$$
A D-770768
$$

SECURE COMPUTER SYSTEMS: MATHEMATICAL FOUNDATIONS
D. Elliott Bell, et al

Mitre Corporation

Prepared for:
Electronics Systems Division

November 1973

DISTRIBUTED BY:

Mational Technical Information Service
U. S. DEPARTMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151

NOVEMBER 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYETEMS

FLECTRONIC SYSTEL: ADISION
AIR FORCE SVSTFMS :OMMAND
evited titates all fonce:
L. G. Himseom Field. Bedford, Massachusets

Peproduced ter
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department o! Comnette
Spoingfinld $\forall a \rightarrow 2!51$
?
;

Approves for public roleses:

 distribution unlinited.Project 522B
-prepared by
THE IITTRE CORPORATION
Bediford, Massachusetts Contract No. F19628-73-C-0001

Publication of this technical report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command \& Management Systems
ia'

a basic result concerning security in computer systems, using preclse notions of "securisy" and "compromiss". Vie also demonstrate tow a change in requirements cas be reflected in the resulting mathematical model.

A lengthy introcuctory secticr is included in order to bridge the gap between general systems theory and proctica? probiem solving.

FCREWORD

This is Volume I of a multi-volume report prepared by The MITRE Corporation, Bedford, Massachusetts, in support of Project 522B under Contract No. F19628-73-C-0001.

The authors of the report are D. Elliott Beli and Leonard J. LaPadula of the MITRE Coxporation.

This report represents an initial attapt at spucifying requirements for a secure ismputer syster based upon the development aitat verification of a mathematical model.

The assumptions arà specifications relating tc, security requirements as expressed in the report are not necessarily applicable to any specific system. The development presented here will help to reveal and clarify the basic problems and issues conftonting designers of multi-level secure computer systems.

PREFACE

General systems theory is a relativel.y new and rapidly growing mathematical aiscipiine which shows great promise for application in the computer sciences. The discipline includes both "general syatems-theory" and "general-systems theory": that is, one may properly read the phrase "general systems theory" in both ways.

In this paper, we have borrowed from the works of general systems theorists, principally from the basic work of Mesarovic, to formulate a mathematical framework within which to deal with the problems of secure computer systems. At the present time we feel that the mathematical representation developed herein is adequate to deal with most if not all of the security problems one may wish to pose. In Section III we have given a result which deals with the most trivial of the secure computer systems one might find viable in actual use. In the concluding section we review the application of our mathematical methodology and suggest major areas of concern in the design of a secure system.

The results reported in this paper lay the groundwork for further, mo:e specific investigation into secure smputer systems. The investigition will proceed by specializing the elemants of the model to : 2present particular aspects of system design and operation. Such an investigation will be reported in the second volume of this series where $\# \in$ assume a system with centralized access control. A preliminary investigation of distributed access is just beginning; the results of that investigation would be reported in a third volume of the series.

TABLE OF CONTENTS
Page v1
SECTION I INTRODUCTION 1
GENEFAL SYSTEMS 1
SYSTEM MODELING 6
SECLEE COMPUTER SYSTEMS 9
PROBLEMS OF SECURITY 10
SUMMARY AND REFERENCES 10
SECTION II FOUNDATIONS OF A MATHEMATICAL MODEL 14
ELEMENTS OF THE MODEL 14
STATES OF THE SYSTEM 17
STATE-TRANSITION RELATION 1.7
SUMMARY AND REFERENCES 18
SECTION III A FUNDAMENTAL RESULT 19
COMPROMISE AND SECURITY 19
ASSUMPTIONS 20
BASIC SECURITY THEOREM 21
SUMMARY 22
SECTION IV CONCLUSION 23
INTRODUCTION 23
PROBLEM REFORMULATION 24
Basic Security Theorem (revised) 25
ACCESS CONTROL 27
DATA BASE SHARING 28
SUMMARY AND REFERENCES 29
BIBLIOGRAPHY 31

| I | State-Transition Table | 5 |
| ---: | :--- | ---: | ---: |
| II | Elements of the Model | 14 |
| III | Initial Reqiirements | 20 |
| IV | Modified Requirements | 25 |

SECTION I
INTRODUCTION

GENERAL SYSTEMS
We shall begin by presenting a brief description of general systers theory as we shall une it in this paper. We consider a system in its most general form to be a relation on abstract sets. We express this mathematically by the expression

$$
S \subseteq X \times Y
$$

where the system S is a relation on the abstract secs X and Y. If S is a function from X to $Y(S: X \rightarrow Y)$, then it is natural to consider S to be a functional system. In this case, it is convenient to consider the elements of X to be Inputs and the elements of Y to be outputs so that S expresses a functional input-output relationship. By appropriate shoice of the sets X and Y (and a set Z co represent states when necessary), one can closely represent sorde situstion of particular interest and reach / signfficant conclusions about that situation.

This very general definition of aystem provides a framework cf investigation which has wery wide applicability and, as we shall see in Section III, unexpected power. We shall iilustrate the concept's applicability with three exanples.

