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Some Criticistrs of the General Models 

Used in Decision Making experiments 

Introduction 
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In the beginning, there was the idea of expectation maximation as a 

normative model In decision making:  given a choice of several courses of 

action a. you should always select that alternative for which the expected 

value 

[1] 
EVi ■ E PCs.) v (a  s ) 

j   J        3 

is   largest,  where p(s.)   is the probability of some other event  s.  which you 

cannot control,  and vCa.,  s^)   is the  (monetary)  outcome for you if you choose 

a^  and the uncontrollable event  s.  comes up.    Decision situations to which this 

model   is applicable ore conveniently represented by payoff matrices. 

(vU.,  s.)) 

choice of action 
(controlled by DM) 

state of nature, or other event not under 
DM's control 

Sl      S2 

a. 
i ^(a. , s.) 
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Bernoulli   (1738)  was the  first   (in  literature)  who found out  that this 

model   does not work,  cither in betting behavior or in   insurance buying.    He 

tried  to get  around  it   by  replacing monetary values with  utilities,  assuming 

a  negatively  accelerated utility   function.     Many other authors  have  followed 

him   in  recent years   (about   since  the   195üs)   assuming  all  kinds  of utility 

functions,  even positively accelerated ones for gamblers,   and multi-att  ibutc 

utility  functions   for more  complex  situations.     (For an excellent  review of 

the   literature on  the   latter approach,   see e g.   Fischer   (1972)). 

Von Neumann and N'orgenste n   (1944)  have re-emphasized expectation maximization 

as  a  normative model.     Experiments  following their book have   shown that  not only 

values but  also probabilities  iK'ed some subjective distortion to make the model 

descriptive.     As  a corhination  of these  transformations,   Edwards   (1954)  proposed 

the  subjective expect<d utility maximization model,   SIU,  when  both values 

v(a. ,   s.)   and probabilities p(s.)   are  replaced by their subjective transforms, 

but   the principle of (xpectation maximization  is preserved. 

Coombs  and collaborators   (from Coombs and Pruitt   (1960)   up  to the most 

recent,   not-yet-writti n-up papers)   cnrieiicd the model   by  an  additional   risk 

component.    They assuned that   risk  taking,  for most  Ss,  has  a  subjective v< lue 

in   itself,   leading to an ideal   (i.e.   most preferred)   level   of risk  for any S^, 

implying  a single pealed preference   function over risk.     In most   cases,   risk 

was  somehow related to the variance of the possible outcomes of a choice of 

action.     Coombs called his  risk-expectation approach Portfolio Theory. 

Both Edwards'  SEH and Coombs'   Portfolio approach were mainly  intended to 

1 
J 
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make the original nc native expectation maximization model more descriptive, 

more predictive of actual behavior. 

However, the expectation maximization approach has competitors, also as a 

normative model (for a review of these alternative normative decision criteria 

see, e.g., Schneeweiss (1966), or Wendt (1970).).  But, so far, only little use 

has been made of these alternative criteria in the experimental literature. The 

exception is, the minimax criterion, which has been frequently used in competitive 

experimental zero-sum games where s., the eveif not under DM's control, is the 

decision of another intelligent S^ trying to minimize DM's payoff to maximize his 

own.  In this case, it is advisable to decide in such a way t.'iat the worst possible 

outcome is still the smallest loss for DM, in the given situation. This calls for 

a strategy where DM first finds the minimum payoff in each row o? thp payoff matrix 

(because that is the column his opponent will like most to select), and then 

picks the row a. in which this minimum over columns is largest.  Because of this 

procedure—search for minima within rows first, and for row with maximal minimum 

then--thi^ strategy has been called the Minimax Strategy.  It was first defined 

by Wald (1950). 

Savage (see 1954, though the idea was proposed earlier) refined this strategy 

a rather interesting way.  If the events s. not under his control are very different 

in attractiveness to DV,  his main concern should be how much he loses by macing the 

wrong decision in a given situation. Thus, Savage considered it appropriate 

to deduct from each entry in the payoff matrix the most attractive value 
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(maximum) in its column, leaving in each cell the amount DM would get 

less than this maximum If the respective column s. obtained, and he had not 

chosen the row with the maximum payoff in that column. These quantities, 

r(a., s.) = v(a., s.) - max[v(a., s.)], have been called regrets, and the minimax 

regret strategy advises DM to apply the minimax principle (as stated above) to 

regrets (r(a., s.)) rather than actual payoffs (v(ai, s.)). 

The following example is designed to show that expectation maximization 

minimax payoff and mirumax regret strategies can lead to different choices of 

action: 

max(v(a., s.)] 
i 

payoffs 
v(ai, s.) 

s1   s2 

-10 

+2 

+ 20 

-1 

+ 100  -50 

regrets 
r(s. , s.) 

'1 

■no 

-98 

0 

+100  +20 

p(sj) .8 

enter the 
calculation of 

recommended choice 

by criterion 

expectation maximization 

minimax payoff 

minimax regret 

(These all are considered normative 
rational strategies.) 

