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NOTATION

Dotted variables have dimensions; undotted variables are

dimensionless (reference length is U'®/g). Symbol ~ stands for

Fourier transform.

Superscripts s, b, 4 stand for free-surface,

body and waterline effects, respectively.

b i

BI
b

S '
Cl :Ca ,Casca,r’a

f(x,2)

h(x)

h.!’5

g 2
Ih ;IG,IE,IH
L'
L!
L{a,V)

m(z)

half beam
beam

first and second order cosine spectrum
functions

hull shape function

length Froude number
acceler.tion of gravity
Green function

parts of the Green function
waterline shape function
auxiliary function
auxiliary functions

half length of the ship (¢ = 4'g/U'?)
length of the ship
auxiliary function

cross-section shape function
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s .b 4
M ,MJ,M auxiliary functions
s b 4 . .
Pz2,Pz2sP32 auxiliary functions equivalent to
pressures
5 %.q%, % d .ot iliary functi
q ,qj,q ,qp,qj,p,qp auxiliary functions
] R wave drag
E S submersed area in the center plane
3 b4
3 Sl,SS,Sa,Sa,Sa first and second order sine spectrum
: functions
t! draft
ON ship velocity
xX',yt,2! cartesian coordinates attached to the
ship
) a, B longitudinal and transversal wave numbers
ap root of a® -y = 0
E 6(z) Dirac function
€ =b/L slenderness parameter
€ = brg/u? slendernsss parameter
4
w;,w?,@?,w;,wg first and second order potentials

bw 4
mf,wfw,mgw,w,w,ww free wave potentials
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auxiliary functions

M coefficlent of artificial viscosity
v integration variable
Yo root of v¥ - p =0

3

p = (V@ + 1?) auxiliary function

T integration variable
b .4
Cx,Cf,Ca,Ca,Ca first and second order free surface
elevation

! L
¢, :W,C?w.Caw,C§ first and second order free waves profile
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ABSTRACT

The present work investigates second order terms of the
expansion in the beam/length ratio of the potential of flow past
a thin ship. The ship is in a steady translational motion, in
water of infinite depth and infinite lateral extent, within its
central plane of symmetry. Heave and trim are not taken into

account.

The expressions suggested by Maruo (1966) for the second
order potentials are taken as the starting point. The second
order potential is split inte the free-surface, body and water-
line integral corrections. The associated sine and cosine
spectrum functions are derived systematically by using double
Fourler transforms. Computaticn of the value of a second order
spectral function for a given transversal wave number is shown
to require six Integrations in genersal and two integrations in
the ~ase of a2 simple analytical hull shape function. Simplifica-
tions of spectral functions in the case of separable hull func-

tions and syumetrical ships are dlscussed.

The second order spectral Sunctions are compu:ﬂd-in detail
for the particular case of a ship with paradbolical waterline and
rectangular frames. Freliminary numerical results for the sgecond
order sine spectral fun tions for the draft/length ratic squal to
0.1% and for the Froude numbers Fﬂ = 0,316 and ?n x U,200 are

presented and discussed,
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I. INTRODUCTICN

We consider the generaticn of waves and the _.ssoclated wave
resistance of a thir ship moving at constant speed in still water
of infinite depth and Infinite lateral extent. The usual linear-

ized theory {Michell's theory) is known tc be a first order solu-
tion in the beam/length ratio (FPeters and Stcker, 1967). The
general expressicns of the seccond vrdeyr nouential, and the associa-
ted wave resistance, have buen derived in a complete form by
wehausern (1953) and Maruo [(1966). The aim of the present work

is to derive a method of computing the scvecond order efiects,
whilch has become posvible with the avallability of fast electronic

eamputers.

sugh tomputaticons are extremely vnluable far the further

givantement of the theory af wive resistance and {ts application,

fhey may resullt In A more accurvats - ealuatl.n of wave resistance
2f shipa 1° those case: !n whicn the linearirsod theory hag bheen

ty.  Complete sedgnd order computations
Cway alge help in deciding whether gour ¢f the geqnond oprider ¢fs

gt & K] N N TERY P ’ Ay g ? ; ¥
ooty £an b neglialoed in oraer Lo Brrive 8% inccensisient, put
w0

compuled wave gpertra '3 ie posglible to fiad
grdoy éffééts or wircsus effecty are respondible for the dig~ 
srepanty belwoen lhe First arder solutint and experiments.

Finally, derivatim of shgpes oF 1itile wave regislance caﬁ'he

tmproved by accounting Fér non. lnespr offeglis.
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The second order wave resistance has been computed by
Eggers (1970) for a parabolical ship. The present work,parallels
somehow Eggers fundamental studies, but differs in method: the
second order free waves potential 1is derived by straightforward
double Fcurier transform and the wave resistance coefficient is

computed from the free waves spectra.

The influence of trim and heave is not taken into account
here, but the method can be used in order to incorporate these

effects too.

II. GENERAL FORMULAE FOR FIRST AND SECOND
ORDER POTENTIALS AND FOR WAVE RESISTANCE

We consider a symmetrical ship of length L' = 24', beam
B' = 2b' and submersed area (in the center plane, beneath the
unperturbed level) S', moving at constant speed U' in the posi-
tive x' direction (Fig. 1) within its plane of symmetry. The
axes X' and y' lie in the horizontal plane of the unperturbed
free-surface while z' is vertical and positive upwards. z' =

-t'(x') describes the contour of S',

The variables are first made dimensionless with respect to
U' and U'%/g, i.e.

