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ABSTRACT 

Two minimum cardinality set covering problems of similar structure 

are presented as difficult test problems for evaluating the computational 

efficiency of integer programming and set covering algorithms. The smaller 

problem has 117 constraints and 27 variables and the larger one, constructed 

by H. J. Ryser, has 330 constraints and 45 variables. The constraint 

matrices of the two set covering problems are incidence matrices of Steiner 

triple systems. An optimal solution to the problem that we were able to 

solve (the smaller one) gives some new information on the 1-widths of 

members of this class of (0,1)-matrices. 

i\/ 
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1. Introduction.  The purpose of this note is two-fold. First, we supply 

data for two integer programming (set covering) problems which we believe 

are computationally hard. Our experience indicates that optimal solutions 

to these problems are very tedious to confute and verify, even though they 

have far fewer variables than numerous solved problems in the literature. 

Thus these problems seem to be appropriate difficult test problems for 

evaluating the computational efficiency of integer programming and set 

covering algorithms. 

The constraint matrices of the two set covering problems are incidence 

matrices of Steiner triple systems. An optimal solution to the problem 

that we were able to solve (the «mailer one) gives some new information 

on the 1-widtns of members of this particular class of (0,1)-matrices. 

This new information is the second purpose of this note. 

2. Origin of the Problems. The a-width of a (0,1)-matrix /. is the 

minimum number of columns that can be selected from A so that all row 

sums of the resulting subnu.trix of A are at least a. Here a is an 

integer parameter ranging from zero to the smallest row sura of the matrix 

A. This notion was introduced and studied by Fulkerson and Ryser in a 

series of papers [3, 4, 5]. Henceforth we restrict attention to the case 

a = 1 and denote the 1-width of an m by n  (0,1)-matrix A having 

no zero rows by w(A). The integer w(A) can thus be determined from an 

optimal solution to the set covering problem 

(2.1) w(A) « min 1 x. 

Ax t v 
x > 0 and integral 



Here    1.     is the    k-vector all of whose components are  1, and we are viewing 

A    as the incidence matrix of   m   elements (rows) vs.    n    subsets  (columns) 

of the   m-$et.    (Alternatively, and this point of view is perhaps more 

appropriate for the discussion to follow, we can view  (2.1) as the problem 

of determining the least number of elements of an   n-set requiied to represent 

aK members of a family of   m   subsets of the    n-set.) 

A Steiner triple system on   n   elements is a pair    (S,T)    where 

S ■ {l,2,...,n}    and    T «  (S,,...^ )    is a family of triples  (subsets of 

S    of cardinality three) such that every pair of elements of   S    (every 

subset of   S   of cardinality two)  is contained in precisely one of the 

triples.    It is well known that Steiner triple systems exist if and only 

if   n ^ 3   and   n = 1, 3 (mod 6),    in which case    m = n    1 '   »    and each 

element of   S   appears in precisely   ^-^—   of the triples.     (Steiner triple 

systems are particular cases of combinatorial configurations known as 

balanced incomplete block designs, which are used in the statistical design 

of experiments.      For example, if   n   drugs are to be tested on   m   patients, 

and each patient is to be given three drugs, a Steiner triple system pro- 

vides a design in which tach pair of drugs is tested on one patient.) 

The incidence matrix   A »  (a.,)    of a Steiner triple system is a 

(0,1)-matrix whose rows correspond to the triples and whose columns corre- 

spond to the elements of    S.    Thus    a.. ■ 1    if and only if    i e S.. 

