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ABSTRACT 

In speech recognition applications, it is often desirable to 

make a gross characterization of the shape of the spectrum of 

a particular sound.  The autocorrelation method of linear 

predi tion analysis leads to an all-pole approximation to the 

signal spectrum.  Hence an LPC analysis using two poles 

produces one possible gross characterization.  The two poles 

are computed as the roots of a quadratic equation whoso 

coefficients are the linear prediction parameters, which are 

simple functions of the autocorrelation coefficients R , R , and 

R .  The poles are either both real or form a conjugate pair in 

the z plane.  This fact, toqether with the exact positions of 

the poles, is particularly useful in describing certain gross 

characteristics of the spectrum.  The spectral dynamic range of 

the two-pole spectrum and the normalized minimum error are 

suggested as more suitable substitutes for the two-pole bandwidths 

in interpreting tne information supplied by the model for the 

purpose of spectral characterization. 
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suggested as more suitable substitutes for the two-pole bandwidths 
in interpreting the information supplied by the model for the 
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I.  INTRODUCTION 

In the analysis of speech signals it is often desirable 

bo make gross characterizatijns of speech spectra.  This is 

useful in speech recognition for the purposes of segmentation 

as well cs the general classification of the different sounds. 

In the past, gross spectral characterizations have been 

obtained by computing parameters that depended on the energy 

contained in different regions of the spectrum.  Other methods 

have employed measurements of zero crossing rates and zero 

crossing distances.  In this paper we describe a method for the 

gross characterization of speech spectra using a simple linear 

prediction model. 

It is well known that in linear prediction the signal 

spectrum is modelr  ->r approximated by an all-pole spectrum 

[1,2],  The number of poles in the approximate spectrum is 

arbitrary and is set to different values depending on the 

sampling frequency of the signal and on the particular 

application.  For example, for a 10 kHz sampled signal, a 14-pole 

model is now common for the purposes of spectral envelope 

estimation and formant extraction.  However, if we assume that 

our gross characterization is to consist in the poles themselves, 

then a 14-pole model contains too much information, and it takes 

a relatively long time to compute, since it involves finding the 

mmm ■Martin i i   
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roots of a 14th degree polynomial.  We have found that a two-pole 

model is optimal in terms of three things: 

(1) ease of computation, 
(2) adequacy of representation, 
(3) ease of interpretation. 

These three points are discussed in the following three sections. 

II.  TWO-POLE MODEL 

The transfer function of the two-pole model is given by 

H(z) = 
— 1     —5 

1-a^  -a2Z 
(1) 

where a^^ and a2 are the predictor coefficients, and A is a gain 

factor. 

The coefficients a1  and a2 can be computed using either 

the autocorrelation or covariance method of linear prediction [1], 

Although much of the discussion in this paper also applies to the 

covariance method, we shall work exclusively with the 

autocorrelation method.  In the latter method, al  and a- are 

solutions to the two equations 

alR0 + a2Rl = Rl 

alRl + a2R0 = R2 

(2a) 

(2b) 

MIMHMHMM 
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where R^ is the ith autocorrelation coefficient of the signal. 

The solution of (2) gives: 

TC1(1-X2) 

(3a) 

and a, = ——±— (3b) 

al = 
^-l2 

a2  = 
r2-r1

2 

^-l2 

ri  = 
Ri 

-R— .     1-0,1,2, where        ri = -^— ,  i«0,l,2, (4) 

are the normalized autocorrelation coefficients with the 

property chat |ri|sl.  The gain factor A can be shown to be equal 

to 

A - YV^ (5) 0 

where        v - l-ajT.-a-r, (6) 

is the normalized minimum error [11. 

The poles of H(z) \n  the z-plane are simply the roots of 

-1      —2 
the quadratic polynomial l-a^  - a2z   in the denominator of (1) : 

'V an 2 + a0 . (7) i» 2    2      V  4     2 

Depending on the values of a, and a2, the poles z-,   and Z2 are 

either both real or form a complex conjugate pair.  Conversion of 

the poles to the s-plene is accomplished by setting 

■■■IIHMII ■ *• ■*— 
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z = esT = e(o
+j«)T = 02nT(h+if) (8) 

where    T is the samplinq interval, f is the frequency 
of the pole, 

and      h is defined to be the half-bandwidth of the pole. 

If a pole is at z = z^jz^, then: 

f = 17 arctan 
zj 

-£  log (zr +zi^) 

where fs = 
1 

(9) 

(10) 

is the sampling frequency. 

This completes the specification of the two poles.  As can 

be seen from the above, the computations are straightforward. 

