
■ ii "mm rm ,i" ■ •nmmtmmmmm^mmm

AD-770 631

AN ANALYSIS OF PARAMETER EVALUATION OF
RECURSIVE PROCEDURES

Lawrence Snyder

Carnegie - Mellon University

J
Prepared for:

Air Force Office of Scientific Research
Advanced Research Projects Agency

April 1973

DISTRIBUTED BY: m
National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

MM ttWfl mmm ■HüiyüMiuu MIHu

 ——

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dal* Enltrtd)

REPORT DOCUMENTATION PAGE
1. REP. ilSSr-^-73-2 0 08 2. GOVT ACCESSION NO

4. TITLE (and Submit)

AN ANALYSIS OF PARAMETER EVALUATION FOR RECURSIVE
PROCEDURES

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBER

S. TV 'E OF REPORT ft PERIOD COVERED

interim

7. AUTMORfaJ

Lawrence Snyder

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERf»;

F44620-70-C-0107'

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Camegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

11. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209 -~ — c* * o _ ■■■ ■
U. MONITORING AGENCY NAME 4 ADDRESSfi/<</«e'»nt from Conltolling Ollicm)

Air Force Office of Scientific Research (MM)
1400 Wilson Blvd
Arlington, Virginia 22209

10. PROGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBERS

6iiniD
AO 827

12. RC 'ORT DATE

April 1973
13. NUMBER OF PAGES

110
15. SECURITY CLASS, (ol thia report;

UNCLASSIFIED

15«. DECLASSIF!(.ATION/DOWNGR.
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Rmport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STA .EM' NT (ol (/!• mbaltael «ntarad In Block 20. U dlllerenl Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Conltnuo on rtvrf lid» II n»ctt»mry and Idanllt- by block number)

Reproduced by

NATIOhJAL TECHNICAL
INFORMATION SERVICE

U S DrpoMmcnl of Commerce
ringfield ^A 77151

20 ABSTRACT (Continue on reverse aide II neceaeary end Identity by block number)

Let Pn be the class of recurbive program schemata using method x as a
Kx

parameter binding mechanism for procedure arguments. Methods of call by

value (v), call by copy (c), call by reference (r), call by name (j), and

"normal" evaluation (n) are studied. Call by name is "stronger" than the

DD I rANM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNC'ASSIFIED

jA
SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

i mtmißmimm» mm^w******* ' ■

i-,»'.. i ' -. ■ i i i . ,■

ItCirRlTY CUAStiriCATION Of THIS ^ÄOCfWTfn Dmf Mntmfd)

i a.
Item 20. Abstract (Continued)

others (P < P , x = V,c,r,n) not because evaluation is postponed, but
Rx Rj

because it is repeated. Markers and global varialbes augmentation is studied

and one result is P is"universaln. P_ < P is conjectured and

discussed. Relationships with data structures and fixed point theory are

discussed as well as some decision proKems.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS "AGEfHTi.n D«r» Enttttd)

»i

11.

Abstract

A class of recursive program schemata PR is defined abstracting
ALGOL-like procedures. Four generic types of parameter evaluation are
considered; call by value, PRV, call by copy, PRc, call by reference, PRr, and
call by name, PRj. Two other types of theoretical interest are also
considered: "normal evaluation", Ffin, a non-side effect, evaluation
postponement mechansim and call by ouote, PRq, an extension of call by name
with all assignments to formals Uf evaluated. For evaluation method x,
augmentation with global variables, PRx„, and augmentation with a finite
number of markers, P^ are also considered. The results include.

- PRc 5 PRr s PRn PR*C) " PRKn < PRj s PRjq - PRjn a PRq
where x = v, c, r, and n. The results are correlated with the notion of
fixed point computation and although call by value, copy and reference do
not, in general, compute the least fixed point, for any functional an
equivalent one may be found for which these three do compute the least
fixed point.

That call by name is stronger than the other generic evaluation
mechanisms derives not from postponing evaluation, but from repeated
evaluation, i.e. side effects. The last two terms in the relation list are
"universal". Additionally, its shown that if PRj ■ PRjn and if PRj
they cannot be constructively equivalent.

PRq, then

An abstract model of parameter evaluation is developed and the
constituent components of parameter evaluation are isolated. These help to
characterize what impact choices of parameter evaluation have on the
language in general. This understanding motivates the class PRq and binds
our analysis with that of the lambdo calculus models. The question of
recognizing when two parameter evaluation mechanisms coincide is studied, i.e.
when two mechanisms always compute the same resrlt for the same schema.
The general problem is not partially decidable for seperable evaluation
mfichanisms. For free recursive schemata employing the generic mechanisms,
the coincidence question is decidable.

A discussion of the utility of such analysis and some thoughts on
future directions for research are included.

'"''"-■.-""•'.

—— —" '■■ tmmm

IM.

Contents

Title.

Abstract.

Contents.

Acknowledgement.

1. Introduction and Prrlinir ?ries.
1.1. Motivation and Overview.

1.2. Background.

1.3. Definitions and Earlier Results.

2. Parameter Evaluation Classes.

2.1. Definitions.

2.1.1. Call by Value.

2.1.2. Call by Copy.

2.1.3. Call by Reference.
2.1.4. Normal Evaluation.

2.1.5. Call by Name.
2.2. Relationships Between Classes

2.3. Summary and Discussion.

3. Call by Name Analysis.
3.1. The Class PRj.
3.2. Strength of PRj.
3.3. Universality of PRjf1.
3.^ Necessit/ of Nnneffurtive Marker Elimination.
3.5. Discussion.

4. Parameter Evaluation Extensions.

4.1. The Constituent Parts of Parameter Evaluation Mechanisms.

4.2. The Class PRq.

5 Decisions about Parameter Evaluation.

5.1. Motivation.
5.2. Definitions.

5.3. Decidability Lemmas.
5.4. Coincidence Class Decidability.

Rv> rRc> rRr> rRn-

6. Summary.

ii

ill

1
I
4
6

15
15
16
17
18
20
21
24
36

40
40
42
47
52
55

58
58
68

72
72
73
73
86

89

— ■ I ' ""«■" '
11

IV

7. Bibliography.

8. Appendix I.

9. Appendix II.

92

9b

101

■ niMMWll

——————— " »■!■■■ m^^fmn^mi

~

Acknowledgement.

To my Professor and thesis committee chairman, A. N. Habermann, 1

wish to »xpress my deepest appreciation for his patient understanding, his

assistance and his counsel thoughout my studies at CMU. I wish also to

thank Professors J. Grason, D. Loveland, A. Newell and D. Parnas for

serving as my thesis committee. To my colleagues, the 'brownie plate"

group, 1 wish the best of luck.

mm ■MM^M ■— -

■■■> -^»^•™--~-—»-—-»-™^^w^w-—^»WIWW^FWWBPPWBBBB»«»»-"-™—»~wipi«~----^-^-»«-i—"^■^»w

1. Introduction.

1.1 Motivation and Overview.

"Parametrr evaluation," "argument substitution," and "formal - actual

binding" are some of the names which have been used to describe the

object under investigation in this thesis. The activity of parameter

substitution has received considerable attention in many contexts, the lambda

calculus being one example. Our motivation for studying this phenomenon is

to understand the Mmantlei of parameter evaluation in the context of

programming languages. To clarify our pvint of view, consider these

observations.

In ALGOL there are two methods of parameter evaluation defined for

the language: call by value and call by name*. Call by value is a natural,

uncomplicated and quite efficient method of evaluating parameters. It is also

most familiar to us. In contrast, rail by name is subtle, generally inefficient

and extre nely complex to implement. But that's not all. The presence of

call by fame among the repertoire of facilities in the language pervades the

entire implementation of an ALGOL compiler. Many semantic issues, which

would be easy to implement without call by name, have added complexity.

For example, the 'i'in-time" stack discipline would be far simpler were it not

* The term call b/ namt has been applied to quite a few different
parameter passing devices in the literature. Our understanding of this term
is consistent with that given by Ekman and Froberg [5]. See also 2.1.5 for
a definition.

m ■ ----

■ ' —-"■■" ■■ i'i ■ wmmm^mf^^mmr-— iti i ■in ■ ~i

for call by name. Optimizations such as common subexpression elimination

would be considerably easier since the "order of evaluation" rules could be

by-passed more easily. These are just two examples; a compile'' writar

could, no doubt, find a dozen.

Since '»LGOL already has call by value, the question which one asKs is

"Does call by name provide any extra' facility in return for the added

expense and complexity?" Of course, the question must be suitably formalized

(and will be) to be answered, but one's intuitive feeling is to give an

unqualified "yes". It is, indeed, powerful, convenient and flexible.

Furthermore, one feels that the apparent advantage derives from the

evaluation postponement which may avoid initiating potentially divergent

computations. Call by name will be shown to be "more powerful" than call

by value, but not because it postpones evaluation!

Call by name and call by value are not, however, the only methods by

which functional parameters are bour.u to their formal representatives.

Hence, our task will be more gene-al than suggested above. We shall make

a comparative analysis of several well known parameter evaluation

mechanisms. In Chapters 2 and 3 we will study five generic parameter

passing mechanisms and the results will provide one measure of how

substantive the apparent differences really are among such mechanisms.

The comparative analysis will also suggest which components of a

parameter binding mechanism aie fundamental. Chis insight will then be used

r*m MftiMii—iMIl Jli^il ■tmMUMUtkmu ■■MdMaaci^^h»an .*■ .i UM

^m^i^^mmm -"^^mf^me^mmmrw^B

in Chapter 4 to formulate an abstract model of the parameter binding activity

as it is used in contemporary programming languages. The model will

provide a convenient method of specifying the salient features of a particular

mechanism. Such specification will expose the similarities and differences in

the mechanisms discussed before. Even the consequenses of some simple

changes in definitions will become predictable. More importantly, it will

suggest different ways in which parameter evaluation might be generalized.

A generalization will be chosen and the consequences will be explored.

Finally, this model of parameter evaluation, which enables its

decomposition into constituent paits, will be used to study questions of

interest to a compiler wnter. In particular, we recognize that parameter

evaluation provides several semantic facilities, for which the compiler writers

must generate code. In Chapter 5 we address the question of recognizing

when these particular facilities are used. The assumptions made by compiler

writers are made explicit and in this context we consider decidability

questions for s-.-mantic constituents of parameter binding. To the extent that

this is successful, the compiler writer can perforn, optim^ations.

Chapter 6 discusses the overall utility of this type of analysis.

Directions for further research will be suggested.

m mm mmmm mä

 " '

1.2. Background.

This thesis has its origins in two areas: the art of compiler writing and

language design and the theory of program schemata. The former suggested

the questions; the latter provided some answers. The literature on compiler

writing and language design is plentiful enough, but little of it is relevant

since it tends to deal with all features of a particular language rather than a

particular feature of many languages as we intend to do. Hence, each

parameter evaluation mechanism is specifically referenced when it is

introduced. The reader may consult [13] for a description of several of

them, however. For compiler related issues, our vocabulary is basically

consistent with that used in Randell and Russell's book on ALGOL

implementation [19].

By comparison with programming languages the literature on program

schema*d is less plentiful (although it is still substantial.) Since we draw on

work by several investigators, we now present a brief introduction to the

relevant literature to enable the reader to understand the context in which

we work.

Although the interest in the last five years has become quite intense,

the earliest work is generally attributed to I. ianov [11] in 1958 (see

Rutledge [21] for a translation and generalization.) ianov's model was that of

a simple flowchart language with one location. Many questions were

decidable since the model was equivalent to a finite automaton. The Russians

■tMMBMMA^M •-—■—•^" A

followed the path of adding limited generalizations and studying equivalence

preserving transformations. Ershov [6] provides a good review. Meanwhile,

Luckham and Park showed in 1964 that the equivalence problem for

flowchart schemata (with two or more locations) was unsolvable. Subsequent

results by Paterson [17] and Luckham, Park and Paterson [14] showed that

weaker notions of equivalence are also undecidable.

The unsolvability results have led investigators to study program

schemata with restrictions. Among these are loop-free schemata, free

schemata (any path is an execution path) and liberal schemata (no expression

recomputation) [17], monadic schemata {or?. place functionr and predicates)

and independent location, monadic schemata [14], We will also find that

unsolvability prevents us from fully exploring all of the questions of interest

to us and so we will adopt the free schemata restriction in our later work.

Recursive schemata have also received considerable study. These come

in seve'al syntactic varieties, the most frequently used having been

introduced by McCarthy [16]. Strong [22] has studied the translatability of

these recursive equations into flowchart schemata. Garland and Luckham

have considered a restricted version of this problem: Ihe translatability of

monadic recursion schemata.

Paterson and Hewitt [18] appear to have initiated a type of schematic

study which they termed romf>nrntivc srhomntology. This study can be

defined as the comparison of classes of functional' defined by different

il

MMi^M - -■

classes of schemata. Typically, the two classes will be defined so tha(one

has an extra semantic facility available. Then any differences in the clashes

of functional defined are attributed to that construct. Other studies in

comparative schematology have been carried out by Hewitt [9], Constable f.nö

Gries [4] (upon which much of this work is based), Brown [1], and Brown,

Gries and Szymanski [2].

The techniques of compirative schematology will be employed in what

follows. In addition, we will want to use results consistent with those of

other authors. Thus, we present in the next section some definitions and a

few pertainent results.

1.3. Definitions and Earlier Resui*s.

The vehicle for our investigation of parameter evaluation mechanisms is

a class of recursive program schemata. Our definition is essentially that one

introduced by Constable and Gries [4]. Other models of recursion might

have been used, but this seems a more reasonable model of languages such

as ALGOL and PL/1. We will add the apparently trivial generalization that

auxiliary functions (i.e. user defined functions) may appear as actual

parameters to auxiliary functions. As is shown later, this simple

generalization can have quite important consequences for certain parameter

evaluation strategies, without seriously perturbing this simple model.

mmmm - • ■ •

This definition is to be a "complete" specification of recursive program

schemata without any specification as to the w« / in which parameters are to

be evaluated. We will define separate classes for e.xh kind of evaluation by

aughienting this class with the required semantics.

Let V, F, P, I. and C be disjoint enumerable sets of symbols called

variable names, basic function names, basic predicate names, label identifiers

and auxiliary function names, respectively.

Drfinition 1.3.1: Define the productions* of the grammar G with sentence

syrnbo1 <rec program> to be:

::= <program>{<function def>}

::* <V - list> : <body>

::« <aux function>[<V - list>] : <body>

::- <S - list>i [<label>:] h8lt(<variable>)

::= [<label>:]<S> {; [<label>:]<S>}

::= (<variable> {, <variable>})

::= empty

| <variable> ♦■ <term>

| if <predicate>[<V - list>]

♦». .<i [<l ibel>:]<S> else [<label>:]<S>

| hslt(<Vfl'iable>) | goio <label>

| begin <S - ll»t> end

<rec program>

<program>

(♦) <function def>

<bod/>

<S - list>

<V - list>

<S>

* Here we use extended BNF notation where (t) and [t] mean "zero or more
occurrences of t" and "zero or one occurrence of t," respectively.

 mt^m mtmtmm

<variable>

I <basic function>[<V - !ist>]

| <aux function>[<T - list>]

(<ferm> {,<ferm>})

^(erm> ::-

<T - list> ::-

where:

<variable> (V

<basic function> (V

<predicate> i P

<label> (/,

<aux function> (C

The grammar G will define the acimissable syntactic form of our schemata.

The notation Rf, Rp and RG will be used to denote rank (number of

parameters) of elements f i F,p i P and G (C, respectively.

Doftuition 1.3.2: A schema S in the class B of basic recursive program

Schemata is a terminal string in the language L(G) such that the following

semantic restrictions apply:

(i) The variables in <V - list> preceding <body> for both <program>

and <function def> must all be different elements of V.

(ii) The <aux function> names for any <function def> must all be

different elements of C and they must all be defined.

(iii) The significance of <label>s and <variable>s of any <body> is

restricted in scope to that <body> and

(a) all statement <label>s within a <body> must be different

BMMMIM ■-

,

elements of I. and each L in goto L must be defined in that

<body>l

(b) all <variable>s used in a <body> which are not in the <V -

list> preceding that <body:> are called locals and are initialized

to undefined (0) prior to executing the <body>

(iv) The arguments to basic function naines and predicate names are

evaluated sequentially, left to right.

