arctg 3]

Note that loss coefficlent k depends on the wvalue of the normalized

crcss=correlation function ria, which 1s determined by delay in

the nolse slgnal of one channel relative to another. Detecting the

slrnal and measuring delay are usually done at a maximum value of
the function r., or in passing throupgh the maximum. At this point

it makes sense to find the signal/noise ratlio. For this case
Flgs. 5.10 and 6,11 show the graphic dependence of loss coefficlent
k on the number of stapges n and the 1dentity coefficients a and b.

From the figures 1t follows that losses in the signal/nolse ratio
are not great, even when there 1s considerable nonidentity in the

parameters of the linear units of the correlation system. |
2
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Fig. 6.10. Fig. 6.11. |

Fip. 6.10. Deterioration in signal/
noise ratio in the case of linear dis-
tortions in the studled processes.

Fig. 6.11. Deterioration in signal/
nolse ratio in the case of linear dis-
tortions in the studled processes.




The obtained relationships can be used to determine the
requirements of linear units in correlation systems and to analyze
measurement error.

6.5. MEASURING CORRELATION
FUNCTION IN THE CASE OF DISTORTION.
IN ONE CHANNEL

Let us examine the case of a correlation system with a filter
in one of the channels of the correlator (block diagram of
Figs. 3.3 and 3.8) which has a transmission coefficient identically
equal to one. In this cace only the filter in the second channel
will affect measuring the correlation function of the input process.
Such operational conditions 1n the first approximation may occur
in correlation systems with memory [storage] such as, for example,
an active noise radar set. The recorded signal in thls case has
great intensity and 1s not subjJected to substantial transformations
in the channel prior to the correlator.

We will assume that the studied random process has a spectral
density with a shape analogous to the frequency characteristic of
a simple oscillatory contour with a resonance frequency of fu and
a bandwidth of BC, l.e.,

o= {4 (e}

R(v)=¢"""" cos2nf ..

Let us examine the error of correlation measurements for a
case where fllter m2 has the selectivity of a simple oscillatory
circult with resonance frequency fu'fcn and band pass B”. Quantity
fcn represents a shift in the tuning frequency of the resonance
amplifier in relation to the middle frequency of the signal spectrum.
The transmission coefficient of the fllter is determined by the

relationships
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K. (I)={l + [NI_‘—@#]-}-m.

#a (f) = arcig ﬂ';’ij:ﬁ_

If we introduce the original data into formula (6.3) and
designate B,-:q,B,, f.‘=b,9§-, then after integrating, for the
normalized correlation function we get the expression

ram= T (284 (@ — 1) 1] € X
X €08 2nfyt +- (26, (2, — 1) — bJT} € sin 2uf 1), (6.18)

r =23 (a4 1)11 - 280 | ™Mo
X €05 28fys -+ (25, (@0 4 1)+ bal 1) "™ X
| Xsin 28,1 4-2(268 — [ "% ¢
X cos2x(fy— fen)® — “.a.e--u,a. X
Xsin2x(fu — [ox) %)

where we have [1=b)+al-1, L==4 (8} 4a® —1p, Quantity K 1s a

normalized factor which considers the deformation of the energy

spectrum of the studlied voltage by fillter mg. This coefficient
ic equal to

— 1
K'—Va.mzua.—un

Let us analyze the individual cases of distortion under the
condition that the frequency shift fca = 0, Then

K,= "LTH—- (6.19)
»

fy= VE."T'I e "% cos 2ufys,
‘,e-l‘(ﬂ---"..

Mg ="ry — l__‘._a.—l- (6.20)
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Analysis shows that the envelope maximum of the cross-correlation
function is observed at a certain additional delay-'rM in channel
ml, which 1s determined by the relationship

= T -

In correlation measurements it 1s important to know how
voltage changes at the correlator output depending on maladjustment
of the distorting filter (i.e., the nonnormalized correlation
function). Let us analyze a case where the normalizing coefficient
is determined by (6.19), i.e., does not depend on the coefficient

of maladjustment bH, while the band coefficlent a, = l. From
(5.18) we find

Ol Al T ALY

14} —v8,
wVirn . X

ry=

1
XY 4 FAF6) = AV 41 B cou@efurt + 80 X
' X cos (2%]43 — W), (6.21)

where

S e

$ =arcig -b!-,

4 + U} + 2bg sin 2rfcat — 4 cos 2nfyy ®

d=are® —— TR

By aralyzing relationships (6.20) and (6.21) we find that if
there 1s & distorting filter in one channel of the correlation
system th2 followlng takes place:

