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Bayesian Data Analysis ot Gambling Preferences
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} Introduction

LJ Rayesian data analysie has been teasible since 17C % when Kev, Thomas Bayes
i formulated his theorem (which is just a straightforward application of the def-

inition of conditional probability):

P(H|D) = P(D|H) P(H) / = P(DlHi) B(H, )
i D

P(D) (overall prob,)

os=ei]
”

Despite its availability f'or such a long time, research workers have made i

L sy G
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2

little use of it, Even most researchers who conslder themselves Bayesians

=

have used it only as a nuormative model for human information processing

but not for processing data, although Edwards, Lindman & Savege (1963) have

s

pointed out its advantages for statistical inference almost 10 years ago, and

b R > | -

although easily readable textbocks are available now (e.g., Hays & Winkler
1970 have a long chapter on Bayeslian inference, and the books by McGee (1971)

and Winkler (1972) are ecpecially devoted to these procedures). v

Roacivais
Ty

Beyesian statistics differs from traditional statistics in using infor-

é % §f mation not contained in the sample, namely, P(H), the prior probability of the %
b f 33
g 3 jr hyporthesis. In testing hypotheses, traditional statisticians use only P(DIH), %,
% 1 3; rejecting a hypothesis Hi when P(DIHi) plus the probability of more extreme %
E : 57 data is below a certaln prefixed level Q, i
g i o Traditional statisticlans have occasionally objected to the idea of {

E 1 :
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teking into account any prior information, like P(Hi)’ which wes not obtained
from an observed sample. Those who use Bayesian methods but insist upon priors
inferred from previous observations rather than intuition call themselves FEm-
piricel Bayesians (e.g., Mertiz, 1970),

In & sense, Bayesian statistics can be viewed as an extension of lredi-
tional statistics; it uses the same information plus something more, namely
prior probabilities, under assumption “hat all informetion availsble should be
used for decisions among competing hypotheses, Actually, according to the
principle of stable estimation, even strongly bilassed priors cannot do much
harm to the posteriors as long as the data used for their revision do have
enough diagnostic impact, and as long as the prior distribution is not too
smell in the region favored by the dats, and/or not too peaked elsewhere,

(For more details about the principle ¢f stable estimation, see Edwards,
Lindmen & Savage, 1963.) Thus, the arbitrary and intuitive nature of prior
distributions does not constitute a reason for not using Bayesian statistical
methods.,

It is probably easy to show that every scientist observing and analyzing
date has some priors with respect to his hypotheses-—however, to discuss this
is not the point of this paper, and the reader interested in these problems is
referred, e.g., to Kuhn (1962). Convenient techniques to elicit and assess
the scientist's prior probability distributions over hypotheses are availeble;
some of them are described, e.g., in Winkler (1967) and Stael von Holstein
(1970).

In this paper, we pay little attention to prior distributions over
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hypotheses, We will rather concentrate on likelihoods P(DIHi), which are more
public and less controversial than prior P(“i)'

Usually, & hypothesis to be tested in traditional statistics implies that
a certain parameter value obtains, e.g., in traditional null hypothesis test-
ing the hypothesis is: I%:G = Go for some parameter 6, which is tested against
the rather diffuse alternative that 0 # eo. In most cases, traditional stat-
isticlans cannot figure a probability for the data observed given this diffuse
alternative hypothesis, and therefore B, the probability of an error type 1I,
is left unknown,

In such a case, the Bayeslan usually would not consider a point hypothesis
Q= eO as opposed to a continuum of other values of 6, but rather would assess
a continuous prior distributlon over the whole parameter space, which is then
treated as a continuous set of hypotheses, The evidence from the sample ob-
served would then be used to revise this continuous prior distribution over
the parameter space according the Bayes's theorem, which reads for the con-

tinuous case:

g(x|8) f(e)
Je(x|e') f(e') as'

£(6]x)

and gives a contlnuous posterior distribution over the same parameter space.
Although Baycsian statistics can handle any number of competing hypotheses
simultaneously—up to an infinite number which is the continunus case discussed
Just above—the most convenient case deals with only two competing hypotheses—
such as the traditional test of Ho agalnst its alternative, the catch-all hypo-

thesis, The advantage of testing only two hypotheses against each other in
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Bayesian analysis is that Bayes's theorem can then be written in ratio form
so that P(D) cancels out:
P(H_|D
P [2)
H_|D
P(H,|D)

This is known a&s the odds-likelihood-ratio form of Bayes's theorem:

QD = QO « LR(D); in words:

posterior odds = prior odds x likelihood ratio.

For conditionally independent data, the likelihood for the whole set of data

(d . dm) is the product of the likelihoods of the individual data

l, d2,

P(DIHi) = ? P(dJIHi),

and then the odds-likelihood-ratic equation becomes:

Q = Q . LR(d ).
D o g ( j)

Bayesian data analysis with these formulae are easy, straightforward, and ef-
ficient if you have perfect knowledge of the data generating process which

gives you P(D|H), but can be quite & problem if you don't.

Bayesian Analysis of Learning Data

Let's look at an easy case first: excellent examples to do Bayesian data

analyses are comparisons of learning models. E.g., Restle & Greeno (1970)
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compare a linear operator model (Hl) by Power (191) (alsu, see Atkinson,

Bower & Corothers, 1965, p. 91).

Pn(clHl) = a-(a-b)(1- ol)n'l

and an accumulative model (”P)

b +0_ 8 -1
,a(n = 1)

P (clﬂg) =

n 1+6.(n-1)

2

where Pn(c|Hi) is the probability of a correct response on trial n under the
respective models, Gi is a parameter of the learning curve, and a and b are
initial and asymptotic success probabilities, respectively. Corresponding
probabilities of wrong responses (errors) are Pn(elHi) =1 - Pn(CIHi)'

Bower (1901) had 29 Ss learn a list of 10 items, "to a criterion of 2 con-
secutive errorless cycles, A response was obtained from the S on each pre-
sentation of an item" (p, 528)., Stimuli were pairs of consonant letters, re-
sponses were the integers 1 and 2, each of the assigned to 5 of the stimuli,.

