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ABSTRACT

Two minimum cardinality set covering problems of similar structure

are presented as difficult test problems for evaluating the computational
efficiency of integer programming and set covering algorithms. The smaller
problem has 117 constraints and 27 variables and the larger one, constructed
by H. J. Ryser, has 330 constraints and 45 variables. The constraint
matrices of the two set covering problems are incidence matrices of Steiner
triple systems. An optimal solution to the problem that we were able to
solve (the smaller one) gives some new information on the 1-widths of

members of this class of (0,1)-matrices.

v



1. Introduction. The purpose of this note is two-fold. First, we supply

data for two integer programming (set covering) problems which we believe
are computationally hard. Our experience indicates that optimal solutions
to these problems are very tedious to compute and verify, even though they
have far fewer variables than numerous solved problems in the literature.
Thus these problems seem to be appropriate difficult test problems for
evaluating the computational efficiency of integer programming and set
covering algorithms.

The constraint matrices of the two set covering problems are incidence
matrices of Steiner triple systems. An optiwal solution to the problem
that we were able to solve (the <mailer one) gives some new information
on the l-widtns of members of this particular class of (0,1)-matrices.

This new information is the second purpose of this note.

2. Origin of the Problems. The a-width of a (0,1)-matrix * is the

minimum number of columns that can be selected from A so that all row
sums of the resulting submetrix of A are at least a. Here o 1is an
integer parameter ranging from zero to the smallest row sum of the matrix
A. Tris notion was introduced and studied by Fulkerson and Ryser in a
series of papers [3, 4, 5]. Henceforth we restrict attention to the case
a =1 and denote the l-width of an m by n (0,1)-matrix A having

no zero rows by w(A). The integer w(A) can thus be determined from an

optimal solution to the set covering problem

(2.1) w(A) = min 1 X,

Ax > lm'

x >0 and integral.



Here 1, is the k-vector all of whose components are 1, and we are viewing

k
A as the incidence matrix of m elements (rows) vs. n subsets (columns)
of the m-set. (Alternatively, and this point of view is perhaps more
appropriate for the discussion to follow, we can view (2.1) as the problem
of determining the least number of elements of an n-set required to represent
al. members of a family of m subsets of the n-set.)

A Steiner triple system on n elements is a pair (S,T) where

Ss=({1,2,...,n} and T = (S .,Sm) is a family of triples (subsets of

l’ll
S of cardinality three) such that every pair of elements of S (every

subset of S of cardinality two) is contained in precisely one of the
triples. It is well known that Steiner triple systems exist if and only

if n>3 and n =1, 3 (mod 6), in which case m = Eﬁﬂéll , and each
n-1
2

systems are particular cases of combinatorial configurations known as

element of S appears in precisely of the triples. (Steiner triple
balanced incomplete block designs, wnich are used in the statistical design
of experiments. For example, if n drugs are to be tested on m patients,
and each patient is to be given three drugs, a Steiner triple system pro-
vides a design in which each pair of drugs is tested on one patient.)

The incidence matrix A = (aij) of a Steiner triple system is a
(0,1)-matrix whose rows correspond to the triples and whose columns corre-
spond to the elements of S. Thus aij = 1 if and only if j ¢ Si’
Corresponding to each of the parameters n = 3, 7, 9 there is a unique
Steiner triple system; for n = 13, there are two distinct systems, and
for n = 15, there are eighty distinct systems [14]. The unique system

for n =9 is given by the 12 by 9 incidence matrix

72 1 0)
(2.2) A9=OZI
1 0 2
R |




where O is the zero matrix of order 3, I is the identity matrix of

order 3, and

01 1)
Z=|10 1
1 1 0.

For the system (2.2), we have w(Ag) = 5, since the rows of A9 are
covered by its first five columns, but by no smaller set of columns. Both
systems corresponding to n = 13 have l-width 7; for n = 15, the l-width
varies from 7 to 9 [S]. Indeed, in their study of l1-widths of Steiner
triple systems, Fulkerson and Ryser [S] derived the lower bound

n-1

(2.3) w(A) 2 e

and determined conditions under which equality holds in (2.3). They remarked,
however, that good upper bounds seem difficult to obtain. Since all triple
systems on 15 or fewer elements have 1l-widths at most %-n - 1, they at

one time speculated that this might be an upper bound. Ryser subsequently
constructed a 45 element system as a potential counter-example, and con-
jectured that it had l-width 30. Ryser's constiuction of the 45-element
system starts with a particular 15-element system that has l-width 9. This