Corresponding to each of the parameters   n = 3,  7, 9    there is a unique 

Steiner triple system;  for    n ■ 13,    there are two distinct systems, and 

for   n ■» 15,    there are eighty distinct systems  [14],    The unique system 

for   n « 9    is given by the 12 by 9 incidence matrix 

(2.2) A9 

Z I 0 

0 Z I 

1 o z 

I I I J- 



where 0 is the zero matrix of order 3, I is the identity matrix of 

order 3, and 

0 1 1 

1 0 1 

1 1 0 

For the system (2.2), we have   w(Ag) » 5,    since the rows of   A-    are 

covered by its first five columns, but by no smaller set of columns.    Both 

systems corresponding to    n ■ 13   have 1-width 7; for   n = 15,    the 1-width 

varies from 7 to 9  [5].     Indeed, in their study of 1-widths of Steiner 

triple systems, Fulkerson and Ryser [S] derived the lower bound 

(2.3) w{A)  > n 
-    T 

and determined conditions under which equality holds in  (2.3).    They remarked, 

however, that good upper bounds seem difficult to obtain.    Since all triple 
2 

systems on 15 or fewer elements have 1-widths at most    -^n - 1,    they at 

one time speculated that this might be an upper bound.    Ryser subsequently 

constructed a 45 element system as a potential counter-example, and con- 

jectured that it had 1-width 30.    Ryser's construction of the 45-element 

system starts with a particular 15-element system that has 1-width 9.    This 

15-element system has the 35 by 15 incidence matrix 

r~ 

(2.4) 15 

Z E 0 

0 Z E 

E 0 Z 

1 I I 



where 

r 0 0 1 1 0 

0 0 0 1 1 

1 0 0 0 1 

1 1 0 0 0 

0 I 1 0 0 

0 1 0 0 1 

1 0 1 0 0 

0 1 0 1 0 

0 0 1 0 1 

1 0 0 1 0 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 Ü 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

and    I    is the 5 by 5 identity.    He then constructs a 45-element system 

having a 330 by 45 incidence matrix of the following form: 

(2.5) 
45 

15 

0 

0 

,1 

.is 

15 

0 A 

I 

0 

0 

15 

.15 

In (2.5) I is the 15 by 15 identity matrix; for k » 1,...,15  C  is 

a IS by 15 matrix whose k  column is all ones and whose other columns 

are all zeros, and P  is a 15 by 15 permutation matrix with 

15 

!<-l 
Pk - J, 

where J is the matrix of all ones. 



We attempted to determine w(A 5) by solving the set covering problem 

(2.1), but did not succeed. We then used the matrix A  from (2.2) to 

construct a 27-eleinent system structurally similar to A 5. The resulting 

117 by 27 incidence matrix is 

(2.6) 27 

f "9 
0 

0 

Üf1 

o o 

Ag 0 

0 A9 

1 ^ 

• • 
« • 

I ^ 

We solved (2.1) for A27 and found that w(A„) » 18. Thus j n - 1 is 

not an upper bound on 1-widths of Steiner triple systems on n elements. 

The system (2.5) constructed by Ryser has w(A._) <^ 30, and we foel 

reasonably sure that Ryser's speculation that w(A _) » 30 is correct. 

More detailed descriptions of A.- and A   are given in the 

Appendix. 

3. Computational Experience. An optimal linear programming solution in 

both problems is, of course, to set all variables equal to -r ,    giving 

values of 9 and 15, respectively, for the sum of variables in the two 

problems. Optimal linear programming bases are not unique for A   and 

A • the computer produced optimal bases with determinants of magnitude 

(27)  and (45) , respectively. An optimal solution to (2.1) with A » A.- 

is given by columns 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, IS, 19, 20, 21, 25, 

26, 27. 



Both problems were attempted by an implicit enumeration algorithm [17] 

and a cutting plane algorithm based on Gomory's method of integer forms [7]. 

All computing was done on a Univac 1108. We also sent A <. to several 

people who have obtained computational experience with integer programming 

codes different from those available to us. Of particular Interest would 

be results obtained from codes based on the group-theoretic approach to 

integer progranning [2, 8, 9, 10]  and codes based on specialized algo- 

rithms for set covering problems (1, 11, 13, 16]. Nobody has informed us that 

they have solved (2.1) for A... There were a few negative responses. 

These generally did not report unequivocal failure, but difficulty in 

treating a problem of this size with an experimental code, etc. 

