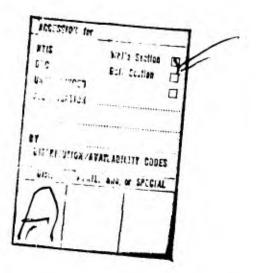

AD-770 378

THERMAL BALANCE OF MEN UNDER ATROPINE THERAPY WEARING CHEMICAL PROTECTIVE CLOTHING

F. N. Craig, et al


Edgewood Arsenal Aberdeen Proving Ground, Maryland

October 1973

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
I. REPORT NUMBER 2. JOVT ACCESSION	BEFORE COMPLETING FORM
EB-TR-73011	
A. TITLE (and Subtilio)	S. TYPE OF REPORT & PERIOD COVER
THERMAL BALANCE OF MEN UNDER ATROPINE	Technical Report
THERAPY WEARING CHEMICAL PROTECTIVE	September 1971 to January 1973
CLOTHING	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	EATR 4757 CONTRACT OR GRANT NUMBER(*)
F. N. Craig and E. G. Cummings	ON CONTRACT ON GRANT NUMBER(a)
PERFORMING ORGANIZATION NAME AND ADDRESS Commander, Edgewood Arsenal	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Attn: SAREA-BL-R	AREA & WORK ONT NUMBERS
Aberdeen Proving Ground, Maryland 21010	Project 1W662710AD2501
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Commander, Edgewood Arsenal	October 1973
Attn: SAREA-TS-R	11 NUMBER OF RACES
Aberdeen Proving Ground, Maryland 21010 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	38
WONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
DISTRIBUTION STATEMENT (of this Report)	15. DECLASSIFICATION/DOWNGRADING SCHEDULE NA
Approved for public release: distribution unlimited.	٩
	. 1
	tan Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fi	'a 'oan Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fi Reproduced by NATIONAL TECHNICA	۰L
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different for Reproduced by NATIONAL TECHNICA INFORMATION SERVIC	۰L
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fr Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfeid VA 22151	۰L
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springfield VA 22151	L CE
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springf and VA 22151 Inter report number EATR 4757 Iedical Defense Against Chemical Agents, Biomedical Evaluatio	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springfield VA 22151 ther report number EATR 4757 fedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse eide II necessery and identify by block number	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 Went of the obstract entered in Block 20, if different in NATIONAL TECHNICA US Department of Commerce Springfield VA 22151 Went of the obstract entered in Block 20, if different in NATIONAL TECHNICA US Department of Commerce Springfield VA 22151 Went of the obstract entered in Block 20, if different in NATIONAL TECHNICA US Department of Commerce Springfield VA 22151 Went of the obstract entered in Block 20, if different in US Department of Commerce Springfield VA 22151 Heat production	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 Inter report number EATR 4757 Indical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate 17A1 protective mask Body temperature	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springf and VA 22151 Tedical Defense Against Chemical Agents, Biomedical Evaluation KEY WORDS (Continue on reverse eide If necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature rotective clothing Sweat production	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 Tedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature solution Treadmill walking	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 When report number EATR 4757 Tedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature solution Treadmill walking eat storage	L CE n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springf and VA 22151 Patter report number EATR 4757 Tedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature rotective clothing Sweat production Treadmill walking eat storage ABSTRACT (Continue on reverse elde II necessary and identify by block number)	n of Protective Materiel
SUPPLEMENTARY NOTES NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Spring field VA 22151 Other report number EATR 4757 Somedical Evaluation Redical Defense Against Chemical Agents, Biomedical Evaluation KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate Heat production 117A1 protective mask rotective clothing Body temperature Sweat production waporative cooling Treadmill walking eat storage ABSTRACT (Continue on reverse elde II necessary and identify by block number) In warm environments the use of atronine in the	n of Protective Materiel
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commence Springfield VA 22151 Other report number EATR 4757 Tedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number, tropine sulfate 17A1 protective mask rotective clothing Vaporative cooling eat storage ABSTRACT (Continue on reverse elde II necessary and identify by block number) In warm environments the use of atropine in th nticholinesterase agents presents a possible hazard because the	e treatment of casualties from
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 When report number EATR 4757 Tedical Defense Against Chemical Agents, Biomedical Evaluation KEY WORDS (Continue on reverse elde if necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature social Storage AUSTRACT (Continue on reverse elde if necessary and identify by block number) In warm environments the use of atropine in the nticholinesterase agents presents a possible hazard because the hay lead to a dangerous rise in body temperature. Recently it tropine sulfate the effects of a deficit in sweating could be	e treatment of casualties from inhibition of sweating by atropine was shown that after a 2-mg dose of
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC U S Department of Commerce Springfield VA 22151 Defense Against Chemical Agents, Biomedical Evaluation KEY WORDS (Continue on reverse elde II necessary and identify by block number tropine sulfate 17A1 protective mask rotective clothing Vaporative cooling eat storage ABSTRACT (Continue on reverse elde II necessary and identify by block number) In warm environments the use of atropine in th nticholinesterase agents presents a possible hazard because the hay lead to a dangerous rise in body temperature. Recently it tropine sulfate the effects of a deficit in sweating could bo tothing. One objective was to test this concent when the doce	e treatment of casualties from inhibition of sweating by atropine was shown that after a 2-mg dose of e avoided by artificial wetting the
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 Idedical Defense Against Chemical Agents, Biomedical Evaluatio KEY WORDS (Continue on reverse elde II necessary and identify by block number tropine sulfate Heat production 17A1 protective mask Body temperature rotective clothing Sweat production Treadmill walking eat storage ABSTRACT (Continue on reverse elde II necessary and identify by block number) In warm environments the use of atropine in the nticholinesterase agents presents a possible hazard because the hay lead to a dangerous rise in body temperature. Recently it tropine sulfate the effects of a deficit in sweating could bo othing. One objective was to test this concent when the doce	e treatment of casualties from inhibition of sweating by atropine was shown that after a 2-mg dose of e avoided by artificial wetting the
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Reproduced by NATIONAL TECHNICA INFORMATION SERVIC US Department of Commerce Springfield VA 22151 When report number EATR 4757 Tedical Defense Against Chemical Agents, Biomedical Evaluation KEY WORDS (Continue on reverse elde if necessary and identify by block number, tropine sulfate Heat production 17A1 protective mask Body temperature social Storage AUSTRACT (Continue on reverse elde if necessary and identify by block number) In warm environments the use of atropine in the nticholinesterase agents presents a possible hazard because the hay lead to a dangerous rise in body temperature. Recently it tropine sulfate the effects of a deficit in sweating could be	e treatment of casualties from inhibition of sweating by atropine was shown that after a 2-mg dose of e avoided by artificial wetting the was increased to 6 mg. At this dose

.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCI ASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Enter

initially dry the body temperature rose at an unsafe rate. A second objective was to evaluate the efficiency of evaporative cooling from wet clothing as a fraction of the evaporative cooling required to balance the heat equation. The conclusions were as follows: The elevation of body temperature in men wearing the two-layer chemical protective assembly in consequence of the inhibition of sweating by atropine given for treatment of the effects of anticholinesterase agents can be prevented by artificial wetting of the clothing. The efficiency of evaporative cooling of clothed men decreases as the water content of the clothing increases. For clothing containing water amounting to 50 percent of the dry weight of the clothing, the efficiency is reduced by about one-half. However from the physiological standpoint, wetting the clothing does increase the effective cooling of the body and there is a corresponding decrease in heat storage.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SUMMARY

In warm environments the use of atropine in the treatment of casualties from anticholinesterase agents presents a possible hazard because the inhibition of sweating by atropine may lead to a dangerous rise in body temperature. Recently it was shown that after a 2-mg dose of atropine sulfate the effects of a deficit in sweating could be avoided by artificial wetting of the clothing. One object was to test this concept when the dose was increased to 6 mg. At this dose and an indoor temperature of 41°C, an initial wetting of the clothing with a liter of water was sufficient to prevent an undue rise in body temperature for 3 hours whereas when the clothing was initially dry the body temperature rose at an unsafe rate. A second object was to evaluate the efficiency of evaporative cooling from wet clothing as a fraction of the evaporative cooling required to balance the heat equation. The conclusions were as follows:

The elevation of body temperature in men wearing the two-layer chemical protective assembly in consequence of the inhibition of sweating by atropine given for treatment of the effects of anticholinesterase agents can be prevented by artificial wetting of the clothing.

The efficiency of evaporative cooling of clothed men decreases as the water content of the clothing increases. For clothing containing water amounting to 50 percent of the dry weight of the clothing, the efficiency is reduced by about one-half. However from the physiological standpoint, wetting the clothing does increase the effective cooling of the body and there is a corresponding decrease in heat storage.

PREFACE

The work described in this report was authorized under Project No. 1W662710AD2501, Medical Defense Against Chemical Agents, Biomedical Evaluation of Protective Materiel. The data were collected in September 1971 and in May, June, November, and December 1972 and in January of 1973.

The volunteers in these tests are enlisted US Army personnel. These tests are governed by the principles, policies, and rules for medical volunteers as established in AR 70-25 and the declaration of Helsinki.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, Edgewood Arsenal, Attn: SAREA-TS-R, Aberdeen Proving Ground, Maryland 21010; however, DDC and the National Technical Information Service are authorized to reproduce the document for US Government purposes.

Acknowledgments

The authors are indebted to the volunteers and to Mr. J. T. Moffitt for their cooperation as subjects, to the Clinical Research Section for medical care of the volunteers, and to Messrs. W. V. Blevins, C. R. Bulette, and J. T. Moffitt for assistance.

CONTENTS

Page

I.	INTRODUCTION		•		•					•	•	•	•	•		•	•	•	•	•	•	•	•	7
II.	CALCULATIONS		•		•	•	•	•	•	•		•	•	•		•	•		•		•	•	•	7
III.	METHODS		•	• •			•	•	•	•	•	•		•	•	•		•		•		•		9
IV.	RESULTS		•	• •				•	•	•	•	•	•	•	•		•	•		٠		•	•	14
	A. Series A .			•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•		14
	B. Series B	•••	•	•		•	•	•	•	•	•	•	•		•		•		•	•	•		•	18
	C. Series C		•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		18
V.	DISCUSSION	• •	•	•		•	•	•	•	•		•	•	•	•		•		٠	•	•	•		24
VI.	CONCLUSIONS .			•				•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•		31
	LITERATURE CIT	ED	•	•			•	•	•			•	•	•	•		•	•		•	•	•		33
	DISTRIBUTION L	ST	•	•					•	•		•	•	•	•		•			•	•		•	35

LIST OF TABLES

Table		
I	Subjects	10
11	Clothing Assemblies	11
111	Series A	12
IV	Series B	15
v	Series C	16
VI	Arm Sweat, Series A	19

LIST OF FIGURES

Figure		Page
1	Series A. Rectal and Average Skin Temperature in Men at Rest Wearing Assembly I at 41°C.	17
2	Series B. Rectal and Average Skin Temperatures During Walking at 10-Percent Grade and 20°C in Assembly I	21
3	Series C. Rectal and Mean Skin Temperatures of Cr Walking on Level Treadmill at 41°C for Indicated Suit Conditions	22
4	Series C. Rectal and Mean Skin Temperatures of Mo Walking on Level Treadmill in Assembly III at the Indicated Suit Conditions	23
5	Series C. Energy Exchange in Watts/Sq M of Cr for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit	25
6	Series C. Weight Changes in Grams in Cr for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit	26
7	Series C. Energy Exchange in Watts/Sq M of Mo for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit	27
8	Series C. Weight Changes in Grams in Mo for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit	28
	Series C. Evaporative Cooling Calculated from the Energy Exchange for the Man as a Fraction of the Total Heat of Evaporation of Water Calculated from the Clothed Weight Loss for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit	29

THERMAL BALANCE OF MEN UNDER ATROPINE THERAPY WEARING CHEMICAL PROTECTIVE CLOTHING

I. INTRODUCTION.

In the treatment of anticholinesterase poisoning by means of atropine the amount of atropine injected should vary with the severity of the poisoning. An excess of atropine will produce its typical effects including, if the environment is warm, the inhibition of thermal sweating with its attendant rise in body temperature. If CBR protective clothing is being worn, the insulation of the clothing will also favor a rise in body temperature. The combined effects of an injection of 2 mg of atropine and the wearing of protective clothing, on normal volunteers exposed to several warm environments, have recently been described.¹ In an environment dry enough to prevent accumulation of sweat in the clothing, the deficit in evaporative heat loss associated with the atropine was matched by the increment in storage of heat in the body. However, when the clothing was wetted, either artificially or by the accumulation of sweat in a more humid environment, the increment in heat storage associated with the inhibition of sweating by atropine was less. That is, water from the wet clothing compensated in part for the deficit in sweat. In combat a soldier could receive as much as 6 mg of atropine without having been exposed to any anticholinesterase before medical help arrived if signs or symptoms were misinterpreted. In order to examine this situation the experiments were resumed. Doses of 2 and 6 mg were employed.

