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Bayesian Data Analysis ol' Gambling Preferences 

Ini ri"luct.ion 

Rfiyrsian data analysis has been feasible since IJi'l when Rev, Thomas Hayes 

formulated his theorem (which IE just a straightforward application of the def- 

inition of conditional probability): 

P(H|D)   =   P(D|H) P(H) / S P(D|H. ) P(H ) 

P(D)     (overall prob.) 

Despite its availability for such a long time, research workers have made 

little use of it. Even most researchers who consider themselves Bayesians 

have used it only as a normative model for human information processing 

but not for processing data, although Edwards, Lindman & Savage (1965) have 

pointed out its advantages for statistical inference almost 10 years ago, and 

although easily readable textbooks are available now (e.g., Hays & Winkler 

1970 have a long chapter on Bayesian inference, and the books by McGee (1971) 

and Winkler (1972) are especially devoted to chese procedures). 

Bayesian statistics differs from traditional statistics in using infor- 

mation not contained in the sample, namely, P(H), the prior probability of the 

hypothesis.  In testing hypotheses, traditional statisticians use only P(D|H), 

rejecting a hypothesis K when P(D|H.) plus the probability of more extreme 

data is below a certain prefixed level a. 

Traditional statisticians have occasionally objected to the idea of 

1111—1 mm 
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taking into account any prior information, like P(H ), which wrs not obtained 

from an observed sample. Those who use Bayesian methods but insist upon priors 

Inferred from previous observations rather than intuition call themselves Em- 

pirical Bayesians (e.g., Martiz, 1970), 

In a sense, Bayesian statistics can be viewed as an extension of tradi- 

tional statistics; it uses the same information plus something more, namely 

prior probabilities, under assumption ^hat all information available should be 

used for decisions among competing hypotheses. Actually, according to the 

principle of stable estimation, even strongly biassed priors cannot do much 

harm to the posteriors as long as the data used for their revision do have 

enough diagnostic impact, and as long as the prior distribution is not too 

small in the region favored by the data, and/or not too peaked elsewhere. 

(For more details about the principle of stable estimation, see Edwards, 

Lindman & Savage, 1963.) Thus, the arbitrary and intuitive nature of prior 

distributions does not constitute a reason for not using Bayesian statistical 

methods. 

It is probably easy to show that every scientist observing and analyzing 

data has some priors with respect to his hypotheses—however, to discuss this 

is not the point of this paper, and the reader interested in these problems is 

referred, e.g., to Kuhn (1962). Convenient techniques to elicit and assess 

the scientist's prior probability distributions over hypotheses are available; 

some of them are described, e.g., in Winkler (1967) and Stael von Holstein 

(1970). 

In this paper, we pay little attention to prior distributions over 
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hypotheses.    We will rather concentrate on likelihoods P(D|H ), which are more 

public and less controversial than prior P(]I ), 
i 

Usually,   a hypothesis to be tested in traditional statistics implies that 

a certain parameter value obtains,  e.g.,   in traditional null hypothesis test- 

ing the hypothesis  Is:     11  :e = G    for some parameter 9, which is tested against 
o     o 

the rather diffuse alternative that 9^9.  In most cases, traditional stat- 
o 

isticians cannot figure a probability for the data observed given this diffuse 

alternative hypothesis,  and therefore ß,   the probability of an error type II, 

is left unknown. 

In such a case,  the Bayesian usually would not consider a point hypothesis 

9 = 9    as opposed to a continuum of other values of 9,  but rather would assess 
o 

a continuous prior distribution over the whole parameter space, which is then 

treated as a continuous set of hypotheses.     The evidence from the sample ob- 

served would then be used to revise this continuous prior distribution over 

the parameter space according    the Bayes's  theorem,  which reads  for the con- 

tinuous case: 

f(0|x)     = S(x|9)     f(9) 
/g(x|e') ^9-) d9' 

and gives a continuous posterior distribution over the same parameter space. 

Although Bayesian statistics can handle any number of competing hypotheses 

simultaneously—up to an infinite number which is the continuous case discussed 

just above—the most convenient case deals with only two competing hypotheses— 

such as the traditional test of H against its alternative, the catch-all hypo- 

thesis. The advantage of testing only two hypotheses against each other in 

mmmm* I HI■llll'III HllMlimHiMr"   -    - 
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Bayesian analysis is that Bayes's theorem can then be written in ratio form 

so that P(D)  cancels out: 

P(H ID)        H\)        HV\\) 

P(H2|D)        P(H2) P(D|H2) 

D 

This is known as the odds-likellhood-ratio form of Bayes's theorem: 

Ü      =    fi     •     LR(D):  in words; 
D o 

posterior odds = prior odds x likelihood ratio. 

For conditionally independent data, the likelihood for the whole set of data 

D = (d . d , .... d ) is the product of the likelihoods of the individual data 
12      m 

.) 

PCDIH.)    =   K P(d K), al 
and then the odds-likelihood-ratio equation becomes: 

D o 
n LR(d.). 

Bayesian data analysis with these formulae are easy, straightforward, and ef- 

ficient if you have perfect knowledge of the data generating process which 

gives you P(D|H), but can be quite a problem if you don't. 

Bayesian Analysis of Learning Data 

Let's look at an easy case first: excellent examples to do Bayesian data 

analyses are comparisons of learning models. E.g., Restle & Greeno (1970) 

w^mmmmm^vmiimmim ;'.i.&'.->- ■■;-■..■:,,■   .■■■■■' i:....■■..;. '• 
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compare a linear operator model (H ) by Hower (ivtil) (alsu, see Atkinson, 

Bower & Corothers, ly6% p. 01). 

