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13, ARSTRACT

The motivation for this thesis originates io research currently being coaducted
at. the USAF Armament Laboratory, Eglin AFB, Florida. These studies concern the per-
formance of an F4-E aircraft in air-to-air combat; the weapon system considered is
an infra-red, heat-seeking missile. The studies fall into two categoriec:

{a) Definition of those regions in the vicinity of a target aircraft which the
attacker must peunetrate in order to attain a probability of killing his opponent
greater thaa zero.

(b) Definition of optimal strategies for the attacker to intercept and penetrate
the high probability of kill (Pg) regions.

In all cases, the target alrcraft 1s considered as passive and unaware of attack.

This paper makes the logical extension to the above research, and attempts to
develop a method by which the capability of the attacker wmay be defined against an
intelligent and evasive target. The primary objective is to obtain regions for both
afrcraft which define or enclose those points in the game state space from which the

tacker can always penetrate to a given probability of kill. These reglons are called
"capture" regions; the converse, for the target, are "escape' repions.

The air-to-air combat encounter {s considerad as a free time, zero sum, nerfect
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13. ABSTRACT (Continued)

Iinformation differential game. The participants’' dynamics are modelled upon an Fé

type aircraft, the game state space Is defined, and the Py regions modelled mathematlcall:
An original extension to classical differential pame theory is then made by which it 1is
shown that partitions of the game spuace into escape and capture regions can bc made

for the simple planavr gawe models, These regions are separated by a boundary vwhicl will
be called a "Py barrier." Obviously, the extent of the regfon from which the attacker

can "capture' a given Py value 18 a measure of his capability against the evasive,
fully-informed target.

The theoretical development 1is applied to two planar pame models. Nuwerical methods
are used to generate optimal trajectories by backward integration from admissable
terminal conditions for the game. These trajectories are analvzed, and partitions, or
Py barriers, are shown to exist. Examples of the escape and capture regions are shown,
within the limits of the graphical techniques currently available.

Two major conclusions are made. From the analytic viewpolnt, the methods developed
show that partitions of the game space are possible for this class of game, Refinement
of these metliods would realize the potential of this form of analysis in defining the
capability of an attacking aircraft in a variety of air combat situations. In the prac-
tical sense, it 1is shown that the particular weapon systen modelled here has severe
limitations when employed agalnst an intelligent enemy. Although the analysis was
vegtricted to two-dimensional maneuver for both aircraft, it is felt that gereralization

. the methods to three dimensions would reinforce the two~dimensional conclusions.,
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Preface

This work is the outcome of my efforts to analyze the capability of
a fighter aircraft equipped with a heat-seeking, ajr«to-air missille in
pursult of an intelligent and evasive target airsraft. Based upon classical
differential game theory, an original method of analysis is developed by
which escape and capture region§ for each airer:ft zmay be defined. The
capablility of the pursuing ailrcraft can then be measured by the extent of
the regions from which it can achieve a specified probability of killing
the target at missile launch. The analysis, and its application to planar
game models, represents the initlal steps toward complete definition of
escape and capture regions for this class of differential ganmes.
. The thesis received 1its original inspiration from stud{es being con~
ducted at the United States Alr Force Armament Laboratory, Eplin AFR,
Qg; Florida. These studies were basically concerned with the capability of
an F4~E in alr-to-air combat against a passive target aircraft, and this
work makes the logical extension.
In concluding the paper, I would like to mention the debts I incurred
during its developuent. My advisor, Professor Cerald M. Anderson of the
Air Force Institute of Technology contributed wuch in originality and
advice. My thanks also go to the staff of the Missile Systems and Analvsis

1 Division of the USAF Armament Laboratory at Eglin, with whom I had the

pleasure of working for some eleven weeks during the crucial phases of

the research.
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Abstract
abELract

The wotivation for this thesis originates in research currently
being conducted at the USAF Armament Laboratory, Eglin AFR, Florida.
These studles concern the performance of an F4-E aircraft in air-to-air
combat; the weapen system considered 1s an infra-red, heat-ssekiag
migsile. The studies fall into two categories:

{(a) Definition of those regions in the vicin: , of a target air-
era®. which the attacker must penetrate in order ¢. attain a prebability
of killing his opponent greater than zero.

