AD-770 444

THE SOLID-PHASE DECOMPOSITION OF POTASSIUM AND SOLIUM CHLORATES AND PERCHLORATES IN THE PRESENCE OF MANGANESE DIOXIDE

B. I. Khorunzhii, et al

Foreign Technology Division Wright-Patterson Air Force Base, Ohio

8 November 1973

DISTRIBUTED BY:

RITS

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Jnclassified	٨	D- 17A HILL	
Security Classification DOCUMENT COP	HTROL DATA - R & D	V = 110 PP	
(Security classification of tille, body of abetract and indexing annotation must be ORIGINATING ACTIVITY (Corporate author) Foreign Technology Division Air Force Systems Command J. S. Air Force		entered when the overall report is classified) 20. REPORT SECURITY CLASSIFICATION Unclassified 26. GROUP	
THE SOLID-PHASE DECOMPOSITION OF PERCHLORATES IN THE PRESENCE OF M	POTASSIUM AND SO NANGANESE DIOXIDE	DIUM CHLORATES AND	
DESCRIPTIVE NOTES (Type of report and inclusive dates) Translation			
B. I. Khorunzhiy, K. G. Il'in			
REPORT DATE	74. TOTAL NO. OF PAGES	75. NO. OF REFS 7	
а. CONTRACT OR GRANT NO. b. PROJECT NO. P3059, P3148	FTD-HT-23-463-74		
¢.	95. OTHER REPORT NO(5) (Any other numbers that may be seeign. 1 This report)		
d. 0. DISTRIBUTION STATEMENT			
Approved for pu distribution un	ublic release; nlimited.		
1. SUPPLEMENTARY NOVES	Foreign Tech Wright-Patte	n Technology Division -Patterson AFB, Ohio	
07			
Reproduce NATIC INFOR USD	d by DNAL TECHNICAL MATION SERVICE experiment of Commerce		
S	pringfield VA 22151		

FTD-HT-23-463-74 FOREIGN TECHNOLOGY DIVISION AD 770444 THE SOLID-PHASE DECOMPOSITION OF POTASSIUM AND SODIUM CHLORATES AND PERCHLORATES IN THE PRESENCE OF MANGANESE DIOXIDE by B. I. Khorunzhiy, K. G. Íl'in 1973 Approved for public release; distribution unlimited.

FTD-HT- 23-463-74

EDITED TRANSLATION

FTD-HT-23-463-74

8 November 1973

CSP73133544

THE SOLID-PHASE DECOMPOSITION OF POTASSIUM AND SODIUM CHLORATES AND PERCHLORATES IN THE PRESENCE OF MANGANESE DIOXIDE

By: B. I. Khorunzhiy, K. G. Il'in

English pages: 3

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy, Khimiya i Khimicheskaya Tekhnologiya, Vol. 15, Nr. 12, 1972, pp. 1886-1888

A

Country of Origin: USSR

Translated by: John A. Miller

Requester: AFRPL/MKP/R. L. Geisler

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-HT-. 23-463-74

Date 8 Nov 19 73

THE SOLID-PHASE DECOMPOSITION OF POTASSIUM AND SODIUM CHLORATES AND PERCHLORATES IN THE PRESENCE OF MANGANESE DIOXIDE

B. I. Khorunzhiy and K. G. Il'in(Novocherkassk Polytechnic Institute im. Sergo Ordzhonikidze)

The solid-phase decomposition of KClO₃ and KClO₄ in the presence of oxide catalysts has been studied in [1-3]; however, the tests were run at comparatively high temperatures, as a result of which the picture was complicated by the phenomenon of noncatalytic dissociation or the presence of the liquid phase. Both of these hindered ubsequent kinetic analysis of the experimental data and their unambiguous interpretation.

In this report we give the results of a study of the catalytic decomposition of potassium and sodium chlorates and perchlorates at low temperatures, when there is practically no dissociation in the absence of a catalyst. In the tests we used the fraction of salt crystals 0.14-0.20 mm in diameter mixed with MnO₂ (~1%). The degree of decomposition of the weighed sample (~300 mg) was recorded using an ADV-200 balance.