P^dV a - (a - b) (1 - 9 ) 
n-1 

and an accumulative model  (H ) 

Pn(c|H2) 
b + G2a(n - l) 

1 + e2(n - 1) 

where P^Cc]^)   is the probability of a correct response on trial n under the 

respective models,  9    is a parameter of the learning curve, and a and b are 

initial and asymptotic  success probabilities,  respectively.    Corresponding 

probabilities of wrong responses  (errors)  are P (e|H )  = 1 - P (CIH ) 
n ' 1       n ' i^" 

Bower (1961) had 29 Ss learn a list of 10 items, "to a criterion of 2 con- 

secutive errorless cycles. A response was obtained from the S on each pre- 

sentation of an item" (p. 528). Stimuli were pairs of consonant letters, re- 

sponses were the integers 1 and 2, each of the assigned to 5 of the stimuli. 

Twenty-nine Ss times 10 items makes 290 on each trial (unless some Ss did 

not get to the last trials because they completed their two errorless cycles 

earlier). The data Bower obtained, in terms of relative frequencies of cor- 

rect responses on the n-th trial, are reproduced in Table 1, column 2, from 

Restle & Greeno (197C, p. 8). 

To evaluate the two competing learning theories H and H given the evi- 

dence from these data, Restle & Greeno (1970) assumed a = 1, and b = .5, esti- 

mated 9i from the data, and calculated 
p
n(c|H2) using these parameter estimates. 

Resulting P (c|H ), P (C|H ), and corresponding P (e|H ) and P (elH ) are 
u        L        n        d n   1     n   2 
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reproduced in columns 5-6 of Table 1. Restle & Greeno then compared the two 

models by calculating the sum 

. 2 
A  = E (P (c|H.) - P (c observed)) 

n n n 

for both models (i =1, 2). A was .00^2, A was .011, indicating a better fit 

of H1. 

A Bayesian data analysis would consist of calculating likelihood ratios 

P (c|H )/P (c|H ) for each correct response observed, and P (e|H ) / P (e|H ) 

for each error response, and multiplying them all together to get the overall 

likelihood ratio. 

To do so, we need absolute frequencies of errors and correct responses 

on the 11 trial;;, which are not given in Restle & Greeno's book, nor in Bower's 

paper. We reconstructe 1 them by multiplying the relative frequencies given in 

Restle & Greeno (column 2 in Table 1) by 290 (29 Ss times 10 items), resulting 

in the absolute frequencies of correct responses of f (c) and errors (f (e)) 

reproduced in columns 11 and 12 of Table 1.  (These estimates may contain some 

errors if some Ss quit before reaching the 11th trial because they had completed 

their two errorless cycles earlier.) 

For convenience, the calculation of LR(d ) and LR(D) is performed in log- 

arithms: In column 13, we have 

log LR(Dn)  = fn (c) [log Pn (cl^) - log Pn (c|H2)] 

+ fn(e) [log Pn (el^) - log Pn (e|H2)], 

 ■  m-^SSSgS  —,.-Jj_-^^^^=s^3^..--Mrrrs 
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and 

Z log LR(D )  = log LR(D), 

with the respective logarithms in columns 7 through 10, and observed frequencies 

f (c) and f (e) in columns 11 and 12. 
n      n 

The resulting log LR(D) is 9.0253, indicating a likelihood ratio LR(D) 

over a billion: LR(D) ~ 1.06l • 10 . I.e., if we had assumed equal priors, 

P(H ) = P(H ) = .5, this would mean that H is over a billion times more likely 

that H . 
2 

Although this could be taken as strong evidence for the principle of 

stable estimation—even very heavily biassed priors would have been corrected 

by such a large likelihood ratio, we have to consider it with some reservation." 

As we pointed out already, it is doubtful if we can actually assume 290 

observations in the last trials (7-11) because some Ss may have quit earlier. 

Reduction of the numbers of observations in the last trials would reduce LR(D) 

considerably because trials n = 7 through n = 11 contribute most to LR(D), 

except for n = 2. 

Unfortunately, the original complete data are no longer available. How- 

ever, a letter from Bower assures that these figures actually can be taken as 

numbers of correct responses assuming that the subjects would not make any 

more errors had they continued after their last two errorless cycles. 

Another question is whether we really can assume independence of obser- 

vations enabling us to multiply likelihoods. Although the observation them- 

selves are clearly obtained independently, the independence assumption for the 

conditional probabilities P (d |H ) might not hold. 
n    j    i 
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A way out of this mir.ht  be not bo i«h^ ulate the whole learning curve for 

each model, but rather just to predict P  (d.|H ) from the P (observed so 
n+1 j 1 n 

far) by 

W^V'i' 

I'  (cl I' II ) 
n+1 ' n' ?' 

(1 - G ) P + 0 a, 
In   1 ' 

and 

R ^ a 0 (R + w ) 
n    2  1   l' 

(Rn + a 02 (Ri i- W^) i (Wn + (l-a) e2 (^ + W^) 

In Model 2, this requires an additional assumption about R and W ; we 

used Ri = Wi = 5 f0r the calculation of ^HP^,^). Actually, the choice 

0f Wl = Rl doeS not make much of a differenGe. 

We use this example to demonstrate a slightly different way of performing 

the data analysis:  In Table 1 we took logarithms of P (c|P  .H ) and 
n   n-l* i 

Pn^e'Pn-l,Hi' for i " 1>  2f  and then subtracted the logarithms of these proba- 

bilities for i = 2 from those for i = 1 (multiplied by the respective numbers 

of observations); in Table 2 we calculate the likelihood ratios for correct 

responses and errors directly (by dividing the hit probabilities in column 

5, and by dividing the error probabilities in column 6 by those in column 7 

to yield column 8), and then take the logarithms of these likelihood ratios 

for hits and errors (columns 10 and 12) to multiply them to the respective 

numbers of observations (columns 9 and 11), and sum over these products. 

The log likelihood ratio is now "only" 2.2508, indicating a likelihood 

ratio of 178.2 in favor nf Model 1. Of course, taking into account the observed 

number of correct responses on the previous trial in each calculation of 

mmmmmmmm^ 00 U^vajuWi^-.,...^ ■■ .■■..   . .   , . .      ■ ...  . ■ ISüHSSSE 
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p (Ghi p  ) brings those probabilities under both models closer to I he ac- 
n ' i' n-L 

tual data, and thus levels out differences between them. The resulting like- 

lihood ratio is still large enough to correct even strongly biassed prior ^<ids 

against Model 1, and now It takes conditioned non-independence into account. 