Note that if the model had more than two poles, one would have 

to find the roots of a polynomial of degree greater than 2, which 

is not a straightforward task. 

III.  ADEQUACY OF REPRESENTATION 

■ 

In  this   section we  show   that   the   two-pole  model   is   adequate 

for  representinq  qross  characterizations  of  speech  spectra. 

The  possible  positions   for   the   two  poles   z-,   and   z2   form 

four distinct  cases.     Figure   1   shows   the   four  possible 

prototype  amplitude  responses   for   the   two-pole  model.     Each 

amplitude  response   is  computed  along   the  unit  circle   from   z=l   to 

.. 
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TWO-POLE CONFIGURATIONS   IN z-PLANE 
z-PLANE   POLES AMPLITUDE    RESPONSE 

A.   COMPLEX 
CONJUGATE 

PAIR 

a REAL POLES 

I. POSITIVE 
POLES 

2. NEGATIVE 
POLES 

3. POSITIVE 
POLE AND 

NEGATIVE POLE 

V2 

FIGURE 1: The four possible confiqurations of the two-pole 
model and representative spectra. 
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D 
z=-l, which corresponds to a plot from zero frequency to half 

the sampling frequency.  The first case is that of the familiar 

complex conjugate pair.  The amplitude response is completely 

specified by the frequency and bandwidth of one pole.  For the 

case of real poles, there are three possibilities.  The poles can 

be either both positive, both negative, or one positive and one 

negative.  A positive real pole (in the z-plane) corresponds to 

a pole at zero frequency and indicates energy concentration at 

low frequencies.  A negative real pole corresponds to a pole at 

half the sampling frequency and indicates energy concentration 

at high frequencies. 

All four prototype cases shown in Fiqure 1 do occur when 

modeling speech spectra.  In order to give a flavor of how and 

when these four cases occur, we present a few examples in 

Figures 2-6.  In each of the examples, the speech signal was 

low-pass filtered at 4.5 kHz and sampled at 10 kHz.  The two-pole 

spectrum (i.e. |H(f)|~) is shown superimposed over the actual 

speech spectrum being modeled.  In each case, the corresponding 

speech sound is shown along with the pole parameters:  f repre- 

sents the pole frequency and h the pole half-bandwidth in Hz. 

For example. Figure 2b shows the two-pole model for an example 

of the sound [t].     The model has a pair of conjugate poles at 

473 Hz with a half-bandwidth of 57 Hz.  Figures 2 and 3 show 
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2 3 
FREQUENCY(kHz) 

(a) 

FREQUENCY (kHz) 
(b) 

FIGURE  2:   Examples  of  sonorant  spectra  modelled by  complex 
conjugate  pairs  of  poles.     f   is   the  pole   frequency  and  h   is   the 
correspondinq half-bandwidth. 
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FREQUENCY (kHz) 

(a) 

1 AA -h ̂ A 
[p] 

f= 1649 Hz 
h= 365Hz w Ml/] A- J\ 
V v/ T/T 1 » 

W 
1 2 3 

FREQUENCY (kHz) 
(b) 

FIGURE   3:   Examples   of  consonant  spectra  modelled by  complex 
conjuqate  pairs  of  poles. 
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examples where the spectrum is modeled by complex conjugate 

pole pairs.  Figure 3b corresponds to the spectrum of the burst 

in the plosive [p].  Note that b> simply changing the frequency 

and bandwidth of the conjugate pair of poles, many different 

spectral shapes can be accomodated. 

Figure 4 shows two examples where the spectrum is modeled 

by two positive poles in the z-plane, i.e. both poles are at 

zero frequency.  In Figure 4b, the relatively high energy 

at both low and mid frequencies resulted in a model with two 

positive real poles, instead of a complex cor.jugate pair, which 

is more common for vowels. 

Figure 5 shows two examples where the spectrum is modeled 

by one positive and one negative pole in the z-plane.  Figure b^ 

corresponds to a vowel-fricative transition while Figure 5b 

corresponds to a voiced fricative.  In both cases there is 

energy concentration both at low and high frequencies. 

Finally, Figure 6 shows an example where the spectrum is 

modeled by two negative poles, i.e. both poles are at half the 

sampling frequency (5 kHz). 

The above examples give a qood indication of the adequacy 

of representation of the two-pole model for the gross 

characterization of speech spectra.  Below we discuss how one 

interprets results of a two-pole model for segmentation and 

broad classification. 