1) shift in maximum of output voltage along axis t, which
occurs as a result of the group delay time of the distorting
filter, and a decrease in the magnitude of the maximum, which can 1
be explained by the nonlinearity ot the phase characteristic;
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2) the envelope of the correlation function is asymmetric
relative to the maximum; the asymmetry becomes noticeable when the
band of the distorting filter is equal or is narrower than the
band of the energy spectrum of the studied process;

3) there is a phase shift in the "high-frequency filling" cf
the envelope of the correlation function.

In the particular case, which is characterized by the relation-
ships of (6.21), we find that for r5q phase shift 0, depends only
on the magnitude of maladjustment and does not depend on t. For
s phase 0. depends on maladjustment fcg and for different values
of T it has a different value. Figures 6.12 and 6.13 show the
dependence of the envelope of the correlation function on the
dinensionless quantity x = vTBC for the two particular cases
analyzed. The experimental values were obtained by means of a
difference frequency correlator, whose simplified system is shown
in Fig. 2.5. Deviation of experimental points from theoretical
points resulted primarily from the additional linear distortions
introduced by the delay line.

Fig. 6.12. Envelope of cross-correlation functions in
the case of linear distortions in one channel: 1 -
envelope of autocorrelation function of single oscilla-
tory circuit; 2, 3, 4 - envelope o° correlation function
for parameters a, = 22 sy s ihe bu = 0.
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Fig. 6.13. FEnvelope of cross-correlation function in
the case of llnear distortions 1n one channel: 1 -
envelope of autocorrelation function of single o cilla-
tory circuit, no distortion; 2. 3, 4, 5 - envelcpe of

correlation function for coefficlents bu = 0; 1; 2; Ub;

aual.
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SEVENTH CHAPTER

CORRELATION PROPERTIES OF FILTERED
PHASE-MANTPULATED SIGNALS

7.1. AUTOCORRELATION FUNCTION

Linear distcrtions In correlation systems can be caused not
only by filters in the correlator channels, but also by the
general fllter mo (see Chapter 3). Distortions of this type occur
in systems in which the emitted and reference signals are formed by

means of a single code source,

Our definition of a phase-manipulated signal i1s a high-frequency
~3cillation with a frequency of fc, whose phase is manipulated by
0 and m according to the law of change in symbols of a binary
pseudorandom sequence (see § 1.3).

In this chapter we estimate the effect of lirnear filtration
on the correlation properties of phase-manipulated signals. We
study cases In which the frequency of the carrier 1s great as
compared to the width of the energy spectrum of the sequence.

The correlation function of a periodic binary sequence is
determined by the relationship [12, 25]

| ) werre
- — —}v— npu 1, < <] <O,5NL,. 0Ly

[Apu = when]
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while the energy spectrum can be represented in the fcrm of delta-
functions with weight ccefficients, which are found from the
Fourler transform by autocorrelation function (7.1). If we perform
the calculations, we find

» sin i
s.([)-z ”:;'( :)3(,—”’-)-7'{‘(”- (7.2)

an—e L2

where fu = l/Nt0 is the repetition frequency of the sequence.

From this expression we find that the envelope of the energy
spectrum vanishes when n = +N, +2N, .... Then, the wldth of the
spectrum with respect to the first zeros »f the envelope 1is

| Bu=2N’u=',—2.'=2lnno

where fraur is the frequency of the clock pulses of the sequences.