The analysis could be further improved by many maxiruom likelihood extimates 

for 9 rather than the least squares estimates we took from Restle & Greeno 

(1970) for this demonstration. However, since the evaluation of learning 

models is not our main concern in this paper, we will now turn to analyses 

of choice-among-gambles data. 

Q 

Ü 

0 

i D 

i 

Bayesian Analysis of Gambling Preferences 

As we have seen, Bayesian data analyses are quite straightforward models 

that provide us explicit probabilities of occurrence between 0 and 1 for each 

event wc might observe. We have taken learning curves as an example; other 

feasible examples could be taken from psychophysics, signal detection theory, 

Lucoan & Thurstonean choice theories, etc. 

However, in analyzing gambling preference data we encounter different 

problems, particularly with deterministic choice models. Since they require 

deterministic choices, i.e., with probabilities 0 and 1, no Bayesian data 

analysis is feasible under these assumptions. This may be one of the reasons 

why decision analysts and other scientists strongly advocating Bayesian pro- 

cedures as normative models for human information processing rather seldom 

use Bayesian methods in their data analyses; they mostly favor deterministic 

choice models which prevent them from applying their own principles. 

11 
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We are going to illustrate Bayesian iata analyses of choice-among-gambles 

data on two sets of data here, both borrowed from colleagues: one is from an 

experiment by Horamers (1975) with normal and educable retarded children of 8, 

10, 12, and Ik  years of age where it seems rather appropriate to replace the 

deterministic normative model by a probabilistic one, the other set of data 

is from an experiment by Seghers, Fryback & Goodm^. (1975) with adult subjects 

where the conventional (Lucean) probabilistic choice models might indicate 

too weak preferences as compared to the choice probabilities inferred from 

the data. 

Hommers' Data 

Hommers (1975) in his dissertation compares choicef among bets made by 8, 

10, and 12 years old normal children, and 8, 10, 12 and Ik  years old educable 

retarded children. Each set of gambles presented as choice alternatives to 

the S consisted of 5 bets labelled W, L, and S, respectively, where W indicates 

the choice with the largest amount to be won but with the smallest winning 

probability, S the one with the largest winning probability but the smallest 

amount, and L had medium probability and payoff. Table 5 shows winning prob- 

abilities (P), payoffs (Vj, and expected values (EV) for the three choice 

alternatives W, L, and S of each of Hommers' 15 stimuli. Stimuli were presented 

to Ss in form of index cards showing sets of "winning" and "not winning" balls 

in urns, and displaying the amounts to be won in coins.  Subjects made their 

choice by indicating their favored gamble, which was played thereafter. About 
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of the three-ohoice alternatives is 1] .0 (= 1,5 + 5.0 + it-.5), and thus, under 

assumption of EV orientation, the choice probabilities of alternatives W, L, 

and S are 1.5/11.0 = .136, 5,0/11.0 = .1+55, and I+.5/11.O = ah09,  respectively. 

For convenience, the choice probabilities have been converted into 

logarithms in the right half of Table 5. As in the previous examples, we 

again assume independence of observations, so that the likelihood of the whole 

set of data (observed choice frequencies) or of parts thereof is equal to the 

product of choice probabilities under assumption of the various models. In 

logarithms, this means multiplying the choice frequencies from Table h  to the 

logarithms of choice probabilities from Table 5, and then summing up over al- 

ternatives and stimuli for each model.  The antilog of this sum is the likeli- 

hood of the data set under the specified hypothesis or model. These likeli- 

hoods can be compared pairwise between models (but only for the same data set); 

however, the resulting likelihood ratios can be compared between data sets, 

i.e., between the different experimental groups. 

For some of Hommers' (1975) data, this has been done in Tables 6-9. The 

sume in the bottom rows are the logarithms of the likelihoods (probabilities) 

of the respective data, assuming that the probabilities of individual choices 

are generated by the models named on top of the columns. Of course, they are 

all negative; the larger their absolute value, the smaller the probability of 

the data under the respective model. 

In the order of their likelihoods, we get from the four groups analyzed 

the following likelihood ratios between pairs of models (see Table 10). 
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Similar analysis could be performed  for other 10 of Hommers'   Ik groups 

too.    We have displayed in the rightmost column of Table 10 the rank order of 

models as  indicated by the likelihood ratios calculated from the data;  al- 

though the  likelihood ratios themselves differ considerably,   it is  Interesting 

to note that  12 year old retarded children show the same rank order of models 

as the 8 year old normal children,  thus  supporting Hommers'  hypothesis of 

retardation as a shift In development.    Also,  comparison of the results from 

12 year old  educable retarded children without gambling experience with those 

from their classmates with prior gambling experience unveils a considerable 

influence of this experience on choices among gambles. 

Besides these analyses  for individual groups,  larger groups can be taken 

into consideration,  e.g.,   likelihood ratios between models can be  calculated 

over all Ss with prior gambling experience,   or over all retarded children to 

be compared to those calculated over all normal children,  etc.     Since we used 

those data only for illustrative purposes, we need not go into further detail. 

Also,  we will turn to the problem of interpretation of such analyses later in 
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Seghers. Fryback & Goodman's Data 

The next set of data we are going to use are those of Seghers, Fryback & 

Goodjnan (1975).  They presented their Gs sets of 7 gambles, like those 

reproduced in Table 11: 

. . 

Table 11:    List #1 as  an example 

bet # win on h lose on 32 EV Var 

1 1.55 1.10 -  .806 .683 2 5.U5 1.15 -  .659 2.088 
5 
k 

5.50 
7.15 

1.20 
1.25 

- .1+78 
- .517 

h.k69 
6.963 

5 8-95 1.30 -  .162 10A23 
6 10.80 1.35 0 1^.567 
7 12.65 1.40 + .162 19.^79 

Wins and losses were determined by means of a roulette wheel which was respun 

if 0 or 00 occurred,   such that "win on 4"  (numbers) mean? a winning probability 

of 4/^6 = 1/9,   etc. 