X,¥,2 = x'g/U'%, y'g/U'?, 2'g/U'? 5 o = o'g/U'?

[2.1]

C=Clg/U? 5 t=t'g/U'®; L=1g/U?; ¢=0blg/u?
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where @' (x',y',2z') is the velocity votential (the velocity is

its positive gradient) and C'(x',y*) is the free surface elevation.

The equation of the hull surface is as follows
y = % ef(x,z) (l<] <2, 2 > -¢) (2.2]

We consider the trenslational steady motion of tne ship which is

Kept otherwise fixed with »espect to the coordinate system.

Assuming that € = o(1l) while ¢ = O(1) and t = 0(1) the

potential is expanded in a perturbation series as follows

O(X,¥,2;€,4,...) ~ -x + e (X,¥,254,...) + eama(x,y,z;b,...) + e

-[2.3]

For the .ake of completeness we gilve here the expressiéns of o,

énd ©; following Maruo (1966) formulation:

a - — — —
fg G(x,¥,2; X,0,z) dxdz (2.4]
3x

b L ' :
%2 = 95 + O + O -~ [2.5]

-] -]
s, 1 S, = - ==
3(X,¥,2) = 3= J/. J[. Pa(X,¥) G(X,¥,2; X,y,0) dxdy[e.6]
-® -0
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b 1 b,~ = - =
Pa(x,y,2) = 5;:[]rpg(x,z) G(x,¥,x; X,0,2) dxdz

S

1

4 1 L — - —
Pa(x,y,2) = s pa(x) G(x,y,2; x,0,0) dx [=.8]

-4

1
where mi, wg and ©, are the free-surface, the body and the water-
line integral second-order corrections, respectively, and G is the
Green function., The pz funetions have the following expressions:

_ awl aaml awl 3=m1 awl aaw1>

S
Pa(X,¥)= 3 — —— + 2
ox*®

3y 3xdy T Tox

2

dy

3p, 3%y ;. 3%
3z 0x0z ox

ax%az

o

3x 3z (T oz

Bf awl

3x oz

Green function is given by

X;Y:z) = = - T
0 [xx)® 4+ (y-y)? + (2-2)2)°

1
40,
L(x-8)7 + (y-])° + (2+D)"]
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where Gr is regular in the lower half plane z < 0 and G satisfies

the linearized free-surface and radiation conditions.

We she'l use in the sequel the following Fourier transforms

-21_”-[ dx[ dy #(x,y,z) ei(ax—i-By) [2.13]

-2%[ da[ ag ¥(a,B,z) ¢~ HaxtBy) [2.14]

where a and B are the longltudinal and transversal wave numbers,
respectively.

The Fourier transform (FT) of G has the following expression
(see, for instance, Timman and Vossers, 1955)

1| _~y|z-z| 'y(z+_z-)] o o¥(7+2) 1(ax+py
— ]€ - € - e .
2
a

) .
2 R [2.15]

where v = (a® + ﬁ')% is real and positive for a, P reals and M

1s a positive coefficlent of artificilal viscosity which is let to
tend to zero (M 1s introduced for an easy account of integration
paths in the complex plane)., The three terms of G [2.15]) are the
FT of the corresponding terms of G [2.12].
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The FT of the different potentials are cbtained by replacii -
G by G in [2.5] - [2.8]. We are interested here mainly fn the -
potentials of the free waves for x = -®. Only part of 6, namely

v 2 ey(z+z) ei(dg + By) [2.16]

a® - Y - ik

"contributes to these potentials. We can write, therefore,

2 - - -~ — .
oy = ?%-Ji[ —é aw(x,o,z; z) dxdz (x = -=) l2.17]
, 2 ay
S

~ ~h ~d,
and similar expressions for wsw,~¢aw and maw.

To simplify notations we define the following functions

Ii(a,B) = JT Eg V% &2 4347 [2.18]
S ¥x

15(a,8) = 5 J d% [ 6y p(%,5) ot (OXHAY) [2.19]

120a,p) = | po(%,2) €% 1% axaz | [2.20]
S

| ) _
L : - -
Is(a,B) = | pf(X) ™% ax (2.21]

Tt AL 201 S ka DML D

S eres reas ot o

P U VP PPPRPE
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The free wave potential ¢ can be obtained from @y |2.17)
by inversion [2.14].A The free waves potential results from the

contribution of the residues at the pcles
1

2
: 1 3y2 y
@ =% a3 o= {2 [1 + (1@3 ) ]} [2.22]

of éhé?quotient 1/(aa—w) of EW l2.16] for integration over a.
The presence of W in [2416] requires circumveting these poles
from below. The residue of the quotient is 2w1ap/(2ap2-l) while
v(a = y(-a = a
_ ( pgﬁ) 'Y( psﬁ)

2
p
Hence, the free waves potential wy may be expressed with

the aid of |2.16], [2.17] &ad [2.18] as follows

wy(x,y§z)'= p J[l {-i[Ix(ap,ﬁ) - Il(-ap;ﬁ)] cos apx -

2

a a °z '
-'[Ix(a sB) + Ln(-a_,B)|sin o x) ——Be ¢ P cos Bydp
P P PJ 2q°-1
p
l2.23]
4 o
the expressions of w?w, mEW and w,w being similar to [2.23] with

I. replaced by Ij, IE and If [2.19] - [2.21], respectively. Cos By

has been substituted for eiﬁy in [2.23] vecause of the sym-
metry of the flow with respect to y = 0. Equations [2.18) - [2.21]
show indeed that IJ(a,B) - IJ(~Q,B) is purely imaginary while

Id(a,ﬁ)'+ IJ(-asﬁ)vis real (J = 1,2), so that wg

are real.
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The equation of the free-surface has an expansion similar

to |2.3] _ . ; ?