Example 1: Consider a savings account in a bank which compounds interest quarterly. The general situation of varying payments, withorawals, and interest rates can be described by a difference
equation as follows:

$$
\begin{equation*}
b_{k}=\left(b_{k-1}+p_{l:}\right) \cdot\left(1+1_{k}\right) \tag{1.1}
\end{equation*}
$$

where b_{k} represents the balance after the computation of interest at the sad of the $k-t h$ quarter, p_{l} : represents the net transaction (that is, the net of deposits and withdrawals) in the account during the k-th quarter,* and i_{k} represents the quarterly interest rate at the end of the k-th quarter. A seven-year history of such a savings account (seven years for tax purposes; is represented by a system

$$
s\left(b_{0}\right) \subseteq P \times I \times B
$$

where

$$
\begin{aligned}
b_{0} & \text { represents the initial balance in the account; } \\
P & =R^{28 t} \text { represents the twenty-eight transactions; } \\
I & =R^{28} \text { represents the twenty-eight quarterly interest rates; } \\
\text { and } \quad B & =R^{28} \text { represents the twenty-eight successive balances }
\end{aligned}
$$

and $(p, i, b)=S\left(b_{u}\right)$ if and only if equation (1.1) holds for every k from i to 28 inclusive, where $p=\left(p_{1}, \cdots, p_{28}\right)$; $i=\left(i_{1}, \cdots, i_{28}\right)$; and $b=\left(b_{1}, \ldots, b_{28}\right)$. The system $S\left(b_{0}\right)$ describes in fuil generality the seven-year savings-account history in any circumstance. Certain results in econometilics are equivalent to determining b_{28} under further specific assumptions. For example, the determination of b_{28} for $(p, i, b) \varepsilon S(0)$ where $p_{2}=\cdots$ $p_{28}=0$ and $i_{1}=1_{2}=\cdots 1_{28}>0$ is accomplished using the

[^0]compound interest formula
$$
b_{28}=p_{1} \cdot\left(1+1_{1}\right)^{28}
$$

A number of remarks concerning this example are in order. It is certainly true that the use of an econometric table prepared for a specific situarion is easier than the direct use of the difference equation (1.1). On the other hand, small changes in a situation can make the use of tables cumbersome. For example, suppose that the p_{j} in the sequence $\left(p_{1}, p_{2}, \cdots, p_{28}\right)$ are positive and dietinct and that $i_{1}=1_{2}=\cdots=1_{28}>0$. Then by use of econometric tables, we compute b_{28} by the formula

$$
b_{28}=\sum_{j=1}^{28} p_{f} \cdot\left(F / P, 1_{1}, 29-j\right) .
$$

Tinis means that the compound amount factor ($F / P, i_{1}, 29-j$) must be looked up 28 times in the compound interest factors table ore is using. If we further complicate the problem by having the i_{j} in $\left(i_{1}, i_{2}, \cdots, i_{28}\right)$ distinct and positive, then we could compute b_{28} by the iterative method:

$$
\begin{aligned}
b_{28} & =\left(b_{27}+p_{28}\right) \cdot\left(F / P, 1_{28}, 1\right) \\
b_{27} & =\left(b_{26}+p_{27}\right) \cdot\left(F / P, 1_{27}, 1\right) \\
& \cdot \\
& \cdot \\
& , \\
b_{1} & =\left(b_{0}+p_{1}\right) \cdot\left(F / P, 1_{1}, 1\right) ;
\end{aligned}
$$

or we could use the single formula obtainable by straightforward algebraic :ubstitution in the equations above. So, to find b_{28},
*See [5], page 594.
we start with b_{D} and work backwards; in using the compound interest factors tables we should have to do 28 look-ups, each on a different page since in each quarter the interest is different trom that in any other quarter. If it happens that each $i_{j}<k \%$, where $k \%$ is the lowest interest for which we have a table, our problem has become even more severe. It is much easier in these sases, especially on a digital computer, simply to use the difference equation (1.1).

The preceding remarks should illustrate that the most important characteristics of the system (that is, the difference equation) are its appropriateness to the aituation modeled and its general applicability.

Example 2: Considex the motion of a body E suspended on an ideal spring. The notion is governed by the differential equation

$$
\begin{equation*}
m \cdot s^{\prime \prime}(t)+k \cdot s(t)=x(t) \tag{1.2}
\end{equation*}
$$

where m is the mass of $B, g(t)$ is the position of B at time t, ik is a constant of the spring, and $x(t)$ is an external force acting on B at time i, If C is the set of all analytic functions on $[0, \infty)$, then the differential equation (1.2) with initial coaditions $s(0)=a$ and $s^{\prime}(0)=b$ is represented by the system $s(a, b)$ defined as follows:

$$
s(a, b) \subseteq c \times c
$$

where $(x(t), g(t)) \in S(a, b)$ if and only if $s(0)=a, s^{\prime}(0)=b$, and the functions x and s satisfy (1.2) for all $t \in[0, \infty)$. Hence the familiar analytical tool of differential equations is a
system under our very bzoad definition. Our third example will snow that tinite-state rachines are also encompassed in our concept of system.

Example 3: Consider a vending machine which accepts nickels, dimes, and quarters for a ten-ceat cup of coffee and gives change if any is due. Let $A=\{5,10,25\}$ represent the coins acceptable
 means "coffee". Let $B_{2}=\{0,5,10,25\}$ represent the coins the machine can return. The set $B=B_{1} \times B_{2} \times B_{2}$ specifies the set of outputs that can occur at any time. Now let the set $Q=\left\{q_{0}, q_{1}\right\}$ represent the states of the wachine. We give a state transition function $E: A \times Q \rightarrow Q$ and an output function $g: A \times Q \rightarrow B$ by the ..ollwwiag table:

Table I

```
State-OTransit!m
```

	$a=5$	$a=10$	$a=25$		$a=5$	$a=10$	$a=25$
$f\left(a, q_{0}\right)$	q_{1}	q_{0}	q_{0}	$g\left(a, q_{0}\right)$	$(\phi, 0,0)$	$(c, 0,0)$	$(c, 5,10)$
$z\left(a, q_{1}\right)$	q_{0}	q_{0}	q_{1}	$g\left(a, q_{1}\right)$	$(c, 0,0)$	$(c, 5,0)$	$(\phi, 0,25)$

We have now modeled the vending machine as a finitemstate machine in the usual manner.

