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NOTATION

Dotted variables have dimensions; undotted variables are

dimensionless (reference length is U'2/g). Symbol - stands for

Fourier transform. Superscripts s, b, k stand for free-surface,

body and waterline effects, respectively.

b' half beam

B' beam
<- ;.s b .

s b t first and second order cosine spectrum

func tions

f(x,z) hull shape function

Fn length Froude number

g acceleration of gravity

G Green function

G ,Gw parts of the Green functionr~tr

h(x) waterline shape function

h S auxiliary function

11 bI ,3 ,3 auxiliary functions

half length of the ship (t t /U1

length of the ship

L(a,v) auxiliary function

m(z) cross-section shape function
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s b t
M ,M.,M auxiliary functions

s bp2,P2,Pb auxiliary functions equivalent to

pressures

s b t s b L
q ,qjq ,q p,q Jpq auxiliary functions

R wave drag

S submersed area in the center plane

S,S 2 S2 ,S2 3,S2  first and second order sine spectrum
func t ions

tt 'draft

U1 ship velocity

x1,ylzl cartesian coordinates attached to the
ship

longitudinal and transversal wave numbers

root of 2 -a 0

n(z) Dirac function

. = b'/,' slenderness parameter

S= b'g/U" slenderness parameter

, (P2),Pa, first and second order potentials
w aw bw Lw ww , a ,bw ,w free wave potentials
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= (= 2 + A32)2,

auxiliary functions

I' = [(a_-)2 + (PT)]2}

coefficient of artificial viscosity

v integration variable

V root of V -p=
i 1

p = + T2)2 auxiliary function

T integration variable

s, baC first and second order free surface

elevation

Sw S bw -W w
- ,C ,Ca Ic ,, first and second order free waves profile
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ABSTRACT

The present work investigates second order terms of the

expansion in the beam/length ratio of the potential of flow past

a thin ship. The ship is in a steady translational motion, in

water of infinite depth and infinite lateral extent, within its

central plane of symmetry. Heave and trim are not taken into

account.

The expressions suggested by Maruo (1966) for the second

order potentials are taken as the starting point. The second

order potential is split into the free-surface, body and water-

line integral corrections. The associated sine and cosine

spectrum functions are derived systematically by using double

Fourier transforms. Computation of the value of a second order

spectral function for a given transversal wave number is shown

to require six Integrations in general and two Integrations in

the Tase of a simple analytical hull shape functivn. Simplifica-

tions of spectral functiona In the case of separable hull func-

tions and syiametrical ships are discussed.

The second order spectral 'unctions are cvmput.'d in detail

for the particular case of a ship with parabolical waterline and

rectangular frames. Preliminary numerical results for the second

order sine spectral tun, tlons ror the draft/letigth :'atio equal to

0.1$ and for the JFroude numbers F,-. 0.316 and F b. 0,.200 are

presented and discunsed.
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I. TNTRODUICTION

We consider the generation of waves and the -ssociated wave

resistance of a thir, ship mov'Lng at constant speed in still water

of infinite depth atid infinite lateral extent. The usual linear-

tz-ed theory 'Michell's theor,) is known to be a first order solu-

tion 'In the beam/length ratio (Peters an,'- Stoker, 1967). The

general expressions of the second order pntential, and the assoc~la-

ted wave resistance, have b'~en derived in a cornolete form by

Wehausen (963 and M.aruo (1966). The aiim of the present work

is to derIve a method of c,.mputing the si-cond ordier vff'ects,

whi chI- has becotme poss'Ible wtth the avatlabtllity of fast electrodec

,Ic ctpta C nort tirp ex rem fl YY 1-1-~ - a or hefrhr

Of *ehQ e-yo wflVe rorttree -, n ft t apo !.4 tor.

They ~ ~ ~ ~ ~ ~ ~ ~ ~ a tAV b~t~t tn v cevua wv ~h

't Imp.e Ia~ en t-Ar 1Mcz; lsoar* I~ -

'Ct-i -. )t ~ -zrrr *~klts* tv Vnwtjt,Ijt flr*-4 l-- cra

zayo rt~ hcd r Ir t-. o r c, tng wdwth -4c4 t 4-tb~, ftv stt't1 d~r -

$'ecz~ tn h ~ n N~z to rt'v vo Van *,,yx .b!?

improved byacomngCrnnhcatffc.
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The second order wave resistance has been computed by

Eggers (1970) for a parabolical ship. The present work parallels

somehow Eggers fundamental studies, but differs in method: the

second order free waves potential is derived by straightforward

double Fcurier transform and the wave resistance coefficient is

computed from the free waves spectra.

