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Abstract

A class of recursive program schemata Pp is defined abstracting
ALGOL-like procedures. Four generic types of parameter evaluation are
considered: call by value, Pg,, call by copy, Py, call by reference, Pg., and
call by name, Pr;  Two other types of theoretical interest are also
considered:  "normal  evaluation”, Fp, a non-side effect, evaluation
postponement mechansim and call by ouote, Pg,, an extension of call by name
with all assignments to formals urevaluated. For evaluation method x,
augmentation with global variables, Pg,, and augmentation with a finite
number of markers, Pg,n are also considered. The results include,

Pry = Pre = Pre. = Pry = Prog = Pryn < Prj = Prjy < Prin 2 Ppq
where x = v, ¢, r, and n. The results are correlated with the notion of
fixed point computation and although call by value, copy and reference do
not, in general, compute the least fixed point, for any functional an
equivalent one may be found for which these three do compute the least
fixed point.

That call by name is stronger than the other generic evaluation
mechanisms derives not from postponing evaluation, but from repeated
evaluation, ie. side effects. The last two terms in the relation list are
"universal®.  Additionally, its shown that if Pg, = Pgy and if Pg; = Pgg, then
they cannot be constructively equivalent.

An abstract model of parameter evaluation is developed and the
constituent components of parameter evaluation are isolated. These help to
characterize what impact choices of parameter evaluation have on the
language in general. This understaniing motivates the class Pp, and binds
our ~nnalysis with that of the lambda calculus models. The question of
recognizing when two parameter evaluation mechanisms coincide is studied, i.e.
when two mechanisms always compute the same result for the same schema.
The general problem is not partially decidable for seperable evaluation
mezchanisms.  For free recursive schemata employing the generic mechanisms,
the coincidence question is decidable.

A discussion of the utility of such analysis and some thoughts on
future directions for research are included.
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1. Introduction.

1.1 Motivation and Overview.

"Parameter evaluation,” “argument substitution,” and “formal - actual
binding" are some of the names which have been used to describe the
object under investigation in this thesis. The activity of parameter
substitution has received considerable attention in many contexts, the lambda
calculus being one example. OQur motivation for studying this phenomenon is
to understand the semantics of parameter evaluaiion in the context of

programining languages. To clarify our punt of view, consider these

observations.

In ALGOL there are two methods of parameter evaluation defined for
the language: call by value and call by name*. Call by value is a natural,
uncomplicated and quite efficient method of evaluating paramelers. 1t is also
most familiar to us. In contrast, call by name is subtle, generally inefficient
and extremely complex to implement. But that’s not all. The presence of
call by name among the repertoire of facilities in the language pervades the
entire implementation of an ALGOL compiler. Many semantic issues, which
would be easy to implement without call by name, have added complexity.

For example, the "r'in-time" stack discipline would be far simpler were it not

* The term call by name has been applied to quite a few dilferent
parameter passing devices in the litecature. Our understanding of this term
is consistent with that given by Ekman and Froberg [5] See also 2.1.5 for
a definition.




for call by name. Optimizations such as common subexpression elimination

would be considerably easier since the “"order of evaluation" rules could be

by-passed more easily. These are just two examples; a compiler writar

could, no doubt, find a dozen.

Since /\LGOL aiready has call by value, the question which one asks is
"Does call by name provide any ‘extra’ facility in return for the added
expense and complexity? Of course, the question must be suitably formalized
(and will be) to be answered, but one’s intuitive feeling is to give an
unqualified "yes" It s, indeed, powerful, convenient and flexible.
Furthermore, one feels that the apparent advantage derives from the
evaluation postponement which may avoid initiating potentially divergent
computatiors. Call by name will be shown to be "more powerful” than call

by value, but not because it postpones evaluation!

Call by name and call by value are not, however, the only methods by
which  functional parameters are bourd to their formal representatives.
Hence, our task will be more general than suggested above. We shall make
a comparative analysis of several well known parameter evaluation
mechanisms. In Chapters 2 and 3 we will study five generic parameter
passing mechanisms and the results will provide one measure of how

substantive the apparent differences really are among such mechanisms.

The comparative analysis will also suggest which components of a

parameter binding mechanism are fundamental. This insight will then be used




Even the consequenses of some simple
changes in definitions will become predictable. More importantly, it will
; suggest different ways in which parameter evaluation might be generalized.
A generalization will be chosen and the consequences will be explored.

g e e e R
3
| in Chapter 4 to formulate an abstract model of the parameter binding activity
as it is wused in contemporary programming languages. The model will
! provide a convenient method of specifying the salient features of a particular
; mechanism.  Such specification will expose the similarities and differences in
| the mechanisms discussed before. ]
Ti
;

Finally, this model of parameter evaluation, which enables its

decomposition into constituent parts, wil'! be used to study questions of
interest to a compiler writer. In particular, we recognize that parameter
evaluation provides several semantic facilities, for which the compiler writers
must generate code. In Chapter 5 we address the question of recognizing
when these particular facilities are used. The assumptions made by compiler
writers are made explicit and in this context we consider decidability
questions for s:mantic constituents of parameter binding. To the extent that

this is successful, the compiler writer can perforn. optimizations.

Chapter 6 discusses the overall utility of this type of analysis.

Cirections for further research will be suggested.
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1.2. Background.

This thesis has its origins in two areas: the art of compiler writing and
language design and the theory of program schemata. The former suggested
tne questions; the latter provided some answers. The literature on compiler
writing and language design is plentiful enough, but little of it is relevant
since it tends to deal with all features of a particular language rather thar a
particular feature of many languages as we intend to do. Hence, each
parameter evaluation mechanism is specifically referenced when it s
introduced. The reader may consult [13] for a description of several of
them, however. For compiler related issues, our vocabulary is basically
consistent with that used in Randell and Russell's book on ALGOL

implementation [19].

By comparison with programming languages the literature on program
schemata is less plentiful (although it is still substantial) Since we draw on
work by several investigators, we now present a brief introduction to the
relevant literature to enable the reader to understand the context in which

we work,

Although the interest in the last five years has become quite intense,
the earliest work is generally attributed to I lanov [11] in 19958 (see
Rutledge [21] for a translation and generalization.) lanov's model was that of

a simple flowchart language with one location. Many questions were

decidab'z since the model was equivalent to a finite automaton. The Russians




followed the path of adding limited generalizations and studying equivalence
preserving transformations. Ershov [6] provides a good review. Meanwhile,
Luckham and Park showzd in 1964 that the equivalence problem for
flowchart schemata (with two or more locations) was unsolvable. Subsequent
results by Paterson [17] and Luckham, Park and Paterson [14] showed that

weaker notions of equivalence are also undecidable.

The unsolvability results have led investigators to study program
schemata with restrictions. Among these are loop-free schemata, free
schemata (any path is an execution path) and liberal schemata (no expression
recomputation) [17]), monadic schemata (or2 place functions and predicates)
and independent location, monadic schemata [14) We will also find that
unsolvability prevents us from fully exoloring all of the questions of interest

to us and so we will adopt the free schemata restriction in our later work.

Recursive schemata have also received considerable study. These come
in several syntactic varieties, the most frequently used bhaving been
introduced by McCarthy [16]. Strong [22] has studied the translatability of
these recursive equations into flowchart schemata. Garland and Luckham
have considered a restricted version of this problem: tha translatability of

monadic recursion schemata.

Paterson and Hewitt [18] appear to have initiated a type of schematic
study which they termed ecomparative schematology. This study can be

defined as the comparison of classes of functional~ defined by different




classes of schemata. Typically, the two classes will be defined so that one
has an extra semantic facility available. Then any differences in the classes
of functionals defined are attributed to that construct. Other studies in
comparative schematology have been carried out by Hewitt [9), Constable #nd
Gries [4] (upon which much of this work is based), Brown [1), and Brown,

Gries and Szymanski [2].

The techniques of comparative schematology will be employed in what
follows. In addition, we will want to use results consistent with those of
other authors. Thus, we present in the next section some definitions and a

few pertainent results.

1.3. Definitions and Earlier Resuits.

The vehicle for our investigation of parameter evaluation mechanisms is
a class of recursive program schemata. Our definition is essentially that one
introduced by Constable and Gries [4] Other models of recursion might
have been used, but this seems a more reasonable model of languages such
as ALGOL and PL/l. We will add the apparently trivial generalization that
auxiliary functions (i.e. user defined functions) may appear as actual
parameters to auxiliary functions. As is shown later, this simple

generalization can have quite important consequences for certain parameter

evaluation strategies, without seriously perturbing this simple maodel.




This definition is to be a "complete" specification of recursive program
schemata without any specification as to the wa~ in which parameters are to
be evaluated. We will define separate classes for eich kind of evaluation by

augmenting this class with the required semantics.

Let V, F, P, L. and C be disjoint enumerable sets of symbois called
variable names, basic function names, basic predicate names, label identifiers

and auxiliary function names, respectively.

Definition 1.3.1: Define the productions* of the grammar G with sentence

symbg' <rec program> to be:

<rec program> = <program>{<function def>}
<program> n= <V - list> : <body>

(x) <function def> = <aux function>[<V - list>] : <body>
<body> e <S - list>; [<label>:) halt(<variable>)
<S - list> e [<label>:]<5> {; [<label>:}<S>}
<V - list> ne (<variable> {, <variable>})
<S> = "empty"

| <variable> « <term>
| if <predicate>[<V - list>]

¥ n [<label>:)<S>  else [<label>:]<S>
| halt(<variable>) | goto <label>

| begin <S - list> end

* Here we use extended BNF notation where {t} and [t] mean "zero or more
occurrences of t" and "zero or one occurrence of t," respectively.




<variable>
| <basic function>[<V - list>]
(%) | <aux function>[<T - list>]
<T - list> B} (<term> {,<term>})
where:
<variable> ¢ V
<basic function> ¢ ¥
<predicate> ¢ P
<label> ¢ L
<aux function> ¢ G
The grammar G will define the admissable syntactic form of our schemata.
The notation Rf, Rp and RG will be used to denote rank (number of

parameters) of elements f ¢ F, p ¢ P and G ¢ G, respectively.

Definition 132: A schema S in the class B of basic recursive program

schemata is a terminal string in the language L(G) such that the following
semantic restrictions apply:
(i) The wvariables in <V - list> preceding <body> for both <program>
and <function def> must all be different elements of V.
(i) The <aux function> names for any <function def> must all be
different elements of G and they must all be defined.
(ii) The significance of <label>s and <variable>s of any <body> is
restricted in scope to that <body> and

(a) all statement <label>s within a <body> must be different




elements of [, and each L in goto L must be defined in that
<body>,
(b) all <variable>s used in a <body> which are not in the <V -
list> preceding that <hody> are called locals and are initialized
to undefined (N) prior to executing the <body>.
(iv) The arguments to bacic function names and predicate names are
evaluated sequentially, left to right.
(v) Tha result of any <body> is the value of the argument variable

to the first halt statement encountered.

Our conventions for symbols throughout the thesis will be as follows:

variables names V= {uvwxyzupv wy, .}
basic function names F={tff, ...}

basic predicate names P={ppupy ...}

label identifiers L={LLty ...}

auxiliary function names C={GG,Gy . ..}

In later constructions we will use names not appearing in the above lists but
which have been chosen for their special semantic content. The type of

objects which the symbols denote should be clear from context, however.

Example:
(x): z « G(x); halt(z)
G(y): if p)(y) then w « f;

eise begin
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z « Glf3(y))
w « f5(y,2) end

halt(w)

A sample schema, S, in the class B of basic recursive program schemata.
One auxiliary function (G) is defined, three basic function names (f1f2f3)

and the basic predicate name (py) have been used.

As an example of adding a parameter evaluation mechanism to the
basic class, we give the definition of the class Pg of recursive program

schemata presented by Constable and Gries.

Definition 1.33: [4] A schema S in the class Pp of recursive program
schemata (with call by value) is a terminal string in the grammar formed by
replacing the production labeled (*#) in the grammar G given above with

| <aux function>[<V - list>].
Actual parameter variables (the only kind of actuals in this class) have their

values assigned to formal parameters prior to execution of the function and

the formals are then treated just as locals.

The schema cannot be meaningful until a domain, D, has been specified.
The domain is the class of objects which are maﬁipulated by the schema, e.g.
D ={0,1,2, . . .} or D = {strings over a finite alphabet}. Given D, the (total)
basic functions and (total) basic predicates may be chosen from the classes

F(D) = {f,:DRf 5 D} and P(D) = {Pn:DRP 5 {true,false}}, respectively. Finally, the
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input  variables are chosen from the domain and the schema may be
“evaluated" with this interpretation. The way in which the evaluation takes
place should be cleir, since the constructs have their obvious meaning

consistent with the comments in the preceding paragraph,

Example: Two interpretations for the schema S in the above example.

1) D;={0,1,2,...} (2 D, = {LISP lists}
=1 fy = NIL
fy = Ax,y[x % y] fa = Ax,y[cons(car(x),y)]
f3= Ax[x - 1] f3 = Ax[cdr(x)]
Py = Mx[x = 0] Py = Ax[x = NIL]

The schema S[f;ft3,p)(x) instantiated according to (1) defines x!

over D; and instantiated according to (2) defines renerse(x) over D,.