Using the cutting plane code, we solved (2.1) for A =» A_ in about 

20 seconds after adding 44 cuts. The cutting plane code was unsuccessful 

on the larger triple systems A , A__, and A . Typically, the first 

few iterations yielded cuts that caused an increase in the objective value, 

but this was followed by long sequences of cuts that failed to produce 

a significant change in the value of the objective function. For example, 

in treating A   the initial sequence of 19 cuts raised the objective 

value from 5.0 to 5.425, after which 32 cuts left the value unaltered. 

(Recall that w(A]_) «9.) This particular run took 82 seconds. In con- 

trast, this problem was solved in 5 seconds using implicit enumeration. 

This enumeration algorithm is very similar to one developed and tested by 

Geoffrion [6]. It uses simple tests for infeasibilities, and uses linear 

programming relaxations to obtain lower bounds and thus a necessary condition 

+Shapiro [IS] attempted to solve (2.1) with A27 using IPA [9]. The 

enumeration was abandoned after about 1 minute of computer time on the IBM 
360/67. Optimal solutions found for the group problems were highly infeasible 
and little progress was being made towards achieving feasibility in the 
enumeration phase. 



on whether a given partial solution to  (2.1) has a feasible completion of 

smaller value than the best available solution.    The linear programming 

solutions also generate surrogate constraints.    A dual algorithm is used 

to solve the linear programs.    When fathoming occurs, the next partial 

solution considered is determined by backtracking.    Branching is done by 

fixing a free variable at zero or one. 

In our successful run with   A.-,    we began wiüi the partial solution 

corresponding to the optimal solution, which was found by inspection.    About 

6000 partial solutions were considered before optimality was verified.    The 

run consumed about 16 minutes of computer time.    Most of the fathoming 

came from the L.P. bounds, but this bounding test was quite ineffective for 

partial solutions having a small number of fixed variables.    Several attempts 

at solving the problem for   A._    failed, although we began with what is 

probably an optimal solution. 

In contrast with our experience on these problems, others have reported 

considerable success in solving set covering problems wjth a variety of 

algorithms  [1, 6, 9, 10,  11,  13,  16].    For example, Geoffrion  [6] has 

reported solving, with an algorithm essentially identical to our implicit 

enumeration algorithm, several set cove:.ing problems with    ra = 30    and 

30 <_ n <_ 90    in times varying from one to twelve seconds on the IBM 7044, 

a much slower computer.    Lemke et al.   [13] have solved considerably larger 

problems in a reasonable amount of time, e.g. a problem with    m « 50, n = 450 

was solved in about 2 minutes on an IBM 360/50.    Gorry et al.   [9] have 

solved some airline crew scheduling problems; one with    m ■ 313   and   n - til 

was solved in about 3 minutes on the IBM 360/85. 

Compared to most of the covering problems considered in the literature, 

the problems   A.,   and   A       have a relatively small number of variables 



but a large number of constraints. Supposedly, however, of the two param- 

eters, the number of variables is the more significant in solving a covering 

problem by implicit enumeration. Furthermore, the densities (number of 

ones/mn) of A.- and A _ are close to the densities in the problems 

considered in [6] and [13] mentioned above. 

Why, then, are these two problems A-- and A   difficult? The 

symmetries in the problems no doubt tend to increase the amount of enumera- 

tion required. The rather large determinants of optimal L.P. bases con- 

tribute to thr unattractiveness of cutting plane methods and indicate that 

group-theoretic methods may encounter difficulties also. However, we feel 

that the major difficulty is caused by the fact that the optimal value in 

the integer problem is large compared to the optimal value in the real 

(or rational) problem, thus emasculating the power of linear programming. 

Recently Jeroslow [12] has constructed a simple family of n variable, 

(0-1)-integer programs that cannot be solved by implicit enumeration, even 

using linear programming for fathoming, without enumerating at least 

r./2 2' "    possibilities. Although A-- and A . are not in this family, they 

show that problems that arise naturally can be nasty. We hope that a 

reasonable set of such hard problems can be accumulated for the purpose 

of evaluating the efficiency of proposed integer programming algorithms. 
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13 19 
17 21 

8   12   25 
8 16   21 
9 11    25 
9   15   21 

3) 
7) 

