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* subject's part to permit direct inference of internal processes. However,

decision-theoretical maxima are flat, in the sense that seriously inappropriate

Y behavior produces relatively little reduction in the subject's expected payoff.

(This-means--that costs and payoffs are rather feehle means of instructing subjects
what to do, or of ensuring that he does it.

This argument is made specific in examples drawn from three kinds of. perceptual
! experiments. In some tasks, such as probability estimation, subjects directly

y estimate subjective quantities, and receive rewards for accuracy of estimate.

! An analysis of proper scoring rules for probability estimation shows that their

, maxima are inevitably quite flat. An analysis of a yes-no decision task show

4 that the incorrect answer produces flat maxima; while the payoff function can

be sharpened by increasing the magnitudes of ali payoffs, a suitable relative
payoff function is intractable. In such yes-no tasks, criterion variability produced
even more flatness, so much so that it would be surprising if such variation did not
occur in most real experiments. Criterion variability sufficient to produce a

30% reduction in estimates of d' produce only 5% to 8% reductions in expected
winnings. .

T f

Implicat’ 'ns of these results for experimental desiun, ¥or interpreting

experimental results, and for more general decision-theoretical thinking are
discussed.
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Costs and Payoffs in Pei ceptual Research]

Detlof von Winterfeldt and Ward Edwards

Engineering Psychology Laboratory
University of Michigan

Ann Arbor, Michigan

Styles in Perceptual research change, reflecting the changing
styles of Psychological research and theorizing. Consider the problem,
faced by eve.y perceptual researcher, of validating his subject's
responses--that is, of finding persuasiye reasons to believe that the
behavior emitted by the subjects in Some sense faithfully reports the
naccessible processes Or experiences that have Just gone on inside that
subject's head. (This question readily translates into the language of
empty-organism psychology, and has the same meaning there; we leave the
spelling out of that translation to others more masochistic than we.)

In the days of Wundt and Titchener, the persuasive reason was
Tikely to take the form "The subject was carefully trained in my
laboratory to report accurately; moreover I tried it myself and had
the same experience." The attack mounted by the testalt Psychologists

and the behaviorists on this sort of truth-by—gent]emen's-agreement




was devastating, and proved fataij. Obviously, in two years you ran
train a willing, intelligent graduate student to report virtually
anything that seems appropriate to you, in whatever language is
pleasing to your ear.
The Gestalt psychologists emphasized very simple, intuitively
compelling demonstrations that anyone could see. This was fine, as
far as it went. But not all perceptual questions can be resolved by
means of such demonstrations--and even if a demonstration (for example,
of brightness constancy) is Intuitively compelling to all, attempts tn
measure the magnitude of the effect produce the usual individual differences,
and so raise the same old question about how to establish an orderly rela-
tion between responses and the experiences or processes underlying them.
The Stevens-Garner controversy of the late '40s and early '50s
presented a more modern version of the structuralists' dilemma. Responzes
that demand a very high degree of training to use, such as direct magnitude
estimation, did not agree with responses that produce much greater inter-
personal agreement, with much less training, such as those based on
discriminability. Was the discrepancy induced by the training, or were
the two classes of procudures tapping different kinds of psychological
mechanisms? 1In the latter case, which was the "trun" representation of,
say, loudness? Or, more operationally, which was more useful for applica-

tions 1ike design of hearing aids, measurement of industrial noise, etc.?
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In the mid-'50s, a new approaci to this problem of validation
entered the psychological literature. It did not apply to all perceptual
issues, but it presented an apparently conclusive solution to the validation
problem for all issues to which it did apply. The idea was very simple:
arrange the circumstances of the experiment so that it is in S's self-
interest to generate a response ttat depends in an orderly way on the
internal experience or process being studied, make sure that he understands
the nature of this self-interest, and then assume that he has in fact
generated a response appropriate to it. The earliest version of this
idea was used in signal detectability experiments (see for example, Tanner
and Swets, 1954); by now 1t has been generalized not only to many other
kinds of perceptual experiments but also to a wide variety of non-perceptual
ones.

This approach produces what might be -alled validation by cupidity.
It can be used whenever the experimenter is willing to define a function
or the product set of all stimulus generation procedures used in the
experiment and of all possible respons2s such thut, given the procedures
antecedent to an occasion on which a response occurs, all possible
responses that might occur then can be ordered in desirabi1ity. (Transla-
tion, good cnough for most Purposes: the experimentar knows what the
correct response is.) If'so, the experimenter simply rewards the subject
more for more desirable than for less desirable responses. He assumes

that the subject wants to be rewarded (a safe enough assumption), and that

he will apply rather sophisticated intellectual tools in order to obtain
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as much reward as possible (some problems 1ie here). Since he finds

it boring to observe subjects simply doing what %he stimulus tells them
to do, he designs experiments so that a subject's access to information
about the merit of the response he contemplates making is fallible, and
depends as sensitively as he can arrange it on the perceptual or other
irechanism he wants to study. Of course he knows that the subject's
information about the merits of his contemplated response also depends
on other mechanisms, and that the rezponse selecion process depends

on still others, but he assumes he knows fairly well what those other

mechanisms cve. By assuming that the subject wiil extract as much

information as he can from the situation and the perceptual expefience

bearing on what reszonse is best, and then will use that information
optimally, or perhaps only systematically, to guide his responding,
the experimenter can infer how effectively the perceptual mechanism is
providing that information.

From this point of view, the reward structure of an experiment serves
four reasonably distinct purposes:

1. Motivation: It encourages the subject to stay awake, pay
attention, not goof off, and take the experiment seriously.

e. Instruction: It tellc the subject what the relevant features
o¥ the experiment are, and how he jis supposed to make use of them.

3. Response wontrel: It implicitly specifies for the subject how
best to translate his internal experiences or processes into observable

responses.
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%- models of response seleciion to infer the internal processes of interest

Models for data analysis: It permits the use of economic

to the experimenter.

E- A11 four of these purposes enter to some extent into what we are

; calling validation by cupidity, but obviously the last two are ithe crux

] ¢f tha idea. Although much of this chapter explores difficulties and
prohlems connected with the idea, we might as well declare right now that

| validation by cupidity is the best form of validation available to psycholo-
% . gists who study internal processes, and indeed has no serious competitors.

One counsenuence, of course, is that we see no way whatever (other than

gentlemen's agreements) to validate responses such as magnitude estimates,
in which the experimenter has no basis for attaching a value to a given
stimulus-response combination.

