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Costs and Payoffs In Pe. ceptual Research1 

Detlof von Winterfeldt and Ward Edwards 

Enoineerlng Psychology Laboratory 

University of Michigan 
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Styles 1„ perceptua! research change, reflecting the changlnc, 

styles of psychological research and theorizing. Consider the prob,« 

faced by eve.y perCeptUal researcher, of validating his subject's 

responses-that is. of finding persuasive reasons to believe that the 

behavior emitted by the subjects in so.e sense faithfully reports the 

.naccessible processes or experiences that have Just gone on inside that 

subject's head. (This ,„eSt,on readily translates into the language of 

a.pty-organls. psychology. ,„d has the saTO .eaning there; we leave the 

spelling out of that translation to others Mre rasochist1c than we.) 

In the days of W.ndt and Titohener. the persuasive reason was 

Hkely to take the for™ »The subject was carefully trained In my 

laboratory to report accurately, „oreover I tried It Wself and had 

the san« experience." The attack „ounted by the u.talt psychologists 

and the behaviorists on this sort of truth-by-gentlen^s-agree.ent 

'     ' 
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was devastating, and proved fatal. Obviously, In two years you can 

trail, a willing. Intelligent graduate student to report virtually 

anything that seems appropriate to you. In whatever language Is 

pleasing to your ear. 

The Gestalt psychologists emphasized very simple. Intuitively 

compelling demonstrations that anyone could see. This was fine, as 

far as It went. But not all perceptual questions can be resolved by 

means of such demonstrat1ons-and even If a demonstration (for example, 

of brightness constancy) is Intuitively compelling to all,, attempts to 

measure the magnitude of the effect produce the usual individual differences, 

and so raise the same old question about how to establish an orderly rela- 

tion between responses and the experiences or processes underlying them. 

The Stevens-Garner controversy of the late '40s and early '50s 

presented a more modern version of the structuralists' dilemma. Responses 

that demand a very high degree of training to use, such as direct magnitude 

estimation, did not agree with responses that produce much greater inter- 

personal agreement, with much less training, such as those based on 

discrlmlnability. Was the discrepancy induced by the training, or were 

the two classes of procedures tapping different kinds of psychological 

mechanisms? In the latter case, which was the "truo" representation of. 

say, loudness? Or, more operationally, which was more useful for applica- 

tions like design of hearing aids, measurement of Industrial noise, etc.? 
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In the mid-'50s, a new approarli to this problem of validation 

entered the psychological literature. It did not apply to all perceptual 

issues, but it presented an apparently conclusive solution to the validation 

problem for all issues to which it did apply. The idea was very simple: 

arrange the circumstances of the experiment so that it <s in S!s self- 

interest to generate a response Üat depends in an orderly way on the 

internal experience or process being studied, make sure that he understands 

the nature of this self-interest, and then assume that he has in fact 

generated a response appropriate to it. The earliest version of this 

idea was used in signal detectability experiments (see for example. Tanner 

-nd Swets, 1954); by now it has been generalized not only to many other 

kinds of perceptual experiments but also to a wide variety of non-perceptual 

ones. 

This approach produces what might ba -.ailed validatioi by cupidity. 

It can be used whenever the experimenter 1s willing to define a function 

on the product set of all stimulus generation procedures used in the 

experiment and of all possible responses such that, given the procedures 

antecedent to an occasion on which a respcnse occurs, all possible 

responses that might occur then can be ordered in desirability. (Transla- 

tion, good enough for most purposes: the experimenter knows what the 

correct response Is.) Ifso, the experimenter simply rewards the subject 

more for more desirable than for less desirable responses. He assumes 

that the subject wants to be rewarded (a safe enough assumption), and that 

he will apply rather sophisticated intellectual tools in order to obtain 

lillilMiliTliiilililliimri ifiil ilii[iilWitMI1i*tl'i1lliil»i«tilrilllli»i1 iifliiHflliVliillllirifiMialir'~J-'1,"'">"i'--' ia^lMiWtlfMiMliilMltVltiMV^.^ 
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as much reward as possible (some problems lie here). Since he finds 

it boring to observe subjects simply doing what the stimulus tells them 

to do, he designs experiments so that a subject's access to information 

about the merit of the response he contemplates making is fallible, and 

depends as sensitively as he can arrange it on the perceptual or other 

mechanism he wants to study. Of course he knows that the subject's 

information about the merits of his contemplated response also depends 

on other mechanisms, and that the response selection process depends 

on still others, but he assumes he knows fairly well what those other 

mechanisms ave. By assuming that the subject will extract as much 

information as he can from the situation and the perceptual experience 

bearing on what response is best, and then will use that information 

optimally, or perhaps only systematically, to guide his responding, 

the experimenter can infer how effectively the perceptual mechanism is 

providing that information. 

From this point of view, the reward structure of an experiment serves 

four reasonably distinct purposes: 

1. Motivation: It encourages the subject to stay awake, pay 

attention, not goof off, and take the experiment seriously. 

2. Instruction: It tells the subject what the relevant features 

of the experiment are, and how he is supposed to make use of <;hem. 

3. Response control: It implicitly specifies for the subject how 

best to translate his internal experiences or processes into observable 

responses. 

., 
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4. Models for data analysis: It permits the use of economic 

models of response seler ion to infer the internal processes of interest 

to the experimenter. 

All four of these purposes enter to some extent into what we are 

calling validation by cupidity, but obviously the last two are uhe crux 

cf the idea. Although much of this chapter explores difficulties and 

proMems connected with the idea, we might as well declare right now that 

validation by cupidity is the best form of validation available to psycholo- 

gists who study internal processes, and indeed has no serious competitors. 

One ccnsenuence, of course, is that we see no way whatever (other than 

gentlemen's agreements) to validate responses such as magnitude estimates, 

in which the experimenter has no basis for attaching a value to a given 

stimulus-response combination. 

Validation by cupidity turns perceptual experiments into gambling 

experiments—or, in less invidious language, into experiments on human 

decision making under uncertainty. Naturally, the assumption that subjects 

extract from the perceptual experience as much information as possible 

bearing on the merits of the responses available to him is a very strong 

one; the extraction of information from complex signals is a sophisticated 

and demanding process, and the appropriate mathematics can be extremely 

complex. Still, the approach has seemed to work. Research on absolute 

and differential thresholds is now dominated by it, and new applications, 

or more sophisticated and fancy interpretations of old ones, appear every day. 

i . 
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Few users of these ideas really believe that subjects are, for 

example, processing input information optimally according to Bayes's 

theorem. Yet they have no hesitation to use Bayes's theorem in analyzing 

the results of human information processing experiments. Why? Because 

it's a good bet that any response-selectton procedure that is neither 

whimsical nor random will produce data indistinguishable from those 

produced by an optimal response-selection procedure based on somewhat 

less information. This means that analyses of data based on optimal 

models will almost always work, in the sense of leading to sensible 

and reproducible results. Typically, those results cohere fairly well 

with other results. 

