TWO COMPUTATIONALLY DIFFICULT SET COVERING PROBLEMS THAT ARISE IN COMPUTING THE l-WIDTH OF INCIDENCE MATRICES OF STEINER TRIPLE SYSTEMS
D. R. Fulkerson, et al

Cornell University

Prepared for:
National Science Foundatior.

November 1973

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springtield Va. 22151

DOCUMENT CONTROL DATA - R\&D

(Security closaification of title, body of abstract and indexing annotation must be entered whin the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate Author)
Cornell University
Department of Operations Research
Ithaca, New York 14850
2. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report
5. AUTHOR(S) (Last name. first name, initial)

Fulkerson, D. R.; Nemhauser, G. L.; Trotter, L. E., Jr.

10. AVAIL ABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution is unlimited.
11. SUPPL EMENTARY NOTES
12. SPONSOKING MILITARY ACTIVITY

Mathematics Program
Office of Naval Research
Arlington, Virginia 22217
13. ABSTRACT

Two minimum cardinality set covering problems of similar structure are presented as difficult test problems for evaluating the computational efficiency of integer programming and set covering algorithms. The smaller problem has 117 constraints and 27 variables and the larger one, constructed by H. J. Ryser, has 330 constraints and 45 variables. The constraint matrices of the two set covering problems are incidence matrices of Steiner triple systems. An optimal se:rtion to the problem:/ that we were able to solve (the smaller one) gives some new information on the 1 -widths of members of this class of $(0,1)$-matrices.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

士
DD
FORM
1 JAN 64
1473

Unclassified

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete report title in alt capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Entet last name, first name, middle initial. If aititary, show rank and branch of scrvice. The name of the principal aithor is an absolute minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count shouid follow normal pagit:ation procedures, i. e., enter the number of pages containing information.
7b. NUMESER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written
$8 b, 8 c, \& 8 d$. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR' 3 REPORT NUMBER(S): Eater the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been inssigned any other report numbers (erther by the originator or by the sponsor), also enter this number(s).
6. AVAHLABHLITY/LIMTATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
5) "All distribution of this report is controlled. Qualificd DDC users shall request through
\qquad ."
If the report has been furnished te the Office of Technica! Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay ing $f(o r)$ the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet sha!! be attached.

It is hig!.ly desirable that the abstract of classified reports be unclassified. Each paragraph of the alsiract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (*). or (U)

There is no limitation cn the length of the abstract. However, the suggested !ength is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is requited. Itentifiers, such as equipment model designation, trade name, military project code name, peographic location, may be used as key words but will be followed by on indication of technical context. The assignment of links, rules, and weights is optiona!

DEPARTMENT OF OPERATIONS RESEARCH COLLEGE OF ENGINEERING
 CORNELL UNIVERSITY
 ITHACA, NEW YORK

TECHNICAL REPORT NO. 203

November 1973

TWO COMPUTATIONALLY DIFFICLLT SET COVERING PROBLEMS THAT ARISE IN CCMPUTING THE 1-WIDTH OF INCIDENCE MATRICES OF STEINER TRIPLE SYSTEMS ${ }^{\dagger}$

by
D.R. Fulkerson and G.L. Nemhauser Cornell University and L.E. Trotter, Jr. Mathematics Research Center University of Wisconsin

$$
\text { 9[c i. } 1973
$$

This research was supported, in part, by National Science Foundation Grants GK-32282X and GP-32316X and Office of Naval Research Contract No. N00014-67-A-0077-0028 to Cornell University. A substantial amount of the computer time was provided by the Mathematics Research Center of the University of Wisconsin under U.S. Army Contract No. DA-31-124-ARO-D-462. The paper will also be issued as a Mathematics Research Center report.

Abstract

Two minimum cardinality set covering problems of similar structure are presented as difficult test problems for evaluating the computational efficiency of integer programming and set covering algorithms. The smaller problem has 117 constraints and 27 variables and the larger one, constructed by H. J. Ryser, has 330 constraints and 45 variables. The constraint matrices of the two set covering problems are incidence matrices of Steiner triple systems. An optimal solution to the problem that we were able to solve (the smaller one) gives some new information on the l-widths of members of this class of $(0,1)$-matrices.