11 ) 
IM 
19) 
23) 
27) 
21 ) 
35) 
39) 
43) 
«47) 
5) ) 
55) 
5«»» 
63) 
67) 
71 » 
75) 
79) 
83) 
87) 
91 ) 
95) 
99) 

(1031 
(107) 
(111) 
(115) 

1 
1 
2 

10 
10 
11 
19 
19 
70 

1 
1 
2 
2 
3 
3 

(4 

a 
5 
5 
6 
6 
7 
7 
7 
8 
9 
9 
9 

2 
8 
5 

1 l 
17 
14 
70 
2 6 
23 
12 
16 
I 1 
15 
10 
\ 4 
18 
1 3 
17 

12 
16 

1 1 
1 5 
10 
14 

18 
1 3 
17 

12 
16 

6 

9 

8 

15 

Jd 
17 
24 

27 

2 6 

2 3 

22 
20 
19 

73 

iy 
24 
22 
24 

IS 
24 

19 
24 
72 
2 4 

20 
24 
26 
24 
20 

4 ) 

8) 
17 » 
16) 
70) 
74 ) 
78) 
32) 
36) 
40 ) 
44 ) 

48) 
57) 
56 ) 

60) 
r.u ) 

6« ) 
7? ) 

76) 
90 ) 

84 ) 

fta) 
92 ) 
95) 

(100 ) 
(104 ) 
(108) 
( 112 ) 
(116) 