Twenty-nine Ss times 10 items makes 290 on each trial (unless some Ss did
not get to the last trials because they completed their two errorless cycles
earlier). The data Bower obtalned, in terms of relative frequencies of cor-
rect responses on the n-th trial, are re.roduced in Table 1, column 2, from
Restle & Greeno (197C, 1. 8).

To evaluate the two competing learning theories Hl and HE given the evi-
dence from these data, Restle & Greeno (1970) assumed a = l, and b = .5, esti-
mated Oi from the data, and calculated Pn(CIHQ) using these parameter estimates.

Resulting Pn(clHl)’ Ph(cIHg), and corresponding Pn(eIHi) and Pn(eIHQ) are

o B
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reproduced in columns 3-t> of Table 1, Restle & Greeno then compared the two

models by calculatinyy the sum

2
b, = § (Pn(blni) L (c observed))

for both models (i =1, 2), Al was 0042, A2 was ,011l, indicating a better fit

' Hes
Sl !

A Bayesian data analysis would consist of calculating likelihood ratios
Pn(clHl)/Pn(clHQ) for each correct response observed, and Pn(elHl) / Pn(ele)
for each error response, and multiplying them all together to get the overall

1likelihood ratio,

To do so, we need absolute frequencies of errors and correct responses

on the 11 trials, which are not given in Restle & Greeno's book, nor in Bower's

paper. We reconstructel them by multiplying the relative frequencies given in
Restle & Greeno (column 2 in Table 1) by 290 (29 Ss times 10 items), resulting
in the absolut? frequencies of correct responses of fn(c) and errors (fn(e))
reproduced in columns 11 and 12 of Table 1, (These estimates may contain some
errors if some Ss quit before reaching the 1l1th trial because they had completed
their two errorless cycles earlier.)

For convenience, the calculation of LR(dj) and LR(D) is performed in log-

arithms: In column 13, we have

log LR(Dn) = f (¢) [log P (clHl) - log P (cle)]

+ £ (e) [log P (e|H)) - log P (e|H,)],

P PRI A DT TR WS TP S =y AN o, b o




£ log LR(D ) = 1log LR(D),
B n

with the respective logarithms in columns 7 through 10, and observed frequencies
fn(c) and fn(e) in columns 11 and 12.

The resulting log LR(D) is 9.0253, indicating a likelihood ratio LR(D)
over a billion: LR(D) ~ 1.061 ° 109. I.e., if we had assumed equal priors,
P(Hl) = P(Hg) = ,5, this would mean that Hl is over a billion times more likely
that Hé.

Although this could be taken as strong evidence for the principle of

stable estimation—even very heavily biassed priors would have been corrected

by such a large likelihood ratio, we have to consider it with some reservation,

As we pointed out already, it is doubtful if we can actually assume 290
observations in the last trials (7-11) because some Ss may have quit earlier,
Reduction of the numbers of observations in the last trials would reduce LR(D)
considerably because trials n = 7 through n = 11 contribute most to LR(D),
except for n = 2,

Unfortunately, the original complete data are no longer available. How-
ever, a letter from Bower assures that these figures actually can be taken as
numbers of correct responses assuming that the subjects would not make any
more errors had they continued after their last two errorless cycles.

Another question is whether we really can assume independence of obser-
vations enabling us to multiply likelihoods., Although the observation them-
selves are clearly obtained independently, the independence assumption for the

conditional probabilities Pn(dlei) might not hold,
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A way out of this miyht be nol bto ow..ulate the whole learning curve for

each model, but rather just to predict Pr+1(dj|Hi) from the Ph (observed so
1

far) by

P P i = 1 -0 P + 0 8, and
n*l(CI n’ 1) ( 1) n 10 A

R +a0 (R +W)
n 2 1 1

)) * (W_+ (1-a) 6, (¥

P (elr ,n)
+ P + a0, (R + +
n+l n (Rn a0, ( 1 wl & wl))

In Model 2, this requires an additionsal assumption about Rl and Wl; we

used R, =W, =5 for the calculation of Pn(can 12Hy) . Actually, the choice
of Wl = Rl does not make much of a difference,
We use this example to demonstrate s slightly different way of performing

the data analysis: In Table 1 we took logarithms of Pn(clP ,H, ) and

n-1" 1

Pn(e]P M) for 1 = 1, 2, and then subtracted the logarithms of thesec probe-

n-1’ "1
bilities for i = 2 from those for 1 = 1 (multiplied by the respective numbers
of' observations); 1in Table 2 we calculate the likelihood ratios for correct
responses and errors directly (by dividing the hit probabilities in column
5, and by dividing the error probabilities in column 6 by those in column 7
to yield column 8), and then take the logarithms of these likelihood ratios
for hits and errors (columns 1C and 12) to multiply them to the respective
numbers of nbservations (columns 9 and 11), and sum over these products,

The log likelihood ratio is now "only" 2,2508, indicating a 1likelihood

ratio of 178.2 in favor of Model 1. Of course, taking into account the observed

number of correct respunscs on the previous trisl in each calculation of
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P (clil,,P_ ) brings these probabilifies under both models closer to the ac-
n i

n-1

tual data, and thus levels out differences between them. The resulting like-

E: L 1ihood ratio is still large enough to correct even strongly biassed prior odds

8 f against Model 1, and now it takes conditioned non-independence into account,

The analysis could be further improved by many maximum likelihood extimates

; l4 for ei rather than the least squares estimates we took from Restle & Greeno .
(1970) for this demonstration. However, since the evaluation of learning
-; models is not our main concern in this paper, we will now turn to analyses

f l! of choice-amnng-gambles data,

Bayesian Analysis of Gambling Preferences

{
3 L)
3 ) As we have seen, Bayesian data analyses are quite straightforward models
,i ~} that provide us cxplicit probabilities of occurrence between O and 1 for each
3
ﬁ '{ event we might observe, We have taken learning curves as an example; other

teasible examples could be taken from psychophysics, signal detection theory,

Lucean & Thurstonean choice theories, etc.