Evidently, a schema S with r basic function names, s basic predicate

names, and t input variables and a domain D define a mapping
S:k(D) x P(D)® > [Dt 5 D)

of basic functions and predicates into the class of functions from t-tuples of
domlain values to domain values. These mappings are called functionals over
D. The set of all functionals over D computable by schemata in the class B
is denoted FUNC(BD). The use of functionals allows a comparison of
schemata classes with differing data and control structures. Two other

classes of interest will be defined below. Our comparison of classes of

schemata requires the following definition.
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Definition 1.3.4: [4) Two schemata $; and S; with r basic function names,
fy, . . ofr s basic predicate names Py - - Pg and t input variable names
Vi o o Vy are equivalent over D if and only if
Sulfy - v ofepy o P vy, L L vy
=Slfy, - WfeP - apglvy, aVy)
for all values of v, in D. Two schemata are equivalent if and only if they
are equivalent for all D. Thus, they are equivalent if they compute the same

functionals over all D.

Definition 1.35: [4] Two classes of schemata C, and C, are related by
Cy < Gy if for every schema S; ¢ C; there exists a schema S; € C, such that
Sy is equivalent to S, C; = C, if and only if C; < C, and C, < Cy, ice.

FUNC(Cy,D) = FUNC(C,D). Cy < Cyif and only if C, < Cy, and not C, < C;.

In order that we may integrate our results with those which have
preceded ours, we now precent definitions for two nonrecursive classes. The
class, P, of flowchart schemata has been extensively studied (see 1.2). Array
schemata were intraduced by Constable and Gries [4] It will be convenient

to refer to both classes in our subsequent work.

Definition 1.3.6: The schema S in the class P of simple flowchart schemata is
a terminal string in the grammar formed by deleting the two productions

marked () and (x%) from grammar G.

Definition 1.3.7: [4) The class Py of program schemata augmented with arrays
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is the class P with the additional productions:

<S> u= vellvew+]

<term> = Alv]
and a one dimensiona' array A of simple variables Ay, Ay, ... . To allow
subscripting, a subscript set N = {0,1,2, ... } is provided which is disjoint
from the domain D. Any simple (or array) variable may take values in
D UN. The term A[v] refers to A, if the value of v ¢ N and Ay otherwise.
If the value of some variable v is in N and v is used as an argument to a
basic function, basic predicate or to a hait statement the value N is used
instead. The remainder of the semant'-s should be obvious and the reader
may consult [4] for further details and a discussion of how reasonable a

model this is of array languages.

Assertion 1.3.8: [4] P < Py <Py

Assertion 1.3.9: [4] Py is "universal” for total interpretations.

The notion of universal means intuitively that the class computes all the
functionals computable in an eftective way. In {4] Constable and Gries show
several classes which are equivalent to Py 1epresenting several kinds of
semantic facilities. Brown [1] and Brown, Gries and Szymanski [2] have
found others. An interesting feature is that allhough there are a number of
universal classes, Pgq cannot be constructively equivalent to most of those

investigated thus far. We shall have more to say about this in Chapters 3

and 4. The interested reader should consult [4] for a discussion of
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universality.

Assertion 1.3.10: [14] For a schema $ ¢ P, it is not partially decidable

whether S diverges under all interpretations.

This completes the definitions and resul's required to properly present
our results and correlate them with that which has gone on before. In what
follows, we adont the usual procedure of "proving" our results by presenting
a consiruction to justify our claims. The constructions are gcrerally

sufficiently simple so that we may avoid the tedium of proors by induction

on state transitions and similar proof methods.

T
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2. The Weaker Parameter Evaluation Mechanisms.

2.1. Definitions.

In this section we employ the class of basic recursive prograr
schemata (see 1.3) to define several classes of schemata which employ
differing parameter passing mechansims. One can consider quite a few
different ways in which formals and actuals could be made to correspond,
but our intention is to study those mechanisms which are actually in use or
which contribute to our understanding of the subtleties of other mechanisms.
Hence our attention will initially focus on five methods:

call by value (e.g. ALGOL)

call by copy (e.g. WATFOR)

call by reference (e.g. certain versions of FORTRAN)

"normal” evaluation (see below)

call by name (e.g. ALGOL)
When these have been fully explored, we will direct our study towards
variations. First we discuss what facilities are provided by these generic

mechanisms.

The formal notations available to us for specifying semantic notions
either omit or obscure the detail which we wish to present in the following
definitions of parameter evaluation. Therefore we are left to describe these
concepts in English. To make this task easier, let us define formal parameter

as a parameter in the formal specification of an auxiliary function. An actual
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paraimeter is a parameter which is used in a function call. In example 2.1.3,
x is an actual and y is a formal. Note that within the function definition

formals may, in turn, be used as actuals.

The five types of recursive program schemata which we will consider
vary only in the semantics of the parameter passing and formal variable
reference. These differencr:s manifest themselves at three different points in
the “interpreter":

(i) auxiliary function initiation - operations performed before

execution of the <body> of the function begins.

(i) interpretation of formal parameters - method by which the value

of the formal, referenced in the text, is found.

(iii) auxiliary function termination - operations per'ormed before

execution resumes at the point of the cail.
Thus the definitions given below will concentrate on the semantics at these
three points. Regardless of the kind of parameter evaluation, auxiliary
function initiation (i) includes the initialization of the local variables to
undefined (N) and auxiliary function termination (iii) includes returning the
value of the argument of the halt as value of the function. When auxiliary
function termination only involves returning the {unction value, It is elided in

the following definitions.

Definition 2.1.1: A schema in the class Pg, 0 recursive program

schemata with call by wvalue parameter evaluation is a basic recursive
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prograr: schema such that in the interpretation:
(i) auxiliary function initiation: the a-tual parameters are evaluatzd
sequentially, left to right. The formals are then initialized to the
value of their corresponding actuals.

() interpretation of formal parameters: the same interpretation as

that of local variables.

Definition 2.1.2: A schema in the class Pg. of recursive program
schemata with call by copy parameter evaluation is a basic recursive program
schema such that in the interpretation:

(i) auxiliary function initiation: as in 2.1.1(i).

(i) interpretation of formal parameters: as in 2.1.1i).

(i)  auxiliary function termination: the value of each formal
parameter is copied into its corresponding actual parameter if and
only if the actual is a simple wvariable. Copying proceeds

sequentially, left to right.

Example 2.1.3:
(x): w « G(x); halt(x)
G(y): y « f,(y); hait(y)
A sample schema S. The functionals definec are as follows: if S ¢ Pg, then

S[f Xx) = x and if St Pg, then S[f;¥x) = ,(x).

Thus call by copy allows computations from a called function to be

returned to the calling environment by way of parameters as well as the




normal value returning mechanism of the recursive function. Such a facility
is often convenient but there is an alternative way of realizing a similar

effect a: we now see.

Nex: we Introduce call by reference parameter evaluation. Call by
reference is a natural method of passing parameters for computers since the
reference to a value is merely its "memory address." Although memory
addresses have not been introduced, they need not be since we can achieve
the same effect by admitting variable names (elements of V) as values.
Thus, if x is a formal in a schema with call by reference then its value will
be a name, say y, out of V. We wili call y the reference value of the

formal x. If the value of y is a value from the domain, say d, then we say

'he cocrced value of the formal x is d. If the value of y is a reference

value, then the coerced value of x is, inductively, the coerced value of y.

Definition 2.1.4: A schema in the class Pg. of recursive program schemata
with call by reference parameter evaluation is a basic recursive program
schema such that in the interpretation:
(i) auxiliary function initiation: if for any formal x the corresponding
actual is a function call (basic or auxiliary) then a surrogate
variable w ¢ V is chosen which does not appear elsewhere in the
schema,
The formals are assigned values, proceeding sequeriially left to

right, as follows. Let x be a formal, then assign to x:




(a) the name of the surrogate variable if the corresponding
actual is a function call, (ie. x has reference value w.) The
function is evaluated and the value is assigned to the
surrogate w.

(b) the name of the corresponding actual if the actual is a
simple variable but not a formal.

(c) the reference value of the corresponding actual if it s

itself a formal. 1

Note that in (c) the formal is assigned the reference value of its

correspondent and so, there can be a* most one level of
indirection, (i.e. no formal can have a reference value which is
itselt a reference value.) This is equivalent to an arbitrarily long
chain of rererences (see 4.]) but it simplifies our constructions.
(it) interpretation of formal parameters:
(a) if the formal x is not on the left hand side of an
assignment then the value is the coerced value of x.
l (b) if the formal x is on the left hand side of an
assignment, then the assignment is to the reference value of
x, (i.e. the coerced value of x ic changed, not its reference

value.)

l Call by copy and call by reference are frequently thought to be two
methods of realizing the same facility, namely, returning information by way

of the parameters. The following example indicates that these are not




necessarily the identical for all schemata.

Example 2.1.5:

(x): u & G(x,x); halt(x)

Gly,2):  y « fyly) z « f,(2); halt(y)
A sample schema S such that the functionals computed by call by copy and
call by reference are as follows: if § «¢ Pre» then S[fiXx) = fi(x) and if

S ¢ Pge, then S[f,Xx) = f,(f,(x).

In Manna, Ness and Vuillemin [15] a parameter evaluation mechanism,
the “normal” evaluation rule, is introduced. It is shown that call by value is
strictly "weaker" than “"normal" evaluation by showing that the former is not
a "fixed point" rule and the latter is. These results are shown for
recursive equations and there can be no possible side effects. Although
their model is somewhat different from ours (see 2.3), the following should
be a faithful rendering of the intent of their definition. The relationship of

our results to theirs will be discussed later.

Definition 2.1.6: A schema in the class Prn Of recursive program schemata
with normal parameier evaluation is a basic recursive program schema such
that in the interpretation:

(1) auxiliary function initiation: no evaluation is performed.

(i) interpretation of formal parameters: when a formal parameter is

encountered for the first time in this  environment the

corresponding actual is evaluated and the value assigned to this




formal. It used for this and all subsequent formal references in
this environment as though it was a local.
Clearly, with Pg, parameter evaluation may be postponed or even avoided
entirely. This has no effect in the case where parameters are simple
variables or basic functions with non-formal parameters. But if an actual is

an auxiliary function, it may be partial and hence postponement appears to

offer an advantage over, say, call by reference.

Example 2.1.7:
(x): u &« Gy(x,Gy(x)); halt(u)
Gyly,z):  haltly)
Go{w):  w « Gy(w); halt(w)
A sampie schema S such that, if S ¢ Pp. then S[}x) = undefined and if

S ¢ Pg, then S[}x) = x.

Next we introduce the ALGOL call by name parameter evaluation

mechanism,  Although it postpones evaluation just as normal evaluation does,

it differs in a very important way. Each time an occurrence of a formal is

encountered, it requires a separate evaluation. Thus the side effects of

one evaluation may influence the resulls of a subsequent evaiuation,
Definition 2.1.8: A schema in the class Py of recursive program schemata

with call by name parameter evaluation* is a basic recursive program

t Call by name is sometimes referred to as “Jensen’s device" after Jgrn
Jensen, hence the class name Pg;




schema such that in the interpretation:

(i) auxiliary function initiation: no evaluation is performed.

(ii) interpretation of formals:

(a) if the formal is not the left hand side of an assignment

then the corresponding actual is evaluated in the environment

of the call. The resulting value is the value of the formal

for this evaluation of this occurrence only.

(b) if the formal is the left hand side of an assignment then

if the corresponding actual is a simple non-formal variable

then it receives the value of the assignment. If the actual is

a function call, then the entire assignment  statement s

ignored. [f the corresponding actual is itself a formal this

process is applied recursively with this formal as the left

hand side.

Clearly, in evaluating a formal the actual corresponding to it may be a

formal in the calling environment and thus one must return to earlier and

earlier calling envircnments as long as the corresponding actual continues to

be itself a formal. Note that in 2.1.8(ii)b, there are some consequences to

our decision to ignore the entire assignment statement if the actual is not a

simple variable but the corresponding formal is used on the left hand side of

an assignment statement.

In particular, one might consider evaluating both

sides of the assignment statement and then disregaruing the values. This

e

would allow more "side effects" but would it actually enlarge the class of




23

s

functionals defined? It does not, but we postpone the proof until section 3.1.

Example 2.1.9:

" S R

(x): u « Gy(x,Go(x)); halk(u)
Gyly ny2) w « talyayay ) hattiw)
Gylw):  w « fi{w); halt(w)
A sample schema S such that, it S ¢ Pg, then S[t;fo}x) = fy(fjix)f(x)x) and

it S ¢ Py, then S[fyf2Jx) = fx(h 0 H N (F (D).

To emphasize the differences between tne parameter evaluation
mechanisms just defined, wr present a schema from L(G) together with the

results of interpreting it as an element of each of the five different classes.

Example 2.1.10:
(u): v « Glu,u,f(u)); halt(u)

Gix,y,2): x « fix)

y « hily)

y « fily,2);

halt(x)

(Note that the value of the schema is the actual parameter u.)

Class Schema Result
Pry u
Pre f4(f5(u),fy(u))
Pr- fo{fa(f(ud)f (u))

PRn u




Pg; Falta(f 20U f 1 (f5(f (D))

In 1.3 we commented that allowing function as actuals would not change the
results given earlier. This is immediate when one observes that for any

schema S ¢ Pp, an equivalent schema in Pr can be constructed by merely

expanding each call of the form
u « Gl<term>),<term>,,..,<term>p;)
to be
begin wy € <term>;
wy « <term>,
;
Wpg « <term>pg;
u « Glw),wy,.,.Wpg)  end
where each w; is a new variable. Thus our class of recursive schemata with

call by value is equivalent to the one introduced by Constable and Gries.