C(X,73€52,.0.) ~ €0y (X,738,0.0) + €3Ca(X,¥38,000) + on.
| l2.24]

The eq\iation of the free waves profile is obtained from the

potential as follows

W _
w oPy (X,y,0)
Cy(%,y) = = [2.25]
: 5 bw
w . sw bw v aw.w(x,y,()) otpg (x,¥,0)

Ca(x,y) =Ca + 83 +Ca = = + =

Ly ’
3 ' 3%y  (X,Y,0) i

L ) .

. + % [2.26]

It is worthwhile to mentlon here that gy differs from g, by local terms
which decay algebraically like (x*+y*)"2 for x = -®», while the

local terms in (s are of order (x*+y*®)"°,

It is seen from [2.25)] and [2.23] that one can write for
the free waves profile

o ® ,. |
CY(x,y) = % f (sy(B) sin apx 1 Cy(B) cos apx] ﬁ-ﬁq cos BydR :;
-® P -
[2.27]
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-f;fﬁhe}e the sine and cosine spectrum functions S;(B) and C(B)

n are given by
Sy(B) - iCy(B) = Eilg(ap,ﬁ) _ (2.28]

. ’ L

Similar expressions are obtained for cs” s C. and Ca" with Sy s
4 L -

Gy replaced by Sn, Cn, SP, CP, Ss, Ca, respectively, in le.27]

} N 1 -
andglk by If, IE{and Is in [2.28].

Finally, the dimensionless wave drag R = R'g®/pU'* can be
written, on the basis of the first and second order potentials,

as’ Iollows

@

S

R j[(es; + €352)% + (60, + €%Ca) ]-—2— ap [2.29]
;?T52W - 2ap -1

Expenéiﬁg R in-an € series ylelds

R~ ¢%B; + €*Ry + O(€*) [2.30)
where e
R ::\*‘;- - o ®

£ Ry = -2-11-; f(s;' + %) —E— ap [2.31]

LR -® 2a ‘-1

SRS P

> ’

Re = ;rl- f (S1Se + CyCa) —L- dp (2.32]
) - 2a -1

p

- oy




HYDRONAUTICS, Incorpcrated

-11-

R [2.29] is always positive, whether R [2.30] may become
negative if the second order effects are exceedingly large.

Using [2.29] is, however, inconsistent because it includes
contributions O(e*).

All the formulae of this section are well documented in
the literature (for instance in Wehausen, 1973) and have been

given here for the sake of completeness and clarity of notation.

The purpose of the present work 1s to derive the second

order spectrum functions Sg(B) and Cy(B) for ships of given
shape.

III., THE COMPUTATION OF THE SECOND QORDER
- FREE WAVES SPECTRUM FUNCTIONS
Equations [2.197 - [2.21] render the functions needed for
the computation of the spectral functions in terms of the first
order solution ¢,. Considerable simplifications in number of.
Integratlions and smoothness of integrands may be achieved how-
ever, by fur‘her elaboration of the integrals of [2.19] - [2.21].

1. The Complete Expression of ©,

Equations [2.16] and [2.17] render the expressions of the
FT of the first order free waves potential. The second order
terms, however, are based on the complete expression of o,, i.e.,
on the local as well as the far waves term, It is useful, there-

fore, to write », and its derivatives in an explicit form. From
[2.4] ana [2.15] we have
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-12=-

wt(“)ﬁsz) o

]
f~
—
—
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o Hy
fol
i
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—
®
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~
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'
™ |
.{
P
N
+
N |
—

2 ) eloX gRaz [3.1]

We shall consider here smooth ship shapes, the highest
conceivable singularity of f being associated with a flat bottom,
where f has a finite jump for z = -t. It 1is seen from [3.1] that
¥, and (3p;/3z) are then continuous for z = -t and (3%%/3z°) has
a finite discontinuity at z = -t. This observation will be used
in the sequel.

A .
vs [2.6] and 9y [2.8] are based on the equations of
®y (x,y.0) and its derivatives. For z = O we obtain from [3.1]
the following relationships

B(0,8,0) = &(a,8,0) = = srvm—gy B(ap)  [3.2)
P et P~
39, o) L
%= 109} ; ~ " 189) ; -~z " o' (z=0) [3.3]

and similarly for higher order derivatives.
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cpla) l2.7] is based on 3py/dx and dp,/dz along S (y=0). For
the FT of these components we obtain from {3.1]

~

3P, ~

il lag, (y = 0) [3.4]
s
o0y 1 f -v|z-2| - v( z+-z')]
—E:=§?ff§ -[e sign (z2-2z) + e -

S

'y(z+-z-) - _ _
Save N Glex 34z [3.5]
a-v-ina

s
2. The Computation of Se-_and Cs_.