“{b) Definition of optimal strategies for the attacker to inter-
cept and penetrate the high probability of kill (Pg) regionms.
In all cases, the targat aircraft is considered as passiva'and unaware
of attack.

This paper makeg the logical extensiorn to the szbove research, and
attempts to develop a method by which the capability of the attacker mav
be define! against an intelligent and evasive target. The primary objec-
tive is to obtain regions for both aircraft which define or enclose those
points in the game state space from which the attacker can always pene-
trate to a given probability of kill. These regions are called "capture"
regions; the converse, for the target, are "“escape" reglons.

The air-to-air combat encounter 1s considercd as a free time, zero
egum, perfect information differential game. The participants’ dynamics
are modelled upia an F4 type aircraft, the gawe state space is defined,
and the Pe regions modelled mathematically. Ap original extemsion to
classical differencial game theory is thien wmade by which it is showm
that partitions of thv pame apace inte escape and centure regiors can
be made for the siwnle planar game models. These rapions are separated

vi
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by a boundary which will be called a "Pg barrier." Obviously, the ex-
tent of the region from which the attacker can "capture"” a given Py
value is a measure of his capability against the evasive, fully-informed
target.

The theoretical development is applied to two planar game models.
Numerical methods are used to generate optimal trajectories by backward
integration from admissable terminal conditions for the game. These
trajectories are analyzed, and partitions, or Py barriers, are shown to
exigt, Examples of the escape and capture regions are shown, within the
limits of the graphical techniques currently available.

.Two major conclusions are made. From the analytic viewpoint, the
methods developed show that vartitions of the game space are possible
for this class of game, Refincment of these methods would realize the
potential of this form of analysis in defining the capability of an
attacking aircraft in a variety of air combat situations. In the prac-~
tical sense, it is shown that the particular weapon system modelled here
has severe limitaticns when employed against an intelligent enemy. Al-
though the analysis was restricted to two-dimensional maneuver for both
aircraft, 1t is felt that generalization of the methods to three dimen-

sions would reinforce the two-dfmensional conclusions.
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I. Introduction

The two alrcraft pursult-evasion problem has received a great deal
of attention frow researchers in recent vears. The basic objective of
the research has been to find analytical or numerical means of evaluating
the effectivencss of one aircraft in competition with another., Many
different situations arise dependent chlefly upon the relative capabili-
ties of pursuer and evader, and the types of airborne weapons employed.

Much of che previous effort han been directed towards obtaining
optimal strategies for pursuer and evader. These strategies arise
divectly from solutions to a given preoblem using differential game theory.
Open, (and, in some cases closed) loop control laws can be obtained which
detine optimal play for each aircraft. However, this appr;ach malkes the
assumption that the pursuer is initfally in a position to force termina-
tion. Alternatively, optimal strategies can be obtained for an aircraft
attacking a passive target. The major failing in this case is that the
resulting strategies are non-optima)l against a target which deviates from
its specified trajectory.

This thesis approaches the pursuit-evasion game in what 18 believed
to be an original manner. The problem is considered as an extension of
the Isaacs "game of kind" (Ref (3)). Termination of the game is defined
when the pursui-p alrcraft reaches a specified value (payoff) at the
terminal time (tf) and is boresizhted on the evader. If the pursuer can
attain o higher payoff than that specifled and maintain boresight, cap-
ture is said to occur. 1If the evader prevents the pursucr reaching the
-on"i;icnn cacapes ia sald to cocuer
extended concept from differential game theorv, the intent of thisz thesis

is to develop a method of partitioning the game stite space into escane
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and capture regions. Definitlon of such regions for a given alrcraft/
weapon system could have a significant fmpact on tactics and design,

The payoff, or value, of the game 1s defined in terms of the pur—~
suer's probability of kill (Pg) if a missile 's launched at tg. Contours
of constant Py are modelled, and the pursuer then attompts to reach as
high a value of Py as possible (with boresight) before firing.

Two constant altitude models of the pursuit—evasion game are
developed, 1in the first -* shich both aircraft are constrained to con-
stant velocity; the second model permits varlable velocity dependent
upon thruat and drag forcea. Chapter 1l introduces the gawe models,
whilé Chapter III presents the theoretical aspects of differential game
theory ewployed Iin the solution approach. Chapter IV then,develops a
method of specifving the admissible end points for the free time differ-
ential game.