[3] 

; 

3 

In this example, the argument for minimax regret goes as follows: 

according to the minimax payoff criterion, DM should choose a2 which secures him 

at least -1 (in the worst case Sj,  given he has chosen a2) whereas with choice 

a or a he could lose 10 or 50, respectively. However, if Sj comes up and he 
1      o 

— «M^MMI ^ltmm^^ 
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has chosen a^ as recommended by the minimax payoff strategy, he gets 98 less 

than what he could have made if he had chosen the best actirn under assumption 

that s. obtainr. which would be a_.  If he chooses a^,  and s2 comes up, he has 

to regret only 70 which he would have got more if he had chosen the optimal 

action a. under assumption of »,. (Under the expectation maximization criterion, 

expected payoff maximization and expected regret minimization always lead to 

••he same choice of action.) 

If applied in risky decision situations where the event s. is not under 

another intelligent being's control but rather random, the minimax criteria are 

rather pessimistic or cautious strategies since they always assume that the 

worst possible eve.it s. can obtain whatever DM's decision ai might be. 

This is considered adequate in games against a hostile opponent but not 

when the s are random events in nature. Then, expectation maximization is 
J 

recommended in most cases. 

Therefore, the normative model of expectation maximization will be outlined 

in a little more detail before going into the criticism that is the topic of 

this paper. As indicated, the model prescribes the choice of that action a. 

for which the quantity 

EVU.) ■ Z pis )  vCa.. s ) 

j [4] 

is maximal over all a..  p(s.) is considered DM's per nal or subjective 

probability that s will obtain. p(s.) obeys the axioms of probability theory, 

and can be modified according to the rules of Bayes' theorem if relevant data 

d, bearing on s. are observed: 
k j 

p(s.ldk) - p(s.) . pCdJs.) / Z p(s.) p(dk|s.) 

where p(s.|d,) is the posterior probability of s given the ditum dk. 

mm *_ ^UIMiUdaikaiMMM^MMllttMlUiA _^ 
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pCSj) is the prior probability of s  and p(dk|s.) is the likelihood, or 

probability of d, given s.. 

If there are several independent data d. relevant to the distribution 

over s., their respective probabilities are multiplied together to reveal 

the overall impact of the data on prior probabilities: 

P(s.) n p(dk|sj) 

pd-jdj, d2, ..., dr) 

I p(s ) TT p(d. |s.) 
j     J  k    k  J 

[6] 

Thus, with the use of data, we have 

P(s.) TT p(d, |s ) v(a., sJ 

EV (a^ - I 
j   I  p(s ) TT p{d, |s,) 

J Tc'-J 

[7] 

In most more complex real life interactions, no monetary payoffs 

vCgj, s ) are known.  Instead, many different aspects or dimensions may 

enter the evaluation of the various outcomes of decisions. 

Several solutions have been suggested for this evaluation problem; 

for a recent review of these see Fischer (1972). Most of them assume an 

additive combination of the various aspects to be most adequate, proposing 

a weighted sum or average of the attributes x. 
h 

vCa., s ) - Ewh xh (a., s ) 
h J [8] 

where wh is the weight, or importance of the h-th dimension or attribute 

of the situations, and x, (a., s.) is the score of the situation (a., s.> 
n  i  j i       y 

J 

J 

I 

., 

! 

J 
D 
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on the h-th dimension, i.e., the amount to which the situation (a., s.) 
i       y 

possesses  the attribute h.     As Keeney  1972 has shown,   this additive model 

is the  limiting case of the more general  multiplicative model, 

1 ♦ W vCa.,  s.)  = TT  [1  + W wh xh(a.,  s.)] 

such  that 
v(a.,  s.) i      j 

n   [1  + W w    x  (a      s  )]   -1 
h n    n    i      j 

w 

[8a] 

[8b] 

With insertion of  [8]   into   [7],  we get 

EV  (a.)  = Z 
P(s.)jrp(dk|s.)  Ewhxh  (a.,  s.) 

j Z p(s ) W p(d, |s ) 
j        ]    k        K    } 

[9] 

In thij equation, variables and parameters can be categorized into 

three classes: 

some are rather stable parameters or characteristics of DM, like w ; 

some are rather stable characteristics of DM's environment, like 

a^ s., p(s :, p(dk|s.); 

and some have to be taken into account in the evaluation of each 

particular situation, like x(a. , $.), and observation of d, . 
1  J k 

This third category contains those cues or characteristics of the situation 

DM looks at to make up his mind: he observes the status of data d. relevant 

to his revision of probabilities p(s.) to p(s.|d,), and ne estimates the 

attribute scores xh(a., s.) to get utility evaluations v(a., s.)- The 

normative model above considers these two kinds of cues, d, and x, fa., s 1 
k     hi  }J 

to be very distinct classes of variables which play completely different 

roles in reaching a decision (choice of a.). 
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Assuming that Eq. [9] is the optimal rational strategy to select an 

action a., it is easily seep that human beings might have a hard time doing 

all these calculations in their heads, and then come up with the right decision, 

it is rather obvious that they need some help. 