1. Introduction. The purpose of this note is two-fold. First, we supply data for two integer programing (set covering) problems which we believe are computationally hard. Our experience indicates that optimal solutions to these problems are very tedious to compute and verify, even though they have far fewer variables than numerous solved problems in the literature. Thus these problems seem to be appropriate difficult test problems for evaluating the computational efficiency of integer programming and set covering algorithms.

The constraint matrices of the two set covering problems are incidence matrices of Steiner triple systems. An optimal solution to the problem that we were able to solve (the emaller one) gives sone new information on the l-widtns of members of this particular class of (0,1)-matrices. This new information is the second purpose of this note.
2. Origin of the Problems. The α-width of a $(0,1)$-matrix $\&$ is the minimum number of columns that can be selected from A so that all row sums of the resulting submetrix of A are at least α. Here α is an integer parameter ranging from zero to the smallest row sum of the matrix A. Tnis notion was introduced and studied by Fulkerson and Ryser in a series of papers [3, 4, 5]. Henceforth we restrict attention to the case $\alpha=1$ and denote the 1 -width of $a n$ by $n(0,1)$-matrix A having no zero rows by $w(A)$. The integer $w(A)$ can thus be determined from an optimal solution to the set covering problem

$$
\begin{align*}
w(A) & =\min 1_{n} x, \tag{2.1}\\
A x & \geq 1_{m^{\prime}} \\
x & \geq 0 \text { and integral. }
\end{align*}
$$

Here 1_{k} is the k-vector all of whose components are 1 , and we are viewing A as the incidence matrix of m elements (rows) vs. n subsets (columns) of the m-set. (Alternatively, and this point of view is perhaps more appropriate for the discussion to follow, we can view (2.1) as the problem of determining the least number of elements of an n-set required to represent al: members of a fanily of m subsets of the n-set.)

A Steiner triple system on n elements is a pair (S, T) where $S=(1,2, \ldots, n\}$ and $T=\left(S_{1}, \ldots, S_{m}\right)$ is a family of triples (subsets of S of cardinality three) such that every pair of elements of S (every subset of S of cardinality two is contained in precisely one of the triples. It is well known that Steiner triple systems exist if and only if $n \geq 3$ and $n \equiv 1,3(\bmod 6)$, in which case $m=\frac{n(n-1)}{6}$, and each element of S appears in precisely $\frac{n-1}{2}$ of the triples. (Steiner triple systems are particular cases of combinatorial configurations known as balanced incomplete block designs, wish are used in the statistical design of experiments. For example, if n drugs are to be tested on m patients, and each patient is to be given three drugs, a Steiner triple system provides a design in which each pair of drugs is tested on one patient.)

The incidence matrix $A=\left(a_{i j}\right)$ of a Steiner triple system is a (0,1)-matrix whose rows correspond to the triples and whose columns correspond to the elements of S. Thus $a_{i j}=1$ if and only if $j \in S_{i}$. Corresponding to each of the parameters $n=3,7,9$ there is a unique Steiner triple system; for $n=13$, there are two distinct systems, and for $n=15$, there are eighty distinct systems [14]. The unique system for $n=9$ is given by the 12 by 9 incidence matrix

$$
A_{9}=\left[\begin{array}{lll}
Z & 1 & 0 \tag{2.2}\\
0 & 2 & 1 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

where 0 is the zero matrix of order $3, I$ is the identity matrix of order 3, and

$$
Z=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

For the system (2.2), we have $w\left(A_{g}\right)=5$, since the rows of A_{9} are covered by its first five columns, but by no smaller set of columns. Both systems corresponding to $n=13$ have 1 -width 7 ; for $n=15$, the l-width varies from 7 to 9 [5]. Indeed, in their study of 1 -widths of Steiner triple systems, Fulkerson and Ryser [5] derived the lower bound

$$
\begin{equation*}
w(A) \geq \frac{n-1}{2} \tag{2.3}
\end{equation*}
$$

and determined conditions under which equality holds in (2.3). They remarked, however, that good upper bounds seem difficult to obtain. Since all triple systems on 15 or fewer elements have 1 -widths at most $\frac{2}{3} n-1$, they at one time speculated that this might be an upper bound. Ryser subsequently constructed a 45 element system as a potential counter-example, and conjectured that it had 1-width 30. Ryser's construction of the 45-element system starts with a particular 15 -element system that has 1 -width 9 . This 15-element system has the 35 by 15 incidence matrix

$$
A_{15}=\left[\begin{array}{lll}
Z & E & 0 \tag{2.4}\\
0 & Z & E \\
E & 0 & Z \\
I & I & I
\end{array}\right]
$$

where

$$
Z=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right] \quad E=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and I is the 5 by 5 identity. He then constructs a 45 -element system having a 330 by 45 incidence matrix of the following form:

$$
A_{45}=\left[\begin{array}{ccc}
A_{15} & 0 & 0 \tag{2.5}\\
0 & A_{15} & 0 \\
0 & 0 & A_{15} \\
C^{1} & I & p^{1} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
c^{15} & I & p^{15}
\end{array}\right]
$$