Having specified a set of admissible end points, numerical backward
integration 1s used to obtain optimal trajectories. Chapter V presents
the solutions for the constant velocity model, and discusses the means
by which partitions of the game space can be made, Some aspects of the
variable velocity model are considered in Chapter VI, and Chapter VII
presents a general discussion of the results and thelr possible implica-
tions. Conclusions and recommendations are contained in Chapter VITI.

It 1s felt that this rescarch makes several contributions to the
study of differential games and pursuit-evasion problems. As far as is
known, no previous attempts have been made to define escape and capture
regions for this class of game. Thus, the solution method emploved has
some interesting elements of oviginality. Secondly, successful deflini-

tion of escape and capture regions allows a unique wmethod of comparing
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the capabilities of different aircraft, ~v of different weapon gystems.
Although the approach needs much refinement, it has grest potential in

the deaign and tactical application of alrborne weapon systems.
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11, Statement of the Problem

Origins of the Problem

The problem considered here owes its origin to studies in propgress
at the USAF Armament Laboratory. These studies concern the performance
of an F4 type aircraft, equipped with a short-range missile, when emploved
againgt a passive target aircr§ft. Two major areas are considered, Firste
ly, thw definition »f those regions in the vicinity of the target where
the attacker‘'s probability of kill (Py) is greater than zero. Secondly,
the investigation of optimal strategles for the attacker which permit him
to penetrate the PR regions.

The question naturally arises as to the attacker's capability when

the target assumes an intelligent, and hence evasive, role. This is

the problem addressed by this thesis.

Thesis Objectives

The primary objective is8 teo develop a method by which the state space
for a two aircraft pursult-cvasion game may be partitioned into escape and
capture reglons. A capture region is defined as that region containing
all starting points for the game from which the pursuear can exceed a
specified Pg(tg) with boresight. An escape repifon is the converse. The
boundary which separates these reglouns will be defined as a "Py barrier.”

The secondary objective 1s to consider the dependence-cf thrse re=—
glons on the various parameters of the game, and what impact definiticen

of the reglons may have on tactics and design.

Came Sconarlo

The game scenaric has the following essential inpredients:

(a) The dvnamics of both afrcraft are baced upon the T4 with vartahle

&
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individual characteristics,

(b) The pursuer is equipped with a short-xange, heat-seeking, air-
to~aiy missile. The pursuer must be boresipghted on the evader before
firing the missile in order to permit seeker lock-on.

(¢) Regions where the pursuer has a Py > 0 are defined, which the
pursuer attempts to penetrate before firing.

(d) Maneuvering is limiteéd to the horizontal plane.

It is recognized that the restriction at (d) above limits direct
practical application. Hovever, assumlng planar maneuvexrs reduces the
dimensions of the game space, and hence of the solution trajectories,
whicﬁ in turn allows a more simple approach. So great is the problem of
dimension, that the further restriction of comstant velocity is also im~-

posed in the initial analysis.

Aircraft Model

The following assumptions are made in respect of the alrcraft models:

(a) A flat earth with constant graviiacional acceleration.

{b) The aircraft are point masses.

(¢) Thrust is a linear function of velocity, and is tanpent to the
aircraft flight path.

(d) Afrcraft weight is constant.

(e} Afrcraft load factor (n) 1s goveruned by

n<>5 (2-1)
(f) The load factor for lift limited flight ig a linear function
of velocity.
wresented as

(2) The drag polar can he re

4
Cp = Cpy + ky Of + %y Gy (2-2)

(%]
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The aircraft model is presented in detail in Appendix A.

Target Set Model

The target set 1s defined as that region in the vicinity of the
target aircraft where the attacker's Py 1s greater than zero. The model

used in rhis approach is shown in Figure 1 overleaf. The target set 1is

modeled as elliptical contours of constant Py. The point 5000 ft directly

to the rear of the evader has a Py of 1.0. The zero Py contour is an
ellipse of semi-minor axis (a) 3000 ft and semi-major axis (b) 6000 ft
centered at the Py = 1.0 point. Thus, for example, the concentric

ellipse with a8 = 2000 ft and b = 4000 ft represents a Py of 5/9.