This paper is intended to make some criticism of the  approach used so 

far, i.e. to question if the technologies developed and testeo iu  experimental 

decision making research really can help the decision maker in real life 

situations.  To be helpful in this sense at all, it would be necessary 

(a) that the decision maker actually agrees that the models 

proposed (as outlined above) can be considered as rational 

normative models which meet his needs and goals 

(b) that these models are descriptive enough of human decision 

behavior so  that it is possible for the decision maker 

to do what the model prescribes. 

More particularly, we will discuss four major points: 

first, we question the assumption of expectation maxi ■ zation as 

a rational concept at all; 

second, we cast some doubt on the separation of probability- 

estimation and outcome-evaluation cues (d, and x, , respectively) 

in the judgment of real life situations; 

ß 
11 

. 

. 
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thj_rd, we question the weighted-average multi-attribute utility 

model in particular; and 

fourth, we suggest the use of probabilistic models in decision 

making (just as we do in other fields of psychology) rather 

than deterministic models (as it has been done ir empirical 

studios of risky decision making so far.) 

I am aware of the fact that all these criticisms have been made before - 

since "there is no new thing under the sui " anyway (The Bible, Ecclesiastes 

1:9).  But nobody has listened, so far.  What I leave out is questioning the 

generalizability of experimental laboratory results to real life situations-- 

this problem, with respect to decision making, has been reviewed recently by 

Winklcr fj Murphy, 1973. 

All this has been written up not to point out that our current decision 

technology is useless--on the contrary, it has made tremendous progress 

during the last twenty years--but rather to show that it still is far from 

perfect, and that much more research is needed. 
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Criticism of expectation maximizati on as a normative model 

Maximizing expectation i. risky decision situations may become quite 

fatal for DM if high losses are possible which can throw DM out of the 

business.  Actually, the expectation maximization strategy should not be 

recommended to any DM unless he is infinitely rich, so that he can afford 

occasional losses no matter how high they might be. 

Bernoulli (1738) tried to get around this problem by assuming non-linear, 

negatively accelerated utility functions dependent on DM's total wealth 

as a normative model for insurance buying. This did not solve the problem 

satisfactorily, either, but in principle, nonlinear utility functions can 

do it by assessing an infinitely large negative utility to bankruptcy. How- 

ever, such a utility function would violate the Archemedian axiom which is 

necessary for any utility function.  [DeCroot, 1970, p. 102]. The classical 

gambler's ruin problem has been discussed in Ch. XIV of Feiler (1968), showing 

that even with unfair bets (i.e., with odds less than one for the DM) you can 

expect to gamble fairly long without being ruined; you even have a considerable 

probability of gain (See Table 1 from Feller, p. 347). 

TABLE I 

ILLUSTRATING THE CLASSICAL RUIN PROBLEM 

Probability of Expected 
p 9 r a Rain Succest Gain Duration 

0.5 0.5 9 10 0.1 0.9 0 9 
0.5 0 5 90 100 0 1 0.9 0 900 0 5 0.5 NO 1.000 0.1 0.9 0 90 000 0.5 0 5 950 1.000 0.05 0.95 0 47,500 0.5 0.5 8,000 10,000 0.2 0.8 0 16.000,000 
0.45 0.55 9 10 0.210 0.790 -1.1 II 
0.45 055 90 100 0.866 0.134 -76 6 Ui.6 0.45 0.55 94 100 0.182 0818 -17.2 1 '1 8 0.4 0.6 N 10« 0983 0.017 -88.3 441.3 0.4 06 99 100 0 3 33 0.667 -32.3 161.7 

The initial capital is i. The game terminates with ruin (loss :) or capital a  (gain  a — ;). 

.! 

ö 
i! 
] 
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Normative models for gambling under limitations of time have been dis- 

cussed by Dubins § Savage (1965).  They do not maximize expected value, but 

rather maximize the probability of ending up with a prespecified total amount. 

Fxpectation maximization might serve only as an approximation to these strategies 

(and it would be well worth while studying how good these approximations are). 

ll 
1 
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who suggested to weight both expectation Z p(s.) v(a., s.) and the worst out- 
j   J    i  J 

come min[v(a., s.)] by a confidence parameter ß and (1-ß), respectively: DM 

j    1  J 

is required to maximize the quantity 

Z_(a.) = 0 EVla.) ♦ (1-ß) min^Ca. ,s.)] 

J [10] 

•' 

.. 

These facts have probably )o,i to the widespread acceptance cf the "* 

expectation maximization model it has gained now. 

For any DM with limited wealth, the minimax strategy (or at least a 

part of it) might be more advisable in some situations. 

Although a pure minimax strategy seems to make sense from a risk- 

ivoidance ooint of view, it would not give DM a chance to make much of a 

fortune.  It is defensive rather than designed to make DM successful. 

What is called for is a decision strategy which is partly defensive 

like the minimax criterion to avoid bankruptcy, and partly prosperous like 

the expectation maximization criterion to enable DM to have some success.  Such 

a criterion has been proposed by Hodges and Lehmann (cf. Schneeweiss 1966) 

D 

Ü 

i 

D 
with ^(a.) as specified in Kq. [1] and [9]. 

