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SUMMARY 

A mathematical model of the penetration of 20% gel by nondeforming spheres is 
derived and checked against experimental data. The model, which is found to be a generalized form 
of Resal's Law, is: 

where 

F = CvA-^v + QpAv2 

F = force retarding the sphere 

A = presented area of the sphere 

v = velocity of the sphere 

b = thickness of the liquid boundary layer 
surrounding the moving sphere 

M = Coefficient of viscosity of the boundary layer 

p = density of the gelatin 

C^Cj = dimensionless constants of proportionality 

This equation has the solution: 

v = 
/        CvpXexp/        A   \     CVM 

where 

v0 = striking velocity 

m = mass of the sphere 

x = penetration depth 

If the centimeter-gram-second (cgs) measure system is used, 

Cj   = 0.15 (dimensionless) 

Cy/i/b   = 4705 gm/cnr- sec 

p = 1.07 gm/cnr 

Other parameters are dependent on the projectile (area, mass, striking velocity). From 
these equations one may derive other relationships (e.g., energy deposit versus depth of penetration) 
which are useful in accessing weapons effects on personnel targets. 
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A MATHEMATICAL MODEL EOR ASSESSING WEAPONS EFFECTS 
FROM GELATIN PENETRATION BY SPHERES 

I.        INTRODUCTION. 

For many years the majority of ballistics testing of antipersonnel projectiles has been 
in 20% gelatin gel1,2. Gelatin is used for two reasons; (I) it simulates the retarding properties of 
skeletal muscle fairly well, and (2) it may be cast into transparent blocks. The latter property is 
important because it allows one to take high-speed motion pictures of the penetrating missile for 
retardation studies. Also, one may later observe the permanent damage without disrupting the 
block. 

However, even the highly efficient testing now possible with gelatin has two major 
drawbacks. First, laboratory experiments are expensive when compared to analytical paper studies - 
a firing program occupies large amounts of time and manpower, and the resources spent apply only 
to the weapon tested. Second, one must have designed and faoricated the projectile in order to test 
it. 

Such a "cut-and-try" method involving redesigning and retesting is a very inefficient 
way to build weapons. The ideal evaluative procedure is one in which the gelatin 
penetration/retardation performance of a projectile could be predicted fron its physical 
characteristics. Conversely, the same models which allow prediction of performance could be used 
to design projectiles possessing the desired terminal, soft-target effects within the constraints placed 
on the weapon system. 

An integral part of most weapons effectiveness analyses - and therefore the most 
common measure of antipersonnel effect - is the probability of incapacitating an infantry soldier, 
given a random hit. or P(I/H). It has recently been shown that P(I/H) is closely correlated to the 
expected kinetic energy deposit (EKE) in the "average" soldier struck at random by a particular 
projectile.3 The EKE from random hits on actual enemy soldiers cannot be measured: but EKE may 
be approximated by: 

Xr 

I 
vmax 

EKE=/ F(x)P(x)dx (j) 

where F(x) is the retarding force on the projectile as a function depth of penetration, x. into a 207r 
gelatin block, Pfx) is the probability that the projectile would still be within the "average" soldier at 
depth x, given a random hit. and xnlax is the maximum gelatin penetration depth of the projectile, 
F(x) is usually calculated from time-penetration data derived from high-speed movies of gelatin 
impacts. However, if the gelatin retardation could be predicted from a mathematical model, then 
the predicted F(x) could be used to calculate EKE. Since P(x) is already known. EKE's derived in 
this manner would require no firing. In fact, EKE's could be predicted for purely hypothetical 
projectiles. 

The purpose of this report is to develop a generalized mathematical model of gelatin 
retardation for the simplest type of projectile, a nondeforming sphere. The use of a nondeforming 
sphere for the pilot model eliminates the orientation dependence and keeps missile characteristics 
constant during penetration. 

Preceding page blank 

 ^agniiiMMiiiiiiMfciiiii"     - -—- — - -   - -   -    -  '■    '■'■   



'mmmmimmmmmmmmmmmmmmmmmmmmiwA^mmmmmmmmimmHmmKmmmmKKKl&tKKKtKKKKttk 

II.      RESULTS. 

In this section we will develop a mathematical model of the retardation of a 
nondeforming sphere in 20% gelatin. The gelatin is thixotropic; that is, it may be transformed from 
its elastic solid state (gel) to a viscous liquid state (sol) by the application of pressure. Thus the 
front surface of the penetrating sphere is presumed to be in contact with a thin layer of viscous 
liquid back to the point where the medium separates from the sphere and a cavity begins to form. 
The last bit of penetration, where the velocity (and pressure) drops below that which will liquefy the 
gel, is shortened because the sphere is penetrating an elastic solid instead of a viscous liquid. This 
effect will be neglected because the amount of energy remaining in the sphere at that point is 
negligible compared to the striking energy and, for the most part, it is the deposit of energy with 
which we are really concerned. 