In less fancy words: decision analysis is applied to the results 

of gambling-type perceptual experiments because it works and it would be 

difficult to devise any orderly response-selecting mechanism for which 

such analyses would not vork. 

In 1961. one of us made explicit the by-then-obvirus point that 

costs and payoffs, in perceptual or other experiments, are instructions 

(Edwards, 1961). In virtually all perceptual experiments, subjects must 

choose responses in a way that trades off one dimension against another— 

false positives against missed signals, cost of errors against cost of 

more information, and the like. Costs and payoffs explicitly instruct 

subjects about these tradeoff functions, and no other form of instruction 

does (or, more carefully, any form of instruction tWat specifies relevant 

tradeoff functions is en'iivalent to a set of costs and payoffs). 
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This paper picks up whero that one left off. Many authors, in 

many contexts, have pointed out that the Instructions specified by costs 

and payoffs aren't very precise, in the sense that the decision-theoretical 

maxima are flat. The fact of flat maxima in decision analysis has been 

rediscovered, with dismay, perhaps a dozen times. This paper rediscovers 

that fact one more time, but this time in a relatively general treatment. 

We should give a very abstract and general verbal statement of 

our point before going into the technical details. Our point is this: 

Whenever a continuum (or a dense and closely spaced set of discrete 

points) enters Into the response selection process in an important way. 

whether because a continuum of responses is available or because response 

selection depends on cutoff points on an underlying continuum, fairly 

substantial changes in the location of the point on the continuum that 

controls responding (the response or the cutoff) will produce extremely 

small changes In the economic prospects of the responder. 

To put it another way. we are suggesting an addition to the message 

of Edwards's 1961 article. Costs and payoffs, though often the only feasible 

form of Instructions, are almost always rather feeble; although they teU 

the subject what he should do. they don't punish him much for not doing it. 

i 
Li 
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"• Why costs and pwnffs are feeble instrnrtinn. 

A.  The mathematical formulation C t,ie problem 

The function of this section Is to give technical definitions to some terms 

already used and some othe«necessary to later sections of this paper. 

Consider a subject who does not care about the stimuli or about 

the payoff structure Imposed by the experlmonter. He Is unmotlvated. does 

not follow instructions, and Is uninfluenced, or Influenced only capriciously, 

by variations In costs, payoffs, or prior probabilities. Compare him with 

a clever and avaricious subject In the same experiment. If the economic 

prospects of the grasshopper (to use a technical tern proposed by Aesop) 

are not considerably worse than those of the ant. costs and payoffs have 

not served their purpose. So a generally necessary condition for the 

effectiveness of costs and payoffs In a given experiment Is that economic 

prospects must change substantially for different responses. We Bust 

translate this condition Into formal language, defining what we mean 

by "economic prospects", "substantial change", and "different responses"; 

to do the last, we must describe responses numerically. 

For a given experiment, a single number Is associated with each 

response or set of responses: Its expected value (EV). We Identify EV 

with economic prospects, and will hereafter use these two phrases Inter- 

changeably. 

ttaiiiiiAM-Wnlifw^aiMiiiilMiMniitfrm^ 
iilJjV^^^^j ■■■■■ 
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We should define EV.   To do so, we must first define what a 

stimulus is.    Consider Table I, and think of it in the context of a 

stimulus identification experiment in which a stimulus is presented to 

the subject, and he must say which of several possibilities it is. 

Insert Table I about here 

:D 

, 

D 
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The subject receives a payoff x.. if stimulus S. has been presented and 

his response wd? d.,.   Here and throughout tMs paper, we use phrases like 
J 

"stimulus Sj was presented" as shorthand for a more complicated idea. 

Technically, S.. is not a stimulus at all, but rather a set of experimental 

procedures designed to produce cne.   So the accurate but tedious phrasing 

would be "Operations S. were performed on or by the apparatus, producing 

a stimulus that was presented to the subject."   Similarly, an experiment 

asking the subject which stimulus was presented is really asking which 

operations on or by the stimulus-rienerating apparatus were performed. 

Of course in many perceptual and other experiments the stimulus produced 

by operations S. may vary from instance to instance within the experiment, 

and may be only imperfectly known to the experimeiter. 

The presentation of a particular stimulus S* will give the subject 

information, perhaps fallible, about which stimulus actually was presented. 

.After the occurrence of Sj, the subject will have a personal pnmbility 

distribution over the possible stimuli; that distribution associates with 

each S. a probability 5>.   The expected valut' to the subject of making 

response dj is then defined as 

EV (d.) = Z £. x.. (1) 

Jum^^Mf-..-: iirniiiiiiiriüüini m*»m* tuämtmtmäi'iim&iimm ism mtemfäimmimmm *& 
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For stimuli that vary continuous^, integration raplacos suction 

In this definition. 

We have no reluctance about Identifying the economic prospects 

of response dj with EV^). thus laying that subJects should select a 

response-generating procedure that »ximlzes EV. An antique fallacy 

questions this reco-endatlon. arguing that EV maximization is a wise 

strategy only for rented events. As we see it. the very word "strategy" 

Wies that some principle of response selection will be repeatedly 

applied; the arguments that make EV maximization optimal don't care 

whether the conditions are or are not constant from one application of 

the strategy to the next. Besides, most perceptual experiments repeat 

the same condition often enough so that the most passionate relatlve- 

frequentist would agree that EV maximization is wise. 

Though we unhesitatingly identify the subject's economic prospects 

with EV. the subject may not. Whether men in fac; maximize EV or not is a 

profound, difficult question: to examine It here would take us too far 

afield. A great deal of experimentation has produced no evidence against 

that hypothesis: data analyses based on It abound in perceptual experts. 

»Uly because they work. Moreover, any other consistent decision rule 

that permits all possible economic outcoTOs of dj to enter Into assessment 

of its worth with appropriate sign and with some monotonic variation of 

the economic consequences of ^ with the ^gnltude of each pavoff will 

for virtually any theoretical or practical purpose, be indistinguishable 

from EV maximization. (Note that we are using the notion of value to 

1.1 

. 
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include subjective values as well as dollar payoffs; our arithmetic 

will be done on dollars, but the nature of our results will imply that 

it makes little difference whether or not the effective payoff to the 

subject is or is not linear with its dollar value, so long as it is strictly 

monotonic). 

Next we must give an account of perceptual experiments that permits 

us to define responses and the strategies that produce them. Our account, 

naturally, will be decision-theoretical in spirit. Here and throughout, we 

shall speak of both stimulus-generating operations and responses as being 

chosen frori mutually exclusive, discrete, finite sets. This mild idealization 

slightly simplifies the mathematics and greatly simplifies the language. 

Anyone mathematically demanding enough to be bothered by it will also be 

mathematically skilled enough to see the easy generalizations of the 

arguments to continuous cases. Following the current conventions of 

perceptual research, we shall assume that a discrete stimulus-generating 

operation may lead to any member of a continuously distributed set of 

alternative stimu^; as we said abovo, "stimulus Si was presented" refers 

tc the discrete operation S., not to the actual stimulus. 