Seghers,   Fryback & Goodman's lists  varied in 

(1) expected value (EV), 

(2) range of outcomes  (A-ß), 

(3) step size of expectation increase  (AEV), 

(4) position of the maximal EV bet  (0BP). 

Dependent variables were: 

(a) choice of most perferred gamble. 

(b) rank orderings of the sets of 7 gambles. 
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Although the experimontal design looks as though a factorial design AVOVA, had 

been planned, the data don't permit mnh  an analysis. A frequency analysis 

as suggested by Sutcll ffe (1^7) would be more appropriate, however, low ex- 

pcvto.1 .•,-11 rrequpncl.-R in l.lu- overall contingcnc.v table prohibits such an 

analysis. 

A Payesian data analysis is suggested as an alternative. 

However, since Seghers, Fryback & Goodman assume a deterministic decision 

making model, this analysis runs into the problems mentioned before. The 

simple probabilistic choice model used to analyze Hommers' data is no longer 

appropriate here since there are negative expectations which are not compatible 

with a BTL choice model based on these expectations as scale values. 

Deterministic decision making models predict choice of the optimal gamble 

with probability 1, and of all other alternatives with probability 0 

P(choice of gamble g,) = <; 1 ^ ^ iS 0ptlraal 

.0 else 

where "optimal" is defined in the context of the respective decision making 

model to be tested, e.g., it would be the maximum EV bet under the expectation 

maximization model, or the ideal rink bet under assumption of Coombs Portifolio 

Theory. Unfortunately, likelihoods of 0 or 1 cannot be handled by the Bayesian 

data analysis model. Thus, we have to modify these models somehow to get away 

from the 0-1 likelihoods. There are several ways to do so of which we will 

try to 

(1) keep the deterministic model in principle, but dilute the too peaked 

o-l likelihood func tlon by allowing for some error variance 

1 25 

i IIiiirifiiriiiiiiiiiiliiiliiiiriTfiii-[11111 lillilii^iilriiliiiiriiii ■ unWMiiii'iiiitiir    ir iititiiiiiiit^vir'imfriitm''^-^^^--        -__ 



nr-^-irtu   ii ...Wtliw.'iwy JUIIJim.«Mi'WJl.f(W!limHW|lW«UIWipK|f^S)l»V>lW. nt^MJI^^^m-^mfm^mmmww-----n^.^r^V^"^9^.'yv.fVK»",V"^ 

(2) modify the deterministic hypothesis somewhat arbitrarily to smooth 

its peak, following an example given by Pitz (1968), who encountered 

a similar problem, 

(3) abandon the deterministic model completely in favor of some prob- 

abilistic choice model (as they have been used for riskless choices 

for e. long time), 

(k)     replace the deterministic model by some hybrid of deterministic and 

probabilistic components. 

We will explore all these possibilities in turn. 

(l):  Introducing error variance:  Our suggestion is to dilute the too 

peaked likelihood functions somewhat by allowing for error variance:  The di- 

luted K   no longer assumes Ss always pick the maximal EV gamble, but rather 

assumes that Sis err sometimes in the sense that they don't choose a certain 

gamble although they mean to choose it. 

Fortunately, the data by Seghers, Fryback & Goodman provide a way to esti- 

mate these error rates: they had their Ss do the task twice. Our suggestion 

.is to use the observed discrepancies between first and second choice (under 

otherwise equal conditions) as estimates of error rates. To do so, the Ss 

first and second choices of gambles are tallied in 7x7 confusion matrices, sep- 

arately for each given position of optimal EV bet (OBP). A completely con- 

sistent S should make the same choice on both occasions: i.e„, all entries 

should be in the main diagonal, and all other cells should be empty. Every 

deviation from this diagonal matrix is considered an "error," an inconsistency, 

a deviation of the S from his pure strategy assumed under the hypothesis of 

0 

i 

i 

.1 

\ 

A 

\ 

. 

26 

, 

m^ ..,.-> .,.^^-^..-,;.,...  ■■■i-.-.-^.^wiMitot^Mi iii-r ,„:;-. 



^,»r'iH^Vii1»7tiw»iTF>>r»'W^t»MiWWJk!ilW'w^f'tijJMPi.'w!'p;'Ji   ,ii ii   i*i!i»..iiiii^) HT-'f -o'l..! .. . ■U.W»II1IIIM..I . iii»J..i'.i.WMW'>'HiW!Wli!JWUWI lill,igi!ll..^l|fl|l4HI  W, ., IlMllVUPR|lj| 

BOW 'rfgawMBBMHWiinMia' i um in   n nwiw nmniMiniiii 

III 

■ - 

I 

expectation maximization, H . Assuming that Ss err at both choices, i.e., 

both 1st and 2nd choices have a chancr to deviate from the Ss' true choice pre- 

dicted b.v his strategy, we take the average of row anil column distribution for 

each stimulus as Its error distribution. 

This procedure assumes that, on the 2 days, S at least once chooses his 

"ideal bet" without making an error. It does not take into account those cases 

where S "wants to" select a certain bet but "misses" on both days. This may 

]ead to an underestimation of error rates. A better way would be to get con- 

tusion probability estimates from more often repeated choices, in a complete 

pair comparison matrix, or from a different task, like the procedure used in 

DeSoto & Bosley (1962) (quoted in Coombs, Dawes & Tversky, 1970, p. 68 ff.). 

This cannot be done with these data, but it could be in future experiments— 

if you want to mane the assumption that confusion of memory traces is 

representative of confusion in choices. 

Now, with this knowledge about S's error probabilities, we can modify the 

0-1 distribution under the former pure expectation maximization hypothesis: 

We diminish the peak of the distribution (formerly P(D|H ) = 1 at maximal EV 

bet) by replacing the 1 by the repetition rate (1st choice = 2nd choice) in 1st 

choice/2nd choice confusion matrix, and by replacing the zeroes by the relative 

frequencies with which Ss have chosen the respective gambles "erroneously." 