We consider first the free surface second order effect. The
function Ig(a,8) (2.19] is proportional to the FT of ps(X,y)

L2.9]. Using the convolution theorem in its following symmetrical
form

W - %“'.'f dvl ar [‘;(Q'V’ﬁ"r)?(vo‘)."‘;(\’oT)v(ﬂ‘\’sﬂ")]
| o (3.6]

where w and ¥ are arbitrary functions having FT and v,T are

integration variables, we may write with the aid of [2.9] and
(3.3)
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fd\’f ar hs(a:ﬁs\”T)a(vsT,O)a‘:’(Cl*\),ﬁ-T,O) [3.7]

Ias(a, B) =

=l

with

hs(a,ﬁ,v,T) = 3av(a-v)+2aT(B-T)+v(B-T)+(a-v)*v?-2av? (a-v)?-

- v(a-v) [V+(a-v)?*] (3.8]

By substituting in [3.7] the expressions of o [3.2, 2.18) we may
rewrite (3.7] as follows

I‘S(Qsﬁ) = fd\)fd"‘ bs(qsﬁﬁ\’:")qs(q’ﬁ»\’a"’) (3.9]

where

hslajﬁ)_\’:‘r)
(V¥-p-1v) [(a=V)? = T = tu(a-v)]

qs{a’ BV, T) =

[3.10)

%(a.8,v,) = 'E%I‘ (f!-a—f R ei(a'v);d'id?)(ff-a{ eP? eiv;d?td'z')
ax S ¥
(3.11)

p = (v'-ﬂ_')é T'a [(o-v)' + (B-T)']* [3-12]
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and p, I' are real and positive for v,7,a-v,p-T real,

Due to the use of [3.6] the function qs(a,ﬁ,v,T) and
"¢,B,V,T) have the following symmetry property: under a

change of variables a-v = v, B-T = T

qs(as ﬁ,‘;,?)

S
q (a,B,v,T)
(3.13)

bs(as B.v,T) bs(a-ﬂ,;,?)

The contribution of q° in [3.9] under integration over the
variable v, for instance, may be further split into an imaginary
part resulting from the semiresidue at the poles of q8 [3.10]
and a real part from a Cauchy principal value. The poles of
the gquotient 1/(v*-p) of q, are at Ve 8 vp, ‘where aimilnrly
to [2.22]

$ E o
A {-;— L+ (Mf')*l} o [3._1:;.]

ané they htielio be circunvehteq from below. The othor two
poles are associated with the quotient 1/l(a-v)"- rJ in (3.10], -
Lut due to the symmetry of q° [3.13] it is enough to account

for thersenirqsldae only at ¢ yp lnd to take the rgsult_twicg.-
Hence,
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(
Ils(a,ﬁ) = wi.J. d?[bs(a,ﬁ,vp,’)q:(a,ﬂ,vp,T)+bs(cz,ﬁ,-VP,T)q:(a,ﬁ,-vp,T)]

+ j’dt}-dv[bs(asﬁsvb7)qs(°:ﬁavs1)+bs(°:ﬁ:‘v37)qs(qsﬁs‘vs?)]
. g
13.15)
with
s
qg(°:ﬁ:“:" - 2vh (a.8,v,1) [3.16]

lta-v)*-r] (2v%-1)

" The symbol ] stmds for the Cauchy principal value at the
~ poles of the int: grand. Due to [3 13] we have the ronowing
symetry properties o '

- b {a,8, ’VQ‘) - b ('Qsﬁy V") e S
qp:a,a.tv.n . Qp-(-ﬁ,ﬁ v [3an)
q (“949‘“;') = - q (‘@:99‘“)‘) | |

- where b, is complex conjugate of ba' o S
| ulit.h the aid of {3.15]) amd (3.17] we may wrne the ap@ctral
o l‘uncuom in t.hur final fom % tenous '
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Sf(ﬁ)-in(ﬁ) Qils(ap)ﬁaV;T) = 'gw‘l.[bs{ap,ﬁ,%fT)q;(ap,ﬁ,%ff) -

] S R
- WS . jar
b ( up’ﬁ’vp‘?}qp( 7p:5avp:_,jd +

«
21fd'rfdv[bs(aa;ﬁ,v,*)qs(%aﬁsvﬁ) *
Y . *

=8 s -
'b-f*ﬂp’ﬁe?;?)g (fﬂppﬁfva’>~
‘The functions q° {315, 312, 2.18) a'm!._-q_
and do not depend on the shape »f the hip. '
nlly;complex and depends .qm@ra*i gny on 8f/3

% Tege ;_utagigﬁ of S5 and rcbf:

. We gon sigcr ﬁ@w the §@Q@ﬂﬁ order. @dy bf‘i‘@é; Siper L, WE

: :ransfam the @xprgsg*@m of ?; {2, f@ 1@) by m»eérc"ing w'
'oarta and by uswtm that amng ths f;ﬁ LOuP 2fr 8 £ =0 (Le )
result bﬂing wuza even f@r a flat b@&tn@§ f;o ohtatn -

b | ; w;(39\92§
A+ 1) é[fﬂx,z) Ly womesmain 5
- 7 B ‘

e m o w Y N o
_ &sg”'x,@,@)) - 28 -y (X,0,0) | w=
3 et e lm dxdz a[ T{%,0) s o Mgy

'y T 3

{3.19)
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Hence Ig has been split into an integral over the center plane
1
IEcand a waterline integral IE

be
We transform the expression of Is Dby substituting for
3y /3x and 39y /dz in [3.19]

o (;5 032)