Formally, this means just giving some additional weight (1-ß) to the 

worst outcome (which is contained in EV(a.) weighted by its probability 

anyway).  This makes the model more cautious than plain !iV maximization but 

still may do a rather poor job as long as ß is considered a rather rigid 

parameter.  What might help, is to make it more adaptable, i.e. to adjust the 

amount of pessimism  (1 - ß) to DM's actual situation.  For instance, 

ß  should take into account DM's current wealth or total capital, to adapt 

to the extent to which DM can afford expectation maximization. 

M"——^  ■- -    - - - • - 
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Thus, instead of a rigid constant parameter, 6 should be a (ant.tone) 

function of DM's current total capital y, and a monotone function of 

min[v(a., s^)] itself, and maybe respect some other aspect of the distribution 

over outcomes, too. 

However, giving an extra weight to the worst outcome may not be the 

only possible improvement of the expectation maximization model. Other aspects 

of the distribution (pU.|dk)) over possible outcomes (a., s.) may be im- 

portant, too, as Coombs assumes in his Portfolio Theory, and as Pollatsek 

and Tv^rsky 1970 assume in their theory of risk which considers risk as a 

linear combination of expectation and variance.  But they are more concerned 

with empirical findings in the perception of risk, and less with normative 

models and decision aids. 

Another point open to discussion is whether all this should be applied 

to regrets rather than to utilities (payoffs).  This distinction has been 

neglected in the so far predominant expectation maximization model where it is 

of no practical importance because maximization of expected value leads 

to the same choice of action as does maximization of expected regret.  This 

does not hold if we consider a minimax strategy, or a mixture of minimax and 

expectation maximizatioi. strategies, as shown in the example on p. 4. 

The transformation of payoffs into regrets is quite a meaningful one 

considering its implications for DM's choice of action.  It concerns the 

exclusion of irrelevant portions of the payoffs, i.e., consequences of the 

outcomes which the DM cannot influence by his choice of action in any way. 

I 
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In a sense, this corresponds to lestle's 1961 modification of the BTL choice 

model.  DM should not makt his choice dependent on aspects of the outcomes 

which he gets in any case, i.e with any choice which is the intersection of 

tne alternatives in Restle's nskless choice model, or here: DM should not 

make his choice dependent on aspects (utilities) of outcomes which he could 

not have gotten with any choice because the state of the world allowing these 

outcomes did not obtain.  Please note that I do not pretend that Restle's 

deduction of the intersect' n from the numerator in the choice probabilities 

corresponds to the deduction of column maxima in the calculation of regrets - 

I am just pointing out that the motivation behind both procedures is similar. 

Since the expectation maximization model has been so predominant in experi' 

mental psychological research for years, very little has been done exploring 

the explanatory value of the alternative normative models discussed above. 
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The over-exaggeration of cupidity motivation 

The normative models generally applied in decision making experiments 

hinge upon the assumption that man is motivated b> cupidity. Thus, ex- 

perimenters build their whole system around this assumed motivation, and 

worry about the flatness around the maxima of the payoff functions because 

they feel that subjects won't try hard enough since they lose little by being 

non-optimal (v. Winterfeldt § Edwards, 1972). 

Cupidity may be indeed a strong motivation for human subjects, and som^ 

recent experiments in decision making with considerable amounts of money at 

stake have shown that payoffs actually do make a difference in subjects' behavior 

(Snapper, 1973; Areen, 1973). 

On the other hand, Fryback, Goodman, f,  Edwards (1972), show that 

payoff magnitude may not be really as important as other factors. Thus, 

monetary payoffs are not that important under all circumstances. On the con- 

trary, in more real-life like situations, jusr the type of subjects we mostly 

use in our laboratory decision making experiments, i.e. students, show that they 

are much more motivated by ambition than by cupidity.  E.g., in athletic com- 

petitions, the differences in scores are usually very small between the top 

competitors, so that we really can talk about a "flat pa/off function"--but 

the smaller the differences get, the harder they try to get to the top.  ^or 

them, rank order position counts much more than plain score, and in most cases 

^ _ ^ __ 
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there is no money  involved at ail   (except   in those cases where they compete 

for athletic scholarships).    Most students have  this ambitious attitude not 

only in athletic but also  in intellectual   tasks,   and thus try hard to be 

optimal ev^n in decision making experiments with  little or no money at stake- 

provided they get  another kind of feedback,   like comparison with their peers. 

A normative model which accounts for this k.rnd of motivation should be based on 

some measure  like the probability of becoming  first,  or more generally,  of 

moving up in the  lank order. 

Thus,   a rank order transformation plus  some ambition  (rather than cupidity) 

motivation may become a remedy for tho  flat maximum problem.     I have the 

impression  that some companies have been using such techniques for some time 

to stimulate their employees without  spending considerably more on salaries, 

although we should wonder about the moral   implication of such practice. 
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The cost of precision 

Another point should be made discussing the flat maximum problem:  the 

normative expectation maximization model does not take into account any cost of 

precision, i.e. how much effort it might cost a human subject to find the 

absolute optimum precisely. To explain this by an example irvolving no 

probabilities (just to make it simpler) assume a customer w.-.nts to buy some 

standard item he can mail order from one of several catalog stores. Of 

course, he wants to buy it at the lowest price possible (since the quality 

is the same in all stores), and going through the catalog of some stores he 

finds that the prices for that particular item vary some cents. Now, how many 

catalogs should he go through before he dec des to order it? Since he does 

it in his spare time, where time spent searching does not "cost" him anything, 

moneywise, he should (normatively) check out all catalogs he can get, and make 

a couple of phone calls to local stores in addition. However, he will soon 

feel that the small advantage in price he might find is not worth all that fuss, 

and thus he probably makes his ordtr after looking at only two or three of the 

catalogs available to him. The subject in a laboratory decision making experiment 

may be in a similar situation: he may know that he could make some pennies more 

if he thought it over more carefully, but he also wants to get home, eventually. 