(v) Th9 result of any <body> is thj value of the argument variable

to the first halt statement encountered.

Our conventions for symbols throughout the thesis will be as follows:

variables names

basic function names

basic predicate names

label identifiers

auxiliary function names

V = {u.v.w.x.y.z.Uj.Vi.W!, . . .)

F = {fM }

P = {p,p1,P2) • • •)

I. ■ {UiJ* .. . }

C ■ {0,0^02, .. . }

In later constructions we will use names not appearing in the above lists but

which have been chosen for their special semantic conten*. The type of

objects which the symbols denote should be clear from context, however.

Kxnmph:

M: z «- G(x); halKz)

G(y): if p^y) then w •- fj;

•It« begin

- a.

10

z «- G(f3(y));

w «- f2<y,z) end

hilt(w)

A sample schema, S, in the class B of basic recursive program schemata.

One auxiliary function (G) is defined, three basic function names {fi,i2,iz)

and the basic predicate name (pj) have been used.

As an example of adding a parameter evaluation mechanism to the

basic class, we give the definition of the chss PR of recursive program

schemata presented by Constable and Gries.

Drfimtion 1.3.3: [4] A schema S in the class PR of recurtive program

srhrmntn (with call by value) is a terminal string in the grammar formed by

replacing the production Libeled (**) in the grammar G given above with

| <aux function>[<V - list>].

Actual parameter variables (the only kind of actuals in this class) have their

values assigned to formal parameters prior to execution of the function and

the formats are then treated just as locals.

The schema cannot be meaningful until a domain, D, has been specified.

The domain is the class of objects which are manipulated by the schema, e.g.

D = {0,1,2, . . .} or D = {strings over a finite alphabet). Given D, the (tola!)

basic functions and (total) basic predicates may be chosen from the classes

F{D) - {fn:DR» -» D) and P(D) - {pn:DRp ■» {true,false}}, respectively. Finally, the

MMMB UMfcfc—■■■■min

11

input variables are chosen from the domain and the schema may be

"evaluated" with this interpretation. The way in which the eval.iation takes

place should be cle »r, since the constructs have their obvious meaning

consistent wilh the comti,ents in the preceding paragraph.

Ktnmplr: Two interpretations for the schema S in the above example.

'D Dji {0,1,2, . . .} (2) D2= {LISP lists}

fl ■ 1 fj = NIL

'2 s *><.y[* * y] fj ■ Xx,y[cons(car(x),y)]

h* ^[« ■ 1] fa H Xx[cdr(x)]

Pi ■ Xx[x =0] p, = Xx[x = NIL]

The schema S^^^pJU) instantiated according to (1) defines x!

over Dl and instantiated according to (2) defines nveneb) over D2.

Evidently, a schema S with r basic function names, s basic predicate

names, and t input variables and a domain D define a mapping

S:MDK x P(D)S .♦[D»-* D]

of basic functions and predicates into the class of functions from t-tuples of

domain values to domain values. These mappings are called /unr»iono/« over

D. The set of all functional over D computable by schemata in the class B

is denoted FUNC(B,D). The use of functionals allows a comparison of

schemata classes with differing data and control sfiuctures. Two other

classes of interest will be defined below. Our comparison of classes of

schemata requires the following definition.

mmtm i

12

Definition 1.3.4: [4] Two schemata $! and $2 with r basic function lames,

♦l> • • -^r. s basic predicate names pj, . . .p, and t input variable names

vl» • • -.Vj are equivahnt over D if and only if

Si[fi, • • .,fr,Pi, . . MPSXVII • • .,v,)

= S^fj, fr.Pj, pJiVi, . . .,V,)

for all values of v, in D. Two schemata are equivalent if and only if they

are equivalent for all D. Thus, they are equivalent if they compute the same

functionals over all D.

Definition 1.3.5: [4] Two classes of schemata C^ and C2 are related by

Cj < C2 if for every schema Si (Cj there exists a schema S2 < C2 such that

Si is equivalent to S2. Ci = C2 if and only if C| < C2 and C2 < C1(i.e.

FUN^CLD) E FUNaC^D). C! < C2 if and only if Ci < Cj, and not C2 < Cj.

In order that we may integrate our results with those which have

preceded ours, we now present definitions for two nonrecursive classes. The

class, P, of flowchart schemata has been extensively studied (see 1.2). Array

schemata were introduced by Constable and Cries [4]. It will be convenient

to refer to both classes in our subsequent work.

Definition 1.3.6: The schema S in the class P of ümpU flowchart tchcmata is

a te.minai string in the grammar formed by deleting the two productions

marked (*) and (**) from grammar C.

Definition 1.3.7: [4] The class Pfl of program tichemnta augmented with array»

"MWnMiMin——IM—ir- 1 1—!■■

13

is the class P with the additional productions:

<S> :;- v ♦- 0 | v «- w + 1

<tern> ::= A[v]

and a one dimensiona' array A of simple variables A0, Aj, To allow

subscripting, a subscript se* N = {0,1,2, . . . } is provided which is disjoint

from the domain D. Any simple (or array) variable may take values in

D U /V. The term A[v] refers to Av if the value of v (/V and Ae otherwise.

If the value of some variable v is in /V and v is used as an argument to a

basic function, basic predicate or to a halt statement the value fl is used

instead. The remaindtr of the semant-s should be obvious and the reader

may consult [4] for further details and a discussion of how reasonable a

model this is of array languages.

Asxrrtion 1.3.8: [4] P < PR < Pf,.

Assertion 1.3.9: [4] Pq is "universal" for total interpretations.

The notion of universal means intuitively that the class computes all the

functionals computable in an effective way. In [4] Constable and Gries show

several classes which are equivalent to Pn lepresenting several kinds of

semantic facilities. Brown [1] and Drown, Gries and Szymanski [2] hav^

found others. An nteresting feature is that al'.hough there are a number of

universal clasjes, Pp cannot be constructively equivalent to most of those

investigated thus far. We shall hhve more to say about this in Chapters 3

and 4. The interested reader should consult [4] for a discussion of

14

universality.

/hsrrtion 1.3.10: [14] For a schema S (P, it is not partially decidable

whether S diverges under all interpretations.

This completes the definitions and results required to properly present

our results and correlate them with that which has gone on before. In what

follows, we adoot the usual procedure of "proving" our results by presenting

a construction to justify our claims. The constructions are gcrerally

suffMiently simple so that we may avoid the tedium of proots by induction

on state transitions and similar proof methods.

mmam mm^ MMMHH

15

2. The Weaker Parameter Evaluation Mechanisms.

2.1. Definitions.

In this section we employ the class of basic recursive prograr

schemata (see 1.3) to define several classes of schemata which employ

differing parameter passing mechansims. One can consider quite a few

different ways in which formals and actuals could be made to correspond,

but our intention is to study those mechanisms which are actually in use or

which contribute to our understanding of the subtleties of other mechanisms.

Hence our attention will initially focus on five methods:

call by value (e.g. ALGOL)

call by copy (e.g. WATFOR)

call by reference (e.g. certain versions of FORTRAN)

"normal" evaluation (see below)

call by name (e.g. ALGOL)

When these have been fully explored, we will direct our study towards

variations. First we discuss what facilities are provided by these generic

mechanisms.

The formal notations available to us for specifying semantic notions

either omit or obscure the detail which we wish to present in the following

definitions of parameter evaluation. Therefore we are left to describe these

concepts in English. To make this task easier, let us define formal parameter

as a parameter in the formal specification of an auxiliary function. An ortual

—■MMMillMIMi«! 11 ■■inh i

16

parameter is a parameter which is used in a function call. In example 2.1.3,

x is an actual and y is a formal. Note that within the function definition

formals may, in turn, be used as actuals.

The five types of recursive program schemata which we will consider

vary only in the semantics of the parameter passing and formal variable

reference. These differences manifest themselves at three differrnt points in

the "interpreter":

(i) auxiliary function initiation - operations performed before

execution of the <body> of the function begins.

(ii) interpretation of formal parameters - method by which the value

of the formal, referenced in the text, is found.

(ill) auxiliary function termination - operations per'ormed before

execution resumes at the point of the call.

Thus the definitions given below will concentrate on the semantics at these

three points. Regardless of »he kind of parameter evaluation, auxiliary

function initiation (i) includes the initialization of the local variables to

undefined (n) and auxiliary function termination (iii) includes returning the

value of the argument of the halt as value of the 'jnction. When auxiliary

function termination only involves returning the .'unction value, it is elided in

the following definitions.

Definition 2.1.1: A schema in the class PRv o' rccunive program

schemata with call hy value parameter evaluation is a basic recursive

1— - ^.-^—^^—>

1 '■ ' ' '' >■'

17

prograt.i schema such that in the interpretation:

(i) auxiliary function initiation; the actual parameters are evaluated

sequentially, left to right. The formats are then initialized to the

\ alue of their corresponding actuals.

(ii) hterpretation of forma! parameters: the same interpretation as

that of local variables.

Definition 2.1.2: A schema in the class PRc of recurtive program

ichcmnla with call by copy parameter evaluation is a basic recursive program

schema such that in the interpretation:

(i) auxiliary function initiation: as in 2.1.1(0.

(ii) interpretation of formal parameter'-.: as in 2.1.1(ii).

(iii) auxiliary function termination: the value of each formal

parameter is copied into its corresponding actual parameter if and

only if the actual is a simple variable. Copying proceeds

sequentially, left to right.

Example 2.1.3:

(x): w «- G(x): halt(x)

G(y): y •- f^y); halWy)

A sample schema S. The functionals definec. are as follows: if S < PRV then

S[fiKx) = x and if S(PRc then S[fJ(x) = f^x).

Thus call by copy allows computations from a called function to be

returned to the calling environment by way of parameters as well as the

im* ■ i*~^mm*mmmmimmmmammmmmmmrmimmmmimmmmmm'mmmmmmmmimmmm

18

normal value returninp mechanism of the recursive function. Such a facility

is often convenient but there is an alternative way of realizing a similar

effect a. we now see.

Nev we introduce call by reference parameter evaluation. Call by

reference is a natural method of passing parameters for computers since the

reference to a value is merely its "memory address." Although -nomory

addresses have not been introduced, they need not he since we can achieve

the same effect by admitting variable names (elements of V) as values.

Thllfi if x is i formal in a schema with call by reference then its value will

be a name, say y, out of V. We will call y the reference value of the

formal x. If the value of y is a value from the domain, say d, then we say

'he coerced value of the formal x is d. If the value of y is a reference

v alue, then the coerced value of x is, inductively, the coerced value of y.

Definition 2.1.4: A schema in the class PRr of rccurxive program schemata

with call hy reference parameter evaluation is a basic recursive program

schema such that in the interpretation:

(i) auxiliary function initiation: if for any formal x the corresponding

actual is a function call (basic or auxiliary) then a turrogote

variable w < I' is chosen which does not appear elsewhere in the

schema.

The formals are assigned values, proceeding sequentially left to

right, as follows. Let x be a formal, then assign to x:

MMIMMMIlMMnH^MHMMnMM

^mmmi*Symm^^T**mm^*^^**~*\ n \.i\\Mmm^^—^*~~^^mm*^^~^^~^^m^m^^mi*m

19

(a) the nnma of the surrogate variable if the corresponding

actual is a function call, (i.e. x has reference value w.) The

function is evaluated and the value is assigned to the

surrogate w.

(b) the name of the correrponding actual if the actual is a

simple v.-iriable but not a formal,

(c) the reference vnlue of the corresponding actual if it is

itself a formal.

Note that in (c) the formal is assigned the reference value of its

correspondent and so, there can be a4 most one level of

indirection, (i.e. no formal can have a reference value which is

itself a reference value.) This is equivalent to an arbitrarily long

chain of references (see 4.1) but it simplifies our constructions,

(ii) interpretation of formal parameters:

(a) if the formal x is not on the left hand side of an

assignment then the value is the coerced value of x.

(b) if the formal x is on the left hand side of an

assignment, then the assignment is to the reference value of

x, (i.e. the coerced value of x is changed, not its reference

value.)

Call by copy and call by reference are frequently thought to be two

methods of realizing the same facility, namely, returning information by way

Of the parameters. The following example indicates that these are not

— *-- IF^ll^WII"

20

necessarily the identical for all schemata.

Example 2.1.5:

(x): u <- G(x(x); hill(y)

G(y,z): y *■ f^y); 2 ^ f^z); hilt(y)

A sample schema S such that the functionals computed by call by copy and

call by reference are as follows: if S (PRcl then SftJW - f^x) and if

S (PRr, then S[f1](x) - f^x)).

In Manna, Ness and Vuillemm [15] a parameter evaluation mechanism,

the "normal" evaluation rule, is introduced. If is shown that call by value is

strictly "weaker" than "normal" evaluation by showing that the former is not

a "fixed point" rule and the latter is. These results are shown for

recursive equations and there can be no possible side effects. Although

their model is somewhat different from ours (see 2.3), the following should

be a faithful rendering of the intent of their definition. The relationship of

our results to theirs will be discussed later.

Definition 2.1.6: A schema in the class PRn of recurnve program »chemata

with normal parameter evalundon is a basic recursive program schema such

that in the interpretation:

(i) auxiliary function initiation: no evaluation is performed.

(ii) interpretation of formal parameters: when a formal parameter is

encountered for the first time in this environment the

corresponding actual is evaluated and the value assigned to this

■ ■■"

21

formal. It used for this and all subsequent formal references in

this environment as though it was a local.

Clearly, with PRn parameter evaluation may be postponed or even avoided

entirely. This has no effect in the case where parameters are simple

variables or basic functions with non-formal parameters. But if an actual iö

an auxiliary function, it may be partial and hence postponement appears to

offer an advantage over, say, call by reference.

Kxamplfi 2.1.7:

Mi u - Gj^G^x»; MKu)

G^y.z): halt(y)

G2(w): w i- G2(w); h8H(w)

A sample schema S such that, if S (PRr then S[](x) = undefined and if

S < PRn then S[](x) = x.

Next we introduce the ALGOL call by name parameter evaluation

mechanism. Although it postpones evaluation just as normal evaluation does,

it differs in a very important way. Each time an occurrence of a formal is

encountered, it requires a separate evaluation. Thus the side effects of

one evaluation may influence the results of a subsequent tv-jiuation.

Definition 2.1.8: A schema in the class PRi of rccurtivi» program schemata

with call hy name parameter evaluation* is a basic recursive program

* Call by name is sometimes referred to as "Jensen's device" after J^rn
Jensen, hence the class name PR.. I

^tmimmm Mtlilii

pw^w»^"-^- ■ ' ——, ■

22

schema such that in the interpretation:

(i) auxiliary function initiation: no evaluation is performed,

(ii) interpretation of tormals:

(a) if the formal is not the left hand side of an assignment

then the corresponding actual is evaluated in the environment

of the call. The resulting value is the value of the formal

for this evaluation of this occurrence only.

(b) if the formal is the left hand side of an assignment then

if the corresponding actual is a simple non-formal variable

then it receives the value of the assignment. If the actual is

a function call, (hen the entire assignment statement is

ignored. If the corresponding actual is itself a formal this

process is applied recursively with this formal as the left

hand side.

Clearly, in evaluating a formal the actual corresponding to it may be a

formal in the calling environment and thus one must return to earlier and

earlier calling environments as long as the corresponding actual continues to

be itself a formal. \Jote that in 2.1.8(ii)b, there »r« some consequences to

our decision to ignore the entire assignment statement if the actual is not a

simple variable but the corresponding formal is used on the left hand side of

an assignment statement. In particular, one might consider evaluating both

sides of the assignment statement and then disregaroing the values. This

would allow more "side effects" but would it actually enlarge the class of

Ml .«!■ «I «1 ■■-- ^mmmmm^^*^****^^mm omv^wnsw *mmm

23

functionjls defined? It does not, but we postpone the proof until section 3.1.

Example 2.1.9:

(x): u «- Gj(x,G2(x)); MKu)

Gi(yi,y2): w «- f2(y2ly2.yi); hilt(w)

G2(w): w «- f^w); halt(w)

A sample schema S such that, if S < PRn then S[f1,f2](v) - f^iUMiW.x) and

if S i PRj then S[f1,f2](x) = f^xMi^WM^U))).