We refer to this technique as coercing actuals,

2.2. The Classes PPp., Py, and Py,

The examples of the last section illustrated that there is considerable
diversity among the various parameter evaluation mechanisms. The
differences are reflected in the convenience with which one writes programs,

efficency of execution, the strategy of implementation of recursive execution

and the ease with which one verifies that a program is correct. Our




interest in this section is in whether or not the differences are reflected in
"what can be computed." We might expect that the facility of returning
parametric values and the facility of evaluation postponement would both
provide a cumputational advantage. We shall discover, however, that call by
value, call by copy, call by reference and, surprisingly, normal evaluation are
all equivalent in the sense that their respective functional classes are
equivalent. In addition, we shall show that global variables and markers do

not enhance the computing "power" of trese classes of functionals.

Theorem 2.2.1: Pg,, = Pp.

Proof: Using the construction described at the end of the previous section,
all actuals of a schema S ¢ PR, may be shielded from updating. The
resulting schema may then be interpreted in P, yielding Pg, < Pg.. To see
that Pp, < P, all that is required is lo show that the actuals may be

updated. Clearly, if all actuals are functions, they are already treated

properly. For each auxiliary function call containing any simple variables

v & G(VI’VZ""'VRG)
substitute
beﬁi" wp ¢ Gl("lw-:VRG)?
Wrg « CglVin-sVRg);
v & Glvy,.,\vpeh

Vi L ad Wl;
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-y
VRe € Wre .ﬂd;
where:

w; are new simple variables

G; are new functions identical to G except that each halt statement
has the ith formal as argument.
Note that the case where the function is an actual (rather than a right hand

side of an assignment) is handled by appiying the procedure recursively.

q.e.d.

Call by copy and call by reference are frequently thought to be two
different ways of achieving the same effect. However, the previous examples
show that there is a schema on which these two mechanisms differ. Call by
reference formals refer indirectly to the sole instance of the actual while call
by copy formals use a duplicate of the actual and update it at function
termination. These two mechanisms are identical as long as different formals
correspond to different actuals, since the reference discipline guarentees
access of the single most recently assigned value corresponding to the actual.
In the example 2.1.10 there were two separate values (corresponding to the

two instances of u) and hence the difference. Thus, we need only handle

this case to establish equivalence.

Theorem 2.2.2: Pp, = By,

Proof: From the preceding remarks we need only consider the case of




multiple instances of a variable actual in a single call. Suppose that some

call

e G(\/l,...,VRG) e -

occurs in a statement in schema S and that parameter positions i), . . 4k are

the same simple variable v.

(i) S € Pge. To construct an §' ¢ Py, change each such call to
begin W € v;
.
W, v
G(V W ,W Wi VRE)
Vi ¢ w, end
where the w’s are new variables. Clearly, if G is an actual to a
function with some of the same multiply sccurring actuals, G will
have to be evaluated, assigned to a new variable and that variable
used as the actual.
(i) S ¢ Pp.. To construct an S’ ¢ P, change each call to
Gi, x(Viaveg) - . .

where G‘Mk is a new procedure modified so that any assignments

to the formals Uplp . . Uy corresponding to v, say,

u « <term>
are modified to read

begin u; &« <term>

u; & Uj;




U < u; end
If in the body of G these formals are also actuals to some auxiliary
function call then use cnly one of the formels in all positions and
follow the call with the required updating of the other formals.

Obviously, this last requirement may introduce some new function

calls with multiply occurring actuals. But, if k is the number of

auxiliary functions in S and n is the maximum number of parameters
to any of these then there can be at most k(2"-n) ways of having
multiply occurring instances of a single variable and hence new
functions introduced.  This assures that there are only a finite
number of different kinds of calls and the construction reduces this
number by one with each application. Clearly, if there are multiple
occurring instances of several variables in a call, then the above
procedures may be applied iteratively, since each application
removes multiple instances of a variable without introducing new

ones. q.e.d.

In [2] global variables were introduced by modifying the definition of
<function def> as given in 1.3. as follows:
<function def> u:=
<aux function>[<V -list>]: global <variable>{,<variable>};<body>
If variables wj,.,w, follow global then they reier to variables in the main

<body> with the same names and cannot occur in the formal parameter list.
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The wy,..,w, are not initialized. A class P, augmented with global variables is
denoted by PRug: It was shown in [2] that global variables do not enlarge
the class of functionals definable by Pg. This is also true of the other four
classes. One can readily see that if {wy,.,w,} is the set of variables
occurring in any global specification then ttese may be passed around as
parameters to all functions using any of the parameter mechanisms, copy,
reference or name. Renaming of local variables may be required in the case
where a name is used as a local in one function and specified as global in
another. Since each mechanism is capable of returning parametric values to
the earlier environment, the result is assured. For Py, the problem of
returning values to an earlier environment may be solved by using the

construction of 2.2.1 and the relevant renaming. From these comments we

have,

Theorem 2.23: Augmenting the classes Py, Pg., Pgn and Pg; with global
variables does not enlarge the class of functionals computed over the

corresponding unaugmented class.

Although adding global variables does not enlarge the classes defined
by the various parameter mechanisms, globals are extremely useful in
reducing the complexity of our constructions. We will use them extensively,
but our usage may, at times, become a bit imprecise in that we may use

globals without actually mentioning that the class under consideration has

been augmented with them. To be completely precise we should also prove
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that a class which has been augmented with markers (introduced below) is
equivalent to a class augmented with markers and globals. This should be

obvious and we use this result without further justification.

Schemata are commonly augmented with a finite set of markers so as
to provide testing facilities which are not dependent upon the interpretation.
Given the class M = {M;M,,..} of distinguishable markers the following two
statement forms may be added to the definition of <rec program> given in
1.3. to provide markers for recursive program schemata:

<S> = <variable> ¢« m
| if <variable> = m then [<label>:]<S> else [<label>:]<S>
where m denotes some marker in M. The marker values are independent of
interpretation and their semantics should be clear. We adopt the convention
that it a marker is passed as an argument to a basic function or predicate
or to a main <body> halt statement, then 0 will be used A class Pg,

augmented with markers is denoted by Pg.y.

In [2] markers were shown to add no power to Pp ie. Pg, = Ppun
This result is shown by using the locator methods introduced in [4) The
same situation arises with Pp.y and Pg.y, but we need not introduce locators

since we can reduce these problems to the result Pg, = Ppn.

Theoremn 2.2.8: P, = Ppey Pre = Pgen

Proof: 1t is immediate that the constructions given earlier in this section
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apply without modification to Py and Ppy. Thus for any schema in either of

these two classes we can construct one equivalent to it in Pg.y. qe.d.

The technique to be used when showing that normal evaluation is
equivalent to call by reference is to effectively implement the definition of
normal evaluation in a call by reference schema. The normal evaluation
strategy postpones evaluation of actuals until the formals are required. A
call by reference evaluation strategy can be made to correspond if one
establishes a communication mechanism between the calling environment and
the called function in such a way that the called function can request the
evaluation of parameters. In particular, the calling environment passes none
of the actual parameters initially, only indicators that none have been passed.
When the called function requires a parameter it tests to see if the
parameter was passed. If it was, the value is used If not, a request
indicator is set and the called function halts. This indicates to the caller
which parameter is required. 1t is evaluated and the function called again
with  this evaluated parameter as an argument. Finally, the calling
environmen! _ontinues calling the function as long as it receives requests for
parameters. If a call ever returns with no request for parameters, the result

has been computed.
Theorem 2.25: Py, = Ppopy.

Proof: (Pg, < ppen) Let S; € Pg, be a completely labeled schema and let n be

the maximum number of parameters to any auxiliary function defined in S;.
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Define for each <body> 4n variables which do not occur elsewhere in the

<body>:
Sigy .+ . Sip, called the saved indicators
SV « . SV, called the saved values
Cigy .« .+ Cip called the calling indicators
CVY, + . CV, called the calling values

Define S, from the following procedure. For the ith auxiliary function call in
the <body> of the form:
Lit « G(<term>;, . . ., <term>gg)

substitute the statement,

L: begin
siy « 5 .. .sSigg ~ 0
svie ) .. 5svpg € )
ciy # ) .. jcigg « 0
Litevy € svyy . . . CVRg + SVRes
t e G'cigevy, . . .CiggCVpgh

if cij = si; then begin sij « M; sv, « <term>,; goto L, end

else if ci; * si; then begin si, « M; sv, « <term>,; goto L; end

else it cipg * sipg then begin sigg « M; svpg « <term>gpg; goto L, end
else;

end

where: L, is a label not used elsewhere in the <body>
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Mis a marker from M and
G"is a new function corresponding to G defined below.

When every accurrence of an auxiliary function assignment has been replaced

with the above statement, eliminate all instances of
it ci; = si; then <S>, else <S>,
by replacing them with
if ci, = M then
it si; = M then <S>,
else <S>,
else
if si, = M then <S>
else <S>,
which will restore the schema to legal syntactic form for Pren.  Next, for
each auxiliary function definition,
Gluy,up, . . .uggli<body>
such that every statement
L: <S> of the <body> where S is
(i) an it statement
(i) an assignment statement such that
(a) there is an occurrence of a farmal on the left hand side
(b) there is an occurrence of a formal as a “first level" actual, ie.

u; is not an actual to an actual.

such that S has as its first occurrence of a formal reference (searching left




to right) the formal u, then the <body> of G is defined by replacing all

inctances of such statements by
L: if ui, = M then <S>

else begin ui; « M; halt(n) end
where <S> is <S> with all instances of u; replaced by uv; Clearly, this last
construction is applied iteratively to formals of G as long as formal
references remain in <S>, The <body> just defined is prefixed with

Gluiguvy, . . uigguveg):
where the ui; and uv, are new variables not occurring elsewhere in the
schema S;. The resulting schema, S, is obviously in Paern and as we now
show, equivalent to S,.
First observe that for every statement in S; there is a corresponding (but
more complicated) statement in S, Let Lyly, . .. be the sequence of labels
describing the behavior of S;, in some interpretation, then S, describes the
same behavior in that interpretation until a formal u, of a function G (called
at the r'h statement) is referenced at the sth statement of S,. At this point,

Sl = Svy =iy = cvy = Uiy = uv, = ().
Since evaluation proceeds left to right, u, must be the leftmost formal
occurring in the statement of S,. Thus, the corresponding statement of Ss
tests ui,, finds it has value ), assigns it a marker value and halts. In the
calling <body>, the calling indicator ci, = M and the saved indicator siy, = 0.
Thus si, = ciy, which causes the saved indicator si, to be marked and the

saved value sv, to be assigned the value of <term>,. Meanwhile, the
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interpreter for S; has discovered that u, has not been referenced before,
returns to the calling environment, evaluates the corresponding actual
(<term>,), assigns it to u,. At this point, 5, and S, have realized the same
semantics. However, S; now begins executing G’ all over again which implies
that the statements with indices r to s will be repeated. When the
reference to the formal uv, 1s encountered again at statement 2s - r, ui, =
ciy, = M holds, the test will pass and <$> will be executed. At this point S,
and S, are in register again and execution proceeds in parallel until the next
reference. Tha induction may be caii.2d out in a straight forward manner
for which the following facts are useful:
(a) Once a varizble is assigned a marker, that name is never changed
back to 0 until after a call has been completed and the next one is
about to start. Thus, there can not be a repeated evaluation of an
actual.
(b) For each repeated call to G, the parameters are always initialized to
values of the evaluated actuals and so the behavior of G must be
identical up to the reference of the most recently evaluated formal.
The reader can fill in the details of the induction.
(Prent € PRn) The techniques required to show that Pg.y < Pg, have already
been used in earlier proofs, namely, eliminating markers (Theorem 2.2.4) and
restoring parameters using repeated calls (Theorem 2.2.1.). These together

with coercing all formals at the heginning of the execution of a auxiliary

function body, are sufficient to yield the result and the details are left to




the reader. q.e.d.

The above construction separates the use of the markers from the
domain objects sufficiently well so that were the data objects to include

markers, the construction would still be correct. Thus we have,

Theorem 2.2.6: Ppy = Py p.

Proof: Immediate.

Corollary 2.2.7: Pg, = Pgp.

2.3. Su;nmary and Discussion.

The results from the preceding sections may be summarized as follows:
The recursive procedure paramoter evaluation mechaniszis of call by
value, call by copy, call by reference and normal evaluation are
functionally equivalent in the sense defined above. Furthermore,
these parameter evaluation mechanisms are not Junctionally enhanced

by addition of global variables or by addition of a finite set of

markers.

Parameter evaluation postponement cannot be presented as an

explanation of the apparent difference between call by value and call by
name. The normal evaluation strategy provides this delaying feature, but no
more functionals are computed. In the next chapter call by name will be

treated in depth ard its other property, multiple evaluation, will be seen to



be advantageous.

The results of this chapter have all been constructive and so we can

ask how practical are the constructions? For example, is it reasonable to

consider a direct translation between programs in a language with parameter
evaluation of type x into a base language with parameter evaluation of type
y? (By direct translation, we mean mapping parameter evaluation into the
base language structure without resorting to the use of other data structures
to form a new "run time environment.") This would not be prudent since the
efficency degrades considerably in our constructions between Pg, and Pg. and
between Pgp. and P, as well as for some cases involving global variables.
However, there might be more efficient constructions, though we conjecture
that they wont be much better. Of course, we are irterested in how much
one can compute and not in how long it takes. But the proofs do sugges!
that although these parameter evaluation mechanisms are indistinguishable
based on the funcionals they compute, there may be complexity arguments

which can provide a distinction.