1 wonder if anybody has ever designed an experiment to find something about this 

time/payoff trade-off. Of course, in such an experiment we would have to intro- 

duce some utility function for time (which could be analogous to sampling costs 

in previous experiments). Such an experiment would be the natural consequence 

of the v. Winterfeldt ^ Edwards flat maximum paper. 

1 
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The non-persistence of monetary value 

The normative model of decision making, and most experiments applying it, 

assume a persistency of the monetary values invol/ed as payoffs. However, in 

real life (especially in the professional lives of business executives for whom 

many of the normative models are made) money has no persistent value at a'1; 

it rather varies considerably with, e.g, the time anJ terms of its availability. 

Any normative model that is really meant to be helpful for actual decision making 

should incorporate these dynamics. The extreme case to observe the effects of 

such non-persistence of monetary .alue on decision making would be the inter- 

national money traders who make profits out of small differences in exchange 

rates for foreign currencies.  But also non-professionals in this field do have 

preferences about when to pay or receive what - the whole credit card business 

lives on that. 
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Criticism of the assumption of indenendence of 

probability and utility cues 

D 
n 

D 

The normative model of expectation maximization assumes (in Eq. [9]) 

independence of cues x, (a., s.) contributing to the evaluation of possible 

outcomes (a.,  ), and cues d, leading to the revisiun of probability dis- 
i   j K 

tributions p(s.|d,) over possible states (s.)- 

T doubt if this separation of parameters really makes sense, either 

normatively or descriptively. 

In the more complex situation or real life where you have different 

sources of information delivering cues on the state of the situation, it may 

depend just on the arbitrary definition of objectives whether a cue is an 

aspect of utility, or a datum for probability revision. An example: 

Does the fact of having an air conditioner in a car increase its utility 

as a utility aspect x, or does it rather increase the probability p(s) of 

the particular state s that you will feel more comfortable in it when it is 

hot? Let us elaborate this example in a little more detail.  In the first 

stage, let us assume you have the choice of buying either a car with an air 

conditioner, or a car without it. The former will be little more expensive 

than the latter - so it depends on the usefulness or utility of the air 

conditioner, if it pays for you to pay these extra expenses. This, again, 

will depend on how much you are bothered by heat, and this, in turn, will depend 

on how much heat there is, i.e on the weather condition, and on the fact of 
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having an air conditioner or not. Thus, your final utility for the whole 

situation (at the end of the decision tree) will depend (among others) upon 

the cues: "weather situation", "air condition available or not", "DM's 

susceptibility  to heat", "acceptable retail price when selling it", "price 

paid for car", etc.  At the same time, these very same cues influence the 

conditional probabilities of the various outcomes (branches) of the decision 

tree which are partly contingent on preceding conditions: "feeling confortabifi" 

is dependent on weather conditions and availability of air conditioning. Also, 

having air conditioning increases the probability of a good resale price - 

because it will be of potential value to a prospective buyer. Other cues are 

independent, like weather conditions and the kind of car you buy. In some cues, 

direct dependencies between utility and probability cues are obvious, like the 

relation between "probability of getting an acceptable retail price" and the 

amount you consider an "acceptable retail price" which might be a kind of a 

psychometric function. 

Thus, many cues ha\? bearing on both utility and probability aspects, and 

in many cases is just a question of truncation of the decision tree if they 

enter either of them or both. 

Practically every decision tree has to be truncated somewhere - we cannot 

follow all of its ramifications into eternity, e.g. we would not care to consider 

how our car buying decision today may affect the life o^ our great-grand children, 

although it is quite clear that it can influence them ?• lot, probability-wise. 

In the example above, we might have truncated the decision tree before con- 

sidering the possibilities of selling the car after a while. Then, we would 

... 
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not have been concerned with "probability of getting an acceptable retail 

price", but this probability (and the price we consider acceptable) would 

certainly ^e contained implicitly in the "value of the car" we are left 

with. On the other hand, by extending the decision tree, we could consider 

almost all cues as data for modifications of conditional probabilities. 

In cases like this, where probabilities and utilities of particular 

attributes can. ideally, substitute for each other, we might wonder what the 

tradeoff function between these measures are. Of course, in all individual 

cases, this will depend on the attribute measured, but in general we might 

think of such functions as psychometric functions in psychophysics where we 

have some physical quantity on the abscissa, and a probability (of noticing 

the physical quantity) on the ordinate. Actually, such a technique .ould be 

applied in the used car example above if we plot the retail price on the 

abscissa, and the decision maker's subjective probability of obtaining this 

retail price on the ordinate. 