The relevant parameters associated with both the sphere and the gelatin, and the units 
of mass M, length L, and time T in which they are expressed, are as follows: 

For gelatin: 

• Density, p(M/L3) 

" Coefficient of viscosity, n (M/LT) 

' thickness of the liquid boundary layer, b (L) 

• retarding force, F (ML/T"-) 

For the sphere: 

• mass, m (M) 

. presented area, A \hc) 

• velocity, v (L/T) 

• retarding force, F (ML/T") 

Notice that the common parameter is the retarding force. It determines, of course, the deceleration 
of the sphere and also the coefficient of viscosity and thickness of the boundary layer in gelatin. 

We will use dimensional analysis to initiate the derivation of the model. First we form 
the dimensionless product: 

M 0L0T0 = maiAa2vVVV6Fa7 
(2) 

where the a's are the unknown powers to which the variables are to be raised to make the product 
dimensionless. If the dimensions of the seven variables are put in place of the variables in equation I 
and the powers of M, L, and T collected, the following results: 

M oLoTo = M
a]+a4 + a5 + a7L

2a2 + a3-3a4-a5 + a6","a7T-a3-a5-2a7 

■  M - - ■■■  



Since the powers of each variable on both sides of the equation must be equal, we have three 
equations in seven unknowns. Three of the variables, therefore, may be expressed in terms of the 
remaining four. Since we are to generalize for all spheres, we choose to solve for a,, a2, and ^ 
which are the exponents of the properties describing the sphere, m. A, and v. 

Thus 3]    =   -34-35-37 

32  ^    2   a4 + a5- 2 a6+ 2 a7 

a3  = -35-2a7 

Substitution into equation 1 yields 

M0L0T0 = m 34-^5-37 Af
a4+a5-Ta6 + fa7v-a5-2a^a4/5ba6Fa7 

These four terms are the dimensionless variables that we were seeking. 

Refer to these terms as density, viscosity, boundary layer and force terms, respectively 
(because each of these parameters is associated with only one term). Dimensional analysis does not 
give us the form of the relationship among these terms. It might be linear, exponential, logarithmic, 
etc However, it is reasonable to assume that the force on the missile is primarily due to an inertia) 
component, corresponding to the mass of the gelatin which is moved aside as the missile penetrates, 
and a viscous component due to the internal friction of the sol (liquid). It is also reasonable to 
assume that the two components are linearly additive. However, in the above dimensionless terms 
we have the force term plus three terms - not two. To see how to obtain an inertial and a viscous 
component of force, we examine the definition of viscosity. 

Imagine that we have two plates of surface area a. Between these plates is a viscous 
liquid of coefficient of viscosity n (as in Figure 1). The distance separating the two plates is b. If the 
bottom plate is motionless and the top plate is moving with velocity v, the viscous force resisting 

that motion is 

F = jiav/b (3) 

^rt- 

Figure 1. Shearing of a Viscous Liquid 



By analogy with equation 3 we expect the dimensionless viscous force term to be 
directly dependent on the viscosity n and inversely dependent on the boundary layer thickness b. 
This requirement is met if we let the viscous force term be expressed by the viscous term divided by 
the boundary layer term. Thus the total force may now be expressed as the sum of the viscous and 
inertial force terms, or 

(4) 

where Cv and Cj are proportionality constants for the viscous and inertial terms respectively. Notice 
that since all bracketed terms in equation 4 are dimensionless, Cv and Cj are dimensionless 
constants. Solving equation 4 for force gives us: 

F = Cv~v + C1pAv2 (5) 

Equation 5 is the generalized form of Resal's Law. By Newton's formulation the force 
is defined as the mass times the acceleration (or deceleration in this case, since it is negative); or, if x 
equals displacement and t equals time, 

F = -mdv/dt = -mdv/dx • dx/dt = -mvdv/dx (6) 

Combining equations 5 and 6, we get 

AM   ^    A dv/c^-C^-Cp? v (7) 
mb        m 

or 
dv/dx = -KpKjV 

where K| and KT are constants. It is clear that, since the sphere is considered nondeforming, A and 
m are constant. The gelatin is considered incompressible, making p a constant and limiting the 
model's applicability to velocities less than the velocity of sound in the gelatin. However, as was 
stated before, M and b are not constant. Let us assume that each is strictly proportional to velocity; 
i.e., 

M    =    C, v 

and b    -    CT v. 