We suppose that before S, is presented, the subject has a prior 

probability vector over the jet of possible stimuli. Upon observing (the 

stimulus resulting from operation) S^ he transforms that vector into a 

posterior probability vector. The correct rule of transformation, of course, 

is Bayes's thee m.    While we shall use that where relevant, we do not need 

to assume that the subject uses it; the weaker assumption that the object 

ii»tt-iit ■iiKiiii iiiiiiaiiHiait'M'riiiiiiiittiiriiiitirtlililiiiMriitiii^ ^^^ liiniiMttMiiiiimMiifliWiiniiiii- ■ '■■-—■■v»iiMi^[iiaiitfr"-''^'~^-^^-- -'■ --^..^.tt^i«^^^..-^-^-^.. 
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represents his observation internally as a likelihood ratio, or some 

quantity monotonically related to likelihood ratio, and that he takes 

prior probabilities into account in response selection is sufficient. 

Now the subject makes the response from among those available to him that 

has the best economic prospects. He may or may not receive feedback. In a 

single-observation experiment, that terminates the trial. In a multiple- 

observation experiment he may choose or may be required to make moro observa- 

tions. All experiments end each trial with selection of a terminal response, 

perhaps followed by feedback; some require responses (other than decisions 

to look at more information) interspersed with the sequence of observations. 

A decision rule is a cutoff vector or set of cutoff vectors defined 

in the set of vectors of posterior probabilities. It specifies which 

response will be selected given any such vector. In a two-a'ternative stimulus 

identification task with a sytrmetric payoff matrix, for example, the cutoff 

vector would probably be (i,J). The subject selects response d. whenever 

his personal probability that S^ was presented exceeds I.    For an optimal 

subject, or one whose data are being analyzed as though he were optimal, 

choice of decision rule depends only on the payoff structure of the experi- 

ment, and so can be known befora 3.. is presented. 

In most experiments, decisions depend not only on payoffs and on 

observations, but also on prior probabilities. Information about the prior 

probabilities can be combined with information about the payoffs, permitting 

the decision rule to be redefined (via Bayes's theorem) from the set of 

vectors of posterior probabilities to a set of vectors of likelihood ratios. 

. 

- - 

0 
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and sometimes further from the likelihood ratios to a set of physical 

characteristics of the actual stimulus, and occasionally further from the 

actual stimulus to the stimulus-generating operations Si. Any such 

redefinition of a decision rule out of the set of vectors of posterior 

probabilities into some other set more directly related to the stimulus 

presentation conditions of the experiment we shall call a decMon fynctlon. 

A decision function partitions the set of possible observations by means 

of criterion or cutoff points. In signal detection theory, for example, 

the likelihood ratio criterion B partitions the set of actual observations 

(insofar as that set can appropriately be mapped into a set of likelihood 

ratios). Within each class of observations, the same response is appropriate. 

Obviously any translation from a decision rule to a decision function depends 

on a model of the sequence of processes beginning with the stimulus-generating 

operations and ending with the internal process representing tie stimulus, 

and is no more trustworthy than that model. The arguments of this paper 

complicate that point by showing that the Inference from responses to 

parameters of such models is quite weak; whether that is good or bad depends 

on the purpose for which the model is being used. 

In some experiments, such as those concerned with probability estima- 

tion, the response categories available to the subject are continuous, or 

more often numerous, ordered, and densely spaced. In others, such as 

stimulus Identification experiments, the set of available response categories 

will typically be sparse. However, the concepts of decision rules and 

decision functions permit us to think of the response-selecting process 

riaiiifimmn-r^iliiiMlttttotliMl^^ iimmiMaiiMriiivniimiiii HI mnr   ininiriiTM«<ilraiirM«iTn«nnii»n-iii«^iiiMiTiiwilM 
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as either continuous or as having numerous ordered and densely spaced 

alternatives in such experiments al.o. So, in order to examine the 

specificity with which costs and payoffs control responding, we can 

simply plot the expected value of the response, decision rule, or decision 

function, as appropriate, against a numerical representation of that 

response, decision rule, or decision function. Our main Interest, of 

course, is in the shape of this function around its maximum, since we 

assume that subjects, motivated by cupidity, try to sel-t their responses 

in a fairly optimal way. 

The thesis of this paper can now be more exactly stated: the 

expectec value of responses, decision rules, or decision functions changes 

only slightly with large deviations from optimal values. Consequently the 

economic prospects of the grasshopper nay be only slightly worse than those 

of the ant; economic prospects often do not change substantially for different 

response selection rules. 

B. Expected value as a function of decisions 

Consider a recognition task in which the subject must estimate on 

a 0-to-100 scale the probability that the current stimulus is old; that is. 

has been presented before. The experiment has two stimulus-generating 

conditions, old and new. a dense, orderly set of available responses, and 

a payoff defined for each stimulus-response combination. Let f-,  be the 

response the subject choossto make on a given trial. Then x . is the 
o»j 

ii 
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payoff for it if the stimulus is old, and * . is the payoff for it 

if the stimulus is new. Let Ct be the subject's actual personal probability 

on this trial that the stimulus is old; of course, nothing guarantees that 

?j ■ 5t. The subject can evaluae any response i,  by its expected value; 

EV^)=xo,^t+VlO-Ct). (2) 

For each value of Zv  a value of £. will exist for which EV (E.) 
J 

will be maximized. This maximal expected value EV* will be a convex 

function of £t. Often, the experimenter will try to encourage the subject 

to report his true opinions by using a function to specify the x's such that 

EV is maximized whenever £j = fy    Such functions are called proper scoring 

rules; for leads into the extensive literature about them, see Aczel and 

Pfanzagl (1966), Murphy and Winkler (1970), or Savage (1971). 

A typical function plotting maximum expected value given optimal 

choice of ^, EV*, against Ct Is shown in Figure 1. It represents the 

quadratic scoring rule, one of the two most frequently used proper scoring 

Insert Figure 1 about here 

rules, where xoJ = 1 - (1 - ?j)
2; xnJ = 1 - ^2.   The two lines show 

the EVs of responses K}  and ^ as a function of Kv    Of course £, would 

be the optimal action if the subject's actual probability were Kv  and 

similarly for C2; this follows from the definition of proper scoring rules. 

Now, assume that the subject's actual probability is ?,, but that 

he nevertheless chooses ^ as ^s response. 

K^:-.^^.->w.,,.„-.„..»...^..^..-;;^^ lllUllllUlllHMliililJi-l »iMniMilinU- -^" 
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His economic prospects are diminished by the difference between the 

Evs of ^ and ^2 given actual probability ^: in Figure 1 that difference 

is labelled A. It will typically be very small in relation to the total 

EV if the difference between actual and optimal response is not too 

large, especially if the optimal EV function is itself rather flat in the 

region of f;t. The nearer E,t  is to the miniriium of the function, that is, 

the more uncertain a subject is about what response is best, the less he 

will suffer as a consequence of suboptimal decisions. 

The fact that proper scoring rules have this undesirable property 

of flatness is well known (see, for example. Murphy and Winkler, 1970). 