Validation by cupidity turns perceptual experiments into gambling
experiments--or, in less invidious language, into experiments on human
decision making under uncertainty. Naturally, the assumption that subjects
extract from the perceptual experience as much information as possible

bearing on tha merits of the responses available to him is a very strong

one; the exiraction of information from complex signals is a sophisticated
ard demanding process, and the appropriate mathematics can be extremely
complex. Still, the approach has seemed to work. Research on absolute
and differential thresholds is now dominated by it, and new applications, 1

or more sophisticated and fancy interpretations of uld cnes, appear every day.




Few users of these ideas really believe that subjects are, for
example, processing input information optimally according to Bayes's
theorem. Yet they have no hesitation to use Bayes's theorem in analyzing
the results of human information processing experiments. Why? Because
it's a good bet that any response-selection procedure that is neither
whimsical nor random will produce data indistinguishable from those
produced by an optimal response-selection procedure based on somewhat
less information. This means that analyses of data based on optimal
models will almost always work, in the sense of leadiny to sensible
and reproducible results. Typically, those results cohere fairly well
with other results.

In less fancy words: decision analysis is applied to the results
of gambling-type perceptual experiments because it works and it would be
difficult to devise any orderly respounse-selecting mechanism for which
such anzlyses would not viork.

In 1961, one of us made explicit the by-then-obvicus point that
costs and payoffs, in perceptual or other experiments, are instructions
(Edwards, 1961). In virtually all perceptual experiments, subjects must
choose responses 1in a way that trades off one dimension against another--
false positives against missed signals, cost of errors against cost of
more information, and the like. Costs and payoffs explicitly instruct
subjects about these tradeoff functions, and no other form of instruction
does {or, more carefully, any form of instruction that specifies relevant

tradeoff functions is emivalent to a set of costs and payoffs).

e




This paper picks up wherv that one left off. Many authors, in
many contexts, have pointed out that the instructions specified by costs
and payoffs aren't very precise, in the sense that the decision-theoretical
maxima are flat. The fact of flat maxima in decision analysis has been
rediscovered, with dismay, perhaps a dozen times. This paper rediscovers
that fact cne more time, but this time in a relatively general treatment.

We should give a very abstract and general verbal statement of
our point before aing into the technical details. Our point is this:
Whenever a continuum (or a dense and ciosely spaced set of discrete
points) enters into the response selection process in an important way,
whether because a continuum of responses is available or because response
selection depends on cutoff poirits on an underlying continuum, fairly
substantial changes in the lccation of the point on the continuum that
controls responding (the response or the cutoff) will produce extremely
small changes in the economic prospects of the responder.

To put it another way, we are suggesting an addition to the message
of Edwards's 1961 article. Costs and payoffs, though often the only feasible
form of instructions, are almost always rather feeble; although they tell

the subject what he should do, they don't ounish him much for not doing it.
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II. Why costs and payoffs are feeble instructions

A.  The mathematical formulation o +,e probiem

The function of this section is to give technical definitions to some terms
already used and some othersnecessary to later sections of this paper.
Consider a subject who does not care about the stimuli or about
the payoff structure imposed by the experimenter. He is unmotivated, does
not follow instructions, and is uninfluenced, or influenced only capriciously,
by variations in costs, payoffs, or prior probabilities. Compare him with
a clever and avaricious subject in the same experiment. If the economic
prospects of the grasshopper (to use a technical term proposed by Aesop)
are not considerably worse than those of the ant, costs and payoffs have
not served their purpose. So a generally necessary condiiion for the
effectiveness of costs and payoffs in a given experiment is that economic
Prospects must change substantially for differentvresponses. We must
translate this condition into fermal language, defining what we mean
by "economic prospects", "substantial change", and "different responses";
to do the Tast, we must describe responses numericaily.
For a given experiment, a single number is associated with each
response or set of responses: 1its expected value (EV). We identify EV

with economic Prospects, and will hereafter use these two phrases inter-

changeably,




We should define EV. To do so, we must first define what a
stimulus is. Consider Table I, and think of it in the context of a
stimulus identification experiment in which a stimulus is presented to

the subject, and he must say which of several possibilities 1t is.

The subject receives a payoff xij if stimulus Si has been presented anc
his response was dj. Here and throughout this paper, we use phrases 1ike
"stimulus S1 was presented" as shorthand for a more complicated idea.
Technically, S1 is not a stimulus at ali, but rather a set of experimental
procedures designed to produce tne. So the accurate but tedious phrasiny
would be "Operations Si were performed on or by the apparatus, producing
a stimulus that was presented to the subject." Similarly, an experiment
asking the subject which stimulus was presented is really asking which
operations on or by the stimulus-qenerating apparatus were performed.

Of course in many perceptual ard other experiments the stimulus produced
by operations Si may vary from instanca to instance within the experiment,
and may be ¢nly "‘mperfectly known to the experimenter.

. Will give the subject

The presentation of a perticular stimulus 3

information, perhaps fallible, about which stimulus actually was presented.

,After the occurrence of Sy the subject will have a personal proapility
distribution over the possible stimuli; that uistribution associates with
each Si a probability 51. The expected value to the suhject of making

response dj is then defined as

EV (d;) = I &; x4y (1)
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For stimuli that vary continuously, integration replaces summation
in this definition.

We have no reluctance about identifying the economic prospects
of response dJ with EV(dj), thus implying that subjects should select a
response-generating procedure that maximizes EV. An antique fallacy
questions this recommendation, arguing that EV maximization is a wise
strategy only for repzated events. As we see it, the very word "strategy"
implies that some principle of response selection will be repeatedly
applied; the arguments that make EV maximization optimal don't care
whether the conditions are or are not constant from one application of
the strategy to the next. Besides, most perceptual experiments repeat
the same condition often enough so that the most passionate relative-
frequentist would agree that EV maximization is wise,

Though we unhesitatingly identify the subject's economic prospects
with EV, the subject may not. Whether men in fac: maximize EV or not s a
profound, difficult question; to examine it here would take us too far
afield. A great deal of experimentation has produced no evidence against
that hypothesis; data analyses based on it aboynd in perceptual experiments,
'ustly because they work. Morzover, any other consistent decision rule
that permits a1l pessible economic outcomes of dj to enter into assessment
of its worth with appropriate sign and with some monotonic variation of
the economic consequences of dj with the magnitude of each pavoff will,

for virtually any theoretical or practical purpose, be indistinguishable

from EV maximization. (Note that we are using the notion of value to




= Sy —

-1 -

include subjective values as well as dollar payoffs; our arithmetic

will be done on dollars, but the nature o our results will imply that

it makes 1ittle difference whether or not the effective payoff to the
subject is or is not linear with its dollar value, so long as it is strictly
monotunic).