In the comments preceding definiton 2.1.6, it was observed that call by
value had been shown to be "weaker" than the normal evaluation mechanism.
This appears to contradict our results showing that these two classes are

equivalent. lowever, there is no contradiction when we understand what the

results actually exhibit.
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In [3] it is reported that for a continuous functional T, the computed
tunction F_ using the substitution rule C is no more defined than the least
tixed point of 1. The normal rule computes the least fixed point of T, but
call by value (the left-most inner-most rule) computes a function strictly less
defined than the least fixed point of T [15] Presented according to our
development, a sample functional which is less defined than the least fixed
point would be given by:

(x,y): 2 « F(x,y); halt(z)

Fluv)iifu =0 thenw « | else w « F(u - 1,F(u - v,v));

halt(w)
This instantiated schema, when x = 1 and y = 0, is undefined if interpreted

as a call by value schema while the least fixed point function of these two

arguments is 1,

The difficulty, of course, is that call by value "gets stuck" evaluating
Flu - v,v) when the value is not required for the computation. The normal
evaluation mechanism avoids this difficulty. Hence, the sense in which call by
value is ‘“"weaker" is that when both methods are applied to the same
schema, call by value may diverge evaluating unused parameters while the
normal rule will not. Clearly, call by copy and call by reference are
"weaker" in the same sense, sirce they would diverge on this same schema.
But our results indicate that the classes of functionals defined are the same

tor both mechanisms. Hence, there exists a functional which, when

interpreted as call by value, avoids these unnecessary parameter evaluations.
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Furthermore, we can construct such a schema.

An interesting point to note is that our constructions, as presented,
have the property that for a schema S ¢ Prn the constructed schema S* ¢ Pg,
is such that Val [S1] = Val [S]] for all | where Val[S,1] is the value of the
schema S in interp etation | with parameter evaluation method x. This

suggests that if our results were suitably reformulated, call by value would

be a fixed point rule for the translated schemata.




3. Call by Name.
3.1. The Class Py,

Having learned that the classes of functionals defined by recursion with
call by wvalue, call by copy, call by reference and the normal evaluation
mechanism are all equivalent, we now consider the class of schemata
employing call by name, Pr; Although one’s intuitive feeling is that call by
name provides more facility than the mechanisms considered earlier, the proof
methods of the last chapter indicate that apparently substantial differences in
evaluation strategies can be absorbed into program structure. In this section
our intuition will be verified as we show that recursion with call by name

defines a larger class of functionals than the other mechanisms do.

To understand the significance of this result, we must realize that in
{18] and [4], (call by value) recursion has bzen shown to be weaker than
other programming mechanisms: (call by value) recursicn with nondeterministic
control and Py, respectively. The conclusion was that recursion is weaker
than these other facilities. But one functional which (call by value) recursion
cannot compute will be shown (see 3.2.1) to be compu‘able by recursion with
call by name. Therefore, the weakness described in [18] and [4] of (call by
value) recursive functions is not due to limitations of the basic recursive

mechanism, but rather it is due tc the way in which parameters are

evaluated.
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Knowing that Pr; is stronger than the classes considered before, it is
natural to ask how much stronger it is. In particular, in [4] it is shown that
the above mentioned classes are universal, (see 1.3 for a discussion of the
notion of universal) In the next section we show that Pg; augmented with a
single marker, pRm» is universal. However, unlike the weaker mechanisms
where markers can be effectively eliminated, we show that there can be no
effective way to eliminate the marker of Prpm schemata to realize schemata in
Prj  This does not imply that Pp; is not universal, since (as Constable and
Gries show) nonconstructive means may be used to show equivalence in this
circumstance. However, whether Pgj is univeizal or not is still open and the

last section discusses the difficulties of answering this question.

Recall that when the definition of the call by name class was given in
2.1.8, we commented that we could justify our decision to ignore the entire
statement when an erroneous left hand side was encountered. If the
semantics are prefered of evaluating both sides and then ignoring the results,
then replacz every assignment to a formal x:

x«G(...)
with the statement

begin wy « G( . . . )i w, « % x « w; end
where w; and w, are new variables. Clearly, the proper semantics are

realized.

On the other hand, if we had chosen the default to be the evaluation




the same semantics by constructing a new schema as follows. Begin with

of both sides instead of ignoring the whole statement, then we could realize l
the main <body> and for every function call l

G(<term>;, . . ,<term>pg)
where simple variables are in ‘he parameter positions iy + . 4K, substitute a
new call l
Gi,j, x(<term>, . . <term>p)
where Gi,j, x is a new auxiliary function such that all assignments to formals j
not in positions i,j, . . ,k are deleted. Using the fact that formals in
positions i,j, . . .,k correspond to identifiers, modify all calls in G,,,,m,k similarly.

Using reasoning analogous to that of 2.2.2, the construction must terminate

e B e

and the resulting schema must have the semantics of ignoring any statement
in which an assignment is made to an illegal left hand side. Hence, it makes

no difference which interpretation we employ.

3.2. The Strength of Py,

To show that call by name is stronger than the mechanisms discussed
previously, we will exhibit a functional which can be defined by a Py schema
but for which there exists no schema in, say, Pp, capable of specifying that

functional. The functional was first describe¢ by Paterson and Hewitt [18])

and has since become known as the ‘leaftest" functional [2] It can be

stated as follows:
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leaftest{p,r,|}x) = /u(x) if there exists u ¢ {r|}*
such that p(u(x)) & true.
diverge otherwise.

where r and | are basic functions and p is a basic predicate.

In words, leaftest requires a search for a domain element satisfying some
predicate where the domain may be thought of as a binary tree. Hence, if
x is a domain element (node) then I{x) and r(x) are domain elements (leit

descendent and right descendent, respectively.)

In [18] it is shown that there is no schema in R (recursive equations,
a la LISP) which can implement this functional. The reader should consult
the proof in [18] for all of the details, but, intuitively, the "failure” of the
recursive equations is that they can scan only a bounded number of nodes
on any given ply and an interpretation may be found for which some nodes
do not get tested. This result is relevant, since in [4] it was shown that R

is equivalent to Pg,.

Theorem 3.2.1: P, < Py

Proof: That Pg; contains Pg, is immediate since all of the formals can be
coerced to locals at the beginning of each function in the schemata of Pg,.
These locals may then be used in lieu of the formals and the resulting
schemata, interpreted in Prj are in keeping with the definition of the call by

value evaluation mechanism.

It is now sufficient to give a schema S in Pg; which specifies the leaftest
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functional. The following is such a schema; it performs a left to right
breadth first search of the binary domain. Note that the function calls never
return unless a "true" node is found. The labels L1 through L4 are included
only to facilitate subsequent discussion.
(x): tail « N; u « leaftest(x,base); halt(u)
leaftest(node,head): global tail;
if p(node) then halt(node) else
begin
Li: tail « i(node);
L2: nextnode « head;
L3: tail « r(node);
L4: loc « head;
temp « leaftest(nextnode,queue(loc,head));

halt(temp) end

queue(loc,pred): temp « loc;
loc « pred;
halt(temp)
base: global tail;
halt(tail)

To understand the construction, we number the nodes of the binary domain

as follows:
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Itx@‘/ rxg er(G/ \rer)

The initial call provides the element x and the function base ~ actuals. The
reader can follow the execution of the base step. For the induction step,
consider the nth call (n - 15 recursive call) of leaftest. The formal node
will correspond to the nth node in the tree and head will correspond to n-1
nested calls of the function quene,
queuelloc,quenellocguenel . . (quenellochase)) . . . ).

If the nt node is not the node of interest (ie. p(node) = false) then the
variable tail is assigned the left descendent of the nth node in statement L1.
At L2 the mnemonic significance of the symbols becomes clear. The formal
head corresponding to the nested calls of queue is evaluaici In the
evaluation of the outer-most call of queue, the local is temporarily saved and
the next inner-most call of quewe is evaluated, etc.  Finally, base is
evaluated in the most deeply nested environment. hase returns the value of
tail to the most deeply nested instance of queue, which stores it and returns
its previously stored value, etc. Finally, the outer-most instance of queue
receives the value saved by the next outer-most instance of queue. queue

returns its stored value as the value of head which, a< we see momentarily,

is node n+l and it is assigned to the nextnode local of leaftest for testing
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on the subsequent call. Thus, our untested values are imbedded in the
parameters with a queue-like discipline.

In L3 the right descendent is prepared for substitution into the parameter
list and L4 makes the substitution and receives the head (node n+2 this time)
iIn the manner just described. This i1s saved in the local allocated in this
environment and the entire operation applied to the n+15! node. Evidently,
the descendents of every node tested are generated in the order of our

numbering (L1,L3), saved (L2,L4), and each call tests one saved node. g.ed.

Although the queue type mnemonics have been used only to aid our
exposition, the schema S nf 3.2.1 does exhibit the way in which queues may
be constructively imbedded into Pg, schemata  Brown (1] has studied
queue-like data structures and indepr ndently observed that a queue could
compute the leaftest functional. Of course, we are restricting our study to
parameter evaluation, but the following result is worth mentioning so as to

correlate our work with [1] The proof requires the methods just exhibited.

Assertion 3.2.2: The class Pr; computes all of the functionals computed by a
class P augmented with an arbitrary number of first-in first-out queues with

no "queue empty?” test available.

It is not known whether these two classes are equivalent.
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3.3. Universality of Pg .

The call by name parameter evaluation mechanism is stronger than the
other mechanisms considered thus far. FPawever, before considering how
much stronger Prj is, we must analyze this class augmented with markers
(Prjn).  This class will be shown to be universal by constructing, for every
schema in P, ), an equivalent schema in Pryw €8 P is the class of
program schemata augmented vith two push-down stores and a single marker.
There is no "pds empty?” test available for push down stores in the class
Pn,1» and pop(PD,z) leaves z unchanged when the pds PD is empty. For

n > 1, P, 1) is known [4] to be universal*,

The technique to be used to show that P, < Prjn is analogous to the
construction used in 3.2.1 except that we will imbed a pushdown stack in the
parameter instead of a queue. Before actually presenting the construction,

we show a sample translation of a schema S; ¢ P,y into a schema S, ¢

PR jgn-

Example: (x):  Ll:y & f(x)
L2: push(PD,y);
L3: pop(PD,z);

L4: if p(x) then L5: halt(z) else L6: goto L1;

* Pya = Pg, is also shown in [4] See also [2] for additional results
regarding push down stores.
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Schema Sy ¢ Py 4. The schema has been completely labeled for comparison

to schema Sz € pR,gni

(x): ident « Ny « (2« Ot « LL{null); halkt)
Li(pds): global x,y; y « f(x); t « L2(pds); hait(t)
L2(pds): global y; save « y; act « M; t « L3(stack(pds,act,save)); halt(t)
L3(pds): global ident,z; ident « z; z « pds; t « LA(pds); halk(t)
L4(pds): global x; if p(x) then t « L5(pd-) else t « L6(pds); halk(t)
L5(pds): global z; hait(z)
L6(pds): t « L1({pds); halt(t)
stack(p,a,s): if a = M then begin a « ; halt(s) end
else begin t « p; halt(t) end

null: globel ident; halt(ident)

The statements of the original schema have been translated into
separate functions with each one responsible for performing the activity of
its correspondent as well as calling the next sequential statement function.
No function returns until all computation has been completed. (L5 is first to
halt in the example). In functions corresranding to push statements, a pair of
local variables, save and act, is allocated. save retains the value of the pds
element while act is set to the marker value to indicate that the value has
not been used. A value is retrieved (popped) by invoking the pds formal

parameter (e.g. L3 above). This forces control to return to the environment

which most recently performed a push operation. The function stack,




executed in that environmen!, tests to see if the value in save has been

used. If not, the value is returned and the marker is set. If so, then the

formal pds is again invoked causing a return to the next earlier push

environment. If the pds is empty the function null will eventually be

executed. It returns the value which will result in a null operation. Note

that the use of the marker is such that no confusion can result if pds

elements are also markers.

We now give the construction just illustrated. We require that each

syntactic statement in the schema S, in Ptn,1) be labeled. If L, is a statemert

then the successor(s) is the statement(s) which follows in the sequential

control flow. Clearly, ifs have two, halts have none.

Construction 3.3.1: Let S; be a schema in Pia,1y such that each syntactic

<tatement has been labeled. The following steps are required to construct a

schema S, in Pgjgn Which is equivalent to S,

(i) Let L, be a labeled statement other than a push or pop:

L <S>

Then an n parameter recursive f. - ction is defined as follows:

Lipds;, . . .,pds,): global W)W, .

RV

<5t e L,-(pds,, . wpds,);

hali(t)

where: Wy, . . W, are the variables used in <S>

L;is the successor to L,




t is simple (local) variable not used in <S>,

Actually, we have given only the schematic form for the assignment
expression. Since the begins may be ignored (given that the successor
has been chosen properly) and we have given examples of the
auxiliary functions corresponding to the other statement forms above,
we leave it to the reader to construct the functions in the case the
statements are other than assignizent, push or pop.
(i) For each push statement of the pds PD,:
L;: push(PD,,v)
define a function
Lilpdsy, . . .pds,): global v; act « M; save « v;
t e L (pds),..,stack(pds, ,act,save),..,pds,);
hait(t)
where: t, act and save are new local variables
Mis a marker in M (see 2.2)
Ljis the successor to L;
(iii) For each pop statement of the form:
Ly pop(PD,,2)
define a function
Lipdsy, . . .,pds,): global ident,z; ident « 2; 2 « pds,;
teL(pds), . . .pds,); haikt)

where:

ident is a new identifier, the same one to be used for all
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pop statemenis. ident is the value returned by the function null to
guarentee that pop of an empty stack results in the identity operation.
(iv) Define the two following auxiliary functions:
stack(p,a,s): it a = M then begin a « 0); hali(s) end
else begin t « p; hali(t) end
(v) Construct a schema S, in Prigh using the following main program

augmented with the functions defined in (i)-(iv) above.:

(vig o - gvydiident « jup e L. G ug - 0
teLnull, . . nut); halk(t)
where: Vi - . vy are the input variables of S,
Up . . wUg are the simple wvariables wused in Sy, (since,

precisely speaking, globals must be defined in the main
program.)

ident is the identifier introduced in (iii) above

Ly 1s the first statement of S;

and t is a new simple variable.