In addition an effort was made to evaluate the efficiency of evaporative cooling from wet clothing. Theoretical considerations suggest that the thermal insulation of the clothing would reduce the impact of the evaporative cooling on the heat balance of the man. It would be expected that the cooling effect of the evaporation of a given quantity of water would be less if the evaporation took place in the outer layer of the wet clothing rather than directly on the skin under dry clothing. Although wetting the clothing could increase the amount of water evaporated and also the effective cooling of the body, the increase in effective cooling would be less than the increase in total evaporation. In order to evaluate these terms, it is necessary to calculate the requirement for evaporative cooling from other terms in the heat equation and to relate this to the observed evaporation. Also the wetness of the clothing must be defined.

II. CALCULATIONS.

The heat balance may be written

$$E = M - W + R + C - S,$$

where

M = heat produced in metabolism

W = heat lost in external work (treadmill tilted upward)

- R = heat gained from the environment by radiation
- C = heat gained from the environment by convection
- S = heat stored in the body
- E = heat lost from the body by evaporation. This is distinguished from E', the heat of evaporation of water from the clothed body.

Thus the efficiency of evaporative cooling is defined as the fraction E/E'.

The quantities in the heat balance equation were evaluated as follows in watts (watts = $1.163 \times \text{Calories per hour}$) per square meter of body surface area, A, estimated from the height and weight.

- M = mt [2.7 + 3.2 (V-0.7)^{1.65} + G (0.23 + 0.29 (V-0.7))]/A, in watts per man. This is equation (4) of Givoni and Goldman² where mt is the total mass in kg of the clothed man plus any load carried, V is the speed of walking in m/sec and G is the treadmill grade in percent.
- W = 0.098 mt × V × G/A, in watts per man. This is equation (2) of Givoni and Goldman.²
- R+C = (11.6/Clo) (Ta Ts)/1.8, in watts/m². This is equation (5) of Givoni and Goldman² where Clo is the thermal insulation, Ta is ambient temperature and Ts is mean skin temperature.

We have used the observed skin temperature averaged over time during the exposure instead of the standard figure of 36 used by Givoni and Goldman. Also the equation was developed for the quartermaster's standard man with surface area of 1.8 sq m so that this divisor is used instead of the surface area of the individual employed above to reduce M and W to the terms of our heat balance equation.

Clo is calculated from equations of Givoni and Goldman²:

 $Clo = 1.50 Veff^{-0.20}$, for assembly I

- Clo = 0.99 Veff -0.25, for assemblies II and III
- Clo = 0.57 Veff $^{-0.30}$, for assembly IV

- Veff = Vair + 0.004 (M-105) in m/sec. This is equation (8) of Givoni and Goldman² where Vair is the windspeed, and M is in watts per man.
 - $S = \frac{\Delta Tb \times m \times 0.83 \times 1.163}{t \times A}, \text{ watts/m}^2, \text{ where } \Delta Tb \text{ is the}$

change in mean body temperature (1/3 change in)unweighted mean skin temperature + 2/3 change in rectal temperature), m is the nude weight, t is the time in hours, and 0.83 is the specific heat of the body.

 $E' = \frac{\Delta \text{ mt} \times 0.58 \times 1.163}{\text{t} \times \text{A}}, \text{ watts/m}^2 \text{ where } \Delta \text{ mt is}$ the loss in clothed weight during the exposure period and 0.58 is the heat of evaporation of a gram of water.

From Δmt is subtracted the change in clothes weight in the blank assembly (5 minutes rest only) and the difference in weight between the oxygen inhaled and the carbon dioxide exhaled during the walk. The latter is 0.3 gm per liter of oxygen per hour at a respiratory exchange ratio of 0.88. The number of liters of oxygen is M in watts per man divided by 5.7, where $5.7 = 1.163 \times 4.9$, the number of calories per liter of oxygen at an R of $0.88.^3$ A further subtraction is made for water evaporated from the lungs by assuming the expired air to be 88^{-1} saturated at $33^{\circ}C^{4}$ and containing 0.031 grams per liter, and the ambient (inspired) air to contain 0.020 grams per liter at 41°C and 0.011 at 29°C. The ventilation rate is assumed to be 23 liters of air per liter of oxygen consumed⁵ as estimated above.

The wetness of the clothing is evaluated in terms of the average weight of the four pieces of fatigues and underwear during the exposure divided by the initial dry weight. The initial wet weight is corrected for the change in weight of the four pieces during the blank rest period. The average wet weight thus is the corrected initial weight plus the final weight divided by 2.

III. METHODS.

The subjects were enlisted men from the group of medical volunteers and two civilian experimenters (table I). The clothing assemblies are identified in table II. The various items of clothing were components of the standard protective assembly but the impregnation was omitted. The clothing was laundered in an automatic washing machine the day before each experiment and spun in the dryer at $64 \pm 5^{\circ}$ C for 75 minutes to maintain a uniform initial state of dryness. In one test the standard dry weight after heating to constant weight in an oven at 105° C (the standard condition for textile testing⁶) was 1109 gm for the fatigues and 662 gm for the long underwear. This was 16 gm less than the weights of the clothing after removal from the dryer of the washing machine. Thus the four-piece suit as generally used had a regain of 1.4 percent for the outer layer and 2.4 percent for the inner layer. The fatigues and underwear were weighed in the environmental chamber, and placed in plastic bags overnight to permit

where

distribution of water when added. The men were weighed nude, and again wearing only the electrode and thermocouple harness. The fatigues and underwear were then removed from the plastic bags, weighed and put on with the remaining components of the assembly. The men were weighed clothed before and after the exposure period. The men then undressed. The fatigues and underwear were weighed; the men were weighed again wearing only the harness, and finally nude. A Buffalo platform beam scale was used to weigh to the nearest gram with an accuracy estimated at \pm 10 gm. The man sat on a low-backed stool fastened to the platform to help minimize changes in body position. The four pieces of the suit were weighed on a Toledo scale indicating from 1 to 500 gm to the nearest gram.

Initial	Volunteer number	Age	Height	Weight	Surface area
Al	6450	33	175	74	1.88
Tu	6427	20	183	94	2.18
BI	6460	18	183	105	2.30
Ed	6441	27	180	54	1.68
An	6448	25	183	76	1.98
Ge	6458	19	167	71	1.80
Gi	6443	31	173	91	2.06
La	6445	21	166	65	1.72
Da	6457	27	187	79	2.05
Fy	6242	22	186	93	2.18
Ni	6266	19	173	77	1.90
Ca	6267	22	188	74	1.99
No	6239	19	177	74	1.89
Cr	DAC	61	172	57	1.66
Мо	DAC	46	166	85	1.92

ltem					Assen	nbly			
item	Approximate weight	I	II	III	IV	v	VI	VII	VIII
	gm								
Boots	1700	X	X	X	X	X	X	X	x
Socks	75	X	x	X	x	x	x	x	x
Undershirt*	430	X]					
Underdrawers*	450	Х							[
Jacket, sateen cotton	650	Х	x	x					x
Trousers, sateen cotton	640	Х	x	x					X
T-shirt, cotton	120		x	x					
Shorts, cotton	90		x	x	x	х			
Gloves, cotton	100	X	x	x					x
Mask and hood	1060	X	x			х		x	x
Harness	2165	X	x	x	x	x	x	x	x
					_				

Table II. Clothing Assemblies

* 1/2 cotton, 1/2 wool

The three electrodes on the front of the chest made possible the recording of the electrocardiogram (ECG) and the counting of the heart rate. Elastic straps supported thermocouples on the front and back of the chest, the hip and the thigh for recording skin temperature. Rectal temperature was recorded from a thermocouple at a depth of 7.5 cm. The thermocouples were recorded once a minute by a Leeds and Northrup Speedomax.

There were three series of experiments.

In series A (table III) the room temperature was 41°C dry bulb (DB) and 24°C wet bulb (WB), the wind speed 0.05 m/sec, and the men wore assembly I. During the exposure period the men reclined in supine position on plastic webbing on a folding chair for 3 hours, interrupted by clothed weighings at hourly intervals. Doses of 2 and 6 mg of atropine sulfate were given intramuscularly. The 6-mg dose was given in three injections of 2 mg at 10-minute intervals. Experiments with dry clothing were conducted in September 1971. In May and June 1972 an additional group of men received the 6-mg dose and wore initially wet suits (1000 gm of waver added).

In the experiments with dry suits in series A, a square capsule enclosed an area of 9 sq cm on the volar surface of the forearm. Dry gas $(98.5\% 0_2 + 1.5\% N_2)$ was passed into the capsule at rates of from 0.05 to 0.45 liters per minute. The relative humidity of the outflowing air was recorded by means of a series of lithium chloride sensors (hydrodynamics). The dryness of the compressed gas was tested by passing it over silica gel. Since the silica gel did not gain in weight, the water content was considered to be zero. The water content of the effluent gas thus

Table III. SERIES A Clothing Assembly I, Rest, Wind Speed, 0.05 m/sec, DB 41 °C, WB 24 °C

