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ABSTRACT

In speech recognition applications, it is often desirable to
make a gross characterization of the shape of the spectrum of

a particular sound. The autocorrelation method of linear

predi tion analysis leads to an all-pole approximation to the
signal spectrum. Hence an LPC analysis using two poles
produces one possible gross characterization. The two poles

are computed as the roots of a quadratic equation whose
coefficients are the linear prediction parameters, which are
simple functions of the autocorrelation coefficients RO, Rl' and
R2. The poles are either both real or form a conjugate pair in
the z plane. This fact, together with the exact positions of
the poles, is particularly useful in describing certain gross
characteristics of the spectrum. The spectral dynamic range of
the two-pole spectrum and the normalized minimum error are
suggested as more suitable substitutes for the two-pole bandwidths

in interpreting the information supplied by the model for the

purpose of spectral characterization.
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I. INTRODUCTIOR

In the analysis of speech signals it is often desirable
to make gross characterizations of speech spectra. This is
useful in speech recognition for the purposes of segmentation
as well ¢s the general classification of the different sounds.
In the past, gross spectral characterizations have been
obtained by computing parameters that depended on the energy
contained in different regions of the spectrum, Other methods
have employed measurements of zero crossing rates and zero
crossing distances. In this paper we describe a method for the

gross characterization of speech spectra using a simple linear

prediction model.

It is well known that in linear prediction the signal
spectrum is modele ~r approximated by an all-pole spectrum :
(1,2]. The number of poles in the approximate spectrum is
arbitrary and is set to different values depending on the

sampling frequency of the signal and on the particular

application, For example, for a 10 kHz sampled signal, a l4-pole
model is now common for the purposes of spectral envelope

estimation and formant extraction. However, if we assume that

our gross characterization is to consist in the poles themselves,

then a l4-pole model contains too much information, and it takes

a relatively long time to compute, since it involves finding the
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roots of a 1l4th degree polynomial. We have found that a two-pole

model is optimal in terms of three things:

(1) ease of computation,
(2) adequacy of representation,
(3) ease of interpretation.

These three points are discussed in the following three sections.

II, TWO-POLE MODEL

The transfer function of the two-pole model is given by

H(z) = A (1)

2

l-alz-l-azz-

where a; and a, are the predictor coefficients, and A is a gain

factor.

The coefficients a; and a, can be computed using either

the autocorrelation or covariance method of linear prediction [1]
Although much of the discussion in this paper also applies to the
covariance method, we shall work exclusively with the
autocorrelation method., In the latter method, a, and a, are

solutionrs to the two equations

ajRp + asR; Ry (2a)

ajR; + a,Ry = R2 (2b)

o o
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where Ry is the ith autocorrelation coefficient of the signal.

The solution of (2) gives:

rl(l-rz)
a; T —— (3a)

teat l_rlz

2
r,-r
and a, = -—jL-QL—— (3b)
2
l-rl

) ! Ri .
where r; = R, , 1i=0,1,2, (4)

{ are the normalized autocorrelation coefficients with the

property that |r;|sl. The gain factor A can be shown to he equal

to
; A= \/ RV (5)
where vV = 1-a1r1-a2r2 (6)

is the normalized minimum erior [1].

i The poles of H(z) in the z-plane are simply the roots of

the quadratic polynomial 1--.‘:1]_2-l - azz-2 in the denominator of (1):

s 4 a 2
4 a
21,2 = + —%— +a, . (7)

Depending on the values of a and ay, the poles z) and z, are
w either both real or form a complex conjugate pair. Conversion of

the poles to the s-plene is accomplished by setting
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z = ST = glo+ju)T _ 2" T{h+jf) (8)

where T is the sampling interval, f is the frequency
of the pole,

and h is defined to be the half-bandwidth of the pole,

1f a pole is at z = z, 4jz;, then:

e s Zj
f = > arctan ?; (9)
h = 55 1og (2.2+2.2) (10)
In . r i
where fg = —%— is the sampling frequency.

This completes the specification of the two poles. As can
be seen from the above, the computations are straightforward.
Note that if the model had more than two poles, one would have
to find the roots of a polynomial of degree greater than 2, which

is not a straightforward task.

III1. ADEQUACY OF REPRESENTATION

In this section we show that the two-pole model is adequate

for representing gross characterizations of speech spectra.

The possible positions for the two poles z; and z, form
four distinct cases. Figure 1 shows the four possible
prototype amplitude responses for the two-pole model. Each

amplitude response is computed along the unit circle from z=1 to

=

R Y WA
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TWO-POLE CONFIGURATIONS IN z-PLANE
2-PLANE POLES AMPLITUDE RESPONSE

A. COMPLEX
CONJUGATE -
PAIR

B REAL POLES

1. POSITIVE _
POLES

2. NEGATIVE
POLES

3. POSITIVE
POLE AND -
NEGATIVE POLE

FIGURE 1l: The four possible configurations of the two-pole
model and representative spectra,
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z=-1, which corresponds to a plot from zero frequency to half

the sampling frequency. The first case is that of the familiar

complex conjugate pair. The amplitude response is completely
specified by the frequency and bandwidth of one pole. For the

case of real poles, there are three possibilities. The poles can

By T wemaee

be either both positive, both negative, or one positive and one
negative. A positive real pole (in the z-plane) corresponds to
a pole at zero frequency and indicates energy concentration at

low frequencies. A negative real pole corresponds to a pole at

half the sampling frequency and indicates energy concentration

at high frequencies.