State Equetions of Motion g

The dynamic equations are written in a non-rotating frame fixed on

the evader, as shown in Figure 2 (Page 8). The state vector is

X7 4 Pursuer's position in x;-direction
x2 &4 Pursuer's position in x9-direction
x3 A  Pursuer's heading

x;, & Evader's heading

X5 A Pursuer's velocity

xg A4  Evader's velocity

Using the sircraft model developed in Appendix A, the state equa-

tions of motion may then be written
xl " X3C08 X3 ~ xGCOS x4

Xy ™ X.8In x. -~ x.8in %,
2 ) 3 6 4 (2-3)
« glln
X3 -
X5
EUQ

x, =
4 )
6
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M - i (R S a 2 Al 2 As 2 2
Xg = &y T Ajxg t AgXe + ;;5 (up + 1) + ;;— (up + 1)

X6 = Aj + Axxg + Agxg + ﬁ‘.‘; (w2 + 1) + 25 (42 + 1)2

x6 k’cz

£
where up and u, are the pursuer's v} evader's controls respectively.

If the alrcraft velecities ave constant the Eq (2-3) becomes

X} - Vpcos x3 - Veéos X4

Xy = Vpsin x3 = Vgsin x4

. Bup (2-4)
X3 = .‘-’_._
P
ia - Sue
! v
i e ”
where V, and V, are the pursuer and evader velocitles respectively.
Target Set Equatioen
In the selected frame of motion, the target set equation is
Pg = L - (5000 + x; cos x4 + ¥ sin xQ)2 _
2
a
(2--5)

(-x1 sin x4 + %, cos x4)2

7 "
Kt-.al.

where 2 = 3000 ft. The constant "K" defines the eccentricity of the

elliptical contours. In all cases considered, K is set to a value of 2.0,

Bore-sight Condition

The bore-sight condition (x) 1s pluced on the pursuer to enable
acquisition of the tarpet by the missile secker prior to firing. Math-

]
F ' ematically stated it is

iR AR 2n e Gigtr mins s o mapdrgdae moapfiii e <
in

Nl




ke

{
]
]
£
3
]

B R U el bl

Ll

g

AN AR T S T T

AL s o

SO L L

P

R O AT S R Y R WS ST

comn i A RIS YIS B 0 e,

[

CA/MC/73-4

x(x(eg)) = tan x, - %iu -0 (2-6)

Supmary of the Problem Formulation

The variabie velocity model is formulated with a six-dimensional
state vactor; the conastant velocity model with a four-dimensional state
vector. Mathematically, the number of states could be reduced by one
in each case, since a relative heading variable could repilace individual
pursuer and evader headiags. However, there are mathematical advantages
fn golution with the equations in thelr stated form.

The models have the followinpg major restrictions:

'(a) Constraint to motion in a plane is unrealistic, since violent
out-of-plane maneuvers can be expzcted in real air combat.,

{b) The dynamics of the variable velocity model are valid only
for Mach No < 0.9,

The restvictions cestainly limit the practical reality of the re-
sulta, but a simple model of reduced dimension offers, at least initially,
a better opportunity of developing a solution method. Even 1in the
cases congsidered capture/escape reglons are 3-dimensional for the con~
stant velocity model, and 5-dimensional for variable velocity. These
dimensions cause severe practical difficulties in comprehension and

preseatation.

16
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II1. Differential Game Theory

The problem treated in this thesis is focrmulated as a free time,
zero~sum, perfect information differential game, and the first require-
ment is to establish unique solutions for the game. The solution trajec—
tories obtained must then be anslyzed to determine whether the game state
space, G, 1is partitioned into escape and capture regior.s. The purpose
of this chapter is to define this class of games mathematically and to
sumnarize those elaments of differential game theory which are subseaduently
employed. The basis for this theory is contained in references (1), (2)

and (3).

Clags of Game '

The objective of the differential game is to find

min max J = ¢ (x(tg)) (3-1)
u v

subject to the dynamic constraints
x = f(x,u,v,t) , x(tg) = %, (3-2)
and the algebraic terminal constraint

x(x(tg)) = 0 (3-3)
where x is the n-dimensional state vector, u is the pursuer's control
and v is the evader's control. u and v may be subject to constraints.