-■      .  
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2      3      4 
FREQUENCY (kHz) 

(a) 

12       3       4       5 
FREQUENCY (kHz) 

(b) 
FIGURE 4: Examples of speech spectra modelled by two positive 

real poles (i.e. both poles are at zero frequency) . 
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FREQUENCY (kHz) 
(a) 

1      2      3 
FREQUENCY(kHz) 

(b) 
FIGURE 5: Examples of speech spectra modelled by one positive 

(Ü Hz) and one negative (5 kHz) pole. 
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FREQUENCY (kHz) 

FIGURE 6: Example of a speech spectrum modelled by two negative 
poles (both at 5 kHz). 

12 

■MBB 



Hq*«IWl  « !   Wi!   9  l   VW NW<IBPV«!i^H9^ll|JVll""llll'Mii-J WPIHHIIW II.  HJHiW^^nR.!,     I W- ■wwr»w^    ■ mwni^^iw^w^wv^wpwflwpmwpmi .ilJ»"J»W.iWWPt 

.. 

BBN Report. No. 2537 Bolt Beranek and Newman Inc. 

IV.  SEGMENTATION AND BROAD CLASSIFICATION 

. 

Using the two-pole model in the recognition of continuous 

speech suggests that the spectral characterization described 

above be performed at regular closely spaced points throughout 

the utterance, producing a multi-parametric aascription of the 

signal.  The two-pole model for each point can be represented 

by the frequencies and bandwidths of the two poles.  This type 

of representation is reasonable for complex conjugate poles 

since there is only one frequency and one bandwicch to interpret. 

The frequency indicates the position of the main region of 

energy concentration, and the bandwidth indicates the spread of 

energy in that region.  However, in the case of real poles, 

we have to deal with two possibly distinct frequencies and two 

bandwidths.  The frequencies are always either zero or equal to 

half the sampling frequency, and are easily interpretable, as 

shown below.  On the other hand, interpretation of two distinct 

bandwidths is far from straightforward, especially when the two 

frequencies are identical. 

We have found that the bandwidth information can be 

represented in a more helpful manner in terms of the dynamic 

range of the two-pole spectrum and the direction or sign of its 

"slope".  We define the spectral dynamic range to be the 

13 
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difference in decibels between the highest and lowest amplitude 

points on the two-pole spectrum.  The slope of the two-pole 

spectrum is either positive or negative:  It is positive if the 

energy is concentrated above the midpoint of the spectrum 

(2.5 kHz in our case) and negative otherwise. 

From (1) and (7), it is simple to derive formulas for the 

two-pole dynamic range D and the sign S of the two-pole slope. 

There are four distinct cases. 

Complex conjugate poles;  zi»z2 = ar"^ai 

Let a = |z| = ->/ar
2+ai

2  , 

Then: 

If 

S = - sign(a ) . 

a  < r' 
2a' 

If *rl S 

l+a' 

D = 10 log 

2a 

10 
a(H-a2^2|ari ) 

1+a' 

D = 10 log 10 

ai(l-a') 

1+a +2|a. 

l+a':-2 a. 

Real poles;  z, = a,  z2 = b 

If  sign(a) = sign(b), 

S = - signla^. 

D = 10 log10 
O+aMl+b) 
(1-aWl-M 

(11a) 

(lib) 

(lie) 

(lid) 

(lie) 

• - 
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.   . 

If sign(a)   #   sign(b)#     let    A =   |a|   2  B =   |b 

then S =  -•  sign (a) 

D =  10  log10 JJX 
A(l+B2)   +_B(1+A2) 

(1-A) (l+B)- (llg) 

It should be clear from the above that, in the case of 

complex conjugate poles, the spectral dynamic ranne D uniquely 

specifies the bandwidth of the poles.  For r^al poles, the 

spectral dynamic range is ^n intuitive substitute for bandwidth 

information but does not specify it uniquely.  The sign of the 

spectral slope gives additional useful information only when 

the two poles are real with one pole at zero frequency and the 

other at half the sampling frequency. 

The behavior of the two-pole model when applied at regular 

intervals to an utterance is shown in Figure 7.  The utterance is 

"Has anyone measured nickel concentrations..."  The two-pole 

analysis was performed at 10 msec intervals over 20 msec 

Hamming-windowed segments of the waveform.  The pole frequencies 

are plotted as a single point where they are identical, and as 

two points for those frames where one pole is at zero and one is 

at 5000 Hz.  Note that the scale of the frequency plot is linear 

only from 0 to 500 Hz, then logarithmic to 5000 Hz.  Between the 

pole frequency and dynamic range plots, the frames in which the 

two-pole slope is positive are indicated. 
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TWO-POLE 
SLOPE ■ + 

5000-, 

O     (LOG) 

oSx   500H 
Q-UJ ^' 

£ (LINEAR) 

0J 

r> 
ri 

/j n A 

r- 

r-^ 
r 

.2 .4 .6 • 8 1.0 1.2 l.« 1.'« 
SECONDS 

I  8 

FIGURE  7:   Two-pole   frequency,   "slope",   and  spectral  dynamic 
range at  10 msec  intervals   in  the  utterance   "Has  anyone 
measured  nickel  concentrations..." 
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. 