6; e ' -

3 31 (%,0,2) 0Py %
e —_—— fdv 4T —— o VX [3.21]
¢ 37 2 AT

and after using [3.4, 3.5, 3.1] and an integration by parts over
X we obtain

P oy P ey e yetav b e(yptav)
I T To{=v) P fv T T Taev) (VipTy)

[3.23]
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=ﬁgﬂdxdz f 'yz i(a v)xj]d- —Bf ivx

[3.24]

Next we consider Ie (3. 19] which under substitution of
[3.21] and after using [3.1, 3.2] and an integration by parts

over x becomes

- o«

%, B) = f‘dv [dw qg b:; [2.25]

- -

_ _2V®
V' (a-v) (v -p-1iuv)

)(ﬂd_dz 3f(x,z) E_. pz ivx) (3.27]

Summarizing, Ia [3 19] has the following expression

(3.26]
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IE(a,ﬁ)==§E lpdv _/-dT qg(a,ﬁ,v,T)bg(a,B,v,T) [3.28]

Equation [3.28] has the same structure as [3.9]; we proceed,
therefore, along the same lines: we separate the contributions
of qg at the poles Vv = tvp [3.14] and on the rest of the v axis

and use the symmetry properties of qg and bb which are similar

J
to [3.17]. The final result for the spectral functions is, like

in [3.18],

SS(B)-1C0(B) = eiI?(a sBsVyT) =

JV“’

-47 jng[b (a ,ﬁ,V N )qj p(a ,ﬁ,Vp,T) =
j=Iv ©

b b .
bJ('apsB,Vp:T)qJ,p(‘ap:ﬁ,Vp3T)] +

V .
Z f )(d\’tb (a :B,V:T)qg(ap:ﬁ,lv,'r). +

bg('ap,ﬁ:V,T)qg('apaﬁ,v:T)]
where

b - . 2v(vp+av)
qIV,p -v) . (2v -1)
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The principal value in the last integral of [3.29] is at

v = v_ solely. The singularity at v = a cf qg [3.23, 3.26] and

qP 3.30) is removable since bg = 0{a-v) for a-v*0. Like in

“ds .
[3.18] the function qg and qg.p in [3.29] are independent of the
3

shape of the snip while bg depend quadratically upon 3f/dx.

4 A
4. The Computation of Ss and Cs

Last we consider the waterline integral second order effect.
By substituting [3.20] in If [2.21] and after using [3.3, 3.2,
2.18] we obtain

»I:‘(a,ﬁ) = fd\’_fd'r q&(\’sT)bL(a:B:V’T) [3-731]
where
4 2\3
q (v,T) VT [3.32]
4 — = =
Y £y,7) bbn.i.,( [ d;meua-v)x)( [[has 2B 7 158
" X
-1 I S

[3.33]

By the same procedure of splitting the integral over v in [3.31]
as in the preceding sections we arrive at the final equation of
the spectral functions
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4
21lIg (ap, B) =

X 1 1 '
-un;[ gp(vp)[b (ap,ﬁ,vp,T)fb (—ap,B,vp,T)]dT +

0

ll»ifd'ffdv‘ QL(V,f)[bL(ap: ﬁ:V:T)'*'b{_l(‘_ap,ﬁs\):.T)]
° [3.34]

[3.35]

2y3-1

~ The structure of [3.34) is similar to that of [3.18] and
[3.29] and 1t has the same ,roperties as the other spectral

functions,

- 5. Summary
Equations [3.18], [3.29] and [3.33] render the various
second order free waves spectrum functions in a compact and
_similar form. The total spectrum functions are obtalned by
summation

Ca(B)-150 (B) = CorcRaclo1(s+sbesd)
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In the most general case in which the shape function f(x,z)
is not given in an analytical form, two numerical integrations,
over x and E, are required in order to obtéin a point on the

~curves of C, (p) or S,(B) [2.28, 2.18]. To compute the value of
one of the components of Cy or S; [3.35]}, for a given B, six

numerical integrations are generally needed namely over E, E, i,

z, v and t. This amounts to a huge volume of computations and
current calculations of second order effect for ships of arbittary‘
shapes do not seem, therefore, to be of practical interest at the -

present time.

Considerable simplifications are achieved, however, if
f(x,z) has a sufficiently simple analytical expréssion or/and
if the ship is symmetrical, Due to the fundamental interest in
computing second order effect, it is worthwhile to explore first
. these simple cases,

IV. THE SPECTRAL FUNCTIONS FOR SEPARABLE
SHAPE FUNCTIONS AND SYMMETRICAL SHIPS

1. Separable Shape Fuhctions

If the function f(x,2) is sufficiently regular it may be

expressed under quite general conditions as & separable sum
K=n

f£(x,2). =Z hk(x)mk(z) (4.1)
k=1
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where trigonometric or polynomial functions have been

used for'representing hk and . - Considering, for the

simplicit&, only one term of [4.11, written genericall
h(x)m(z), leads to the following expressions of the fu
related to the spectral functions of Chapters II and I

(1) The first order function I, [2.18] becomes
— o —
X gg eiOLx f m(_z-)evz dz

-t(x)

(11) The functions b° [3.11], b (3.23, 3.27, J

generally

sake of
y as
nctions
I1:

[4.2]

= I’..Ov)

and b¥ [3.32], which are the only ones depending on the ship

shape, may be written as follows

4 -
i - g_q i(a=v)x [ dh _1vx =[.b
Wf dx e _ f - e j d!'f dz TJ

2 3® uE .2

S -
T (Q:ﬁ,\h":z,z)