The aim is to find the contrels u* and v* such that
J{uf,v) < J(uk,v¥) < J(u,v*) (3-4)

If the pailr (u*,v*) can be found, they comstitute a sa’lle point solution

of the game and J(u*,v®) is called the value of the game.

11
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Necessary Conditions for a Solution

The existence of a solution is dependent upon the fact that

win max J{u,v}) = max min J(u,v) {3-5)
u v v u

A necegsary condition for a saddle point solution is that the
Hamiltonian (H) defined as
B(x,Aju,v,t) = ATf (3-6)

nust be minimized over the admissable set of u and wmaximized over the

admissable set of v such that

H* = min max H = max min H (3-73
u v v u
A is the o-dimensional costate vector and P
A=-H (3-8)

subject to the transversality conditions
Aleg) = ¢, (te) + vy, (tg) 3-9

H(tg) = ¢ (cg) + vxe(tg) (3-10)
where v is an arbitrary constant multiplier.

Further, 1f t does not appear expiicitly in Eq (3-6) then H is con-
stant. An important outcome of this condition is that H, ¢ and ¥ are not
functions of t in the problen considered and condition (3-~10) mav then
be written

H(t) = H(tg) = O (3-11)

Eq (3-7) implies that the moximization and minimization of H commute,

which is not true in general. It is true, however, if H 1s separable

into two functions, one of walch fs independent of v, the othexr independent

of u. For the problems considered in this rhesis, f and hence H is
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separable, This insures that the minimizing u and maximizing v provide

a saddle point in H at each point of the optimal path,

Singular Controls

When the controls u and v appear linearly in Eq (3~-6), then the
possibility of solution arcs with singular controls exists. 1In the case
of the comstant velocity model, this situation arises and singular arcs
occur. The necessary and junction conditions for such arcs are discussed

in Appendix B.

Games of Kind

Isaacs {(Ref (3)) introduces the concepts of the "game of kind" and
the "game of degree." 1In the game of kind, the primary concern is whether
or not termination {as defined for the game) cccurs. This contrasts with

the game of degree where termination is assumed to occur, and the player's

o wi b e s

cbjectiveg are to hasten or delay termination, or to minimax a continucus
payoff. The differential game is ccnsidered here in the context of a game
of kind, the object being to determine whether termination occurs from a
given set of starting conditions.

The Barvier Concept. A game of kind in the game space ¢ is assumed,

with &8 terminal surface X specified. P attempts to penetrate X, while
E attempts to prevent penetration. There are three possible outcomes

{(a) P penetrates X (capture)

(b) P does not penetrate ¥ (escape)

(¢) P just reaches X, but does not penetrate.

The "neutral” cutcome at {c) is that of éignificance, gince the
trajectory resulting in {(c) 1s, in a sense, the only one on which the

strategles of P and E are decisive. That 1is, non-ontimsal play by E will
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regult in P penetrating X, while non-optimal play by P will result in E's
escape. - |

The gssumption now made is that G contains starting points which
result in gicher capture or escape. Generalir-, these points will fall
into regions which are separated by a surface consisting of those starting
points for which the outcome is neutral. This surface is a "barrier”,
an example of which may be seen in the "Homlcidal Chauffeur Game" analyzed
by Isaacs (Ref (3)). The barriers give vital information on the relative
capabilities of P and E, and, if they are shown to enclose entirely some
portion of G, then the space is automatically divided into escape and
captﬁre regions.

Construction of the Barrier. This section summarizes Ysaacs' work
in Ref (3). The termination of the problem is assumed at tgf. A neutral
outcome demancs that, while P's path touches X, it does not penetrate.
Physically, this is equivalent to P having a zero rate of penecration at
tg, or that the component of P's velocity normal to x is zero. Math-
enatically this can be written

xg(ER)X(tg) = 0 (3-12)
If a Lagrange multiplier ¢ is defined such that
Hy = aTx = oTf (3-13)

and
altg) = x, (&) (3-14)

then Eq (3-12) can be written
HB(tf) -0 (3-15)

where Hg is defined as the “Barrier dHamiltonian.”