Next we must give an account of perceptual experiments that permits
us to define responses and the strategies that produce them. Our account,
naturally, will be decision-theoretical in spirit. Here and throughcut, we
shall speak of botn stimulus-generating operations and responses as being
chosen fror mutually exclusive, discrete, finite sets. This mild idealization
slightly simplifies the mathematics and greatly simplifies the language.
Anyone mathematically demanding enough to be bothered by it will also be
mathematically skilled enough to see the easy generalizations of the
arguments to continuous cases. Following the current conventions of
perceptual research, we shall assume that a discrete stimulus-generatina
operation may lead to any member of a continuously distributed set of
alternative stimu’¥; as we said above, "stimulus S1 was presented" refers
tc the discrete operation 51, not to the actual stimulus.

We suppose that before Si is pre§ented, tne subjerct has a prior
probability vector over the set of possible stimuli. Upon observing (the
stimulus resulting from operation) 51’ he transforms that vector into a
posterior probability vector. The correct rule of transformation, of course,

is Bayes’'s thet am. While we shall use that where relevant, we do not need

to assume that the subject uses it; the weaker assumption that the .ubject
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represents his observation internally as a iikelihood ratio, or some

quantity monotonically related to Tikelihood ratio, and that he takes

prior probabilities into account in response selection is sufficient.

Now the subject makes the response from among those available to him that

has the best economic prospacts. He may or may not receive feedback. In a
single-observation axperiment, that terminates the trial. In a multiple-

observation experiment he may choose or may be required to make more observa-

tions. A1l experiments end each trial with selection of a terminal response, 7
perhaps followed by feedback; some require responses (other than decisions .f
to Took at more information) interspersed with the sequence of observations.

A decision rule is a cutoff vector or set of cutoff vectors defined

in the set of vectors of posterior probabilities. It specifies which
response will be selected given any such vector. In a twc-a" ternative stimulus
identification task with a symmetric payoff matrix, for example, the cutoff
vector would probably be (%,%). The subject selects response di whenever
his personal probability that Si was presented exceeds 3. For an optimal
subiect, or one whose data are being analyzed as though he were optimal,
choice of decision rule depends only on the payoff structure of the experi-
ment, and so can be known beforz 31 is presented.

In most experiments, decisions depend not only on payoffs and on
observations, but also on prior probab111t1e§. Information about the prior
probabilities can be combined with information about the payoffs, permitting

the decision rule to be redefined (via Bayes's theorem) from the set of

vectors of posterior probabilities %o a set of vectors of likelihood ratios,
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and sometimes further from the 1likelihood ratios to a set of physicai
characteristics of the actual stimulus, and occasionally further from the
actual stimulus to the stimulus-generating operations S1. Any such
rodefinition of a decision rule out of the set of vectors of posterior
probabilities into some other set more directly related to the stimulus

presentation conditions of the experiment we shall call a decision function.

A decision function partitions the set of possible observations by means
of criterion or cutoff points. In signal detection theory, for example,
the 1ikelihood ratio cr1tef1on g partitions the set of actual observations
(insofar as that set can appropriately be mapped into a set of 1likelihood

ratios). Within each class of observations, the same response is appropriate.

Obviously any translation from a decision ruie to a decision function depends

on a model of the sequence of processes beginning with the stimulus-generating
operations and ending with the internal process representing the stimulus,
and is no more trustworthy than that model. The arguments of this paper
complicate that point by showing that the inference from responses to
parameters of such models is quite weak; whether that is good or bad depends
on the purpose for which the model is being used.

In some experiments, such as those concerned with probability estima-
tion, the response categories available to the subject are continuous, or

more often numerous, ordered, and densely spaced. In others, such as

stimulus identification experiments, the set of available response categories
will typically be sparse. However, the concepts of decision rules and

decision functions permit us to think of the response-selecting process
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as either continuous or as having numerous ordered and densely spaced

alternatives in such experiments also. So, in order to examine the

specificity with which costs and payoffs control resp-nding, we can

simply plot the expected value of the response, decision rule, or decision

function, as appropriate, against a numerical representation of that

response, decision rule, or decision function. Our main interest, of

course, is in the shape of this function around its maximum, since we

assume that subjects, motivated by cupidity, try to sela.t their responses

in a fairly optimal way. v
The thesis of this Paper can now be more exactly stated: the

expectec value of respunses, decision rules, or decision functions changes

only slightly with large deviations from optimal values. Consequently the

economic prospects of the grasshopper may be only slightly worse than those

of the ant; economic prospects often do not change substantially for different

response selection rules.
B. Expected value as a function of decisions

Consider a recognition task in which the subject must estimate on ;
a 0-to-100 scale the probability that the current stimulus is old; that is,
has been presented before. The experiment has two stimulus-generating
conditions, old and new, a dense, orderly set of available responses, and

a payoff defined for each stimulus-response combination. Let gj be the

response the subject chooses to make on a given trial. Then Xq j is the ¢
’ .
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é%' 1 payeff for it if the stimulus is old, and x ; is the payoff for it
] ?

1f the stimulus is new. Let £¢ be the subject's actual personal probability
' on this trial that the stimulus is old; of course, nothing guarantees that

£j = & The subject can evaluae any response gj by its expected value:

EV (EJ) = XO,J Et +XH,J Qa - gt) (2)

E For each value of Eys @ value of Ej will exist for which EV (gj)

will be maximized. This maximal expected value EV' will be a convex

function of £.. Often, the experimenter will try to encourage the subject
t

e i

to report his true opinions by using a function to specify the x's such that
EV is maximized whenever Ej = Et' Such functions are called proper scoring

b rules; for leads into the extensive literature about them, see fczel and

E: Pfanzagl (1966), Murphy and Winkler (1970), or Savage (1971).
A typical function plotting maximum expected value given optimal

choice of gj, EV*, against £ is shown in Figure 1. It represents the

quadratic scoring rule, one of the two most frequently used proper scoring

- e Em L Em e e = m e om e s o=

- rules, where Xa,§ = 1-(1 - E.)z; X, « =1 - Ej . The two lires show
] 9
the EVs of responses E] and 52 as a function of Et' Of course g] would

Jii J be the optimal action if the subject's actual probability were £1s and

similarly for 52; this follows from the definition of proper scoring rules.
o Now, assume that the subject's actual probability is £1s but that

“» he nevertheless chooses £, as his response.