However, in analyzing gembling preference data we encounter different

h: | problems, particularly with deterministic choice models. Since they require

.
e
3

R o

4 . deterministic choices, i.,e., with probabilities O and 1, no Bayeslan data
i ij analysis is feasible under these assumptions. This may be one of the reasons

why decision anaiysts and other scientists strongly advocating Bayesian pro-

oty
brmsmmmrt

cedures as normative models for human information processing rather seldom

use Bayesian methods in their data analyses: they mostly favor deterministic

Pr.
Copensmrtonst

. choice models which prevent them from applying their own principles,

[ e

é
1
i
E
{
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We are going to illustrate Bayeslan iata analyses of choice-among-gambles
data on two sets of data here, both borrowed from colleagues: one is from an

experiment by mmers (19Y77) with mormal and cducable relarded chilldren of o,

10, 12, and 14 yeers of age where it seems rather appropriate to replace the
deterministic normative model by & probabilistic one, the other set of data

is from an experiment by Seghers, Fryback & Goodms.. (1973) with adult subjects
where the conventional (Lucean) probabilistic choice models ﬁight indicate

too weak preferences as compared to the choice probabilities inferred from

the data.

Hommers' Data,

Hommers (1973) in his dissertation compares choices among bets made by 8,
10, and 12 years old normal children, and 8, 10, 12 and 1L years old educable
retarded children. Each set of gambles presented as choice alteruatives to
the § consisted of 3 bets labelled W, L, and S, respectively, where W indicates
the choice with the largest amount to be won but with the smallest winning
probability, S the one with the largest winning probability but the smallest
amount, and L had medium probability and payoff, Table 3 shows winning prob-
abilities (P), payoffs (V), and expected values (EV) for the three choice
alternapives W, L, and S of each of Hommers' 15 stimuli. Stimuli were presented
to Ss in form of index cards showing sets of "winning" and "not winning" balls
in urns, and displaying the amounts to be won in coins. Subjects made their

choice by indicating their favored gamble, which was played thereafter. About

12
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half of the Ss in each age and school level had previous experience with
choices on stimulus card:s with two choice alternatives, so that there are three

independent. variables: :school level (normal ve. educable retarded) , Are level,

and prior gambling c¢<perience vs, no prior rambling expericence,

jommers' data, i.e., frequencies of choices of the alternatives W, L, and
S of the 15 stimuli in the 1k groups, are displayed in Table L, Hommers' anal-
vsis of these data consisted of chi square comparisons between chese figures,
testing various hypotheses about differences in the development of risk vs.
safety orientation and EV maximization between the age groups tested and between
the normal and educable retarted children.

However, since it is assumed that these children follow scme probabilistic
choice model, it is feasible to apply a BIL choice model to these data, and
do a likelihood ratic analysis, Three probabilistic choice models derived
from Hommers' hypotheses seem to be naturally applicable in this situation: Ss
are either (1) safety oriented, i,e,, focussing on the probability of winning,
and thus should choose the alternatives with probasbilities proportional to
their respective winnings probabilities, or (2) they are value oriented, and
choose with probabilities proportional to the payoffs, or (3) they are ex-
pected-value oriented, and choose with probabilities proportional to the ex-
pected values of the alternatives., All wins and expected values are positive.
Choice probabilities for the alternatives W, L, and S of each stimulus are
calculated under the assumption of each of these three models, and displayed
in Table 5. In these computations, use has been made of the "auxillary sums"

in the last three columns of Table 3; e.g., in stimulus 1, the sum of the EV
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auxiliary sums

EV

alternative (:)

three-alternative chcices among bets
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EV

Hommers' (1973) stimul
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Table 3

#

stimulus

11.0

n
—

10\

25.0

9.5
13.0
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10.0
33.5
22.0
14.0
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50
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7
1.5
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1.7
2.1
1.3

2.5
4.5
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3.0
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2
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k.5
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e
15
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of the three-choice alternatives is 11,0 (= 1.5 + 5,0 + 4,5), and thus, under

assumption of EV orlentation, the choice probabilities of alternatives W, L,

and S are 1.5/11.0 = ,136, 5,0/11.0 = 455, and 4,5/11.0 = 409, respectively.

For convenience, the choice probabilities have been converted into
logarithms in the right half of Table 5. As in the previous examples, we
ageln assume independence of observations, so that the likelihood of the whole
set of data (observed choice frequencies) or of parts thereof is equal to the
product of choice probabilities under assumption of the various models, In
logarithms, this means multiplying the choice frequencies from Table 4 to the
logarithms of choice probabiiities from Table 5, and then summing up over al-
ternatives and stimuli for each model., The antilog of this sum is the likeli-
hood of the data set under the specified hypothesis or model. These likeli-
hoods can be compared pairwise between models (but only for the same data set);
however, the resulting likelihood ratios can be compared between data sets,
i.e., between the different experimental groups.