Thus recursive functions augmented with a single marker and employing
call by name parameter evaluation can simulate any number of push-down
stores.  The wuniversal class Py [4] is capable of simulaling recursive
functions using the stack model of Dijkstra. This method, used for ALGOL
compilers, has been adequately described in the literature [19] and need not

concern use here. All that is required in our later proofs is that PRm is

effectively equivalent to Pgy. These comments may be summarized as:
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Theorem 3.3.2: For n > 1, Pgyy 5 Py ).

3.4. Necessity of Noneftective Marker Elimination for Pg .

In this section we establish that if markers cannot be effectively
removed from schemata of Pgy to yield schemata in Pp; The method used is
essentially the one used by Constable and Gries[4] to show that Py is not
effectively universal. We require the following definition in order to show

that Pgj cannot be constructively equivalent to the universal class Pg .

Definition 3.4.1 [1]: Let S be a completely labeled schema with n predicates.
Then the hehavior of S is the sequence of statement labels of S in the
order they begin exceuting. For any list v of length n chosen from
{truefalse}, the wv-autonomous behavior of S is the behavior defined by S
assuming that for 1 < i < n the truth value of predicate p, is v, for all
values of its arguments. Clearly, any schema defines at most 2" different

v-autonomous behaviors.

In [4]) it was shown that the v-autonomous behavior of Pgy s
independent of the interpretation of the domain, the input variables and the
function symbols. It is also shown that it is undecidable whether tie
v-autonomous behavior of Ppy is finite or not (see 4.23 for a similar
argument). Clearly, any class eftectively equivalent to Pgy must also have

these two properties. From the last section we know that for n > 1
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Priw = P,y is constructive and from (4] we know that for n > 1, P, ) = Pan

is constructive. Thus:

Lemma 3.42: It is undecidable whether the v-autonomous Ltehavior of a

schema S ¢ Pgy is finite or not.

However, we shall show that it is possible to determine whether the

v-autonomous behavior of a schema S ¢ Pg; is finite.

Lemma 3.43: Let S be a schema in Pg, then it it decidable whether or not
the v-autonomous behavior of S is finite.

Note that contrary to the usual case with constant predicates, it is possible
for schemata in Pg; to execute the same statement twice without entering a
loop. However, it is only possible if the statement is a function which is
used as an actual parameter and whase evaluation is required for two

different instances of a formal parameter.

Proof: There are two ways in which the v-autonomous behavior of 4 can be
infinite: a cycle within one <body> or an infinitely regressive sequence of
auxiliary function calls. Cycles of the first type can be determined by
analyzing the control flow of each <body> using the values v; whenever the

predicate p; is encountered and ignoring all function calls. If any instruction

in a <body> is repeated, a cycle exists and if the main <body> is cyclic then
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the v-autonomous behavior is necessarily infinite.
Suppose the main <body> is noncyclic and rewrite the schema with all cyclic
bodies deleted and all unreferenced instructions deleted from noncyclic
<body>s. From the remaining schema, construct a context free grammar G
with sentence symbol S as follows. First assign a unique number to each
function eall in the schema. Define the nonterminals to be new symbols
Vo = {S, Fy, .., F, U, ..., U} where r is the number of function calls
and s = kr if k is the maximum number of "ormals to any auxiliary function.
The terminals are defined to be V, = {all symbols in the schema). Generate
the productions P as follows. If

G<term>, . . .,<term>pg)
is the ith auxiliary function call of the schema, replace it with the symbol F,
and generate productions:

Fia 8

Uu - <term>1

Uge & <term>pg
where [ is the <body> of G with all auxiliary function calls replaced with
nonterminals and with all occurrences of the jt formal replaced with U, (If
the <body> is null because it was found to be cyclic, set 8 = F.) Add the

production

Sap

where A is the main <body> with all function calls replaced with nonterminals.
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L(G) defines a simple (ontext free language such that if L(G) is empty the
v-autonomous behavior c¢f S s inifinite and if L(G) is finite then the
v-autonomous behavior is finite. (The language cannot be infinite since each
nonterminal has at most one right hand side in the production set.) Emptiness
is decidable by well known methods [10] and is, indeed, a irivial matter for

these grammars. g.e.d.

Theorem 3.4.4: There cannot exist an effeclive procedure which finds for any
Sy ¢ Pgy a corresponding S, ¢ Pg; such that §; = S,

Proof: Apply lemmas 3.4.2 and 3.43. qed.

Our problem of exactly locating the position of the Pgj class has been

made a bit more difficult since now we must use nonconstructive methods.

3.5. Discussion.

The question of whether or not Pg; is universal is still open. We know
that it is "close" to being universal since the addition of a single marker is
sufficient to make it universal. However, there can be no effective
procedure for translating all schemata of PR into equivalent schemata in PRJ.
This phenomenon, of having a class "nearly” universal but not knowing if it

is, has been encountered by other investigators. Brown, Gries and Szymanski

[2] have the same problem with




P(2b,0) and Brown [1] has a similar difficulty with Py*. These problems are

closely related to the Pr; problem, eg. if Py was known to be universal,
then methods used earlier in this chapter (3.2) would permit simulation of the

queues.

The nonconstructive technique used by Constable and Gries in [4) to
show that Py is universal could also t used for Py if it were possible to
enumerate the Herbrand Universe. (See [4] for a description of how the
Herbrand Universe is used.) In particular, if up . . wu. and fy, .. fg are,
respectively, the input variables and basic function names of § ¢ P”.,, we
wish to construct a T ¢ PR,- which performs an enumeration of all strings e,
where

e€{u, ... ujore="fle, ... eg)lsiss
It this were possibla, we could show the existence of a schema S ¢ Pg; such
that S = S The “difficulty” with finding such a schema T is in organizing
the oreadth first search so that all terms are treated uniformly and all terms
2re included. They must be treated uniformly since there are no markers or
counters available to impose a substructure on the previously generated
values. Clear'y, for monadic functions and predicates, the leaftest functional
(of 3.2) is a\ adequate strategy. But it does not seem ‘o generalize to
polyadic functions. Several other candidate organizations have been found

for T, but the proof that any of these is correct requires number theoretic

* P(2b0) is the class P augmented with 2 push-down stores (with “"pds
empty?” tests) and no markers. Pq is the class P augmented with queues,
for which no "queue empty?"” test is available.
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results which are themselves open problems. 1f this is the wrong conjecture
and there is actually no way to do this enumeration, then judging from the
diversity of the candidate organizations available, proving that none of them

works will be difficult indeed.

Finally, note that there is a pessibility that Pgy could be shown to be
universal by constructive means. Specifically, our results do not deny the
possible existence of a translation from each schema S ¢ Py to an equivalent
schema in PRj, since the v-autonomous behavior problem is decidable for both
classes. The ditficulty in actually doing such a translation is in simulating the
storing of indices. In the next chapter we investigate Pgy, a puneralization of
the call by name class. We will present a construction for translating

schemata in Pg, into schemata in Py, The problems of storing indices will be

made clear there.
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4. Parameter Evaluation Extensions

4.1. The Constituent Parts of Parameter Evaluation.

In this section we abstract the notion of parameter binding so as to
understand what operations are required to make the actual - formal
correspondence and to understand the consequences of choosing a particular
way of implementing these operations. This development will then suggest
ways of generalizing and extending the mechanisms considered earlier. In
subsequent sections we investigate the classes defined by these generalized

mechanisms,

We develop our model from the following point of view. Suppose we
are given an interpreter for the basic class B of recursive program schemata
(see 1.3). Such an interpreter defines all of the mechanism required to
interpret a schema in L(G) except for parameter evaluation. In our
development we will establish what operations are required for the
interpreter to evaluate parameters using a specific strategy. In essence we

will parameterize the basic interpreter so that when it is instantiated with

the proper functions, it defines an interpreter for a certain parameter
evaluation mechanism. Our task is to abstract the constituent parts of
parameter evaluation (i.e. to define the formals to our interpreter). We also

present the functions for these parts (actuals) which realize the various

evaluation mechansims discussed thus far.
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At this point we could introduce an abstract interpreter for our basic
class of schemata, defined in some language (e.g. Vienna Definition
Language). However, such mechanism is not required since the greater part
of such an interpreter doesnt concern us and the points at which our
constructions must interface with the rest of the interpreter are few and

simply described.

The interpreter manipulates several typc: of objects, e.g. domain
values, identifiers, etc. We will use a simple list-like notation to denote the
types of objects of interest to us. Let a pair <AB> denote any object
whose left hand side value is an object of type A and whose right hand
side value is an object of type B. The particular objects of the basic
interpreter in which we are interested are

<L,D>, < D" - D>, < |E>.
The first pair denotes an object corresponding to a variable, i.e. its left
hand value is of type location (L) and its right hand value is of type D
where D is the domain of interpretation. Basic functions with rank n are
denoted by the second term, (there is no left hand value since they cannot
be assigned to). The third term represents unevaluated expressions, i.e.
auxiliary function calls. Ther: are other kinds of objects used by the
interpreter, (e.g. predicates) but they cannot be parameters to functions.

The objects denoted above are the only objects which may be used as

actual parameters and thus they are the only ones of interest to us.




In  parameter binding we are interested in environment formation.

Environments provide the correspondence between the syntactic objects and

the computational objects which they denote. Thus, an environment, p is a

mapping

pild 5 Dn
where Dn is the class of denoted objec's. We have no interest in the
particular deroted objects, only the types of the denoted objects, so we
write

Dn = {<,D>, < D" 5 D>, < ,E>}

to indicate the types of denoted objects of an environment.

Environments change when a function is called and so we suppose that
there is a binding functional A in the interpreter which defines a new
environment from the current one. A defines environments inductively and to
keep these separate, we index them. Thus, the denoted types in the
environment of the main <body> are

Dng = {<L,0>, < ,D" » D>, < E>].
When a function is called from the zero environment, the binding functional
associates the actual parameters with the formal names. Thus, the objects of
the first environment are,

Dn1 = {<L,D>, <D"s D>, < B>, <L,<L,D>>, <L<,D" 5 D>, <L < ,E>>}
where the first three terms are the types of objects specifyable in any
environment. The formals are given in the last three terms indicating that

formals have left hand values of type location and right hand values which
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are of actual object type of the zero environment. Recursive application will,

clearly, define denoted objects of larger and larger type.

The binding function only assigns a name to the object which was the
actual parameter. We would not have been calling this “parameter
evaluation” all this time if parameters werent being evaluated as well as
being assigned a name. But evaluation is a poor word since we wish to
treat cases where no evaluation takes place. Hence, we hypothesize a

translation function, T, as one of the parametric inputs to our interpreter.

The translation function is used by the binding functional to translate
actual objects into values of formal type. The translation function T has as
arguments the actual and the name of the calling envrionment. Thus, the
denoted objects in environment i are defined, recursively,

Dng = {<L,D>, < ,.D" o D>, < [E>}

On; = Dng U {<L, 7(x,i - 1) | for all x ¢ Dn,_,}
which states that the types of the objects in environment i are those
objects srecifyable in any environment (Dng) together with the newly
introduced formal objects and these correspond to the translated actual

objects of the earlier environment bound to a object of type location.

To see how T works, consider the translation function for call by value
or call by copy. For the call by value mechanism,

T.x,i) = eval(x,p,)

where eval is the expression evaluation mechanism of the interpreter and p,
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is the ith environment. This simply requires that the binding functional
evaluate the actual in the calling environment, and thus 1, maps the actuals
into domain elements D. Any formal defined by T, is of type <L,D> and thus
we have

Dng = Dn, for all i
in the case of call by value. Clearly, call by copy has the same translation

function as call by value; hence T, = 1,.

For the other mechansims, the translation function is a bit more
complex. For example, one way to describe the translation function for call
by reference is,

Tr(x,i) & if x * variable then <L,cval(x,p)> else x.
The surrogate variable of our definition (2.1.4) is represented by an object
of type L. If one used this translation function for call by reference, the
denoted objects would be of types

D"e U {<L,<L,D>>, <L,<L,<L,D>>>, <L<L<L<L,D>>>>, |, . }
and any formal of environment n would have up to n levels of reference
values. If this were the definition, the obvious implementation would be
quite convenient on a machine with repeated indirect addressing, since such
operands correspond exactly to the objects in the above set (on a machine
with an infinite memory). But our definition in 2.1.4(i)c required that if the
actual is itself a formal, the. the reference value is to be passed. We can
incorporate this requirement with the following translation function:

T, (x,i) £ if x # formal then 7.(x,i) else cdr(x).
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Clearly, the denoted object types for call by reference become:
Dng = {<L,0>, < D" = D>, < £>}

Cny = Dng U {<L,<L,D>>} tor i > 1.

The translation function for normal evaluation and call by name

evaluation are given by:

Talx)i) & <x,p>

Tj(x,i) £ <x,i>
which indicates that the translation function need not perform any
modification, but needs only to oind the actual with an environment (for
normal evaluation) and to bind the actual with an environment name (for call
by name evaluation) These definitions for T, and T; correspond to those of
2.1.6 and 2.1.8, respectively. Since our notation provides a method for
referring to specific environments, we are not required to specity the
arbitrarily deeply nested types. This observation simplities our subsequent
description, and thus we defvine the equivalent 1, and T,-' as follows:

T, (x,i) = it x # formal then <x,p> else edr(x)

T"(x,i) = if x * formal then <x,i> else cdr(x).