-
2
L2 ]

-
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His economic prospects are diminishedby the difference between the
Evs of & and & given actual probability &1t in Figure 1 that difference
is labelled A. It will typically be very small in relation to the total
EV if the difference between actual and optimal response is not too
large, especially i1 the optimal EV function is itself rather flat in the
region of Et‘ The nearer £t is to the minirum of the function, that is,
the more uncértain a subject is about what response is best, the less he
will suffer as a consequence of suboptimal decisions.

The fact that proper scoring rules have this undesirable property
of flatness is well known (see, for example, Murphy and Winkler, 1970).
However, the ubiquity of proper scoring rules is less well knuwn. First,
notice that the label on the response is irrelevant; proper scoring rules
are not confined to situations in which the response is an explicit
probability estimate. A useful distinction can be made between conditions
that must be satisfied to generate a proper scoring rule and conditions that
must be satisfied just to recognize one. It is easy to recognize a proper
scoring rule: any list of acts that includes none that are dominated,
stochastically dominated, or duplicated is based on > payoff matrix that
is an extract from a proper scoring ri’ie. That sentence sounds fancier than
it is. A1l it means is that if each act has the property that some set of
vectors of probabilities makes it optimal, then choice of that act in effect
signals estimation of a vector within that set. Any response is a probability

estimate. Moreover, the linearity of the equation for EV guarantees that if
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an act is optimal given more than one vector of probabilities, then

all vectors for which it is optimal will be adjacent to one another.

That word "adjacent" is here used in the rather special sense that all
these adjacent vectors will fail within a closed convex region of a regular

hypertetrahedron of dimensionality one less than the number of probabilities

. & b

in the vector.

(The usual sets of conditions that define prober scoring rules are
more ccaplicated, because they typically are designed to ensure that
different vectors produce different scores. But such issues are irrelevant
here; we are only interested in the fact that different acts identify
differeni sets of vectors.)

This argument for the ubiquity of scoring riles means little for
payoff matrices in which the number of acts approximates the number of states.

But for payoff matrices in which the number of acts is very much larger

than the number of states, and yet no acts are dominated or stochastically
dominated, the argument for flat maxima given above become increasingly
applicable. If the act space is continuous or acts are densely distributed

over a continuum, the argument for flat maxima applies with full “orce.

C. Expected value as a function of decision rules

So far we have discussed reductions in EV that result from a single
nonoptimal act. Now we wi'l examine the effect of consistently applied

nonoptimal decision rules. Consider a task in which the subject must g

discriminate two objects according to brightness. He can make ¢ither of
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the fallowing two responses:

d] Stimulus 1 is brighter than stimulus 2

1}

dn Stimulus 2 is brighter than stimulus 1

Correspondingly, on each trial, there are two possibie states of nature;
either S1 or 52 is physically brighter. The experimenter defines a payoff
matrix as in Table II, where a and d can be thought of as payoffs, b and 'j

c as costs. We assume that the subject must perform this discrimination

task repeatedly for different pairs of stimuli. After presentation of a
pair of stimuli, the subject will have some probability distribution over

the two states of nature:

The optimal strategy for such a task can b derived easily. The subject

should choose d?’ whenever
EV (d1) > EV (d2), d2 otherwise. 1. e., he should choose d1 if

Eat (1-g) ¢ > &b+ (1-£)d (3)

or
g>(dc) /[a+d-b-c]=p (8)

'{ This result is represented in Figure 2.
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The EVs of the two decisions are linear functions of £ and their

intersection defines the cutoff point p*. Therefore optimal strategy
in this probiem is totally determined by p*. Now assume that the subject

in fact adopts a strategy p # p*, i.e., he chooses decision 1 whenever

£ > p and decision 2 whenever £ < p. How will the EV of this decision

rule compare with the EV of the optimal strategy? It depends on the subject's
prior opinion about the posterior distributinn of £ over trials. Assume Tor a
moment thai tne subject considers all values of £ to be equally likely. The

EV can be expressed in terms of the cutoff point p.

Bl o o . R

EV(p) = S EV(dy) de + /P EV(d,) df = _
S £=0 :

-1/2 p2 [a+d-b-¢]+pld-cl+1/2[a+c] (5) :

which is a quadratic function of p, whose parameters are determined by

the costs and payoffs involved. Its first derivative is

EV'(p) =-pla+d-b-cl+[d-c] (6) f

From this it follows that the maximum EV is obtained when we set

p=p"=(d-c)/[a+td-b-c] (7)

which we saw in Eq. (4).

S—=]
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The first derivative of the function EV(p) tells us how steep
EV(p) is around the optimal vaiue of p*. Equation (6) shows that the
steepness of EV(p) depends on the values of all payoffs. The larger the
costs and payoffs, the stzoper this function will be--which is not a
surprise. Two examples with values typically used in psychological
experiments will give an idea of how flat this function will be in nost
situations. The results for values of a =d = +1¢, b = ¢ = 0¢ (1) and
of a =1.5¢, b=¢c =-.5¢, d = +.5¢ (2) can be seen in Figure 3.

A more intuitive way of looking at the expected value as a function
of a response strategy p results from an inspection of the areas in Figure
2. The area under the two heavy lines defines the average win under an
optimal strategy p*. The shaded area represents the average loss due to
a suboptimal strategy p. Graphs 1ike this can help the experimenter to
gain insight into the effectiveness of his payoff structure.

Mathematically the description of the expected value of a strategy
p as a function of p and the outcome structure is very convenient. It is
easy to see that by muitiplying all outcomes by a factor greater than 1,
the experimenter can steepen this function as muck as he wishes. However,
increasing the steepness of the EV(p) function may not change the relative

loss of any noi-optimal strategy, expressed as a percentage of the optimal

EV. Consider the payoff matrix displayed in table II and the resulting

i v i
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EV function over strategies p. If we multiply all outcomes by a

n constant g > 1, we will get

: EVy(p) = g EV(p) (8)
which is steeper than the original EV function. Now consider the
relative quantity

REL (p) = 100 [EV(p*) - EV(p)] / EV(p") (9)

where ®EL stands for relative expected loss and is measured in percent
(see Edwards, 1956). If REL is the value with which subjects ore concerned,
multiplying all outcomes by a constant does not affect the motivational

. effect of the costs and payoffs, since

REL (p) = REL (p) (10)

The experimenter will often be concerned with manipulating the REL function
rather than the expected value function. This is mathematically simple

but unpleasant computationally. Let

b U=[a+d-b-c] (11a)

i V=1[d-cl (11b)

i W=[a+c] (11c) ‘

:i From this it follows that :

L p* = V/U (12) ?