However, the ubiquity of proper scoring rules is less well knawn. First, 

notice that the label on the response is irrelevant; proper scoring rules 

are not confined to situations in which the response is an explicit 

probability estimate. A useful distinction can be made between conditions 

that must be satisfied to generate a proper scoring rule and conditions that 

must be satisfied just to recognize one. It is easy to recognize a proper 

scoring rule: any list of acts that includes none that are dominated, 

stochastically dominated, or duplicated is based on ? payoff matrix that 

is an extract from a proper scoring n'le. That sentence sounds fancier than 

it is. All it means is that if each act has the property that some set of 

vectors of probabilities makes it optimal, then choice of that act in effect 

signals estimation of a vector within that set. Any response is a probability 

estimate. Moreover, the linearity of the equation for EV guarantees that if 

«iimiiiiwrirWHlitmiirilvi'-^  .-.„;-,■■.  ■"-■-^-w"^m^lmMmMiilitt^ ^^ 
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an act is optimal given more than one vector of probabilities, then 

all vectors for which it is optimal will be adjacent to one another. 

That word "adjacent" is here used in the rather special sense that all 

these adjacent vectors will fa".! within a closed convex region of a regular 

hypertetrahedron of dimensionality one less than the number of probabilities 

in the vector. 

(The usual sets of conditions that define proper scoring rules are 

more ccuiplicated, because they typically are designed to ensure that 

different vectors produce different, scores.    But such issues are irrelevant 

here; we are only interested in the fact that different, acts identify 

different sets of vectors.) 

This argument for the ubiquity of scoring rules means little for 

payoff matrices in which the number of acts approximates the number of states, 

But for payoff matrices in which the number of acts is very much larger 

than the number of states, and yet no acts are dominated or stochastically 

dominated, the argument   for flat maxima given above become increasingly 

applicable.    If the act space is continuous or acts are densely distributed 

over a continuum, the argument for flat maxima applies with full   'orce. 

C.   Expected value as a function of decision rules 

So far we have discussed reductions in EV that result from a single 

nonoptimal act.    Now we wi1! examine the effect of consistently applied 

nonoptimal decision rules.    Consider a task in which the subject must 

discriminate two objects according to brightness.    He can make either of 

^W ■h««iiiiiMn^iiriiiiiiiiliii[i»ifiilirMiiiilii'ii- mmimm 
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the following two responses: 

d1 = Stimulus 1 is brighter than stimulus 2 

d« ■ Stimulus 2 is brighter than stimulus 1 

Correspondingly, on each trial, there are two possible states of nature: 

either S.| or Sg is physically brighter. The experimenter defines a payoff 

matrix as in Table II, where a and d can be thought of as payoffs, b and 

c as costs. We assume that the subject aist perform this discrimination 

Insert Table II about here 

task repeatedly for different pairs of stimuli. After presentation of a 

pair of stimuli, the subject will have some probability distribution over 

the two states of nature: 

Pr(S1) = ?. Pr (S2) = 1 - C 

The optimal strategy for such a task c^n be derived easily. The subject 

should choose dp whenever 

EV (d^ > EV (d2), d2 otherwise. I. e., he should choose d, if 

or 

K A + (1-5) c > ^b + (l-C)d 

5 > (d-c) / [a + d - b - c] = p* 

(3) 

(4) 

11 
11 

w 
: 

This result is represented in Figure 2. 
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The EVs of the two decisions are linear functions of C and their 

intersection defines the cutoff point p*. Therefore optimal strategy 

in this problem is totally determined by p*. Now assume that the subject 

in fact adopt? a strategy p ^ p*. i.e., he chooses decision 1 whenever 

Insert Figure 2 about here 

. 

? > p and decision 2 whenever ? < p. How will the EV of this decision 

rule compare with the EV of the optimal strategy? It depends on the subject's 

prior opinion about the posterior distribution of C over trials. Assume for a 

moment that tne subject considers all values of £ to be equally likely. The 

EV can be expressed in terms of the cutoff point p. 

EV(p) = / EV(d,) dC + /p EV(d9) d^ = 
s=P   '    5-0    £ 

- 1/2 p2 [a + d - b - G] + p[d - c] + 1/2 [a + c]   (5) 

which is a quadratic function of p, whose parameters are determined by 

the costs and payoffs involved. Its first derivative is 

EV'(p) = -p [a + d - b - c] + [d - c] (6) 

i 
I 
I 
I 

From this it follows that the maximum EV is obtained when we set 

p - p* ■ (d - c) / [a + d - b - c] 

which we saw in Eq. (4) 

(7) 
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The first derivative of the function EV(p) tells us how steep 

EV(p) is eround the optimal value of p*. Equation (6) shows that the 

steepness of EV(p) depends on the values of all payoffs. Th« larger- the 

costs and payoffs, the sticper this function will be—which is not a 

surprise. Two examples with values typically used in psychological 

experiments will give an idea of how flat this function will be in nost 

situations. The results for values of a = d = +l(t, b = c = CW (1) and 

of a = 1.5*, b = c = -.5*, d = +.5* (2) can be seen in figure 3. 

Insert Figure 3 about here 

A more intuitive way of looking at the expected value as a function 

of a response strategy p results from an inspection of the areas in Figure 

2. The area under the two heavy lines defines the average win under an 

optimal strategy p*. The shaded area represents the average loss due to 

a suboptimal strategy p. Graphs like this can help the experimenter to 

gain insight into the effectiveness of his payoff structure. 

Mathematically the description of the expected value of a strategy 

p as a function of p and the outcome structure is very convenient. It is 

easy to see that by multiplying all outcomes by a factor greater than 1, 

the experimenter can steepen this function as much as he wishes. However, 

increasing the steepness of the EV(p) function may not change the relative 

loss of any no«i-optimal strategy, expressed as a percentage of the optimal 

EV. Consider the payoff matrix displayed in table II and the resulting 

:! 
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EV function over strategies p.    If we multiply all outcomes by a 

constant g > 1, we will get 

EVg(p) - g EV(p) (8) 

which is steeper than the original EV function  Now consider the 

relative quantity 

REL (p) = 100 [EV(p*) - EV(p)] / EVCp*) (9) 

where kEL stands for relative expected loss and is measured in percent 

(see Edwards, 1956).    If REL is the value with which subjects ere concerned, 

multiplying all outcomes by a constant does not affect the motivational 

effect of the costs and payoffs, since 

REL (p) = RELg (p) 00) 

The experimenter will often be concerned with manipulating the REL function 

rather than the expected value function. This is mathematically simple 

but unpleasant computationally.    Let 

U = [a + d - b - c] 

V = [d - c] 

W = [a + c] 

From this it follows that 

p* = V/U 

EV(p*) = 1/2 [w +VZ / U], 

REL(p) = 100 [1 + U2 p2 / (UW + V2) - 2UVp / (UW + V2) - 

- UW / (UW + V2)]. 