An example of using probabilities of attaining some desirable outcome 

(i.e. victory in a battle) rather than utilities or monetary values in a 

payoff matrix is given in Coombs. Dawes 5 Tversky 1970. p. 208. 

In real world examples, it may be hard to find cues which cannot be 

interpreted in these two different ways.  In many cases, however, it may be 

possible to restructure the situation such that the ambiguity disappears, 

dependent on how you re-define the possible states s. (which are arbitrary in 

most cases, anyway), and where you truncate the decision tree. Such restructuring 

may solve the problem of independence between cues foi probability revision and 

mam 
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for utility assessment   formally  in many cases,  but   leaves us with the problem 

of how the subjects perceives these cues,  and uses  them in his decisions. 

(Luce t, Krantz (1971)   in their axiomatization of conditional expected utility, 

however,  circumvent  this  problem by going up the decision tree rather than 

down,   i.e.  by considering utilities for whole gambles   (i.e.   larger branches of 

the decision tree)   rather than single outcomes.) 

These necessary re-definitions of the set   (s.)   of possible states of 

nature may imply that  all  games be in normal   form,   that more complex decision 

trees be reduced to  complete preprogrammed but  adjustable strategies of the 

opponent   (or nature) . 

The interchangeability of cues for probability revision and utility 

assessment throws  some  light upon the  importance of independence between 

evaluation  scores  x. (a.,   s.),  and data probabilities  p(d, |s.):     in Eq.   [9], 
n     i       j "^    J 

we multiply the  factors p(s.)7r p(d. |s.)   (which are constants with respect  to 
J   k K    j 

the subscript h)   into the multi-attribute utility  function,  ending up with 

EV(tl) 

Z w,   p(s.)Tr p(d. Is.)  x,    (a. ,  s.) 
h   h      3 k      

k   r   ^    I    r 

E p(s.)Tr p(d, |s.) 
[11] 

There we find utility attributes x, (a., s.) and data probabilities p(d, |s.) 

side by side, as factors in the same product, except that their relative 

impacts are dependent on w. and p(s ) , respectively. Also, p(d. |s.) enters 
n      j K j 
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the denominator whereas xh(a., s.) does not. They can be considered partly 

compensatory for each other.  It is also noteworthy that importance weights 

w. for attributes in linear additive utility assessment, and probabilities 
h 

p(s.) of states in expectation calculation can be treated, formally, the 

same way. This demonstrates how important it is to have all cues that enter 

the evaluation of a situation independent, no matter if they are considered 

"data" for probability revision, or "attributes" for  multi-dimensional utility 

assessment, because otherwise the same evidence will enter twice into the 

calculation of the same EV. 

Assume, for demonstration purposes, that a certain probability p(s.) 

and a corresponding weight on an attribute w, are equal - e.g., this could 

be the case, in our used car example, if our overall objective was to obtain 

a certain fixed retail price.  A particular state s. among other states would, 

then, be the event of actually obtaining this retail price, and p(s ) or 

p(d, |s.) would be the probability of this event, and p(dk|s.) any data 

likelihood operating on this event probability. Similarly, w^ would be {among 

other aspects) t! e weighting factor on the attribute of retail price. A 

relevant datum d. could be the information that a friend just sold a comparable 

car at the desired price.  Now, we could use this information in assessing a 

quantity x, to the value of the attribute "retail price" of the car in question, 

or we could use this information in modifying our probability p(s.) of obtaining 

the desired retail price into p(s.|d,), but not both.  If we have the choice of 

baa «^--^^^ 
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a way that the weight factors w, are no longer independent of the states s. 

.1 

., 

.1 

.1 
D 

using this information either way, and want to come up with the same final 

overall expected value for the car, it is quite clear that there is a well 

defined function relating p(d, js.) and x. to each other.  However, figuring 

out this relation requires a set of other restrictions and assumptions, so 

we will not go into more detail here. 

We do have some experience about what happens with conditionally non- 

independent data (e.g., Domas § Peterson 1972), but we still have to find out 

what happens (both to the normative model and to the actual behavior of human 

decision makers) if the non-independence exists between probability and utility 

assessments, p(d, |s.) and x, (a., s.), or between the x, 's, or between pro- 

babilities and weight factors w. . In most real life situations, many of these 

variables will be mutually interdependent. To give a simple example, assume 

you plan to go on a mountain hike, and evaluate the food you might take along. 

In this case, the weight factor w, of the utility dimension "edibility without 

cooking" will be strongly dependent on the probability of finding conditions to 

set up a fire, and the weight factor w. for (physical) weight will be dependent 

on the probability of finding some means of transportation for part of the way. 

Of course, these problems are partly related to those arising from non-independence 

between actions and states obtainable which have been dealt with in the paper 

by Luce 5 Krantz (1971), but partly they art of a different nature, as in the 

example above, in which case the normative model would have to be changed in such 
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obtained. As far as such dependencies can be covered by a simple additional 

utility of the state s. as such, independent of the action chosen (as in Luce 

§ Krantz 1971, p. 262), they are taken care of by the regret transformation. 