The energy spectrum of a signal which 1s phase-manipulated by
means of a periodic sequence 1s determined by the relationship

Sc(f) =0.5(Sa(f—fc) +Snlf+fc)) (7.3)

The autocorrelation function of a pseudorandom signal passing

through a linear filter with an amplitude-frequency characteristic
K(f) 1s found as the Wiener-Khinchin transform of its energy

spectrum at the output:
Re=75- TS (K (ye™""df
k 1]
—

where kH is the normalizing coefficient. 1

If here we substitute (7.3), then after replacing the variables
in the integral and transformations we get i
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Ry ._._ 'cos2rf,-.' js (DK + o) cos 2 fxdf —

— sin2rfcx j Su(K* (] + J<)sin 2:;141}. (7.4)

Let us examine the simpler case where the frequency character-
istic of the linear filter 1s symmetrical relative to 1ts central
frequency, which 1s equal to the carrier frequency of the pseudo-
random signal I‘C. Then, from (7.4) we find

Ry (t) = rq () cos 2afer,

where f
reft)= S o () K3 (f - fe) cos 2efxdf. (7.5)

-~

s Let us substlitute 1In the expression for the envelope of the
correlation function of the phase-manipulated signal (7.5) the
relationship of (7.2) for the energy spectrum of the sequence.
If we use the property of the delta-functions in calculating the

b=

L

Intepral, then after tirigonometric transformations we get

it

L ro(?)= ’(Ie) Nl ! 2 x

A=)
K ’f;'—+’c
X (\,','. )[cos B 05cos 22 (14-0)—

—0.5cos ”‘”(l—o)]} (7.6)

wrere § = 'r/tO 15 relative delay time,

From thils relationship when K(ﬁ"’--{-h)ml it follows that the
L]

correlatlon function of an undistorted pseudorandom sequence is
expressed a2s the series
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'u(o)-ﬁ'"*'Nt‘ E ra [cos T. -

~ 0,5 cos 3% (1 -0) — 05cos (1 - ). (7.7)

which by means of the series [16, serles VB-1] ]

2 cosnc __ nchax—ar) |

n e 2asham

1s reduced to the expression

V2L npn <1, 1
’“‘°)= 1 (7-8)
- npi | <[§|<O5(N —1).

If we consider the symbols which we have introduced, then
relationship (7.8), as one might expect, coincides with (7.1).
When calculating (7.6) it 1s convenient to use the function

s o ()

','4(9)-:2-—— R (IT. (7-9)

Function (7.9) contains only cosinusoidal terms and, consequently,
it 1s even and periodic with a period of enep = N, Then, from
(7.6) we find that the envelope has the following properties

ry(8)=rg(—0), ro(0+N)=ry(0). i
o (04 mra (1~ ). |

Thus, we are studying the envelope only on section 0 < 6 < N/2.

In the overwhelning majority of cases ¢f synthesizing series
[16] the analytical expression y(8) in a closed form can be used
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successfully only on section 0 < 6 < N/2 1n view of the difficulty
of writing this function with a single analytical -expression for
the entire axis 6. Therefore, the envelope of the autocorrelation
function of the filtered phase-manipulated signal of (7.6) can

be represented as:

ro= 5 ISR p - 050041 -

— 0,54 |t — ) (7.10)

when 0 < 6 < N/2.

7.2. PARTICULAR CASES OF SIGNAL
FILTRATION

Let us examine the influence of the passband of several
specific types of filters on the autocorrelation function of a
filtered phase-manipulated signal, whose carrier frequency
coincldes with the central frequency of the filter.

1. Fllter with Single Oscillatory
Circuit

The amplitude-frequency characterlistic of such a linear
filter 1s determined by the expression

K=t + 2051 ”-m;'

where B is the passband at a level of -3 dB, The square of the
amplitude-frequency characteristic is represented in a form which

can be easlly studled

ol

where i

w )= (14 50 (7.11) ]
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The dimencsionless coefficient a binds the parameters of the

fllter and the pseudorandom sequence. It is equal to the ratio of
half of the passband of the filter to the clock frequency of the
pseudorandom sequence. L2t us substitute (7.11) in (7.6) and
break down the rational number which appears here into simple
terms. |

If we group the terms, then for the envelope of the correlation
function of a phase-manipulated signal filtered by a single
oscillatory circuit, we get the f>llowing expression:

[ )
2 __ g NI ) o
o (8) A .;;-‘,.-g nt lcos-ri-
i =~ 0,5c0s 22 (1 1 0) - 0.5 cos 27 (1 —o)]—

«»
14! ! 2 20
T 2 e eI [°°S T8 058 (14-0) -

. =05cu () -0)].