The experimental data are satisfactorily described by the topokinetic equation $\alpha = 1 - \exp(-kt^n)$, where α is the precentage of decomposed substance; t is the time; n and k are constants [4-6]. In the majority of cases this equation encompasses the entire kinetic

FTD-HT-23-463-74

1

curve (no break in the anamorphosis), and only in one experiment with KClO₃ did parameter n have the value of 1 (in the initial stage) and then 0.5 (in the remaining stage). In the case of NaClO₃, variation of n as a function of temperature is characteristic (see the table).

etern						
Substance	Tempera- ture, °C		α	n		
KC10.	425, 445,	435 465	0.68-0.85	0.66		
NaC10.	350, 380	370	0.7 -0.81	0.63		
NaClO;	240 245 255		0.74 0.85 0.90	0.66 0.72 1.05		
KC10,	315, 320	0.68-0.85	0.50			
335 335	550	0.20 from 0.30 to 0.90	1.00 0.50			

Calculated values of kinetic param-

Judging from the value of n (0.5 < n < 1), predominant decomposition of the salts occurs in the diffusion region, and the difference (1 - n) characterizes the measure of immersion of the process into this region [5]. The initial stage of decomposition of KClO₃ at 335°C is an exception; here the general rate of the process is determined by the strictly chemical kinetics at the phase interface. As measurements of the electrical conductivity of a mixture of KClO₃-MnO₂ showed, this was caused by the temporary appearance of the liquid phase — the eutectic. An analogous phenomeron was detected in experiments with NaClO₃, where the percentage of the liquid phase decreases with a drop in temperature.

Comparing the volumes of reacting substance and the product, we can estimate the nature of the diffusion resistance of the latter [7]. As follows from such calculations, with decomposition of both chlorates and perchlorates the volume of the forming chlorides is less than that of the initial substances, which predetermines the presence of macropores in the product layer, thus facilitating the feeding and removal of the corresponding components. However, when

FTD-HT-23-463-74

2

KClO3 decomposes this layer is denser than in the case of KClO4 and, consequently, here we should expect greater immersion of the process into the diffusion region. The values of n completely agree with this:

$$(1 - n_{\text{KC10}_3}) > (1 - n_{\text{KC10}_4}).$$

The diffusion resistance can be variable (for NaClO3 as well), and then the kinetic parameter also changes.

CONCLUSION

Comparing the reaction capability of solid substances under conditions of volumetric diffusion [7] and with decomposition of the investigated salts KClO3 and KClO4 (two orders higher), in the second case we should assume that an essential role is played by surface diffusion and diffusion along the boundaries of the crystallites.

REFERENCES

.

- I. F. Solymosi, N. Krix, Acta chim. Acal. scient. hung., 34, 3 (1962).
- F. Soryanosi, A. Китк, Avia спан амай зонай найу, от. 5 стобл.
 И. Л. Корлиунов, А. В. Савинкий, Тр. по химан и хим, технологии и.-и. ин-та химии Горькенска ун-та. 3, 507 (1950).
 Sukencri Таналюто, Теткиго Акаba, J. Ind. Explosives Soc. Japan, 13, 200
- 235 (1952); Chem. Abs. 18, 49, 6761 (1955)
- 4. П. И. Белькевич, Б. В. Ерефеев. Веста. АН ЕССР. От фил-техи. маук, 4. 127 (1952).
- Б. А. Продан, М. М. Павлюченко. В сб. «Гетерогсиные хамические реакции». Изд. «Пахка и техника», Минск, 1955, ст. С.)
 Б. Д. Янт. Кинсти, а разложения твердых волоста. Изд. «Мирт. М., 1969.
 П. П. Булинков, А. М. Гинстланг. Реакции в смеру твердых веществ. Составля М. 1055.
- Стройналат, М., 1965.

Department of the Technology of Inorganic Substances

Received 9 July 1971

3