To emphasize the differences between tne parameter evaluation

mechanisms just defined, w present a schema from L(G) together with the

results of interpreting it as an element of each of the five different classes.

Exam pin 2.1.10

(u):v

G(x,y, Z):

Gfu^u)); MKu)

x «- f2(x);

y «■ f3<y)j

y *■ f4(y.z)i

halt(x)

(Note [hi it the value o f the schema is the ac tual parameter u.)

Clan» Schnmn Remit

PRV
u

PRO fMuWidi))

PRr f4(f3(f2(u)),fi(u)

PRn u

m'm» «-■■

^

24

ft I MWuWrfWu))))

In 1.3 we commented that allowing function as actuals would not change the

results given earlier. This is immediate when one observes that for any

schema S (PRv an equivalent schema in PR can be constructed by merely

expanding each call of the form

u «- G(<term>1,<term>2,...,<term>RG)

to be

begin wj «- <term>Ji

W2 *- <term>2;

... i

wRC - <term>RCi

u ♦- G{wllw2,...,wRC) end

where each w, is a new variable. Thus our class of recursive schemata with

call by value is equivalent to the one introduced by Constable and Gries.

We refer to this technique as coarcing actuah.

2.2. The Classes PRc, PRr and PRn.

The examples of the last section illustrated that there is considerable

diversity among the various parameter evaluation mechanisms. The

differences are reflected in the convenience with which one writes programs,

efficency of execution, the strategy of implementation of recursive execution

and the ease with which one verifies that a program is correct. Our

I^M ■MM MBMBHMlMMMi Uli»—IllMlM .

"■■ '" '-■" ■ —- 1 ■•" ,"1 "" "•—"'■ ' ——■

25

interest in this section is in whether or not the differences are reflected in

"what can be computed." We might expect that the facility of returning

parametric values and the facility of evaluation postponement would both

provide a co.-iputational advantage. We shall discover, however, that call by

value, call by copy, call by reference and, surprisingly, normal evaluation are

all equivalent in the sense that their respective functional classes are

equivalent. In addition, we shall show that global variables and markers do

not enhance the computing "power" of these classes of functionals.

Theorem 2.2A: PRv E PRC.

Prwf: Using the construction described at the end of the previous section,

all actuals of a schema S < PRV may be shielded from updating. The

resulting schema may then be interpreted in PRc, yielding PRv < PRc. To see

that PRc < PRv all that is required is to show that the actuals may be

updated. Clearly, if all actuals are functions, they are already treated

properly. For each auxiliary function call containing any simple variables

v «- G(vi,v2,...,vRG)

substitute

begin Wj *- G^v^^v^);

• ■ • i

WRC *" r'RG(vl. -.VRC);

V «- G{v1,...,vRC)i

Vi ♦- W!;

m "— ■■-■■■ — __-_.

tmmmmimmmm^mmmxitm« vm *tm PWMPVW i «mmi^mmm - •' • • '

26

VRC •■ WRC «n^i

where:

Wj are new simple variables

Gj are new functions identical to G except that each halt statement

has the i,h formal as argument.

Note that the case where the function is an actual (rather than a right hand

side of an assignment) is handled by applying the procedure recursively,

q.e.d.

Call by copy and call by reference are frequently thought to be two

different ways of achieving the same effect. However, the previous examples

show that there is a schema on which these two mecnanisms differ. Call by

reference formals refer indirectly to the sole instance of the actual while call

by copy formals use a duplicate of the actual and update it at function

termination. These two mechanisms are identical as long as different formals

correspond to different actuals, since the reference discipline guarentees

access of the single most recently assigned value corresponding to the actual.

In the example 2.1.10 there were two separate values (corresponding to the

two instances of u) and hence the difference. Thus, we need only handle

this case to establish equivalence.

Theorem 2.2.2: PRc i PRr.

Proof: From \he preceding remarKs we need only consider the case of

MMH m—mm •■M — ■i

m^^paw ([MIII w in mmmnmimmm ww^r^mm^mw^^'^^^'^^^ ■"■ i p- •■ i ■I ■

27

multiple instances of a variable actual in a single call. Si'opose that some

call

• • • G(^.-,vRG) . . .

occurs in a statement in schema S and that parameter positions i,j,

the same simple variable v.

(i) S < PRc, To construct an S' (PRr change each such call to

begin Wj «- v;

.,k are

. . . G(v1)...,wj,wi,..)wl[,...,vRG) . . .

Vj «- WK end

where the w's are new variables. Clearly, if G is an actual to a

function with some of the same multiply occurring actuals, G will

have to be evaluated, assigned to a new variable and that variable

used as the actual,

(ii) S (PRr. To construct an S' (PRc change each call to

•'• • Gi, ,I((VI.-.VRG) • • •

where G^ (k is a new procedure modified so that any assignments

to the formals Ui.Uj, . . .,uk corresponding to v, say,

u^ <- <term>

are modified to read

begin u, •■ <term>

Uj <- Uji

matm mmam

■■■Ill' I I lllll mm*mimmm^^*m ■-■ - ■

28

uk ♦- Uj end

If in the body of G these formals are also actuals to some auxiliary

function call then use only one of the formals in all positions and

follow the call with the required updating of the other formals.

Obviously, this last requirement may introduce seme new function

calls with multiply occurnr.g actuals. But, if k is the number of

auxiliary functions In S and n is the maximum number of parameters

to any of these then there can be at most k(2n-n) ways of having

multiply occurring instances of a single variable and hence nsw

functions introduced. This assures that there are only a finite

number of different kinds of call? and the construction reduces this

number by one with each application. Clearly, if there are multiple

occurring instances of several variables in a call, then the above

procedures may be applied iteratively, since each application

removes multiple instp'-.ces of a variable without introducing new

ones, q.e.d.

In [2] global variables were introduced by modifying the definition of

<function def> as given in 1.3. as follows:

<function def> ::=

<aux function>[<V -list>]: global <variable>{,<variable>};<body>

If variables w^.^w,, follow global then they rtier to variables in the mam

<body> with the same names and cannot occur in the formal parameter list.

mmmm mmmm -'—'-

tr^m^m^^mmmm' mmmm •m^^—m ■ ■ ■■ '"• l"' wmm^^m-m—mmmim

29

The w^..tHfn are not initialized. A class PRx augmented with globil variables is

denoted by PR)<q. It was shown in [2] that global variables do not enlarge

the class of functionals definable by PR. This is also true of the other four

classes. One can readily see that if {wj^.w,,} is the set of variables

occurring in any global specification then these may be passed around as

parameters to all functions using any of the parameter mechanisms, copy,

reference or name. Renaming of local variables may be required in the case

where a name is used as a local in one function and specified as global in

another. Since each mechanism is capable of returning parametric values to

the earlier environment, the result is assured. For PRn the problem of

returning values to an earlier environment may be solved by using the

ronstruction of 2.2.1 and the relevant renaming. From these comments we

have.

Theorem 2.2.3: Augmenting the classes PRc, PRr, PRn, and PRj with global

variables does not enlarge the class of functionals computed over the

corresponding unaugmented class.

Although adding global variables does not enlarge the classes defined

by the various parameter mechanisms, globals are extremely useful in

reducing the complexity of our constructions. We will use them extensively,

but our usage may, at times, become a bit imprecise in that we may use

globals without actually mentioning that the class under consideration has

been augmented with them. To be completely precise we should also prove

i ii mi am ■ i ■ -*

 I

30

that a class which has been augmented with markers (introduced below) is

equivalent to a class augmented with markers and globals. This should be

obvious and we use this result without further justification.

Schemata are commonly augmented with a finite set of markers so as

to provide testing facilities which are not dependent upon the interpretation.

Given the class M s {Mi,M2,...} of distinguishable markers the following two

statement forms may be added to the definition of <rec program> given in

1.3. to provide markers for recursive program schemata:

<$> ::= <variable> «- m

| if <variable> = m then [<label>:]<S> else [<label>:]<S>

where m denotes some marker in ht. The marker values are independent of

interpretation and their semantics shouM be clear. We adopt the convention

that if a marker is passed as an argument to a basic function or predicate

or to a main <body> halt statement, then fl will be used. A class PR)<

augmented with markers is denoted by PRxfl.

In [2] markers were shown to add no power to PR i.e. Ppv « PRVH.

This result is shown by using the locator methods introduced in [4]. The

same situation arises with PRcn and PRrri, but we need not introduce locators

since we can reduce these problems to the result PRv = PRvn.

Throrem 2.2.4: PRc s PRcn) PRr a PRrn.

Proof: It is immediate that the constructions given earlier in this section

mmmm mmm.

 •"mm^mmmmrwsm^mmmmi^ .i\ i M\^mmm^'~'-~~^mm'irm^m*a** ' <■ ■ '" •' '" '• ' •••n^m^^mwimiiwi iwmmmir^™mmmmmmmmmmmm^mm*~~*mm

31

apply without modification to PRcn and PRrn. Thus for any schema in either of

these two classes we can construct one equivalent to it in PRvH. q.e.d.

The technique to be used when showing that normal evaluation is

equivalent to call by reference is to effectively implement the definition of

normal evaluation in a call by reference schema. The normal evaluation

strategy postpones evaluation of actuals until !he formals are required. A

call by reference evaluation strategy can be .riade to correspond if one

establishes a communication mechanism between the calling environment and

the called function in such a way that the called function can request the

evaluation of parameters. In particular, the calling environment passes none

of the actual parameters initially, only iiidiralon that none have been passed.

When the called function requires a parameter it tests to see if the

parameter was passed. if it was, the value is used If not, a request

indicator is set and the called function halts. This indicates to the caller

which parameter is required. It is evaluated and the function called again

with this evaluated parameter as an argument. Finally, the calling

environment .ontinues calling the function as long as it receives requests for

parameters. If a call ever returns with no request for parameters, the result

has been computed.

Throrrm 2.2.5: PRn S PRrn.

Proof: (PRn < pRrrl) Let S^ < PRn be a completely labeled schema and let n be

the maximum number of parameters to any auxiliary function defined in S^

M^MMaMMi

^OT^HVWI UBIIII MHin " ■■■"^

32

St!, . • -.Sin

SVi, . • -.SVn

cii. • • -.Ctn

CVi, . • Wn

Define for each <body> 4n variables which do not occur elsewhere in the

<body>:

called the savrd indicators

called the saved values

called the calling indicators

called the calling values

Define S2 from the following procedure. For the i,h auxiliary function call in

the <body> of the form;

L: t «- G(<term>1, . . .,<term>RC)

substitute the statement,

Li begin

•! siRG«- n-,

■; J'VRG «- m

■j ciRC ♦- m

• ■> CVRG •■ svRGi

t «- G^cij.cvj, . .,ciRG,cvRG);

if cij ■ sij then begin si1 *- M; svj «- <term>1; goto Lj end

else if ci2 ■ si2 then begin si2 *- M; SV2 «- <term>2i goto L| end

54 *■ 0; .

SVi «- f);

cii *■ fl; .

end

where:

else it ciRG ' siRG then begin siRG «- M; svRG ♦- <\erm>RC\ goto L, end

else;

L, is a label not used elsewhere in the <body>

■HHMMMMI

33

M is a marker from M and

G' is a new function correspond;ng to G defined below.

When every occurrence of an auxiliary function assignment has been replaced

with the above statement, eliminate all instances of

if cl| « si, then <$>! else <S>2

by replacing them with

if ci| = M then

if li, = M then <S>2

els« <S>1

else

if si, = M then <S>1

else <S>2

which will restore the schema to legal syntactic form for PRrr1. Next, for

each auxiliary function definition,

G(u1,U2, . . .,uRC)^body>

such that every statement

L: <S> of the <body> where S is

(i) an if statement

(ii) an assignment statement such that

(a) there is an occurrence of a formal on the left hand side

(b) there is an occurrence of a formal as a "first level" actual, i.e.

Ui is not an actual to an actual.

such that S has as its first occurrence of a formal reference (searching left

MBMHHMMMMMMBHMM^MMMMHi^M^^^MMM

34

to right) the formal u,, then the <body> of G' is defined by replacing all

stances of such statements by

L: if uit - M then <S'>

•'-e begin ui, *• M; haH(n) end

where <S'> is <S> with all instances of u, replaced by uv,. Clearly, this last

construction is applied iferatively to formals of G as long as formal

references remain in <S'>. The <body> just defined is prefixed with

G(ui1,uv1, . . .,uiRG,uvRG):

where the uij and uv, are new variables not occurring elsewhere in the

schema Sj. The resulting schema, S2, is obviously in PHrn and as we now

show, equivalent to Sj.

First observe that for every statement in $! there is a corresponding (but

more complicated) statement in S2. Let l^, • • • be the sequence of labels

describing the behavior of S], in some interpretation, then S2 describes the

same behavior in that interpretation until a formal UK of a function G (called

at the r* statement) is referenced at the s,h statement of S^ At this point,

si^ = svk = cik = cv,, = uik = UVK = n.

Since evaluation proceeds left to right, u,, must be the leftmost formal

occurring in the statement of S^ Thus, the corresponding statement of S2

tests uik, finds it has value n, assigns it a marker value and halts. In the

calling <body>, the calling indicator c^ ■ M and the saved indicator sin - 0.

Thus sik ■ cik, which causes the saved indicator sik to be marked and the

saved value svk to be assigned the value of <term>k. Meanwhile, the

^mm

35

interpreter for Sj has discovered that uk has not been referenced before,

returns to the calling environment, evaluates the corresponding actual

(<term>k), assigns it to uk. At this point, Sj and S2 have realized the same

semantics. However, Sj now begins executing G' all over again which implies

that the statements with indices r to s will be repeated. When the

reference to the formal uvk is encountered again at statement 2s - r, uik -

cik = M holds, the test will pass and <S'> will be executed. At this point Sj

and S2 are n register again and execution proceeds in parallel until the next

reference. Tha induction may be can led out in a straight forward manner

for which the following facts are useful;

(a) Once a variable is assigned a marker, that name is never changed

back to n until after a call has been completed and the next one is

about to start. Thus, there can not be a repeated evaluation of an

actual.

(b) For each repeated call to G', the parameters are always initialized to

values of the evaluated actuals and so the behavior of G' must be

identical up to the reference of the most recently evaluateo formal.

The reader can fill in the details of the induction.

(PRrri < PRn) The techniques required to show that PRrn < PRn have already

been u'^ed in earlier proofs, namely, eliminating markers (Theorem 2.2.4) and

restoring parameters using repeated calls (Theorem 2.2.1.). These together

with coercing all formals at the beginning of the execution of a auxiliary

function body, are sufficient to yield the result and the details are left to

mam

36

the reader, q.e.d.

The above construction separates the use of the markers from the

domain objects sufficiently well so that were the data objects to include

markers, the construction would still be correct. Thus we have,

Theorem 2.2.6: PRr„ i PRnt,.

Proof: Immediate.

Coro/Zory 2.2.7: PRn s P,
RnH'

2.3. Summary and Discussion.

The results from the preceding sections may be summarized as follows:

The rrcursive procedure parameter evaluation mcrhanitr.i* of call hy

value, call by copy, call hy reference and normal evaluation are

functionally equivalent in the MRM defined above. Furthermore,

thexe parameter evaluation mechanhm» are not functionally enhanced

by addition of global variable* or by addition of a finite »et of

markers.

Parameter evaluation postponement cannot be presented as an

explanation of the apparent difference between call by value and call by

name. The normal evaluation strategy provides this delaying feature, but no

more functional are computed. In the next chapter call by name will be

treated in depth ard its other property, multiple evaluation, will be seen to

mm^^mmm^^mmmmtmmmm^^mm^m^mma^amm^mmmm

37

be advantageous.

The results of this chapter have all been constructive and so we can

ask how practical are the constructions? For example, is it reasonable to

consider a direct translation between programs in a language with parameter

evaluation of type x into a base language with parameter evaluation of type

y? (By direct translation, we mean mapping parameter evaluation into the

base language structure without resorting to the use of other data structures

to form a new "run time environment.") This would not be prudent since the

efficency degrades considerably in our constructions between PRv and PRc and

between PRr and PRn as well as for some cases involving global variables.