15-element system has the 35 by 15 incidence matrix

(2.4) Als =

- O N m
- Nm O

- M O N



wvhere
0 011 0] (1 0000
0001 1 0100 0
1 000 1 00100
11000 00010
.01 100 £-.]0 0 001
01001 10000
10100 01000
01010 00100
00101 00 010
10010 0 0 00 1
_ E 8 y

and I is the 5 by 5 identity. He then constructs a 45-element system

having a 330 by 45 incidence matrix of the following form:

— -
Ay 0 0
0 A O
0o 0 A
(2.5) Ay = 15
c! 1 p!
A 1 IS

In (2.5) I is the 15 by 15 identity matrix; for k = 1,...,15 CX is

a 15 by 15 matrix whose kth columnn is all ones and whose other columns

are all zeros, and Pk is a 15 by 15 permutation matrix with

15
P* 4,

k=1

where J is the matrix of all ones.



We attempted to determine "(Aas) by solving the set covering problem
(2.1), but did not succeed. We then used the matrix A9 from (2.2) to
construct a 27-element system structurally similar to Aas. The resulting

117 by 27 incidence matrix is

-
[ Ay 0 0
0 A 0
0 0 A
(2.6) Ay =
vl G2
[_?:9 1 ¥

We solved (2.1) for A and found that w(A27) » 18. Thus Z-n -1 is

27 3

not an upper bound on l-widths of Steiner triple systems on n elements.

The system (2.5) constructed by Ryser has w(A45) < 30, and we fecel

reasonably sure that Ryser's speculation that w(A45) = 30 1is correct.
More detailed descriptions of A27 and A4S are given in the

Appendix.

3. Computational Experience. An optimal linear programming solution in

both problems is, of course, to set all variables equal to % , giving
values of 9 and 15, respectively, for the sum of variables in the two
problems. Optimal linear programming bases are not unique for A27 and

A the computer produced optimal bases with determinants of magnitude

45’
(27)3 and (45)3, respectively. An optimal solution to (2.1) with A = A27
is given by colums 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 19, 20, 21, 25,

26, 27.



Both problems were attempted by an implicit enumeration algorithm [17]
and a cutting plane algorithm based on Gomory's method of integer forms [7].
All computing was done on a Univac 1108, We also sent A4S to several
people who have obtained computational experience with integer programming
codes different from those available to us. Of particula, interest would
be results obtained from codes based on the group-theoretic approach to
integer programming [2, 8, 9, 10]+ and codes based on specialized algo-
rithms for set covering problems [1, 11, 13, 16]. Nobody has informed us that
they have solved (2.1) for A45. There were a few negative responses.
These generally did not report unequivocal failure, but difficulty in
treating a problem of this size with an experimental code, etc.

Using the cutting plane code, we solved (2.1) for A = Ay in about
20 seconds after adding 44 cuts. The cutting plane code was unsuccessful

Typically, the first

on the larger triple systems A A27, and A

15’ 45°
few iterations yielded cuts that caused an increase in the objective value,
but this was followed by long sequences of cuts that failed to produce

a significant change in the value of the objective function. For example,

in treating A the initial sequence of 19 cuts raised the objective

15°
value from 5.0 to 5.425, after which 32 cuts left the value unaltered.
(Recall that "(AIS) = 9.,) This particular run took 82 seconds. In con-
trast, this problem was solved in 5 seconds using implicit enumeration.
This enumeration algorithm is very similar to one developed and tested by

Geoffrion [6]. It uses simple tests for infeasibilities, and uses linear

programming relaxations to obtain lower bounds and thus a necessary conditicn

*Shapiro [15] attempted to solve (2.1) with A27 using IPA [9]. The

enumeration was abandoned after about 1 minute of computer time on the IBM
360/67. Optimal solutions found for the group problems were highly infeasible
and little progress was being made towards achieving feasibility in the
enumeration phase.



on whether a given partial solution to (2.1) has a feasible completion of
smaller value than the best available solution. The linear programming
solutions also generate surrogate constraints. A dual algorithm is used
to solve the linear programs. When fathoming occurs, the next partial
solution considered is determined by backtracking. Branching is done by
fixing a free variable at zero or one.

In our successful run with A27, we began with the partial solution
corresponding to the optimal solution, which was found by inspection. About
6000 partial solutions were considered before optimality was verified. The
run consumed about 16 minutes of computer time. Most of the fathoming
came from the L.P. bounds, but this bounding test was quite ineffective for
partial solutions having a small number of fired variables. Sevcral attempts
at solving the problem for A45 failed, although we began with what is
probably an optimal solution.