The influence of trim and heave is not taken into account

here, but the method can be used in order to incorporate these

effects too.

II. GENERAL FORMULAE FOR FIRST AND SECOND
ORDER POTENTIALS AND FOR WAVE RESISTANCE

We consider a symmetrical ship of length L' = 2t', beam

B' = 2b' and submersed area (in the center plane, beneath the

unpertvrbed level) S', moving at constant speed U' in the posi-

tive x' direction (Fig. 1) within its plane of symmetry. The

axes x' and y' lie in the horizontal plane of the unperturbed

free-surface while z' is vertical and positive upwards. z' -

-t'(x') describes the contour of S'.

The variables are first made dimensionless with respect to

U' and U' 2/g, i.e.

x,y,z = x'g/U'2 , y'g/U'
2 , z'g/j'2  ; p = g/U 3

[2.1]

C= 'g/U'9 ; t = t'g/U'2 ; C = t'g/U'2 ; £ = b'g/U'2
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where cP( xt,Y!,zI) is the velocity potential (the velocity is
its positive gradient) and CI(x!,y?) is the free surface elevation.

The equation of the hull surface is as follows

y = ef~~z)(IX! < t-, z > -t) [2.2]

We consider the translational steady motion of the ship which is
kept otherwvise fixed with espect to the coordinate system.

Assumning that E = o(1) while t 0(l) and t = 0(l) the
potenti.al is expanded in a perturbation series as follows

CPX-Y.Z;-x + Cew,(x,y,z;.t,.) + CeP(x'y'z;tf,..)

[2.3]
For the 31ke of completeness we give here the expressions of cp,
and m2 following Maruo (1966) formulation:

CPi-(x.,,Z) 1f f G(x,y,z; -X,0,-z) d-xdz [2.4]

Sb

P2!-CP* + CP2 + CPZ 2 5

cpkx,y~z) 2- J ~X,Y) G(xy,z; ,O) didy[26
4v ..
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.Q(x~y~z) = z) G(x,y,x; x,,z) d xd 2.7]

S

_ ,(x,y,z) p2 (x) G(x,y,z; _x,0,0) dx [2.8]

2-r -t

s b
where T2, m2 and e s are the free-surface, the body and the water-

line integral second-order corrections, respectively, and G is the

Green function. The p2 funntions have the following expressions:

s---x + 2 s-xy+
p2(x.,y)= 3 -x -x + y 2x~ - bx y

2 - (x=x, y=y, z=0) [2.9]

p-(xz)= - (f T) - T- (f - (x=x, y=o, z=z) [2.101

t-: - a

-'p (,) -x z (x=x, y=0, z=0) [2.11)

The Green function is given by

G(X,y,7; x,yz)= 1
X + (y-) + (z-z)2if

iG [2.123

X + (y-) + (z+)1 r
--------- 

_y
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where G is regular in the lower half plane z < 0 and G satisfies

the linearized free-surface and radiation conditions.

We sha'll use in the sequel the following Fourier transforms
Lcc

.• f
§ 2r f dx f dy #(x,y,z) ei( x+y) [2.13]

- -r-f dczf dA 3(a,A,z) e( x+y) [2.141

where a and A are the longitudinal and transversal wave numbers,

respectively.

The Fourier transform (FT) of G has the following expression

(see, for instance, Timman and Vossers, 1955)

:~-Y I z-zl Y Z+2 e -
(z+ z )

G= e (z - ei(ax+gy) [2.15]

where ' = (a9 + )2 is real and positive for a, A reals and IA

is a positive coefficient of artificial viscosity which is let to

tend to zero (P is introduced for an easy account of integration

paths in the complex plane). The three terms of G [2.15J are the

FT of the corresponding terms of G [2.12].

--------- a -
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The F? of the different potentials are cbtained by replaciL,"

G by G in [2.1;] - [2.8]. We are interested here mainly in the

potentials of the free waves for x - - . Only part of G, namely

w 2 e(z+) i(ax + P) [2.16J

a2 -y -iA

contributes to these potentials. We can write, therefore,

CP1 2 Sj (x,,O,z; z) dxdz (x L -c) 12.173

S
-sw hw -tw

and similar expressions for CP2 ,3-P2  and CP2

To simplify notations we define the following functions

(,)= L e aX dxdz [2.18]
-$ S bx

s 1. sei(ax+Ay)12(a,p) si -* -Y D'(+ [2.19]
=2 

2 dX Jd (xY)

b b() ZiLxL

S

C' ~ ~ ~ - iax-[221
.(a,) t( J p9(x[2.21x12 J'- p
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w -~
The free wave potential pi can be obtained from CP1 L2.17J

by inversion [2.14]. The free waves potential results from the

contribution of the residues at the poles

a = a a ( 1 + (1+4)] [2.227

of the' quotient i/(aa-,y) of Gw L2.16i for integration over a.