Attended yo Diversion off at the payment Diversion off a	Man	Date	Dose	Time of •	Time in	Mask	Weight of Before	Ŧ	Nude	Hour	Clothed	2		ŭ	L L	¹	ш
Mg Min Min Min Gan Gan Gan Gan Gan Matrix Matrix <th></th> <th></th> <th></th> <th>mjection</th> <th>assembly</th> <th>off at</th> <th>7 H</th> <th></th> <th>loss</th> <th></th> <th>weight loss</th> <th>5</th> <th></th> <th>n</th> <th>J)</th> <th>ц</th> <th>щ</th>				mjection	assembly	off at	7 H		loss		weight loss	5		n	J)	ц	щ
9.4 0 100 100 192 2260 101 11 38 11 1 6 6 7 7 8 11 1 6 6 7 7 13 <th></th> <th></th> <th>Mg</th> <th>Min</th> <th>Min</th> <th>Min</th> <th></th> <th></th> <th>ŝ</th> <th></th> <th>Ē</th> <th></th> <th></th> <th>watts/sq</th> <th>E</th> <th></th> <th></th>			Mg	Min	Min	Min			ŝ		Ē			watts/sq	E		
113 10 113 114 236 38 10 10 36 38 10 10 36 38 10 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 38 10 36 36 10 36 38 10 10 36 38 10 10 36 36 10 10 36 36 10 10 36 36 10 10 36 36 10 10 36 36 36 10 10 36 36 10 10 10 10 10 10 10 10 10	ð	9-14	0	;	180	180	;		1061	lst	137	58	11	1	68	46	1.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										2nd	286	58	10	10	58	16	0.60
915 0 180 95 2117 233 1616 1x 230 38 10 2 66 72 916 0 180 180 23 1522 1x 152 18 10 10 38 34 10 1 2 11 11 917 0 180 180 206 38 10 1 2 13 13 917 1x 152 1x 152 1x 152 38 10 1 2 13 13 921 2 26 180 180 180 180 10 1 2 13 1 <										3rd	283	58	10	m	65	8	0.68
9.16 0 180 180 180 180 206 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 211 </td <td>Fy</td> <td>9-15</td> <td>•</td> <td>:</td> <td>180</td> <td>95</td> <td>:</td> <td></td> <td>1616</td> <td>lst</td> <td>230</td> <td>58</td> <td>10</td> <td>2</td> <td>γų</td> <td>17</td> <td>(00)</td>	Fy	9-15	•	:	180	95	:		1616	lst	230	58	10	2	γų	17	(00)
916 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 206 213 133 58 11 71 111 111 206 58 10 10 58 10 10 58 10 10 58 10 10 58 10 58 10 56 55 10 58 10 56 55 10 58 55 10 58 58 10 56 55 10 56 55 10 56 55 10 56 55 10 56 55 10 56 56 55 55 56										2nd	363	58	10	ŝ	63	117	0.53
9.16 0 180 180 180 180 180 180 152 18 152 18 152 18 152 18 152 18 152 18 152 18 151 16 6 10 10 58 10 1 6 6 10 10 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 58 10 1 6 10 10 58 10										3rd	390	58	11	-2	11	121	0.59
P_{17} D D_{10} <th< td=""><td>2</td><td>9-16</td><td>•</td><td></td><td>180</td><td>180</td><td></td><td></td><td>1522</td><td>lst</td><td>152</td><td>58</td><td>10</td><td>10</td><td>58</td><td>3</td><td>1.07</td></th<>	2	9-16	•		180	180			1522	lst	152	58	10	10	58	3	1.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										2nd	306	58	10	-	67	8	0.62
9.17 0 180 189 2027 717 1st 166 58 12 14 56 57 9.20 2 26 180 180 180 58 10 8 66 65 9.20 2 26 180 180 2017 2144 955 181 183 58 10 8 66 65 9.21 2 27 180 180 2017 2144 955 181 115 58 10 8 60 77 9.21 2 27 180 180 2024 215 115 14 226 58 10 8 60 77 9.23 2 25 184 17 206 58 7 2 58 67 77 9.23 56 184 111 13 58 17 50 57 53										3rd	5 62	58	10	9	62	107	0.58
920 2 26 180 180 180 183 58 11 4 65 65 921 2 2 180 180 180 180 133 58 10 8 66 55 57 73 921 2 2 73 180 180 2017 2314 953 13 58 12 24 65 67 921 2 2 73 58 10 8 60 55 93 20 73 74 73 74 73<	ž	9-17	0	•	180	180			717	lst	166	58	12	14	36	65	0 05
9-20 2 26 180 180 180 201 55 14 955 14 191 55 10 8 60 65 9-21 2 2 2 180 180 180 2017 2144 955 141 191 55 24 46 55 9-21 2 2 7 180 180 2024 215 1115 141 226 58 9 10 57 77 9-21 2 2 78 6.8 1972 215 1115 141 226 58 8 23 23 23 23 23 23 23 23 23 23 23 24 25 56 53										2nd	188	58	11	-	3	67	0.97
9-20 2 26 180 180 180 2144 955 14 191 58 12 24 46 55 9-21 2 2 180 180 180 206 180 53 9 10 57 77 9-21 2 2 180 180 2054 236 58 9 10 57 77 9-21 2 2 180 180 200 2024 236 58 9 10 57 77 9-21 2 2 180 180 2024 236 58 10 57 57 57 58 38 58 58 58 58 58 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53 56 53									•	3rd	183	58	10	80	60	65	0.92
921 2 27 130 130 236 58 9 21 57 77 921 2 2 130 180 180 180 2024 2315 1115 141 226 58 10 57 77 922 2 2 2 314 226 58 10 8 23 338 22 77 238 23 23 232 23	రి	9-20	7	26	180	180	;		955	lst	191	58	12	24	46	65	0.71
921 2 27 180 180 180 180 180 180 204 226 58 9 10 57 77 922 2 25 180 180 180 204 215 58 7 2 63 304 58 7 2 63 395 39										2nd	155	58	6	21	\$	ŝ	0.87
921 2 27 180 180 204 231 314 304 58 7 2 63 38 22 58 7 2 63 38 22 58 7 2 63 336 304 58 7 2 63 38 22 56 58 7 2 63 38 22 56 58 7 2 63 38 22 56 58 7 2 63 38 22 56 58 17 89 56 56 52 56 52 56 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 56 52 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3rd</td> <td>226</td> <td>58</td> <td>6</td> <td>10</td> <td>57</td> <td>17</td> <td>0.74</td>										3rd	226	58	6	10	57	17	0.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fy	9-21	7	27	180	180			1115	lst	226	58	10	00	60	70	0.86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-									2nd	72	58	00	28	38	22	1.73
9.22 2 25 78 68 1972 \cdots $1st$ 132 58 12 56 62 604 $1st$ 174 58 12 5 65 62 58 12 56 62 58 12 56 62 53 $31d$ 150 $31d$ 156 53 34 50 53 34 50 53 34 50 55 53 56 52										3rd	304	58	7	2	63	95	0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ž	9-22	7	25	78	68	1972			lst	132	58					
9-28 6 25 + 45 150 110 2076 \cdots 2052 428 181 193 58 9 33 34 50 9-38 6 25 + 45 150 110 2076 \cdots 2052 428 181 193 58 10 15 53 56 9-30 6 28 + 48 160 89 2067 \cdots 2035 269 1st 122 58 11 21 48 44 9-30 6 28 160 89 2067 \cdots 2035 269 1st 122 58 11 21 48 44 9-31 5-33 6 2nd 84 58 8 42 24 5-33 6 44 294 1st 294 1st 330 58 8 44 30 5-33 6 44 294 1st 330 58 8 14 52 89 44 5-33 5 2nd 294 1st 330 58 <	ź	9-23	7	56	180	180			604	lst	174	58	12	Ś	65	62	1.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										2nd	141	58	6	33	æ	8	0.68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										3rd	155	58	80	17	6	55	0.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fy	9-28	9	25 + 45	150	110			428	lst	193	58	10	15	53	60	0.88
9-30 6 28 + 48 160 89 2067 ··· 2035 269 1st 122 58 11 21 48 44 5-23 6 -40-20 180 180 2161 3143 2447 294 1st 330 58 9 15 22 89 5-23 6 -40-20 180 180 2161 3143 2447 294 1st 330 58 9 15 52 102 5-10 180 180 2161 3143 2447 294 1st 330 58 9 15 52 102 7 15 50 62 31d 199 58 7 15 50 62										2nd	214	58	80	47	19	99	0.29
5-23 6 -40-20 180 180 2161 3143 2447 294 1st 330 58 8 42 24 30 5-23 6 -40-20 180 180 2161 3143 2447 294 1st 330 58 9 15 52 102 2nd 288 58 58 8 14 52 89 3nd 199 58 7 15 50 62	Z	9-30	9	28 + 48	160	8	;		269	lst	122	58	11	21	48	4	1.09
5-23 6 -40-20 180 180 2161 3143 2447 294 1st 330 58 9 15 52 102 2 3 2 3										2nd	25	58	œ	42	24	30	0.80
288 58 8 14 52 89 199 58 7 15 50 62	<u>a</u>	5-23		-40 -20	180	180			294	lst	330	58	6	15	52	102	0.51
199 58 7 15 50 62										2nd	288	58	80	14	52	89	0.58
										3rd	661	58	7	15	50	62	0.81

Time of a single injection or range of times within which 3 injections were given; intramuscular. Negative values refer to time before donning clothing.

Table III. (Contd)

assembly	Mask off at	Before Before Dry Wet	ī	c Suit After	Nude weight loss	Hour	Clothed weight loss	x	R+C	s	ш	Ъ	шſш
Min	Min	g	g	B	G		5			watts	watts/sq m		
51	15	1996 2	2976	2609									
120	109	1906 2	2894	2348	130	lst	294	58	10	s	63	118	0.53
						2nd	268	58	10	s.	13	108	0.68
180	180	2018 2	5662	2446	196	lst	298	58	9	0	2	86	0.65
						2nd	222	58	9	6	55	13	0.75
						3rd	561	58	s	00	55	2	0.86
180	180	1898 3	3384	2562	106	lst	318	58	9	9	57	125	0.46
						2nd	288	58	9	s	58	114	0.52
						Brd	210	58	s	80	3	83	0.66
180	180	2169 3156		2630	425	Ist	293	58	80	11	49	96	0.51
						2nd	258	58	1	6	36	2	0.67
						3rd	225	58	٢	9	59	73	0.81
30	15	2027		2023	59		117	Ż					

¢, ••DB/WB 29/20°C, treadmill 3 mph and 10% grade, 3 mph wind. Walked intermittently about 21 min, could not maintain pace. nich o injections were given, intra injection of range of LITTIC OI & SUNGH

represents a net gain and the product of this and the air flow gives the sweat rate of the skin under the capsule. The temperature of the adjacent skin was measured with a thermocouple.

In series B (table IV) there were two environmental conditions: dry bulb 29°C, wet bulb 20°C, wind speed 1.34 m/sec; and dry bulb 41°C, wet bulb 24°C and wind speed 0.05 m/sec. The men wore assembly I and walked at 10% grade at 3 mph (1.34 m/sec) with or without a 28.5 μ g/kg iv dose of atropine sulfate. These men were subsequently given the 6-mg dose when they took part in the experiments of series A. Initially zero, 400, and 1000 gm of water were added to the four-piece suits. In this series a man sat for 5 minutes to allow time for equilibration and for the atropine injections before beginning to walk. The man also dressed in a fresh suit and sat for 5 minutes and undressed without walking to provide a blank on the weight changes before and after the walk.

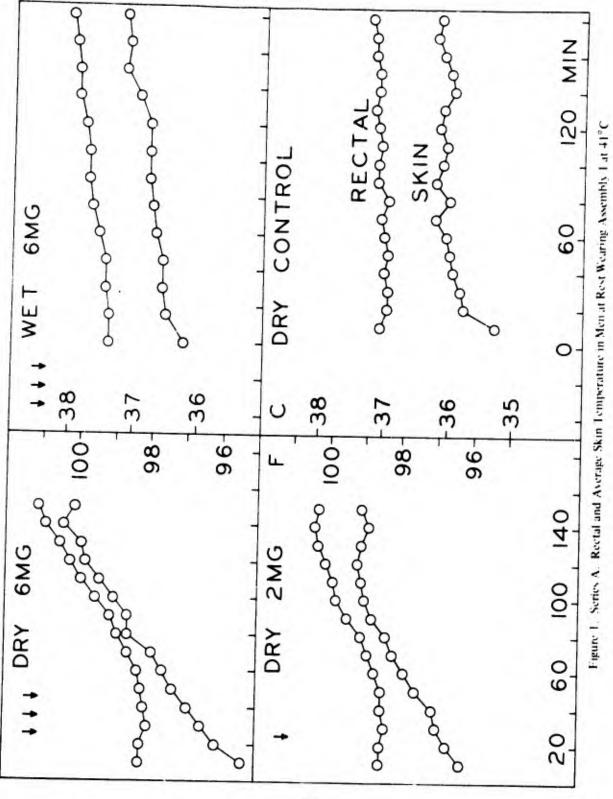
In series C (table V) the two civilians walked in repeated tests of assemblies I, II, and III to which initially zero, 400 and 1000 gm of water were added. The treadmill and wind speeds were 1.34 m/sec. The temperatures were 41° C dry bulb, 24° C wet bulb or 29° C dry bulb, 19° C wet bulb. One man performed two tests following an iv injection of $28.5 \ \mu g/kg$ in the 5-minute rest period before the walk, in order to minimize accumulation of sweat in the initially dry assembly. Blank weight changes, over a 5-minute rest period were determined with a fresh suit for each one tested during walking.