A point on X where Eq (3-13) is satisfied is called the "Boundary

14
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of the Useable Part" (BUP), aince it separates those portions of y where
P has a positive rate of penetration (the Useable Part) and a negative
rate of penetration (Non-useable Part).

There is an obvious equivalence between [-s (3-6) and (3-13). In
fact, in the absence of J, they are identical. Thus, & backward integra-
tion of Eqs (3-2) and (3-8) subiect to soiution of Eq (3-15) and the

necessary conditions yields thé ciascical Isaacs barrler.

The Dispersal Surface

The concept cf the dispersal surface (DS) (Ref (3)) is one which
hag an important bearing on the analysis of a differential game solution.
Generally, there are two aspects to the given game solution. One is
golution "in the suall" where, assuming x(tg) and A(tg) are,known,
bacitward integration will yield a solutien trajectory. MHowever, there
exist singular surfaces in the G-space which delineate regilons of differ-
ant behavior of the dynamic equations. JA=certaining these surfacecs is
termed the golution "in the large.” The implication of the existence
of singular surfaces is that solutions "in the small' may be Iinvalidated
vecause of the presence of these surfaccs.

A differential game is assuned, where optimal trajectories have
been obtailned h+ ‘a_cwwatd integration of the dvnamic eauations. Suppose
alsc that the paths obizined {all intc 2 classes and that paths from
each class Iintersect as suggested by Fipgure 3. If, at the point of
intersection, the states are identical, and the values (payoffs) for
each path are e&qual, then the interscction is a point on a DS. The locus
£

- smae e a NS e wam b
w DuL il Lo il ATun L.

Foiats on the DS may also be cosidered as confronting [ with a

dilemma in choice of strategy, either cholcz resulting in ar equal value

15
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at termination. The importance of the DS is that it provides a method of
terminating trajectories, and in a given problem may well provide the key

to partitioning G.

The Scolution Method

The major observation from the preceding sections arises from the
comparison of Eqs (3-6) and (3-13). The multipliers X and a are not
equivalent since gﬁ:f) contains no influencing term in ¢, as does A(ty)
in Eq (3-9). Thus, In effect, an entirely new problem is posed. Not
only does P have to maneuver so as to attain boresight, but has also to
p2netrate a region where he has a Pg > 0.

The terminal conditions obtained are not analogous to the BUP, which
is principally dependent on a zero rate of penetration of a'specitied
terminal surface. The terminal states in the present pame are a combina-
tion of both the ability of P to reach €, and to satisfy the boresight
condition. These two constraints topether render the classical approach
inapplicable. Hence barrier trajectories of the type developed by Isaacs
do not exist for this problem, and the development of Py barriers must
then be accomplished by analysis of the solution trajectories.

The approach is based on the foregoing observations cn classical
theory. A particular Py contour is specified as the terminal objective,
and an admissable set of terminal conditions determined. Optimal paths
can then be generated by backward integration, and analvzed to obtain the
Py barriers.

It 18 interesting to note that a BUP in the lsaacs sense would exist
for this problem if the boresight conditien (E; (3-3)) above were con-

sidered. This classical BUP {s discussed briefly in Chapter TV.

17
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IV. Determination of Admiscable Terminal Conditions

One method approaching the sclution of the pursuit-evasion problem

defined in this thesis is to use a backward integrstion technique. This

TR LT S DR RO R T B N TR T TR S R e £y
1 4 B2

implies complete speclfication of an admissable terminal peint for the

S

game. The purpose of this chapter is to develop a method whereby admissable

e

terminal conditions may be specified.

Mathematical Formulation

Constant Velocity Model. Based upon the game model presented in

D L P ple PR S

Chapter I1I, the dynamic equations are
x = Vpcos Xy - Vecos EN

xp; = Vpsin Xy = Vesin Xy

B RS . o S g e
o

(4-1)
x g
i g =
\ 3 Yp
;' '
Hon B
é Ve
‘ .
Al = 0
iz LI
. (4-2)
7 XJ - Vp(Alsin X3 = Azcos x3)
; R4 ® Vo(-Xjsin x; + Xjcos x4)
The terminal boresight constraint is
X2 .
x[x(tg)] »(tan x3 ~ ~= )| = 0 (4=3)
- x Le
1 £
The objective functicn is
J =1~ Pg(tg) (4~a0)