The presence of P in [2.161 requires circumveting these poles

from below. The residue of the quotient is 2iria /(2a p2-) whilep p
v(a ) ( a)

p p p~w
Hence, the free waves potential cp may be expressed with

the aid of L2.16), L2.17] and L2.18] as follows

S(x, y Z) = - - cos ax

w z 3zI

s(ap + x P e P cos AydA.. ~~ - . 1-p p 2a 2-1

p
L.2.231

sw bw tw
the expressions of p. cps and tPg being similar to [2.23J with
Ii replaced by 1 I b and I [2.19J - [2.2i]. respectively. Cos Py

i gyh a3 b e e n substituted for e in L2.23] because of the sym-

metry of the flow with respect to y 0. Equations [2.18J - [2.21]

show indeed that IJ(a,) - I ( (-)c,) is purely imaginary while

I (a,) + I(-app) is real (J = 1,2), so that cpw are real.

i'J



HYDRONAUTICS, Incorporated

-9-

The equation of the free-surface has an expansion similar

to L2.3)

L2.2111

The equation of the free waves profile is obtained from the

potential as follows

C~'(x~y) bCs +m +C

acps (x.1y,O) 26

It is worthwhile to mention here that C, differs from C, by local termLS

which decay algebraically like (Xc+y)' for x -~-,while the

local terms in Ce are of order (x2+y') ._

It is seen from L2.251 and [2.23J that one can write for

the free waves profile

w0

ct(x~y) 7r CS,(p) sin ax4 C&(~ cos a xj - cos AydA

t2.271
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.wherke the sine and cosine spectrum functions SI(A) and Ct(A)

are given by

-iC%(A) =211%(a .19) [2.28]
p

sw bw 1-WSirnii1r expressions are obtained for C9 Cg n .wt ~
s s b b t

C% replaced by So, Co, So., Ca, So., Co, respectively, in[27"
s b

and T,.14 by Ia, i., and Is in [2.281.

Fally, the dimensionless wave drag R =R'g 9/U'cnb

writtenf,: on the basis of the first and second order potentials,

as follows.

R f- [ (CSI + CISS)2 + (CC,+ eC.IC)2) Pi- dA [2.29]
-m~2 2- 1

p

Expending Rl in-an £series yields

R -'CORI + 63RI + (C') [2.30J

where

1 (S' Cs)+ L2.311

-m 2a 8-1

p
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R [2.29] is always positive, whether R [2.30] may become

negative if the second order effects are exceedingly large.

Using [2.29] is, however, inconsistent because it includes

contributions O(C4).

All the formulae of this section are well documented in

the literature (for instance in Wehausen, 1973) and have been

given here for the sake of completeness and clarity of notation.

'The purpose of the present work is to derive the second

order spectrum functions S9(p) and CO(A) for ships of given

shape.

III. THE COMPUTATION OF THE SECOND ORDER
FREE WAVES SPECTRUM FUNCTIONS

Equations [2.191 - [2.21] render the functions needed for

the computation of the spectral functions in terms of the first

order solution cpa. Considerable simplifications in number of

integrations and smoothness of integrands may be achieved how-

ever, by further elaboration of the integrals of [2.19) - [2.21].

1 . The Complete Expression of

Equations [2.16] and [2.17] render the expressions of the

FT of the first order free waves potential. The second order

terms, however, are based on the complete expression of t , i.e.,

on the local as well as the far waves term. It is useful, there-

fore, to write v and its derivatives in an explicit form. From

[2.4] and [2.15) we have
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2e '  af(xz) ( e zz yi -

--y(a.)} e dxdz 3. ) 

a -y- i~a

We shall consider here smooth ship shapes, the highest

conceivable singularity of f being associated with a flat bottom,

where C has a finite lump for z = -t. It is seen from £3.1)]that

and ( / z) are then continuous for z = -t and (bcp ,/Sz3) has

a finite discontinuity at z = -to This observation will be used

in the sequel.

s 12.6) and v , £2.8) are based on the equations of
p.(x,y.O) and its derivatives. For z -10 we obtain from 3.1

the following relationships

where*~,0 f a iiejm o -t Itisser ro [.1 thatJ

-P1 an raj/z- iae the cniuou forz -t and (a%0) h3.3

and similarly for higher order dervativeo.
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b
CP- L2.71 is based on bcpt/6x and 41p/6z along S (y=O). For

the FT of these components we obtain from [3-1]