The level walks lasted 30 minutes. At 10% grade the time was shorter, as indicated in table V, because the subject became exhausted. Note that the M17A1 mask was worn in the shortest walk (7 November). On 8 November the subject wore an M17A1 mask with the voicemitter cut out to permit breathing unhampered by filters and valves. Since this seemed to favor endurance, the cut out mask was used for the remaining tests in this series.

IV. RESULTS.

A. Series A.

Individual experiments and results are listed in table III. Only Fy and Ni took part in all three experiments with initially dry clothing. With the 6-mg dose they did not complete the planned period of study in the hot room. The stay in the hot room was prolonged by removing the mask and hood at the times indicated in the table. Of the men wearing initially wet suits after the 6-mg dose of atropine sulfate, one man, Ge, felt sick and left early; another, Ed, did not tolerate the mask and left after two hours; the other four, Tu, Da, La, and Gi were able to remain completely clothed for the planned period of 3 hours.


The changes in body temperatures with time are plotted in figure 1. Without atropine the men were almost able to maintain temperature equilibrium in spite of the heat load of the protective assembly. When the four-piece suit was initially wet the increases in body temperature were small even after the 6-mg dose. When the suit was initially dry there were substantial increases in body temperatures with both the 2- and the 6-mg doses. After the 2-mg dose the skin temperature began to level off at 120 minutes. After the 6-mg dose the men left the hot room while their temperatures were still on the rise so that the full effect was Table IV. SERTES B Clothing Assembly I, Treadmill 1.34 m/sec, Grade 10%

			Rest	Walk	Nude (Clothed	Dry Bef	Before y Wet	After	Di A	Z	3	R+C	S	ш	`ш	щш
			Min	Min	Ë	ES	Ga	Gm	e B				3	watts/sq m			
						29°C	DB, 20°C	WB, 1.	29°C DB, 20°C WB, 1.34 m/sec Wind	Vind							
VI	5-15	Blank	s	:	130	16	2174	;	1910	_							
	5-15	Control	Ś	30	681	227	2011	:	2315	1 08	160	22	36	ł	001		
	5-15	Atropine**	Ś	30	235	142	2049	:	2088	10.1	359	90 90	96- 36	118	061	138	1.38
Ţ	5-16	Blank	Ś	:	v	2	127					•	2		<u> </u>	2	10.1
	S-16	Control	· • ·	30	636	300	2017	-	11			;					
	5-16	Atropine**	ŝ	8	132	154	2121		2141	60.1 10.1	065 065	61 61	∓ ?î	99 Arc	1 89	168	1.12
BI	S-17	Bunk	Ś	:	171	57	1111		NOLC			;	*	•	1	6	17.0
	S-17	Control	s	30	1072	419	2250		8220				ŗ	č			
	5-17	Atropine **	s	23	270	213	2221	:	2247	1.02	412	2 Z	-37 -5	23 g	219 77	198 105	1.11 0.73
						41°C1	DB, 24°C	WB, 0.0;	41°C DB, 24°C WB, 0.05 m/sec Wind	jnd							
Ed	6-1	Blank	~	:	1 59	1	1 00 4			-							
	5-31	Control	ŝ	18	447	5 0	1807	•	0206	1 06	205		į	;			
	5-30	Atropine**	S	81	141	92	1837		1850	60.1	99 99 90	4 8	21	68	061	8 :	2.11
5	6-12	Blank	v			5					200	6	<u>_</u>	001	151	40	3.42
	6-13	Control	• •	3	141	47	2002	!	2089								
	6-14	Atronine **	. .	35	0701	104	2722	:	10/2	1.11	393	62	22	145	208	306	0.67
•		andone	n	3	710	8/7	2154	:	2289	8 .	393	62	17	189	159	171	0.93
Ā	5-30	Control	Ś	R	769	418	2000	2389	2507	1.22	354	56	24	98	224	722	80
1	6-14	Blank	S	:	30	80		2217	2104								
	6-12	Control	S	8	491	424	1893	2280	2214	1.16	357	55	"		001	150	
	6-13	Atropine**	S	õ	143	330	1869	2259	1982	1.1	353	s s	2 12	139	1 79	50.1	0.73
შ	5-30	Blank	s	;	28	76		3156	2005	÷		1	1			5	14.0
	6-1	Control	S	18	449	408	2017	3004	2821	1 40	346	00		ç			
	5-31	Atropine**	s	18	142	391	2010	2999	2652	1.37	366	0 2 2 2 2 2 3	17	67 147	207	40 40 40 40	0.62
Da	6-13	Blank	s		30	80		796.8	7.80				;			-00	C+'0
	6-14	Control	s	90	491	424	1944	2012	2012	1 40	157		00				
	6-12	Atropine **	s	28	143	330	1974	2961	2419	2	100	83	8	111	021	310	0.71
		-									100	00	27	251	141	256	0.75

Table V. SERIES C	cadmill and Wind Speeds 1.24 m/sec
	Treadn

.

			Temp				Time			Weights in rest	in rest			Net wei	Net weights in walk	a k							-
new	Date		DB WB	Grade	Assembly	Assembly Condition	Rest	Walk	Weight loss	loss	Suit	_	Weight loss	loss	Suite	5		≯ W	л+ С	s	щ	E,	1
									Nude	Clothed	Before	After	Nude	Nude Clothed	Before	After	ŝ						
		ι U	ပ	æ			Min	Min	Ę	e C	Ē	Ę	e C	Ę	B	۳ G				Watts/sq m	E		
ඊ	11-7	41	54	01	1	Å	Ś	80	166	43	1883	1907	486	169	1967	2160	8	377 6	50 27	5	;;	200	600
ð	11-8	Ŧ	24	10	1	Dry	Ś	24	199	40	1857	1953	114	230	1994	2256	1.12			118	12	3	074
5	11-9	4	5	10	-	007	s	28	55	75	2297	2171	808	302	2111	2402	1.22			121	178	22	
J	11-10	41	2	10		+1000	S	28	4	8	2859	2637	750	450	2619	2739	1.45		50 36	8	200	392	120
2	11.11	Ţ	2	¢	-		•			ć		1											
3 2	-1-11	7 3	\$ 2	•		Atropine	ŝ	g (211	<u>8</u>	1887	1967	156	<u>.</u>	1953		8		0 22	81	101		0.95
ĴĊ	51-11 91-11	74	5 7	- c	1	57	n v	22	159	57 5	1842	1916	702	226	1959					t	142		0.00
Ċ	11-17	Ŧ	2	0		0001+	• •	88	123		2801	2602	200 212	(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.12	2550	07.1	83	16 0	2 2	Ŧ		0.71
					ł)	}				2			2					ĥ	C01		
<u>ප</u> අ	12-5	;	7	0	Ξ	Atropine	ŝ	90	116	25	1343	1363	225	161	1360	1384				82	114	126	06.0
5	124	4	7	0	8	2 G	Ś	R	106	25		1341	451	260	1399	1535	1.07		40	67	173		0.81
5	11-28	4	24	0	8	8	Ś	g	55	63		1624	383	357	1569	1524	_			8	192		9970
ۍ ا	12-1	4	54	0		+1000	S	õ	60	112	2377	2182	213	4 6	2163	1885	1.48	161	0 59	0	210		950
K	17.10	;	2	¢	F		•																
	01-71	7 7	5 2	-	3 5	A101	<u> </u>	2 8	101	65	1423	1481	455	265	1461	1588	1.08			61	179		96.0
] ;	21-71	•			= 1	D	n	2	160	63		1698	329	377	1701			195 (0 55	47	203		5.0
2	C1-71	*	5	>	3	0001+	S	 R	100	95	2433	1622	361	585	2263		-			2	232	386	ຄິ
No.	12-11	41	24	0	Ш	ž	v	Ş	114	2	1410	1446	VLV	026	1251								8
Mo	12-12	4	24	C	H	10	, v	2		5 5		1722	360	110	5		-			:			77
Wo	12-8	41	7	0		+1000	• •	ج ج		118		4666	00C			2001				78	+17		C 0
)) 1	>	3			-		C17		0477	Ŕ	-			8	552		Ą
° X	1-9	29	19	0	Ш	Pr A	s	ଛ	67	5		1447	293	152	1434	1475			15-0	ÿ	001	X	20
¥	1-10	ୟ	19	0	III	00	s	Ř	49	41	1797	1689	200	279	1703				0 -18	6	139		
Å	12-21	5	61	0	Π	+1000	Ś	90	51	78	2405	2275	78	391	2291	1998	1.50	195	0 - 8	4-	201	275	0.73
R.	12.20	00	0	5	111	100014	v	;	34	ç										1			
	07-71	;	2	2	3		n	71	ç	2		7077	13/	740	6622	2132	<u>م</u>	386 61	61 -10	-10	385	452	0.85
5	11-27	4	54	10	× 5	Dry	s	8	88	28			630	491				307 48	48 106	17	348	370	2
J	11-21	41	2	•	V + N	Dry	ŝ	8	6 6	21			419	353					0 88	1	234		0.88
ð		4	7	0	+ ^	Dry	Ś	8	136	10			450	370						11	240		0.86
0		41	24	0	+ IN	Dry	s	30					443	358					0 77	21	210		0.84
0		7	24	0	t IIV	Dry	S	8					548	399						_	240		0.85
<u>ð</u>	11-22	41	24	0	IIIV	ĥ	S	90	130	s	1150	1180	652	292	1199	1395	1.11	159 (18	187		0.88
].	fean weig	t o	4-piec	se suit du	ine walk ow	*Mean weight of 4-piece suit during walk over initial dry weight	weight	1									1						٦
Z	**No blank	;																					
14	+ Unmeasured drip	eddri	٩																				

Vertical arrows indicate the intramuscular injection of 2 mg of atropine sulfate. Panels marked Dry Control, Dry 2 mg and Dry 6 mg refer to average data for EV and Ni. The Wet 6- ng parel refers to average data for Tu, Da, Gi, and La.

undetermined. Reference to Appendix table I shows that the rates of heat storage in watts/sq m in the second hour for Fy and Ni were 5 and 4 without atropine, 28 and 33 with 2 mg, and 47 and 42 with 6 mg. Corresponding figures for the other five men with 6 mg and the initially wet suit were 14, -5, 9, 5, and 9.

The initially wet four-piece suits lost weight during the three hours in the hot room and there was a consistent progressive rise in the E/E' ratio.

The data for the continually recorded local sweating in Fy and Ni are summarized in table VI. Without atropine the sweat rate and skin temperature increased progressively with time in Ni but in Fy they reached peak values in the second hour and then declined. The effects of the 2-mg dose were typical in that the sweat rate was very low in the second hour and recovered in the third hour. In the third hour of the 6-mg tests there was some recovery of water output but not nearly to the extent seen with the 2-mg dose.