18
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2 2
PK » 1 - !:.-—- - ---------.--q (4"5)
oy
3 Ga
so that
2 2
D 2
slaepl= o+l (4~6)
a?  aal £
where
p = 5000 +'xlcos x; + xpsin xg {4~7)
| q = ~xysin x; + xpco8 Xy (4-8)
é and 'a' is the semi-minor axis of a glven Py contour such that
é
. 2
PK =] - a (4"9)
; 3¢105)
J. .
E R The evader's heading, x4(tg) can arbitrarily be specified as zero,
F since only relative heading is of importance. Then, applying condlition
N (3-9)
:
L’ Altg) = 2. (x; + 5000) + v X2 4-10)
| ;
| o
2a2 X1
v sec? x3

(3x7 + 20,000) X2_
222

and hence

H(tg) = | EE (%7 + 5000) + v X2 (Vpcos x3 - V) +

a X3
xz -— \3 = ™ Ve A anr‘z‘r- g LA -
‘ (___2_ ‘vp"i 3 4+ v ozecéxy + (4-11)
2a x1 Vo
. %y R
(3%, + 20,0000 2. . u,l|
*y R
2a- ¥ £
e
19
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Now, condition (3-11) requires that H(tg) = 0, so that setting Eq (4-11)

equal tu zero will yleld a set of admissable end points for glven V_, V

p* ‘e*
v, &, u, and u,. Vp and V, may be arbitrarily specified, as may a, which
defines the Fy contour of Interest. The controls u,(tg) and ug(tg) are
szlected as those which minimize and maximize H respectively. xp and x4
are eliminated from Eq (4~11) by using Egqs (4~3) and (4-5). Eq (4~11)

is now reduced to a function of x; and v, Yarameterizing in v, the
equation may be solved numerically to yi:ld the condition H{t;) = O and
specify x(tg¢) and A(tg) for a given value of Py and v.

Variable Velocity Medel. It is interesting to note that the end

poinfs determined in the precading section are also those for the variable
velocity game model. Since ¢ and y are independent of Vp and Vg, Ag(ty)
and Aé(tf) are zero. Thus equation (4-10) 1s independent of the equations
defining &p and Qe and its solution yields valid end points for both

game models.

The Clagsical BUP

A classical BUP in the Issacs sense can be show to exist by ccnsid-
ering only the boresight condition in Eq (4-1). Applying conditions

{3-13) through (3~15) yields

X,XgCOS Xy = X X = x]xssin X4 + xl?-seczx3 EEE = 0 (4-12)
. 3 %
Eliminating x4 from (4-12) using Eq (4-3) gives
x
x12 + %2 = xy (28 y L g (4-13)
gup

It can be seen that Eq (4-13) 1s the equation of & circular BUP
centered on the xy-axis, and which is dependent upcn u,, the pursuer’s

control {or availabie rate of turn). Physically, ths cirele enclosecs
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those points in the state space where the pursuer canrot hold boresight
on E because of his turn rate 1imitétion.

This BUP does not have any great practical significance in the prob-
lem considered, since the Py regions are not intersected by the repions
defined by Eq (4-13) for the game situations considered in this rnaper.
The chief reason for making the foregoing observations 1is to provide the
contrast between the classical analysis and the solution method developad

here.

The Terminal Conditions

A typical set of solutions satisfving the terminal conditions are

shown in figures 4 and 5 overleaf for V_ of 850 ft/sec and Ve of 780

P
ft/sec. Each value of v affords one end point for any giveﬁ value of
Pr. Hence, each value of v tesults in a locus of end points which is
symmetrical about the xj-axis. Only the solutions for the positive values
of xp are gshown. Several observations can now be wmade about the ad-

missable end points and their effects on solution trajectories.