= - (y = 0) [3.2 ]

1. __ -(zz e'Y(z+Z')]

_-.4 f [e-'l 'z- lsign (z-) + -

S a

- } e dd7z [3.5

I S
2. The Computation of S.s and Cm

We consider first the free surface second order effect. The

function I a(a,) 12.19] is proportional to the FT of p(i,)

L2.9]. Using the convolution theorem in its following symetrical

form

S S

W(xpy) ,(x$y).*W dv dr

[3.6]

where a and 9 are arbitrary functions having FT and v.? are

integration variables, we may write with the aid of E2.9] and

13.3J
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0 0

is (a. f cvf dT h £3.7)

with

h (a,,v 3a= av+a(-)VPT)+aY"*2-2av

-v(a-v) Cv3+(a-v)') £3.8)

By substituting in £3.73 the expressions of ;,w (3.2, 2.18] we may
rewrite (3.71 as follows

Iu(a,A) = fdv fdT b G(Q) v,1q a(Q) 0v) v 3.9)

where

-h a(CA..vT)
q(v,-p-1s~v) £(ca-v)e r i~A(riv) £3.101

L at' er i(Q-V)

L3.11]

p (v9.*~ r . c-v~ + (A-?)*] £3.12)
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and p, r are real and positive for VT,a-xv,A- real.

Due to the use of [3.6j the function qS(aA,,v,r) and

b ,,vT) have the following symmetry property: under a

change of variables a-v = V, A-T =T

q a,3v* = qS (3.13).( a ., [3 . 13 1
b (aA,v,,) = b 8(a.,,A )

The contribution of qs in [3.9] under integration over the

variable v, for instance, may be further split into an imaginary

part resulting from the semiresidue at the poles of qs [3.10)

and a real part from a Cauchy principal value. The poles of

the quotient 1/(va-p) of q8 are at v - z VP where similarly

to [2.22)

- 2 (1+(4.i)]) (.ii

and they havf to be circumvented from below. The other two

poles are associated with the quotient I/L(a-v)*-r] in E-3.10,

...at due to the symmetry of q (3.13) it is enough to account

for the semiresidue only at Vv, and to take the result twice.

Hence,
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Is,,a, r iJ dT[bs(a,A,v ,)qs(C"A,v ,T)+bs (,,A,-,,T)q(a.,Aq-v )
-. p p p p p p

' ~+ dT, dv[bs(a,A,v,'r)qs 8, a,+b{ , ,q'<,,_,)

with

,- S q 8 2vh (a, P.v, f 3-6

The symbol fstands for the Cauchy principal value at the
poles of the int, 4rand. Due to [3.13] we have the following

symmetry properties

bi .. " lll'~~ato.i > Iv,, .-It *'( ,V , ).

nme !nt Ions i-n their f Inil form. asi fellow$i-

55
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= 2 (a(i~a,8,v,11:(c -2w f Lbstcz ,A3,v *lqS(a ,0,',)-
PP ' p Pp

-b(-a ,,, ,jq -,I Jd, +

.211 d~fdvlb3 (ci P~vvT)q (Cl $V

The tuntitornqa ~ 3.180 a(ic 3.) *-rg
and do not dtepend o~n the sap ta tM hitp. b £uj is fnrr
ally complex aqt deroni-9adV4ls r Tx

-.The Comau tat tn V~ bjOn*

-WO eot,64er -Ow th# ncrd~lr body tet tr r
trarton thite presai4on of, 1 z 2.l0 by f. fqstgit 4 v y
carte and by atsufl tatan " tour 21r0 S r ti

result being valiA #vletb tor a~ ~.ptttn t 3. j ~ti

b~~ bt bt 604
Ie~a,~ ~.* I ~ x~ ff

Ct .I
he 1 1 -
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b
Hence In has been split into an integral over the center plane
bcb
Iscand a waterline integral I3.

bc
We transform the expression of Is by substituting for

bp/bx and ip/bz in [3,19]

-O -Mx

.T- 27r -T - x

r(x,O,z) f f -° e [3.21]

and after using [3.4, 3.5, 3.1] and an integration by parts over

x we obtain

c j=IV

Ibc IIc, bvfdT qb [3.22]Is(zi)= J v d L qjbj

J=I

where

b __ b av *b ~ yp+av b b(y~a)
a-v q1 1  p(a-v) qI1 I p(a,-V) q V 7- (-V))VV -p-tV)