By means of formula (7.7) this expression can be represented
in the form of

oo (e 2O t0 (0 (7.12)

where the normalizing coefficient ks“, which 1s determined from
the condition rOH(O) = 1, is equal to

k‘:-::-"‘Pu(O). (7.13)

Function poﬂ(e), which indicates the degree of the effect of the
single oscillatory circuit, 1s equal to ‘




o
N + | ] en °
Pox (0)_ 2 n? - al\? [COS N ’—

—05cos (14 6)— 05cos 22 (1 - 0)]

We use a series [16, VB=-1] to simplify the obtained expressions.

Let us also consider that coefficlient a in practical systems
has an order of one, while the length of the sequence has an order
of hundreds and thousands. When aNm > 5, which occurs in the
majority of cases, we can write the following approximate

relationships (error does not exceed 0,005%):

cthaNe= 1, .
sh2ra-- cthaVe2si®ra ~ | e,

‘‘nsidering these approximations, we get expressions for the function ]

~OH(0):

P (0)----'-‘;-5,-':~ (e — ™™ ch 2eal), (7.14)

b) 1 < 8

[N

N/2

dhiashbhes

2w (0)= —-—'-"—l sh? rae ™", (7.15)

The envelope of the autocorrelation function of a filtered
phase-manipulated signal for a sequence length of N = 127 has been
plotted 1n Fig. 7.1 for several values of band coefficient a. Shown
for comparison 1s the autocorrelation function of the undistorted
binary pseudorandom sequence of (7.8). These dependences indicate
that the envelope:
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1) has a very rounded peak at the point of maximal correlation;

2) 1s expanded along the X-axls (the lower the value of a, the
rsreater this expansion);

3) monotonically falls with an increase in 6 toward the
established 1limit.

- Q\ «!

3
Qs

0 arat af ot 0 U 0,

Fig. 7.1. Envelope of correlation
function of phase-manipulated sig-
nal which ha: pasced through a
single osclllatory circuit.

2. Bandpass Fllter of System of
Two Identically Connected Circults

The amplitude-frequency characteristlic of a system with two
1dentical connected circults 1s determined by the expression

K m-{[wgﬂ]‘w(l ~ )X

1
Xl?";’o) ]'+(| _!_pe’a} T.

where B 1s the passband of each circult of the filter on a level of
-3 dB; p is the coupling factor.

The square of the amplitude-frequency characteristic 1s
written in the form

180




k(s +1)=[(Fr )+

+20-9)(5x) +0+27] (7.16)

Coefficient a 1s determined just as in the precedins case
[formula (7.11)].

Expression (7.16) 1is substituted in (7.6). If we expand the
raticnal part into simple factors and group the terms with (7.7)
conslidered, then for the envelope of the autocorrelation functilon
the relationship

Pex (0)_ re (9) ;.PCI L)) ( TR T )

where the normalizing ccefflcient 1s equal to

k:‘=|_9c-(0)' (7.18)

whlle function pCH(e), which Indicates the degree of influence of
the bandpass fllter, 1s determined by the expressilon

Nl n 42 (3N (1 —pY)
Pox (8)="—— Rt 2 W 2NN (=) F (1+7°) 3V) X

n=|

x[ cos 27 0 — 05c0s 202 (1 4-0) —

~0,5¢cos 22 l-e)] (7.19)

In order to synthesize the series (7.19) let us examine the
following function:

N nt 4 2(aN)* (1 = p*)
*(6)'_’2 n‘+2(:‘V) ( —p')'l'"‘("" )(.‘ ).

:(uxj%Lt
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We will use series [16, VK-1, DZh-17 in the following form:

nt cos nx = = x
(B F Y a0~ 2(F—dY) °

;( tch;(x-—u)__; dchd(z—-u)-'
[ shen Y _' ’

[ _J
cus nx i i ]

TﬂWI—Tﬁ)‘”T—T“[ch—@—'
n=l
t __ sche(x —n) + rchd(x — n)
2cshen 2dshdr

| By means of these series function y(8) after certain transformations
can be written iIn the form of

L]
v(O)= GNP (TF P eh 33V —cos el ) X
X3 - p’)p|sh(2aN= - - 2ra0) cos 2raph 4-

-} sh 2=26 cos (2aNpr — 2r2p)] (1 - 3p*) X
X|ch(2aN= - 2rab)sin2zaph - ch2z20 X

X sin(22Npx -- 2xaph)]}.