B. Series B.

The individual experiments and results are listed in table IV. From the blank experiments was learned what the weight changes in the four-piece suit were during dressing, undressing and a 5-minute rest period. The 2-mg atropine experiments served to screen out volunteers who might not be good candidates for the 6-mg dose and also provided somewhat drier suits than those in the controls because of the inhibition of sweating.

In the experiments at 29°, the man walked twice in one morning the first time without and the second time with atropine. The men were given a cold shower bath after the first walk to avoid starting the second walk in an overheated condition. In Tu and Bl, however, the showers resulted in extensive changes in skin temperature before and during the second walk. The resulting calculations of heat storage yielded such high values that inclusion with the other experiments did not seem justified. The body temperatures for Al, Tu, and Bl are shown in figure 2 together with average results for 4 men walking once a day from an earlier report.¹ otherwise under the same conditions.

In the experiments at 41°C, the men walked only once a day and the storage values were in the expected range. However, in this group, differences between men obscured the trends as may be seen by inspection of table IV. Atropine produced the expected increases in heat storage in Ed and Gi wearing initially dry suits. Large increases in storage were prevented by wetting the suits worn by La and Da but not in Ge who walked only 18 instead of 30 minutes.

C. Series C.

In this series an effort was made to relate the efficiency of evaporative cooling to the water content of the clothing. Repeated observations were made on only two men. Cr was unable to complete 30 minutes at the 10 percent grade and subsequent tests were made on the level. Also different clothing assemblies were compared under similar conditions of initial wetting. The conditions and results are summarized in table V. In figures 3 and 4 are shown the skin and rectal temperatures under four of the six man-condition combinations. Figure 3

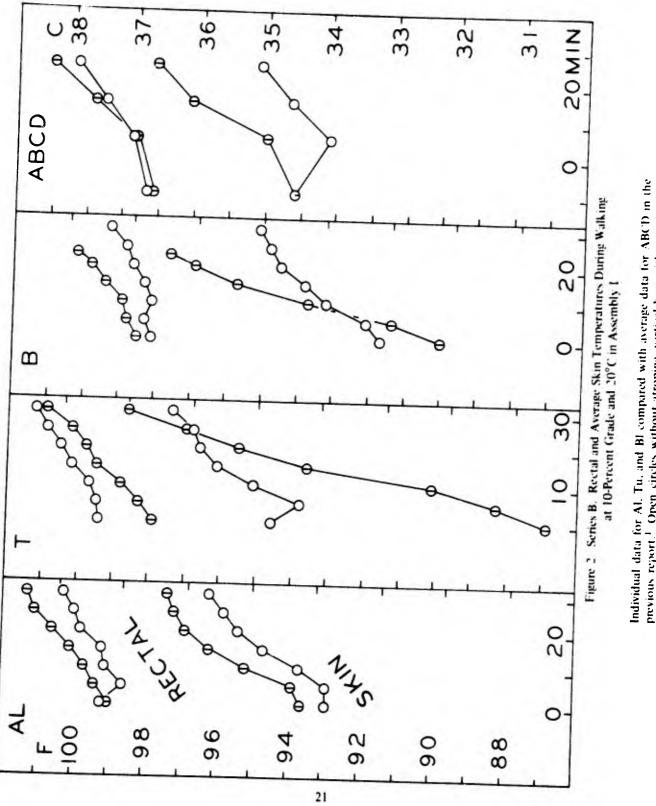
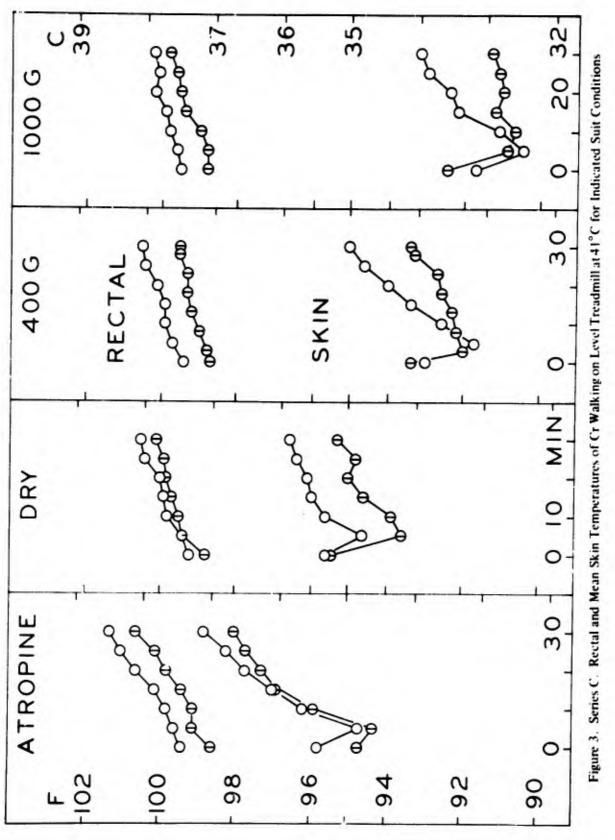
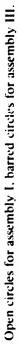
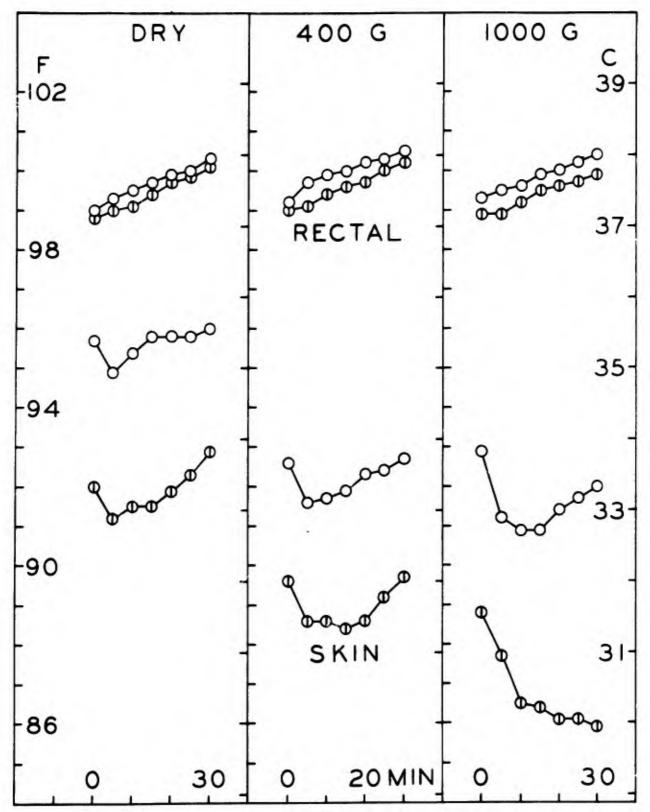

			Volunteer Fy					Volunteer Ni		
Time	Air flow	Relative humidity	Sweat rate	Tem	Temperature stal Arm	Air Now	Relative humidity	Sweat rate	Temp Rectal	Temperature tal Arm
Min	l/min	*	gm/min/sq m	Ч.	Ч°	l/min	ž	gm/min/sq m	Ч.	н С
			15 Sep 71 Control			_		l 17 Sep 71 Control	rol	
10	0.00	l y	0 6 3					•		
20	0.20		\$C.0	98.5	94.7	0.20	12.7	1.10	98.8	94.4
200		0.0	0.94	98.4	96.7	0.20	11.0	0.95	98.6	1 36
	0,20	2.7 C	0.80	98.4	9.96	0.20	10.5	16.0	986	05.4
23	0.20	34.2	2.95	98.6	98.4	0.30	11.3	1 46	0.00	+.C.C
D C C	0.40	16.9	2.92	98.5	98.8	0.30	90		70.0	9.04 0.70
3	0.40	15.2	2.63	98.5	97.6	0.30	14.4	107	2.02	96.0
02	0.40	34.7	5.99	98.6	98.1	040		0/	0.00	96.2
8	0.45	17.3	3.36	98.6	6.76	0.40	0.01	24.0	70.7	96.1
3	0.45	19.3	3.75	98.9	97.8	0.40	145		4.02	96.1
8	0.45	21.4	4.16	98.9	97.6	0.40	13.4	10.7	0.06	96.2 2602
110	0.45	20.0	3.89	98.8	96.9	0.40		20.7	98.0	96.3
120	0.45	19.9	3.87	98.9	96.6	040		200 7 7	98.6	96.8
130	0.40	22.6	3.91	1.66	96.2	0.40	0.00	2.13	98.0 0 2	96.8 07.3
9	0.40	17.0	2.94	98.8	95.3	040	2 2 2		70.7	91.3
150	0.40	10.3	1.78	98.8	96.3	0.40	10.0	9.20 02.6	7.86	96.8
160	0.40	8.6	1.49	98.9	06.4			2.2.2	20.0	96.8
170	0.40	10.8	1.86	98.80	1.00	04.0	7.77	3.84	98.9	97.2
180	0.40	10.3	1.78	0.00	2.06	0.40	6.77	3.96	98.9	96.9
			,		C.02		C.12	3 68	0.66	97.2
		_	21 Sep 71, 2 mg	-				23 Sep 71, 2 mg	-	
10	0.20	9.4	0.81	0.66	94.7	0.20	801	02.1	00	
20*	0.20	13.4	1.16	98.8	95.2	0.00	0.01	1.10	70.0	94.4
30	0.20	16.6	1.43	98.8	95.2	0,00	121		7.96	94.8
4	0.20	7.6	0.66	98.86	95.5		0.21	C1.1	98.1	95.5
50**	0.20	5.2	0.45	98.90	07.1		0.01		98.0	95.0
60	0.10	6.5	0.28	98.9	080		10.0	1.62	98.1	95.9
20				000	2.00		0./1	1.54	98.0	95.7
80				0.66	2 00	0.20	5.8	0.50	98.1	96.5
- 06	0.20	156	1 35	1.00	0.0	0.0	4.4	0.11		97.4
)	04:0			1	- xx					

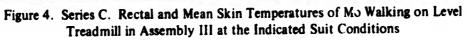
Table VI. Arm Sweat, Series A

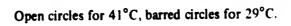
.