The point to note about the translation functions T,, T, and Tp is that
they did an incomplete job of translation in the sense that when the

translation was made the resulting denoted objects were of ditferent type

than the usuai local objects. That is,

Dna * Dni tori>0.
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when A depends on any of the translation functions presented for call by
reference, call by name or normal evaluation. Since formals may appear
wherever locals can, we must further state, when specifying a parameter

evaluation mechanism, how values may be found which are acceptable as local

objects.

We find, therefore, that we must further parameterize our basic
interpreter with definitions for two other operations, I to find left hand
valies for formals and R to find right hand values for formals. The simple
case is when the mechansim of evaluation is call by value or call be copy,
since the translation functions T, and T, mapped actuals into objects the
interpreter could already handle, ie. Dng = Dn;, The types of the formal
variables are the same as the local variable type, <L,D>. Thus, the same
reference mechanism may be used for formals which is used for locals. We
then have, for a formal symbol x interpreted in environment P

Lx,p) & Le(x,p) = 1(x,p) = car(p(x))
R(x,p) = R(x,p) = R(x,p) = cdr{p(x)).
where I and R are the reference mechanism for locals which are already

specified for the basic interpreter.

The interesting cases are when Dng = Dn, for i > 0. For call by
reference, the translation function 1. assigns formals values of type <L,<L,D>>

and so for a formal x in environment p, the reference functions become:

1{x,p) = car(cdr(p(x)))
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Ru(x,p) = edr(cdr(p(x)))

which reference the reference value and coerced value, respectively.

For normal evaluation formals defined by T, are of type <iL,<app>>
where a is the unevaluated actual and p, is the environment of the call. For
normal evaluation of a formal x defined by 1, in environment p the reference
functions are given by:

Ln(x,p) = it edr(p(x)) € D then car(p(x))
else begin
eval(car(edr(p(x)edr{edr(p(x))));
halt{car(p(x))) end
R.(x,p) = it edr(p(x)) € D then edr(p(x))
else cval(car(edr(p(x),edr(cdr(p(x))))
To see that these are consistent with 2.1.6, observe that cdr(p(x)) ¢ D is
true if ~nd only if the formal has been assigned to in the <body> of the
call. If it has not been, then it must be evaluated before it is assigned to
(according to 2.1.6), and thus, the else consequent of I, If the right hand
side is required, then if the formal has been assigned to then we produce
that value. If it has not been assigned to we evaluate it each time it is
referenced. This is not a contradiction of our definition of 2.1.6 since in our

formalism, the environment p, is passed along and there can be no side

effects. Thus, the first evaluation is indistinguishable from the nth and we




66

need not concern ourselves with which it is except for efficiency reasons®.

Finally, the call by name formals defined by 1; are of type <iL,<a,i>>
where a is the unevaluated actual and i is the calling environment name.
The reference function for a formal x in environment p is given by,

L. (x,p) = car(car(cdr(p(x))))
R (x,p) = eval(car(edr(p(x)),pcye (cdr (¢ (x11))

Note that if the actual does not have a left hand side, I will return nothing

and we suppose the interpreter can handle such cases.

The only remaining detail is that of copying back of formal values into
actuals for call by copy. This requires the use of the assignment functional

of the interpreter and since there is no particular subtlety, we shall ignore

it for now.

Note that when the left hand side reference function returns a location
other than car(p(x)) (ie. other than the element provided by the binding
functional) there will be side effncts in some environment. Clearly, if we
redefine the reference functions for call by reference to be

L.(x,p) ® car(p(x))
R.(x,p) = it edr(p(x)) ¢ D then edr(p(x))

else cdr{cdr(p(x)))

* Actually, efficiency is the whole reason normal evaluation was introduced in
[15] We could easily specify a "once if ever" evaluation strategy by using
the assignmeni functional of the interpreter, but we choose to avoid the
introduction of this extra mechanism here, since the meaning is the same.
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we produce an evaluation mechanism which is indistinguishable from call by

value.

Excepting the detail concerning call by copy then, we can parameterize
the basic interpreter for a particular eval ition mechanism x by specifying
the three components:

T, the translation function,

L, the left hand side conversion procedure

R, the right hand side conversion procedure
The fact that parameter evaiualion introduced a new type of value implies
that type conversion procedures I and R have to be introduced to transiate
between formals and other types. These rew procedures provide interobject
translation. Interobject translation is a consequence of choosing T, such that
the resulting denoted objects are not all in Dng. But not all operations take
place between formals and other objects. Some operations take place
between formals and other formals. For example, formals can be assigned to
formals. Thus, there must also be intraobject translation. If one can pass
an unevaluated function call or formal, why can’t such unevaluated cbjects be
assigﬁed to formals within a body. Of course, that can be done and many
authors have considered this problem, e.g. Landin, Reynolds, Scott and

Stratchey.

We will not, however, address the issue of adding functions as a value

type. In the first place, our little mode! of environment defintion would fall
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apart. Secondly, the problem has been studied before, (see [20] for an
overview.) Finally, our interest is in classes of functionals and languages as
introduced by the above authors are so powerful as to surely be universal

(see next section).

However, our inability to show that call by name is universal motivates
us to find a generalization which would suggest what the shortcomings of its
earlier definition are. The notion of intratype conversion is just the
mechanism. Towards this end, if we observe that parameter passing for call
by name is the assignment of unevaluated functions to formal parameter
identifiers, then we could allow all assignments to formal identifiers to be
unevaluated. This is analogous to the quote operation in LISP, only we will
apply it only to formals. The restriction to formals is appealing since it
doesn’t require any substantial modification of our definitions, as a general

quote operation would. As we will see in the next section, this is enough.

4.2 The Class Pg,,

In this section we investigate the call by name extension suggested in
the last section. The mechanism. which will be entitled call by quote,
warrants a few preliminary remarks. It is admittedly pathological in the
sense that although it is a extension of call by name, it probably not a

viable parameter mechanism for any real language. This is because, when

call by quote facilities are provided, one might as well allow functions as




values throughou! the language, ie. as local identifier and function values.

Such a language is too large a step for our interests here. Finally, note

that the "stack" model which is usually used with call by name no ‘crger

applies.*

Definition 4.2.1: The class Py of recursive program schemata with call by
quote is a call by name class of schemata with the additional semantics that
any assignment to a formal is unevaluated. If the formal does not have a
left hand value, the entire statement is ignored. If a formal must be

evaluated and its value is a circular sequence of references, the value is .

Example:
(x): y « G(x); halt(y);
G(z): w « f(z); if py(w) then z « G(w) else; halt(w)
A sample schema which if interpreted in the class Pg, calls G exactly

once from the main <body>. Compare this to its interpretation in Pg.

Although we do not know if P is universal, if it is not then the following

theorem te!:s us that the generalization in Pg, is sufficient for universality.
Theorem 4.2.2: P, = Pq.

Proof: Appe-dix | contains the details of a construction whereby any schema

+ This may not be entirely correct if one can appropriately modify Fischer’s
proof (7], which uses call by value, to handle this case.




T € Py can be effectively translated into an evidently equivalent schema
T ¢ Prq- Informally, the translation is straight forward once there is a way
to aillocae an infinite lirear vector and a way to manipulate indices
(specifically, to store an index.) We allocate the storage essentially as was
done in sections 3.2 and 3.3 as formals to the recursively called instructions
of T. To realize subscripts we use the fact that unevaluated expressions
can be assigned to formals. Thus we have a zero function and an index1(x)
function. The subscript two would be index!(index1(zero)). To get an array
value, control must first return to the earliest environment (ie. O cell of the
array). Then, the index is coerced, removing one level of nesting per
environment until the zero function is called. This function transfers the
value of the local (corresponding to the array cell) to a global temporary
formal and destroys itself. Thus there is a fetch from the indaxed ceil.

Assignment works in the analogous way.

Of course, schemata in PRq can be simulated by a universal class, say

PaL.  Weisenbaum’s paper [23] provides a good presentation of the problems

involved. q.e.d.

With Pg, known to be universal, it is reasonable to consider trying to
find a translation from schemata in Prq into schemata in Pp; and thereby

showing its universality. This is not, however, an advisable strategy as the

following theorem indicates.
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Theorem 4.2.3: 1t is not decidable whether the v-autonomous behavior of Pgg

is finite or not.

Proof: Given a Turing machine Tm, we can construct a schema T ¢ PRq which
simulates the behavior of Tm. The schema in Prq employs no predicates and
thus operates under constant truth assignments. 1f T halts then Tm halts on
blank tapes. Since this property is not decidable, v-autonomous behavior
cannot be. The construction is quite envolved and is presented in Appendix

II. qe.d.

Corollary 42.4: There cannot exist an effective procedure which finds fcr

any schema Sy « Ppq a schema S, ¢ Pgjsuch that §; = S,
Proof: Apply theorem 4.2.2 aid lemma 3.4.2. qe.d.

Our pgenergalization was too generous. It may be that adding some

extra strength to the Pg; class will enable one to build a bridge between Pg;

and Py, but at this point its not clear what such a facility would be.

e b




5. Decisions about Parameter Evaluation.

5.1. Motivation.

The various parameter evaluation mechanisms which we have studied
represent different solutions to the same semantic problem: binding values of
one environment to names in another environment. As different solutions,
they provide differing degrees of convenience at differing costs. For
example, normal evaluation might require a minimum of execution time for a
small number of references but the test for “already evaluated? might incur
too much overhead for large numbers of parameter references. On the other
hand the advantage of being able to return parameter values with call by
reference might make it more convenient than normal evaluition. In short,
convenience of use and cost of implementation and execution are among the

axes along which parameter evaluation mechanisms vary.

Convenience is a personal issue and implementation cost is a highly
machine dependent issue. Therefore, we will not treat either specifically.
Rather, we will provide some facts for use by the language designers and
implementors which may help them to optimize ihese (and other) conflicting

features when choosing a parameter evaluation mechanism.

In particular, we observe that if one could determine "how a parameter

is to be used" when compiling a program, one might be able to decide which

is the "cheapest” mechanism available that provides the required seinantics.
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For example, in ALGOL the mechanisms of call by value and call by name
must both be available. Since the compiler writer must provide both
mechanisms, he might prefer to implement call by name evaluations as call by
value in cases where it wouldnt make any difference and would be cheaper.
We propose to investigate to what extent questions of this type can be
decided and, when they can be, 10 give procedures for answering them.
Armed with this information, we could expect the language designer to
specify the parameter evaluation mechanism he deems most convenient while
the implementor provides that facility only when absolutely necessary and

whenever he can, uses any other mechanizm that is cheaper.

5.2. Definitions.

If the reader is familiar with the unsolvability results for in program
schemata, especially Luckham, Park and Paterson [14] then he will be
skeptical of our chances of establishing any but negative results about
optimizations. In this section we present the necessary definitions and then
justify the reader’s feelings. We will not, however, spend a lot of time
providing negative results, but rather in subsequent sections we try to

establish decidable, though less complete, optimizations.

Recall that the syntax of our various classes is given by the grammar

G (in 1.3) Let L(G) denote the class of terminal strings of this grammar

which we called basic recursive programming schemata. In addition, Pg, is




the class of recursive programming schemata with x parameter evaluation and

Val,(S,]) is the “interprelsr" function for the class Ppx evaluating schema S in

interpretation I.

Definition 5.2.1: Let Py, nd Ppy be classes of recursive program schemata
defined on strings of L(G) with parameter evaluation mechanisms x and vy,
respectively. Then the coincidence class for x and ¥, Cyy contained in L(G)
is the class of terminal strings such that

Cyy = {S € LG) | Val (S,]) = Val (S,)) for all 1}

Thus the coincidence class for x and y contains exactly those schemata
whose interpretation is insensitive to which method of parameter evaluation, x
or y, is applied. Since L(G) contains some strings with no parameterized
auxiliary  functions, ng is trivially nonempty. On the otherliand, the

coincideice class ca. contain many schemata as is seen in the example,

Example 5.2.2: In section 2.2 we observed that for any schema S, the call by
copy interpretation of S is indistinguishable from the call by reference
interpretation of S if all simple variables in each auxiliary function call
are distinct. Al such schemata are elements of the coincidence class Cer

for copy and reference.

Of course, the class C_. also contains schemata with duplicated actuals

in those cases where the duplication makes no difference.
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Let x and y pe parameter evaluation mechanisms, then a parametrically
induced name-value disparity describes the situation when some schema is
interpreted using the two different mechanisms and the values associated
with the names become different in the two interpreters as a result of the
parameter evaluation activity. Specifically, suppose that all the names have
the same values in the two interpretations at the commencement of one of
the parameter binding activities (i) auxiliary function initiation, (ii) format
parameter evaluation or (i) auxiliary function termination. If, at the
completion of this activity, there exists a name whose value differs between
the two interpretations, then we say the two evaluation methods cause a

parametrically induced name-value disparity.

Definition 5.2.3: Two parameter evaluation mechanisms x and y are said to be
semantically separable if:
(i) there exists a schema S and an interpretation 1 such that
Val,[S1] = Val [S,1],
(i) Val (S]] = Valg[S,l] implies that there exists a parametrically

induced name-value disparity.