Althoupgh the obtained cxpression 1s accurate, it 1s nevertheless
awkward. In cases of practical interest aNm > 10. Thus, we can
use the following approximate formulas, which are valid when

0 <8 <N/2:

ch 21A’pt —- Cﬂslepu ~ 0'5e’|Vp| )
sh (21N1: = 2m0) ~¢h (2,”,::_ 2‘._3’) —

"~ 0.5;:!'\""". .

Considering these approximations for function y(6) we get the
following expression:

YO = rprrgpy 18— P)ee ™ cos2eapt+-

+ (1~ 3p*) e ***¥sin 2xaph),
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while the series (7.19) for the two intervals of change in 6 are
written as follows:

a)Oieil

rex ()= i (¢ cos2raph |3 — ) X

X(1 - 0,5¢7* cos 2r:p)— 1”' ¢ sin 2up]+
e ™ sin2nph l?+P' e~2**sin 2rap 4
-I--'——:L (1 — 0.5¢ ™ cos 2np)] -—

¢ cos 2rap +

e?** cos 2raph [3 - (4

+ —'.IL;’—"— e " in 2:apJ - e**"sin 2zaph X

X 2 ;p'e"" sin2r2p - ' :,—p”" *cos 21upJ } . (7.20)

b) 1 <86 < N/2

L3R A le 28 o5 2raph X

2ex ‘0)= =V (1 ¥ pY) ‘

[(3 P - - ch2z2 cos 2rap) 4}— 1" X
X sh 2rasin 2t1p] +4-e " Ysin2raph X
/([(p -- Jsh 2r2sin2zr2p 4 ——— ' “”' X

(I —ch2ncos2mp)l}. (7.21)

Figures 7.2, 7.3, and 7.4 show the envelopes of the auto=-
correlation function of a phase-manipulated signal which has passed
through a system of two identical coupled circults under different
values of the band coefficlent a, coupling factor p, and sequence
length N 127. Analysls of these curves shows that:

1) for any values of a or p the envelope has a very rounded
peak at the point of maximum correlation;
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Flg. 7.3. Envelope of correla-
tion function of phase-
manipulated signal whieh has
rasced through a system of two
coupled circuilts.

Fig. 7.2. Envelope of
correlation function of
phase-manipulated signal
which has passed through a
system of two coupled
circults.
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Fig. 7.4, Envelope of correla-
tion function of phase-
manipulated sigrnal which has
passed through a system of two
coupled circuits.
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2) for a coupling factor (p = 0.5) which is less than critical

the envelope slowly declines with small oscillations toward an

established value; the lower the passband of the filter (the lower

the value of a), the greater will be the expansion in the main

lobe of the envelope;

3) if coupling 15 greater than critical (p = 2), there is

virtually no expansion in the maln lobe, although thereafter there

appear negative and positive spikes, which are comparable at low

values of a to the value of the correlation function when 6 = 0;

) the case of critical coupling (p = 1) represents an

Intermediate between the two above.
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3. Ideal Bandpass Filter

Let us examine the extreme case of filtering a phase-manipulated
signal in which the ampliitude-frequency characteristic is close to
the characteristic of an ideal bandpass filter:

U npu [f— el <5

K(f)= (7.22)
0 npu |f—[d> 5
[npu = when]

As already demonstrated, the energy spectrum of a perilodic
pseudorandom sequence is discrete in view of the regular nature of
the process. This fact creates some inconvenlence in our study on
the behavior of the correlation function with changes in the passband
of the filter, since the spectrum samples in this case should
theoretically be cut off by the characteristic of the ideal filter
in a jump. Here it should be mentioned that this approximation cf
the frequency characteristic does not correspond to the one which
is physically attainable. The steepness of the slopes of the
frequency characteristic of an actual filter is always finite,
while within the transmission band the fillter will always have a
nonzero transmission coefficient on the finite frequency section.
Thus, it 1is desirable to use an approach in which the spectrum of
the pseudorandom sequence will be unbroken and continucus, which
corresponds to the nonperiodic correlation function.