However, there might be more efficient constructions, though we conjecture

that they won't be murh better. Of course, we are interested in how much

one can compute and not in how long it takes. But the proofs do suggest

that although these parameter evaluation mechanisms are indistinguishable

based on the funcionals they compute, there may be complexity arguments

which can provide a distinction.

In the comments preceding defmiton 2.1.6, it was observed that call by

value had oeen shown to be "weaker" than the normal evaluation mechanism.

This appears to contradict our results showing that these two classes are

equivalent. However, there is no contradiction when we understand what the

results actually exhibit.

■■

mmwm^^^^mmmmrnmmim

38

In [3] it is reported that for a continuous functional T, the computed

function Fc using the substitution rule C is no more defined than the least

fixed point of T. The normal rule computes the least fixed point of T, but

call by value (the left-most inner-most rule) computes a function strictly less

defined than the least fixed pomt of T [15]. Presented according to our

development, a sample functional which is less defined than the least fixed

point would be given by:

(x.y): z «- F(xIy)! haH(z)

F(u,v): if u = 0 then w ♦- 1 else w <- F(u - l,F(u - v,v));

htlt(w)

This instantiated schema, when x = 1 and y = 0, is undefined if interpreted

as a call by value schema while the least fixed point function of these two

arguments is 1.

The difficulty, of course, is that call by value "gets stuck" evaluating

F(u - v,v) when the value is not required for the computation. The normal

evaluation mechanism avoids this difficulty. Hence, the sense in which call by

value is "weaker" is that when both methods are applied to the same

schema, call by value may diverge evaluating unused parameters while the

normal rule will not. Clearly, call by copy and call by reference are

"\A eaker" in the same sense, sir.e they would diverge on this same schema.

But our results indicate that the classes of functionals defined are the same

for both mechanisms. Hence, there exists a functional which, when

interpreted as call by value, avoids these unnecessary parameter evaluations.

 ——'———— - — . .

imrw~m*^*m '■ i ■ ■ mmm

39

Furthermore, we can construct such a schema.

An interesting point to note is that our constructions, as presented,

have the property that for a schema S (PRn the constructed schema S' t PRv

is such that l^n/v[S',I] ^ V»ln[S',\] for ail 1 where Vnl,[S,\] is the value of the

schema S in interp etation I with parameter evaluation method x. This

suggests that if our results were suitably reformulated, call by value would

be a fixed point rule for the translated schemata.

^mm "■—■^ - ■

mimmm^m^^nmmm

40

3. Call by Name.

3.1. The Closs PRi.

Having learned that the classes of functlonals defined by recursion with

call by value, call by copy, call by reference and the normal evaluation

mechanism are all equivalent, we now consider the class of schemata

employing call by name, PRj. Although one's intuitive feeling is that call by

name provides more facility than the mechanisms considered earlier, the proof

methods of the last chapter indicate that apparently substantial differences in

evaluation strategies can be absorbed into program structure. In this section

our intuition will be verified as we show that recursion with call by name

defines a larger class of functional than the other mechanisms do.

To understand the significance of this result, we must realize that in

[18] and [4], (call by value) recursion has been shown to be weaker than

other programming mechanisms: (call by value) recursion with nondeterministic

control and Pp, respectively. The conclusion was that recursion is weaker

than these other facilities. But one functional which (call by value) recursion

cannot compute will be shown (see 3.2.1) to be compilable by recursion with

call by name. Therefore, the weakness described in [18] and [4] of (call by

value) recursive functions is not due to limitations of the basic recursive

mechanism, but rather it is due to the way in which parameters are

evaluated.

■■ m« in iii

immmmmmmmm i^mTmmammmm*mm™^

41

Knowing that PRj is stronger than the classes considered before, it is

natural to ask how much stronger it is. In particular, in [4] it is shown that

the above mentioned classes are universal, (see 1.3 for a discussion of the

notion of universal.) In the next section we show that PRj augmented with a

single marker, PRjn) is universal. However, unlike the weaker mechanisms

where markers can be effectively eliminated, we show that there can be no

effective way to eliminate the marker of PRjf1 schemata to realize schemata in

PRj. This does not imply that PRj is not universal, since (as Constable and

Gries show) nonconstructive means may be used to show equivalence in this

circumstance. However, whether PRj is univei:al or not is still open and the

last section discusses the difficUties of answering this question.

Recall that when the definition of the call by name das', was given in

2.1.8, we commented that we could justify our decision to ignore the entire

statement when an erroneous left hand side was encountered. if the

semantics are prefered of evaluating both sides and then ignoring the results,

then replace every assignment to a formal x:

x «- Q(. . .)

with the statement

begin wj «- G(. . .); W2 «- x; x <- Wj end

where Wj and W2 are new variables. Clearly, the proper semantics are

realized.

On the other hand, if we had chosen the default to be the evaluation

MMMMMH . ^._ . _ . .

^ FWW»^—• ■W^mWI^«»«!»—»—■—«-^»•-»—

42

of both sides instead of ignoring the whole statement, then we could realize

the same semantics by constructing a new schema as follows. Begin with

the main <body> and for every function call

G(<term>1 <term>RG)

where simple variables are in he parameter positions i,j, . . .,k, substitute a

new call

Gj.j, ,i((
<term>1, . . .,<term>RC)

where Gij,^ is a new auxiliary function such that all assignments to formals

no» in positions i,j, . . .^ are deleted. Using the fact that formals in

positions i,j,k correspond to identifiers, modify all calls in G(ij) ()(similarly.

Using reasoning analogous to that of 2.2.2, the construction must terminate

and the resulting schema must have the semantics of ignoring any statement

in which an assignment is made to an illegal left hand side. Hence, it makes

no difference which interpretation we employ.

3.2. The Strength of PRJ.

To show that call by name is stronger than the mechanisms discussed

previously, we will exhibit a functional which can be defined by a PRJ schema

but for which there exists no schema in, say, PRv capable of specifying that

functional. The functional was first describee bj Paterson and Hewitt [18]

and has since become known as the "leaftest" functional [21 It can be

stated as follows:

f" "■'"'■" ■' <" • it iiiiti~m*^r^**^*~m~

43

leaftest[p,r,l](x) ■ 'u(x) if there exists u ({r,l}*

such that p{u(x)) e true,

diverge otherwise,

where r and I are basic functions and p is a basic predicate.

In words, leafiest requires a search for a domain element satisfying some

predicate where the domain may be thought of as a binary tree. Hence, if

x is a domain element (node) then l(x) and r(x) are domain elements (left

descendent and right descendent, respectively.)

In [18] it is shown that there is no schema in R (recursive equations,

a la LISP) which can implement this functional. The reader should consult

the proof in [18] for all of the details, but, intuitively, the "failure" of the

recursive equations is that they can scan only a bounded number of nodes

on any given ply and an interpretation may be found for which some nodes

do not get tested. This result is rele/ant, since in [4] it was shown that R

is equivalent to PRV.

Theorem 3.2.1: PRv < PRj.

Proof: That PRj contains PRv is immediate since all of the formals can be

coerced to locals at the beginning of each function in the schemata of PRv.

These locals may then be used in lieu of the formals and t^e resulting

schemata, interpreted in P^, are in keeping with the definition of the call by

value evaluation mechanism.

It is now sufficient to give a schema S in PRj which specifies the leafiest

MM "- - ■

mmm~—^m^^*~*~*

44

functional. The following is such a schema; it performs a left to right

breadth first search of the binary domain. Note that the function calls never

return unless a "true" node is found. The labels LI through L4 are included

only to facilitate subsequent discussion.

(x): tail ♦- n; u ♦- leaftest{x,base); h«lt(u)

leaftest(node,head): global tail;

if p(node) then halt(node) else

begin

LI: tail ♦■ l(node);

L2: nextnode ♦- head;

L3: tail *- r(node)i

L4: loc «- head;

temp <- leaftest(nextnodelqueue(loc,head));

hilt(temp) end

queuedoc.pred): temp «- loc;

loc *- pred;

halt(temp)

base: global tail;

halt(tail)

To understand the construction, we number the nodes of the binary domain

as follows:

t^jm M

1*'m mmmmu^ mimnv 11 ■'■ 1 ""■ " !■ I ■ ■■

45

Ilxv4

x'P

lx(2) rxC3j

rlx^ lrx(Gi rrxl^

The initial call provides the element x and the function hnsr -••; actuals. The

reader can follow the execution of the base step. Foi the induction step,

consider the n,h call (n - l5' recursive call) of leaftest. The formal node

will correspond to the n,h node in the tree and head will correspond to n-1

nested calls of the function queue,

queue(lnr,queue{loc,queHe{ . . iqueueilorjwse)) . . .)))

If the n1h node is not the node ot interest (i.e. p(nocie) s false) then the

variable tail is assigned the left descendant of the n,h node in statement LI.

At L2 the mnemonic significance of the symbols becomes clear. The formal

head corresponding to the nested calls of queue is evaluate 1 In the

evaluation of the outer-most call of queue, the local is temporarily saved and

the next inner-most call of queue is evaluated, etc. Finally, base is

evaluated in the most deeply nested environment, hnse returns the value of

jni7 to the most deeply nested instance of queue, which stores it and returns

its previously stored value, etc. Finally, the outer-most instance of queue

receives the value saved by the next outer-most instance of queue, queue

returns its stored value as the value of head which, ac, we see momentarily,

is node n+1 and it is assigned to the nexinnde local of leaftest for testing

m** mm—m*^timm *««i«,__

^mmmm*mmm*^m^m**^^^^***'"*'™w^mrm*mim'^^mm™wmmi^m*yim^mmmiimmim*mmmfr^1*i

4 b

on the subsequent call. Thus, our untested values are imbedded in the

parameters with a queue-like discipline.

In L3 the right descendent is prepared for substitution into the parameter

list and U makes the substitution and receives the head (node n+2 this time)

in the manner just described. This is saved in the local allocated in this

environment and the entire operation applied to the n+l8' node. Evidently,

the descendents of every node tested are generated in the order of our

numbering (L1,L3), saved (L2,L4), and each call tests one saved node, q.e.d.

Although the queue type mnemonics have been used only to aid our

exposition, the schema S of 3.2.1 does exhibit the way in which queues may

be constructively imbedded into PRi schemata. Brown [1] has studied

queue-like data structures and indep' ndently observed that a queue could

compute the leaftest functional. Of course, we are restricting our study to

parameter evaluation, but the following result is worth mentioning so as to

correlate our work with [1]. The proof requires the methods just exhibited.

/Ittertion 3.2.2: The class PRj computes all of the functionais computed by a

class P augmented with an arbitrary number of first-in first-out queues with

no "queue empty?" test available.

It is not known whether these two classes are equivalent.

■MMKWM^MM^. ■ '■■ ■

1 ' "■

47

3.3. Universality of PRjn.

The call by name parameter evaluation mechanism is stronger than the

other mechanisms considered thus far. However, before considering how

much stronger PRj is, we must analyze this class augmented with markers

^Rjfl)- This class will be shown to be universal by constructing, for every

schema in P(n>1), an equivalent schema in PRjt1, e.g. P^D is the class of

program schemata augmented v.ith two push-down stores and a single marker.

There is no "pds empty?" test available for push down stores in the class

P(n)1) and pop\PD,z) leaves z unchanged when the pds PD is empty. For

n > 1, P(nil) is known [4] to be universal*.

The technique to be used to show »iiat P(n(1) < PRjri is analogous to the

construction used in 3.2.1 except that we will imbed a pushdown stack in the

parameter instead of a queue. Before actually presenting the construction,

we show a sample translation of a schema Sj (P(i p into a schema $2 <

PRjqH-

Example: (x): Ll;yM(x);

L2: pusWP^y);

L3: pop(PD,z);

L4: if p(x) then L5: hslttz) else L6: goto LI;

* p(l(8) £ pRv 's a,G0 shown in [4]. See also [2] for additional results
regarding push down stores.

mmm ■M

^~~~~~~~^^^^mm^^^^~mm~m*^^m^mmmm**~mnmi^^mimmmm

48

Schema Sl (Pa D- The schema has been completely labeled for comparison

to schema S2 < PRjqn:

(x): ident «- 0; y <- 0; z «- fi; t ♦- LKnull); hilt(t)

Ll(pds): global x.y; y ♦- f(x); t •■ L2(pds)i haltit)

L2(pds): {lobil y; save *■ yi act ♦- M; t »- L3(stacMpds,act,save))i hilt(t)

L3(pds): globil ident.z; ident «- z; z «- pds; t *- L4{pds); halt(t)

L4(pds): global x; if p(x) then t *- L5(pd) else t <- L6(pds); haltit)

L5(pds): global z; halt(z)

L6(pds): t «- Ll(pds);hilt(f)

stack(p,a,s): if a - M then begin a <- 0; htlt<s) end

else begin t *- p; hilt(t) end

null: global ident; halt(ident)

The statements of the original schema have been translated into

separate functions with each one responsible for performing the activity of

its correspondent as well as calling the next sequential statement function.

No function returns until all computation has been completed. (L5 is first to

halt in the example). In functions corres<-.-nding to push statements, a pair of

local variables, «aw and act, is allocated, »avc retains the value of the pds

element while act is set to the marker value to indicate that the value has

not been used. A value is retrieved (popped) by invoking the pds formal

parameter (e.g. L3 above). This forces control to return to the environment

which most recently performed a push operation. The function «lock.

■ - 1

I I « ■■!! iii i m^w«« ^Wl

49

executed in that environment, tests to see if the value in nave has been

used. If not, the value is returned and the marker is set. If so, then the

formal pd* is again invoked causing a return to the next earlier push

environment. If the pds is empty the function null will eventually be

executed. It returns the value which will result in a null operation. Note

that the use of the marker is such that no confusion can result if pds

elements are also markers.

We now give the construction just illustrated. We require that each

syntactic statement in the schema Sj in P(M, be labeled. If L, is a statement

then the mcccnsor(s) is the statement{s) which follows in the sequential

control flow. Clearly, ifs have two, halts have none.

Co.M«ruc.io« 3.3.1: Let S, be a schema in P(npl) such that each syntactic

^atement has been labeled. The following steps are required to construct a

schema S2 in PR^ which is equivalent to S].

(i) Let Lj be a labeled statement other than a push or pop:

L^ <S>

Then an n parameter recursive U ction is defined as follows:

L/pds^ . . .,pdsn): global Wi.wj, . . .,wr;

<S>; t v L/pdSj,pds,,);

halt(t)

where: Wj, . . .,wr are the variables used in <S>

Lj is the successor to Lj

-

r" • ' •mim^^mimmmmummnmmimm

50

t is simple (local) variable not used in <S>.

Actually, we have given only the schematic form for the assignment

expression. Since the begins may be ignored (given that the successor

has been chosen properly) and we have given examples of the

auxiliary functions corresponding to the other statement forms above,

we leave it to the reader to construct the functions in the case the

statements are other than assign,.-snt, push or pop.

(ii) For each push statement of the pds PDk:

L,: pusKPD^v)

define a function

L^pdSj, . . .,pdsn): global v; act «- M; save «- v;

f ♦- LJ(pds1,...,stack(pdsk,act,save),...,pdsn);

hilt(t)

where: t, act and save are new local variables

M is a marker in M (see 2.2)

Lj is the successor to Lj,

(iii) For each pop statement of the form:

L,: pop(PDl((z);

define a function

L/pdSi, . . .,pdsn): global ident.z; ident <- z; z <- pdskj

t^-L/pds!, . . .,pdsn); halt(t)

where:

ident is a new identifier, the same one to be used for all

■nppvwnnpMMMpawi ■ ,M1 ■"
1 ■■■

51

pop statemems. idnn is the value returned by the function null to

guarentee that pop of an empty stack results in the identity operation,

(iv) Define (he two following auxiliary functions:

stack(p,a,s): if a = M then begin a <- fl; halt(s) end

else begin t <- p; halt(t) end

(v> Construct a schema S2 in PRjgn using the following main program

augmented with the functions defined in (i)-(iv) above.:

(vj, . . .,vt): ident «- 0; Uj «- 0; . . .; us *■ t);

t ♦- L^null,nu,!); halt(t)

where: Vj, . . .,vt are the input variables of Sj

Uj, . . .,us are the simple variables used in Sj, (since,

precisely speaking, global-, must be defined in the main

program.)

ident is the identifier introduced in (iii) above

Li is the first statement of Sj

and t is a new simple variable.