. EV(p*) = 1/2 [w + V2 / U], (13) ’
REL(p) = 100 [1 + U2 p? / (UN + V2) - 20vp / (U +V?) - :

ol (14)
i - UM/ (UM + VE)].




In the foregoing two examples we find that the two REL functions are ot

similar in flatness to the EV functions (Figure 4). For example, for

e m wm s m om ®m m owm om oem e e

the symmetric (first) payoff matrix, the subject would not lose more than

8% of the expected valve of the optimal strategy p* = 1 for any value

of p betwee.. 1/4 and 3/4. Similar analyses are mathematically fairly

easy to develop for the more general case of n decisions and m states

but they lack the simple graphical interpretation displayed here--unless o

you happen to be good at visualizing convex regions within regular

hypertetrahedrons.

REL functions like those shown inFigure 4 are extremely useful

vays of examining the properties of payoff schemes, but they need careful

interpretation. This part of the paper will consider only symmetric 2x2 i

payoff matrices and prior odds of 1:1; similar but somewhat more complicated ¥

arguments apply to more complicated cases. In symmetric cases, the subject

can guarantee that he will be right half the time simply by flipping a coin

Any non-perverse strategy must be at least as good as that. So the maximum

feasibie REL is defined as 1 - (1/2pc), where p. is the probability of

being correct if the subject uses the optimal strategy. If Pe is 0.6,

the maximum feasible REL is 1/6; if Pe is 0.9, it is 4/9.

From the subject's point of view, the REL expresses how much

difference in economic prospects exists between an optimal ant and a

feckless grasshopper, for various degrees and kinds of fecklessness.




If a gras;shopper can earn 5/6 as much as an ant does without even
noticing the stimulus, he doesn't have much iacentive to notice it,
much less to think about its meaning.

From a somewhat different point of view, tne distance between the
optimal REL of 0 and the maximum possible REL deFines the range of degrees
of success the experimenter can have in inducing his subject to perform in
an ant-like rather than a grasshopper-1ike way, for fixnd stimuli, responses,
and payoffs. The nearer the subject gets to O REL, the more successfully
the traininy and economic pressures are combining to produce art-like
behavior. From this point of view, the available RIL range, numerically
equal to the maximum feasible REL defined above, n‘ght be taken as 100%
and the percentage deviation of REL from O on this transformed scale might
be taken as an index of fecklessness.

0f course REL is calculable only if Pes the probability of correct
response if the subject uses the optimal strategy, is known. Often, it
won't be.

In cases using asymmetric paycff matrices, unless they are balanced
by prior odds asymmetric in the other directinon, the subject can gain much
more than half of the available payoff by a stimulus-ignoring strategy:
simply pick the act that has the larger sum of payoffs over states. If
the asymmetric payoffs are exactly balanced by priors asymmetric the other

way, the situation is reduced to the symmetric case discussed above. And

if the priors are even more asymme.:icC than the payoffs, once again the
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susjort can gain much more than half the available payoff by a
stimulus-ignoring strategy. So the general tendency of such asymmetric
arrangements is to reduce the advantage of the ant over the grasshopper--
provided that the grasshopper at lea=t notices and exploits the payoffs
and prior probabilities.

Nonuniform diistributions over £ will change the foregoing analysis,
but as long as values of £ close to p* or far away from it are most probable,
nonuniformity will only increase the flatness of the expested value or the

relative expected loss function. In other words, subjects will suffer less

fvom using nonoptimal strategies if their task is very difficult or very

eas)y than if it is of moderute difficulty.

For tasks of moderate or severe difficulty, the subject's prior
expectations c<bout the relative frequency of the various stimulus conditions
bear importantly on posterior values of £. During the zarly trials of an
e’ 2riment, the subject's distributions over £ may be fairly uniform. This

1ies that he will face EV and REL functions 1ile those in Figure 3 and 4--

= ely steep. As a result of his experience over a sequence of trials,
hi. -~ and consequently his posterior distribution over £ on each trial
wili ven considerably around the values implied by the experimenter's
stimu oresentation frequencies and the difficulty of the task. The
experi. iter typically dues not want the subject to find the task easy,
so these 'alues are likely to 1ie in the region Letween 1/4 and 3/4. An
experimental procedure that leads to values of £ in this range will flatten

out the EV and REL functions considerably over those of Figure 3 and 4. The
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;ffect will be especially marked if only a few distinct stimulus rela-

tive frequencies and task difficulties are used.

i D. Expected value as a function of decision functions

ot e e A AT B

In decision problems with observations, flat maxima appear when
we plot EV against decision functions, or, equivalently, against decision
criteria. Consider a simple auditory detection task (a yes-no task) in
which a pure tone may or may not be embedded in white noise and assume
a general signal detection model (see for example Green and Swets, 1966).
The subject must perform a decision task based on a single observation.
According to the generail signal detection model, the subject's observation
is a random variable generated either from a signal distribution f(y|S}
or from a noise distribution f(y|N). The subject is assumed to apply some
1ikelihood ratio criterion in order to decide whether he should choose act
1 (observation was generated by the noise distribution) or act 2 (observation
was generated by the signal distribution). Assuming that k is monotone

with 8, a likelihood ratio criterion B generates the following decision

function §:

§:Y + D= {d], dz} with

§(y) = d] whenever y < k - %
§(y) = d, whenever y > k
where k is the solution to i

£(kIS) / F(KIN) = 8
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The general formula for the EV of such a decision function for a

continuous state and decision space is

EV(8) =/ 7 V(s,8(y)) f(y|S) w(s) ds dy (16)

SY
where V(s, 8(y)) is the outcome associated with a particular state value
s and th: decision defined by &(y) - w(s) is the prior distribution over
the states. Solving for the particular 2x2 situations of this signal
detection task, we obtain for a payoff matrix 1ike the one in Table II
and prior y(N) = ¢

EV(8) = Pr (Y < k|N) £(a = b) + bE + Pr (Y < K|S) (1 - £) {c - d)

+d(1 - &) (17)

Since this expectation is solely a function of k, we can write
EV(8) = EV(k) = EV(6)

From first derivative of this function it can easily be shown

that EV(k) is maximized for k = k¥, where k* is the solution to

FOK*IS)/F(K*IN) = [(1 - £)/€] [d - ¢)/(a - )] = g* (18)

This is, of course, a familiar result in signal detection theory. B*
is the optimal 1ikelihood ratio criterion specified by the payoffs and
prior probabilities of the experimental task. How EV changes as a function '
of changes in k or B depends on the conditional distribution of Y. Specific
results can be derived only if we restrict ourselves to particular distribu-

tions. However, the expected value of extreme policies can easily be
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derived:

EV(k = +o) = a£ + (1 - £)c . (19)

EV(k

-o) = bg + (1 - £)d (20)

Thus, as a first check, without assuming any specific distribution, the

experimenter can analyze the maximum differences in expected value generated
by different response strategies (excluding, of course, a diabolical subject
who would use an optimal decision criterion but reverse his decisions.)