MMMMMMMM 
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Criticism of the assumption of continuous   functions 

The general model described above assumes continuous probabilities 

and utility cues   (attributes)  which are aggregated together to give DM an 

overall continuous evaluation EV(a.)  of his ■•hoices a..    Small  changes in 

p(s.|d,), w.   or x(a.,  s.)  cause small changes in EV(a.),  and DM takes these 

changes, or differences bftween EV(a.)  for different a.   into account to 

pick the one for which EV(a.)   is maximal over a.. 

Experimental results,  however,  cast  some doubt on whether human Ss 

can do such fine-grain analyses  in the first place, and if they need 

to in the  second place.      The  first would be a technical problem of pro- 

viding adequate decision aids,  the second alludes to the problems of flat 

maxima,   satisficing,  and focussing phenomena.    The multi-attribute utility 

model of Eq.   [8]  assumes   linearity,  additivity,  and independence of the 

attributes h.     It does not take into account interactions between variables, 

nor hierarchical  structures that may obtain.      Hierarchical  utility models, 

and Tversky's   (1971)  Llimination-by-Aspects model might do a better job than 

the weighted-average model  of Eq.   [8]  when it comes to these phenomena.   The 

relationships between  such   lexicographic   (hierarchical)   and additive models 

has been shown by Fishburn (1970,  p.   48).      Another attempt  to by-pass these 

difficulties without   leaving tne general   framework of model   [9]  would be to 

assume non-linear non-continuous utility functions  for the attributes h which 

allow  for mutual dependencies,   replacing the products w,   x.    (a.,   s.)  by more 
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*h(xhCa.. s.)) i 
,i>.    (\t [&  , •- 11 ;i some specified conditions hoM, 

2*. (x, (a., s.)) if some other specified condition holdj 

[12] 

when the functions ♦, (x. (a., s.)) may or may not take into account the 
e n n i  j 

states of other attributes than x. (thus taking care of interactions, e.g., 

if these other attributes enter the function multiplicatively), *nd where 

the conditions for choice of function on the right hand side may also contain 

other attributes. 

Also, the *i.(x. 1 may be constant functions over certain intervals of 

x -- thus indicating that you don't have to care about the actual value of 
h 

x, as long as it is within a certain range which satisfies your needs. 

To make these ideas a little more clear bv inoans of an example, let's 

assume that you want to evaluate cars (a.). One dimension or aspect in 

evaluating the options would be the attribute (x.l of having or not having 

an air conditioner, and maybe the capacity or power of the air conditioner 

if you want to measure it continuously. Another attribute (x») would be 

convertible or not, or a sun roof.  In this case, you would evaluate x. 

differently dependent on the respective states of x», and vice versa. 
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Moreover, (and this is to come back to Section III of this paper), you 

could eliminate these aspects completely from your utility assessment, and 

rather consider the different degrees of being comfortable in your car as 

possible states of nature (s.). and include the facts of air conditioners, 

convertibles and sun roofs as data (dk) to modify your probabilities of 

these possible states. 

It has frequently been argued that linear additive functions ([9]) 

provide satisfactory approximations to the more complicated models. 

(Yntema § Torgerson 1961. Slovic 5 Lichtenstein 1971. Fischer 1972a. and 

Dawes 1972). However, this is true only in some special cases, and not in 

general. Moreover, this claim has been made mainly for the riskless case. 

(Fischer 1972b). whereas we are here concerned with the risky situations. 

For these, however. Fischer (1972b, p. 13) has pointed out that it is not 

so likely that the conditions for linear additive utility models hold 

under risky conditions. As Fischer 1972b has shown in a sensitivity analysis, 

the Yntema and Torgerson 1961 findings have been overinterpreted:  additive 

approximations accounted only for 23%  of the variance of composition rules 

involving all main effects and cross products of 9 attributes. 

.1 

.i 

.1 

-- -" -- ■  - 



^mmmmmm*w**^mmm r^mmm^mm^mmm^rvmmmamv u i ■■iiiij inaiwpni JPIJUWI m tm^^^m^mmmmmmimmwmm^mmrm'^^ 

0 
29  - 

t 

ü 

n 

Deterministic vs. probabilistic models 

Since the early days of phychophysics more than a century ago, psychologists 

have known that men do not react consistently (in a deterministic sense) to 

stimuli, but rather on a probabilistic basis: knowledge of stimulus conditions 

does not enable us to make deterministic predictions of behavior but only give 

us probabilities for possible actions. Thurstone (1927) and Luce (1959) have 

generalized these probabilistic choice models beyond psychophysics into fields 

of psychology where no physical measures of stimuli are available. Since then, 

probabilistic choice models (preference models) have been generally accepted 

for decision making in riskless choice situations. The concept of absolute 

consistency in S/s choices has been replaced by a relative one, assuming 

stochastic transitivities rather than absolute transitivities. 