In contrast with our experience on these problems, others have reported
considerable success in solving set covering problems with a variety of
algorithms [1, 6, 9, 10, 11, 13, 16]. For example, Geoffrion {6] has
reported solving, with an algorithm essentially identical to our implicit
enumeration algorithm, several set cove.-ing problems with m = 30 and
30 <r <90 in times varying from one to twelve seconds on the IBM 7044,

a much slower computer. Lemke et al. [13] have soived considerably larger

450

1]

problems in a reasonable amount of time, e.g. a problem with m = 50, n

was solved in about 2 minutes on an IBM 360/50. Gorry et al. [9] have

solved some airline crew scheduling problems; one with m = 313 and n = 482

was solved in about 3 minutes on the IBM 360/85.
Compared teo most of the covering problems considered in the literature,

the problems A27 and AdS have a relatively small number of variahles



but a large number of constraints. Supposedly, however, of the two param-
eters, thc number of variables is the more significant in solving a covering
problem by implicit enumeration. Furthermore, the densities (number of
ones/mn) of A27 and A45 are close to the densities in the problems
considered in [6] and [13] mentioned above.

Why, then, are these two problems A27 and A45 difficult? The
symmetries in the problems no doubt tend to increase the amount of v¢numera-
tion required. The rather large determinants of optimal L.P. bases con-
tribute to the unattractiveness of cutting plane methods and indicate that
group-theoretic wethods may encounter difficulties also. However, we feel
that the major difficulty is caused by the fact that the optimal value in
the intege:r problem is large compared to the optimal value in the real
(or rational) problem, thus emasculating the power of linear programming.

Recently Jeroslow [12] has constructed a simple family of n variable,
(0-1)-integer programs that cannot be solved by implicit enumeration, even
using linear programming for fathoming, without enumerating at least

/2

2 possibilities. Although A and A are not in this family, they

27 45
show that problems that arise naturally can be nasty. We hope that a
reasonable set of such hard problems can be accumulated for the purpose

of evaluating the efficiency of proposed integer programming algorithms.
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6
6
7
7
23 45 1204) T 248
H
8
a
8
8
9
9
9
9

t2yn 27 40 (238) 28 37 (239) 29 3¢ {2u0)
(241 10 16 34 (2429 10 17 %2 (2uty 10 1R 32 (244) 10 19
(2450 1D 20 4S5 (2uR) 10 21 &3 (247) 10 22 41 t2uR) 10 23
t249) 10 24 &2 (290) 10 2S «U (251) 10 26 37 (2%2) 10 27
1253) 10 28 ¢ (25?10 29 32 €255) 10 30 35 (256) 11 16
(2571 11 17 41 (259) 11 1R 4% (2591 11 19 42 (2600 11 20
f2€1) 11 21 31 (2627 11 22 w0 (2R%) 11 23 39 ¢2Ru) 11 2%
1265) 11 25 17 12660 11 2h 4l 12670 11 27 34 (2RB) 11 28
1269) 11 29 35 (270) 11 30 33 2711 12 16 48 (272) 312 17
f273) 12 18 w& 12780 12 19 u}l  (27S) 12 20 w3y (27&) 12 23
(277 12 2% %2 1278) 12 23 3¢ (2791 12 24 4y (2801 12 2%
(2A1) 12 26 Y6 (2820 12 27 w2 U2RYY 1> 2M 35 {(7hu) 12 29
12a%) 12 30 1 (2861 13 1Rk w4 t2ce) 13 17 41 12488) 13 13
(289} 1Y 19 45 (2900 1% 20 w2 2919 1Y 21 wu €292y 13 22
t293) 1% 23 33 (P294) 13 24 %7 t2ast 13 2% 36 (296) 13 2%
1297) 13 27 35 t294) 13 24 w3 (292) 1Y 29 31 t30n) 13 30
13n1 16 16 43 (302 14 17 uS (303 1 1R 42 (300) 14 19
(3ns) 18 20 1 (106 1o 21 7 [BYVRA] 14 22 36 t3n0ay 1 2%
(30e) 1 24 34 1510 4 2% 3R (31 e 26 35 (3120 1e 27
t31%) e 23 31 (3142 14 29 wy (3151 1 30 32 ¢31R2 15 16
(317) 15 £ wu (3181 1S 18 w1 (31°) 1S 19 45 (3200 1S5 20
13210 1S 21 39 13220 1% 22 3R 132301 18 5% 37 12w 1S 24
13250 1S 25 35 (i) 15 26 33 U327) 15 27 31 43280 1% 28
3299 1S 29 32 (3300 1% 3IN &%

Reproduced from N2 Table 2: The triples of A, .
best available copy. '@n§ .
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