All four prototype cases shown in Figure 1 do occur when
modeling speech spectra. In order to give a flavor of how and
when these four cases occur, we present a few examples in
Figures 2-6. In each of the examples, the speech signal was
low-pass filtered at 4.5 kHz and sampled at 10 kHz. The two-pole
spectrum (i.e. |H(f)|2) is shown superimposed over the actual
speech spectrum being modeled. In each case, the corresponding
cspeech sound is shown along with the pole parameters: f repre-

sents the pole frequency and h the pole half-bandwidth in Hz,

For example, Figure 2b shows the two-pole model for an example
of the sound (¢]. The model has a pair of conjugate poles at

473 Hz with a half-bandwidth of 57 Hz, Figures 2 and 3 show
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FIGURE 2: Examples of sonorant spectra modelled by complex
conjugate pairs of poles. f is the pole frequency and h is the
corresponding half-bandwidth.
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FIGURE 3: Examples of consonant spectra modelled by complex
conjugate pairs of poles.
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examples where the spectrum is modeled by complex conjugate

pole pairs. Figure 3b corresponds to the spectrum of the burst

in the plosive [p]. Note that by simply changing the frequency
. and bandwidth of the conjugate pair of poles, many different

spectral shapes can be accomodated.

Figure 4 shows two examples where the spectrum is modeled
by two positive poles in the z-plane, i.e. both poles are at
zero frequency. 1In Figure 4b, the relatively high energy
at both low and mid frequencies resulted in a model with two
positive real poles, instead of a complex conjugate pair, which

is more common for vowels.

Figure 5 shows two examples where the spectrum is modeled
by one positive and one negative pole in the z-plane, Figqure 5a
! ccrresponds to a vowel~fricative transition while Figure Sb
corvesponds to a voiced fricative. In both cases there is

energy concentration both at low and high frequencies.

Finally, Figure 6 shows an example where the spectrum is
modeled by two negative poles, i.e. both poles are at half the

sampling frequency (5 kHz).

The above examples give a good indication of the adequacy
of representation of the two-pole model for the gross
characterization of speech spectra. Below we discuss how one
interprets results of a two-pole model for segmentation and

broad classification.
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FIGURE 4: Examples of speech spectra modelled by two positive
real poles (i.e. both poles are at zero frequency).
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IV, SEGMENTATION AND BROAD CLASSIFICATION

Using the two-pole model in the recognition of continuous
speech suggests that the spectral characterization described
above be performed at regular closely spaced points throughout
the utterance, producing a multi-parametric aescription of the
signal. The two-pole model for each point can be represented
by the frequencies and bandwidths of the two poles. This type

of representation is reasonable for complex conjugate poles

since there is only one frequency and one bandwicch *o interpret.

The frequency indicates the position of the main region of
energy concentration, and the bandwidth indicates the spread of
energy in that region. However, in the case of real poles,

we have to deal with two possibly distinct frequencies and two
bandwidths., The frequencies are always either zero or equal to
half the sampling frequency, and are easily interpretable, as
shown below. On the other hand, interpretation of two distinct
bandwidths is far from straightforward, especially when the two

frequencies are identical.

We have found that the bandwidth information can be
represented in a more helpful manner in terms of the dynamic
range of the two-pole spectrum and the direction or sign of its

"slope". We define the spectral dynamic range to be the

BBN Report No. 2537 Bolt Beranek and Newman Inc.
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difference in decibels between the highest and lowest amplitude
points on the two-pole spectrum. The slope of the two-pole
spectrum is either positive or negative: It is positive if the
energy is concentrated above the midpoint of the spectrum

(2.5 kHz in our case) and riegative otherwise,

From (1) and (7), it is simple to derive formulas for the

two-pole dynamic range D and the sign S of the two-pole slope.

There are four distinct cases.

Complex conjugate poles:

Zpi2y =

= =~/a 2+a.2
Let a = |z a_“+a, ,

S = = 51qn(ar) .

a(l+a2+2]a,|) 2

ai(l-az)

2
1+a’+2]a,.|
Z |

l+a -2|ar

sign(b),

= = sign(a

(L+a) (1+b) |2

= 10 loglO =37 {1-b)
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If sign(a) # sign(b), let A = |a] = B = |b] ,

then S = -~ sign(a)

2 2
1 A(1+B“) + B(1+A“)
10 log, o 138 [I=A) (1+B) . (11q)

D

It should be clear from the above that, in the case of
complex conjugate poles, the spectrai dynamic ranace D uniquely
specifies the bandwidth of the poles. For real poles, the
spectral dynamic range is an intuitive substitute for bandwidth
information but does not specify it uniquely. The sign of the
spectral slope gives additional useful information only when
the two poles are real with one pole at zero frequency and the

other at half the sampling frequency.