Next, consider

EV(K*) - EV(K) = [ik* f (Y|N) dv - g* ik* f(Y[S) dY] g(a - b), !;i
(21) |

the Toss in EV caused by a nonoptimal strategy k (without loss of generality
we assumed that k < k*). Again without assuming any distributions, some major
implications can be drawn, which are illustrated in Figure 5. First, note that

the difference in EV will be Tinear in tha prior probability and the payoffs.

Insert Figure 5 about here

- - - e e e e e e ® e o e

For extreme values of £ or for large costs and payoffs the loss defined

by Eq. (21) wi11 increase. Second, assume that both conditional distributions
have a small amount of overlap. Then the expression in the brackets of Eq. (21)
will typically be very smail, since the integrals are represented by the areas
shaded in Figure 5 around the optimal cutoff point k*. 1In other words, a

large d' would therefore mean that suboptimal values of 8 would result in

Tittle less EV than would be produced by g*. Similar conclusions can be

drawn for a large amount cf overlap, i.e., a small d'. If g* is near 1,
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the expression in the brackets of Eq. (21) will become small, since both
integrals will have nearly equal values. If the separation is not extreme and
if k* 1s shifted in the direction of the mean of either distribuiion by
changing prior probabilities or payoffs, one of the two integrals in Eq. (21)
will usually become very small, while the other increases. The relative
change in expected value, however, will be smaller than £(a - b). This
intuitive analysis permits the experimenter to visualize the effects of cost
and payoffs. Values of £ near 1/2 and quite large or quite small separations
of the conditional distributions tend to produce flat expected value and

relative expected loss functions. In Figure 6 the expected value is plotted

- e @ @ = = @ = e = w e e e

as a function of k and d'. Here we made the assumption that both conditional
distributions are normal. (see also Chinnis, 1971). The results are plotted
for the symmetric payoff matrix. Figure 7 shows the relative expected Toss
version of the same information. It highlights the fact that intermediate

values of d' produce most steconess. You can see that for all levels of d'

a difference of + 1 standard deviation between the optimal and the actual
decision criterion would result in a loss of only about 10% or less. The

equation relating 8, k, and d' is
Tn B =kd'. (22)

In other words changes in k are linearly related to changes in 1n 8, and

the larger the value of d' the larger is the change in In B8 associated with

a give!t change in k.
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Other decision functions, the so-called stopping rules, can
represent response sets whenvver stimuli from the same stimulus-generating
procedure are presented in sequence and the subject can decide after seeing
each stimulus (or perhaps less frequently) if he wants to make a response
or if the stimulus presentation should be continued, rerhaps at a cost.
Rapaport and Burkheimer (1970, 1971) showed that EV-functions are also
flat over stopping rules. DeGroot (1970) argues that costs and payoffs
for final responses have much less influence on stopping rules than the
cost of observations, if the latter cost is relatively small. The flatness
of the EV-function over stopping rules is important to studies of multiple
observations in signal detection theory, to studies of choice reaction

time, and to studies of information-purchasing decisions.
E. Expected value as a function of criterion variability.

So far we assumed that the subject's responses were generated by a systematic
procedure, such as the use of fixed cutoff points. How will the subject's
economic prospects change, if he varies his decision rule or decision function
randomly?

As an example, we assume that a subject varies hiz p criterion in
a simple decision task randomly according to some uniform distribution
between values Py and p°, both equally far from the optimal criterion p*.
We know from the previous discussion about expected value functions over

decision rules that

EV(P) = -1/2p2 U+ p V + 1/2 W (see equation 5)

aaidilrle
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Since p has a uniform distribution, we can infer the following

expectation:

it 0
E(EV(p)) = /P [ev(p) / (p° - p,)] dp (23)
pO

Figura 8 shows how this expectation varies as a function of pO for the

two payoff matrices used in Figure 3. Note that for the symetric

nayoff matrix (1), a subject will not Tose more than 12% of the maximal
EV, if he should choose a decision rule at random from the interval [0, 1]
at each trial. Of coursé this expectation will always be larger than the EV
of Po and p° and smaller than the EV of p*. Thus the flatness of the
expected value function as a function of p deterinines the flatness of the
expectation considered here. Furthermore, the assumption of a uniform
distribution makes this expectation artificially small. In most situations,
we might expect the subjact to vary his response criterion according to éome
bell shaped function around a criterion p, which might even be the optimal
criterion p*. This in turn will increase the expectation substantially--
that 1s, it will make the EV of the random strategy even closer ta the

EV of the optimal strategy p*.

It is well known that criterion variability, within any signal
detection model, will result in lowered estimates of d° (or equivalent
quantities), but the magnitude of the effect is not so well known.
Unfortunately, the function that relates criterion variability to decrease
ind' is not at all flat; it is virtually Tinear over interesting parts

of its range.
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Table III is based on our standard symmetric payoff matiix, and

assumes two normal distributions differing only in mean. It shows the

effect of various amounts of criterion variabi1lity at various levels of
true d', along with the economic censequences, in EV and REL, of this kind
of suboptimal behavior. It matters very 1ittle what the form of the
criterion vzriation function is, so long as its mean is at k* and its
standard deviation is the one listed in the table. The computations in
Table III assumed normally distributed variations in k; very similar
computations would apply for other reasonable assumptions. Criterion
variability sufficient to produce a 30% reduction in d' will cost the
subject only .05, 08, and .08 of a cent, fer a one-cent difference

between the value of right and of being wrong; these numbers all correspond

to RELs of less than 10%. If it costs so 1ittle to let his criterion vary

by one standard deviation or more, why should a subject bother to hold 1t
constant? Nor will he lose much sleep over the plight of the poor

experimenter, who thinks d' is 1.4 when it is actually 2.0.




IIT. Consequences for research, in perception and elsewhere o

We have spent many pages discussing flat maxima by means of

examples but we never answered the obvious question: How flat is €lat?