Now suppose that we observe ta trials. Let A^{n} and B^{n} be, respectively, the sets of all n-tuples frow che sers A and B, Then for a given initial state $q=q_{i}, i \varepsilon\{0, i\}$, there corresponds
to any input tape x in A^{n} a unique output tape y in B^{n}. We have defined a mapping

$$
S_{q}: A^{n}+B^{n}
$$

such that for each x in A^{n} the image $y, S_{q}(x)$ is the mique output sequence corresponding to the input sequence x and the initial state $q=q_{i}$. We say that tie vending machine is represented by the system $S \subseteq A^{n} \times B^{\mathfrak{n}}$ where $S=S_{q_{0}} U S_{q_{1}}$. Considering that in normal operation of the machine the initial state is q_{0}, we can consider the vending machine to be the functional system S_{10}.

The examples we have presented are intended to enhance the intelligibility of the discussion of system modeling in the next section. Additicnally, the enrichment of one's intuitive notions through the use of examples will, hopefully, serve a similar purpose in the next seciion.

SYSTEM: MODELING

The mathematics of relations among objects with which we deal is designed to provide a useful model for our investigation of secure computer systems. Three desirable properties of such a model suggested by the examples of the previous section are generality, a predictive ability, and appropriateness. In this section, we shall discuss each of these properties in turn, commenting on its relation to a "useful" model of a particular situation.

Differential equations are systeas that frequently display great generality. Equation (1.2) illustrates this point clearly.

Without knowing the mass of B and without specifying the spring constant k, we can nevertheless analyze the general system. In fact, for $x(t) \equiv 0$, (1.2) has the closed form solution

$$
\begin{equation*}
s(t)=A \cdot \sin (n t+C) \tag{1.3}
\end{equation*}
$$

where $n=(k / n)^{1 / 2}$ and A and C are constants determined by the initial conditions z and b. Noreover, equation (1.2) is a special case of the more general form

$$
s^{\prime \prime}(t)+2 k \cdot s^{\prime}(t)+n^{2} \cdot s(t)=x(t)
$$

which models a vas: number of elogtic vibrations including electrical oscillations (as in a capacitor) and the vibrations in pipe organs [2].

A muciel too closely tied to a specific application icses the possiblity of more general applicability. On the other hand, a model. insufficiently rooted in the problem at hand will not allow accurate prediction of the behavior of the physicil systen being modeled. For example, knowing che inftial conditions of the suspended weight B, the mass of B, and the aprins constant d, we can predict precisely where B will be 5.8333? 3econds fron "let-g\%." The same sort of precise predictive power is desirable in modeling discrete computer aystems. Moreover, in modeling secure computer system we must deny ourselves the luxury of accepting approximate answers and insist on absolute rather than probabilistic determinacy.

The last isportant feature of a model is its appropriateness to the situation of intierest. In each of the three examplea of Section I, the type af system used appropriately described the important properties of the sttuetion being modeled. One particular
advantage of an appropriate model can be $111 u \mathrm{ctrated}$ by the third example, while the severe problems which an inappropriate model can cause can be demonstrated by a discussion of the second example.

The vending machine modeled in Example 3 illustrates that problems other than correctness can be detected in a model appropriate to a given situation. In particular, the machine we have desined has this interesting characteristic: if in state q_{1} one continually inserts quartors into the machine, the machine monotonousiy returns a quarter and gives no coffee. This is a behavioral characteristic which the vending machine company might consider undersirable. We have purposely constructed our sample machine in this way in order tc show that while the machine is "correct" in its cperation, we may consider it to be non-viable as a profit-making item.*

Now consider the situation modeled in Example 2. If a discrete model has been chosen cver a continuous one, the model might have been repregented by discrete observations of tie spring-weight tandem

$$
\begin{equation*}
u_{t}=s(t), \quad t=0,1,2,3, \ldots \tag{1.4}
\end{equation*}
$$

where $s(t)$ is the same position fanction appearing in (1.2). Suppose B has mass = 1 gran, the tine interval is 1 second, and the spring constant is $k=39,478 \mathrm{~g} / \mathrm{sec}^{2}$. In this special case, the motion of B indicates no apparent movement-the body B is always the same position ($s(0)$) at each observation time. The

[^1]periodicity of $E^{\prime} s$ moifin is precisely what makes a continuous differential-equation model more appropriate than a discrete model of the cype described (in addition to the more accurate predictive power). The foint is that an inappropriate model of a problem situation can obfuscate the essential issues involved, thus complicating the problem.

The major task in system modeling is to provide a useful model of the situation under scrutiny, a model which exhibits generality, a predictive ability, and appropriateness to the problem at hand.

SECURE COMPUIER SYSTEMS

A number of systems have been built and designed shich attack the general problem of security in sowe form and to some extent. In some cases, privacy of data is the principel objective; in others, the prime objective is access control. For the security criteria which we shal. establisin, however, no existing systen of which we are aware is adequate. *

When we speak of a secure computer systen, we mean one which satisfies some definition of "security". Our iaterest is security In the usual military and goveramental senses - that is, securicy involving classifications and nerts-to-know.

We shall investigate a bounded form of the general problem of security. Our interest shall be to certify viiat within the digital computer, which is only part of a total sysces, no security compromise vill occur. The elements with which we shall deal, then, are processes (programs in execution), data, accass control algorithas, classifications of data ard processes, and the needs-to-know of elements within the digital computer.
\qquad
*See reference [13] at the end of this section.

PROBLEMS OF SECURITY

Let us consider a security compromase to be unauthorized access to information, where unauthorized means that an inappropriate clearance or a lack of need-to-know in involved in the access to the information. Then a central problem to be solved within the computing system is how to guarantee that unauthorized access (by a process) to information (file, program; data) does not occur.

If we can certify that unauthorized access cannot occur within the system, then we must next consider the secondary eifects of the method by which security has been achieved. Principally we shall have to address ourselves to the general question of the viability of the resuitant system in terms of economic and technological feasibility and in terms of usefulness to the user.

SUMMARY AND REFERENCES

In this chapter we have introduced general systems theory very bricfly and have shown examples oi its application. Together with the short diacussion on system modeling, the general systems theory and examples should provide an adequate basis for reading the rest of this paper.