5 

2 

3 
14 

11 
12 
23 
20 

?J 

1 

1 
2 
2 

3 
3 
4 
4 
4 

5 
5 

6 
C. 
7 
7 

8 

8 
8 

9 
9 

6 

7 

6 

15 
16 

15 
24 

25 
24 

13 
17 

12 
16 

1 1 
IS 
10 
14 

18 

13 
17 

12 
16 
11 
16 

1U 
14 

18 

1 3 
17 

7 

9 

9 
16 

18 
18 
25 
27 

27 

25 
27 

22 
27 

22 
27 
2 5 
27 

23 

27 
20 

2 7 
73 
27 

23 
27 
20 
19 

23 
19 

Table 1; The triples of A 
27" 
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(   11 1     •      6 1     21 «      5      7 1       31 i    s    a 1       9| 1     2     * 
1      5» I      I   10 1      6» 2      S      6 »      71 1      J      7 1       «1 2     «      • 
(      «1 3      5      9 (   101 1       9     10 1    11 1 9       9     11 (    17» »   10   12 
•    IS« &   10   M 1   l«l 6      7   19 1    1SI 7      8    IS (    16) 7   10   11 
1    IT) 6      8   12 (    181 7      9   13 (    19 » 3   10    1« 1    7ÜI 6      9   IS 
1    21 ' 113   19 (   27) 2    1«    IS (    23) 3   11    IS (    7« ) 9   11    12 
1    2SI S   12   1 3 (   761 1    12    IS (    27» 2   11    13 (    78) 3   12   1« 
t    29 1 •   1 3   IS (    511. S    11    1« (    31» 1      6)1 (    37) 2      7   12 
1    JJ» 3      8   13 (   3«) «       9    1« •    3S» S   10    IS t    36) 18   19   21 
<    JT> 11   2Ü   72 (    38) 16   20   23 (    39) 16   17    7« r   «0 ) 17   1«   25 
1    «I 1 17   20   71 (   «2) 16    1«    77 (    »31 17   19    23 (    «« ) IS   20   2« 
»   «SI 16   19   2S (   96) 23   2»   76 «    «7) 2«   7S   77 (    «8) 21   2S   28 
«   «HI 71    22   29 1   SO) 22   23    30 (    SI ) 22   2S   26 (    S?» 21   23   27 
«    S5t 22    29   Jf 1   Sul 23   7S   29 (    SS) 21   2«   3i; (    S6) 16   23   29 
«    S7I 17   29   ?n (   S8) IS    26    30 (    59) 19   76   7 7 (    60) 20   27   2a 
1    f.l 1 16   27   30 (   62) 17   26   28 (    63) 19   77   79 (    6K ) 19   28   30 
1    6SI 20   26   7,^ (   66) 16    21    26 1    67) 17   72   77 (    68) 18   23   28 
1   6*1 11   2«   7» (    70) 20   2S    30 (    71) 33    5«    36 (     77 1 39    3S    37 
i    7M 31    3S   ^9 1   79) 31    32    39 (    7S) 57    53   «U (    T6) 32   3S   36 
1    771 31    33   37 I    791 32    39    38 (     79) 33   3S    39 (    80) 31    39   90 
i  ai i 39   39   91 1   871 39   90   97 (    831 56   «0   «1 1    89 ) 36   37   «9 
I    SSI 37   38   «S (   86) 37   90   «k (    8T ) 36    58    «2 (  «aj 37   39   9J 
1    S<M 38    90   9« (   901 36   39   9S (    91) 31    93   9« (    9?) 32   9*   »S 
(    «»51 35   HI    «S (    99) 3«    «1    «7 (    9S) IS   «7   «3 (     Of) 31   92   «S 
(    -»Tl 37    «1    93 (    99» 33   9?   «« (    99 ) 3«   «3   «S (100) 3S    «I    99 
(101 1 51     36   91 ( 102) 32    3?   «2 (103 ) 53    39    «J ( 1091 3«   39   9« 
nost 3S   90   9S (106) 116    11 (10?) 1   17   33 (108) 1   19   li 
HDst 1    19   90 (HOI 1    20    38 (Ill ) 1    71    «1 (117) 1   22   35 
11131 I    23    59 (119) 1    2«    32 (11SI 1    2S   3« (116) 1   26   St 
I11TI I   27   OS (1181 1   2S   «« (119) 1   79   «J (1201 1   30   9 2 
(121 > 7    16    39 (172) 2    17    32 (123) 7   18   «U (1791 2   19   38 
(12SI 7   70   5f. (126) 2   21    3S (127) 7   72   «2 (178) 2   21   3« 
(12^1 2   29   31 1 130) 2   2S    33 (1 31 ) 7   26   «3 (1 37) 2   27   JT 
(1 J31 2   28   91 m«) 2   29   «5 (1 3S) 7   30   «« (156) 3   16   37 
11 J7) 3   17   90 (139) 3    19    33 (1 39) 1    19    36 ( 1«0) 5   20    39 
(loll 3   21    5g (1U2I 5   22    31 (195) 3   23   «3 ( 1««) 3   29    35 
I115I 3   2i   32 (116) 3   26   «S (1>.7) 3   27   «« (luai 3   28   38 