We might choose some criterion of flatness--and indeed our examiles

suggest candidates. But without behavioral evidence of the effects of

flatness and of ste:pness, any such choice would be arbitrary. We miaht

instead define flatness by means of its behavioral results, and let the

experimental literature tell us how flat iy flat. Bui the iiterature o
is silent; the obvious experimeats haven't been done. So we choose to

leave the definition of flatness to your intuition--and, we hope, to the

data that our sad stery leads you to collect.

We are both decision theorists, and much of the preceding discussion
shows the feebleness of decision theory. A natural conclusion for us is to
order two steins of hemlock. While we sip, we can amuse ourselves by
observing the asymmetry between those who wish to use decision theory and
those who worry about the fact that they and others aren't using it. Those
who wish to use decision theory, whether as a basis for experimental design
or as a practical tool in real contexts, should be seriously disconcerted
by our whole line of reasoning, since our fundamental conclusion is that
decision-theoretical niceties, such as eliciting exactly appropriate values
of probability or payoff, are unimportant. An escape from this conclusion
may be that EV, rather than REL, is what really counts, and a 1% decrease

of EV in a $109 decision is still a $107 loss. That thought helps consultants

more than it does experimenters.
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Those who worry about the obviously non-optimal behavior of decision-
makers, and wonder how the world manages to hoid together in spite of human
inefficiency, should look at the previous pages with quite different eyes.
Our argument is readily interpretable c¢s a theory about the answer to that
question--and a persuasive one. The world holds together and functions as
well as it does because major stupidities, inefficiences, selfishnesses,
and the like on the part of decision-makers produce only minor losses in
EV. The physical facts of 1ife are typically far more important than the
subtleties of human decision-making in controlling the EV of an action, for
two intertwined reasons. First, the outcome of any significant decision
depends on Nature (or chance, or the opponent, or whatever) as well as on
the act chosen. A good decision can lead to a bad outcome, and often does.
Second, the flatness of EV functions means that the best decision may be
hard to discover.

Moreover, since wide variations in decision lead to similar EVs,
men are encouraged to attribute success to their own insight in varying
their decisions, rather than to chance. (On this state of mind rests the
state of Nevada.) We attribute success, in ourselves or in others, to good
management rather than to good luck--and then wonder what is wrong when our
luck changes.

The entire preceding discussion should be immensely reassuring to
those who worry about the fate of man and the vagaries o politics. But it
does not speak to the problems of the researcher on perception who, having
been offered and having acrerted decision theory as a major researi.h tool,

now finds out thet it is a feeble one.
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Our comfort for him, if not cold, is no better thar Tuke-warm. We

do not believe he has any alternative to decision-theoretical experimental

designs. Validation by cupidity, though less precise than you and we

might Tike, is the only inte]]ectua]]y acceptable form of validation we

know of. And validation by gentlemen'; agreement, its only serious

competitor, is no validation at all. (Except, perhaps, for in-groups of

ag-eeing gentlemen.) And validation by convergent cperations is simply a
more complicated and elaborate form of validation by gentlemen's agreement,

unless those converging operations give some good reason, other than

cooperativeness and good-followship, for subjects to search their souls

and repor¢ their trye opinions.

But we do believe that perceptual experiments built ori decision-

theoretical ideas can be improved. Indeed, we have in this paper presented

the toois we regard as most useful for making such improvements. The

experimenter should know how effective his payoff arrangements can be,
he

and
should pay at least as much attention to improving them as to improving

his stimu]us-generating apparatus.

A. What to do: increasing the effectiveness of costs and payoffs

Experiments that use costs and payoffs are gambling experiments;
the key to improving them is manipulation of theijr gambling characteristics.

The experimenter wil] typically know exactly what his costs and payoffs aie;

he is Tikely to know somewhat Tess about the prior probabilities affecting

subjects' choices, and considerably less about posterior probabilities. Byt
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he at least knows a lot about the variables, such as stimulus parameters,
that affect posterior probabilities.

The graph of the EV function over measures representing responses
or response sets characterizes the effectiveness of a payoff function, other
experimental parameters held constant. The experimenter wants to make that
graph as steep around its maximum as he can manage.

The most obvious and mos* successful way of doing this is simply to
increase the absolute values of both costs and payoffs. This leaves REL
unaffected, but strongly affects EV--and no one pays off in RELs. The main
problem in doing so is that large costs and payo fs introduce money-management
problems into the experiment. However, such problems can at least be
paliiated; often, they can be solved. For an example of how far one can go
with college student subjects, see Swensson and Edwards (1971) and Swensson
(1968). The latter experiment used costs and payoffs up to $10 for a single
response.

In money management of gambling experiments, one principle outweighs
all others: Cheat! Adjusting EV to come out right is no problem, no matter
how large the stakes. But increasing stakes increases the variance of total
earnings, and that is the problem. An experimenter who is a careful cheater
will arrange his experimental conditions so that most subjects win less than
they should--and will add further stimuli at the end of the experiment designed
to bring them up to the desired pay rate. In perceptual experiments, this is
especially easy, since manipulations that make the subject right nearly 100%

of the time are ridiculously easy to perform and hard to detect. Inflexibla
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*iiles about the minimum rate of pay for each subject will help get such i ]

research strategies past Human Subject Committees.

If the experimenter is concerned about steepening the REL as well
as the EV function, he faces a more difficult problem. Equation 14 helps--
a little.

Variation in the physical values of stimulus will produce variation

in posterior probabilities; to some extent this helps control the distribution {

of over trials, and that in turn enters into the sharpness or flatness of e

the REL function. Translated out of the mathematics, this says that the
experimenter can steepen the REL function considerably by mixing up his
stimuli. Uniformly hard-to-discriminate stimuli (in a discrimination
experiment) wiil Tead to a peaked function and so to a flatter REL
function. Whether this prescription for peaking up the REL function
conflicts with the experimenter's wish to get as much information as
possible from each trial of his experiment will depend on the experiment.
Often, the conflict will exist and a compromise will be called for. As
has already been pointed out, skewed payoff matrices are a poor idea
unless they are balanced by prior distributions skewed the uther way.
Extreme priors make the EV function more skewed, but probably cost too
much in reducing the informational content of the experiment.

In signal detection experiments of the yes-no type, how does d'

relate to EV? Figure 6 shows that different values of d' will result in
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differences in the maximum attainable EV, and therefore in the flatness
of the EV function over values of k or B. For symmetric situations, and
assuming normal distributions, a d' between 2 and 3 is best.