The reader who may wish to investigat.e systems theory for himself is referred first to the book edited by Rlir [9], which can profitabiy be read with or without any background in mathematics. The reader will find further examples of systems in the book [14] by Mesarovic, Kacko, and Takahara. In particular, beginning on page 69 of [14] the reader will find the basic mathematical concept of a system which we have borrowed. Otizer books which should be of interest are those by Klir i8], Hamer [6], von Bertalanffy [1], and Zadeh and Polak [25].

In the section entitled SECURi COMPUTER SYSTEMS we defined in broad terms what we mean by a secure computer system. Oux general notion of a secure system is derived in large measure from essentlals of a secure system abstracted from the Multics system, as an archetype of multi-user systems, and from a knowledge of security problems. The reader can find numerous articles 1 , the literature which touch on the area of a secure computer system; we iist [3,4,10,11,12] as representative of what is available. As we pointed out, hu:over, none of the generally zvailable literature deals specifically with the problem we address in this paper.

Finally, we have indicated in this chapter what we consider to be the general problems we shall encounter in investigating secure corputer systems.

1. von Bertalanffy, Ludwig., General System Theory, George Braziller, Inc., New York, 1968.
2. Ford, Lester R., Differential Equations, ItcGraw-Hill Book Company, New York, 1955.
3. Graham, G. Scott, and Peter J. Denning, "Frotection Principles and practice (sic):" AFIPS Conf. Proc. 40 Spring Joint Computer Conference 1972, pp. 417-429.
4. Graham, R.M. "Protection in an information processing utility," Comn ACM, 15 May 1968, pp. 36i5-369.
5. Grant, E. L., and W. G. Iveson, Principles of Engineering

Economy, The Ronald Press Coapany, New York, 1970.
6. Hammer, Preston S., ed., Advances in Mathematical Systems Theory, Pennsylvania State University Press, University Park, Pennsjivania, 1969.
7. Hofinan, i. J., "Computers ana privacy: a survey," Computing Surveys, 1, 2 June!, 1969, pp. 85-104.
8. Klir, George J., An Approach to General Systems Theory, van Nostrand Reinhold Company, 1969.
9. Klir, George J., ed., Trends in General Systems Theory, Wiley-Tnterscience, New York, 1972.
10. Lampsor, B. hiw, "Dynanic protection structures," AFIPS Conf. Proc. 35, Fall Joint Computer Conference 1969, pp. 27-38.
11. Lampson, B. W., "On reliable and ex:-endable operating systems," Techniques in software engineering, NATO Science Committee Working Material Vol. II, September, 1969.
12. Lampson, B. W., "Protection," Proc. Fifth Anaual Princeton Conf. on Inf. Sciences and Systems, Dept. of E. E., Princeton University, Princeton, N. J., March, 2971, pp. 437-443.
13. Lipner, Steven B., "Coupater Security Research and Deveiopment Requirements", MTP-142, Niarch 1973.
14. Mesarović, M. D., D. Macko, and Y. Takahara, Theory of Hierarchical, Multileve1, Systems, Academic Press, New York, 1970.
15. Zadeh, L. A., and E. Polak, System Theory, MCGraw-Hill Book
Company, New York, 1969.

SECTION III

foundations of a mathematical model

elements of the model

We begin by identifying elements of the model which correspond to parts of the real system to be modeled. We assume the real. system to have multiple users operat ing concurrently on a camon data base wit:! malti-level classification for both users and data and need-io-know categories associated with totil users and data. In our model we deal with subjects (processes), which one stsould consider surrogates for the users.

We show the elements of our model in Table 1I, wherein we identify sets, elements of the sets, and an interpretation of the elements of the sets.

Table II
Elements of the Mojel

Set	Elements	Semantics
S	$\left\{S_{1}, s_{2}, \cdots \cdots, s_{n}\right\}$	subjects; proccsses, programs in execution
0	$\left\{0_{1}, 0_{2}, \cdots, 0_{m}\right\}$	objects; data, fileg, frugrams. subjects
c	$\begin{aligned} & \left\{c_{1}, c_{2}, \cdots, c_{q}\right\} \\ & c_{1}>c_{2}>\cdots>c_{q} \end{aligned}$	classifications; clearance level of a subject, classification of an object
k	$\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}, \cdots, \mathrm{k}_{\mathbf{r}}\right\}$	needs-to-knor cateqories; project numbers, access privileges

Taìle II (Continued)

Set	Elemants	Semantics
A	$\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{\mathrm{p}}\right\}$	access attributes; read, write, copy, append, owner, control
R	$\left\{\mathrm{R}_{1}, \mathrm{R}_{2}, \cdots, \mathrm{~K}_{\mathbf{u}}\right\}$	requests; inputs, commende, requests for access to objects by subjects
D	$\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \cdots \cdots, \mathrm{D}_{\mathrm{v}}\right\}$	decisions; outputs, answers, "yes", "no", "error"
T	$\{1,2, \cdots \cdots$	indices; elements of the time set; identification of discrete moments; an element t is an frsox to request and decision sequences
P_{α}	all subsets of a	power set of α
α^{B}	all fun .fons from the set \& to the set α	----------m
$\alpha \times B$	$\{(a, b): a \varepsilon a, b \in \beta\}$	Cartesian product of the sets a and B
F	$c^{S} \times c^{0} \times(P K)^{S} \times(P K)^{0}$ an arbitrary element of F is written $f=\left(\hat{x}_{1}, \hat{x}_{2}, \tilde{i}_{3}, \tilde{x}_{4}\right)$	classification/need-to-know vectors; $\begin{aligned} & f_{1}: \text { subject-classification function } \\ & f_{2}: \text { object-classification function } \\ & f_{3}: \text { subject-need-to-know function } \\ & f_{4}: \text { object-need-to-know function } \end{aligned}$

Tabse II (Concluded)

Set	Elements	Semantics
X	```\[R^{T} \] an arbltrary elemeni of \[x \text { is wricten } x \]```	request sequences
\%	$\begin{aligned} & \mathrm{D}^{\mathrm{T}} \\ & \text { an arbitrary element of } \\ & \mathrm{Y} \text { is written } \mathrm{y} \end{aligned}$	decision sequences
. ${ }^{\text {a }}$	$\left\{M_{1}, M_{2}, \cdots, M_{n m 2} p^{\prime}\right\}$ an element M. of M is an $n \times m$ matrix with entries from $P A$; the (i, j)-entry of M_{k} shows S_{i} 's access attributes relative to 0_{j}	access matrices
v	$P(S \times 0) \times M \times F$	states
2	v^{T} an arbitrary element of z is uritten $z ; z_{t} \in z$ is the t-th state in the state sequence z	state sequences

We have defined the states of the system in such a way as to embody all the information which we consider pertinent to security considerations.