Many segment boundaries, particularly those where a change 

of manner of articulation takes place, are clearly marked by 

abrupt or rapid changes in the two-pole frequencies, which 

often switch from one of the four prototype models to another. 

Every such switch is a marker of spectral change, but not every 

one will mark a segment boundary.  For example, at both the 

beginning and end of the [z] at t=0.08 to 0.14 seconds, there 

is a frame in which both poles are at 0, while the middle of 

the [z] has a string of frames with one pole at 0 and one at 

5000 Hz.  This is a common pattern of transition to and from 

a fricative.  Of course, plosives, particularly unvoiced ones, 

usually show transitions corresponding to the burst-aspiration- 

phonation sequence, as would be expected.  See the two examples 

of [k] around t=0.95 and t-1.10 and the [t] example around t=1.50, 

Many, but not all, sonorant sequence transitions exhibit 

a rapid change in the two-pole frequency, which tends to follow 

the first formant if it is dominant, or lies between Fl and F2 

if F2 is close enough to Fl.  See for example t=0.35, t=0.50, 

and t=0.85. 

Not all segments with conjugate poles are i.onorants, and 

vice versa.  For example, [i] around t=0.25 is modeled with two 

real poles, in the way also illustrated by Figure 4b.  It is also 

17 
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conunon for nasals to be modeled by two real poles, as the [n] 

arouna t=0.45r or very low-frequency conjugate poles, as the 

[m] immediately following. 

Any occurrence of a pole at 5000 Hz indicates strident 

frication, or an equivalent burst, as do conjugate poles above 

about 1 kHz.  Most examples of [s], [s],  and [z] will show 

this during at least some of theii pxtent. 

The two-pole dynamic range is quite high during nasals, 

because of the dominance of the low first formant.  This is 

quite a reliable indication.  Conversely the dynamic range is 

usually quite low during unvoiced fricatives.  The measure is 

not quite as reliable during voiced fricatives.  A positive 

two-pole slope is, of course, a strong indication of strident 

frication. 

The gross characterizations of speech spectra given by 

the two-pole model are certainly not sufficient in and of 

themselves to segment and roughly label continuous speech, but 

they do pcint to a large proportion of segment boundaries. 

Together with other obvious measurements such as energy and 

voicing, they form a powerful combination for the initial 

stages of speech recognition. 

18 
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V.  AN ALTERNATIVE MEASURE TO THE SPECTRAL DYNAMIC RANGE 

The two-pole dynamic range ia a rather intuitive measure 

of one aspect of spectral shape, that is, it is easily 

visualized from a graph of the spectrum,  A clearly related 

(but easier to compute) measure is the normalized minimum error 

V, given by (6) .  It can be shown that the measure V is equal 

to the ratio of the geometric mean of the two-pole spectrum 

to its arithmetic mean (see [1], pp. 109-115).  It has been 

known for some time that the ratio of the geometric mean to the 

arithmetic mean is a good measure of the spread of the data. 

For smooth spectra (as is the case for a two-pole spectrum) the 

spectral dynamic range is also a good measure of the spread of 

the spectrum.  It is not surprising, therefore, that the two 

measures should behave in a similar fashion.  This similarity 

is illustrated in Figure 8, which shows 200 values of V versus 

D for the two seconds of continuous speech shown in Figure 7. 

The continuous curve also plotted in Figure 8 is that of V , the 

absolute lower bound on V for each value of D (see [1], pp. 116- 

120) .  The data points themselves fall within a very well 

defined region, suggesting for two-pole spectra a tighter 

lower bouna (a/id also an upper bound) than the Vm versus D 

curve shown. 
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FIGURE 8: Two-pole normalized error vs. spectral dynamic range 
for the 200 data points in the utterance in Fiqure 7.  The solid 
curve is Vn, the absolute lower bound on the normalized errot. 
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Since the normalized error V is somewhat easier to compute 

than the spectral dynamic range D, and since it leads to very 

similar results, our suggestion here is that it might be 

preferable to use V in actual implementations. 

21 
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