For some of Hommers' (1973) data, this has been done in Tables €-9. The
sume in the bottom rows are the logarithms of the likelihoods (probabilities)
of the respective data, assuming that the probabilities of individual choices
are generated by the models named on top of the columns, Of course, they are
all negative; the larger their absolute value, the smaller the probability of
the data under the respective model,

In the order of their likelihcods, we get from the four groups analyzed

the following likelihood ratios between pairs of models (see Table 10).
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Similar analysis could be performed for other 10 of Hommers' 14 groups
too. We have displayed in the rightmost column of Table 10 the rank order of
models as indicated by the likelihood ratios calculated from the data; al-

though the likelihood ratlos themselves differ considerably, it is interesting

to ncte that 1. year old reterded children show the same rank order of models
as the 8 year old normal children, thus supporting Hommers' hypothesis of
retardation as a shift in development. Also, comparison of the results from
12 year old educable retarded children without gambling experience with those
irom their classmates with prior gambling experience unveils a considerable
influsnce of this experience on choices among gambles,

Besides these analyses for individual groups, larger groups can be taken
into consideration, e.g., likelihood ratios between models can be calculated
over all Ss with prior gembling experience, or over all retarded children to
be compared to those calculated over all normal children, etc. Since we used
these data only for illustrative purposes, we need not go into further detail.
Also, we will turn to the problem of interpretation of such analyses later in

this papcr

23




[.

Seghers, Fryback & Goodman's Data

The next set of data we are going to use are those of Seghers, Fryback &

Goodman (1973). They presented their Ss sets ot 7 gambles, like those

reproduced in Table 11:

Table 11: List #1 as an example

bet # win on L lose on 32 EV Var
1 1.55 1.10 - 806 .683
2 3.45 1.15 - .639 2.088
3 5.30 1.20 - L78 h.h69
4 7.15 1.25 - 317 6.963
5 8.95 1.%0 - 162 10.423
6 10.80 1.%9 0 1h.567
T 12.65 1.40 + 162 19.479

Wins and losses were determined by means of a roulette wheel which was respun

1f 0 or 00 occurred, such that "win on 4" (numbers) meanc a winning probability

of 4/36 = 1/9, ete.
Seghers, Fryback & Goodman's lists varied in
(1) expected value (EV),
(2) renge of outcomes (A-B),
(%) step size of expectation increase (AEV),
(4) position of the maximal EV bet (OBP),
Dependent variables were:

(a) choice of most perferred gamble.

(b) rank orderings of the sets of 7 gembles.
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Although the experimental design looks as though a factorial design AVOVA had
been planned, the data don't permit :nch an aunalysis. A frequeﬁcy analjgis
as supgested by Sutelitffe (1997) would be more appropriate, however, low ex-
pectod cell frequencios In Lhe overalt contingeney table prohibits such an
analyslis,

A Bayesian data anal/ssis is suggested as an alternative,

llowever, since Serhers, Fryback & Goodman assume a deterministic decision
making model, this analysisbruns into the problems mentioned before, The
simple proba.ilistic choice model used to analyze Hommers' data is no longer
appropriate here since there are negative expectations which are not compatible
with a BTL choice model based on these expectations as scale values.

Deterministic decision making models predict choice of the optimal gemble

with probability 1, and of all other alternatives with probability O

L e gj is optimal
P(choice of gamble gj) =

O else
where "optimal" is defined in the context of the respective decision making
model to be tested, e,g.,, it would be the maximum EV bet under the expectation
maximization model, or the ideal risk bet under assumption of Coombs Portifolio
Theory. Unfortunately, likelihoods of O or 1 cannot be handled by the Bayesian
data analysis model. Thus, we have to modify these models somehow to get away
from the 0-1 likelihoods, There are several ways to do so of which we will
try to

(1) keep the deterministic model in principle, but dilute the too peaked

0-1 likelihood function by allowing for some error variance,
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modify the deterministic hypothesis somewhat arbitrarily to smooth

its peak, following an example given by Pitz (1968), who encountered

& similar problem,

(3) abandon the deterministic model completely in favor of some prob-
abilistic choice model (as they have been used for riskless choices
for e long time),

(4) replace the deterministic model by some hybrid of deterministic and
probabilistic c¢o>mponents,

We will explore all these possibilities in turn,

(1): 1Introducing error variance: Our suggestion is to dilute the too

peaked likelihood functions somewhat by allowing for error variance: The di-

luted Hl no longer assumes Ss always pick the maximal EV gamble, but rather
assumes that Ss err sometimes in the sense that they don't choose a certain

gamble although they mean to choose it.

Fortunately, the data by Seghers, Fryback & Goodman provide a way to esti-
mate these error rates: they had thelr Ss do the task twice, Our suggestion
is to use the observed discrepancies between first and second choice (under
otherwise equal conditions) as estimates of error rates, To do so, the Ss
first and second choices of gambles are tallied in 7x7 confusion matrices, sep-
arately for each given position of optimal EV bet (0OBP). A completely con-
sistent S should make the same choice on both occasions: 1i.e., all entries
should be in the main diagonal, and all other cells should be empty. Every
deviation from this diagonal matrix is considered an "error," an inconsistency,

a deviation of the S from his pure strategy assumed under the hypothesis of

26
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expectation maximization, Hl' Assuming that Ss err at both choices, 1.,e.,

both lst and 2nd choices have & chance to deviate from the Ss' true choice pre-
dicted by his strategy, we take the averape of row and column distribtion for
each stimulus as 1ts error distribution.

This procedure assumes that, on the 2 days, S at least orce chooses his
"jdeal bet" without meking an error. It does not teke into account those cases
where S "wants to" select & certain bet but "misses" on both days. This may
lead to an underestimation of error rates. A better way would be to get con-
“usion probability estimates from more often repeated choices, in a complete
pair comperison matrix, or from a different task, like the procedure used in
DeSoto & Bosley (1962) (quoted in Coombs, Dawes & Tversky, 1970, p. 68 ff.).
This cennot be done with these data, but it could be in future experiments—

if you want to make the assumption that confusion of memory traces is

representative of confusion in choices,
Now, with this knowledge about S's error probabilities, we can modify the

0-1 distribution under the former pure expectation maximization hypothesis:

We dininish the peak of the distribution (formerly P(DIHl) 1 at maximal EV

bet) by replacing the 1 by the repetition rate (1lst choice = 2nd choice) in 1lst
choice/2nd choice confusion matrix, and by replacing the zeroces by the relative

frequencies with which Ss have chosen the respective gambles "erroneously."