A state $V \varepsilon V$ is a 3-tuple (b, M, f) where
$b_{\varepsilon} P(S \times 0)$. indicating which subjects have access to which objects in the state v;
$M \in M$, Inaicating the entries of the access matrix in the state V; and
$f \in F$. indicating the clearance level of all subjects, the classification level of all objects, and the needs-to-know associated with all subjests, and objects in the state v.

STATE-TRANSITION RELATION

Let $W \subseteq R \times D \times V \times V$. The system $\Sigma\left(R, D, W, z_{0}\right) \subseteq X \times Y \times 2$ is defined by

$$
\begin{aligned}
& (x, y, z) \in \sum\left(R, D, W, z_{0}\right) \text { if and only if }\left(x_{t}, y_{t}, z_{t}, y-1\right) \varepsilon W \\
& \text { for each } t \in T \text {, where } z_{0} \text { is a specified initial state } \\
& \text { usually of the form }(\phi, M, f) \text {, where } \phi \text { denotes the empty } \\
& \text { set. }
\end{aligned}
$$

[^2]intuitively as embodying tife rules of operation by which the system in ary given state determines its decision for a given request and moves into a next state.

SLMAYARY AND REFERENCES
In this section we have established elements of a matheratical rudel of a system; these elements were chosen to represent as nearly as possible the realities of the problem situation and to enable as easy a transition as possible from mathematical model to design specifications.

The states of the system have been defined in such a way as to incorporate all information which seems pertinent to correct operation of a secure system ("secure system" to be delined precisely in the next section).

Finally, we have included in the model a state-transition relation W which is the key to modeling: given W one may predict the behavior of the system for a given set of initial conditions and a given request sequence.

A FUNDAMENTAL RESULT

COMPROMISE AND SECURITY
We define a compromise state as foilows: $V \geqslant(b, M, f) \varepsilon V$ is a compromise state (compromise) if there is an ordered pair (5,0) εb such that
(i)

$$
f_{1}(S)<\varepsilon_{2}(0) \text { or }
$$

(ii) $\quad \mathrm{f}_{3}(\mathrm{~S}) \underset{\boldsymbol{e}}{\mathrm{f}_{4}}(\mathrm{O})$.

In other words, v is a compromise if the current allocation of objects to subjects (b) includes an assignment ((S,0)) with at least one of two undesirable characteristics:
(1^{\prime}) $S^{\prime} s$ clearance is lower chan $0^{\prime} s$ ciassification;
(11') S does not have some need-to-know category that is assigned to 0 .

In order to make later discussions and argunents a little more succinct, we shall dofine a security condition. $(S, 0) \in S \times 0$ satisfies the security condit'. rn relative to f (SC rel f) if
(iii)
$f_{1}(S) \geq f_{2}(0)$ and
(iv) $\quad f_{3}(S) \supseteq f_{4}(0)$.

A state $v=(b, M, C) \in V$ is a secure state if each $(S, 0) \varepsilon b$. satiffies SC rel f. The detinitions of serure states and compromise states indicate the validity of the following unproved proposition.

Proposition: $v \in V$ is not a secure scate iff V is a compromise.

A state sequence $z \varepsilon 2$ has a compromise if z_{t} is a cocpromise for some $t \in T$. z is is secure state sequence if z_{t} is a secure state for each $t \in T$. We shall call $(x, y, z) \in \sum\left(R, D, W, z_{0}\right)$ an appearance of the system. $(x, y, z) \in \sum\left(R, D, W, z_{G}\right)$ is a secure appearance if z is a secure sl:ate sequence. The sppearance (x, y, z) has a compromise if 2 has a compromise.
$\Sigma\left(R, D, W, z_{0}\right)$ is a securis system if eviry appearance of $\Sigma\left(R, D, N, z_{0}\right)$ is secure. $\sum\left(R_{8} D, W, z_{0}\right)$ has a compromise if any appearance of $\Sigma\left(K, D, W, z_{0}\right)$ has a compromise.

Froposition: $Z \in Z$ is not secure iff z has a compromise.

Proposition: $\Sigma\left(R, D, W, z_{0}\right)$ is not secure iff $\Sigma\left(R, D, W, z_{0}\right)$ has a compromise.

ASSUMPTIONS
We make assumptions, as shown in Table III, which reflect a subset of requirements (or lack of requirenents) to be imposed on the systera. Ir: Eection IV we shall change some of these assumptions and sbserve. the effect on the system.

Table III

Table III
Initial Requirements
SUBJECT CLEARANCE
OBJECT CLASSIFICATION

Tais III, in effect, says that "no" is the answer to each of the questions

$$
\begin{aligned}
& \text { "Is there a requirement to } \left.\begin{array}{l}
\text { raise } \\
\text { lower } \\
\text { increase } \\
\text { decrease }
\end{array}\right\} \text { a } \\
& \left\{\begin{array}{l}
\text { subject's } \\
\text { object's }
\end{array}\right\} \quad\left\{\begin{array}{l}
\text { classification/ciearance } \\
\text { aceds-to-know }
\end{array}\right]
\end{aligned}
$$

BASIC SECURITY THEOREM
Basic Security Theorem: Let $W \subseteq R \times D \times V \times V$ be any relation such that $\left(R_{1}, V_{j},\left(b_{i}^{*}, M *, f *\right),\left(b, M_{2} f\right) \in W\right.$ implies
(i) $f=f *$ and
(if) every $(S, 0) \in b^{\star-b}$ satisfies $S a$ rel $f *$.
$\Sigma(R, D, W, z)$ is a secure system for any secure state z.