Thus recursive functions augmented with a single marker and employing

call by name parameter evaluation can simulate any number of push-down

stores. The universal class PflL [4] is capable of simulating recursive

functions using the stack model of Dijkstra. This method, used for ALGOL

compilers, has been adequately described in the literature [19] and need not

concern use here. All that is required in our later proofs is that Pp« is

effectively equivalent to Pnri. These comments may be summarized as:

mmmm —■ —^.^

'■ ' ■ ■'■ ■ ' ' '■ -

52

Theorem 3.3.2: For n > 1, Ppj,, • P(n j,.

3.4. Necessity of Noneffective Marker Elimination for PR^.

In this section we establish that if markers cannot be effectively

removed from schemata of PR« to yield schemata in PRj. The method used is

essentially the one used by Constable and Gries[4] to show that Pp is not

effectively universal. We require the following definition in order to show

that PRj cannot be constructively equivalent to the universal class PR^.

Definition 3.4.1 [4J Let S be a completely labeled schema with n predicates.

Then the he.havior of S is the sequence of statement labels of S in the

order they begin exLruting. For any list v of length n chosen from

{true.false}, the t)-au»oiiomou.t behavior of S is the behavior defined by S

assuming that for 1 < i < n the truth value of predicate p, is V| for all

values of its arguments. Clearly, any schema defines at most 2n different

v-autonomous behaviors.

In [4] it was shown that the v-autonomous behavior of Ppn is

independent of the interpretaton of the domain, the input variables and the

function symbols. It is also shown that it is undecidable whether tut

v-autonomous behavior of Ppn is finite or not (see 4.2.3 for a similar

argument). Clearly, any class effectively equivalent to Ppn must also have

these two properties. From the last section we know that for n > 1

mmmmmm^*mim*mm*tmmmi****mi^^mmmm*m^m~m*mm

•^*~mmmm~~m—~~m>^^^mmmmi^-~~~~~n~mmm*mm~*~~~*^^*wmm^m~'sm~-^^^mi^^^~~^m~^^^^^~~^^r~um^^mmm

53

pRjH E p(n,l) 's constructive and from [4] we know that for n > 1, P(n|i) ■ Ppn

is constructive. Thus:

l,rmma 3.4.2: It is undecidable whether the v-autonomous behavior of a

schema S < Ppjn is finite or not.

However, we shall show that it is possible to determine whether the

v-autonomous behavior of a schema S < PRJ is finite.

famma 3.4.3: Let S be a schema in PRj then it i; decidable whether or not

the v-autonomous behavior of S is finite.

Note that contrary to the usual case with constant predicates, it is possible

for schemata in PRj to execute the same statement twice without entering a

loop. However, it is only possible if the statement is a function which is

used as an actual parameter and whose evaluation is required for two

different instances of a formal parameter.

Proof: There are two ways in which the v-autonomous behavior of S can be

infinite: a cycle within one <body> or an infinitely regressive sequence of

auxiliary function calls. Cycles of the first type can be determined by

analyzing the control flow of each <body> using the values Vj whenever the

predicate P| is encountered and ignoring all function calls. If any instruction

in a <body> is repeated, a cycle exists and if the main <body> is cyclic then

■■■^•PiU^^Wnw*^»-»^ 1 ' ' " " ' ■■■«■

54

the v-autonomous behavior is necessarily infinite.

Suppose the main <body> is noncyclic and rewrite the schema with all cyclic

bodies deleted and all unreferenced instructions deleted from noncyclic

<body>s. From the remaining schema, construct a context free grammar G

with sentence symbol S as follows. First assign a unique number to each

function call in the schema. Define the nonterminals to be new symbols

Vn ■ {S, Fj, . . ., Fr, üy . . ., Ug} where r is the number of function calls

and s «= kr if k is the maximum number of ormals to any auxiliary function.

The terminals are defined to be V, = {all symbols in the schema). Generate

the productions P as follows. If

G,(<term>ll . . .,<term>RG)

is the i,h auxiliary function call of the schema, replace it with th« symbol F,

and generate productions:

F,-»/8

UJ! -» <term>i

UiRG ■♦ <te''m>RC

where ß is the <body> of G with all auxiliary function calls replaced with

nonterminals and with all occurrences of the j,h formal replaced with U|j. (If

the <body> is null because it was found to be cyclic, set ß = F,.) Add the

production

where ß is the main «toody^ with all function calls replaced with nonterminals.

-'- ■■--■ . -

H^iJI-.i.«::!!!:. . I M UJ ■ . ■■ . ||| | ^V^^P|^«|ffM«mHMIpnnWOT^a^n^WM«nMWVI IH ■ I «I H.l I» |l I I I M III illlll ^«WP^^^^^^^IB ■ ■! I ■ I

65

L(G) defines a simple (Ontext free language such that if L(G) is empty the

v-autonomous behavior of S is inifinite and if L(G) is finite then the

v-autonomous behavior is finite. (The language cannot be infinite since each

nonterminal has at most one right hand side in the production set.) Emptiness

is decidable by well known methods [10] and is, indeed, a trivial matter for

these grammars, q.e.d.

Throrrm 3A4: There cannot exist an effective procedure which finds for any

Si < PRJH a corresponding S2 < PRJ such that Sj s S^

Proof: Apply lemmas 3.4.2 and 3.4.3. q.e.d.

Our problem of exactly locating the position of the PRJ class has been

made a bit more difficult since now we must use nonconstructive methods.

3.5. Discussion.

The question of whether or not PRj is universal is still open. We know

that it is "close" to being universal since the addition of a single marker is

sufficient to make it universal. However, there can be no effective

procedure for translating all schemata of PRjn into equivalent schemata in PRj.

This phenomenon, of having a class "nearly" universal but not knowing if it

is, has been encountered by other investigators. Brown, Gries and Szymanski

[2] have the same problem with

—~—— :—— —

■ wwmm^^i i ^H^W. m^^^mi^m^t^mm^mmmmimm^mm^^mmm^mtmr^mm^ ■ i ^^^m^m^^

56

P(2b,0) and Brown [1] has a similar difficulty with Pq*. These problems are

closely related to the PRj problem, e.g. if Pq was known to be universal,

then methods used earlier in this chapter (3.2) would permit simulation of the

queues.

The nonconstructive technique used by Constable and Gries in [4] to

show that Pp is universal could also t used for PRj if it were possible to

enumerate the Herbrand Universe. (See [4] for a description of how the

Herbrand Universe is used.) In particular, if Uj,Up and f^ . . .,ff are,

respectively, the input variables and basic function names of S (PR*, we

wish to construct a T (PRj which performs an enumeration of all strings e,

where

e < {Ui, . . .,ur} or e * f.tej, . . .,eR<) 1 < i < s

If this were possible, we could »how thn cximpuro of a schema S' < PRj such

that S s S'. The "difficulty" with finding such a schema T is in organizing

the Dreadth first search so that all terms are treated uniformly and all terms

are included. They must be treated uniformly since there are no markers or

counters available to impose a substructure on the previously generated

values. Clear /, for monadic functions and predicates, the leaftest functional

(of 3.2) is a i adequate strategy. But it does not seem '.o generalize to

polyadic functions. Several other candidate organizations have been found

for T, but the proof that any of these is correct requires number theoretic

* P(2b,0) is the class P augmented with 2 push-down stores (with "pds
empty?" tests) and no markers. Pq is the class P augmented with queues,
for which no "queue empty?" test is available.

HiilIHMMIMMwaMMHHMMia^aMl,

1 .■.■■I.I W II ■•HU II ~^^W^"I ' ^

57

results which are themselves open problems. If this is the wrong conjecture

and there is actually no way to do this enumeration, then judging from the

diversity of the candidate organizations available, proving that none of them

works will be difficutt indeed.

Finally, note that there is a possibility that PRj could be shown to be

universal by constructive means. Specifically, our results do not deny the

possible existence of a translation from each schema S (Pp to an equivalent

schema in PRj, since the v-öutonomous behavior problem is decidable for both

classes. The difficulty in actually doing such a translation is in simulating the

storing of indices. In the next chapter we investigate PR,,, a pjneralization of

the call by name class. We will present a construction for translating

schemata in PRq into schemata in Pp. The problems of storing indices will be

made clear there.

mmm ■MMMM-.

"^•»iwp""»^"^^1 III ' " • ■'■- ' '

58

4. Parameter Evaluation Extensions

4.1. The Constituent Parts of Parameter Evaluation.

In this section we ahstract the notion of parameter binding so as to

understand what operations are required to make the actual - formal

correspondence and to understand the consequences of choosing a particular

way of implementing these operations. This development will then suggest

ways of generalizing and extending the mechanisms considered earlier. In

subsequent sections we investigate the classes defined by these generalized

mechanisms.

We develop our model from the following point of view. Suppose we

are given an interpreter for the basic class B of recursive program schemata

(see 1.3). Such an interpreter defines all of the mechanism required to

interpret a schema in L(G) except for parameter evaluation. In our

development we will establish what operations are required for the

interpreter to evaluate parameters using a specific strategy. In es;ence we

will parnmetfirizc the basic interpreter so that when it is instantiated with

the proper functions, it defines an interpreter for a certain parameter

evaluation mechanism. Our task is to abstract the constituent parts of

parameter evaluation (i.e. to define the formals to our interpreter). We also

present the functions for these parts (actuals) which realize the various

evoluation mechansims discussed thus far.

MMM^B_M ,,__—__ mmim. - ..— ...-^-

i^mmmimmn^**** • U I i 'i "' m ■■■■■■■ ■ ■'

59

At this point we could introduce an abstract interpreter for our basic

class of schemata, defined in some language (e.g. Vienna Definition

Language). However, such mechanism is not required since the greater part

of such an interpreter doesn't concern us and the points at which our

constructions must interface with the rest of the interpreter are few and

simply described.

The interpreter manipuiak'S several lypct of objects, e.g. domain

values, identifiers, etc. We will use a simple list-like notation to denote the

types of objects of interest to us. Let a pair <A)B> denote any object

whose left hand side value is an object of type A and whose right hand

side value is an object of type B. The particular objects of the basic

interpreter in which we are interested are

<L>D>, < ,Dn i D>l < ,E>.

The first pair denotes an object corresponding to a variable, i.e. its left

hand value is of type location (L) and its right hand value is of type D

where D is thn domain of interpretation. Basic functions with rank n are

denoted by the second term, (there is no left hand value since they cannot

be assigned to). The third term represents unevaluated expressions, i.e.

auxiliary function calls. Ther'j are other kinds of objects used by the

interpreter, (e.g. predicates) but they cannot be parameters to functions.

The objects denoted above are the only objects which may be used as

actual parameters and thus they are the only ones of interest to us.

■ ■ •-

60

In parameter binding we are interested in environment formation.

Environments provide the correspondence between the syntactic objects and

the computational objects which they denote. Thus, an environment, />, is a

mapping

p-.ld -t Dn

where Dn is the class of denoted objec's. We have no interest in the

particular denoted objects, only the types of the denoted objects, so we

write

Dn - {<L,D>, < ,Dn i D>, < ,E>)

to indicate the types of denoted objects of an environment.

Environments change when a function is called and so we suppose that

there is a binding functional ß in the interpreter which defines a new

environment from the current one. ß defines environments inductively and to

keep these separate, we. index them. Thus, the denoted types in the

environment of the main <body> are

Dne = {<L,D>, < .D" -. D>, < ,E>}.

When a function is called from the zero environment, the binding functional

associates the actual parameters with the formal names. Thus, the objects of

the first environment are,

Dnj = {<L,D>, < ,Dn ■» D>, < ,E>, <L,<L,D», <L,< ,Dn -» D>> <L,< ,E»}

where the first three terms are the types of objects specifyable in any

environment. The formals are given in the last three terms indicating that

formals have left hand values of type location and right hand values which

■I

61

are of actual object type of the zero environment. Recursive application will,

clearly, define denoted objects'of larger and larger type.

The binding function only assigns a name to the object which was the

actual parameter. We would not have been calling this "parameter

evaluation" all this time if parameters weren't being pvaluaird as well as

being assigned a name. But evaluation is a poor word since we wish to

treat cases where no evaluation takes place. Hence, we hypothesize a

translation function, T, as one of the parametric inputs to our interpreter.

The translation function is used by the binding functional to translate

actual objects into values of formal type. The translation function T has as

arguments the actual and the name of the calling envrionment. Thus, the

denoted objects in environment i are defined, recursively,

Dn8 = K.D-, < ,Dn ^ D>, < ,E>}

On, - Dn8 U {<L, T(x,i - 1) | for all x (Dn,.!}

which states that the types of the objects in environment i are those

objects srecifyable in any environment (Dne) together with the newly

introduced formal objects and these correspond to the translated actual

objects of the earlier environment bound to a object of type location.

To see how T works, consider the translation function for call by value

or call by copy. For the call by value mfchanism,

Tv(x,i) s fival(x,/>,)

where cval is the expression evaluation mechanism of the interpreter and /)j

mmm kJM. ,.._

62

is the I« environment. This simply requires that the binding functional

evaluate the actual in the calling environment, and thus Tv maps the actuals

into domain elements D. Any formal defined by Tv k of type <L,D> and thus

we have

Dn3 ■ Dn, for all i

in the case of call by value. Clearly, call by copy has the same translation

function as call by value; hence Tc s TV.

For the other mechansims, the translation function is a bit more

complex. For example, one way to describe tiie translation function for call

by reference is,

Tr(x,i) • if x «« variable then <L>«'jjn/(x,/9l)> else x.

The surrogate variable of our definition (2.1.4) is represented by an object

of type L. If one used this translation function for call by reference, the

denoted objects would be of types

Dn8 U {<L,<L,D», <L,<L,<LID»>, <L,<L,<L,<L,D»», . . . }

and any formal of environment n would have up to n levels of reference

values. If this were the definition, the obvious implementation would be

quite convenient on a machine with repeated indirect addressing, since such

operands correspond exactly to the objects in the above set (on a machine

with an infinite memory). But our definition in 2.1,4(i)c required that if the

actual is itself a formal, the. the reference value is to be passed. We can

incorporate this requirement with the following translation function:

TP'(x,i) B If x « formal then Tr(x,i) else rrfr(x).

63

Clearly, the denoted object types for call by reference become:

Dne - {<L,D>, < ,Dn -» D>(< ,E>}

Cn, - Dne U {<L,<L,D»} for i > 1.

The translation function for normal evaluation and call by name

evaluation are given by;

Tn(x(i) B <x,/)j>

T/x.i) s <x,i>

which indicates that the translation function need not perform any

modification, but needs only to jind the actual with an environment (for

normal evaluation) and to bind the actual with an environment name (for call

by name evaluation.) These definitions for Tn and Tj correspond to those of

2.1.6 and 2.1.8, respectively. Since our notation provides a method for

referring to specific environments, we are not required to specify the

arbitrarily deeply nested types. This observation simplifies our subsequent

description, and thus we define the equivalent Tn' and T.' as follows:

Tn'(x,i) s if x « formal then <x,/)1> else rrfr(x)

Tj'(x,i) 5 if x x formal then <x,i> else rrfr(x).

The point to note about the translation functions Tr, Tn and Tu is that

they did an incomplete job of translation in the sense that when the

translation was made the resulting denoted objects were of different type

than the usuai local objects. That is,

Dne « Dni for i > 0.

mm

64

when ß depends on any of the translation functions presented for call by

reference, call by name or normal evaluation. Since formals may appear

wherever locals can, we must further state, when specifying a parameter

evaluation mechanism, how values may be found which are acceptable as local

objects.

We find, therefore, that we must further parameterize our basic

interpreter with definitions for two other operations, /, to find left hand

v«! les for formals and K to find right hand values for formals. The simple

case is when the mechansim of evaluation is call by value or call be copy,

since the translation functions Tv and Tc mapped actuals into objects the

interpreter could already handle, i.e. Dne = Dn, The types of the formal

variables are the same as the local variable type, <L,D> Thus, the same

reference mechanism may be used for formals which is used for locals. We

then have, for a formal symbol x interpreted in environment /),

/->,/)) a /(c(x,/)) ! /.(x,/)) B rnr(/)(x))

Kv(x,/!)) 5 «..(x,/)) 5 K(x,/») s r<fr(/>(x)).

where /. and f? are the reference mechanism for locals which are already

specified for the basic interpreter.