Thus, the EV maximization hypothesis H implies data probabilities of 
1 

P( D  I H )    =    the repetition probability of the maximal EV bet for 
o    1 

the maximal EV bet (D )  chosen 
o 

27 
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P(D |H ) = the probability of choosing D given S has chosen D on 

i^o 
'       the same trial in the 1st or 2nd repetition. 

(E P(D.|H ) should be 1 if everything is correct.) Analogous computations can 

1 
be done for other alternative hypotheses, like variance perference, also. 

Tables 12 and 15 give examples of such confusion matrices between 1st and 

2nd choice:  Table 12 are absolute frequencies; Table 5 is the same matrix with 

a matrix of ones added to it. (Actually, the entries in Table 12 are averaged 

over 2 presentations.) 

The rationale for adding these ones to the cells is again a Bayesian one: 

we are revising here, in principle, Dirichlet distributions (see, e.g., Novick & 

Grizzle, 1965). We start with a uniform (flat) prior distribution 

D(l 1 1, 1, 1, 1, l) with all parameters equal to 1, and then add to them the 

numbers of observations to obtain the parameters of the posterior distribution 

after Bayesian revision. However, summing cell entries from row and column 

would assume independence of observations from the two sessions which probably 

is not given since we assume that S's choices were influenced by the same pref- 

erence structure on both days. Thus, to avoid an overly peaked Dirichlet dis- 

tribution, we average over column and row entry rather than adding them up. 

Actually, this does not make a difference as long as we calculate only means 

and not variances. 
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As an illustration, assuming that gamble #1 is the optimal bet in the Ss' 

view (H ), and having observed the number of choices displayed in Table 15, we 

get: 

Table  Ik 

from row 1 
from column  1 
sum of both 
average 
and thus 

117.5 
117.5 
255 
117.5 

15.5 
14.5 
28 
11+ 

8.5 
10.5 
19 
9-5 

5.5 
6 
9.5 
4.25 

2.5 
4.5 
7 
5.5 

1J 

2 

6 
5 

6 
9 

15 
7.5 

the choice 
probabilities 

for gamble # 
.75^ 
1 

.088 
2 

.060 
5 

.027 
k 

.022 
5 

.019 
6 

.0U7 
7 

when gamble #1 i -s the  "true choice" assumed by the mod el. 

u 

LI 
i 

Some results of such tallies are reproduced in Table 15,  assuming various 

choice strategies on the side of the Ss.    Column 2 displays choice probabilities 

under an a priori random-choice null hypothesis  (all gambles chosen with equal 

probability 1/7 =   .145-. 

Table  15 

ill 

-9 alt. 
CO So 

1 
2 
5' 
k 
5 
6 
7 

12} til 
-0 
c 
CD     0) 

•H 
••    O 

.11+5 

.U5 
•145 
.145 
.145 
.145 
.145 

■^      SS       '6)       (5       ^T     (Q)     rio^ 
H^: maximize EV: 

maximal EV is  in gamble 

#1 

.802 

.060 

.058 

.051 

.019 

.018 

.052 

#5 

.110 

.140 

.566 

.065 

.024 

.055 

.060 

#5 

.080 

.051 

.058 

.124 

.482 

.082 

.117 

#7 

.092 

.040 

.046 

.050 

.040 

.062 

.670 

CO 
>, 
CD 
& H H =^ 
CD 

M 
" (J 
OJ-H 

W   ft 

.754" 

.088 

.o6o_ 

.050" 

.022 

.019 

.047 

to 
>>  KA 
CD    r 

w
a
ys

 

5-
7 to 

CD      1 
li tn 

to CD ^ ^ 
^i ^! AJ ••   a ■•    0 ■•    O 

KVH -^■•H m-H K    P( W   P. W    P4 

.112 .127 
I    .818 .054 

.080] 
.116 

.065 •117   k • 594 

.051' 
•025 k 
.057 

.652 .062 
.105 

:: 
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Columns  ? through 6 arc the diluted choice probabilities assuming ex- 

pectation maximization with some errors,  calculated in the manner described 

above from    confusion matrices between choices  in first and second sessions 

of Ss but tallied  separately for lists where gambles 1,   3,  5,  and 7 were op- 

timal,  respectively. 

Column 7  is calculated from the tallies  illustrated in Tables 12,   15,  and 

14,  assuming that  Ss have the strategy of always picking gamble #1,  no matter 

what the parameters of the gambles in the list are. 

Columns 8 through 10 are choice probabilities calculated under similar 

hypotheses,  assuming that Ss have preferences  for certain regions of the lists 

of gambles presented to them,   i.e.,  that they always pick gambles #1-5,   or 

#5-7,   or #3-5,   respectively. 

With the choice probabilities  from Table 15 taken as P(D|H.),  all these 

models can be tested against, each other by calculating the respective likelihood 

ratios.     To rrake the analysis more convenient,   all hypotheses could be tested 

first against the random-choice null hypothesis  (H^).     The resulting likeli- 

hood ratios against  Ho could then be divided by each other to yield likeli- 

jl L* hood ratios agains each other since 

P(D|H ) 1   i 
P(D|H ) / 

/ 
P(D|H.)        P(D|H ) 

P(D|H )     =    P(D|l[  ) 
0 

However,   this is only feasible as far as H    and H. are mutually exclusive. 

H .   H    and II    in Table 15 are not since they all assume a strategy to choose 

gamble #1. 

11 
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The choice probabilities assumed under hypotheses H    through H    from Table 

15 yield the likelihood ratios reproduced in Table l6 if tested against the 

uniform distribution H . 
o 

To use Table 16, we multiply the entries by the prior odds every time the 

respective datum comes up; e.g., to test hypothesis H against H , we would 

multiply prior odds (i.e., odds so far obtained) by 5.lU if S chooses gamble 

#1, and gamble #1 is optimal (maximal EV) in the respective list. 