Ola) 

(lib) 

(He) 

(12) 

(13) 

(14) 
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In the foregoing two examples we find that the two REL functions are 

similar in flatness to the EV functions (Figure 4). For example, for 

Insert Figure 4 about here 

D 

the symmetric (first) payoff matrix, the subject would not lose more than 

8% of the expected value of the optimal strategy p* = \  for any value 

of p betwet.- i/4 and 3/4. Similar analyses are mathematically fairly 

easy to develop for the more general case of n decisions and m states 

but they lack the simple graphical interpretation displayed here—unless 

you happen to be good at visualizing convex regions within regular 

hypertetrahedrons. 

REL functions like those shown In Figure 4 are extremely useful 

ways of examining the properties of payoff schemes, but they need careful 

interpretation. This part of the paper will consider only syrnnetric 2x2 

payoff matrices and prior odds of 1:1; similar but somewhat more complicated 

arguments apply to more complicated cases. In symmetric cases, the subject 

can guarantee that he will be right half the time simply by flipping a coin 

Any non-perverse strategy must be at least as good as that. So the maximum 

feasible REL Is defined as 1 - (l/2p ), where pr is the probability of 

being correct if the subject uses the optimal strategy. If p is 0.6, 

the maximum feasible REL is 1/6; if p is 0.9, it is 4/9. 

From the subject's point of view, the REL expresses how much 

difference in economic prospects exists between an optimal ant and a 

feckless grasshopper, for various degrees and kinds of fecklessness. 

n 

^^■^uu^-..a.-M|.^ta^iaii^ 
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If a grasshopper can earn 5/6 as much as an ant does without even 

noticing the stimulus, he doesn't have much incentive to notice it, 

much less to think about its meaning. 

From a somewhat different p int of view, the distance between the 

optimal REL of 0 and the maximum possible REL dffines the range of degrees 

of success the experimenter can have in inducing his subject to perform in 

an ant-like rather than a grasshopper-like way, for fixrid stimuli, responses, 

and payoffs. The nearer the subject gets to 0 REL, the more successfully 

the training and economic pressures are combining to produce ant-like 

behavior. From this point of view, the availablt RM range, numerically 

equal to the maximum feasible REL defined above, wight be taken as 100% 

and the percentage deviation of REL from 0 on this transformed scale might 

be taken as an index of fecklessness. 

Of course REL is calculable only if pc, the probability of correct 

response if the subject uses the optimal strategy, is known. Often, it 

won't be. 

In cases using asymnetric payoff matrices, unless they are balanced 

by prior odds asymmetric in the other direction, the subject can gain much 

more than half of the available payoff by a stimulus-ignoring strategy: 

simply pick the act that has the larger sum of payoffs over states. If 

the asymmetric payoffs are exactly balanced by priors asymmetric the other 

way, the situation is reduced to the syimetric case discussed above. And 

if the priors are even more asymmetric than the payoffs, once again the 

1iMlMl«ft«irii^1.MhM«<Ba»i-^r..i..llMfl(liM<ilil1>rirrfM^^^^ i1IMirirllthi>iiMitiii»i»ii.r ■-■♦"■"'^—liu'imfiiifci^iiiiiAililiiiUM-—■"■""■'^ 
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s'>bjc't can gain much more than half the available payoff by a 

stimulus-ignoring strategy. So the general tendency of such asymmetric 

arrangements is to reduce the advantage of the ant over the grasshopper- 

provided that the grasshopper at learc notices and exploits the payoffs 

and prior probabilities. 

Nonuniform distributions over £ will change the foregoing analysis, 

but as long as values of 5 close to p* or far away from it are most probable, 

lonuniformity will only increase the flatness of the expected value or the 

relative expected loss function. In other words, subjects will suffer less 

f^om using nonoptimal strategies if their task is very difficult or very 

easy than if it is of moderite difficulty. 

For tasks of moderate or severe difficulty, the subject's prior 

expectations cbout the relative frequency of the various stimulus conditions 

bear importantly on posterior values of ?. During the c-arly trials of an 

e' sriment, the subject's distributions over 5 may be fairly uniform. This 

V/es that he will face EV and REL functions lite those in Figure 3 and 4-- 

~ sly steep. As a result of his experience over a sequence of trials, 

hi.   ■' and consequently his posterior distribution over £ on each trial 

will   oen considerably around the values implied by the experimenter's 

stimu  presentation frequencies and the difficulty of the task. The 

expert iter typically dees not want the subject to find the task easy, 

so these alues are likely to lie in the region between 1/4 and 3/4. An 

experimental procedure that leads to values of g in this range will flatten 

out the EV and REL functions considerably over those of Figure 3 and 4. The 

'I 

D 
0 

1:1 

LJ 
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/ffect will be especially marked 1f only a few distinct stimulus rela- 

tive frequencies and task difficulties are used. 

D. Expected value as a function of decision functions 

In decision problems with observations, flat maxima appear when 

we plot EV against decision functions, or, equivalently, against decision 

criteria. Consider a simple auditory detection task (a yes-no task) in 

which a pure tone may or may not be embedded in white noise and assume 

a general signal detection model (see for example Green and Swets, 1966). 

The subject must perform a decision task based on a single observation. 

According to the general signal detection model, the subject's observation 

is a random variable generated either from a signal distribution f(y|S; 

or from a noise distribution f(y|N). The subject is assumed to appl> some 

likelihood ratio criterion in order to decide whether he should choose act 

1 (observation was generated by the noise distribution) or act 2 (observation 

was generated by the signal distribution). Assuming that k is monotone 

with ß, a likelihood ratio criterion 3 generates the following decision 

function 6: 

6 : Y -»■ D ■ W,, d2) with 

6(y) = d-j  whenever y < k 

(S(y) = dg  whenever y ^ k 

where k is the solution to 

f(k|S) / f(k|N) = B (15) 
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The general formula for the EV of such a decision function for a 

continuous state and decision space Is 

EV(6) = / /   V(s.6(y)) f(y|S) ^(s) ds dy 
S Y 

(16) 

wher« V(s, 6(y)) Is the outcome associated with a particular state value 

s and the decision defined by §(y) . ^(s) is the prior distribution over 

the states. Solving for the particular 2x2 situations of this signal 

detection task, we obtain for a payoff matrix like the one In Table II 

and prior ^(N) = ? 

EV(6) = Pr (Y < k|N) £(a - b) + b? + Pr (Y < k|S) (1 - £) (c - d) 

+ d(l - £) 
(17) 

Since this expectation 1s solely a function of k, we can write 

EV(6) = EV(k) = EV(6) 

From first derivative of this function It can easily be shown 

that EV(k) Is maximized for k = k*. where k* Is the solution to 

f(k*|S)/f(k*|N) = [(1 - g)/5] [d - c)/(a - b)] = 3* (18) 

This Is, of course, a familiar result In signal detection theory, ß* 

Is the optimal likelihood ratio criterion specified by the payoffs and 

prior probabilities of the experimental task. How EV changes as a function 

of changes In k or ß depends on the conditional distribution of Y. Specific 

results can be derived only If we restrict ourselves to particular distribu- 

tions. However, the expected value of extreme policies can easily be 

ii 

: 
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D 
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derived: 

EV{I< = +«>) . a5 + (1 - 5)c 

EV(k = -») ■ bC + (1 - 5)d 

(19) 

(20) 

Thus, as a first check, without assuming any specific distribution, the 

experimenter can analyze the maximum differences in expected value generated 

by different response strategies (excluding, of course, a diabolical subject 

who would use an optimal decision criterion but reverse his decisions.) 