Proof: Let $z_{0}=(b, M, f)$ be secure. Pick $(x, y, z) \in \sum(R, D, W, z)$ and write $z_{t}=\left(b^{(t)}, M^{(t)}, f(t)\right.$ for each $t \varepsilon T$.
\underline{z}_{1} Is a secure state. $\left(x_{1}, y_{1}, z_{1}, z\right) \varepsilon$ W. Thus by (i), $f^{(1)}=f$. By (11), every $(S, 0)$ in $b^{(1)}-t$ satisfies SC rel $f^{(1)}$. Since z is secure, every $(S, 0) \in b$ satisfies $S C$ rel f. Since $f=f(1)$, every $(S, 0) \varepsilon b^{(1)}$ satisfies SC rad $f^{(1)}$. That is, z_{1} is secure.

Thus by (i), $f^{(t)}=f^{(t-1)}$. By (ii), every $(s, 0)$ in $b^{(t)}-b^{(t-1)}$ satisfies SC rei $f^{(t)}$. Since z_{i-1} is secure, every $(S, 0) \& b^{(t-1)}$ sati.sftes Si rel $f^{(t-1)}$. Since $f^{(t)}=f^{(t-1)}$, every $(s, 0) \in b^{(t)}$ satisfies SC re! $f^{(t)}$. That is, z_{t} is secure. By induction, z is secure so that (x, y, z) is a secure appearance. (x, y, z) being arbitrary, $\Sigma\left(R, D, W, z_{0}\right)$ is secure.

SUMMARY

In this chapter we have applied the matematical model of Section II to the modeling of a secure computer system. We have defined a secure syatem precisely, through the definitions of security and comprosise, and have given a rule of operation, W, which we have shown guarantees that the system is secure in its operation.

INTRODUCTION
We attempted to provide in Section I a motivation and basis for the remainder of this paper. We pointed out three desirable properties of a model -- generality, predictive ability, and appropriateness and these were illustrated by example. Also, we discussed the general principle that the specificity of prediction is roughly proportional to the amount and level of detail of information available about the system being modeled; this was illustrated by the discussion of the spring-mass system.

Subsequently, we developed a mathematical model of general applisability to the study of secure computer systens, abstracting the elements of the model from our own and others' notions of what the real system may be 1ike.

We then applied the model, under a given set of assumptions, to the question of security (compronise). He gave a rule by which, for the assumptions given, the system would remain secure in its operation; we also gave a proof of the last assertion.

Notice this important point: our proof did not depend on the choice of elements for the set A (access attributes). This means that any set is acceptable and any access matrix is acceptable. Stated differently, we have shown that under the given assumptions security of the system is independent of the access matrix and the rules (if any) by which the access aatrix is changed.

Thus, we have modeled the system in such generality that we are not in a position to investigate its viability. For, clearly, one may arbitrarily choose rules of access matrix control while retaining the property of security. Therefore, one may choose the rules in such a way as to prevent users from ever acquiring access to information; the severe danger is that a set of rules might be chosen which has an intuitive sense of correctness but which may lead the system into undesirable states.

I'e shall address ourselves in this section to some of the specific questions to be considered if a viable system is to be reveloped from our model.

PROBLEM REFORMULATION

One may change the system problem to be attaciced in a variety of ways. In general one states a set of requirements and a set of criteria to be met. The requirements and criteria may be very general or ver. specific: the more specific these are, the more specific can be the behavior predicted by modeling and the greater the probability that a viable system will result from the design into which the model is transformed.

In our situation we can immediately recognize two areas of pron blem reformulation. Firat, one may change the requirements of the type we assumed in Section iII. We shall, in fact, do so ansi derive a result from the changed assumptions. Second, one may impose criteria to be met by the access control mechanisms of the systers. We shall investigate this briefly in the next two sections.

We change the assumptions we made in Section III, as shown in Table IV.

Table IV
Modified Requirements

	REQUIREMENTS	
	RAISE?	LOWER?
SUBJECT CLEARALICE	YES	NO
OBJECT CLASSIFICATION	NO	YES
	INCREASE?	DECREASE?
SIIBJECT NEEDS-TO-KNOW	YES	NO
OBJECT NEEDS-TO-KNOW	NO	YES

Basic Security Theorem (revised):
Let $W \subseteq R \times D \times V \times V$ be any rolation such that

$$
\begin{aligned}
& \left(R_{i}, D_{j},\left(b^{*}, M^{*}, f f^{*}\right),(b, M, f)\right\rangle \in \text { W irplies } \\
& \text { (1) } f_{1}^{*}(S) \geq f_{1}(S) \text { for each } S \in S, \\
& f_{2}^{*}(0) \leq f_{2}(0) \text { for each } 0 \varepsilon 0, \\
& f_{3}^{*}(S) \supseteq f_{3}(S) \text { for each } S \varepsilon S, \\
& f_{4}^{*}(0) \subseteq f_{4}(0) \text { for each } 0 \varepsilon 0, \text { and }
\end{aligned}
$$ (ii) every $(S, 0) \varepsilon b^{*}-b$ satisfies $S C$ rei f^{*}.

Ther $\Sigma\left(R, D, W, z_{0}\right)$ is a secure system for any secure state z_{0}.
Proof: Let $z_{0}=(b, M, f)$ be secure.
Fick $(x, y, z) \in E(R, D, W, z)$ and write $z_{t}=\left(b^{(t)}, M^{(t)}, f^{(t)}\right)$ for eact $t \in T$.
z_{1} is a secure state. $\left(x_{1}, y_{1}, z_{1}, z_{0}\right) \in W$.