[3.23)
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.I- sign(z-Z)

b
=ji 7fx L e'~e(a-v)iffd~xdz e~" e~

S S

bb =b ePIZ+ZI
III IV 

P =

[3.24]

Next we consider It [3.19] which under substitution of
[3.21) and after using [3.1, 3.2] and an integration by parts

over x becomes

=( f dv f bdT q bb [?.25]

where

q b 2V9

- (c'-v) v-~i) [3.26]

_ _z

bv= i rd fI(x,O) -(= 7 fx =
Vi (47v d) (ffdxd - ) exe ax ) [3.27)

S&S

b
Summarizing, Is [3.19) has the following expression



HYDRONAUTICS, Incorporated

-20-

V

is (af dv dTq (a,A,,v.,T)b (a,,V,T) 1[3.283
Sf

J=1

Equation [3.28) has the same structure as [3.9]; we proceed,

therefore, along the same lines: we aeparate the contributionsb

of q. at the poles v = 1v [3.141 and on the rest of the v axis
_ b

and use the symmetry properties of q and b which are similar

to [3.17]. The final result for the spectral functions is, like

in [3.18],

b b bsi(Micb(A) 211(a A,,V,T) =

p
J=v

=- V f dT[b (ap,A,V, T)q ,p(a ,Avp, ) -

-- =I o
47.r- f - p , , q p( +

$1 J=Io o

b b

+ bj(-a p,A.,T)qj(-p,3,vT)] [3.29)

where

b (+av b _2vC

41 ZlV, p = --- (( i )V, ( T M b -( .) )

+ b (- \J)T) b -a $,\JT)][3.29]

. .. . .. ] .. . .
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The principal value in the last integral of [3.29] is at

V v solely. The singularity at v = a of q. [3.23, 3.26] and<b b
b . 3.30 is removable since b, 0(a-v) for a-vO. Like in

[3.18] the function q and qjip in [3.29) are independent of theb 3,

shape of the ship while b depend quadratically upon bf/bx.

4. The Computation of S. and C.

Last we consider the waterline integral second order effect.

By substituting [3.20] in I. [2.21] and after using [3.3, 3.2,

2.18] we obtain

f fjIa(a, ) = fdVfdT q (v, )b*'(a , ,,T) [3.31]

*; where

(vq ) = p [3.32]

b=i d if O i(a-v)x f dc lfxz 02 iv

(~a, v, r) b f-- ej d = e e

~[3.333

By the same procedure of splitting the integral over v in [3.31)

as in the preceding sections we arrive at the final equation of

the spectral functions
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...

. -i = 21I (cz ,) =
p

-7rqJ p (v ) [b'(a ,p, , T)-bt (-a 5v p,T)]dT +

0
W O

* + 4if d," dv (,)[b pPVT)+bt(-a T)]
5p

0 0:" F3.34]

where

qp(,) 2v, [3-35]p 2 - i

The structure of F3.314] is similar to that of F3.18] and

[3.29] and it has the same ,'roperties as the other spectral

functions.

5. Summary

Equations [3.18], [3.29] and [3.33] render the various

second order free waves spectrum functions in a compact and

similar form. The total spectrum functions are obtained by

summation

... s b I s£ b=I-s$A C,+C,+C,-i(S,+S,+S, [3.36]
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In the most general case in which the shape function f(x,z)

is not given in an analytical form, two numerical integrations,

over x and z, are required in order to obtain a point on the

curves of C,(.) or S,(A) [2.28, 2.18]. To compute the value of

one of the components of Ca or S. [3.35], for a given #, six

numerical integrations are generally needed namely over x, z, x.,

z, v and T. This amounts to a huge volume of computations and

current calculations of second order effect for ships of arbitrary

shapes do not seem, therefore, to be of practical interest at the

* present time.

Considerable simplifications are achieved, however, if

f(x,z) has a sufficiently simple analytical expression or/and

if the ship is symmetrical,, Due to the fundamental interest in

computing second order effect, it is worthwhile to explore first

these simple cases.