Next, consider 

EV(k*) - EV(k) - [/k* f (Y|N) dY - ß* /k* f(Y|S) dY] C(a - b), 
k k 

(21) 

the loss in EV caused by a nonoptimal strategy k (without loss of generality 

we assumed that k < k*). Again without assuming any distributions, some major 

implications can be drawn, which are illustrated in Figure 5. First, note that 

the difference in EV will be linear in thfi prior probability and the payoffs. 

Insert Figure 5 about here 

For extreme values of C or for large costs and payoffs the loss defined 

by Eq. (21) wm increase. Second, assume that both conditional distributions 

have a small amount of overlap. Then the expression in the brackets of Eq. (21) 

will typically be very small, since the integrals are represented by the areas 

shaded in Figure 5 around the optimal cutoff point k*. In other words, a 

large d' would therefore mean that suboptimal values of ß would result in 

little less EV than would be produced by 8*. Similar conclusions can be 

drawn for a large amount cf overlap, i.e., a small d'. If ß* is near 1, 

 ^ J..J»^m.j^A^t*.t-^Jj...»..t — ^^,, .f-^-i, 
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the expression in the brackets of Eq. (21) will becom*- small, since both 

integrals will have nearly equal values. If the separation is not extreme and 

if k* is shifted in the direction of the mean of either distribution by 

changing prior probabilities or payoffs, one of the two integrals in Eq. (21) 

will usually become very small, while the other increases. The relative 

change in expected value, however, will be smaller than ?(a - b). This 

intuitive analysis permits the experimenter to visualize the effects of cost 

and payoffs. Values of 5 near 1/2 and quite large or quite small separations 

of the conditional distributions tend to produce flat expected value and 

relative expected loss functions. In Figure 6 the expected value is plotted 

Insert Figure 6 about here 

as a function of k and d1. Here we made the assumption that both conditional 

distributions are normal, (see also Chinnis, 1971). The results are plotted 

for the symmetric payoff matrix. Figure 7 shows the relative expected loss 

version of the same information. It highlights the fact that intermediate 

values of d' produce most steepness. Vou can see that for all levels of d' 

Insert Figure 7 about here 

a difference of + 1 standard deviation between the optimal and the actual 

decision criterion would result in a loss of only about 10% or less. The 

equation relating 3, k, and d' is 

In 8 = k d'. (22) 

In other words changes in k are linearly related to changes in in   ßi and 

the larger the value of d' the larger is the change in In   6 associated with 

a given change in k. 

D 

n 
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Other decision functions, the so-called stopping rules, can 

represent response sets whenever stimuli from the same stimulus-generating 

procedure are presented in sequence and the subject can decide after seeing 

each stimulus (or perhaps less frequently) if he wants to make a response 

or if the stimulus presentation should be continued, rerhaps at a cost. 

Rapaport and Burkheimer (1970, 1971) showed that EV-functions are also 

flat over stopping rules. DeGroot (1970) argues that costs and payoffs 

for final responses have much less influence on stopping rules than the 

cost of observations, if the latter cost is relatively small. The flatness 

of the EV-function over stopping rules is important to studies of multiple 

obser'ations in signal detection theory, to studies of choice reaction 

time, and to studies of information-purchasing decisions. 

E. Expected value as a function of criterion variability. 

So far we assumed that the subject's responses were generated by a systematic 

procedure, such as the use of fixed cutoff points. How will the subject's 

economic prospects change, if he varies his decision rule or decision function 

randomly? 

As an example, we assume that a subject varies hi-L p criterion in 

a simple decision task randomly according to some uniform distribution 

between values p0 and p
0, both equally far from the optimal criterion p*. 

We know from the previous discussion about expected value functions over 

decision rules that 

EV(p) ■ -]/Zpd U + p V + 1/2 W (see equation 5) 

■.^.-^  tmt '   ■-- ■ »■i.iiniliinlM-"'",,**Ji ^^^■.^^k^MM^M^Mi^f^^ MamiteMi^fai^. ^"■''•^•^'^I'lM^itoliiiMiiiVttrriiiilrT^'"^^'--^'^'»' 



mimiimmmmmißmmmmmm »mwmiamvmm^mmmmmmmm*m*mmm 

- 30 

"D 

Since p has a uniform distribution, we can infer the following 

expectation: 

E (EV(p)) - /P     [EV(p) / (p0 - po)] dp (23) 

1 

Figure 8 shows how this expectation varies as a function of p0 for the 

two payoff matrices used in Figure 3. Note that for the s.vwietric 

rjayof^ matrix (1), a subject will not lose more than 12% of the maximal 

EV, if he should choose a decision rule at random from the interval [0, 1J 

at each trial. Of course this expectation will always be larger than the EV 

of p0 and p
0 and smaller than the EV of p*. Thus the flatness of the 

expected value function as a function of p determines the flatness of the 

expectation considered here. Furthermore, the assumption of a uniform 

distribution makes this expectation artificially small. In most situations, 

we might expect the subject to vary his response criterion according to some 

bell shaped function around a criterion p, which might even be the optimal 
•ft 

criterion p . This in turn will increase the expectation substantially— 

that is, it will make the EV of the random strategy even closer to the 

EV of the optimal strategy p*. 

It is well known that criterion variability, within any signal 

detection model, will result in lowered estimates of d' (or equivalent 

quantities), but the magnitude of the effect is not so well known. 

Unfortunately, the function that relates criterion variability to decrease 

in d' is not at all flat; it is virtually linear over interesting parts 

of its range. 

:: 
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Table III is based on our standard symmetric payoff matrix, and 

assumes two normal distributions differing only in mean. It shows the 

Insert Table III about here 

effect of various amounts of criterion variability at various levels of 

true d', along with the economic consequences, in EV and REL, of this kind 

of suboptimal behavior. It matters very little what the form of the 

criterion variation function is, so long as its mean is at k* and its 

standard deviation is the one listed in the table. The computations in 

Table III assumed normally distributed variations in k; very similar 

computations would apply for other reasonable assumptions. Criterion 

variability sufficient to produce a 30% reduction in d' will cost the 

subject only .05, 08, and .08 of a cent, for a one-cent difference 

between the value of right and of being wrong; these numbers all correspond 

to RELs of less than 10%. If it costs so little to let his criterion vary 

by one standard deviation or more, why should a subject bother to hold It 

constant? Nor will he lose much sleep over the plight of the poor 

experimenter, who thinks d' is 1.4 when it is actually 2.0. 

. 
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III. Consequences for research, in perception and elsewhere 

. 

- ■ 

We have spent many pages discussing flat maxima by means of 

examples but we never answered the obvious question: How flat is flat? 