(ay B, V:T:;:;)

T (a, Bs\h"':zsz)

(4.3]
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s - Tz _,= prz'
T =m{z) e  m(z) e
®-m 3 plz-z| = =
- (z) e " m(z) e sign|z-z|
T;I = m(z) e'? n(z) -p l2-z|
b _ b _ = Y2 = p(z+2)
TI11 ‘I‘Iv m(z) e m(z)
™ = T < () n(%) * 5(7)

and 5(z) is the Dirac function,

Hence, if the integrals in [4,3] can be carried out in

(4.4]
[4.5]
[4.6]
[4.7]

[4.8]

closed analytical form, finding a point on one of the Cq(B) or

Se (B) curves requires two integrations solely, over y and r,

However, due to the similar structure of the b functions, much

computer time can be saved by.a rational programming.

The functions q° [3.10], q [3.23), o [3.32), T° [4.4)
and T (4.5 - 4.8] are slowly varying functions of y and r.
contrast, the integration over X and X in [h 3] renders osci
latory functions of y; the oscillations become rapid as ¢ =

In
1-

L'g/U'® becomes small. Accurate numerical integiation over y

of the integrands of the spectral functions imposes a dense

grid ir the latter case, but considerable computer time may dbe

saved if the integrals over r of the slowly varying function
are evaluated by interpolation from a sparser grid,
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Finally, if the contour of S is rectangular, i.e., |x| s ¢,
0>z > -t and t = constant, the first two integrals and the

last two integrals in [4.3] separate and the function

2 _ 2 -
L(a,v) = T}J(I";% ei(a-v)X)( fdi 9—2 eivx) [4.9)]

i3 dx by} ax

can be computed once for all second order terms.

2. Symmetrical Ships: f(x,2) = f(-x,2)

In this casc the function I, [4.2] becomes

I, (a,B) = 1] a—f_ e'® sin ox dx (4.10]
ox

and, as well known, the cosine apectrum function C,(8) vaniahes,
while according to [2.28)

Sy(B) = -2]] 19 "" sin api « az | (s.11)

As for the second order terms, the functions b° [3. 1),
b (3.21, 3.27] and pt (3. 32] are purely imaginary. As a result

|
{
|
!
l
|
!
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the cosine and sine spectrum functions Cs and s [3.18], become
equal to the first and second integrals of [3.18], respectively,
and the same is true for CE, SE‘[3.29] and Cf, S: [3.34]. It
turns out, therefore, that computing the cosine spectrum func-
tions requires one integration less than those necessary for

the sine functions.

V. APPLICATION TO A SYMMETRICAL SHIP WITH
PARABOLIC WATERLINE AND RECTANGULAR FRAMES

1. General Formulae

We consider now the particular case

r(#,z) = h(x) m(z)

(5.1]
h(x) = 1-(x8/¢%) ; m'z) =1 (|x] <1, 0 <z < =t)

with % = constant. ‘this example has been selected because it 1is
the simplest conceivable smooth shape ard because detalled mea-
surements have been carried out for models of such shape.

| ~ For thg first order free waves spectrum [2.28, 4.2] we
obtain immedistely the well known expression
' ' Rl

. P sin a_ ¢
_ qp’ p

. 2
Cy(B) = O (>-2]

St e b i« wra am 2+ -]
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where a, is given by [2.22] and ¢; by [2.27].

The spectral functions Cf and S,s [3.18] depend in part on
the auxiliary functions q° [3.10] and ¢° [3.16] which are inde-
pendent of the shape. The function bs 3.11] becomes in the
present case

bs(a’ﬁ:VsT) = 1L(a,v) MS(Q:B:V:T) [5-3]

where L(a,y) is defined by (4,9] and M° results from [(4.3].
Hence, by using [5.1], we obtain in the present case

L{a,v) = - 735 {CTEI'\T)' loos at + cos (a-2v)2] -

————— e

}

Pl [sin ai + 8in (a-2y)e] -

- ;;T;%;Tz {sin ad - 8in (a-2y)t) -

e AaARB . . et apitmb i

- -;;(;_—17&—. (cos at - cos (u-?v)&]} | 5.4]

while M' is given by

o o
M%a,p,y,1) = fd;fd; (a.8,0,17,5,7) = &
43

-Q-pt)(lﬁe.rt)-
pT




HYDRONAUTICS, Incorporated

-29-

and gI' are defined by [3.12].

The cosine spectral function [3.18] is, therefore, given
by

Cﬁfﬁ) = QVJ!- dr [L{apsvp) Ms(ﬂp:ﬁ:vp:7) qs(°p9ﬁ:vp:7) +

+ L('stvp) Ms(-up,ﬁ,vp,T) q;(‘ap’p’vp’T)] [5.6]

whereas the sine spectral function {3.18] has the expression

Ss(B) = -2-1( dfldv [L-(-ap,v) us(up,'p’v,t) q_‘(ap,ﬁ,y,v _-_ 
- L(‘Q ’v) M.('a ,P,v,f) q’('ﬂ-,ﬁ,v,?)] ' “" 1 [5 7]

all the tunctionl appearing in (5. 6] and [5 7] being derined .
provioully.