By (11), every $(S, 0)$ in $h^{(1)}-b$ satisfies SC rel $f^{(1)}$. Since z is secure, every $(S, 0)$ in b satiafies $S C$ rel f; that is, $f_{1}(S) \geq f_{2}(0)$ and $\mathrm{f}_{3}(\mathrm{~S}) \supseteq \mathrm{F}_{4}(0)$. By (1), we have, for each $(S, 0)$ in $b^{(1)}-\left(b^{(1)}-b\right)$,
$f_{1}^{(1)}(S) \geqq f_{1}(S) \geqq f_{2}(0) \geqq f_{2}^{(1)}(0)$ and $\mathrm{f}_{3}^{(1)}(\mathrm{s}) \supseteq \mathrm{f}_{3}(\mathrm{~s}) \supseteq \mathrm{f}_{4}(0) \supseteq \mathrm{f}_{4}(0)$, so that each $(S, 0)$ in $b^{(1)}$ satisfies SC rel $f^{(1)}$.

That is, z_{1} is secure.
If z is secure, then z is secure.
$\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right) \varepsilon W$. By (ii), every ($S, 0$) in $b^{(t)}-b^{(t-1)}$ satisfies $\sim C$ rel $f^{(t)}$. Since z_{t-1} is secure, every $(S, 0)$ in $b^{(t-1)}$ satisfies $S C$ rel $f^{(t-1)}$; that is, $\underset{i}{(t-1)}(S) \geqq f_{2}^{(t-1)}(0)$ and $\sum_{3}^{(t-1)}(S) \supseteq f_{4}^{(t-1)}(0)$ By (i), we have for each $(S, 0)$ in $b^{(t)}-\left(b^{(t)}-b^{(t-1)}\right)$, $f_{1}^{(t)}(S) \geqq f_{1}^{(t-1)}(S) \geqq f_{2}^{(t-1)}(0) \geqq f_{2}^{(t)}(0)$ and $f_{3}^{(t)}(S) \supseteq f_{3}^{(t-1)}(S) \supseteq f_{4}^{(t-1)}(0) \supseteq f_{4}^{(t)}(0)$, so that each $(S, 0)$ in $b^{(t)}$ satisfies SC rel $f^{(t)}$. That is, z_{i} is secure.

By induction, z is secure $s c$. that (x, y, z) is a secure appearance. (x, y, z) being arbitrary, $\Sigma\left(R, D, W, z_{0}\right)$ is secure.

The revised theorem just proved indicates that dynanic
(i) raising of subject clearance;
(ii) lowering of object claasification;
(iii) increasing of subject ne:eds-to-know; and
(iv) decreasing of object ne ade-tomok
can be provided in the system wilanut security compromise. Again, f:owever, the proof is independent of what is happening in the access matrix, the subject of the next section.

We note here that our investigations into the security of a system in the cases that a subject's clearance may be lowered dynamically, an object's classification may be increased dynamically, and similar changes in needs-to-know are as yet undocumerited. Those investigations lead us to believe that severe questions of the viability of the resulting systam are raised by the options listed above.

ACCESS CONTROL
In a real sense, the relation W we have specified provides a rule of access contrel which governs security as we have defined it. We have also proyided in the model for access control to govern protection, privilege, and mode of use through the access matrix we have defined.

Two problems are immediately evident. First, unless the system guarantees the inviolability of rule W our security theorea does net apply. Seccnc, :niess we deal with some specific criteria and rules relating to the access matrix, we can say little if anything conceming viability of the system; again, if access matrix controls are provided, the system must be structured so as to guarantee their inviolability else our modeling will aot apply.

Let us consider a situation in which the interaction of security control and access control can cause a compromise. Specifically, if a subject S_{i} is allowed "append" access to an object O_{k}, a file or segment, then guaranteeing invioiability of rule W means the system must prevent S_{i} from appending information of a classification higher than that of 0_{k} : otherwise we risk having $\left(S_{i}, O_{k}\right)$ in b, where S_{j} has "read" access to O_{k}, while $f_{1}\left(S_{i}\right)<f_{2}\left(0_{k}\right)$ resulting in compromise. This example shows that inadequate access controls (over the "appenc" access of S_{i} to O_{k}) can cause d violation of W (by raising $f_{2}\left(O_{k}\right)$, contrary to our assumption up to this point), resulting in a compromise etate.

DATA BASE SHARING
We have assumed a shared data base for the multi-user system but have stated no requiroments nor criteria for "correct" sharing. The concluding remark of the preceding section suggests that we must do so. At least, we must specifically prevent the situation we discussed; alterratively, one might choose to ctange our definition of compromise. Unfortunately, a change in the definition of compromise in this situation would be in the direction of weal:ening rule W with the result that the model will reflect the real problem less accurately than we have succeeded in doing thus far.

In addition, one may impose aduitional criteria reiating to sbaring of the data base, such as prevention of deadlock, preservation of integrity of the information, and prevention of permanent blocking-such criteria have to do with reliability of the system and therefore relate to its usefulness.

SUMMARY AND REFERENCES

In this chapter we have discussed the generalities of changing the definitiion of the probiem to be solved. We showed an example by stating and proving the security theorem for a new set of assumptions relating to changes in classifications and needs-to-know.

We pointed out briefly that the system which one might develop from our model would have to guarantee inviolability of the rule of operation W. Techniques have been documented which use hardware, software, or combinations of these for protection of privileged algorithms; references $[1,2,3,4,5,6,8,9,10]$ are relevant.

We discussed briefly the question of a shared data base. For a discussion of problems and a solution see [7].

In summary, we have artempted to show in this section that the model can be used to anawer questions posed with a given set of requirements and criteria and to indicate that a central problem in the design of a secure system will be to certify that the access controls are inviolable.