We might choose some criterion of flatness—and indeed our exanules 

suggest candidates. But without behavioral evidence of the effects of 

flatness and of steepness, any such choice would be arbitrary. We might 

instead define flatness by means of its behavioral results, and let the 

experimental literature tell us how flat i^ flat. Bu^ the literature 

is silent; the obvious experiments haven't been done. So we choose to 

leave the definition of flatness to your intuition—and, we hope, to the 

data that our sad story leads you to collect. 

We are both decision theorists, and much of the preceding discussion 

shows the feebleness of decision theory. A natural conclusion for us is to 

order two steins of hemlock. While we sip, we can amuse ourselves by 

observing the asymmetry between those who wish to use decision theory and 

those who worry about the fact that they and others aren't using it. Those 

who wish to use decision theory, whether as a basis for experimental design 

or as a practical tool in real contexts, should be seriously disconcerted 

by our whole line of reasoning, since our fundamental conclusion is that 

decision-theoretical niceties, such as eliciting exactly appropriate values 

of probability or payoff, are unimportant. An escape from this conclusion 

may be that EV, rather than REL, is what really counts, and a ]% decrease 

of EV in a $10 decision is still a $107 loss. That thought helps consultants 

more than it does experimenters. 
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Those who worry about the obviously non-optimal behavior of decision- 

makers, and wonder how the world manages to hold together in spite of human 

inefficiency, shoi/ld look at the previous pages with quite different eyes. 

Our argument is readily ir.terpretable c:s a theory about the answer to that 

question—and a persuasive one. The world holds together and functions as 

well as it does because major stupidities, inefficiences, selfishnesses, 

and the like on the part of decision-makers produce only minor losses in 

EV. The physical facts of life are typically far more important than the 

subtleties of human decision-making in controlling the EV of an action, for 

two intertwined reasons. First, the outcome of any significant decision 

depends on Nature (or chance, or the opponent, or whatever) as well as on 

the act chosen. A good decision can lead to a bad outcome, and often does. 

Second, the flatness of EV functions means that the best decision may be 

hard to discover. 

Moreover, since wide variations in decision lead to similar EVs, 

men are encouraged to attribute success to their own insight in varying 

their decisions, rather than to chance. (On this state of mind rests the 

state of Nevada.) We attribute success, in ourselves or in others, to good 

management rather than to good luck—and then wonder what is wrong when our 

luck changes. 

The entire preceding discussion should be immensely reassuring to 

those who worry about the fate of man and the vagaries ov politics. But it 

does not speak to the problems of the researcher on perception who, having 

been offered and having accepted decision theory as a major research tool, 

now finds out thct it is a feeble one. 
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Our comfort for hi». If „„t cold. 1s „o better than luke-wa«. We 

do not believe be bas any alternative to declslon-tbeoretlcal experl.nt.1 

designs. Validation by cupidity, tbough less precise tban you and „e 

-ight like. 1s the only Intellectually acceptable for. of validation we 

know of. And validation by gentlemen', agreed. Its only serious 

competitor, is no validation at all. (Except, perbaps. for ^groups of 

seeing gentlemen.) And validation by convergent operations Is simply a 

more complicated and elaborate form of validation by gentlemen's agreement, 

unless those converging operations give some good reason, other tban 

cooperatlveness and gocxi-followshlp. for subjects to search their souls 

and report their true opinions. 

But we do believe that perceptual experiments built on decision- 

theoretical ideas can be improved, indeed we haw* -in fM 
inueea, we have in this paper presented 

the tools we regard as most useful for raklng such Improv^ents. The 

expclmenter should ^ how effective his payoff arrangers can be. and 

he should pay at least as much attention to 1mprov1ng them as to improving 

his stimulus-generating apparatus. 

A. What to do: increasing the effectiveness of costs and payoffs 

Experiments that use costs and payoffs are gambling exponents; 

the Rey to Improving them Is »«nlpulatlon of their gating characteristics 

The experimenter will typically k„ow exactly „hat his costs and payoffs a.e- 

he is mely to know somewhat less about the prior probabilities affecting " 

subjects' choices, and considerably less about posterior probabilities. But 

. 
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he at least knows a ,ot about the varlobles. such as sttalus para^ters, 

that affect posterior probabilities. 

The graph of the EV function over measures representing responses 

or response sets characterizes the effectiveness of a payoff function, other 

experimental parameters held constant. The experimenter wants to make that 

graph as steep around its maximum as he can manage. 

The most obvious and most successful way of doing this is simply to 

increase the absolute values of both costs and payoffs. This leaves REL 

unaffected, but strongly affects EV-and no one pays off in RELs. The main 

problem in doing so is that large costs and payo fs introduce money-management 

problems into the experiment. However, such problems can at least be 

palliated; often, they can be solved. For an example of how far one can go 

with college student subjects, see Swensson and Edwards (1971) and Swensson 

(1968). The latter experiment used costs and payoffs up to $10 for a single 

response. 

In monay management of gambling experiments, one principle outweighs 

an others: cheat! Adjusting EV to come out right is no problem, no matter 

how large the stakes. But increasing stakes increases the variance of total 

earnings, and that is the problem. An experimenter who is a careful cheater 

will arrange his experimental conditions so that most subjects win less than 

they should-and will add further stimuli at the end of the experi^nt designed 

to bring them up to the desired pay rate. In perceptual experWs. this >s 

especially easy, since manipulations that make the subject right nearly 100« 

of the time are ridiculously easy to perform and hard to detect. Inflexible 

ummmmmA tmrnvm mi 
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-iles about the minimum rate of pay for each subject will help get such 

research strategies past Human Subject Committees. 

If the experimenter is concerned about steepening the REL as well 

as the EV function, he faces a more difficult problem. Equation 14 helps- 

a little. 

Variation in the physical values of stimulus will produce variation 

in posterior probabilities; to some extent this helps control the distribution 

of  over trials, and that in turn enters into the sharpness or flatness of 

the REL function. Translated out of the mathematics, this says that the 

experimenter can steepen the REL function considerably by mixing up his 

stimuli. Unifomly hard-to-discriminate stimuli (in a discrimination 

experiment) wiil lead to a peaked  function and so to a flatter REL 

function. Whether this prescription for peaking up the REL function 

conflicts with the experimenter's wish to get as much information as 

possible from each trial of his experiment will depend on the experiment. 

Often, the conflict will exist and a compromise will be called for. As 

has already been pointed out, skewed payoff matrices are a poor  idea 

unless they are balanced by prior distributions skewed the other way. 

Extreme priors make the EV function more skewed, but probably cost too 

much in reducing the informational content of the experiment. 

In signal detection experiments of the yes-no type, how does d' 

relate to EV? Figure 6 shows that different values of d' will result in 
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differences in the maximum attainable EVS and therefore in the flatness 

of the EV function over values of k or B. For symmetric situations» and 

assuming normal distributions, a d' between 2 and 3 is best. 