SLIilar equstions are obtalned ror the. body and waterlino
1nte¢ra1 second order speetr&l runctions. Thc only spocitic
canputations are requlred by [». 3]
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Mg(c,ﬂ,v,T) =fd;]d§ Tg(ausa\b"’,;:;) (J=15...,V) {5-8}
-t -t

. which leads with the aid of [4.4 - 4.8] and [5.1] to

b 1 1 , -pt -yt, . 1 -(v+p)t -

Mp =3 (- s (e P ™) + Hp {1-e ('&p) ]} (5.9]

b 1 f2 vt 1 ~(vep)t 1., -pt =¥t e o
- {2 - et L P } 01
O o a1 Clvdty e
o=y gy (0D BT )

o b' 11 .. =t S  :' -";' }
| ”v’f' \g"' "5 {'1-9_’”) o R - ,{5-12]

Hence, "’“h bg o 1L(G;V)N (@»#wﬂ) we obuin the fonoving ﬁml
expruuom for the spoctnl ﬁmeuons [3.29] and [3. 3&] '

o~

[3ev

o C.(m . trfdc L(ap w!| z qJ p(apsﬁ,v .f)uj(a .s.v .v) +
[ -
¥ L('Qpﬂ'p) z QJ p("a ipvv !7)“3(‘@' tﬁpvpbf) - [5-13]
' ) eIv
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Se(ﬁ) = nfdffd\‘ L'a ’V‘ z :ﬁﬂ))"’) g(gp,ﬁs\hT) ’
o o J=1
3=V )
- L(‘ap’\)) M};("prﬁ:\#)’)qs('qp’ﬁ;\b?) [5.1“]
J1
c:-(;%) - !nrfdv (Lla,v) + L=a_,v )M, 71g%(x ) (5.15]
el J -2 - DA D - p’ pp i
S:'&’ﬁ) - -hfﬂ?].dv-[la(ﬁp.anv) - L -Qﬁ;u}:!g‘!‘(v,?fﬂ_l’(vi?} - [5.15}
B o o | o - EEE

2. Dpiscuseion of the Integration Procedures

. A:,Thg second order séec;ra‘ functi:ig hav o be faaputéﬂ
",ﬂ-naﬁcrie;ily; The €, functions [ 6], £ 13! and [5.1%3 are
| ;rlbased on one ,ntegrntion over s while the 'S [5 7], {8.18)
- and (5, 16) tﬁply s gouble tntegration._ The major contripution,
i . asyhptotlc senze, to the vave gr;g {? %2} results fr@m the

‘sine functions. ngsuitn ar@ a Fex @a:crvaticqs rclat@ﬂ to a$e iw~r

:tegrstion nrﬁcgdurts in the y,t plsn

_ (:) it 18 228y to uscertnin that tiue beraaior at 1nrin1ty
- of the integrands in [5.6 -45;16] ensures integrability. The
integrands tn [5.6), 15.13] ana [5.15] are 0{+" ) for + « w,
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while the integrands in [5.7], [5.14] and [5.16] are O(p~2)
for p = Vu2+1% = o, It is worthwhile to point out that if a

slender body type additional expansion is carried ouc, i.e.,
-T't vt
e

an expansion of e'pt, B e in a t power series in f5.5]
and [5.9 - 5.12], the integrals of the spectrum functions

diverge because of the limited validity of such an expansion

':,rg for large p.

(1i) The singularity of L(a,v) [5.4] at v

In fact, it is easy to ascertain that for y-a - 0 L(a,v) =

il

a is removable,

0(v-a), which makes the integrand finite even for qg f3.23].
The singularity of [5.9] and [5.10] at y-p = 0 is also removable.

(ii1) The integral in the y,T plane rendering Sf [5.7]
involve some principal value computations., As a matter of con-
venience it was found that it is preferable to carry out first
Integration over r and afterwards over y. The reason is that
the oscillatory function L(a,v) may be taken before the r in-

tegral, while the remaining functions vary slowly with r.

The slngularitles of the denominator of qs [3.10] are dis- §
tributed along a few curves in the y,r plane, which are repre-
R sented in Fig. 2.

Integrals along lines v = constant in [5.7] may ~ross,
therefore, up to four times the curves of Filg. 2 and at each such
peiut an evaluation of a Cauchy principal value is needed. At

the beglnning we have used a procedure suggested by Landweber
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(Kobus, 1967, Appendix 1) in order to compute the principal
values contributions.

This procedure stipulates selecting the
singularity &s a node in an equally spaced grid and replacing

the integrand by the derivative of its regular part at this

point. The application of the procedure has been found to be

tedious in the present‘case for a few reasons:

at each value
of v rezoning of the grid is necessary, the use of efficient

numerical integration based on orthogonal polynomialsg:. ig pre-
cluded, the vertices of the curves in Fig. 2 require special

treatment and numerical computation of the derivative is time
consuming.

The procedure used instead, which obviously is not the

only possible one, wes as follows: in an integral of the type

I = | F(v,7)
= (v2-p) [(a-v)®-T]

dr - (5.17]

as encountered in [5.7], the singular part has been extracted
and I has been replaced by I', where

- Ply,1) Fi(y) Fli(y) _Fl'i(y)
"I. -_.:[ (v-‘-p)'[?a-v)f‘-r]“ﬂq\f '«"w\"”'?‘-w\v)'f [5.18]
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= - 2v2 Flv,1')
(a-v)a-r(a,ﬁ,v,T')

2! (a-v)’ F(v,7'')

— T (' -B) [vi-pl(vst' )]

+

_ 2011 (a-y)2 F(v)Tlll)
(et -B) [vB-p(vst' ') ]

T'

0 e e (vea) Vo

Tt = B - (vea) V(v-a)®-1

(5-19]
[5.20]

[5.21]
[5.22]
[5.23]

[5.24]

The integrand in [5.18] 1s regular at the singularities of
Fig. 2, including the vertices, and any numerical procedure may

be used in order to compute I' provided that a too close ne.ghbor-

hood of the singularity is avoided.

qs(-ap,ﬁ,v,f) with ap replacad by ~ap.