The behavior of the two-pole model when applied at regular
intervals to an utterance is shown in Figure 7. The utterance is
"Has anyone measured nickel concentrations..."” The two-pole
analvsis was performed at 10 msec intervals over 20 msec
Hamming-windowed segments of the waveform. The pole frequencies
are plotted as a single point where they are identical, and as
two points for those frames where one pole is at zero and one is
at 5000 Hz. Note that the scale of the frequency plot is linear
only from 0 to 500 Hz, then logarithmic to 5000 Hz, Between the
pole frequency and dynamic range plots, the frames in which the

two-pole slope is positive are indicated.
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FIGURE 7: Two-pole frequency, "slope", and spectral dynamic
range at 10 msec intervals in the utterance "Has anyone
measured nickel concentrations..."
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Many segment boundaries, particularly those where a change
L.l of manner of articulation takes place, are clearly marked by
abrupt or rapid charges in the two-pole frequencies, which
often switch from one of the four prototype models to another.
Every such switch is a marker of spectral change. but not every
one will mark a segment boundary. For example, at both the
beginning and end of the [z] at t=0.08 to 0.14 seconds, there
is a frame in which both poles are at 0, while the middle of
the [z] has a string of frames with one pole at 0 and one at
5000 Hz., This is a common pattern of transition to and from
a fricative. Of course, plosives, particularly unvoiced ones,
usually show transitions corresponding to the burst-aspiration-
phonation sequence, as would be expected. See the two examples

of (k] around t=0.95 and t=1.10 and the [t] example around t=1,50.

Many, but not all, sonorant sequence transitions exhibit
a rapid change in the two-pole frequency, which tends to follow
the first formant if it is dominant, or lies between F1 and F2
if F2 is close enough to Fl. See for example t=0.35, t=0.50,

and t=0.85.

Not all segments with conjugate poles are sonorants, and
vice versa., For example, [i] around t=0.25 is modeled with two

real poles, in the way also illustruted by Figure 4b. It is also
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common for nasals to be modeled by two real poles, as the [n]
around t=9,45, or very low-frequency coniugate poles, as the

(m] immediately following,

Any occurrence of a pole at 5000 Hz indicates strident

frication, or an equivalent burst, as do conjugate poles above

about 1 kHz. Most examples of (s], [§], and [z] will show

this during at least some of theiir extent.

The two-pole dynamic range is quite high during nasals,
because of the dominance of the low first formant. This is
quite a reliable indication. Conversely the dynamic range is
usually quite low during unvoiced fricatives. The measure is
not quite as reliable during voiced fricatives. A positive
two-pole slope is, of course, a strong indication of strident

frication.

The gross characterizations of speech spectra given by
the two~pole model are certainly not sufficient in and of
themselves to segment and roughly label continuous speech, but
they do pcint to a large proportion of segment boundaries.
Together with other obvious measurements such as energy and
voicing, they form a powerful combination for the initial

stages of speech recognition.
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V. AN ALTERNATIVE MEASURE TO THE SPECTRAL DYNAMIC RANGE

The two-pole dynamic range i: a rather intuitive measure
of one aspect of spectral shape, that is, it is easily
visualized from a graph of the spectrum. A clearly related
(but easier to compute) measure is the normalized minimum error
V, given by (6). It can be shown that the measure V is equal
to the ratio of the geometric mean of the two-pole spectrum
to its arithmetic mean (see (1], pp. 109-115). It has been
known for some time that the ratio of the geometric mean to the
arithmetic mean is a good measure of the spread of the data.
For smooth spectra (as is the case for a two-pole spectrum) the
spectral dynamic range is also a good measure of the spread of
the spectrum. It is not surprising, therefore, that the two
measures should behave in a similar fashion. This similarity
is illustrated in Figure 8, which shows 200 values of V versus
D for the two seconds of continuous speech shown in Figure 7.
The continuous curve also plotted in Figure 8 is that of Vm, the
absolute lower bound on V for each value of D (see [l1], pp. 1ll6-
120) . The data points themselves fall within a very well
defined region, suggesting for two-pole spectra a tighter
lower bouna (and also an upper bound) than the vV, versus D

curve shown.
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FIGURE 8: Two-pole normalized error vs. spectral dynamic range

for the 200 data points in the utterance in Fiqure 7.

The solid

curve is Vm, the absolute lower bound on the normalized error.,
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w4

Since the normalized error V is somewhat easier to compute

! than the spectral dynamic range D, and since it leads to very
-3 similar results, our suggestion here is that it might be
..

preferable to use V in actual implementations.

1 {1 21
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