Variability in cutoffs flattens the EV function. Any procedure that
steepens the EV function will of course steepen the function resulting from
a specified cutoff variability. In addition, cutoff variability may be
influenceable by instructions, and will certainly be a function of EV
variance; the more EV a subject stands to lose by varying the cutoff,
the less 1likelyv he is to do so.

Not much can be done for probability estimates or for sequential-
sampling experiments, other than raising the stakes.

Our crucial point here is that the experimenter should look at the
appropriate function relating EV or REL to both optimal and other behavior,
and use that function as a tool of experimental design. He can also use it
as a tool of data interpretation if he is willing tc make some fairly
plausible and straightforward assumptions about what the subject has done
in the face of the experimental conditions.

An important way in which an experimenter can improve his experiments
is to measure the extent to which the payoffs he intends to use in fact iead
to optimal or near-optimal behavior'. For instance, in a signal detection
experiment he can use known stimuli, such as numbers sampled from one of
two normal distributions, in preiiminary calibration sessions, along

with the payoff structure intended tuvi the main experiment. This procedure
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would at least give the experimenter some idea of how much criterion
variability and suboptimai respondiny to expect. It might also suggest
modifications of the payoff structure.

In experimerts in which trial-to-trial fluctuations of stimuli
can be physically measured (e. g. by means of a microphone in or near
the zar), they should be. Such measurements cin suggest inferences about
the nature of the effective stimulus on this trial, and thus inferences

about whet the subject is actually doing.
B. What to do: interpreting experiments

Typical payoffs in perceptual experiments have been a few cents, or
even fractions of cents or points. This does meke management easier--but
we hope that by now you are chewing your fingernails about the flatness of
the maxima that result.

If “he subject's economic pr9spects are essentially unaffected by
what ne does, what wiil he do? He might behave randomly, especially if he
doesn't know he is doing so. Often, other facts about the experiment imply
non-tonetary payoffs, and the subject is Tikely to pay most attention to these.
He 1ikes to be right, so he may not respond weil to asymmetric payoffs. He
may minimize effort, perhaps by as extreme a procedure as ignorning the stimulus
or perhaps by hunting for some simple strategy. He may 1ook for hidden meanings
in the experiment, and so develop self-instructions ard idiosyncratic response
strategies. (The famous probability matching phenomenon in repetitive-binary-

choics experiments, to the extent that it occurs at all, seems to be a result
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of this kind of self-instruction to vary responses.) Or he may just be
bored.

We wish we could cite a string of experiments all showing the effects
of flat maxima. We can't. The difficulty is that mest perceptual (and
other) experiments are not designed to disentangle such decision variables
from the perceptual variables being studied. The preceding section contained
some comments about how to avoid this confounding, but the existing 1iterature
contains few instances of successful avoidance.

The effect of flat maxima may be to produce random errors, systematic
errors, or both. Several signai detection, recognition, and discriminatic~
tasks show that subjects adopt response stracegies that 1ie between optimal
and error minimizing strategies. In signal detection expzriments, Green
(1960), and Swets, Tanner, and Birdsall (1961) found that subjects tended
to deviate from optimal cutoffs in the direction of making both responses
more nearly equally often. Green concluded that "The way in which the
expected value changes for various criterion levels is the crux of the
problem;" that is, that he had flat-maximum trouble. Others have proposed
that subjects regard such tasks as being sensorily oriented, or that subjects
do not in fact maximize EV. These hypotheses cannot be studied without
larger payoffs and steeper EV functions. Uhlela (1966) also reported

nonoptimal decision criteria in an experiment requiring recognition of

tilted Tines. Again, the subjects tended toward an error minimizing strategy.
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Sim*lar findings have been reported for other tasks by Uhlela and Schmaltz
(1966) and by Lieblich and Lisblich (1969a, 1969b).

Virtually all of these experiments combine skewed payoff matrices
with quite difficult discriminations. This produces a probability distribu-
tion over £ that is peaked at .5. Skewed payoff matrices produce optimal
decision rules such that p* is well away from .5. As arguments above show,
such procedures Tead to very flat maxima in the region of p*. This point
implies an explanation of Uhlela and Schmaltz's (1966) findings that
presentation rates (priors) had a larger effect on decision criteria than
did costs and payoffs. Changing costs and payoffs only controls the
location of p*. But changing the prior both changes the location of the
criterion (if it is defined in 1ikelihood ratio or related ways) and changes
the flatress of EV over other criteria in the region of p*.

Criterion variability is very important to the interpretation of
signal detection experiments. The formal arguments summarized in Table III
suggested that abundant amounts of it should be present in typical
experiments. Hammerton (1970), using a simulzted signal detection task in
which subjects made inferences about parameters of normal distributions, showed
that they did not adopt stable criteria. Galanter and Holman (1967) «l1so
reported that subjects used decision strategies inconsistently when faced
with different payoff matrices. Where they have been studied, the implications
of Table IIl seem to be experimentally confirmed. We conclude that most
values of d' reported in the literature are substantially depressed--
sufficiently so that reported values of d' in most experiments should be

regarded only as lenient lower bounds on true values.
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Can this distressing picture be alleviated by increasing costs fr

and payoffs? Some data report invariance of d' for different payoff-

structures and levels of motivation (for a summary see Green and Swets,
; 1966; for specific studies, see Swets and Sewall, 1967, and Lukaszewski and
! B E1liott, 1962). On the other hand Watson and Clopton (1969) and Caifee (1970)
:J ] found noticeable eifects of costs and payoffs on the detection rate and on d'
respectively.

No experiments have studied the effect of changes in costs and
payoffs on the effects of proper sctring rules for probability estimation,

L so far. The scoring rule maxima are so flat that we are very pessimistic--

yet the studies need to be done. In their absence, there seems to be little

point in using proper scoring rules to improve probability estimates--except
in the sense that the scoring rules are really instructions about the meaning

of probability estimates, and so may have merits not dependent on their

property of rewarding most the man who makes the most truthful estimate.
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Figure Captions

Fig. 1. Maximal EV as a function of the actual preobability for
a quadratic proper scoring rule.

Fig. 2. EV as a function of probability for two actions.

Fig. 3. EV as a function of the cutoff probability for two different
payoff matrices.

Fig. 4. REL as a function of the cutoff probability for two different
payoff matrices.

Fig. 5. Hypothetical conditional probability distributions of the random
observation variabie Y.

Fig. 6. EV as a function of the decision criterion for a symmetric payoff

matrix and for ditferent values of d'.
Fig. 7. REL as a function of the decision criterion for a symmetric

payoff matrix and for different values of d'.

Fig. 8. EV as a function of the upper bound of a probability distribution

over the decision rule.
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