The definition requires that for two evaluation methods to be separabte
they must be different and the difference must be manifested at the very
least by difference in the state vectors of the interpreters caused by

parameter evaluation. (Of course, we consider the case of a value verses no

value (as one might get with evaluation postponement) as being a value
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disparity.) Each pair of parameter evaluation methods which we have
discussed are semantically separable (see Corollary 5.25 below for
justification) As an example of a semantically inseparable pair, consider
call-by-value (Ir) and call-by-value (rl). These are both call by value but
ditfering only in that the former evaluates actuals left to right and the latter

evaluates them right to left.

Theorem 5.2.4: Let x and y be parameter evaluation mechanisms which are
semantically separable. Then the membership problem for the coincidence

class ng of x and y is not partially decidable.

Proof: By virtue of the fact that the parameter evaluation mechanisms are
semantically separable, a schema S exists for which there is a parametrically
induced name-value disparity for all interpretations. We may construct for
any schema R ¢ L(G) a new schema Sp whose value is provided by the name
whose value diverges according to which method of evaluation is provided.
Furthermore, the value assigned to the name will be in the one case the
value of R and in the other case some value different from, but dependent
upon, R, eg. h(R) for some basic function h. Suct a construction implies
Sg € C,y <=> R diverges for all interpretations.

The theorem then follows from the fact that the class P of flowchart
schemata is properly contained in L(G) and that the problem of deciding if a

schema R ¢ P diverges under all interpretations is not partially decidable

(see 1.3). q.ed.




77

Corollary 5.25: For any distinct pair of parameter evaluation methods, call by
value, copy, reference, name and normal evaluation, the memebership problem

for the coincidence class for the pair is not partially decidable.

Proof: 1t two of the methods differ because only one postpones evaluation or
assigns back into the actual, semantic separability is immediate. This leaves
only the pair <call by copy, call by reference> and the example in 2.1.10

provides the required schema for separability. q.e.d.

Thus, we cannot do perfectly well at identifying when the facilities of
a given parameter evaluation mechanism are not fully utilized. The reader
might feel as though our use of strong equivalence was unfair and that our
result depends upon a peculiarity of strong equivalence. First of all strong
equivalence seems quite appropriate when considering techniques to be used
for compilers, etc. Secondly, we could modify our definitions to a "weaker"
relation and then employ the very strong results of Luckham, Park and
Paterson [14) on "reasonable relations”. The even stronger results of Itkin
and [wienogrodsky [12] could also be used but both methods would be more
involved and the result would most certainly be the same. The task of

doing "perfectly well" at optimization 1s so hopeless as not to be worth such

effort. We compromise and try to do "reasonably well” in the next sections.
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5.3. Decidability Lemmas.

In this section we will make a rather strong assumption about our
schemata and prove several lemmas to be used in the next section. The
lemmas will enable us to recognize when the fqll semantics are used of a
particular parameter evaluation mechanism.  Such results will enable
parameter bindings to be compiled so that the cheapest mechanism is used

providing the required semantics.

In [14] Luckham, Park and Paterson introduced the notion of a free

program schema. W= will use the same notion for our recursive schemata.

Definition 5.3.1: A schema S ¢ Prx is said to be free if every behavior of §

is an execution behavior.

Recall (from 3.4.1) that the behavior of a schema is merely the
sequence of statement labels as they begin execution and a behavior is an
execution behavior if there is an interpretation which will realize that
behavior. This is a very strong requirement. Indeed, in [14) it is proved
that freedom is not a decidable property for program schemata and so it

cannot be for recursive schemata.

We begin by proving a simple lemma about free schemata. A property
is sensitive to function calls if the decision whether or not a particular

function environment has the prcperty is affected by the functions it calls.

Clearly, the property of halting is sensitive (in the general case) to function
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calls since to determine .! a function halts one must know if the functions it

calls halt.

Leinma: 532: For any free schema S in P, the following properties are
decidable:
whether or not for a formal y of an auxiliary function G

(1) y appears on the lefthand side ¢/ an assignment,

(2) y is ever referenced, and

(3) y is not referenced on at least one path.

Proof: It is immediate when the property is insensitive to the evaluation
methods. Suppose the property is sensitive to function calls, (in particular,
sensitive to the evaluation strategy.) Then, the following outline of a
procedure should suffice to recognize the presence or absence of the
properties:
(a) For an auxiliary function, G, mark the formals with an X, O or ?
depending on whether, from local information, the formal satisfies
the property, doesnt satisfy it or its "not known" whether it is
satisfied, respectively. The “rot known" case will occur when the
formal is also an actual to an auxiliary function.
(b) Choose an auxiliary function at least cne of whose formals is
question marked. Choose a formal, 2z, and find which auxiliary

functions it appears in as an actual and in which positions. Decide

whether the properties hold in this function. 1f any of these are
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marked ¥, z is marked X. If all are marked O, z is marked O.
Otherwise, z remains question marked.
(c) Apply (b) until no question marks can be removed, which must
occur since new ones are not introduced.

Parameters still marked with a question mark evidently do not satisfy the

property and should be marked O, since they form only closed cycles. q.e.d.

Whether a formal is eventually assigned to or referenced is not enough
information. We nust know whether that assignment or reference has any

effect.

Lemma 53.3: It is decidable for a free schema S ¢ Prx whether postponing

actual parameter evaluation avoids a nonterminating computation.

Proof: A syntactic check can be made to determine which parameter positions
are ever filled by auxiliary functions. By lemma 5.3.2 it can be determined
which of these parameters is ever referenced. For thocc that are
referenced, the auxiliary functions filling their actual parameter postions can
be examined to determine which diverge, since a free auxiliary function, G,
containing | statements will diverge in some interpretation if there exists a
behavior of G containing more than | statements. For the formals
referencing potentially divergent parameters, divergence of the entire schema
can be avoided if not all paths through the function reference the formal.

Mark all paths on which the formal is referenced (assuming use as an actual

to an auxiliary function is not a reference.) From lemma 5.3.2 the remaining




unmarked paths can be marked depending on whether evaluation is avoided
in any of the called functions. If there exists an unmarked path to a halt

then postponement will avoid a nonterminating computation. q.e.d.

In the following lemma we prove that it is decidable whether or not an
assignment to a formal changes its value. There is a bit more complexity to

it than the earlier proofs, and the following definitions will be useful.

Definition 5.3.4: A k - repeated hehavior of a schema S is a behavior

Ly, - . 4Ln such that there are no indices i0,il,i2, . . .ik+1 such that,

Ligo - - obigepbip « - wlizeny - ol -+ wbikad
is a substring of L, . . .L, and

Ligr -« wbiger =Lip - - wbigar =+« =L« ubiar
Thus, a k-repeated behavior is one in which no iteration or recursion cycles
on the same path more than k times. Clearly, for fixed k, any k - repeated

path through a schema S is finite.

Definition 5.35: Let e be any expression in the Herbrand Universe (see 35
for def.) such that e = f{e;, . . .egrs). Then the generation tree for e is the
oriented tree formed by placing f at the root and the Rf edges from it
(from left to right) leading to the generation trees for ey, . . .epp

respectively.

Thus, a generation tree for any computed value of a schema has basic

function symbols for nodes and leaves of ¢ iher input variables or Ns. The
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term cycle in ihe following theorem means either an iteration or a recursion

which returns contro! to the same label.

The crucial fact to note regarding recognizing when an assignment is
always an identity assignment is that if it is then the subcomputations must
either be constant or the computation of the left and right hand sides must
take place "in unison" By "in unison" we mean that a subcomputation for
one cannot take place in one cycle and the corresponding subcomputation in
a different cycle, for if they did, we could find (in a free schema) different
numbers of repetitions for the two cycles to c‘ontradict the assumption of
equality.  Thus, cycling through a loop (iteratively or recursively) must

always perform subcomputations for both left and right hand sides.

Lemma 5.3.6: For a free schema S in the class Pro it is decidable whether

or not an assignment to a formal y of an auxiliary function G changes the

value of vy,

Proof: We first prove a major subcase: the problem is decidable where S has
no identity assignments. Enumera'e all 2 - repeated paths through S and
decide whether the assignment in question ever changes the value of y. We
now show that if for none of the 2-repeated behaviors the value of y is
changed, then there can be no behavior Ly . . oLy in which the value of y
is changed. Observe the following facts:

(1) Since there are no identity assignments, if both sides of the

assignment in question have a bounded length, then all possible values




of the assignment have already been investigated.
(2) From (1) it follows that if a behavior Ly, . . .L, exists then it st
have a subcomputation in a cycle the value of which depends on a
value changed in a cycle.

(3) Since there are no identity assignments a value changed in one

repetition of a cycle must either be used by the end of the next

repetition or never be used.
Suppose a behavior Ly, . . L, exists and thai it is & shortest such behavio:.
Then there exists a 2-repeated behavior My, .. WMy of S and an index i
such that L, = M, is the assignment in gquestion and R
Mp_,, . .,Mp. Thus, there is a suffix of the 2-repeated behavior which
corresponds to the suffix of our supposed counter example. We choose
My . . M, so that its suffix is the largest possible. Let E; and E, be the
generation trees of the left and right hand sides of the assighment in
question. Then since the suffixes match, then the top k ply of E; and E,
match for some k. Choose two values e; and e, in the generation trees of
E, and E,, respectivelfy, such that e, = e, they fill corresponding parameter
positions and all nodes on a path to their respective roots match. These
must exists or else E; and E;, are not different. We require that the root
nodes of e; and e, differ. By working backwards from L, through the
behavior L;, . . .L,, we can find where these two values were computed.

From (1) we know that these values had to be computed in one or more

cycles. In addition, we can show that they were computed in the same

—
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cycle. Suppose they were computed in separate cycles, then either,
(a) one or the other cycle has been repeated and if repeating the cycle
doesnt change the value we can eliminate a repetition, realize the same
value and contradict the assumption that Ly . . oL, is shortest.
(b) one cycle has been repeated and repetition yields a different value
for each iteration. If the repetition is greater than two then we can
eliminate one or more, realize a different value and contradict the
assumption that Ly, . . L, is the shortest sequence.
(¢) the cycle has been repeated 0,1, or 2 times with a different value
each time and thus has been discovered in our 2-repeated behavior
analysis, contrary to the assumption that none existed.
Those are the only choices with no identity assignments, so we conclude that
the two values e; and e, were computed in the same cycle. But this is
impossible since if it were true then we have already discovered the
difference. Since the suffixes match, e; and e, are operands to the same
function name f (though maybe not the same instance of the name) then that
name must be outside the loop or on the next repetition of the same cycle.
If it is outside the cycle then any exit from the cycle is erroneous, including
the first. If the instance of f is in the cycle, then the error must be
discoveiri in two repetitions through the cycle since with no identity
assignments values computed on one cycle must be used on the next, or

never. Thus, two repetitions of the cycle are sufficient to recognize the

difference regardless of where the occurrences of f are. Thus the supposed

. — y

g



ditference cannot exist.

The effect of identity assignments is to act possibly as a delay line
and to postpone the cec'sians required for.the above argument. In
particuler, for any operand name a change in value can be postponed for a
maximum of k iterations of a cycle where k is the number of identity
assignments in a loop. Thus, we merely enumerate all k-repeated behaviors

where k is the number of assignments in the repeated subbehavior. qed.

Lemma 53.7: 1t is decidable for a free schema S whether or not a change in

the value of a formal y of any auxiliary function F affects the value of the

schema.

Proof: There is a bound on the amount of simulation required to determine if
any output of an auxiliary function G (or main program) is affected by a
change of a formal y in F. If there are n variable names (for formals and
locals) in G then there are 2" possible assignments of values which either
depend or do not depend upon an actual whose value could be changed by
the formal y of F. The dependency state is an n element binary vector, one
bit corresponding to each variable, describing whether the value of the
varable could change as a result of the function call (l1) or would be

unaffected (0). |Initially, the vector is all zeros. Begin simulating G and set

the bit corresponding to x if

(1) x is the actual corresponding to y in a call of F,

(2) x is assigned a value which is a function of variables which have
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their bits set,

(3) x is assigned two different values in each conseyuent of a predicate

whose parameters include variables which are set.
The vector element corresponding to x is to be set to zero if x is assigned
a value which is a function of unmarked variables. All computations are to
be simulated with a record kept of the current value of the dependency
state for each labeled statement. When a goto L is encountered, the current
dependency state is comparrd with those previously in effect when L was
executed on this path. 1f the current dependency state is in the list, then
no further execution of the path is required, since nothing new can happen.
This fact limits the length of any path which must be considered.  gotos
must be executed if the computation is not finite, and so this process must
terminate. If all simulations lead to halt statements whose argument x does
not have its corresponding bit set, then a change in the formal y does not

affect the result of G. In all other cases it does. q.e.d.

5.4. Coincidence Class Decidability.

The lemmas from the last section will enable us to decide the

coincidence class problems for free schemata.

Theorem 5.8.1: For free schemata the membership problem for coincidence

classes C¢, Cypy Cyp and C,j is decidable.




Proof: Apply lemmas 53.6 and 5.3.7 for C,. and C,. Apply lemma 53.3 for
Cun. For C,; all three lemmas solve half of the problem. The other half is
recognizing whether there are side effects when the actual is coerced. If
there are, multiple evaluations may be required and values of simple variable
actuals may change. Lemma 5.3.6 recognizes side effects and if there are
any, one must decide if the formal is evaluated more than once. (This
requires only a minor modification to 5.3.2 and is left to the reader.) If it is
repeatedly evaluated and there are side effects then 53.7 can be used to
decide if it makes any difference in the result. This solves the problem for

C,; aqed.

Theorem 5.4.2. For free schemata the membership problem for concidence

classes C., C, and C is decidable.