The interesting cases are when Dn8 * Dn, for i > 0. For call by

reference, the translation function Tr assigns formals values of type <L,<L,D»

and so for a formal x in environment p, the reference functions become:

/-(x,/)) E rar(rrfr(/>(x)))

— —

65

«>,/)) - cdr{cdr(f>M))

which reference the reference value and coerced value, respectively.

For normal evaluation formals defined by Tn' are of type <L,<a,/)j»

where n is the unevaluated actual and /), is the environment of the call. For

normal evaluation of a formal x defined by Tn' in environment /» the reference

functions are given by:

/,n(x,/3) E if cdripM) (D then rntipM)

else begin

rvnKr.nrirdripMVfdricdripi*))));

halt(ror(/)(v))) end

Kn(x(/)) = if r.dr{pM) (D then rdr(pM)

else rval(cnr{cdr{fiM)),rdr(cdr{p{)())))

To see that these are consistent with 2.1.6, observe that c.dr(pM) i D is

true if -«nd only if the formal has been assigned to in the <body> of the

call. If it has not been, then it must be evaluated before it is assigned to

(according to 2.1.6), and thus, the else consequent of l.n. If the right hand

side is required, then if the formal has been assigned to then we produce

that value. If it has not been assigned to we evaluate it each time it is

referenced. This is not a contradiction of our definition of 2.1.6 since in our

formalism, the environment pi is passed along and there can be no side

effect?. Thus, the first evaluation is indistinguishable from the n,h and we

-

66

need not concern ourselves with which it is except for efficiency reasons*.

Finally, the call by name formals defined by T.' are of type <L,<a,i»

where a is the unevaluated actual and i is the calling environment name.

The reference function for a formal x in environment p is given by,

/^(x,/)) i cor(rrtr(r(fr(/5(x))»

K/x,/)) » ••»'rt/(r«r(r</r(/>(x))),/)cdr(cdr(F,„,,,)

Note that if the actual does not have a left hand side, /- will return nothing

and we suppose the interpreter can handle such cases.

The only remaining detail is that of copying back of formal values into

actuals for call by copy. This requires the use of the assignment functional

Of the interpreter and since there is no particular subtlety, we shall ignore

it for now.

Note that when the left hand side reference function returns a location

other than cntipM) (i.e. other than the element provided by the binding

functional) there will be side ef*ncts in some environment. Clearly, if we

redefine the reference functions for call by reference to be

/-r(x,/)) B cnripM)

Rr{*,p) a if rrfr^x)) (D then cdripM)

else rdrirdripM))

* Actually, efficiency is the whole reason normal evaluation was introduced in
[15]. We could easily specify a "once if ever" evaluation strategy by using
the assignmr;.! functional of the interpreter, but we choose to avoid the
introduction of this extra mechanism here, since the meaning is the same.

mm* MM

67

we produce an evaluation mechanism which is indistinguishable from call by

value.

Excepting the detail concerning call by copy then, we can parameterize

the basic interpreter for a particular eval <tion mechanism x by specifying

the three components:

T,, the translation function,

/,x the left hand side co iversion procedure

Hx the rght hand side conversion procedure

The fact that parameter evoiunlion introduced a new type of value implies

that type conversion procedures /. and K have to be introduced to translate

between formals and other types. These new procedures provide inlrrobject

translation. Interobject translation is a consequence of choosing Tx such that

the resulting denoted objects are not all in Dn0. But not all operations take

place between formals and other objects. Some operations take place

between formals and other formals. For example, formals can be assigned to

formals. Thus, there must also be imraobject translation. If one can pass

an unevaluated function call or formal, why can't such unevaluated cbjects be

assigned to formals within a body. Of course, that can be done and many

authors have considered this problem, e.g. Landin, Reynolds, Scott and

Stratchey.

We will not, however, address the issue of adding functions as a value

type. In the first place, our little model of environment defintion would fall

mmmm

mi^^mmmmmmm^mmmmtmmmmm^mm^mm ■awariMM

68

apart. Secondly, the problem has been studied before, (see [20] for an

overview.) Finally, our interest is in classes of functionals and languages as

introduced by the above authors are so powerful as to surely be universal

(see next section).

However, our inability to show that call by name is universal motivates

us to find a generalization which would suggest what the shortcomings of its

earlier definition are. The notion of iiurotype conversion is just the

mechanism. Towards this end, if we observe that parameter passing for call

by name is the assignment of unevaluafed functions to formal parameter

identifiers, then we could allow all assignments to formal identifiers to be

unevaluafed. This is analogous to the quoto operation in LISP, only we will

apply it only to formals. The restriction to formals is appealing since it

doesn't require any substantial modification of our definitions, as a general

quote operation would. As we will see in the next section, this is enough.

4.2 The Class PRq.

In this section we investigate the call by name extension suggested in

the last section. The mechanism, which will be entitled call by quote,

warrants a few preliminary remarks. It is admittedly pathological in the

sense that although it is a extension of call by name, it probably not a

viable parameter mechanism for any real language. This is because, when

call by quote facilities are provided, one might as well allow functions as

■M—i MI i mi« i—l mi ■JMIII

1 ' ' '■'■ '■■ "■ ' titimm i n i i •maun i n mi i iimmrmmtmmm^i^mmim^mmm^mnum^

69

values throughout the language, i.e. as local Identifier and function values.

Such a language is too large a step for our interests here. Finally, note

that the "stack" model which is usually used with call by name no 'rr^er

applies.*

Definition 4.2.1: The class PRq of rccumivc! pngrmm schemata with call by

quote is a call by name class of schemata with the additional semantics that

ony assignment to a formal is unevaluated. If the formal does not have a

left hand value, the entire statement is ignored. If a formal must be

evaluated and its value is a circular sequence of references, the value is fl.

Example:

(x): y *- G(x); h«lt(y);

G(z): w <- f^z); if p^w) then z «- G(w) else; h8lt{w)

A sample schema whic!i if interpreted in the class PRq calls G exactly

once from the main <body>. Compare this to its interpretation in PRj.

Although we do not know if PRj is universal, if it is not then the following

theorem tel.i us that the generalization in PRq is sufficient for universality.

Theorem 4.2.2: PRq s Pp.

Proof: Appe aix I contains the details of a construction whereby any schema

* This may not be entirely correct if one can appropriately modify Fischer's
proof [7], which uses call by value, to handle this case.

JMM

r ■■•■"'■"•'I i 1 mm^^~*^m i"l"l !«ll

70

T (P0 can be effectively translated into m evidently equivalent schema

r < PRq. Informally, the translation is straight forward once there is a w?y

to allocate an infinite li-.ear vector and a way to manipulate indices

(specifically, to store an index.) We allocate the storage essentially as was

done in sections 3.2 and 3.3 as formals to the recursively called instructions

ol T. To realize subscripts we use the fact that unevaluated expressions

can be assigned to formals. Thus we have a zero function and an iniex\{y0

function. The subscript two would be tatarKfotfe*!(«*•)}. To get an array

value, control must first return to the earliest environment (i.e. 0 cell of the

array). Then, the index is coerced, removing one level of nesting per

environment until the zero function is called. This function transfers the

value of the local (corresponding to the array cell) to a global temporary

formal and destroys itself. Thus there is a fetch from the indexed cell.

Assignment works in the analogous way.

Of course, schemata in PRq can be simulated by a universal class, say

PpL. Weisenbaum's paper [23] provides a good presentation of the problems

involved, q.e.d.

With PRq known to be universal, it is reasonable to consider trying to

find a translation from schemata in PRq into schemata in PRj and thereby

showing its universality. This is not, however, an advisable strategy as the

following theorem indicates.

■ • ii i mi^^u^mmmmm^mmmmmm^mmmmmmmmmmKmm

71

Theorom 4.2.3: It is not decidable whether the v-autonomous behavior of PRq

is finite or not.

Proof: Given a Turing machine Tm, we can conr-truct a schema T (PRq which

simulates the behavior of Tm. The schema in PRq employs no predicates and

thus operates under constant truth assignments. If T halts then Tm halts on

blank tapes. Since this property is not decidable, v-autonomous behavior

cannot be. The construction is quite envolved and is presented in Appendix

11. q.e.d.

Corollary 4.2.4: There cannot exist an effective procedure which finds for

any schema Sj < PRq a schema Sj < PRJ such that Sj s S2-

Proof: Apply theorem 4.2.° oi.d lemma 3.4.2. q.e.d.

Our generBlization was too generous. It may be that adding some

extra strength to the PRj class will enable one to build a bridge between PRj

and Pp, but at this point its not clear what such a facility would be.

—

■ •- ■" ' »■" ■ ■■' miinwiii in ■■■i- -i^^HSMMMPK^KT^nwav^na

12

5. Decisions about Parameter Evaluation.

5.1. Motivation.

The various parameter evaluation mechanisms which we have studied

represent different solutions to the same semantic problem: binding values of

one environment to names in another environment. As different solutions,

they provide differing degrees of convenience at differing costs. For

example, normal evaluation might require a minimum of execution time for a

small number of references but the test for "already evaluated?" might incur

too much overhead for large numbers of paramefe references. On the other

hanii the advantage of being able to return parameter values with call by

reference might make it more convenient than normal evaluition. In short,

convenience of use and cost of implementation and execution are among the

axes along which parameter evaluation mechanisms vary.

Convenience is a personal issue and implementation cost is a highly

machine dependent issue. Therefore, we will not treat either specifically

Rather, we will provide some facts for use by the language designers and

implementors which may help them to optimize these (and other) conflicting

features when choosing a parameter evaluation mechanism.

In particular, we observe that if one could determine "how a parameter

is to be used" when compiling a program, one might be able to decide which

is the "cheapest" mechanism available that provides the required semantics.

wmmmmmmm

i i ■«Pwn^mnuv^ui i MiiiM>n mum

73

For example, in ALGOL the mechanisms of call by value and call by name

must both be available. Since the compiler writer must provide both

mechanisms, he might prefer to implement call by name evaluations as call by

value in cases where it wouldn't make any difference and would be cheaper.

We propose to investigate to what extent questions of this type can be

decided and, when they can be, lo give procedures for answering them.

Armed with this information, we could expect the language designer to

specify the parameter evaluation mechanism he deems most convenient while

the implementor provides that facility only when absolutely necessary and

whenever he can, uses any other mechanum that is cheaper.

5.2. Definitions.

If the reader is familiar with the unsolvability results for in program

schemata, especially Luckham, Park and Paterson [14] then he will be

skeptical of our chances of establishing any but negative results about

optimizations. In this section we present the necessary definitions and then

justify the reader's feelings. We will not, however, spend a lot of time

providing negative results, but rather in subsequent sections we try to

establish decidable, though less complete, optimizations.

Recall that the syntax of our various classes is given by the grammar

G (in 1.3.) Let L(G) denote the class of terminal strings of this grammar

which we called basic recursive programming schemata. In addition, PR)< is

kdlü

 " ■' ' ii mimimt i ,m m , i i i mr**^~v

74

the class of recursive programming schemata with x parameter evaluation and

Val^SV is the "interpreisr" function for the class PRK evaluating schema S in

interpretation I.

Definition 5.2.1: Let Pnx nd PRy be classes of recursive program schemata

defined on strings of L(G) with parameter evaluation mechanisms x and y,

respectively. Then the coincidence das* for x and y, Cxy contained in L(G)

is the class of terminal strings such that

C.y = {S (L(G) | l/nMS.l) s |/n/y(S,I) for all I)

Thus the coincidence das? for y and y contains exactly those schemata

whose interpretation is insensitive to which method of parameter evaluation, x

or y, is applied. Since L(G) contains some strings with no parameterized

auxiliary functions, Cxy is trivially nonempty. On the otherl.and, the

coincidence class ca , contain many schemata as is seen in the example.

Example 5.2.2: In section 2.2 we observed that for any schema S, the call by

copy interpretation of S is indistinguishable from the call by reference

interpretation of S if all simple variables in each auxiliary function call

are distinct. All such -chemata are elements of the coincidence class Ccr

for copy and reference.

Of course, the class Ccr also contains schemata with duplicated actuals

in those cases where the duplication makes no difference.

■MMUM^XMHMwaa^MHfMMi

75

Let x and y oe parameter evaluation mechanisms, then a paramelrirally

induced nnmr-valuc dixpnriiy describes the situation when some schema is

interpreted using the two different mechanisms and the values associated

with the names become different in the two interpreters as a result of the

parameter evaluation activity. Specifically, suppose that all the names have

the same values in the two interpretations at the commencement of one of

the parameter binding activities (i) auxiliary function initiation, (ii) formal

parameter evaluation or (ni) auxiliary function termination. If, at the

completion of this activity, there exists a name whose value differs between

the two interpretations, then we say the two evaluation methods cause a

parametrically induced name-value disparity.

Drfinition 5.2.3: Two parameter evaluation mechanisms x and y are said to be

MlMlltieclly srfmrnhlr if:

(i) there exists a schema S and an interpretation I such that

l/n/JS,!]' l^/y[S,l].

(ii) I'n/JS.l] ' I'niyl^S,]] implies that there exists a parametrically

induced name-value disparity.

The definition requires that for two evaluation methods to be separable

they must be different and the difference must be manifested at the very

least by difference in the state vectors of the interpreters caused by

parameter evaluation. (Of course, we consider the case of a value verses no

value (as one might get with evaluation postponement) as being a value

aMMMBM^^MHlMM ■■■»*>__

76

disparity.) Each pair of parameter evaluation methods which we have

discussed are semantically separable (see Corollary 5.2.5 below for

justification.) As an example of a semantically inseparable pair, consider

call-by-value (Ir) and call-by-value (rl). These are both call by value but

differing only in that the former evaluates actuals left to right and the latter

evaluates them right to left.

Theorem 5.2.4: Let x and y be parameter evaluation mechanisms which are

semantically separable. Then the membership problem for the coin.idence

class Cxy of x and y is not partially decidable.

Proof: By virtue of the fact that the parameter evaluation mechanisms are

semantically separable, a schema S exists for which there is a parametrically

induced name-value disparity for all interpretations. We may construct for

any schama R (L(G) a new schema SR whose value is provided by the name

whose value diverges according to which method of evaluation is provided.

Furthermore, the value assigned to the name will be in the one case the

value of R and in the other case some value different from, but dependent

upon, R, e.g. h(R) for some bas^c function h. Suet, a construction implies

SR (cxy <=> R diverges for all interpretations.

The theorem then follows from the fact that the class P of flowchart

schemata is properly contained in L(G) and that the problem of deciding if a

schema R (P diverges under all interpretations is not partially decidable

(see 1.3). q.e.d.

— —-

77

Cnrnllnry 5.2.5: For any distinct pair of parameter evaluation methods, call by

value, copy, reference, name and normal evaluation, the memebership problem

for the coincidence class for the pair is not partially decidable.

Proof: If two of the methods differ because only one postpones evaluation or

assigns back into the actual, semantic separability is immediate. This leaves

only the pair <call by copy, call by reference> and the example in 2.1.10

provides the required schema for separability, q.e.d.

Thus, we cannot do perfectly well at identifying when the facilities of

a given parameter evaluation mechanism are not fully utilized. The reader

might feel as though our use of strong equivalence was unfair and that our

result depends upon a peculiarity of strong equivalence. First of all strong

equivalence seems quite appropriate when considering techniques to be used

for compilers, etc. Secondly, we could modify our definitions to a "weaker"

relation and then employ the very strong results of Luckham, Park and

Paterson [14] on "reasonable relations". The even stronger results of Itkin

and Zwienogrodsky [12] could also be used but both methods would be more

involved and the result would most certainly be the same. The task of

doing "perfectly well" at optimization is so hopeless as not to be worth such

effort. We compromise and try to do "reasonably well" in the next sections.

^

78

5.3. Decidability Lemmas.

In this section we will make a rather strong assumption about our

schemata and prove several lemmas to be used in the next section. The

lemmas will enable us to recognize when the full semantics are used of a

particular parameter evaluation mechanism. Such results will enable

parameter bindings to be compiled so that the cheapest mechanism is used

providing the required semantics.