\     1   fi 
/    t>= C2 

The ratio /i/b would be constant, then, and must be kept as a ratio if it is later incorporated as a constant 
into other expressions. Separating the variables in equation 7 and integrating from v = v at x = o t^ 
v = Vx at displacement x yields 

10 
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o 0 

dx 

— ln(K1+K,v) 

or 

K, +K2vx=(K1+K2v0)e     ' 

/ C^M   \exp/ A     \ 

qpb 

(8) 

At the maximum penetration distance, xmax, where vx = 0, equation 8 reduces to 

Ir 

max- 

m 
max CjpA '"(■^) 

pbv0 
The dimensioniess quantity is a form of Reynold's number. 

(9) 

The genera! equation - i.e., penetration depth x as a function of tirrn*. of the form of 
equation 9 - is obtained by integrating equation 4 with recpect to time. That is, combining equations 
5 and 6 again, we get 

-dv/dt = KI v + K^v2 

The variables are separated and the equation is integrated; 

J       K1v + K,v2      7 
dt 

where v0 is the initial velocity and Vj the velocity at time t. This gives us 

(Kl+K2vo)vt in 
(Kl+K2vt)v0 

= -K.t 

■    ■■■■  _. ^- I— 
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which we solve for vt. 

dx 
Vt="dT 

(1+^)^-^ 

Integrate again for x as a function of tiue. 

xdx = 
v0dt 

/,*2\        K.t     K2 
'0 (1+K7Jv°el-K7v° 

This yields 

K2x + K1t= In 
/,     K2     \   K.t      K2 

Exponentiate, then solve for x. 

x = ^ta[l+^v0  (l-e-^1)] 
or 

x = in 
CjpA [■^(-^•)] (10) 

Notice that equation 10 reduces to equation 9 at t = 00"*x= xmax. From equation 9 it may be seen 
that if the above assumptions are justified a plot of A\mSiXlm versus In (v0) would be a smooth 
curve for data on any nondeforming spheres. Penetration data (xrnax) were available for a variety of 
spheres made of steel, tungsten, and hardened lead ranging from 0.85 grains to 19 grains in mass. 
From the In (v0) curve an estimate was made of Cj. Equation 9 was put into the following form: 

/ clPAxmax 
Y = exp  I - 

m 

CiPbv0 

CVM 
(9a) 

C| may now be considered known so Y may be calculated and plotted against v0 as in figure 2. The 
slope of the regression line yields an estimate of the remaining constant, Cv/ii/b, by means of the 
least-squares-fitted line. Estimates of the constant parameters obtained from these data are: 

Ci  = 0.15 

also 
Cy/i/b   = 4705 grams/cm2 sec 

p =  1.07 grams/cm3 

12 
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The remaining quantities, mass, velocity, etc., are variables which may be set at any value. If they 
are expressed in *he cgs measurement system, then the results will be in that system also. 

A 
O 

() So      400      600      800      1000     1200     MOO     1600     1800     2000 

Vc (M/S) 

Figure 2. Scaled Penetration versus Striking Velocity 

As mentioned in the introduction, any function of penetration depth or time 
associated with gelatin penetration by svhercs may be calculated from Resal's Law. This includes 
energy deposit, such as EKE, or rate of energy deposit, such as might be required for more complex 
functions of energy distribution. 

III.     CONCLUSIONS. 

The generalized Resal's Law for penetration of gelatin by spheres has been shown to be 
sufficiently accurate to be used to derive the EKE, and therefore P(I/H), for a sphere of any size, 
mass, and striking velocity. It could be used in optimizing the design of weapons such as the US 
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Claymore Mine (which, when detonated, launches a large number of spheres from the face of a 
curved slab of high explosive). These encouraging results stimulate us to explore the following 
possible extensions of the effort: 

A. Implement a computer algorithm for deriving Resal's Law parameters from 
time-penetration data. This method would have two advantages over the total penetration method 
used in the preceding section of this report: greater accuracy because of the ability to neglect the 
final elastic portion of penetration, and greater generality through the ability to use data on 
projectiles which do not stop in the block, 

B. Apply the same or a very similar model to data on cubes and irregular (but "chunky") 
fragments in order to calculate EKE and P(I/H) for those projectiles. 

C. Extend the model to incorporate changing presented areas (and perhaps changing 
"constant" parameters) due to tumbling of nondeforming bullets. 

The application to weapons design in accomplishing the latter two goals is obvious. 

14 
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