Proof: From a syntactic check the duplicate actuals can be found. A
modification of 5.3.2 will determine if the corresponding formals ever get
assigned different values. If they do, lemma 537 determines if the
differences affect the result. Membership in C, follows from 533, 5.3.6 and
5.3.7. For C we necd the arguments just given for the C.. case, lemma

5.3.3 and the argument from the last theorem regarding side effects. g.e.d.

Theorem 5.43: For free schemata the membership problem for coincidence

classes Cy,, C.j and C,, are decidable.

Proof: Membership in C., follows from 533, 536 and 53.7 as well as the




comments on side effects. For C.; and C,; the earlier comments on side

effects apply together with lemma 5.3.3 for the former and lemmas 5.3.6 and

5.3.7 for the latter. qe.d.

These results enable us to recognize that the facilities of a parameter
evaluation mechanism are not fully utilized throughout the entire schema.
Such a decision procedure, then, would enable a different "run time"
implementation of parameter passing. Clearly, the usual case would be that
some evaluations require one mechanism while others could get by on a
"weaker" mechanism. If this information can be used to perform some
optimizations, then the proofs of the above results are such that the analysis

may be applied to these particular cases as well.

There can be no doubt that freedom is a very restrictive property. 1t
has allowed us to recognize when the various mecihanisms coincide. The fact
that the property isnt decidable does not render our results useless since in
compilers the modus operandi frequently assumes that the programs are free.
If they are, then we know that a compiler can do a good job at translating

from one parameter evaluation mechanism into another. If the programs are

riot free, then we do a less than perfect job, but we make no mistakes.

i




6. Summary.

To summarize the relationships discovered in the earlier chapters, we

have,

Pry & Prc = Prr. = Prp = Pryg = Prun < Prj 2 Priy < P = Prq
where x = v,,r,n and the last two classes are universal. We showed that
Ppj cannot be effectively equivalent {o Ppy. We correlated our results with
the notion of fixed point computation and our proofs suggest that zlthough
call by value, copy and reference do not, in general, compute the least fixed
point, there is a constructive way to find schemata for which these
mechanisms do compute the least fixed point. We were able to characterize
all of our mechanisms in a simple and uniform way. Although tne
equivalence of two evaluation me(rods on a particular schema iz generally
undecidatie, decision procedures were foun. for a restricted class. This
class is consistent with the modus operandi of most compilers and for these,

parameter evaluation optimizations could be realized.

Having considered several kinds of evaluation mechanisms, it s
reasonable to ask how do the facilities compare. Certainly, the conventional
wisdom has been called into question which says that call by name is
"strorger" than call by value because it postoones =valuation. We would
have to say that the important advantage of call by name over the weaker
mechanisms is that it allows multiple evaluation of the formals with

(potentially) different results each time. This facility is actually a very




restricted way of manipulating unevaluated functions as objects in the
language. We saw in Prq that generalizing this facility achieved universality.
If Pg; were universal too, then it would be a far more attractive way (from
an implementational standpoint) to achieve the computational power than a

general function manipulating language.

Even though the weaker mechanisms are equivalent, a look at the
proofs indicates that our study of classes of functionals, like other
computability studies, does not tell the whole story. The efficiency degrades
tremendously between Pgp, and Pg. and between Ppr and Pg, If our
constructions cannot be made more optimal, then this suggests that there is
a difference between these classes which we have not had the mechanism to
recognize. Some complexity analysis might be useful in separating these,
though its not quite clear how to formulate the questions.  Alternatively, one
could consider a stronger notion of equivalence, where all basic functions and

predicates must be executed in the same order.

While we are on the subject of practicality, even if PRJ turns out to be
universal, a "practical man" would be less than excited with the necessarily
nonconstructive nature of the equivalence. But pragmatically cpeaking,
markers are generally available when performing all but the most bizarre

programming exercises anyway, so Prjy may be a more reasonable model of

our use of call by name recursion,




We have left one open problem. The question of whether call by

name is universal is closely related to open problems of [2] and [1)
(Notably, the question of whether program schemata augmented with two
push-down stores with empty stack tests is universal) Finding solutions to
these, however, is probably best treated as recreational mathematics. We
will learn very little new when we know the answer. Nor should much time
be spent adding ones favorite language features to program schemata and
comparing them to other classes. In the first place most common
programming language constructs have already been examined and secondly,
for n language features one can potentially form 2" classes with each
probably requiring a separate proof. Rather, future research in comparative
schematology should be applied to finding out which "properties” determine
the relationships which we've been studying. When we no longer have to
produce a special proof for each new class we find, then we will have taken

an important step forward.
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Appendix 1.

1 The following construction completes the details of Theorsm 4.2.2 Note
] that the informal description given in the text over-simplified the problems.
) In particular, since the noncoercion facility of formal parameter assignment is
used so extensively, all data manipulation must be done via formal parameters
so that no subscript function can inadvertently become evaluated. To help
t the reader, the formals s, t and temp act as globals anr are used strictly to
transfer values. (Think of s and t as source and target, respectively, i.e.
t « 3). In addition when a subscripted variable is to be fetched from, the
formal Afetch is used to return to the earlier environment for the fetch and

Astore is used analogously for stores. As was done in 3.3, no auxiliary

function corresponding to a statement of the Py schema returns until the
computation is complete. Finally, most functions are used for manipulation of
formals and hence their values do not matter. As a reminder to the reader,
we always pass ) as a helt argument in these cases and make assignments

o' =uch function’s value to a variable dummy.

‘A remaining detail concerns the degenerate and erroneous cases (see
1.3). In particular, if a subscript value is used as though it were a domain
value, the value should be taken as ). Conversly, if a comain value is used

as a subscript, location zero is to be referenced. Note that it can be

effectively decided how the value is to be used, aithough it cannot be

decided what type it will be. We require, therefore, that two corics of all

TR T T m————



variables and array locations must be maintained. One will be used to hold
only valid values for subscripts and another valid values for domain elements.
They are initialized to the function znro.and the value 0, respectively. Ther
the fetchs and stores are made with the proper element of each pair as
dictated by the circumstances of the use. For identity assignments (x « y)
both terms are copied. Note, the construction given below, to avoid adding
extra crmplexity, provides only a single cell for all variables. The reader

can fill in these detaiis allowing for ill-behaved schemata.

Construction: Let T be a schema in P The following outline should provide
sufficient detail to convince the reader that an equivalent schema in P, can
be effectively found.
(i) Label all instructions of the T schema and determine their successors
as was done for the construction in 3.3. The constructions for (ii), (iii),
(iv) below do not actually include all of the cases (eg. v, « v, but
we trust the reader can fill in the details.
(i) Let <S> be a statement labeled L, whose successor is L; and
envolving the reference of array values A[v)), A{vj} ... Alv,] and an
assignment to Alv,) We define (schematically) an auxiliary function as

follows.

Lsttemp,Astore,Afetchyv vy, . . . Vp):

temp € v

dummy « Afetch;
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Avi « {;

temp « v,;

durmmy « Afetch;

Avk « t;

<§">;

s « Avi;

temp « v

dummy « Astore;

z « L(st,Astore,Afetchvyv,, . . Wk

heit(z)

where: VIVa + . oVp, are simple variables in T

Avi, Avj, ... Avk are new identifiers called array referencing
identifiers and are used in lieu of subscript expressions.

<§> is the statement identical to <S> except with array
referencing  identifiers replacing the array references. The
rsader can make the obvious modifications in the event <S> s
an if statement (and has two successors) or in the event it is

a halt statement (and has no successors.)

(iii) Let L, be an assignmeni of zero,

Li: Alvy] « 0;

with successor statement L. Then form a new auxiliary function as




98

follows.

L,(s,t,temp,Astore,Afetch,vl,vz, e aVph
temp € v;
s « zero(s,t,temp):
dummy « Astore;
Z € Lj(s,t,temp,Astore,Afetch,vl.vz. NV

halt(z)

(iv) Let L, be an increment statement, i.e.

Litvp € vg + I

with successor statement Ly Tnen form a new auxiliary function

following the schema:

L,(s,t,temp,Astore,Afetch,vl,vz, T
local «
dummy « increment(s,t,temp,vq);
Vp & temp;
Z « Lj(s,t,temp,storechain(s,t,temp,local,Astore),
tetchchain(s,t,temp,local, Afetch)v,vs, . . WVnh

halt(z)

(v) Define the following <rec function> and auxiliary functions.




(upuy, - . Uk

source « ();

target « 0;

temporary « ()

z « firstcall(source,target,temporary);

halt(z)

firstcall(s,t,temp):
local « )
z « Ly(st,temp,storend(st,temp,local)fetchend(s,t,temp,local),
ViVa -+ oVph

halt(z)

fetchend(s,t,temp,local):
s « local;
dummy « temp;

halt(N)

storend(s,t,temp,local):
t « local;
dummy « temp;

local « t;

halt(n)




fetchchain(s,t,temp,local,pred):

temp « pred;
s « lucal;
dummy « temp;

halt(N)

storechain(s,t,temp,local,pred):
temp « pred;
t « local;
dbmmy « temp;
Ioc.al et

halt(N)
zero(s,t,temp): t « s; temp « 0); halk()

increment(s,t,temp,chain):

temn « index1(s,t,temp,chain)

hal¥(n)
! index 1(s,t,temp,chain): temp « chain; hslt(n)
i
where: Upla, . . 4Uy are the input variables to T.

ViVa « - 4V, are the simple variables of T.
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Appendix 1.
The following construction completes the detailc of Theorem 4.2.3.

Let Tm be a [uring machine over two input symbols {0,1} with a tape

one-way infinite to the right. Let Q be the discription quintuples,
<state,symbot,newstate,newsymbol shift> ¢ Q.

We will employ a technique which differs little from that used in Appendix I.
The only subtlety is in the fact that for that simulation the indefinite
recursion was done explicitty with each procedure calling its successor(s),
while for this simulation we must perform the indefinite recursion by
executing a formal (er) so that the decison to helt can be made. The tape
will be created, one cell at a time with local variables. (Whereas in
Appendix | the local was the storage cell of the defining environment for
that cell, this construction must pas;“ihe cell as the storage for the next
calling environment. (This is because the tape must be initialized to blank
where before it was initialized to .) The tape symbols will be functions,
blank and mark. These functions will manipulate global formals (zero and
one, respectively) to decide which is the next state. Writing on the tape
and movement of the read head are done analogously to that for array
assignment and index incremer:ing. The remainder of the details shouid be

clear.

Construction. The following steps will produce a schema T ¢ Prq with the

requirements that if T halts then Tm halts on blank tapes.




(i) Let <ix,jsymbolshift> be a state quintuple, where i is the state
number, x the symbo! read, j the new state, symbol the symbol written
and shift the direction the tape read head is to move. Form an
auxilary function ixstate according to the following scnema, such that:

(a) 1* or 2* is chosen depending on whether the written symbol is

O or 1, respectively.

(b) 3* or 4* is chosen depending upon whether the head

shifted right or left, respectively.

ixstate(temp,ex,zero,one,read,write,head,symbol,cell):
local « ();
cell « blank(ex,zero);
1* symbol « blank(ex,zero)k
2* symbol « mark(ex,one);
temp « head;
dummy « write;
3* head « shift(temp,ex,symbol,head);
4* begin
temp « head;
dummy « temp;
head « temp end
zero « jOstate(temp,ex,zero,onetaperead(temp,ex,zero,one,cell,

symbol,read), tapewrite(temp,ex,cell,symbol,write),
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head,symbol,local);

one « jlstate(temp,ex,zero,one tapereaditemp,ex,zero,one,cell,
symbol,read),tapewrite(temp,ex,cell,symbol,write),
head,symbol,local);
temp « head;
dummy ¢« read;
dummy « ex;
halt()
Note that the transition is realized by loading zero and one with the
proper successor cells and then invoking read which executes the tape

cell function. The tape cell function then transfers the next state

function description into ex which is executed in the assignment to
dummy
(i) For all halt pairs <ix> generate: ixstate(a,b,c,de,f,g,h,i): halt((d)

(iii) Generate the following utility functions:

firstcall(temp,ex,zero,one,head,symbol,cell):
local « 7
cell « blank(ex,zero)
head « shift(temp,ex,symbol,pass{temp,ex,.* ~t.o);
dummy « 10state{temp,ex,zero,one,readend(temp,ex,zero,one cell,symbol),

wi iteend(temp,ex,cell,symbol),head,symbol,local);

hatt(N)




pass(temp,ex,symbol): ex « symbol; temp « (); halt(Q)

readend(terp,ex,zero,one,cell,synbol);
ex « null;
symbol « cell;
dummy « temp;
dummy « ex;

halt(n)

writeend(temp,ex,cell,symbol):
ex « cell;
dummy « temp;
cell « ex;

hal¥(n)

taperead(temp,ex,zero,one,cell,symbol,pred):
dummy « pred;
ex « null;
symbol « cell;
dummy « temp;
dummy « ex;

halt(n)
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tapewrite(temp,ex,cell.symbol,pred):
dummy « pred;
ex « cell;
dummy « temp;
cell « ex;

halt(n)

null: hali())

shift(temp,ex,symbol,chain): temp « chain; halt{)
(iv) Gener ate the following <rec program> and augment it with the
auxiliary functions from (i) - (iii):
(x): temporary « 0
local « ();
execute « ();
zerochoice « ();
onechoice «
tapehead « )
writingsymbol « )
dummy « firstcall(temporary,execute,zerochoice,onechoice,tapehead,
writingsymbol,local);
halt(n)

Note that the input variable is unused and is provided only to meet

syntactic requirements.

o p——