Table 16:  Likelihood ratios calculated from Table 15 

LJ 

Q 

Q 

I 
(1) (2) (5) W (5) (6) (7) (8) (9) 

Gamble LR i/o LR2/0 LR3/0 LRVo LR.- /^ 
# 1 opt 3 opt 5 opt 7 opt ^5/0 

1 5.61 .77 • 56 .6k 5.11+1 .78 .89 
2 .k2 •98 .36 .28 .62 L   1.91 .38 .81 
5 .27 3.96 .hi • 32 .1*2 • 561 
h .22 .1*6 .87 .35 .21 .Uli .82 I     1.39 
5 .13 .11 5.37 .28 .15 .221 
6 .13 .25 • 57 M • 13 .18 >     1.19 M 
7 .22 .U2 .82 k.69 .53 .1+0J .lh 

J 

D 
i 

[ 

: 
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Li 
Again, it will be more convenient to do this in terms of logarithms, thus 

we have, in Table 17, the log LR , in column 5, and the number of choices for 

the respective gamble in column 2. 

Tnble 1Y 

I 

( i 

(1) (2) (3) CO (5) 
gamble number of log log log 

4 choices LRl/0 LR2/0 mk/o 
i 3 -   .1958 +   .7110 -  .1079 
2 0 -   .5528 -   .2076 -   .1*202 
3 2 -   .1*91*9 -   .3768 -   .2518 
It 2 - .^559 -   .6778 -   .0862 
5 1 - -5528 -  .8259 +   .0755 
6 1 - .^665 -  .8861 +   .0755 
7 15 + .6712 -  .U815 +   .0755 

log LR +6.6657 - 8.9087 +   .2858 

I,R !4..631*106 1/(8.101^ 108) 1.922 

The data in column 2 are the choices made by 12 Ss in 2 sessions among 

the gambles of list #1, reproduced in Table 11, where gamble #7 had maximal 

EV, such that the logarithms in column 5 of Table 17 are those of the like- 

lihood ratios in column 5 or Table 16. The sum of the products of entries in 

columns 2 and 3 of Table 17, the overall log likelihood ratio, is 6.6657, in- 

, /-    6 
dicating a likelihood ratio of 4.631*10 in favor of expectation maximization 

(H ) over random choice (H ). 
1 o 

Columns h  and 5 show the respective log LR for hypothesis H (always pick 

gamble #1) over the random choice hypothesis H , and for hypothesis H, (always 
o 2|    ' 

pick gamble #5, 6, or 7) against the random choice hypothesis H . Resulting 
o 

g 
likelihood ratios LR ,o = 8.104*13 in favor of H (random choice) over H 

0/2 o 2 
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(always pick gamble #1) with these data, and LRj, = 1.922 in favor of H^ 

(always pick # 5, 6, or 7) over H (random choice). 

So far, we have analyzed only the choices among gambles of one list— of 

course, it is feasible and advisible to do it over the whole set of data from 

all lists, simply by summing up the respective log LR , over all data for the 

various hypotheses H .  Seghers, Fryback & Goodman have done this for each of 

thdlr Ss, individually, and we are reproducing their results for one of their 

Ss as an example in Table 18. Besides calculating likelihood ratios LR, for 

the aforementioned hypotheses H against the random choice hypothesis H over 

all (lists) (column 2), they also did it for specified subsets of lists, e.g., 

lists with high EV (column 2), lists with low EV (column k),  lists with high 

EV differences between gambles in the lists (column 5), lists with low EV dif- 

ferences (column 6), lists of gambles with large variances (range of bet, i.e., 

|win-loss|) (column 7), and lists of gambles with small variances (column 8). 

Thus, it is possible to compare data likelihood, for the various hypotheses H 

under different stimulus conditions. 

This breaking down likelihood ratio analyses into analyses over mutually 

exclusive subsets of the whole data set corresponds roughly to what is done to 

the sum of squares in analysis of variance (ANOVA), or to the chi square in 

analyses of multi-dimensional contingency tables (e.g., see Sut^lifft, 1957): 

It shows how much the respective subsets of data (i.e., data under specific 

conditions) contribute to the overall likelihood ratio. To make fair com- 

parisons of this kind, we have to take care that these subsets are of equal 

size. 
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The product of the likelihood ratios LR./., competing hypotheses H , H 

from exhaustive and mutually exclusive subsets of data equals their likelihood 

ratio over the whole data set. E.g., in each row of Table 18, the products of 

entries in columns 5 and k,  5 and 6,  or 7 and 8 equal each other, and equal the 

entry of column 2, except for rounding errors. (This provides, by the way, an 

easy means of checking computations.) 

The results of such likelihood ratio analyses over the subsets of data 

can be used to find out under which conditions which hypotheses are how much 

more likely than others, and thus may lead to more specific theories about the 

underlying pattern of behavior. 

The comparison of likelihood ratio analysis to more conventional methods 

like ANOVA is not always straightforward; the easiest comparable traditional 

technique would be a frequency analysis because it deals with the frequencies 

of occurrence of events which enter directly the likelihood ratio analysis (as 

exponents.) 

Seghers, Fryback & Goodman did analyses of variance over the same data we 

used for demonstration in Table 18, both terms of absolute deviation of bet 

number as dependent variable, and in terms of absolute deviation of bet number 

as dependent variable, and in terms of absolute deviation of bet number chosen 

from maximal EV bet number in the respective list. Results (for the same S, 

and same session as in Table 18) are shown in Table 19. 

Seghers, Fryback & Goodman's lists were constructed in such a way that, 

given the maximal EV bet in the list (in positions #1, #5, #5, or #7 of the 

list = optimal bet position OBP), the adjacent gambles decreased in EV to both 
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sides by a step size DEV = difference in expected value.  Thus, the dependent 

variable "absolute deviation of number bet chosen from number of maximal EV 

bet" can be considered a measure of S's deviation from expectation maximation 

behavior. 