In [14] Luckham, Park and Paterson introduced the notion of a free

program schema. W- will use the same notion for our recursive schemata.

Definition 5.3.1: A schema S (PRx is said to be free if every behavior of S

is an execution behavior.

Recall (from 3.4.1) that the behavior of a schema is merely the

sequence of statement labels as they begin execution and a behavior is an

execution behavior if there is an interpretation which will realize that

behavior. This is a very strong requirement. Indeed, in [14] it is proved

that freedom is not a decidable property for program schemata and so it

cannot be for recursive schemata.

We begin by proving a simple lemma about free schemata. A property

is MMMM »O function calls if the decision whether or not a particular

function environment has the prtperty is affected by the functions it calls.

Clearly, the property of halting is sensitive (in the general case) to function

jmmmmmam^tmmmmm^^m^^mm

79

calls since to determine .', a function halts one must know if the functions it

calls halt.

I.rmmn: 5.3.2: For any free schema S in PR)< the following properties are

decidable:

whether or not for a formal y of an auxiliary function G

(1) y appears on the lefthand side u an assignment,

(2) y is ever referenced, and

(3) y is not refc renced on at least one path.

Proof: It is immediate when the property is insensitive to the evaluation

methods. Suppose the property is sensitive to function calls, (in particular,

sensitive to the evaluation strategy.) Then, the following outline of a

procedure should suffice to recognize the presence or absence of the

properties:

(a) For an auxiliary function, G, mark the formals with an X, 0 or ?

depending on whether, from local information, the formal satisfies

the property, doesn't satisfy it or its "not known" whether it is

satisfied, respectively. The rot known" case will occur when the

formal is also an actual to an auxiliary function.

(b) Choose an auxiliary function at least one of whose formals is

question marked. Choose a formal, z, and find which auxiliary

functions it appears in as an actual and in which positions. Decide

whether the properties hold in this function. If nny of these are

«MMM^^^WMaaBMMk

■vppvnnpiwnajHai ' - •■ • ^"^ ■

8.

marked X, z is marked X. If all are marked 0, z is marked 0.

Otherwise, z remains question marked.

(c) Apply (b) until no question marks can be removed, which must

occur since new ones are not introduced.

Parameters still marked with a question mark evidently do not satisfy the

property and should be marked 0, since they form only closed cycles, q.e.d.

Whether a formal is eventually assigned to or referenced is not enough

information. We n ust know whether that assignment or reference has any

effect.

lamina 5.3.3: It is decidable for a free schema S (PR)(whether postponing

actual parameter evaluation avoids a nonterminating computation.

Proof: A syntactic check can be made to determine which parameter positions

are ever filled by auxiliary functions. By lemma 5.3.2 it can be determined

which of these parameters is ever referenced. For there; that are

referenced, the auxiliary functions filling their actual parameter postions can

be examined to determine which diverge, since a free auxiliary function, G,

containing I statements will diverge in some interpretation if there exists a

behavior of G containing more than I statements. For the formals

referencing potentially divergent parameters, divergence of the entire schema

can be avoided if not all paths through the function reference the formal.

Mark all paths on which the formal is referenced (assuming use as an actual

to an auxiliary function is not a reference.) From lemma 5.3.2 the remaining

mm*mmmm***i^ >' ' •iit«mmmm^^^^^*-^immvm--imn™ m-mv i iimi\mmi^mimm**~^m'^^^^*^wmmm^^^^^*'^*mmmi^mmmmmmmmmimmim

81

unmarked paths ran be marked depending on wheth«r evaluation is avoided

in any of the called functions. If there exists an unmarked path to a hilt

then postponement will avoid a nonterminating computation, q.e.d.

In the following lemma we prove that it is decidable whether or not an

assignment to a formal changes its value. There is a bit more complexity to

it than the earlier proofs, and the following definitions will be useful.

Definition 5.3.4: A Jt - repealed hehavior of a schema S is a behavior

L1(. . .,Ln such that there are no indicts i0,il(i2, . . .,ik+l such that,

Lie« • • •.Lji-iiLiii • • •I'-J2-I. • • -»l-iki • • -ILJU+I

is a substring of Lj, . . .,Ln and

Lie. • • -.l-ij-i ■ L|i. ■ ■ ■.'-J2-1 ■ . . . ■ Ln . • ■•U+i-

Thus, a k-repeated behavior is one in which no iteration or recursion cycles

on the same path more than k times. Clearly, for fixed k, any k - repeated

path through a schema S is finite.

Definiiion 5.3.5: Let e be any expression in the Herbrand Universe (see 3.5

for def.) such that e = Uej, . . .,eRf). Then the generation tree for e is the

oriented tree formed by placing f at the root and the Rf edges from it

(from left to right) leading to the generation trees for ej, . . .,eR„

respectively.

Thus, a generation tree for any computed value of a schema has basic

function symbols for nodes and leaves of t.iher input variables or ns. The

 '

82

term cycle in tht following theorem means either an iteration or a recursion

which returns control to the same label.

The crucial fact to note regarding recognizing when an assignment is

always an identity assignment is that if if is then the subcomputations must

either be constant or the computation of the left and right hand sides must

take place "in unison." By "in unison" we mean that a subcomputation for

one cannot take place in one cycle and the corresponding subcomputation in

a different cycle, for if they did, we could find (in a free schema) different

numbers of repetitions for the two cycles to contradict the assumption of

equality. Thus, cycling through a loop (ittrativtly or recursively) must

always perform subcomputations for both left and right ,->and sides.

Lemma 5.3.6: For a free schema S in the class ?n„ it is decidable whether

or not an assignment to a formal y of an auxiliary function G changes the

value of y.

Proof: We first prove a major subcase: the problem is decidable where S has

no identity assignments. Enumer?.e all 2 - repeated paths through S and

decide whether the assignment in question ever changes the value of y. We

now show that if for none of the 2-repeated behaviors the value of y is

changed, then there can be no behavior Lj, . . .,Ln in v liich the value of y

is changed. Observe the following facts:

(1) Since there are no identity assignments, if both sides of the

assignment in question have a bounded length, then all possible values

rtHMMMMlMHi

ill" IBIimiW«qnilpn«l^nM»w«W""«*^^l»JHIHM^W>wv^««iH|MW--WVI|BHVmMOT«l«>^

83

of the assignment have already been investigated.

(2) From (1) it follows, that if a behavior Lj, . . .,Ln exists then it v.-st

have a subcomputation in a cycle the value of which depends on a

value changed in a cycle.

(3) Since there are no identity assignments a value changed in one

repetition of a cycle must either be used by the end of the next

repetition or never be used.

Suppose a behavior Lj, . . .,Ln exists and that it is «. shortest such behavio..

Tlien there exists a 2-repeated behavior Mj,Mp of S and an index i

such that Ln = Mp is the assignment in question and Ln_„ . . .,Ln =

MP-I. • • -AV Thus, there is a suffix of the 2-repeated behavior which

corresponds to the suffix of our supposed counter example. We choose

M^ . . .,Mp so that its suffix is the largest possible. Let ^ and E2 be the

generation trees of the left and right hand sides of the assignment in

question. Then since the suffixes match, then the top k ply of E! and E2

match for some k. Choose two values e! and 62 in the generation trees of

Ei and E2, respectively, such that ej ■ e2, they fill corresponding parameter

positions and all nodes on a path to their respective roots match. These

must exists or else El and E2 are not different. We require that the root

nodes of ey and e2 differ. By working backwards from Ln through the

behavior Lj, . . .,Ln, we can find where these two values were computed.

From (1) we know that these values had to be computed in one or more

cycles. In addition, we can show that they were computed in the same

1 ' ■■ ' " ■ m*^^**** i i i iw

84

cycle. Suppose they were computed in separate cycles, then either,

(a) one or the other cycle has been repeated and if repeating the cycle

doesn't change the value we can eliminate a repetition, realize the same

value and contradict the assumption that L^ . . .,Ln is shortest.

(b) one cycle has been repeated and repetition yields a different value

for each iteration. If the repetition is greater than two then we can

eliminate one or more, realize a different value and contradict the

assumption that Lj, . . .,Ln is the shortest sequence.

(c) the cycle has been repeated 0,1, or 2 times with a different value

each time and thus has been discovered in our 2-repeated behavior

analysis, contrary to the assumption that none existed.

Those are the only choices with no identity assignments, so we conclude that

the two values el and e2 were computed in the sarr.o cycle. But this is

impossible since if it were true then we have already discovered the

difference. Since the suffixes match, ej and e2 are operands to the same

function name f (though maybe not the same instance of the name) then that

name must be outside the loop or on the next repetition of the same cycle.

If it is outside the cycle then any exit from the cycle is erroneous, including

the first. If the instance of f is in the cycle, then the error must be

discovei'-d in two repetitions through the cycle since with no identity

assignments values computed on one cycle must be used on the next, or

never. Thus, two repetitions of the cycle are sufficient to recognize the

difference regardless of where the occurrences of f are. Thus the supposed

■MM

— ' ' ■ ' ' -ii-.. i anv^wiv i wmmm*mmmimm

85

difference cannot exist.

The effect of identity assignments is to act possibly as a delay line

and to postpone the decision! required for the above argument. In

particular, for any operand name a change in value can be postponed for a

maximum of k iterations of a cycle where k is the number of identity

assignments in a loop. Thus, we merely enumerate all k-repeated behaviors

where k is the number of assignments in the repeated subbehavior. q.e.d.

Lemma 5.3.7: It is decidaole for a free schema S whether or not a change in

the value of a formal y of any auxiliary function F affects the value of the

schema.

Proof: There is a bound on the amount of simulation required to determine if

any output of an auxiliary function G (or main program) is affected by a

change of a formal y in F. If there are n variable names (for formals and

locals) in G then there are 2" possible assignments of values which either

depend or do not depend upon an actual whose value could be changed by

the formal y of F. The dependency slate is an n element binary vector, one

bit corresponding to each variable, describing whether the value of the

var able could change as a result of the function call (1) or would be

unaffected (0). Initially, the vector is all zeros. Begin simulating G and set

the bit corresponding to x if

(1) x is the actual corresponding to y in a call of F,

(2) x is assigned a value which is a function of variables which have

' IIIIIIPI^W^^^^^^^^^W^^W^

86

their bits set,

(3) x is assigned two different values in each consequent of a predicate

whose parameters include variables which are set.

The vector element corresponding to x is to be set to zero if x is assigned

a value which is a function of unmarked variables. All computations are to

be simulated with a record kept of the current value of the dependency

state for each labeled statement. When a goto L is encountered, the current

dependency state is comparFd with those previously in effect when L was

executed on this path. If the current dependency state is in the list, then

no further execution of the path is required, since nothing new can happen.

This fact limits the length of any path which must be considered, gotos

must be executed if the computation is not finite, and so this process must

terminate. If all simulations lead to halt statements whoso argument x does

not have its corresponding bit set, then a change in the formal y does not

affect the result of G. In all other cases it does, q.e.d.

5.4. Coincidence Class Decidability.

The lemmas from the last section will enable us to decide the

toincdence da?s problems for free schemata.

Theorem 5.4.1: For free schemata the membership problem for coincidence

classes Cve, Cvr, Cvn and Cvj is decidable.

mm mm

in i i ■"" '--~—~~—~~-~~m^^^~m**mr~m~~^mm~mmmm^^m**mm^^i^^mmmmmmimmm«mmm^m*m

8;

Proof: Apply lemmas 5.3.6 and 5.3.7 for Cvc and Cvr. Apply lemma 5.3.3 for

Cvn. For Cvj all three lemmas solve half of the problem. The other half is

recogni ;ing whether there are side effects when the actual is coerced. If

there are, multiple evaluations may be required and values of simple variable

actuals may change. Lemma 5.3.6 recognizes side effects and if there are

any, one must decide if the formal is evaluated more than once. (This

requires only a minor modification to 5.3.2 and is left to the reader.) If it is

repeatedly evaluated and there are side effects then 5.3.7 can be used to

decide if it makes any difference in the result. This solves the problem for

Cvj. q.e.d.

Theorem 5.4.2. For free schemata the membership problem for concidence

classes Ccr, Ccn and CCj is decidable.

Proof: From a syntactic check the duplicate actuals can be found. A

modification of 5.3.2 will determine i* the corresponding formals ever get

assigned different values. If they do, lemma 5.3.7 determines if the

differences affect the result. Membership in Ccn follows from 5.3.3, 5.3.6 and

5.3.7. For Cci we net d the arguments just given for the Ccr case, lemma

5.3.3 and the argument from the last theorem regarding side effects, q.e.d.

Theorem 5.4.3: For free schemata the membership problem for coincidence

classes Crn, Crj and Cnj are decidable.

Proof: Membership in Crn follows from 5.3.3, 5.3.6 and 5.3.7 as well as the

mm

88

comments on side effects. For Crj and Cnj the earlier comments on side

effects apply together with lemma 5.3.3 for the former and lemmas 5.3.6 and

5.3.7 for the latter, q.e.d.

These results enable us to recognize that the facilities of a parameter

evaluation mechanism are not fully utilized throughout the entire schema.

Such a decision procedure, then, would enable a different "run time"

implementation of parameter passing. Clearly, the usual case would be that

some evaluations require one mechanism while others could get by on a

"weaker" mechanism. If this information can be used to perform some

optimizations, then the proofs of the above results are such that the analysis

may be applied to these particular cases as well.

There can be no doubt that freedom is a very restrictive property. It

has allowed us to recognize when the various mechanisms coincide. The fact

that the property isn't decidable does not render our results useless since in

compilers the modus opcrandi frequently assumes that the programs are free.

If they are, then we know that a compiler can do a good job at translating

from one parameter evaluation mechanism into another. If the programs are

not free, then we do a less than perfect job, but we make no mistakes.

^^MM^MMt

m^m*w^*^^*^^*mm

89

6. Summary.

To summarize the relationships discovered in the earlier chapters, we

have,

PRV
5 PRc ' PRr s PRn ' PR.g s PRKH < PRJ ■ P|J, £ PRJH ■ PR,

where x = v,c,r,n and the last two classes are universal. We showed that

PRJ cannot be effectively equivalent to PRjn. We correlated our results with

the notion of fixed point computation and our proofs suggest that a'though

call by value, copy and reference do not, in general, compute the least fixed

point, there is a constructive way to find schemata for which these

mechanisms do compute the least fixed point. We were able to characterize

all of our mechanisms in a simple and uniform way. Although tne

equivalence of two evaluation methods on a particular schema Is generally

undecidfbie, decision procedures were foun^ for a restricted class. This

class is consistent with the modux operandi of most compilers and for these,

parameter evaluation optimizations could be realized.

Having considered several kinds of evaluation mechanisms, it is

reasonable to ask how do the facilities compare. Certainly, the conventional

wisdom has been called into question which says that call by name is

"stronger" than call by value because it postoones ^valuation. We would

have to say that the important advantage of call by name ovar the weaker

mechanisms is that it allows multiple evaluation of the formals with

(potentially) different results each time. This facility is actually a very

mi^m*m*m

90

restricted way of manipulating unevaluated functions as objects in the

language. We saw in PRq that generalizing this facility achieved universality.

If PRj were universal too, then it would be a far more attractive way (from

an implementational standpoint) to achieve the computational power than a

general function manipulating language.

Even though the weaker mechanisms are equivalent, a look at the

proofs indicate« that our study of classes of functionals, like other

computability studies, does not tell the whole story. The efficiency degrades

tremendously between PRv and PRc and between PRr and PRn. If our

constructions cannot be made more optimal, then this suggests that there is

a difference between these classes which we have not had the mechanism to

recognize. Some complexity analysis might be useful in separating these,

though its not quite clear how to formulate the questions. Alternatively, one

could consider a stronger notion of equivalence, where all basic functions and

predicates must be executed in the same order.

While we are on the subject of practicality, even if PRj turns out to be

universal, a "practical man" would be less than excited with the necessarily

nonconstmtive nature of the equivalence. But pragmatically rpeaking,

markers are generally available when performing all but the most bizarre

programming exercises anyway, so PRjf1 may be a more reasonable model of

our use of call by name recursion.

—Iliiiiiiini ilrtltlllMIln 11 11

m*r^***- i" MID " ■ "i ^^^^m^mmfwmrm WM

91

We have left one open problem. The question of whether call by

name is universal is closely related to opc-n problems of [2] and [1].