But in experimental risky decision making situations, stronger criteria 

are applied to the data:  the classical expectation maximization models tested 

in most decision making experiments are deterministic: in principle, they do 

not allow for any random fluctuation of choices, or errors.  For this reason, 

reports on experimental results obtained in the context of such deterministic 

models in many cases look rather helpless, like "14 out of 20 S s displayed less 

than 5 of 30 possible errors" - helpless looking in the sense that the ex- 

perimenter actually does not know how to evaluate his (deterministic) model in 

the light of these data which partly support his model but otherwise contain 

"errors" which the model does not allow. 
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This becomes a particular problem when you want to do a Baycsian data 

analysis - and most experimenters working in decision making are inclined 

to do Bayesian data analyses rather than classical statistics. 

Bayesian data analysis consists, essentially, in calculating likelihood 

rati os 

L , P(»l"a) 

[13] 

to test two competing hypotheses against each other,  where P(D|H )    and 

P(D|llh)     are probabilities of occurrence of data D assuming that hypothesis 

H    or H.   holds,  respectively.     The data D consist,   in most  cases,  of a 

sequence of observed choices of alternatives by the DM, or S^.     Deterministic 

choice models,   like the expectation   maximization model,   imply data probabilities 

(choice probabilities)  of P(D. |H.J   =   1   if the choice is considered optimal by 

the model,   and 0 otherwise. 

It can easily be seen that  such deterministic hypotheses cannot be 

handled by Bayesian data analyses,   since the calculations of likelihood ratios 

cannot be done with probabilities of 0 or 1.    What  is  called for is   some kind 

of error theory. 

An easy way of doing this    is to replace the deterministic maximization 

model  by a probabilistic preference model,  as it has been done  for riskless 

choices by the Thurstone or BTL model.    E.g.,  an expectation preference model 

(rather than expectation   maximization model)  could assume choice probabilities 
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p(a. )  for alternatives  (gambles)  a. 

EV. 
P(aJ   " m 

Z    EV. 
i = l 

[14] 

vhere the summation of EV. is overall alternatives offered for choice at the 

same presentation. 

This model leads into problems if there exist choice alternatives with 

negative expectations. Arbitrary addition of a constant to all EV. could make 

them all positive but is not permitted in the framework of the BTL model. 

Transforming the payoffs v(a., s.) into regrets r(a. , s.) would give all 

outcomes the same sign but at the same time switch the scores from desirabilities 

to undesirabilities, i.e. the higher the regret, the lower the probability of 

choosing that particular alternative. Three alternative models will be pro- 

posed for this purpose, which we might call regret-avoidance models: 

(a) the sum-difference regret model: 

E ER. - ER, 

p(choice of a, ) = 
(n-1) Z ER. 

[15] 

(b) the maximum-difference regret model 

p(choice of a, ) 

max [|ER.|] 
i 

ER, 

n max [|ER.|] 
i 

Z   |ER.| 

[16] 
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(c)  the leciprocal regret model: 

pfchoice of a, ) 
ER, E J_ 

i ER. 

[17] 

For the regret matrix [3] from page 4, these models predict the following 

choice probabilities: 

p(choice) predicted from model 

i regrets ER. (a) (b) (c) 

1 -110     0 -22 .404 .634 .496 

2 -98    -21 -36.4 .341 .366 .309 

3 0    -70 -56 .255 0 .195 

P(«j) .2     .8 

Model (a) is the least sensitive to differences in ER, model (b) predicts 

always a choice probability of 0 for the worst alternative (which may lead into 

problems when there are Ss actually choosing this worst alternative occasionally), 

model (c) may run into a problem when there is a choice alternative with ER = 0. 

None of these regret-avoidance models has been tested on emoirical data, nor 

has any probabilistic expectation preference model, as far as I know. 

Alternative approaches to adopt the deterministic decision making model for 

Bayesian data analysis, i.e. to get rid of choice probabilities of 0 and 1, have 

been initiatea by Ward Edwards and Dennis Fryback in recent discussions 

(personal communications). 
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Ward Edwards suggested that Ss might still choose the optimal  gamble but 

not all the time.    His model assumes  that 

p(choose ak)  = Pj   [EV^)]  ♦ $2   [VAR(ak)]  ♦  (1-6^^2) [random process] 

[19] 

with 0 4 3 + ß- $ 1 • This means that S chooses a. with a certain probability 
12 * 

3 if its EV is maximal, or with a certain probability ß2 if its variance is 

ideal for S, (in the sense of portfolio theory) or on basis of some random 

process (like, e.g., equal probabilities for all alternatives) with probability 

Dennis Fryback suggested that Ss might choose the optimal gamble with 

probability a, 0 < a < 1, and all other gambles with probabilities (l-a)/(n-l), 

i.e. the remaining probability (l-a) if S does not choose the optimal gamble 

is evenly distributed over all other choice alternatives. 

In both the Edwards and the Fryback models, maximum likelihood estimates 

for the parameters 3. and 3-,, or a, respectively, could be obtained from the 

data. 

Preliminary results from re-analyzing available decision making data, 

i.e. choices among bets, have shown that these data still have higher likelihoods 

under tie diluted deterministic models rather than under the probabilistic choice 

models (Ray  Seghers) and also as compared tc the one-peak model by Fryback. 

However, a satisfactory model to explain the deviations from the deterministic 

normative model has still to be developed. 
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