In (2.5) I is the 15 by 15 identity matrix; for $k=1, \ldots, 15 \quad C^{k}$ is a 15 by 15 matrix whose $k^{\text {th }}$ column is all ones and whose other columns are all zeros, and p^{k} is a 15 by 15 permutation matrix with

$$
\sum_{k=1}^{15} p^{k}=J
$$

where J is the matrix of all ones.

We attempted to determine $w\left(A_{45}\right)$ by solving the set covering problem (2.1), but did not succeed. We then used the matrix A_{9} from (2.2) to construct a 27 -element system structurally similar to A_{45}. The resulting 117 by 27 incidence matrix is

$$
A_{27}=\left[\begin{array}{ccc}
A_{9} & 0 & 0 \tag{2.6}\\
0 & A_{9} & 0 \\
0 & 0 & A_{9} \\
\mathcal{C}^{1} & I & \tilde{p}^{1} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\tilde{c}^{9} & I & \tilde{p}^{9}
\end{array}\right] .
$$

We solved (2.1) for A_{27} and found that $w\left(A_{27}\right)=18$. Thus $\frac{2}{3} n-1$ is not an upper bound on 1 -widths of Steiner triple systems on n elements. The system (2.5) constructed by Ryser has $w\left(A_{45}\right) \leq 30$, and we foel reasonahly sure that Ryser's speculation that $w\left(A_{45}\right)=30$ is correct.

More detailed descriptions of A_{27} and A_{45} are given in the Appendix.
3. Computational Experience. An optimal linear programming solution in both problems is, of course, to set all variables equal to $\frac{1}{3}$, giving values of 9 and 15 , respectively, for the sum of variables in the two problems. Optimal linear programming bases are not unique for A_{27} and A_{45}; the computer produced optimal bases with determinants of magnitude $(27)^{3}$ and $(45)^{3}$, respectively. An optimal solution to (2.1) with $A=A_{27}$ is given by colums $1,2,3,4,5,6,10,11,12,13,14,15,19,20,21,25$, 26, 27.

Both problems were attempted by an implicit enumeration algorithm [17] and a cutting plane algorithm based on Gomory's method of integer forms [7]. All computing was done on a Univac 1108. We also sent A_{45} to several people who have obtained computational experience with integer programming codes different from those available to us. Of particulai interest would be results obtained from codes based on the group-theoretic approach to integer programming $[2,8,9,10]^{\dagger}$ and codes based on specialized algorithms for set covering problems $[1,11,13,16]$. Nobody has informed us that they have solved (2.1) for A_{45}. There were a few negative responses. These generally did not report unequivocal failure, but difficulty in treating a problem of this size with an experimental code, etc.

Using the cutting plane code, we solved (2.1) for $A=A_{9}$ in about 20 seconds after adding 44 cuts. The cutting plane code was unsuccessful on the larger triple systems A_{15}, A_{27}, and A_{45}. Typically, the first few iterations yielded cuts that caused an increase in the objective value, but this was followed by long sequences of cuts that failed to produce a significant change in the value of the objective function. For example, in treating A_{15}, the initial sequence of 19 cuts raised the objective value from 5.0 to 5.425 , after which 32 cuts left the value unaltered. (Recall that $\left.w\left(A_{15}\right)=9.\right)$ This particular run took 82 seconds. In contrasit, this problem was solved in 5 seconds using implicit enumeration. This enumeration algorithm is very similar to one developed and tested by Geoffrion [6]. It uses simple tests for infeasibilities, and uses linear programing relaxations to obtain lower bounds and thus a necessary condition

[^0]on whether a given partial solution to (2.1) has a feasible completion of smaller value than the best available solution. The linear programming solutions also generate surrogate constraints. A dual algorithm is used to solve the linear programs. When fathoming occurs, the next partial solution considered is determined by backtracking. Branching is done by fixing a free variable at zero or one.