Similar formulae are valid for the part of Sy [5.7] involving

(iv) The integrals rendering SB [5.14] and Sf [5.16] have
the only singularities along 7 = t' and the former procedure may
“be used in order to make the integral regular, only the F'(y)

(5.19] type of function being needed.
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VI. PRELIMINARY NUMERICAL RESULTS

1. Numerical Procedure

We present a few preliminary results of numerical computa-
tions of second order spectrum functions. These first results
are presented on a tentative basis; they have to be furtherly
checked in terms of accuracy of numerical procedures and to be
extended to a larger range of Froude numbers. The computer

program has to be improved towards saving time.

The computer program has been written in order to determine
the values of S5 [5.8], Sy [5.14] and S¥ [5.16]. The computation
of the Cy functlons, which is much easier, will be carried out
in the future.

As stated previously, numerical integration has been
carried out first along lines y = constant in the y,T plane,
A 48 points Legendre procedure has been applied repetitively to
intervals of §t = 0.25. The integration has been stopped 1if the
increment of the integral on such an interval was lesser than
10~* of the sum on previous intervals or after 25 intervals if
-the criterion was not met. In the latter case integration
continued over 25 enlarged new intervals until the convergence
criterion was satisfiled. When the integration was stopped, the
rest of the integral on the remaining r interval up to r = =
wes evaluated by a 24 points Laguerre procedure. The change of

At from 0.25 to 0.5 showed very little change in the values of
the integrals.

N et oty e e sty




HYDRONAUTICS, Incorporated

-3%6-

The 1ntegration over y has been carried out with a
Simpson procedure, the y interval being 7/80L4, selected such |
that enough points should be contained in a "wavelength" of
the trigonometric functions which are present in L(a-y) [5.4].
The integration has been stopped when the absolute value of
the increment was smaller than 10°2 of the previous sum. |
Summarizing, the program admits 4 = L'g/U'? and t = t'g/U'?
as input parameters and computes Sf, SE and S: for any given

value of B.

2. Numerical Results for Given Draft and Froude Numbers

The first runs have been carried out for t'/4' = 0.3 and
for ¢ = 2'g/U'® =5 (F, = 0.316) and ¢ = 12.5 (Fn = 0.200),
The values of the sine spectrum functions §,, Sf, SE and Sf
have been computed for g = 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 1In

Figs. 3 and 4 we have represented the functions

b,?
L8, o ? L3a_%s5°°?
- -3.b.4
8, = —Ea—fgf , 55°°0°% = ga ) (6.1]
p P

which permit to rewrlite the equation of the free waves profile
[2.27] in the more convenient form

¥ = 1-];'- :[ [€ 5, (B) + ¢*Sy(B)] &in a % cos py dp  [6.2)
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where ¢ = b'/4' is the usual slerderness parameter,

Although conclusions may be drawn only on a provisory basis,
it is worthwhile to discuss a few qualitative features of the

curves of Figs. 3 and 4:

(i) For Fo= 0.316 (Fig. 3a) the free surface correction,
the body correction and the waterline integral correction are of
the sam¢ order of magnitude. For the smaller Froude number
F =0.2 (Fig. b4a) the free-surface effect seems to tend to
dominate the other two contributions,

(i1) For Fo= 0.316 (Fig. 3b) g; = Sf + SE + S: is roughly

equal and of opposite sign to §;. Hence, the second order term

diminishes the amplitude of the first order free waves and of

the corresponding wave resistance. For Fn = 0.200 (Fig. ub) §;

1s again of opposite sign to 5‘, but the amplitude at the first
peak of the §; curve is roughly four times larger then that of

8, .

(111) The first order solution is valid only if ¢ << 1,
let say ¢ < 0.1 for F, = 0.316 and € < 0.025 for F = 0.2, i.e.,
a8 well known not only ¢ but ¢ = ¢t has to be small as second
order effects become more important at low Froude numbers.

VII, SUMMARY AND CONCLUSIONS

A systematic procedure of computing the second order
spectral functions of the free waves generated by a thin ship
has been derived. The procedure has been appiied to the case of
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a ship with parsbolical waterline and rectangular frames. Pre-
liminary numerical results indicate that the free surface, body
and waterline integral second order corrections are of the same
order of magnitude and neglection of part of them in order to

derive inconsistent, but simpler, solutions does nct seem to be

justified. This conclusion has to be strengthened by extending
the computations to various shapes and a large range of Froude

numbers.

The accuracy of the numerical program is checked at present.
Later, cosine and sine spectral functions, as well the assocla-
ted wave resistance, will be computed for various Froude numbers,
such that drawing more definite conclusions will become possible,

These future results will be reported elsewhere.

wsRrar
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FIGURE 3 - THE SINE SPECTRUM FUNCTIONS OF THE FREE WAVES FOR
F,, =0.316(i=5)
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FIGURE 4 - THE SINE SPECTRUM FUNCTIONS OF THE FREE WAVES FOR
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