Whereas such independent variables like "high level of maximal EV in list" 

versus "low level of maximal EV in list" (first line in Table 19), large step 

size of EV differences in list versus small step size (line 2 in Table 19), 

and range of outcomes of gambles (line 5 in Table 19) show no significant dif- 

ference in the dependent variables, there are some differences between the con- 

tributions of the respective subsets of data to the likelihood ratio between 

expectation maximization and random choice hypotheses in Table 18 (line l).  How- 

ever, we have no means to compare these two kinds of analyses quantitatively. 

Testing the various hypotheses H about choice behavior against the random 

choice hypothesis H is the approach to their evaluation that comes closest to 

traditional hypothesis testing. Testing them against the most descriptive 

choice probabilities is another possibility these likelihood analyses offer 

for which no counterpart exists in traditional statistics. 

Comparisons of data likelihoods under the various hypotheses aforementioned 

to these (by definition) maximal likelihoods can show how far out hypotheses 

H deviate from actual behavior. These most descriptive choice probabilities 

specify upper bounds for data likelihoods, under the choice hypotheses, as 

illustrated in Figure 1. 
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Fipure   1 

The most descriptive (maximum likelihood) vector of choice probabilities 

for the seven gambles can be obtained for each subject from his choices by 

the following; method:  the data—choices of one out of seven gambles in each 

list—are generated by a multinomial distribution, with choice probabilities 

p. following a Dirichlet distribution. Thus we can assume a flat Dirichlet 

distribution D(l, 1, I, 1, 1, 1, 1) as prior, a multinomial data generating 

process yielding x. choices of gamble g  and thus leading (via a Bayesian 

probability distribution revision) to a Dirichlet posterior distribution, 

D(xl + 1, x2 + 1, x? + 1, x^ + 1, x5 + 1, x6 + 1, x7 +1). This Dirichlet 

posterior distribution gives us the probability P(p|x) of vector of choice 

probabilities (p^ p2, p^, p^, p^, p6, p ) = p of gambles g through g , given 

the vector of observed choice frequencies (x , x , x , x,, x , x.,  x ) = x 

and what we need is that vector p for which P(p|x) is maximal over the space 

of all possible p0  (Note that this space is restricted by Sp =1 for each p.) 

j J 

We take S #1 of Seghers, Fryback & Goodman, again, as an example. His 

(or, rather, her) choices are reproduced in columns 2, 5, 8, and 11 for the 

respective OBP condition-, and summed up in column ih  of Table 20. Columns 

% 6,  9, and 12 contain the choice probabilities under the diluted expectation 

maximization hypothesis H from Table 15, in columns 1+, 7, 10, and 13 we find 

tne corresponding logarithms. The log likelihood for expectation maximization 

59 
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calculated from these figures is -1+9.7952. The S's most descriptive strat- 

egy, computed as outlined in the preceediug paragrapii, is given In column 16, 

with the corresponding logarithms in column 17.  The lo(T likelihood from 

these figures (which is the maximal attainable) is -W.5125, and the log 

likelihood of this Ü's choices under the random choice hypothesis H is 
— "       o 

bk   * .log l/y = -5^.0(.i08.  The expectation maximization hypothesis (H ) comes 

much closer to the subjects most descriptive strategy (H ) than to the ran- 

dom choice strategy (H ). The respective likelihood ratios are 
o 

5 h LH,,      -    5.02b   * 10y LR,/n    =    1.852 * 10 
l/l 1/0 

and 

LR   ,      =     5.fc)0i)   * 10' 

We have so far used the assumption that Ss occasionally deviate from 

their ideal choice and make   "errors" in their decisions which we could use 

to get rid of the  choice probabilities of 0 and  1 assumed by the determi- 

nistic normative models of decision making. 
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Expectation Preference Model 

In discussing Hommers1  paper, we have seen that the assumption of prob- 

abilistic preference models rather than deterministic choice models is another 

feasible way to avoid choice probabilities of 0 and 1. 

For gambles of the form g    = (w ,  p.,   1 ) where Ss wins the payoff w 
J      J    J    J u 

with probability p and loses 1 with probability (l-p.), this model assumes 

that Ss choose a gamble g. with probability P(g ) proportional to the relative 

utility U(g ) of the gamble g , 

P(g.) = u(g )/E U(g ), 

J 

where 

U<V = mSi)    = Pj^ + d-Pj)^ 

under the expectation preference model. For each choice of g an S makes, 
i 

P(g )   is the likelihood of this observation to occur under assumption of 
J 

this model. 

This expectation preference model works fairly well for sets of gambles 

where all EVs are positive, as we have seen in the analysis of Hommers' data. 

However, it will run into difficulties if the EV of one or more gambles in 

the list (set of choice alternatives) is negative or zero. 

A Thurstonean (rather than Lucean) choice model might help in this case. 

Here, choice probabilities are only dependent on differences between utilities 
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of choice alternatives, rind not on their absolute values.  Under the 

assumption,", of this model, the probability of choosinr; one element (i.e., a 

gamble) in a pair of alternatives is equal to the integral of the normal dis- 

tribution from - oo to the difference in utilities (expected values) of the 

respective pair, where the mean of this normal distribution is 0, and its 

variance is the variance of the utility difference which is the sum of the 

variances of the discriminal dispersions of the two elements (gambles) in the 

pair, if we assume independence (uncorrelatedness) of these two discriminal 

processes. Application of this model requires estimation of these variances 

which can be obtained from repeated choices. 

Regret Avoidance Models 

A way to apply a Lucean choice model to choices among bets including 

gambles with EV < 0 might be to consider regrets rather than payoffs. Regrets 

are obtained from payoffs by reducing them by the maximal amount obtainable 

with each given state of world. Regrets calculated by this method are all 

negative; they arc measures of undesirability rather than desirability.  Thus, 

it does not make sense to assume choice probabilities proportional to regrets. 

What we need is some antitone transformation on the regrets which leads to high 

choice probabilities for low regrets, and low choice probabilities for large 

regrets. We propose three simple models for this purpose: 

(a) the sum-difference regret model assumes that choice probabilities are 

proportional to the deviation of the respective expected regrets from the sum 

of all regrets. 