(Notably, the question of whether p'ogram schemata augmented with two

push-down stores with empty stack tests is universal.) Finding solutions to

these, however, is probably best treated as recreational mathematics. We

will learn very little new when we know the answer. Nor should much time

be spent adding ones favorite language features to program schemata and

comparing them to other classes. In the first place most common

programming language constructs have already been examined and secondly,

for n language features one can potentially form 2n classes with each

probably requiring a separate proof. Rather, future research in comparative

schematology should be applied to finding out which "properties" determine

the relationships which we've been studying. When we no longer have to

produce a special proof for each new class we find, then we will have taken

an important step forward.

mmmtm^^mmm

^^^mm^Kwaima^mm**—^''^^''' "" ' '"^ mmmmm^mmmm. i i i i ^p^man^^^^w^HM

9?

7. Bibliography.

[I] Brown S., Program Schemata and Information Flow: A Study of Some

Axpecti of the Schema Power of Data Structures, Cornell Univ. (Ph.D

Thesis), CS Tech. Report TR 72 - 135 (1972)

[2] Brown, S., D. Gries and T. Szymanski, Program Schemata with Pushdown

Stores, Cornell Univ., CS Tech. Report TR 72 - 126 1972

[3] Cadiou, J. and Z. Manna, "Recursive Definitions of Partial Functions and

Their Computations," Proc. of ACM Conf. on Proving Assertions About

Programs, ACM, New york, 1972.

[4} Con-.table, R. L. and D. Gries, "On Classes of Program Schemata", S1AM

J. Compt. 1, 1 (1972)

[5] Ekman, T. and C. Froberg, Introduction to ALGOL Pro^rommin^, Oxford

University Press, London, 1957.

[6] Ershov, A., "Theory of Program Schemata," Proc. IFIP Cong. 1971.

[7] Fischer, M., "Lambda Calculus Schemata," Proc. of ACM Conf. on Proving

Assertions About Programs, ACM, New York, 1972.

[8] Garland, S. and D. Luckhain, "Translating Recursion Schemes into

Program Schemes," Proc. of ACM Conf. on Proving Assertions About

Program', ACM, Ne.v York, 1972.

[9] Hewitt, C, More Comparative Schematology, MIT Project MAC, Artificial

Intelligence Memo No. 207 (1970)

[10] Hopcroft, J., and J. Ullman, Formal Languages and Their Relation to

MiM^H^^MM«MMMMMil^MMM_MM^flaMMaMIMMMMMMaMBflii

wwmm^mmmjBWmmti'^*^'****''^^^'^' w*ii^^^*'****^''iim*vm*'^immmmmmmmmmm*m~m~m^*mmmmimimmmm*mim

93

/lulomain, Addison - Wesley, Reading Mass. 1969.

[11] lanov, I. "The Logical Schemes of Algorithms", 1958 (English translation

in: Problem» of Cyhcrnrtirs 1, Pergamon Press, 1960)

[12] Itkin, V. and Z. Zwienogrodsky, "On Equivalence of Program Schemata",

J. Comp. Syst. Sei. 1,(1972)

[13] Ledgard, K, "Ten Mini-Languages: A Study of Topical Issues in

Programming Languages", Computer Surveys, 3, 3, (1971)

[14] Luckham, P. C, D. M. R. Park and M. S. Paterson, "On Formalized

Computer Programs", J. Comp. Syst. Sei. 4,3(1970)

[15] Manna, A., S. Ness and J. Vuillemin, "Inductive Methods for Proving

Properties of Programs," Proc. of ACM Conf. on Proving Assertions

About Programs, ACM, New York, 1972.

[16] McCarthy, J., "A Basis for a Mathematical Theory of Computation", in

CampHter Programminff nnd Formal Systems, P. Braffort and D

Hirs'iberg, ed., North-Holland, Amsterdan,, 1963

[17] Paterson, M. Kquivnlenrc Prohlrms in a Model of Computation, (Ph.D

Thesis), Trinity College, Cambridge, 1967 (available as MIT A.I. Technical

Memo No, 1,(1970))

[18] Paterson, M. S. and C. E. Hewitt, "Comparative Schematology", Conf.

Record of Project MAC Conference on Concurrent Systems and Parallel

Computation, ACM, New York, 1970

[19] Randell, B., and L Russell, ALGOL 60 Implementation, Academic Press,

New York, 1964

■■---

«"■um. « ■■ IIP~II nil i. 11,1 ■mnmmnaiMOT^^m^^Mt^wnBiBw* i in n m ■IIWHUIHIIHI

94

[20] Reynolds, J. "Definitional Interpreters for Higher Order Programming

Languages." Tech. Rep., Sy.. and Info. Sei. Dept., Syracuse University,

1372

[21] Rutledge, J. "On lanov's Program Schemata," Jour. ACM 11, (1964)

[22] Strong, R., "Translating Recursion Equations into Flow Charts", J. Comp.

Syst. Sei. 5,(1971)

[23] Weisenbaum, J. "The FUNARG Problem", MIT Mimeograph Report

MIIBI1II I MM—<—»IMWrfctrMi I

--————---■—--•—»--—-»—■•^•»~——->--«^WWPiMi^^»»»-»^Ä»^»W^WPW«»«l«P»|il^»IBW^™"""-—~~-™"~--"—-~«—^"^

96

Appendix 1.

The following construction completes the details of Theonim 4.2.2 Note

that the informal description given in the text over-simplified the problems.

In particular, since the noncoercion facility of formal parameter assignment is

used so extensively, all data manipulation must be done via formal parameters

so that no subscript function can inadvertently become evaluated. To help

the reader, the formals s, t and temp act as globals tnH are used strictly to

transfer values. (Think of » and i as source and target, respectively, i.e.

t «- *). In addition when a subscripted variable is to be fetched from, the

formal flfctch is used to return to the earlier environment for the fetch and

/Imorc is used analogously for stores. As was done in 3.3, no auxiliary

function corresponding to a statement of the Pfl schema returns until the

cumputation is complete. Finally, most functions are used »or manipulation of

formals and hence their values do not matter. As a reminder to the reader,

we always pass n as a halt argument in these cases and make assignments

o' -uch function's value to a variable rfumrny.

A remaining detail concerns the degenerate and erroneous c«es (see

1.3). In particular, if a subscript value is used as though it were a domain

value, the value should be taken as ft Conversly, if a domain value is used

as a subscript, location zero is to be referenced. Note that it can be

effectively decided how the value is to be used, although it cannot be

decided what type it will be. We require, therefore, that two cori^s of all

 ——-^—^-

-— II • l"ll

96

variables and array locations must be maintained. One will be used to hold

only valid values for subscripts and another valid values for domain elements.

They are initialized to the function tnro and the value 0, respectively. Thei

the fetchs and stores are made with the proper element of each pair as

dictated by the circumstances of the use. For identity assignments (x ♦- y)

both terms are copied. Noi«, the construction given below, to ?so\d addinj,

extra complexity, provides only a single cell for all variables. The reader

can fill in these details allowing for ill-behaved.schemata.

Comtruction: Let T be a schema in Pfl. The following outline should provide

sufficient detail to convince the reader that an equivalent schema in PRq can

be effectively found.

(i) Label all instructions of the T schema and determine their successors

as was done for the construction in 3.3. The constructions for (ii), (iii),

(iv) below do not actually include all of the cases (e.g. vt *■ Vj), but

we trust the reader can fill in the details.

(ii) Let <S> be a statement labeled L| whose successor is Lj and

envolving the reference of array values A^], A^j], . . ., Afo] and an

assignment to A[v,]. We define (schematically) an auxiliary function as

folkws.

L^s.t.temp^storejAfetch.Vi^, . . .,vn):

temp ♦■ v,;

dummy ♦- Afetch;

 — i» tmtvmmm- .■——^-^—

1 "■•"'■■■'■,"1-" '■ '■'^^•Wtwp"^^w»«»«^^w3" nwii .i ii. ii 11 .11 i n in i i in iiMiiii« ninii iniw^^^^w»

97

Avi «- t;

• ■ • i

temp «■ v^;

dur^my «- Afetch;

Avk «- tj

s «- Avi;

temp *- v,j

dummy «- Astore;

z ♦- Lj(s,t,Astore,Afetch,v1,v2, . . .,vn);

MKi)

where: v^, ■ . .,vn are simple variables in T

Avi, Avj, . . ., Avk are new identifiers called orroy referencing

identijier* and are used in lieu of subscript expressions.

<$'> is the statement identical to <S> except with array

referencing identifiers replacing the array references. The

riader can make the obvious modifications in the event <S> is

jn if statement (and has two successors) or in the event it is

a halt statement (and has no successors.)

(hi) Let Lj be an assignmem of zero,

l^AKl^O;

with successor statement Lj. Then form a new auxiliary function as

" -■-llBl i i

■■■■I

i \\\m\mmmm*im^*mrr*'^^^*^9^^'^^**'^rm i IIIBII i HmvP>w ian*V*HP>PW QBEVM

98

follows.

MPlMMa« ■•mi i .■«

Li(s,t,temp,Astore,Afetch,Vi,V2 vn):

temp «- v^j

s «■ zero(s,t,temp);

c'ummy ♦- Asfore;

z *- Ljis.f.temp.Astore.Afetch.Vj.v^ .

halt(z)

•.vn);

(iv) Let Lj be an increment statement, i.e.

with successor statement Lj. Inen form a new auxiliary function

following the schema:

L^s.t.temp.Astore.Afetch^i.Vj, . . .,vn):

local ♦- fij

dummy *- increment(s,t,temp/vq);

vp ♦- temp;

z «- Lj(s,t,temp,storechain(s,t)temp,local(Astore),

fetchchain(s,t,temp,local,Afetch),v1,V2,

MKi)

•.vn);

(v) Define the following <rec function> and mxilia functions.

■Maia»!*

■ JIJÜ I Hl Ml ^i^mmtmr^mmmmmmmnm^mmmmm -—^

99

(Ui.Uz, . . .,u,):

source «- fij

target <- Ci;

temporary <- f);

z *■ firstcalKsource^arget.temporary);

hilt(z)

firstcall(s,t,temp):

local ♦■ f);

z ♦- L^s.t.temp.storencKs.t.temp.locaD.fetchencKs.t.temp.local),

Vl.Vj, . . .,vn)j

hilt(z)

fetchend(s,t,temp,local):

s «■ local;

dumnr ♦- temp;

hilt(n)

storend(s,t,femp,local):

t «- local;

dummy «- temp;

local «■ t;

hllt(O)

M.

-"-— ■ '• ' 'I I"' i" ■ 1 ""■ " " 1 " i ii.iii ii >

100

fetchchaims^temp.local.pred):

temp «■ pred;

s *■ localj

dummy ♦- temp;

MKfl)

storechain(s,t,temp,local,pred):

temp *- pred;

t •■ local;

dummy »■ temp;

local ♦■ t;

hilKn)

zero(s,t,temp): t ♦- 5; ttmp ♦- fi; hilt{n)

increment(s,t,temp,chain):

teinp «- indexl(s,t,temp(chain);

halt(n)

indexKs.t.temp.chain): temp «- chain; hsfWn)

where: u^,u, are the input variables to T.

vl»v2> ■ • -iVn are '^e simple variables o' T.

mmm

mmmm — -■ ■ 1 •■■ ■■ 'x*m

101

Appendix II.

The following construction completes the detail? of Theorem 4.2.3.

Let Tm be a Turing machine over two input symbols {0,1} with a tape

one-way infinite to the right Let Q be the discription quintuples,

<state,symboi,new5tate,new^ymbol,shift> (Q.

We will employ a technique which differs little from that used in Appendix I.

The only subtlety is In the fact that for that simulation the indefinite

recursion was done explicitly with each procedure calling its successor(s),

while for this simulation we must perfoi-m the indefinite recursion by

executing a formal (or) so that the decis.on to halt can be made. The tape

will be created, one cell at a lime with local variables. (Whereas in

Appendix I the local was the storage cell of the defining environment for

that cell, this construction must pass the cell as the storage for the next

calling environment. (This is because the tape must be initialized to blank

where before it was initialized to D.) The tape symbols will be functions,

hlnnk and mark. These functions will manipulate global formals (zero and

one, respectively) to decide which is the next state. Writing on the tape

and movement of the read head are done analogously to that for array

assignment and index mcremer.ng. The remainder of the details shoud be

clear.

Construction. The following steps will produce a schema T (PRq with the

requirements that if T halts then Tm halts on blank tapes.

—•— wmmmmmmim^mm wmmmumi^mmmmmmtmt

102

(i) Let <i,x,j,symbol,shift> be a state quintuple, where i is the s^ate

number, x the symbol read, ; the new state, tymhol the symbol written

and nhift the directior, the tape read head is to move. Form an

auxilary function ixstate according to the following schema, such that:

(a) 1* or 2* is chosen depending on whether the written symbol is

0 or 1, respectively.

(b) 3* or 4* is chosen depending upon whether the head is to be

shifted right or left, respectively.

»3rstate(temp,ex,zero,one,read)write,head,symbol,cell):

local «- fl;

cell *- blanK(ex,zero)i

I* symbol «- blank(ex,zero)j

2* symbol «■ mark(ex,one);

temp ♦- head;

dummy ♦■ write;

3* head *■ shift(temp,ex,symbol,head);

A* begin

temp •■ head;

dummy <- temp;

head <- temp end

zero •■ /Ostate(temp,ex,zero,one,taperead(t&mp,ex,zero,one,cell,

symbol,read), tapewrite(temp,ex,cell,symbol,write),

—" mm ^MMMMMH

rmm mmm mmmammm

103

head,symbol,local);

one «- jlstate<temp,exlzerolone,taperead(temp,ex,zero,one)cell,

3ymbol,read),tapewrile(temp,ex,cell,symbol,write),

head.symbol.local);

temp *- head;

dummy «- read;

dummy *■ ex;

hllt(n)

Note that the transition is realised by loading zero and one with the

proper successor cells and then invoking rmi which executes the tape

cell function. The tape cell function then transfers the next state

function description into ex which is executed in the assignment to

dummy

(ii) For all halt pairs <i,x> generate: ii;state(a,b,c)d,e,f,g,h,i): hiH(n)

(iii) Generate the following utility functions:

firstcall(temp,ex,zero,one,head,symbol,cell).

local <- 1;

cell •■ blanMex.zero);

head ♦- shifUtemp.ex.symbol.passitemp.e»,^ tol));

dummy *- 10state{temp,ex,zero,one,readend(temp,ex,zero,one,cell,symbol),

»v.iteend(temp,ex)cell,symbol),head,symbol,local);

hllt(n)

mamttmM -■

^^^w^Hw^OT^M.wi.iM i uHiii^^mmmmm^mm^mmmm^~-^^mmmmimmmm*mimmm*mmmrmmmmm^*mmmmH*mmmm9mmimmr

104

pass(temp,ex,symbol): ex ♦- symbol; temp <- a hllt(n)

readencKterip.ex.zero.one.cell.symbol):

ex «- null;

symbol <- cell;

dummy «- temp;

dummy «- ex;

htlt(n)

writeendüemp.ex.cell.symbol):

ex «- cell;

dummy <- temp;

cell «- ex;

htlt(n)

taperead(temp,ex,zero,one,cell,symbol,pred):

dummy ♦■ pred;

ex «- null;

symbol ♦- cell;

dummy «- temp;

dummy «- ex;

halt(n)

--■-'—^-^-~-— ..-^ ^-^j^-^..-. — ^tBM/mnagmn*.

105

tapewrite(temp,ex,cell.symbol,pred):

dummy «- pred;

ex «- cell;

dummy «- temp;

cell «- ex;

haH(n)

null: halt(n)

shift(temp,ex,symbol,chain): temp ♦- chain; hllt(n)

(iv) Genei ate the following <rec program> and augment it with the

auxiliary functions from (i) - (iii):

(x): temporary «- 0;

local «- n-,

execute «- fl;

zerochoice «- fi;

onechoice *■ fl;

tapehead *- fl;

writingsymbol ♦- Ci;

dummy *- firstcall(temporary>execute,zerochoice,onechoice,tapehead,

writingsymbol.local);

MKO)

Note that the input variable is unused and is provided only to meet

syntactic requirements.