Thus, the EV meximization hypothesis H implies date probabilities of
1

P(DO|H1) = the repetition probability of the maximal EV bet for

the maximal EV bet (D ) chosen
)
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ﬁ and

P(Di Hl) = the probability of choosing Di given § has chosen DO on ‘-

1#o

the same trial in the 1lst or 2nd repetition,

(= P(DilHl) should be 1 if everything is correct.,) Analogous computations can
i

P

be done for other alternative hypotheses, like variance perference, also,

Tables 12 and 13 give examples of such confusion matrices between lst and

ond choice: Table 12 are absolute frequencies; Table 5 is the same matrix with

a matrix of ones added to it, (Actually, the entries in Table 12 are averaged

over 2 presentations,)

The rationale for adding these ones to the cells is again a Bayesian one:

we are revising here, in principle, Dirichlet distributions (see, e.g., Novick & -1

Grizzle, 19€5). We start with a uniform (flat) prior distribution

(1, 1, 1, 1, 1, 1, 1) with all parameters equal to 1, and then add to them the !
numbers of observations to obtain the parameters of the posterior distribution

after Bayesian revision, However, summing cell entrles from row and column

would assume independence of observations from the two sessions which probably

is not given since we assume that S's cholces were influenced by the same pref-

erence structure on both days, Thus, to avoid an overly peaked Dirichlet dis-
tribution, we average over column and row entry rather than adding them up.
Actually, this does not make a difference as long as we calculate only means

and not variances,
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Table 12: Choice on day 2/choice on day 1
G +R0
averaged contusion matrix ——e—L- Y 8s
1 2 3 4 5 6 7
116.5 12.5 75 2.5 1:5 3 5 148.5
155 13.5 9.5 6 1.5 0 1.5 45.5
9.5 7 25.5 6 2.5 0.5 3 5k
5 1 75 6 2 2 2.5 26
B0 1 1 6.5 16.5 1 3 32.5
1 1 2 2.5 3 0.5 L 1
8 2.5 > N 5.5 1.5 37 63.5
157 38. 5 58 535 32.5 8.5 56 384
Table 13: Matrix with 1 added to every cell
1 2 3 y 9 6 7
117.5 13.5 8.5 3.5 2.5 L 6 155.5
14.5 14.5 10.5 7 2.5 1 2.5 52.5
10.5 8 26.5 7 3¢5 1.5 L 61
6 2 8.5 T ) 2, 3¢5 35
4.5 2 2 75 17.5 2 i 39.5
2 z 3 2D 4 1.5 5 21
9 3¢5 6 ) 6.5 2.5 38 70.5
164 45.5 65 Lo.5 39.5 15:5 63 L33

ki
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As an illustration, assuming that gamble #1 1s the optimal bet in the Ss'’ o
{
view (H2), and having observed the number of choices displayed in Table 13, we iJ
|
|
get: ]
L g
Table 14 lJ §
¥ from row 1 : 117.5 1%.5 8.5 3.5 2.5 Y 6 .
L from column 1 117.5 14,5 10.5 6 .5 2 9 !
k sum of both  : 235 28 19 9.5 7 6 15 T
f average S 14 9.5 4.25 3.5 3 15 5
and thus f
the choice 4
probabilities: ST .088 .060 027 .022 .019 .Oh7 .
for gamble # i 2 3 i 5 A 7 3
when gamble #1 is the "true choice" assumed by the model. :
&
% Some results of such tallies are reproduced in Table 15, assuming various ll
4 cholce strategies on the side of the Ss, Column 2 displays cholce probabilities ;}
i under an & priorl random-choice null hypothesis (all gambles chosen with equal f
‘{f probability 1/7 = ,1L43, E} ~§
T
Table 15 i 4
1 i
(1) IE(2) (3) (&) (5) (6) w(j) (8) (9)  (10)
é Hi: maximize EV: > % LS % b~ % s
o s 9 maximal EV is in gamble .5 ='01 5 :"pj L @ = %2 &
Q ~ © © © © .
g+ b NI o £
& ACH #3 #5 #7 QR FE e J

i 143 .802 .110 .080 .092 LT3k

2 143 .060 140,051 040 .088 .818

% L1473 .038 566 .058 .OLA .060

; L 143 .031 L0A5 .12k .050 .0%0 .06% 117 .50k S
6

7

o O+

QO \J

[@ IRV
—
—
(0)}

143 .019 .02k 482 .040 .022 .0311
.1k43 .018 .035 082 L062 .019 .025 .652 .062 I
J143 .0%2 .060 I 670 Mo .057 .105 .
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Columns 3 through ¢ are the diluted choice probabilities assuming ex-

pectation maximization with some errors, calculated in the manner described

above trom confusrion matrices between choices in first and second sessions

of Ss but tallied separately for lists where gambles 1, 3, 5, and 7 were op-

timal, respectively,

Column 7/ is calculated from the tallies illustrated in Tables 12, 13, and

14, assuming that Ss have the strategy of always picking gamble #1, no matter

what the parameters of the gambles in the 1ist are,

Columns 8 through 10 are choice probabilities calculated under similar

hypotheses, assuming that Ss have preferences for certain regions of the lists

of gambles presented to them, i,e., that they always pick gambles #1-5, or

#5-7, or #3-5, respectively,
With the choice probabilities from Table 15 taken as P(DlHi), all these

models can be tested against each other by calculating the respective likelihood
ratios. To make the analysis more convenient, all hypotheses could be tested

first against the random-choice null hypothesis (HE). The resulting likeli-

hood ratios against HO could then be divided by each other to yield likeli-

hood ratios agains each other since

7

P(D|H,) /" P(DIH) P(D|H,)
—— - J _ 1
P(DIQD),// (o) P(D]HJ)

However, this i1s only feasible as far as Hi and Hj are mutually exclusive,

H', H  and H_  in Table 15 are not since they all assume a strategy to choose
1" 2 3

gamble #1.

o i St ) i




i through H5 from Teble

15 yield the likelihood ratios reproduced in Table 16 if tested against the

The choice probabilities assumed under hypotheses H

uniform distribution HO.