1 l<i<tl 3   29   «7 (ISO) 3   30   «1 (1S1) «   16    «0 (IS?» 9   17   38 
(1S3> 9    18    5fi (IS«) 9    19    3« (ISS) 9    20    37 (1S6I 9   21    3J 
(1S7I «   72   3S (I s a) 9    2 3    57 (IS^I 9   79    99 ( 1 60 ) 9   25   It 
lit! I 9   7'.   «7 1162) 9    77   «1 (V63) «    7«    «S ( 16«) 9.29   19 
( USI 9    30   9 3 (166) S    16    38 (167) S    17    3b ( 168) S   19    39 
(16=1 S    19    37 (I7U( S   20    3S (171 ) S   71    37 (IT?) 5   22   3« 
(1 7.3 1 S   73   3) (179) S   7«    33 (ITS) S   7S   «S (1T6) 5   26   9« 
(1771 S   27   93 (179) S   28    «7 (1T9) S    29    «1 (1801 S   30   «0 
(lei 1 6   16   91 (182) 6    17    IS (165) 6   19    3« (I"«! 6   19   35 
n R' i 6   2Ü   5? (186) 6   21    36 (18T) 6   77   «« (188) 6   21   «2 imsi 6   79   9S (190) 6   2S   93 (19)1 6   76   31 (197) 6   27    38 
(n31 6   2»   90 (19«) 6   79    37 (19S) 6   30   3S ( n6) 7   16   35 
(1971 7    17   «2 (19S) 7    18    31 (199) 7   19   3S (700) 7   20   3* 
(201 t 7    71    «» (702» 7   22    37 (703) 7   73   «S (2n<i) 7   29   95 
(20^1 7   7S   91 (706) 7   26   «0 (2nT» 7   7T   ii 17081 7   29   59 
(209 1 7   79    36 (2101 7    30    38 (211 ) 8   16   3s (717) 8   17   3* 
(213) 8    18   9 1 (21«) 8    19    32 (21S) a 70  3i (216) S   21    92 
l'!7 ) 9   27   9S (713) ft    2 3    IB (2191 9   7«   «1 (220) S   25   9« 
(221 1 9   2 6   3 9 (772) 8   27    16 (223. 8   78   33 (77«) 8   23   90 
(2 2«.'. 9    3(1    3 7 (776) 9    16    5? (72T) 9   17   31 (778) 9   18   55 
1229) 9    19   9K (730) 9   70    53 (231) 9   71    «S (757) 3   22   «5 
(2531 9    73   91 ( ?!« 1 9   2«    39 (23S1 9   7S   «7 (?'61 3   76   58 
(237) 9   2>    9 0 (738) I   23    37 (2391 9   79   3« (2«ai 3   30   56 
(20I 1 10    16    3<l (7«?) 10    17    55 (7«5» 10   IB   32 (?««) 10   19   31 
(2«5I 10   20   «S (7«6» 10   71    «3 (?«7» 10   77   «1 (7«8» 10   73   99 
(2<49l 10   79   97 (7'.Q» 10   2S   «0 (2S1 » 10   76    3 7 (2S?) 10   27   3') 
(2S3) 10    7 8    5 6 (7b9» ID   79   ie (2SS) 10   30   3S (7S6) 11    16   36 
(2S7) 11    17   93 (7S9I 11    19   «S (2S«» 11    19   «? (76(11 11   20   99 
(?(.l ) 11    21    31 (767 1 11    27   «0 (265) 11    7 3    5 9 (76«l 11   2«    38 
(26S) 11   2S   37 (766) 11    76    «1 (76T ) II   77    3« (768) 11   28   32 
(269) 11    29   3S (770) 11    30    13 (2T) ) 12   16   «s (7T7» 12   17   37 
(273) 17    18   «« ( 779) 12    19   «1 (2TS) 17   70   «3 ( 7 Tf, | 12   21    38 
(277) 17   2»   32 (778) 12   2 3    3f (2T«) 17   79    «0 ( 7SQ ) 12   25   59 
(2ni ) 1?   76   5» (787) 12   27   «2 (7851 17   79    3S ( 78« ) 12   29   35 
(2SS) 17   30   31 (7P6I 13    16   «« (7C«) 13    17    «1 (711) 13   13   38 
(289) 15    19   9S (7>»0) 13   70   «7 (791) 15    71    «U (7971 13   22   39 
(293) 13   73   5 3 (299 ) 13   7«    37 (79S1 15    7S    lb ( 7«6 I 13   26    32 
(297) 13   77    3S ( 79^) 13   79   «5 (29^) 15    79    51 ( 3110) 13    50   3 9 
(301 ) 1»    16   9 3 ( 50?» I«    17   «S (305) 1«    18   «7 ( 301 I 19    13   59 
(3n«.i 19    70   «M 1 506» 19    71    IT (31)') 1«    77    3b ( 508 ) 1«   23   90 
(30°) 1«    7«    S« (310) 1«    2S    58 (311) 1«    76    3S (317 1 1«   27   35 
1 J13) 1«   7»   31 (519) 1«    ft    u« )51S» 1«    30   32 ( 51f.» IS   16   92 
(317) IS   I-   »9 ( IIBI IS     19    «1 151») IS   <.9   HI ( 570) IS   20   9 0 
1321 1 IS   71   39 1 177» IS    27    1« 1 175» IS   73   37 ( 57« » IS   79    36 
( J2SI IS   7S   3S ( 576 1 IS    7».     5 3 (327) IS   27   31 ( 378) IS   28   39 
(329) IS   29   32 (330) is lo «s 

Reproduced  Irom 
best   available  copy. 
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