IV. THE SPECTRAL FUNCTIONS FOR SEPARABLE

SHAPE FUNCTIONS AND SYMMETRICAL SHIPS

1. Separable Shape Functions

If the function f(x,z) is sufficiently regular it may be

expressed under quite general conditions as a separable sum

k=n

f(xz), h hk(X)mk(z ) [4.1
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where trigonometric or polynomial functions have been generally

used for representing hk and mk . Considering, for the sake of

_ * simplicity, only one term of [4.11, written generically as

*: h(x)m(z), leads to the following expressions of the functions

related to the spectral functions of Chapters II and III:

(i) The first order function I [2.181 becomes

o

d- (hdx he Jx m(7)e dz [4.2]
dx

-t -t(x)

(ii) The functions bs [3.11], b [3.23, 3.27j I...V)
and b £3.32], which are the only ones depending on the shtp

shape, may be written as follows

b - h (a-v) J f f b
* x~ - .t(x) -t(R) I

where

.. 1
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TS = m(z) ez e(z) e [4.4]

T1 = m()e Z r~)eOZ signli- l[ 5

i b = m(7) e m(i) e"PIZ [.6b YZ =Y -P 1721
TI T m( ) e m(z) ep (i + )  (4.61

III IV

Tb = TL m(E) m(i) ePZ 6(7) .8]: TV

and 6(z) is the Dirac function.

Hence, if the integrals in (4.31 can be carried out in

closed analytical form, finding a point on one of the CI(A) or

S3 (A) curves requires two integrations solely, over v and T.

However, due to the similar structure of the b functions, much

computer time can be saved by a rational programming.

The functions qs [3.10), qj [3.23), q [3.32)3, -5 [4.4)

and T [4.5 - 4.8J are slowly varying functions of v and r. In

contrast, the integration over x and ; in [4.3) renders oscil-

latory functions of v; the oscillations become rapid as 4-

4'g/U"l becomes small. Accurate numerical integration over v

of the integrands of the spectral functions imposes a dense

grid in the latter case, but considerable computer time may be

saved if the integrals over T of the slowly varying functions

are evaluated by interpolation from a sparser grid.
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Finally, if the contour of S is rectangular, i.e., jxI !,

0 > z > -t and t = constant, the first two integrals and the

last two integrals in [4.31 separate and the function

SL(a,v) -xi d ei~-) dx dh e i \) [4.91
dx -I fix

can be computed once for all second order terms.

2. Symmetrical Ships: f(xz) = f(-x~z)

In this cast the function I, (4.2) becomes

I,(c,') - if e" sin a7 d [4.10]

and, as well known, the cosine spectrum function C%(A) vanishes,
while according to E2.28]

-2ffe sinG ctx dz f.l

As for the second order terms, the functions be (3.11),
b (3.21, 3.27] and b [3.32) are purel imaginary. Ai a result

-- OEM
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s s
the cosine and sine spectrum functions Co and Ss £3.18], become

equal to the first and second integrals of r3.18], respectively,
b b. 41and the same is true for Co, So [3.29] and Co, So [3.34]. It

turns out, therefore, that computing the cosine spectrum func-

tions requires one integration less than those necessary for

the sine functions.

V. APPLICATION TO A SYMMETRICAL SHIP WITH

PARABOLIC WATERLINE AND RECTANGULAR FRAMES

1. General Formulae

We consider now the particular case

f(xz) a h(x) m(z)

£5.1)
h(x) - l-.(xS/4) ; mz) = 1 (lx < 1, o .-t)

with t - constant. Athis example has been selected because it is

the simplest conceivable smooth shape and because detailed mea-

surements have been carried out for models of such shape.

For the first order free waves spectrum [2.28, 4.2] we
obtain immediately the well known expression

-8 1-. p (coo a, - a

p p
[s.2]

C, - 0
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where a is given by [2.22] and C' by [2.271.
S I

The spectral functions Cg and S. [3.18J depend in part on

the auxiliary functions qS (3.103 and qs f3.16] which are inde-
pendent of the shape. The function bs (3.11) becomes in the
present case

b8(aAvTr = iL(,v) MS(QA,\,,) [5.31

where L(a,v) is defined by [4.9] and M results from [4.31.