To use Table 16, we multiply the entries by the prior odds every time the

respective datum comes up; e.g., to test hypothesis Hl against Hé, we would
multiply prior odds (i.e., odds so far obtained) by 5.1k if S chooses gamble

#1, and gamble #1 is optimal (maximal EV) in the respective list.

Table 16: Likelihood ratios calculated from Table 15

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Gamble LR]./O IR

# % opt 5 opl 2/0 LR5/O T"RLL/O LR5/O

77 5 : .78 .89

.98 . .38 .81
3.96 . . 56

RIS ; .82 1.39

1

1.19 Az
CTh




Again, it will be more convenient to do this in terms of logarithms, thus

we have, in Table 17, the log LRl/O in column 3, and the number of choices for

the respective gamble in column 2,

Table 17

(1) (2) (3) () (5)

gamble number of log log log
# choices LRL/O LRQ/O LRh/O

.1938 + ,7110 .1079
.5528 . 2076 L202
.4oko - 3768 2518
1559 6778 .0862
5528 - .82%9 0755
<3665 .886A1 L0755
6712 1815 L0755

+6.6657 8.9087 + ,2838
. (%1%100 1/(8.104%108) 1.922

The data in column 2 are the choices made by 12 Ss in 2 sessions among
the gambles of list #1, reproduced in Table 11, where gamble #7 had maximal
EV, such that the logarithms in column 3 of Table 17 are those of the like-
lihood ratios in column 5 or Table 16. The sum of the products of entries in
columns 2 and % of Table 17, the overall log likelihood ratio, is 6.6657, in-
dicating a likelihood ratio of h.651*106 in favor of expectation maximization
(Hl) over random choice (}%).

Columns 4 and 5 show the respective log LR for hypothesis H2 (always pick

gamble #1) over the random choice hypothesis Hé, and for hypothesis H, (always

L
pick gamble # 5, 6, or 7) against the random choice hypothesis H . Resulting
o]

)
likelihood ratios LRO/2 = B8,104%10° in favor of H (random choice) over H2
(o]

)




(elways pick gamble #1) with these data, and LRLL/O = 1,922 in favor of Hh
(alwaeys pick # 5, 6, or 7) over HO (random choice).

So far, we have analyzed only the choices among gambles of one list— of
course, it is feasible and advisible to do it over the whole set of data from
all lists, simply by summing up the respective log LRl/O over all data for the
various hypotheses Hi' Seghers, Fryback & Goodman have done this for each of
their Ss, individually, and we are reproducing their results for one of their
Ss as an example in Table 18, Besides calculating likelihood ratios LRl/O for
the aforementioned hypotheses H1 against the random choice hypothesis HO over
all (1lists) (column 2), they also did it for specified subsets of lists, e.g.,
lists with high EV (column 2), lists with low EV (column L), lists with high
EV differences between gambles in the lists (column 5), lists with low EV dif-
ferences (column 6), lists of gambles with large variances (range of bet, i.e.,
|win-loss|) (column 7), and lists of gambles with small variances (column 8).
Thus, it is possible to compare data likelihood, for the various hypotheses Hi
under different stimulus conditions.,

This breaking down likelihood ratio analyses into analyses over mutually
exclusive subsets of the whole data set corresponds roughly to what is done to
the sum of squares in analysis of variance (ANOVA), or to the chil square in
analyses of multi-dimensional contingency tables (e.g., see Sut:liffy, 1957):
It shows how much the respective subsets of data (1.e., data under specifie
conditions) contribute to the overall likelihood ratio., To make fair com-
parisons of this kind, we have to take care that these subsets are of equal

size,
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competing hypotheses H

The product of the likelihood ratios LR / ¥

i/J H:J

- from exhaustive and mﬁtually exclusive subsets of data equals their likelihood

ratio over the whole data set. E.g., in each row of Table 18, the products of
entries in columns 3% and 4, 5 and 6, or 7 and 8 equal each other, and equal the
entry of column 2, except for rounding errors. (This provides, by the way, an
easy means of checking computations.)

The results of such likelihood ratio analyses over the subsets of data
can be used to find out under which conditions which hypotheses are how much
more likely than others, and thus may lead to more specific theories about the
underlying pattern of behavior.

The comparison of likelihood ratio analy;is to more conventional methods
1ike ANOVA is not always straightforward; the easiest comparable traditional
technique would be a frequency analysis because it deals with the frequencies
of occurrence of events which enter directly the likelihood ratio analysis (as
exponents. )

Seghers, Fryback & Goodman did analyses of variance over the same data we
used for demonstration in Table 18, both terms of absolute deviation of bet
number as dependent variable, and in terms of absolute deviation of bet number
as dependent variable, and in terms of absolute deviation of bet number chosen
from maximel EV bet number in the respective list., Results (for the same S,
and same session as in Table 18) are shown in Table 19,

Seghers, Fryback & Goodman's lists were constructed in such a way that,
given the maximal EV bet in the list (in positions #l, #3, #5, or #7 of the

1ist = optimal bet position OBP), the adjacent gambles decreased in EV to both
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sides by a step size DEV = difference in expected value., Thus, the dependent
variable "ebsolute deviation of number bet chosen from number of maximal EV
bet" can be considered a measure of §'s deviation from expectation meximation
behavior.

Whereas such independent veriables like "high level of maximal EV in 1list"
versus "low level of maximal EV in list" (first line in Table 19), large step
size of EV differences in list versus small step size (line 2 in Table 19),
end range of outcomes of gambles (line 3 in Table 19) show no significent dif-
ference in the dependent variables, there are some differences between the con-
tributions of the respective subsets of date to the likelihood ratio between
expectation maximization and random choice hypotheses in Table 18 (line 1). How-
ever, we have no means to compare these two kinds of enalyses quantitatively.