Let us examine the correlation function of a periodic pseudo-
random sequence in the form of the sum of the funections, i.e.,

ru(?)=——+ Y e —ine), (7.23)
I=—a
where
N4 o 1=
r--(z)-_—{" N"'(' 721) w05 St. (7.24)
0 at other values of T.



The energy spectrum which correcponds to the correlation function
of (7.23) will have the form of '

Su(f) = _l(f)+ L "'""‘S“(’), (7.25°

{=—~co

~H

where the spectrum 0" (f) corresponds to the correlation function
of (7.24), 1In this case the envelope of the autocorrelation function
f the phase-manipulated signal which has passed through the 1deal

filter !s equal to

)=y [SuDRN 1) o=
=—co+ .... Y) talz—nr,). (7.26)

L la—a

where k:: 1z the normalizing factor, and the function pHO(T) is
cqual to

o)== | SR (-4 1) df =

o™

Soo(f) e df =

v

N
*Te

- I }r" (x) cos 2sf.x cos 2 f+dfd x.
%-u

Integrating thls expression involves no theoretical difficulty.
After cubstltuting expression (7.24) and introducing, as before,
the dimensicnless band coefficient a = (Bto)/2, we get

20y (6) = T3k

‘ 2x20) 4-
-+ 0[Si(2r2 4- 2720) — Si (2x2 — 2720) — 25i (2%20)] —

_%sinluzcos&uo}, (7.27)
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&
where SLx_:J’T”dy i1s the intepral sine; 6 = To/tO is relative

delay time.

For rather lonr sequences the envelope of the correlation
function of the filtered phase-manipulated signal 1s practically
determined by the zero term of the sum of (7.26) alone. For this

case we have

us ()
r...&0)=—AT'*..-;-+L::(...—). (7.28)

¢

where the normaliziny coefficient k: equals

P = — a0 =— 4+
+g(‘§}v*nil—)[5‘(2m—;';sin'u]- (7.29)

The envelcpe of the normallzed autocorrelation function of a signal
which 15 passed throupgh the 1deal filter 1s shown in Flg. 7.5 for a
cequence length of N = 127. The distingulshing feature of these

curves as compared to the two above 1s thelr slightly damped nature.
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Fig. 7.5. Envelope of correla-
tion function of phase-
manipulated signal which has
passed through an 1ldeal filter.
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7.3. CHARACTERISTICS OF ENVELOPE
OF CORRELATION FUNCTION DURING
SIGNAL FILTRATION

In studying the envelope of the correlation function of a
signal we are also interested in such parameters as the width of the
main lobe of the correlation function, the positiorn and level of
the side lobes, zud correlation time. Let us examine the nature of
change in these parameters during filtration of the signal. The
high-correlation range can easily be characterized by a wide
correlation function, which we will define as a time segment
calculated from the value of the envelope maximum up to the moment
in time corresponding to a level of 0.5 (=3 dB) from the maximal,

In order to obtain a gocod estimate of potential discrimination

we will determine correlation time. 1In many cases correlation
time Is understood as the time segment calculated from the maximal

ilue of the correlation function up to the moment and time at
which the value of the correlation function is less than a3 pre-
assigned value (for example, 0.1, 0.01, etc.). This determination
of the correlation time 1= most frequently used for signals whose
correlation function asymptotically approaches zero. The correla-
tion function of a phase-manipulated signal does not have this
property. Characteristic of this signal is the presence of
residual, side lobes, whose magnitude depends on the length of the
sequence. It has been shown that the envelope of the autocorrelation
function of a phase-manipulated signal falls toward an established

<

alue when delay € Increases. Analysis of the formulas of (7.12),
(7.17), and (7.28) shows that this established value is equal to
-l/ﬁkﬂ, where kH is the normalizing coefficient for each type of
filter, respectively. Thus it makes sense not to stipulate in
advance the reference level of the correlation function in
determining correlation time but to consider it dependent on the
established value. Let us determine correlation time as a time
interval between the maximal value of the correlation function and
the moment corresponding to the condition that the correlation

188



function lles between zerno and twice the value of the established
quantity. In determining the magnitude of negative and positive
splkes we will find their absolute value and location on the time
axls by counting from the maximum point of the correlation function.