In our successful run with A_{27}, we began wich the partial solution corresponding to the optimal solution, which was found by inspection. About 6000 partial solutions were considered before optimality was verified. The run consumed about 16 minutes of computer time. Most of the fathoming came from the L.P. bounds, but this bounding test was quite ineffective for partial solutions having a small number of fired variables. Sevoral attempts at solving the problem for A_{45} failed, although we began with what is probably an optimal solution.

In contrast with our experience on these problems, others have reported considerable success in solving set covering problems with a variety of algorithms $[1,6,9,10,11,13,16]$. For example, Geoffrion [6] has reported solving, with an algorithm essentially identical to our implicit enumeration algorithm, several set cove:ing problems with $m=30$ and $30 \leq r \leq 90$ in times varying from one to twelve seconds on the IBM 7044, a much slower computer. Lemke et al. [13] have solved considerably larger problems in a reasonable amount of time, e.g. a problem with $m=50, n=450$ was solved in about 2 minutes on an IBM 360/50. Gorry et al. [9] have solved some airline crew scheduling problems; one with $m=313$ and $n=482$ was solved in about 3 minutes on the IBM 360/85.

Compared to most of the covering problems considered in the literature, the problems A_{27} and A_{45} have a relatively small number of variahles
but a large number of constraints. Supposedly, however, of the two parameters, the number of variables is the more significant in solving a covering problem by implicit enumeration. Furthermore, the densities (number of ones/mn) of A_{27} and A_{45} are close to the densities in the problems considered in [6] and [13] mentioned above.

Why, then, are these two problems A_{27} and A_{45} difficult? The symetries in the problems no doubt tend to increase the amount of enumeration required. The rather large determinants of optimal L.P. bases contribute to the unattractiveness of cutting plane methods and indicate that group-theoretic methods may encounter difficulties also. However, we feel that the major difficulty is caused by the fact that the optimal value in the intege: problem is large compared to the optimal value in the real (or rational) problem, thus emasculating the power of linear programming. Recently Jeroslow [12] has constructed a simple family of n variable, (0-1)-integer programs that cannot be solved by implicit enumeration, even using linear programing for fathoning, without enumerating at least $2^{5 / 2}$ possibilities. Although A_{27} and A_{45} are not in this family, they show that problems that arise naturally can be nasty. We hope that a reasonable set of such hard problems can be accumulated for the purpose of evaluating the efficiency of proposed integer programming algorithms.

Appendix.

11	2	3	4	121	1	3	5	131	1	2	6		41	5	6	
(5)	4	6	8	(61	4	5	9	171	i	8	9		81	2	7	9
(9)	3	7	8	101	1	4	7	111	2	5	8		17)	3	5	9
(13)	11	12	13	(14)	10	12	14	(15)	10	11	15		16)	14	15	16
(171	13	15	17	(18)	13	14	18	(19)	10	17	18		201	12	16	18
1211	17.	16	17	(22)	10	13	16	(23)	11	14	17		24)	12	15	18
(25)	20	21	22	(26)	19	21	23	(27)	19	20	2.4		281	23	24	25
1291	22	24	76	301	27	23	27	1317	19	25	27		32)	20	25	27
1331	21	25	26	(34)	19	22	25	(35)	20	23	26		361	31	24	37
1371	1	10	19	(381	1	11	24	(391	1	12	23		401	1	13	25
1411	1	14	21	1421	1	15	20	(43)	1	16	22		44)	1	17	27
1451	1	18	26	1461	2	10	24	(47)	2	11	20		481	2	12	22
1491	2	13	21	P 501	2	14	? 6	(51)	2	15	19		57)	2	16	27
(531	7	17	23	(541	2	18	25	(551	3	10	23		551	3	11	22
(571	3	12	21	(58)	3	13	20	(59)	3	14	19		601	3	15	27
(61)	3	16	26	(62)	3	17	25	(63)	3	18	24		64)	4	10	25
(65)	4	11	21	(66)	4	12	20	(67)	4	13	22		6A)	4	14	77
(69)	4	15	26	(701	4	16	19	(711	4	17	24	1	721	4	18	23
(73)	5	10	21	. 741	5	11	26	(751	5	12	19		761	5	13	77
(77)	5	14	23	1781	5	15	25	(79)	5	16	24		RO1	5	17	70
(81)	c	18	22	(821	6	10	20	1831	5	11	19		A4)	6	12	77
(85)	6	13	.? 5	1861	6	14	25	1871	6	15	24		A 81	6	16	73
(89)	6	17	22	(901	6	18	21	1911	7	10	22		921	7	11	27
(93)	7	12	26	(94)	7	13	19	$(951$	7	14	-4		961	7	15	23
(971	7	16	25	(981	7	17	21	(931	7	18	20		$1(10)$	8	10	27
(101)	8	11	23	(102)	8	12	25	11031	A	13	24		1041	8	14	20
(105)	8	15	22	(106)	8	16	21	(107)	8	17	26		1081	8	18	19
(109)	9	10	76	(110)	9	11	25	(111)	9	12	24		112)	9	13	73
(113)	9	14	27	(114)	9	15	21	(115)	9	16	20		1161	9	17	19
(117)	9	18	27													