Testing the various hypotheses Hi about choice behavior against the random

choice hypothesis Ho is the approach to their evaluation that comes closest to

traditional hypothesis testing. Testing them against the most descriptive

choice probabilities is another possibility these likelihood analyses offer
for which no counterpart exists in traditional statistics.

Comparisons of date likelihoods under the various hypotheses aforementioned
to these (by definition) maximal likelihoods can show how far out hypotheses
H deviate from actual behavior. These most descriptive choice probabilities
specify upper bounds for data likelihoods, under the choice hypotheses, as

illustrated in Figure 1,

38
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''ne most descriptive (maximum 1likelihood) vector of choice probabilities
for the seven gambles can be obtained for each subject from his choices by
the followins method: the data—choices of one out of seven gambles in cach
list—arc pencrated by a multinomial distribution, with choice probabilities

pi following a Dirichlet distribution. Thus we can assume a flat Dirichlet

iistribution D(1, 1, 1, 1, 1, 1, 1) as prior, a multinomial data generating
process yielding Xj choices of gamble gi, and thus leading (via a Bayesian
prooability distribution revision) to a Dirichlet posterior distribution,

DO ¥ 0, + iy gyt Ly Xt oxg vl %X+l x

= “5 7
posterior distribution gives us the probability P(5|§) of vector of choice

L + 1), This Dirichlet

)
c

3

probabilities (pl’ Pp» P3s Py Psy Pgy p7) = p of gambles : through 8.5 given

the vector of observed choice frequencies (xl, X x3, X)) x5, Xg x7) = X,

and what we need is that vector 50 for which P(i]i) is maximal over the space

of all possible p. (Note that this space is restricted by Zp,
J

We take S #1 of Seghers, Fryback & Goodman, again, as an example, His

= 1 for each 5.)

(or, rather, her) choices are reproduced in columns 2, 5, 8, and 11 for the
respective 03P conditions, and summed up in column 14 of Table 20, Columns

o G, 9, and 12 contain the choilce probabilities under the Ailuted expectation

maximization hypothesis Hl from Table 15, in columns 4, 7, 10, and 13 we find

ti.c corresponding logarithms. The log likelihood for expectation maximization

39
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calculated rrom these figures is -49.79%2. The S's most descriptive strat-
ey, computed as outlined in the preceeding paragrapi, is given in column 16,
with the corresponding logarithms in column 17. The loy likelihood from
tnese figures (which is the maximal attainable) is -Lkh.512%, and the log
likelihood or this 8's choices under the random choice hypothesis HO is

ol * log 1/7 = =5h.000H.  The expectation maximization hypothesis (Hl) comes
much closer to the subjects most descriptive strategy (H7) than to the ran-

Jdom choice strategy (HO). The respective likelihood ratios are

L

5,020 * 107 LR = 1.852 * 10

Alld

9

gy
X
1

9,000 % 10
7/0 5

We have so far used the assumption that Ss occasionally deviate from
their ideal choice and make "errors" in their decisions which we could use

to get rid of the choice probabilities of O and 1 assumed by the determi-

nistic normative models of decision making.
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Expectation Preference Model

In discussing Hommers' paper, we have seen that the assumption of prob-
abilistic preference models rather than deterministic choice models is another
feacible way to avoid choice probabilities of O and 1.

For gambles of the form gj = (wj, Pj’ lj) where Ss wins the payoff wj

with probability PJ and loses lj with probability (l-pj), this model assumes

that Ss choose a gamble g, with probability P(gj) proportional to the relative
- J

utility U(gj) of the gamble gj,

Plg,) = U(gj)/i U(gj),

where

= y = o 1_
U(gj) EV(gj) PV # Il pj) ;

under the expectation preference model., For each choice of g an S mekes,
J

P(g,) 1s the likelihood of this observation to occur under assumption of

J
this model,

This expectation preference model works fairly well for sets of gambles
where all EVs are positive, as we have seen in the analysis of Hommers' data.,
However, it will run into difficulties if the EV of one or more gambles in
the 1ist (set of choice alternatives) is negative or zero.

A Thurstonean (rather than Lucean) choice model might help in this case.

Here, choice probabilities are only dependent on differences between utilities

L2
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ot choice alternatives, and not on their absolute valucs, Under the
assumptions ot this modecl, the probability of choosing une element (i.e., &
zamble) in a pair of alternatives is equal to the integral of the normel dis-
tribution trom - o to the difference in utilities (expected values) of the
respective pair, where the mean of this normal distribution is O, and its
variance is the variance of the utility difference which is the sum of the
variances of the discriminal dispersions of the two elements (gambles) in the
pair, if we assume independence (uncorrelatedness) of these two discriminal
processes, Application of this model requires estimation of these variances

which can be obtained from repeated choices,

Regret Avoldance Models

A way to apply a Lucean choice model to choices among bets including
gembles with EV < O might be to consider regrets rather than payoffs. Regrets
are obtained from payoffs by reducing them by the maximal amount obtainable
with cach given state of world, Regrets calculated by this method are all
negative; they arc measures ot undesirability rather than desirability. Thus,
it does not make sense to assume choice probabilities proporticnal to regrets.
What we need is some antitone transformation on the regrets which leads to high
choice probabilities for low regrets, and low choice probabilities for large
regrets, We propose three simple models for this purpose:

(a) the sum-difference regret model assumes that choice probabilities are

proportional tc the deviation of the respective expected regrets from the sum

of all regrets,
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P(1)

th
where ry is the expected regret associated with the i alternative, smallest

oA s e 4 S

regret being O, N=number of alternatives. Model (a) gives choice probabilities
with a rather small variance, i.e., the choice probabilities are not very

sensitive to differences in regrets. l

T A R I S W T T

(b) the reciprocal regret model assumes that choice probabilities are 1

proportional to the reciprocals of the respective expected regrets,

i At

; 1
. r & 1
i ri

This leaves P(i) for r, = 0 undefined. Model (b) leads to stronger deviations

1 §
\ L J i
: of choice probabilities from a uniform distribution over alternatives to dif-

| &

ferences in regrets, i.e., model (b) is more sensitive, but cannot always be LJ ‘

i

used because if leaves the choice probability for an expected regret = 0 un- '} 3