1. Width of Main Lobe

In order to find the width of the envelope of the autocorre=-
lation function of a flltered phase-manipulated signal we must find
the root of the equation

r@.(olu) = +0,5|

where em 1s the unknown width; rm(e) 1s 1he analytical expression
of the envelope, which for the studied types of filters is
determined by (7.12), (7.17), and (7.28).

Analysls shows that the obtalned equations are transcendental.
The results of the graphic solution are shown in Fig. 7.6. Curves
expressed as a broken line are asymptotic curves, to which the
unknown values of eLU strive at low values of a. Each of these
curves descrlbes half of the wldth of the correlation function at
a level of -3 dB for the random process obtained when white noise
1s passed through the studied linear filter.

Fig. 7.6. Change in
wildth of correlation
function envelope during
filtration: 1 - single
osclllatory circuit; 2,

i 3, 4 - system of two
/G coupled circults for 3
s coupling factors of 0.5, :
N % 1, and 2; 5 - ideal
filter.
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From these graphics representing dependences we find that for
the studied types of filters the widening in the correlation
function when a > 0.6 is not great. For small passband values,
when a < 0.4, the widenlng is substantial, and the curves rise

steeply.
2. Correlation Time

From determining correlatlion time we find that this 1s the
greatest value of the roots of the two equations

7o) =0, (7.30)
) =— g [

The colution of these equations based on (7.12) and (7.15) for the
envelope of the autocorrelation function of a phase-manipulated
signal which has passed a single oscillatory circuilt provides the
fcllowing quantity for correlation time:

] (V4 1)tz
o‘ J— .2_;-.‘. ln -»-—-——}.';——"" ( 7 . 31 )

For a bandpass filter the equations of (7.30) are reduced on the
basls of expression (7.17) to the following:

| (7.32)

?cl‘ol)'—:'.\'T' ‘ '
P.!‘ol,ﬂ—'.‘\?‘w ’

where ocﬂ(e) is determined by realtionship (7.21). Finding
correlation time indirectly from these formulas leads to the
solution of an awkward transcendental equation, whose approximate

root value 1s unknown. Let us estimate correlation time from the

second-order envelope (envelope of the autocorrelation function

envelope of a filtered pseudorandom signal). We will represent
function pcﬂ(e) [(expression (7.21)] in the form of the product of
the exponential function and the cosinusoidal
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Pex (0) == Ac ™" cos (2r2pb —e), (733)

where
RO S A
A= " AzaNp X
K V(1 = chi 2ra cos 2rap)* Lsh® 2z sin® 2zap,
1 -3
—(3 -~ p?)sh 2z2sin 252p - -—-;—E- (1--ch 2z2 cos2zzp)
&= arclg - BT s
(3 — p*) (1 — ch 2za cos 2z2p) + ——-p;‘-p- sh 2za sin 2z2p
Then the egquation for finding correration time from the second-order
envelope will have the form of
29 |
P\ - %
de N
Hence the correlaticon tlime of a signal which has passed through a

system consicting of two coupled clircults 1s determined by the
relationahlp

= L MW - A 0 (7.34)
4 ) n3 P

It has been demonstrated that the envelope of the correlation
function of a phase-manipulated system which has passed an 1deal
bandpass filter has an cscillating, slightly damped naturae., In
this case correlation time is determined by the same method as used
in the case of a bandpass .llter, i.e., from the second-order
envelope. The necessary calculation work with respect to (7.27),
(7.28), and (7.29) is done on the electronic computer. The
results of processing these data and the correlation time values
for the two pseudorandom sequences N = 127 and 1023, calculated
according to the formulas of (7.31) and (7.34), are shown graphically
in Fig. 7.7. In Fig. 7.7 the curves corresponding to a bandpass
filter at coupling factors p = 0.5 and 1 are practically between
curves 1 and 2 and are theretore not expressed.
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ol 11} - Fig. 7.7. Change in
. ‘ correlation time -of
” phase-manipulated sig-
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