Table VI. (Contd)

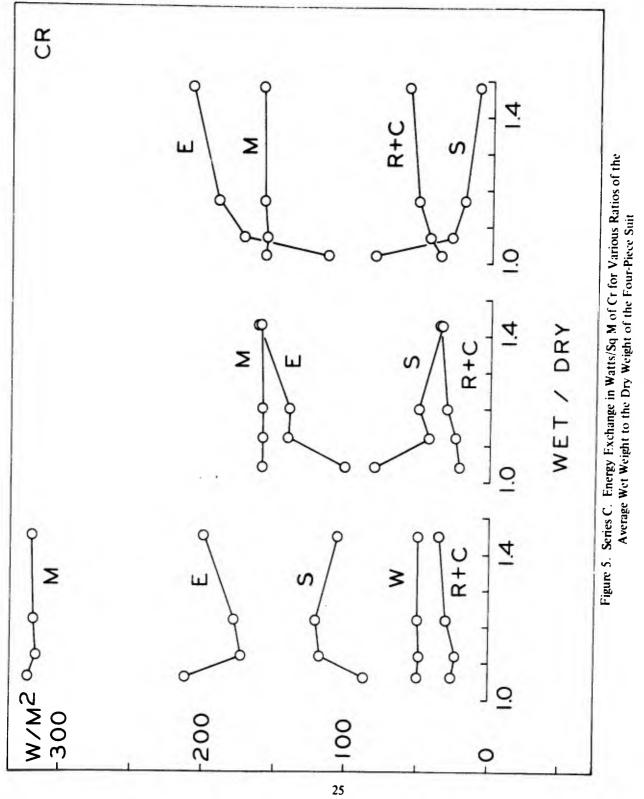

Air Relative humidity Sweat rate sem/min/sq m Temperature Rectal Arm flow humidity 1/min % gm/min/sq m * F * F 1/min % Relative 0.20 16.9 1.46 100.0 99.1 0.05 9.9 9.9 0.20 35.1 2.06 100.0 99.1 0.05 13.7 9.9 0.20 35.1 2.06 100.0 99.1 0.05 13.7 0.20 35.1 2.03 100.4 98.7 0.20 36.4 0.20 34.1 5.80 100.4 98.7 0.20 36.4 0.30 40.0 5.18 100.6 99.0 0.20 36.4 0.30 35.0 33.6 98.7 0.20 36.4 107.5 0.40 33.6 5.80 100.6 98.7 0.20 37.1 2.8 Sep 71.6 mg 5.80 0.05 98.5 0.20 37.1 0.20 <th></th> <th></th> <th></th> <th>6 - 1331110</th> <th></th> <th></th> <th></th> <th></th> <th>Volunteer N:</th> <th></th> <th></th>				6 - 1331110					Volunteer N:		
flow humidity Rectal Arm flow humidity 1/min % gm/min/sq m * * 1/min % 0.20 16.9 1.46 100.0 99.1 0.05 9.9 0.20 19.0 1.64 100.0 98.9 0.05 113.7 0.20 19.0 1.64 100.0 98.7 0.05 13.7 0.20 34.1 2.94 100.4 98.7 0.05 21.9 0.20 35.1 2.06 100.4 98.7 0.20 26.6 0.20 35.1 2.94 100.4 98.7 0.20 26.6 0.40 33.6 5.80 100.6 99.0 0.20 36.4 0.20 35.1 5.80 100.6 98.7 0.20 35.1 0.20 33.6 5.80 100.6 98.7 0.20 31.1 0.20 35.1 0.00.5 98.7 0.20 35.6	Time	Air	Relative	Sweat rate	Tem	scrature	Air	Dalaci	A DIULICEL NI		
1/min $\%$ gm/min/sq m $^{-}$ F $^{-}$ m <th< th=""><th></th><th>Now</th><th>humidity</th><th></th><th>Rectal</th><th>Arm</th><th>and a</th><th>L'indive</th><th>Sweat rate</th><th>Ten</th><th>Temperature</th></th<>		Now	humidity		Rectal	Arm	and a	L'indive	Sweat rate	Ten	Temperature
7 6 $1/min$ 7 6 $1/min$ 7 0.20 16.9 1.46 100.0 99.1 0.05 99.1 99.1 99.1 99.1 99.1 99.1 99.1 99.1 99.9 99.1 99.4 99.1 99.4 99.1 99.4 99.4 99.5 99.1 99.4 99.5 99.1 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.1 99.4 99.5 99.1 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 <td< th=""><th>Min</th><th>1 /min</th><th>8</th><th></th><th></th><th></th><th>MOI</th><th>AIIDIMINI</th><th></th><th>Rectal</th><th>Arm</th></td<>	Min	1 /min	8				MOI	AIIDIMINI		Rectal	Arm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		um/1	8	gm/min/sq m	ч°	ц.	1/min	*	m ps/nim/mg	Ч.	Ч°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	0.20	16.9	1.46	1000	1 00	50.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	0.20	19.0	164	0.001	1.00	0.0	6.6	0.19	98.7	98.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	0.20	23.8	206	0.001	1.00	c0.0	501	0.23	98.8	98.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	0.20	158	202		1.66	0.02	13.7	0.30	99.2	98.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	0.00	36.6	21.0	+.001	0.66	c0.0	51.9	0.47	5.66	98.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		020	0.00	01.0	100.4	1.86	0.20	36.4	3.14	8 66	C XO
0.30 40.0 5.18 100.6 99.0 0.20 26.7 0.40 35.1 6.06 100.5 98.7 0.20 31.1 0.40 35.1 6.06 100.5 98.7 0.20 31.1 0.40 33.6 5.80 100.6 98.7 0.20 31.1 0.20 9.9 0.86 98.5 93.5 0.20 32.1 0.20 8.9 0.77 98.4 94.7 0.20 32.1 0.20 15.0 1.30 98.2 94.7 0.20 5.3 0.20 15.0 1.30 98.3 95.5 0.05 10.5 0.20 15.0 1.30 98.3 95.5 0.05 10.5 0.20 5.3 0.12 98.3 95.5 0.05 10.5 0.20 5.3 0.12 98.5 0.05 10.5 9.4 0.20 5.3 0.12 98.5 0.05 10.5	2	07.0		2:34	100.4	98.5	0.20	26.6	230	1001	000
0.40 35.1 6.06 100.5 98.7 0.20 31.1 0.40 33.6 5.80 100.4 98.5 0.20 31.1 0.40 33.6 5.80 100.4 98.5 0.20 32.1 0.20 9.9 0.89 0.86 98.5 98.5 0.20 32.1 0.20 8.9 0.77 98.5 93.5 0.20 32.1 0.20 15.0 1.30 98.5 93.5 0.20 32.1 0.20 15.0 1.30 98.5 94.7 0.20 3.3 0.20 15.0 1.30 98.5 97.5 0.05 9.4 0.05 5.5 0.12 98.5 0.05 9.4 0.20 5.3 0.12 98.5 0.05 9.4 0.20 5.3 0.26 98.6 9.05 9.4 0.20 5.3 0.26 98.5 0.05 9.4 0.20	8	0.30	40.0	5.18	100.6	0 66	0.0	147		1.001	A.07
0.40 33.6 5.80 100.4 98.5 0.20 31.1 0.20 9.9 0.20 99.9 0.86 98.5 93.5 0.20 31.1 0.20 8.9 0.77 98.4 94.7 0.20 32.1 0.20 15.0 1.30 98.2 93.5 0.05 5.3 0.20 15.0 1.30 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.2 95.5 0.05 10.5 0.05 5.5 0.12 98.3 95.5 0.05 10.4 0.05 10.8 0.12 98.3 95.5 0.05 10.4 0.20 10.8 0.12 98.3 95.5 0.05 10.4 0.20 5.3 0.20 98.5 0.05 10.4 0.20 5.3 0.20 98.5 0.05 10.4 0.20 5.3 0.20 98.5 0.05 10.4 <td>20</td> <td>0.40</td> <td>35.1</td> <td>6.06</td> <td>100 5</td> <td>1 00</td> <td>0.00</td> <td>1.07</td> <td>16.7</td> <td>100.2</td> <td>0.66</td>	20	0.40	35.1	6.06	100 5	1 00	0.00	1.07	16.7	100.2	0.66
0.20 9.9 0.86 98.5 93.5 0.20 32.1 0.20 8.9 0.77 98.4 94.7 0.20 5.3 0.20 8.9 0.77 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.2 94.7 0.20 5.3 0.20 15.0 1.30 98.2 94.7 0.20 5.3 0.20 15.0 1.30 98.2 96.5 0.05 10.5 0.05 5.5 0.12 98.3 95.5 0.05 10.4 0.20 10.8 0.12 98.5 0.05 10.4 0.20 5.3 0.12 98.5 0.05 10.4 0.20 5.1 0.48 99.5 0.05 10.1 0.20 5.1 0.44 99.5 0.05 10.1 0.20 5.1 0.44 99.5 0.05 10.3 0.20 5.1 0.44 99.5	80	0.40	33.6	5 80	1001	1.00	07.0	31.1	3.60	100.3	98.9
28 Sep 71, 6 mg 999 0.86 98.5 93.5 0.20 999 0.86 98.5 93.5 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.20 5.3 0.05 8.8 0.20 5.3 0.05 98.3 94.7 0.20 5.3 0.05 8.8 0.05 9.4 0.05 8.8 0.05 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 0.05 9.4 9.4 0.05 9.4 <t< td=""><td></td><td></td><td>-</td><td>0000</td><td>+.001</td><td>C.9%</td><td>0.20</td><td>32.1</td><td>2.77</td><td>100.2</td><td>98.5</td></t<>			-	0000	+.001	C.9%	0.20	32.1	2.77	100.2	98.5
0.20 9.9 0.86 98.5 93.5 0.20 8.9 0.86 98.5 93.5 0.20 15.0 1.30 98.4 94.7 0.20 0.20 15.0 1.30 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.2 96.4 0.05 5.3 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 9.4 0.20 10.8 0.12 98.5 0.05 9.4 9.5 0.20 10.8 0.93 98.6 98.0 0.05 9.4 0.20 5.3 0.44 99.6 90.05 9.8 9.8 0.20 5.1 0.44 99.6 90.05 10.1 10.3 0.20 5.3 0.44 99.6 90.5 10.3 10.3 0.20 5.1 0.44 99.6 </td <td></td> <td></td> <td></td> <td>28 Sep 71, 6 mg</td> <td></td> <td></td> <td></td> <td>•</td> <td>30 Sen 71 6 me</td> <td></td> <td></td>				28 Sep 71, 6 mg				•	30 Sen 71 6 me		
0.20 8.9 0.77 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.2 96.4 0.05 10.5 0.05 5.6 0.12 98.3 95.5 0.05 10.5 0.05 5.5 0.12 98.3 95.5 0.05 10.5 0.05 5.5 0.12 98.3 95.5 0.05 10.4 0.20 6.9 0.12 98.5 97.5 0.05 9.4 0.20 5.3 0.93 98.6 98.9 0.05 9.4 0.20 5.3 0.44 99.6 9.05 10.1 10.1 0.20 5.1 0.44 99.6 90.5 10.3 10.3 0.20 5.1 0.44 99.6 9.05 10.3 10.3 0.20 5.1 0.44 99.6 0.05 10.3 10	10	0.00	00	200				-	0		
0.20 8.9 0.77 98.4 94.7 0.20 5.3 0.20 15.0 1.30 98.2 96.4 0.05 5.3 0.20 5.6 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.05 10.8 0.12 98.5 97.5 0.05 9.4 0.20 6.9 0.060 99.0 98.5 0.05 9.4 0.20 5.3 0.44 99.6 9.05 10.4 0.20 5.1 0.44 99.6 9.05 10.3 0.20 5.1 0.44 99.6 0.05 10.3 0.20 5.1 0.44 99.6 0.05 10.3 0.20 5.3 0.05 10.3 10.3 10.3				00.00	C.86	93.5				010	
0.20 15.0 1.30 98.2 96.4 0.05 1.30 0.05 5.6 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.20 10.8 0.12 98.5 97.5 0.05 9.4 0.20 6.9 0.60 99.0 98.5 0.05 9.4 0.20 5.3 0.48 99.0 98.5 0.05 9.4 0.20 5.1 0.48 99.0 98.5 0.05 10.1 0.20 5.1 0.44 99.6 90.5 10.3 10.3 0.20 5.1 0.44 99.6 99.5 10.3 10.3 0.20 5.1 0.44 99.6 0.05 10.3 10.3	-02	0.20	6.8	0.77	98.4	94.7	0.0	5.2		6.14	
0.05 5.6 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.05 5.5 0.12 98.3 95.5 0.05 8.8 0.20 10.8 0.12 98.5 97.5 0.05 9.4 0.20 6.9 0.60 99.0 98.6 98.6 9.4 0.20 5.3 0.60 99.0 98.5 9.05 9.4 0.20 5.3 0.48 99.0 98.5 0.05 10.1 0.20 5.1 0.44 99.6 90.5 10.3 10.3 0.20 5.1 0.44 99.6 9.05 10.3 10.3 10.3	30*	0.20	15.0	1.30	98.7	04.4	2000		0.40	6.16	95.7
0.05 5.6 0.12 98.3 95.5 0.00 8.8 0.05 5.5 0.12 98.3 96.5 0.05 8.8 0.20 10.8 0.12 98.5 97.5 0.05 94.4 0.20 6.9 0.90 98.6 98.0 0.05 9.4 0.20 6.9 0.60 99.0 98.6 98.0 0.05 9.4 0.20 5.3 0.48 99.0 98.5 0.05 9.4 0.20 5.3 0.48 99.0 98.9 0.05 10.1 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 0.05 10.3 10.3	40*				2.00	1.00	0.0	C.01	0.23	97.8	95.8
0.05 5.5 0.12 98.5 96.5 0.05 10.4 0.20 10.8 0.12 98.5 97.5 0.05 9.4 0.20 10.8 0.93 98.6 98.0 0.05 9.4 0.20 6.9 0.90 98.6 98.0 0.05 9.4 0.20 6.9 0.60 99.0 98.5 0.05 9.8 0.20 5.3 0.48 99.0 98.5 0.05 10.1 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 0.05 10.3 0.20 99.6 0.05 10.3 10.3	50	0.05	5.6		0.00	0.04	c0.0	8.8	0.19	6.7.6	96.7
0.20 0.12 98.5 97.5 0.05 9.4 0.20 10.8 0.93 98.6 98.0 0.05 9.4 0.20 10.8 0.93 98.6 98.0 0.05 9.4 0.20 6.9 0.60 99.0 98.5 0.05 9.8 0.20 5.3 0.64 99.0 98.5 0.05 10.1 0.20 5.1 0.44 99.2 98.9 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 0.05 10.3	5	5000			5.85	96.5	0.05	10.4	0.22	98.1	0.70
0.20 10.8 0.93 98.6 98.0 0.05 9.8 0.20 6.9 0.60 99.0 98.5 0.05 9.8 0.20 5.3 0.48 99.2 98.9 0.05 10.1 0.20 5.3 0.48 99.2 98.9 0.05 10.1 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3	3	000	0.0	0.12	98.5	97.5	0.05	9.4	0.20	1 80	10
0.20 6.9 0.60 99.0 98.5 0.05 10.1 0.20 5.3 0.48 99.2 98.9 0.05 10.1 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3	2	0.20	10.8	0.93	98.6	98.0	0.05	80	100		0.12
0.20 5.3 0.48 99.2 98.9 0.00 10.1 0.20 5.1 0.44 99.2 98.9 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3 0.20 5.1 0.44 99.6 99.3 0.05 10.3	000	0.20	6.9	0.60	0.66	98.5	500		17.0	2.96	98.0
0.20 5.1 0.44 99.6 99.3 0.05 10.3 10.3 10.3 10.3 10.3 10.3 10.3	8	0.20	5.3	0.48	00 2	0.00		1.01	0.22	98.8	98.7
0.05 10.0 99.6 0.10 10.3 10.3 10.3	8	0.20	15	0.44		4.00	co.0	10.3	0.22	0.66	98.8
0.10 10.3 100.0 99.6 0.10 10.3	10			F.	0.66	5.66	0.05	10.3	0.22	99.4	9.99.5
	00	50.0	1.3		0.001	9.66	0.10	10.3	0.44	1.66	9 00
1.0 0.10 0.14 100.0 0.10 9.1		000	1.0	41.0	100.4	100.0	0.10	1.6	0.39	100.0	8 00
0.0 6.1 5.5 100.6 100.1 0.10 10.7	40	0.0	17		9.001	1.001	0.10	10.7	0.46	100.4	0 00
0.00 0.00 12.5 100.8 100.5 0.10 12.5	2 5	02.0		50.0	8.001	100.5	0.10	12.5	0.54	0001	1000
0.20 /.0 v 60 101.1 100.1 0.10 13.4	39	07.0	0.1	0 9 n	1.101	100.1	0.10	13.4	0.58	101 0	00 4
0.10 16.7	3						01.0	16.7	0.72	101.4	8.66