LE

defined. ;

(c¢) the max-difference model assumes that choice probabilities for ?J ?

alternatives i are proportional to the differences between the respective '1 ;

expected regrets and the maximal expected regret, . ;

alk

mgx [r.] - r »

i i
F ( A ) = % N 9
Nmex [r,] -5 r .
il i i=1 i
3 This model is more sensitive to differences in expected regrets than model

1 .
g (a) and leaves no choice probabilities undefined as does model (b), but E
L,’ i B
$ leads to a O choice probability for the maximal expected regret alternative. - £
: This is an undesirable consequenc: for a BTL choice model but may be quite %'

Ly
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realistic. In the data analysis, it will hurt only if any S picks the maximun
expected repret camble,

For the cxample of 1ist #1 trom Seghers, Fryback & Goodman (see Table 11),
Table 21 shows the respective choice probabilities with these probabilistic
regret avoidance models in columns 8, 11, and 14, with the corresponding log-
erithms in columns 9, 12, and 15. Column 17 displays the choice probabilities
under error-diluted deterministic cxpectation maximization hypothesis Hl as
given in Table 1%, and column 18 of Table 21 ~ontains their logarithms, In
column 19, we have the actual numbers of choices made by S in this 1list of
gambles, for which we calculated the likelihoods under the hypothesis HB
(random choice), Hl (diluted expectation maximation), HB (reciprocal regret),
H9 (sum-difference regret), and HlO (max-difference regret)., Table 22 displays
the pairwise likelihood ratios between these hypotheses.

As we can see, the data are 1067 times more likely under the diluted
deterministic expectation maximization hypothesis ”1 than under the most favored
probabilistic regret-avoidance hypothesis H8. The data likelihood under the
least favored probabilistic regret-avoidance hypothesis H9 is almost as large
as under random choice assumption HO, LR9/O = 1,111,

This indicates that for likelihood ratio analyses of choices among bets
made by adult subjects, error-diluted deterministic expectation maximization
models seem much more likely than probabilistic preference models. However,
in the case of Hommers' data where no source to estimate the error rate was
aveilable, probabilistic preference models proved quite useful. It should be
mentioned that neither of these studies was originally designed for a like-

lihood ratic analysis—if this had been the case, adequate measures would

Gt ol s
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have been provided beforehand.
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Pitz, 1968 found another way of handling the problem of data probabilities

of 0 and 1, in another context, but also with dats originally not observed

gy
SO

T

7 X

with a likelihood ratio analysis in mind. He tested & (null-) hypothesis HE of

===y

s
)
-~

equal probability of two kinds of observations (p = 0.5) against the rather

Lo
sy
T

i unspecific hypothesis H. of p > 0.5. The data showed that 32 out of 48 Ss
: Y 5 =)

gave responses in accordance with Hl' The likelihood ratio for these data would

r sy
PR
Y P T

have been

o s e AT

58

32
3 P, (1"P1)

o

=
]

16

’ From this equation Pitz determined the value of Pl for which the data would

be equivocal, i.e., for which L would be one: .5h8 = p132 (1-p )16 = LJv

1

p, = .8. (That means: if Hi meant p > .8, the data would actually favor

._....,
fL i

HB rather than Hi.) Pitz's suggestion is to consider Hl as a distribution

g(p) over p rather than a constant Pl’ such that the likelihood ratio is
{

18 |

5 : L

1,0 é 16
ol P3 (1-p) ™ g(p) dp i1

| iD {

I, =

and he proposes several possible distributions g(p), such as a uniform 15
(rectangular) distribution over [.5, 1.0], a triangular distribution with &
g(p) = O for p < .5, and a kind of beta distribution with a rather high
mean. Such an analysis could be done with the Seghers, Fryback & Goodman ‘j

data, too. ¥
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Conclusion

Now that we have seen that we can figure likelihood ratios between various
competing hypotheses on given data sets which were not even made for it, what

do we do now?

For a complete Bayesian data analysis, we would multiply our computed
likelihood ratios to some prior odds for the respective hypotheses, These
prior odds may be more or less public, rr may be our very personal belief
states. Methods to elicit and assess such prior distributions have been
introducted and discussed elsewhere (e.g., Winkler, 1967, Stael von Holstein
1970).

For a complete Bayesian analysis, we would consider the possible con-
sequences ol our decisions between competing hypotheses, in terms of utilities
assessed to the various combinations of our decisions among hypotheses with the
possible "true" states of the world, and use these utilities in connection
with our prior odds to determine cutoffs for the likelihood ratios where to
decide in favor of which hypothesis or model, There are various techniques
available now tor the assessment of utilities to outcomes, even if these out-
comes are characterized by several revelant attributes., These techniques have
been summarized recently by Fischer (1972).

As we have seen in the few examples given in this paper, likelihood ratios
grow rather rapidly with larger amounts of data. Even very biassed prior
ovads would be brought very soon into the correct range by multiplication to
vhese large likelihood ratios, This indicates that Bayesian analyses might get

along with much smaller sample sizes than traditional statistical data analyses
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with their diffuse alternative hypotheses. How much precisely cen be econ- {! b
omized on the sample size, will depend in each case on the cutoff determined
by prior odds and costs and payoffs (utilities) involved, as indicated by a g
proper decision analysis (sce, e.g., Raiffa, 1969). That a careful formulation ?

of competing hypotheses alone can result in considerable savings on expected

sample size, has been shown by Wald (1947) already. L
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