1. Conway, R., W. Mixwell, and H. Morgan, "Selective security capabilities in ASAP-A Eile management system," AFIPS Conf. Proc. 40, SJCC 1972.
2. Emerson, H., "An Approach to Handing Multi-level Data Element Security Within a File," Proceedings Invitational Horkshop on Networks of Computers, AS 860 77e, Oc£oter 1968.
3. Graham, R. M., "Protection in an information processing utility," Comm ACM, 15 May 1983, pp. 365-369.
4. Hoffman, L. J., "The Formusary Model for Access Control and Yrivacy in Computer Systems," Stanford Uaiversity, SLAC-117, UC-32, May 1970.
5. Iuorno, R. F., et al., PADC/MULTICS Evaluation, RADC-TR-71-121, November 1971.
6. Lampson, B. W., "Dynamic protection structures," AFIPS Conf. Proc. 35, F.JCC 1969, pp. 27-38.
7. La Padula, L. J. $=$ and D. Elliott Bell, "Harmonious Cooperation of Processes Operating on a Common Set of Data," Volumes 1, 2, and 3, ESD-TR-72-147, 1972.
8. Liskov, B. H., "The Design of the Venus Multiprogramming System," Corm ACM, 15, 3, March 1972, pp. 144-149.
9. Schroeder, M. D., and Jerome H. Saltzer, "A Hardware Arrhitecture for Implementing Protection Rings," Comm ACM, 15, 3, March 1972.
10. Weissman, C, "Secu:ity Controls in the ADEPT-50 Time-sharing System," AFIPS Conf. Proc. 35, FJCC, 1969, pp. 119-133.
11. von Bertalanffy, Ludwig, General System Theory, George Braziller, Inc., New York, 1968.
12. Browne, P. S., and D. D. Steinauer, "A Model for Access Concrol," Proc. of 1971 ACM-SIGFIDET Workshop, Data Description, Access and Control, 1971.
13. Conway, R., W. Maxwell, and H. Morgan, "Selective security cipabilities in ASAP--A file menagement system," AFIPS Conf. Proc. 40, S.JCC 1972.
14. Emerson, H., "An Approach to Handling Multi-Level Data Element Security Within a File," Proc. Invitational Vorkshup on Networks of Computers, Ad 860 776, October, 1968.
15. Friedman, T.D., "The authorization problem in shared files," IBM Sys. J., No. 4, 1970, pp. 258-280.
16. Graha_, G. S_ott, and Peter J. Denning, "Protection - Principles and practice (́sic)," AFIPS Conf. Proc. 40, SJCC 1472, pp. 417-429.
17. Graham, R.M. "Protection in an information processing
utility," Comm ACM, ${ }^{3} 5 \mathrm{May}, 1968$, pp. $365-369$.

BIBLIOGPAPHY (Continued)

8. Hamer, Presion C., Zd., Advances in Mathematical Systems Theory, Pennsylvania State University Press, University Park, Pennsylvania, 1969.
9. Hoffman, L. J., "Computers and privacy: a survey," Computing Sur veys, 1,2, June, 1969, pp. 85-104.
10. Hoffman, L. I., "The Formulary Model for Access Control and Privacy in Computer System," Stanford University, SLAC-117, UC-32, May 1970.
11. Iuorion, R. F., et. al., RADC/MULTICS Evaluation, RADC-TR-71-121, November, 1971.
12. Klir, George J., An Approach to General Systems Theory, Van Nootrand Reinhold Company, 1969.
13. Klir, George J., ed., Trends in General Systems Theory, Wiley-Interscience, New York, 1972.
14. Lampson, B. W., "Dynamic protecticn structures," AFIPS Conf. Proc. 35, FJCC 1969, pp. 27-. 8.
15. Lampson, B. W., "On reliable and extendable operating systems," Techniques in software engineering, NATO Science Commitrse Working Material Vcl. II, September, 1969.
16. Lampson, B. K., "Protection," Proc. Fifth Annual Princeton Conf. on Inf. Sciences and Systems, Dept. of E. E., Princeton University, Princeton, N. J., March, 1971, pp. 437-443.
17. La Padula, L. J., and D. Elliott Bell, "Harmonious Cooperation of Processes Dperating on a Common Set of Data," Volumes 1, 2, and 3, ESD-TR-72-147, 1972.
18. Liskov, B. H., "This Design of the Venus Multiprogramming System," Comm ACM 15, 3, Nisich, 1972, pp. 144-149.
19. Mesarović, M. D., D. Macko; and Y. Takahara, Theory of Hierarchical, Multilevel, Systems, Academic Press, New York, 1970.
20. Schroeder, M. D., and Jerome H. Saltzer, "A Hardware Architecture for 3 .uplementing Protection Rings," Comm ACM 215,3 , March, 1972.
21. Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing System," AFIPS Conf. Proc. 35, FJCC 1969, pp. 119-133.
22. Zadeh, L. A., and E. Polak, System Theory, KcGraw-Hill Bcok Company, New York, 1969.

[^0]: *We assume for simplicity that interest is paid on the amcunt in the account at the end of the quarter.

 The set of 28 -tuples of real numbers.

[^1]: this characterisicic i.e. r retioning quarters inserted after single nickel has been put into the manine) is ane which night intitate customers and noi aell coffee in the process. An alternative approach which, although not correct, aight be more acceptable to a venaing machine ccapany would be to ett $i\left(25, q_{1}\right)=q_{0}$ and $g\left(25, q_{1}\right)$ * ($C, 5,10$): that 1s, make change for: the quarter, supply coffee, and ignore the nicicel. Purposefully or inadveriently, this any sell be the course chosen by some vending michine companies.

[^2]: W has been aofined as a ralation, It can be specialized to be E function, although this is not necessary for the development herein. When considering design questions, however, W will be a function, specifyiag next-state and next-output. W should be considered