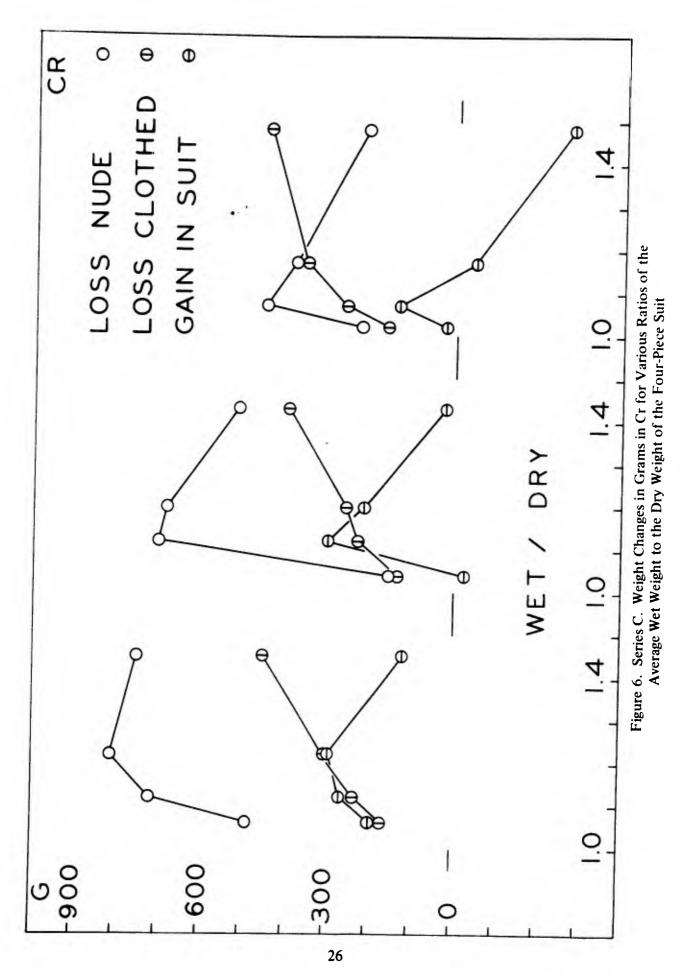

,


individual data for Al. Tu, and Bl compared with average data for ABCD in the previous report.¹ Open circles without atropine, vertical bars with atropine. Al. Tu, and Bl walked with atropine after cold show er baths after the walk without atropine. In ABCD the walks were initial walks on separate days.

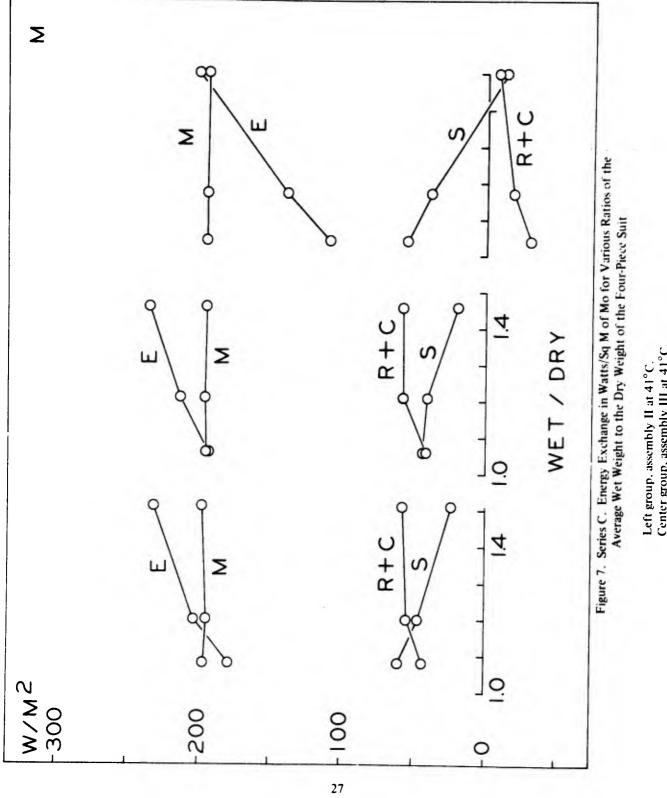
illustrates the difference between assemblies I and III and figure 4 illustrates the difference between 41 and 29° C environmental temperatures. The various changes in conditions had a greater effect on skin than on rectal temperature. Figures 5 and 6 for Cr and figures 7 and 8 for Mo give the individual data on energy exchange and weight changes in relation to suit wettedness. M and R+C were little affected by wettedness so that changes in S were reflected in changes in the opposite direction in E. In most conditions the gain in weight of the suit during the walk arising from the accumulation of sweat changed to a loss when the suit was initially wet and this was associated with a decrease in sweating (nude loss) and an increase in evaporation (clothed loss). However in the grade walks by Cr, the rate of sweating was large enough to maintain a positive gain in the suit weight.

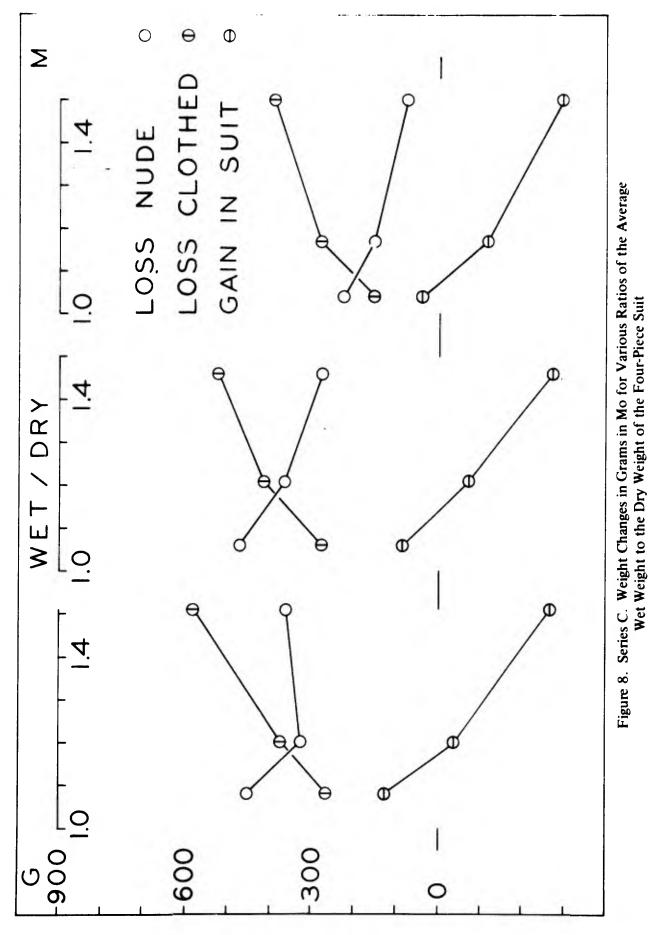

When the efficiency of evaporative cooling was plotted against wettedness in figure 9 there was a uniform downward trend from the origin diminishing in slope as wettedness increased. Also the points for Mo were above those of Cr with one exception.