Variability in cutoffs flattens the EV function. Any procedure that 

steepens the EV function will of course steepen the function resulting from 

a specified cutoff variability. In addition, cutoff variability may be 

influenceable by instructions, and will certainly be a function of EV 

variance; the more EV a subject stands to lose by varying the cutoff, 

the less likely he is to do so. 

Not much can be done for probability estimates or for sequential- 

sampling experiments, other than raising the stakes. 

Our crucial point here is that the experimenter should look at the 

appropriate function relating EV or Rr.l  to both optimal and other behavior, 

and use that function as a tool of experimental design. He can also use it 

as a tool of data interpretation if he is willing to make some fairly 

plausible and straightforward assumptions about what the subject has done 

in the face of the experimental conditions. 

An important way in which an experimenter can improve his experiments 

is to measure the extent to which the payoffs he intends to use in fact ledd 

to optimal or near-optimal behavio» . For instance, in a signal detection 

experiment he can use known stimuli, such as numbers sampled from one of 

two normal distributions, in preliminary calibration sessions, along 

with the payoff structure Intended toi the main experiment. This procedure 

^.„^».^Wiimiit^^ mimmmftmrniitmrnrmm- 
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would at least give the experimenter some idea of how much criterion 

variability and suboptimai responding' to expect. It might also suggest 

modifications of the payoff structure. 

In experiments in which trial-to-trial fluctuations of stimuli 

can be physically measured (e. g. by means of a microphone in or near 

the ear), they should be. Such measurements cm suggest inferences about 

the nature of the effective stimulus on this trial, and thus inferences 

about whet the subject is actually doing. 

B. What to do: interpreting experiments 

Typical payoffs in perceptual experiments have been a few cents, or 

even fractions of cents or points. This does make management easier—but 

we hope that by now you are chewing your fingernails about the flatness of 

the maxima that result. 

If the subject's economic p? T>pects are essentially unaffected by 

what ne does, what will he do? He might behave randomly, especially if he 

doesn't know he is doing so. Often, other facts about the experiment imply 

non-»ionetary payoffs, and the subject is likely to pay most attention to these. 

He likes to be right, so he may not respond well to asymmetric payoffs. He 

may minimize effort, perhaps by as extreme a procedure as ignorning the stimulus 

or perhaps by hunting for some simple strategy. He may look for hidden meanings 

in the experiment, and so develop self-instructions ard idiosyncratic response 

strategies. (The famous probability matching phenomenon in repetitive-binary- 

cnoki experiments, to the extent th'it it occurs at all, seems to be a result 
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of this kind of self-instruction to vary responses.) Or he may just be 

bored. 

We wish we could cite a string of experiments all showing the effects 

of flat maxima. We can't. The difficulty is that most perceptual (and 

other) experiments are not designed to disentangle such decision variables 

from the perceptual variables being studied. The preceding section contained 

some consents about how to avoid this confounding, but the existing literature 

contains few instances of successful avoidance. 

The effect of flat maxima may be to produce random errors, systematic 

errors, or both. Several signal detection, recognition, and discriminatic, 

tasks show that subjects adopt response strategies that lie between optimal 

and error minimizing strategies. In signal detection experiments. Green 

(1960), and Swets, Tanner, and Birdsall (1961) found that subjects tended 

to deviate from optimal cutoffs in the direction of making both responses 

more nearly equally often. Green concluded that "The way in which the 

expected value changes for various criterion levels is the crux of the 

problem;" that is, that he had flat-maximum trouble. Others have proposed 

that subjects regard such tasks as being sensorily oriented, or that subjects 

do not in fact maximize EV. These hypotheses cannot be studied without 

larger payoffs and steeper EV functions. Uhlela (1966) also reported 

nonoptimal decision criteria in an experiment requiring recognition of 

tilted lines. Again, the subjects tended toward an error minimizing strategy. 

i 
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Similar findings have been reported for other tasks by Uhlela and Schmaltz 

(1966) and by Lieblich and Lisblich (1969a, 1969b). 

Virtually all of these experiments combine skewed payoff matrices 

with quite difficult discriminations. This produces a probability distribu- 

tion over £ that is peaked at .5. Skewed payoff matrices produce optimal 

decision rules such that p* is well away from .5. As arguments above show, 

such procedures lead to very flat maxima in the region of p*. This point 

implies an explanation of Uhlela and Schmaltz's (1966) findings that 

presentation rates (priors) had a larger effect on decision criteria than 

did costs and payoffs. Changing costs and payoffs only controls the 

location of p*. But changing the prior both changes the location of the 

criterion (if it is defined in likelihood ratio or related ways) and changes 

the flatness of EV over other criteria in the region of p*. 

Criterion variability is very important to the interpretation of 

signal detection experiments. The formal arguments summarized in Table III 

suggested that abundant amounts of it should be present in typical 

experiments. Hammerton (1970), using a simulated signal detection task in 

which subjects made inferences about parameters of normal distribution«, showed 

that they did not adopt stable criteria. Galanter and Holman (1967) also 

reported that subjects used decision strategies Inconsistently when faced 

with different payoff matrices. Where they have been studied, the implications 

of Table III seem to be experimentally confirmed. We conclude that most 

values of d' reported in the literature are substantially depressed- 

sufficiently so that reported values of d' in most experiments should be 

regarded only as lenient lower bounds on true values. 
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Can this distressing picture be alleviated by increasing costs 

and payoffs? Some data report invariance of d' for different payoff 

structures and levels of motivation (for a summary see Green and SwetJv, 

1966; for specific studies, see Swets and Sewall, 1967, and Lukaszewski and 

Elliott, 1962). On the other hand Watson and Clopton (1969) and Calfee (1970) 

found noticeable e-fects of costs and payoffs on the detection rate and on d' 

respectively. 

No experiments have studied the effect of changes in costs and 

payoffs on the effects of proper sccring rules for probability estimation, 

so far. The scoring rule maxima are so flat that we are very pessimistic— 

yet the studies need to be done. In their absence, there seems to be little 

point in using proper scoring rules to improve probability estimates—except 

in the sense that the scoring rules are really instructions about the meaning 

of probability estimates, and so may have merits not dependent on their 

property of rewarding most the man who makes the most truthful estimate. 
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Figure Captions 

,1 

Fig. 1. Maximal EV as a function of the actual probability for 

a quadratic proper scoring rule. 

Fig. 2. EV as a function of probability for two actions. 

Fig. 3. EV as a function of the cutoff probability for two different 

payoff matrices. 

Fig. 4. REL as a function of the cutoff probability for two different 

payoff matrices. 

Fig. 5. Hypothetical conditional probability distributions of the random 

observation variable Y. 

Fig. 6. EV as a function of the decision criterion for a symmetric payoff 

matrix and for different values of d'. 

Fig. 7. REL as a function of the decision criterion for a symmetric 

payoff matrix and for different values of d'. 

Fig. 8. EV as a function of the upper bound of a probability distribution 

over the decision rule. 
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TABLE II. 

TYPICAL PAYOFF MATRIX IN A TWO STATE, 
TWO ACT DECISION PROBLEM 
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