Hence, by using C5.13, we obtain in the present case

L(asj) - 2 Ices a4 + cos (a--v)]-a'4' a + (a-2v)& ]
1

1 ~ [sin a&- sin (a-2v)4] -

" a4'(-) io (-2v)4

~~~- *,(=.g 1, (C, [.c - 00os c.2v)4,1) .

while 1 s is given by

0 0

f rdf d T ''Ut #QI.JIDPZ pr
-t -t (5.5]
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and gr are defined by 13.12].

The cosine spectral function 3.181 is, therefore, given

by

Cjp) = 27 dTr [LI'a v) Ms(aps A.,'p) q6(a p p.v) +

S+ L(-ctp) MH(-qpA,* ,VpS) qp(-(pp )- [5.6]

whereas the sine spectral function [3.18) has the expression

-* a
$:(A) -2 d Id\ (L(ca *v) N45 11p VASV) q6(apis o?

-.00

:- L(-cip.') H (-ap,.,,,) q (-cip,P,%J,)] (5.7]

all the functions appearing in [5.6] and [5.73 being defined
previously.

Similar equations are obtained for the body and waterline

incegral second order spectral functions. The only specific

computations are required by E4.3]



HYDROWAUTICS, Incorporated

-30-

0 0

. d z T, , (J ,1= *,...,v) [5.8)

-t -t

which leads with the aid of (4.4 - 4.81 and [5.1) to

Nb- ( 1(e-t-eVt) + 1 [1(l,+P)t) (5.91
Nb - t .- c+P

I -

Hece. ;'v b b "p l.)(1., "g) 4,f).- we( otaith .lloi .Una

(0- eV ... 10

.P -+ v' -.- .

b b

.-. - .ence,-with b - L,(arv~( v, we-Obtain..the. followingl final"...

expressions frthes pectral functions [3.291 ,OM: 034]"3

J*I.I
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Sb (Arr Ir'a P Mbct0,,rqb(a

o 0 =

~wdt (L(,a IV + L(--x )9 qm (5-1(51q~

0v (s(La 0 V-losm)

*V 0q(sT

o 0

2. Matsso of the Integration Procedurea

The second order spectral tuncttc ,i# hav# =a bt rpu ted

wac~caly.The; incion ~ it 3 nd it; ~ are

based on one Zntegratlon -evtwr ~ hil th # ,(,7.~.S
1n .6] Imp y & onjblv* *ntraon The njor cootrtbutaon,

In -in asymptotic sense, to the wave arqg (2 lrsut rott

sine Nuncttons.' Henvitfl kref a inw Obtrvations mcite.*d to L-tIt

titration procedures lln the ., plar.*t

I is easy to ascertain mhat t%# berhavdor at Infinity
of the inwogranus In (5.6 A 6] Ontures Int4grabilIty. .,Me

£ntqgrans in (S.. r5 ) n (5.13aci()tr -
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while the integrands in [5.7], F5.14] and [5.16] are O(p - 3 )

for p = -V - =. It is worthwhile to point out that if a

slender body type additional expansion is carried ouL, i.e.,

an expansion of e-pt, e - r t , 't in a t power series in F5.5]

and [5.9 - 5.12", the integrals of the spectrum functions

diverge because of the limited validity of such an expansion

for large p.

(II) The singularity of L(ct,v) [5.4] at v = a is removable.

In fact, it is easy to ascertain that for -a 0 L(av) =

0(v-a), which makes the integrand finite even for q. p3.23].ci

The singularity of [5.9] and [5.10] at y-p = 0 is also removable.

(iii) The integral in the v,T plane rendering S s [5.7]

involve some principal value computations. As a matter of con-

venience it was found that it is preferable to carry out first

integration over T and afterwards over v. The reason is that

the oscillatory function L(a,v) may be taken before the T in-

tegral, wh i e the remaining functions vary slowly with -.

The singularities of the denominator of q [3.10] are dis-

tributed along a few curves in the v,, plane, which are repre-

sented in Fig. 2.

Integrals along lines v w! constant in [5.7] may -ross,

therefore, up to four times the curves of Fig. 2 and at each such

pcitt an evaluation of a Cauchy principal value is needed. At

the beginning we have used a procedure suggested by Landweber
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(Kobus, 1967, Appendix 1) in order to compute the principal

values contributions. This procedure stipulates selecting the

singularity as a node in an equally spaced grid and replacing

the integrand by the derivative of its regular part at this

point. The application of the procedure has been found to be

tedious in the present case for a few reasons: at each value

of v rezoning of the grid is necessary, the use of efficient

numerical integration based on orthogonal polynomial.qi pre-

cluded, the vertices of the curves in Fig. 2 require special

treatment and numerical computation of the derivative is time

consuming.

The procedure used instead, which obviously is not the

only possible one, was as follows: in an integral of the type

I = f F(VT) dT [5.17]

-~(V2-p) [(a-v)*-r]

as encountered in [5.73, the singular part has been extracted

and I has been replaced by I', where

, F(\, T') F'(1 F' I , F'''(V
' - (v' -p)[(a-j) - T]- r_- " I -' "- T 5.8
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FN 2v [5.19)

_"~-(a- -(v,, ' )[5.20]

, 1= 2T (a-v)* F(v,,T','

:.~F1 .(V I ,, [\_(j2 ,,, [5.21 ]

'= [5.22]

T A+ (v-a) 1/7,-)- [5.23]

T, = - (v-a) "VT-)- [5.24]

The integrand in [5.18] is regular at the singularities of

Fig. 2, including the vertices, and any numerical procedure may

be used in order to compute I' provided that a too close ne-ghbor-

hood of the singularity is avoided.
s

Similar formulae are valid for the part of So [5.7] involving

q s(-a with a replaced by -a