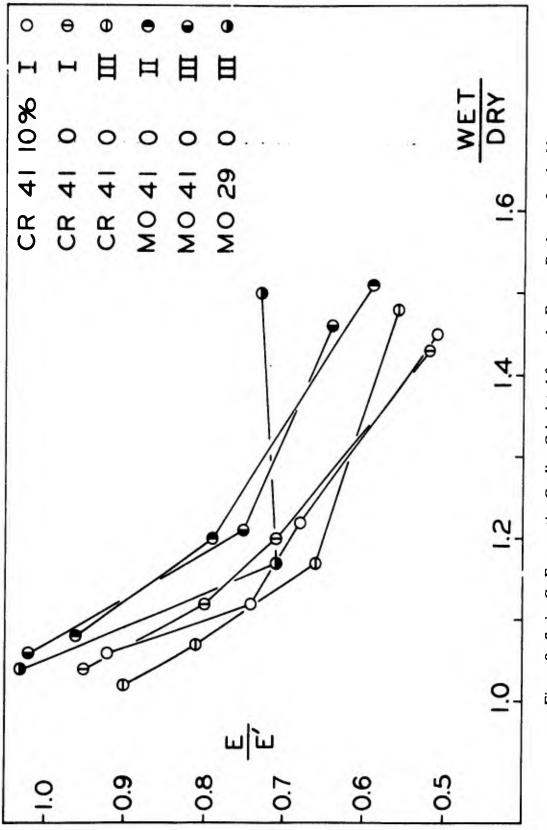
V. DISCUSSION.


The results in series A are sufficient to demonstrate that wetting the clothing will provide enough evaporative cooling to make up the deficit in sweating resulting from an excess of atropine. Although this may be a documentation of the self-evident, some statement to this effect should be added to technical manuals dealing with the treatment of chemical casualties.

The results for water output under the capsule are in general agreement at the 2-mg dose with those reported earlier.¹ The new data at the 6-mg dose can be compared with those of Webb, *et al.*⁷ for the whole man at doses of from 5 to 9 mg. They reported a residual weight loss which they considered to represent insensible perspiration (that is, diffusion of sweat-free water). Their figures increased with skin temperature: the largest, 0.55 gm/min, came at 36.6° C. This is somewhat more than the minimum values for the capsule at higher skin temperatures. The difference can be attributed to differences in technique to a certain extent; also 'he skin resistance data of Beuttner⁸ suggests that the output is probably less from the forearm than from other locations.


In series B some of the results are unexplained. The large changes in skin temperature in volunteers Tu and Bl during the walk following the cold shower point to a failure of the usual formula for estimating mean body temperature. The effect of cold showers does not appear to have been investigated before. Stolwijk and Hardy⁹ weight the skin and internal temperature in the ratio of 1:9 in contrast to the 1:2 ratio used here. If the 1:9 ratio is used, the values of S for control and atropine respectively become 88 and 180 for Tu and 69 and 145 for Bl. These are more in agreement with the average values of 70 and 137 for this condition reported before (series 1¹⁰). Another difficulty with series B is the occurrence of E/E' ratios greater than one. This points to an overestimate of M by the formula or an error in S or E', or both. Volunteer Ed is the most conspicuous example. Here E' is off by 100, although the decrease in E' from 90 to 40 as a result of atropine counter-balances almost exactly the increase in S from 89 to 136.


Left group, treadmill at 10 percent grade, assembly I. Center group, level treadmill, assembly II. All at 41°C. Right group, level treadmill, assembly III. All at 41°C.


Groups as in figure 5.

Left group, assembly II at 41°C. Center group, assembly III at 41°C. Right group, assembly III at 29°C. All with level treadmill.

Groups as in figure 7.

as a Fraction of the Total Heat of Evaporation of Water Calculated from the Clothed Weight Loss for Various Ratios of the Average Wet Weight to the Dry Weight of the Four-Piece Suit Figure 9. Series C. Evaporative Cooling Calculated from the Energy Exchange for the Man

In series C the ratios of E/E' for the dry suit were near enough to unity to validate the estimates of the various quantities in the heat balance equation. These are difficult to measure accurately even under steady state conditions. Under the present circumstances it is enough to assume that M and R+C are not strongly influenced by the water in the suit so that the changes in E reflect mainly the changes in S. The estimate of R+C depends on Clo values developed for assemblies not identical with but only somewhat similar to the ones used here, and also the same Clo value was used for assemblies II and III, which differ by the presence or absence of the mask and hood. Removing the mask and hood from subject M in the dry suit reduced the heat storage from 61 to 44 without changing the skin temperature averaged over the duration of the walk (as indicated in R+C), but the inaccuracy in Clo evidently was small in comparison to the changes in E'. The differences between assemblies I and III (removal of the mask and hood and substitution of short for long underwear) appeared to be taken care of by the change in Clo. as indicated by the similarity of the curves in figure 9.

Belding et al.¹¹ reported experiments on heat transfer from a heated copper foot through 3 layers of woolen socks; the addition of water to the socks increased the conductivity. In our calculations the same Clo was used for differently wetted suits. If Clo had been decreasing with increasing wettedness, R+C would have increased. The increase in R+C would subtract from E thus further lowering the E/E' ratio. Our calculation of R+C reflected only the changes arising from the observed temperature gradient between skin and ambient air.

The results for assemblies IV, V, VI, and VII were not too satisfactory because an unmeasured quantity of sweat dripped off, making E' too large. It had been hoped that eliminating the clothing would improve the estimate of the heat balance.

The data in figure 9 document what has long been thought. In the words of Herrington,⁶ "When liquid sweat is absorbed in the clothing on exposure to heat or during muscular work, this sweat will evaporate at some distance from the skin, drawing its heat of vaporization from the clothing and surrounding air. The body does not derive the full benefit of this evaporative cooling but only that part which results from increased temperature gradients between the skin and clothing surfaces on which evaporation takes place. -- There is no way of estimating accurately body heat lost by evaporation on exposure to intense heat or cold or during muscular exertion. The weight loss from the clothed human body (corrected for the inequality of CO₂ eliminated and O₂ consumed) always overestimates the effective evaporation loss under such conditions." Also, Fourt and Harris¹² state, "When the clothing absorbs liquid water, its thermal conductivity and thermal capacity greatly increase, and it tends to collapse onto and cling to the skin, reducing the insulative effect of air layers to a minimum. In addition, when the clothing is wet, the point of evaporation is shifted from the skin level into the clothing. This lessens the efficiency of cooling, in that a larger amount of the heat taken up in evaporating a given amount of water is drawn from the environment, and a smaller amount from the body, but it increases the effectiveness of evaporative cooling by eliminating the clothing as a resistance to evaporation." Also Burton and Edholm¹³ state, "If the moisture that is evaporated at the skin condenses in the clothing at a certain level, 'wicks' to the surface of the clothing and reevaporates there, we cannot consider that all of the heat of vaporization of the water that has been evaporated has come from the body." These authors proceed to define the efficiency of evaporation in terms of the ratio of the dry insulation to the total insulation. Belding et al.¹¹

working with a four-layer Arctic clothing assembly in a cold room have employed this concept to evaluate the efficiency for body warming of the heat of condensation of water that evaporates at the skin and condenses in the outer layers of clothing. They discuss the efficiency for skin cooling of the sweat that condenses in the clothing but appear not to consider the efficiency of the remainder that escapes from the clothing into the ambient air. It has been difficult to apply the Burton concept to the present assembly for the unevaporated sweat is distributed among the two layers so that one does not see distinct wet and dry layers as one might in a multilayered assembly in the cold. Also there was no way of estimating the effect of moisture on the thermal insulation of the suit. Thus the present results can be considered only as a first approximation. They (the present results) have resemblance to those obtained by Fourt and Harris (figure 57 in reference 12) with their artificially sweating man which enabled them to distinguish the evaporation from the skin from the total evaporation including that from wet clothing. As the clothing dried the fraction of evaporation from the skin increased from about 40 percent to 100 percent. In what appears to be the only recent treatment of this problem Nishi and Gagge¹⁴ discuss a model in which the sweat evaporates from a level halfway through clothing with a Clo value of 0.6 at rest at 32°C. Here the thermal insulation of the wetted half-layer decreases to 1/3, but the R+C and E change little from the figures for a model in which all the sweat vaporizes at the skin surface and permeates through dry clothing.

Although from the physical standpoint wetting the clothing reduces the cooling efficiency of the evaporated sweat, the well-known physiological benefits remain, namely, the reduction in sweat production and heat storage.

VI. CONCLUSIONS.

The elevation of body temperature in men wearing the two-layer chemical protective assembly in consequence of the inhibition of sweating by atropine given for treatment of the effects of anticholinesterase agents can be prevented by artificial wetting of the clothing.

The efficiency of evaporative cooling of clothed men decreases as the water content of the clothing increases. For clothing containing water amounting to 50 percent of the dry weight of the clothing, the efficiency is reduced by about one-half. However from the physiological standpoint, wetting the clothing does increase the effective cooling of the body and there is a corresponding decrease in heat storage.

LITERATURE CITED

1. Craig, F. N. EATR 4629. Evaporative Cooling of Men in Wet Clothing. March 1972. UNCLASSIFIED Report.

2. Givoni, B., and Goldman, R. F. Predicting Rectal Temperature Response to Work, Environment and Clothing. J. Appl. Physiol. 32, 812-822 (1972).

3. Belding, H. S., Darling, R. C., Griffin, D. R., Robinson, S., and Turrell, E. S. CAM No. 390. Evaluation of Thermal Insulation Provided by Clothing. p. 9-20, in Clothing Test Methods, cd. Newburgh, L. H. and Harris, M. National Research Council, Washington, DC. 1945. UNCLASSIFIED Report.

4. McCutchan, J. W. and Taylor, C. L. Respiratory Heat Exchange with Varying Temperature and Humidity of Expired Air. J. Appl. Physiol. 4, 121-135 (1951).

5. Craig, F. N. and Cain, S. M. Breath Holding After Exercise. J. Appl. Physiol. 10, 19-25 (1957).

6. Herrington, L. P. CAM No. 390. Moisture Loss and Moisture Evaporated. p. 21-22 in Clothing Test Methods, ed. Newburgh, L. H. and Harris, M. National Research Council, Washington, DC. 1945. UNCLASSIFIED Report.

7. Webb. P., Garlington, L. H., and Schwarz, M. J. Insensible Weight Loss at High Skin Temperatures. J. Appl. Physiol. 11, 41-44 (1957).

8. Beuttner, K. Diffusion of Water and Water Vapor Through Human Skin. J. Appl. Physiol. 6, 229-242 (1953).

9. Stolwijk, J. A. J. and Hardy, J. D. Partitional Calorimetric Studies of Responses of Man to Thermal Transients. J. Appl. Physiol. 21, 967-977 (1966).

10. Craig, F. N. Evaporative Cooling of Men in Wet Clothing. J. Appl. Physiol. 33, 331-336 (1972).

11. Belding, H. S., Russell, H. D., Darling, R. C., and Folk, G. E. Thermal Responses and Efficiency of Sweating When Men are Dressed in Arctic Clothing and Exposed to Extreme Cold. Am. J. Physiol. 149, 204-222 (1947).

12. Fourt, L. and Harris, M. Physical Properties of Clothing Fabrics, Chapter 10 in Physiology of Heat Regulation and the Science of Clothing, ed. Newburgh, L. H. W. B. Saunders, Philadelphia, 1949.

33

Preceding page blank

13. Burton, A. C. and Edholm, O. G. Man in a Cold Environment, p. 71. Arnold, London, England, 1955.

14. Nishi, Y. and Gagge, A. P. Moisture Permeation of Clothing – A Factor Governing Thermal Equilibrium and Comfort. No. 2135. American Society of Heating, Refrigerating and Air-Conditioning Engineers Transactions 76, 137-145 (1970).