Table 1: The triples of A_{27}.

REFERENCES

[1] M. Bellmore and H. D. Ratliff, "Set Covering and Involutory Bases," Man. Sci. 18 (1971), 194-206.
[2] G. H. Bradley and P. N. Wahi, "An Algorithm for Integer Linear Progranming: A Combined Algebraic and Enumeration Approach," Rep. No. 29, Department of Administrative Science, Yale University.
[3] D. R. Fulkerson and H. J. Ryser, "Widths and Heights of (0,1)-Matrices," Can. J. Math. 13 (1961), 239-255.
[4] D. R. Fulkerson and H. J. Ryser, 'Multiplicities and Minimal Widths for (0,1)-Matrices," Can. J. Math. 14 (1962), 498-508.
[5] D. R. Fulkerson and H. J. Ryser, "Width Sequences for Special Classes of (0,1)-Matrices," Can. J. Math. 15 (1963), 371-396.
[6] A. M. Geoffrion, "An Improved Implicit Enumeration Approach for Integer Programming," Opns. Res. 17 (1969), 437-454.
[7] R. E. Gomory, "An Algorithm for Integer Solutions to Linear Programs," 269-302 in Recent Advances in Mathematical Programming, Eds. R. L. Graves and P. Wolfe (McGraw-Hil1, New York, 1963).
[8] R. E. Gomory, "On the Relation Between Integer and Non-Integer Solutions to Linear Programs," Proc. Nat. Acad. Sci. 53 (1965), 260-265.
[9] G. A. Gorry, W. D. Northrup and J. F. Shapiro, "Computational Experience with a Group Theoretic Integer Programming Algorithm," Math. Prog. 4 (1973), 171-192.
[10] G. A. Gorry and J. F. Shapiro, "An Adaptive Group Theoretic Algorithm for Integer Programming Problems," Man. Sci. 17 (1971), 285-306.
[11] R. W. House, L. D. Nelson and J. Rado, "Computer Studies of a Certain Class of Linear Integer Problems," 241-280 in Recent Advances in Optimization Techniques, Eds. A. Lavi and T. Vogl (Wiley, New York, 1966).
[12] R. G. Jeroslow, "A One Constraint, 149-Variable Zero-One Program Requiring Nine Million Years Computing Time by Branch-and-Bound," (to appear in Math. Prog.).
[13] C. E. Lemke, H. M. Salkin and K. Spielberg, "Set Covering by Single Branch Enumeration with Linear Programming Subproblems," Opns. Res. 19 (1971), 998-1022.
[14] H. J. Ryser, Combinatorial Mathematics (Math. Assoc. of America, New York, 1963).
[15] J. F. Shapiro, private communication, Sept. 1973.
[16] H. Thiriez, 'The Set Covering Problem: A Group Theoretic Approach," Rev. Franc. d'Inform. et de liech. Operat. V3 (1971), 83-104.
[17] L. E. Trotter, Jr. and C. M. Shetty, "An Algorithm for the Bounded Variable Integer Programing Problgm," (to appear in J.A.C.M.).

[^0]: ${ }^{\dagger}$ Shapiro [15] attempted to solve (2.1) with A_{27} using IPA [9]. The enumeration was abandoned after about 1 minute of computer time on the IBM 360/67. Optimal solutions found for the group problems were highly infeasible and little progress was being made towards achieving feasibility in the enumeration phase.