p p p

b 4(iv) The integrals rendering So [5.14] and So [5.16] have
the only singularities along T = T' and the former procedure may

be used in order to make the integral regular, only the F'(v)

[519] type of function being needed.
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VI. PRELIMINARY NUMERICAL RESULTS

1. Numerical Procedure

We present a few preliminary results of numerical computa-

tions of second order spectrum functions. These first results

are presented on a tentative basis; they have to be furtherly

checked in terms of accuracy of numerical procedures and to be

extended to a larger range of Froude numbers. The computer

program has to be improved towards saving time.

The computer program has been written in order to determine
s b St

the values of S0 [5.8], S9 [5.14] and S. [5.16). The computation

of the C. functions, which is much easier, will be carried out

in the future.

As stated previously, numerical integration has been

carried out first along lines V = constant in the v,T plane..

A 48 points Legendre procedure has been applied repetitively to

intervals of A = 0.25. The integration has been stopped if the

increment of the integral on such an interval was lesser than

10-4 of the sum on previous intervals or after 25 intervals if

the criterion was not met. In the latter case integration

continued over 25 enlarged new intervals until the convergence

criterion was satisfied. When the integration was stopped, the

rest of the integral on the remaining T interval up to T =

was evaluated by a 24 points Laguerre procedure. The change of

&T from 0.25 to 0.5 showed very little change in the values of

the integrals.

. . . . . . . . .. . . . . . . .. . . . .
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The integration over v has been carried out with a

Simpson procedure, the v interval being r/80t, selected such

that enough points should be contained in a "wavelength" of

the trigonometric functions which are present in L(a-v) [5.4].

The integration has been stopped when the absolute value of

the increment was smaller than 10-3 of the previous sum.

Summarizing, the program admits t, = 'g/U'2 and t = t'g/U'
s b

as input parameters and computes So, So and So for any given

value of .

2. Numerical Results for Given Draft and Froude Numbers

The first runs have been carried out for t'/2 = 0.3 and

for t = t'g/U'2 = 5 (Fn = 0.316) and 4 = 12.5 (Fn = 0.200)... nsn bI
The values of the sine spectrum functions S , Sg, So and So

have been computed for A = 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6. In

Figs. 3 and 4 we have represented the functions

p p

which permit to rewrite the equation of the free waves profile

[2.27) in the more convenient form

3.= c- + c'g(P)) sin a x cos Ay dA [6.2)?~ p] -
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where e = b'/V' is the usual slerderness parameter.

Although conclusions may be drawn only on a provisory basis,

it is worthwhile to discuss a few qualitative features of the

curves of Figs. 3 and 4:

(i) For Fn = 0.316 (Fig. 3a) the free surface correction,

the body correction and the waterline integral correction are of

the sam( order of magnitude. For the smaller Froude number

Fn = 0.2 (Fig. 4a) the free-surface effect seems to tend to

dominate the other two contributions.

(ii) For Fn = 0.316 (Fig. 3b) So = So + Sg + S9 is roughly
equal and of opposite sign to S',. Hence, the second order term

diminishes the amplitude of the first order free waves and of

the corresponding wave resistance. For Fn = 0.200 (Fig. 4b) S.

is again of opposite sign to S , but the amplitude at the first

peak of the S curve is roughly four times larger then that of
SI.•

(iii) The first order solution is valid only if c << 1,

let say c < 0.1 for F = 0.316 and 7 < 0.025 for F = 0.2, i.e.,n n

as well known not only C but £ r. has to be small as second

order effects become more important at low Froude numbers.

VII. SUMMARY AND CONCLUSIONS

A systematic procedure of computing the second order

spectral functions of the free waves generated by a thin ship

has been derived. The procedure has been applied to the case of
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a ship with parabolical waterline and rectangular frames. Pre-

liminary numerical results indicate that the free surface, body

and waterline integral second order corrections are of the same

order of magnitude and neglection of part of them in order to

derive inconsistent, but simpler, solutions does not seem to be

justified. This conclusion has to be strengthened by extending

the computations to various shapes and a large range of Froude

numbers.

The accuracy of the numerical program is checked at present.

Later, cosine and sine spectral functions, as well the associa-

ted wave resistance, will be computed for various Froude numbers,

such that drawing more definite conclusions will become possible.

These future results will be reported elsewhere.
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