^ 
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p(i) 
1 ri - ri 
(N -  1)  ^   ^ 

th 
where r Is the expected regret associated with the i  alternative, smallest 

regret being 0, N-number of alternatives. Model (a) gives choice probabilities 

with a rather small variance, i.e., the choice probabilities are not very 

sensitive to differences in regrets. 

(b) the reciprocal regret model assumes that choice probabilities are 

proportional to the reciprocals of the respective expected regrets, 

P(i) = 
r E _1 
1 i ri 

This leaves P(i) for r = 0 undefined. Model (b) leads to stronger deviations 

of choice probabilities from a uniform distribution over alternatives to dif- 

ferences in regrets, i.e., model (b) is more sensitive, but cannot always be 

used because if leaves the choice probability for an expected regret = 0 un- 

defined. 

(c) the max-difference model assumes that choice probabilities for 

alternatives i are proportional to the differences between the respective 

expected regrets and the maximal expected regret, 

m^x [ri] - r1 

P(i)  = N 
N max [r ] - E r 

1   1  i=l 1 

This model is more sensitive to differences in expected regrets than model 

(a) and leaves no choice probabilities undefined as does model (b), but 

leads to a 0 choice probability for the maximal expected regret alternative. 

This is an undesirable consequenc : for a BTL choice model but may be quite 
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realistic.  In the data analysis, it will hurt only if any S picks the maximuri 

expected regret gamble. 

For the example of list ^1 from Seghers, Fryback & fioodman (see Table 11), 

Table 21  shows the respective choice probabilities with these probabilistic 

regret avoidance models in columns 0, 11, and lk,  with the corresponding log- 

arithms in columns 9, 12, and 15. Column 17 displays the choice probabilities 

under error-diluted deterministic expectation maximization hypothesis 11 as 

given in Table 15, and column 18 of Table 21 contains their logarithms. In 

column 19, we have the actual numbers of choices made by S in this list of 

gambles, for which we calculated the likelihoods under the hypothesis H 
o 

(random choice), H (diluted expectation maximation), YL   (reciprocal regret), 

H^ (sum-difference regret), and H  (max-difference regret). Table 22 displays 

the pairwise likelihood ratios between these hypotheses. 

As we can see, the data are IO67 times more likely under the diluted 

deterministic expectation maximization hypothesis H than under the most favored 

probabilistic regret-avoidance hypothesis H. The data likelihood under the 
o 

least favored probabilistic regret-avoidance hypothesis H    is almost as large 

as under random choice assumption H ,  LR   ,    = 1.111. 

This indicates that for likelihood ratio analyses of choices among bets 

made by adult subjects, error-diluted deterministic expectation maximization 

models seem much more likely than probabilistic preference models. However, 

in the case of Hommers' data where no source to estimate the error rate was 

available, probabilistic preference models proved quite useful. It should be 

mentioned that neither of these studies was originally designed for a like- 

lihood ratio analysis—il' this had been the case,  adequate measures would 
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have been provided beforehand. 

Pitz, 1968 found another way of handling the problem of data probabilities 

of 0 and 1, in another context, but also with data originally not observed 

with a likelihood ratio analysis in mind. He tested a (null-) hypothesis H of 
o 

equal probability of two kinds of observations (p = 0.5) against the rather 

unspecific hypothesis F^ of p > 0.5. The data showed that 52 out of k8  Ss 

gave responses in accordance with 1^. The likelihood ratio for these data would 

have been 

L = • 5 
h8 

pi ^-v 
From this equation Pitz determined the value of p for which the data would 

be equivocal, i.e., for which L would be one: ^ = p 52 (i-p )l6  => 

P1 « .8. (That means: if ^ meant p > .8, the data would actually favor 

Ho rather than 1^.) Pitz's suggestion is to consider H as a distribution 

g(p) over p rather than a constant p^ such that the likelihood ratio is 

1*8 
L = .5 

,1.0 32 ,. .16 , . , 
J   P  (1-p)  g(p) dp 

0 

. 

D 
D 

j 

• 5 

and he proposes several possible distributions g(p), such as a uniform 

(rectangular) distribution over [.5, l.o], a triangular distribution with 

g(p) = 0 for p < .5, and a kind of beta distribution with a rather high 

mean. Such an analysis could be done with the Seghers, Fryback & Goodman 

data, too. 
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Conclusion 

Now that we have seen that we can figure likelihood ratios between various 

competing hypotheses on given data sets which were not even made for it, what 

do we do now? 

For a complete Dayesian data analysis, we would multiply our computed 

likelihood ratios to some prior odds for the respective hypotheses.  These 

prior odds may be more or less public, rr may be our very personal belief 

states.  Methods to elicit and assess such prior distributions have been 

introducted and discussed elsewhere (e.g., Winkler, 1967, Stael von Holstein 

1970). 

For a complete Bayesian analysis, we would consider the possible con- 

sequences of uur decisions between competing hypotheses, in terms of utilities 

assessed to the various combinations of our decisions among hypotheses with the 

possible "true" states of the world, and use these utilities in connection 

with our prior odds to determine cutoffs for the likelihood ratios where to 

decide in favor of which hypothesis or model. There are various techniques 

available now for the assessment of utilities to outcomes, even if these out- 

comes are characterized by several reveiant attributes. These techniques have 

been summarized recently by Fischer (1972). 

As we have seen in the few examples given in this paper, likelihood ratios 

grow rather rapidly with larger amounts of data. Even very biassed prior 

odds would be brought very soon Into the correct range by multiplication to 

these large likelihood ratios. This indicates that Bayesian analyses might get 

along with much smaller sample sizes than traditional statistical data analyses 

1 
\ h9 

la.^«^.^^».^^^,,    ^ 
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with their diffuse alternative hypotheses.  How much precisely can be econ- 

omized on the sample size, will depend in each case on the cutoff determined 

by prior odds and costs and payoffs futilities) involved, as indicated by a 

proper decision analysis (see, e.g., Raiffa, 1969). That a careful formulation 

of competing hypotheses alone can result in considerable savings on expected 

sample size, has been shown by Wald (19V7) already. 
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