End Point Envelope. Figures 4 and 5 show that the solutlon end

points are contained in an "envelope' bounded by the locus of end points
for v~ 0. This 1is typical of the solutions for any values of Vo and V,
at the terminal time, provided VP > Vo. Numerically, however, Eq (4-11)
in certain cases gives rise to end points not contained in the v = 0
envelope. These end points are considered invalid, since it is readily
shown that P, having once attained borssight, can hold boresight with
increaging Py until the v = 0 locus is reached. In essence, the dynamic
equations are integrated forward in time. E's control iz optimal and P's
toutrol is that required to hold boresight on E; the Py is shown to in-

creasze until the v = 0 logus is reached. The spurious end points are




V, 850 FTISEC
Ve : 780 FTSEC

V=0
Locus

Y ? +
-3 -2 -1
DIMENSIONS FTx1073
. I S
3 e
i
i
Fig. 4. Loci of Admissable Lnd Points (v < 0)
- _ 22
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VD =850 FT/SEC
V. =780 FTISEC

V=0
LOCUS

L5
(S

DIMENSIONS  FTx10"3 V= 0.6 —

Fig. 5. Loci of Admissahle End Points (v > ()
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discarded on the basis of this reasoning.

Evader Control (ug). The evader's control at the final time is

influenced by A,(tg). Considering only the half plane for X2 > 0, the
value of uo*{tg) is that which maximizes H(te, . Now, from Eq (4-10)

A (tg) = (3xy + 20,0000 X2 (4~14)
232

and the term in H containing u, is

. X2 R
A leedx, (te) = (3x, + 20,000) The =y, (4-15)
23 Ve
Thus .
Ug* (tg) = UgyaySEn(As(Ee)) (4-16)

r

Pursuer Control (up). By similar reasoning to the previous sub-

section, it can be shown that

*(tg) = - San(Aglte)) 4-17)
Up~ite Ypmax 3ttt

Thus up*(tf) is entirely dependent on the sign of wv.

Summary
The solution wethod developed in thils chapter permits the specifi-
cation of terminal condiiions for any given set of problem parameters.

Numerical backward integration techniques may now be used to obtain op-

timal tiajectories frem any of the given terminal conditions.

1
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V. Analysis of the Constant Velocity Model

The admissable sets of terminal conditions for the pursuit—cvasion

game can now be specified using the method developed in Chapter IV, The

A R R ey YR T R,

purpose of this chapter is to consider the generation of Py barriers for

¥
@ s a s

Q : the constant velocity rodel by analyzing optimal trajectories obtained

Vo by backward integrationm.

Mathematical Statewent

The state equations of motion are

Xy = Vpcos Xy ~ Vecos Xy

iz - Vpsin Xq = Vesin X,
‘ (5-1)

: g
X, W ..U
4 Ve e

The costate differential equations are

AluO

Ay = 0

2

. (5-2)
Aj - Vp(xlsin X3 - XZCOS x3)

2
B

AL - Ve(-hlsin x, + Azcos 34)

The objective function is

TR

£-3)

gy = Lo+ 2

where p and q are defined by Eqs (4-7) and (4-8), and the terminal

constraint at ty is

tan x3 ~ 2.0 (5-4)
P
1
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The transversality conditions then yield A(tg) snd H(tg) as defined by
Eqs (4-10) and (4~11). The controls which minimize and maximize H are,
respectively
up* = ~upmangn(A3) (5-5)
u* = uemangn(Aé) 7 (5-6)
The end point for a given set ¢f parameters is determined, and backward
integration of Eqs (5~1) and (5~2) then yields an optimal trajectory.
Singular Ares. Application of the necessary conditions summarized
in Appendix B give the following set of equations which must be satisfied
\ if a singular avrc is to exist for the pursuer:
09
ig.z; =0 : (5-7)
+ Ay = 0 (5-8)
A18in x3 - Agcos x3 = 0 (5~9)
- tan x3 = %% (5-10)

The optimal control on the singular arc is

uP* = (5"11)

Control Sequences. The controls yielded bv Eqs (5-5) and (5~6) are

physically equivalent to P and E flying maximum rate turns. Where singu-
lar arcs exlst, Eq (5-11) iundicates that P €lies a straight, level "dash."
These control sequences are typical for the case where the controls appear
linearly in the stste eguations, since no contlinucus monotomie changes

in control can occur. This is a direct result of zpplyving the necessary
conditions for a mirimax solutien.

Trajectory Analysis

There is no knuwn precedent which would i{udicate a standard procedure

25
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for determining partition trajectories., Thus, initially, a number of

trajectories were obtained by numerical backward integration and their
characteristics analyzed. These trajectorles are considered in & cosrdinate
frame relative to the evader which is centered at the Py = 1 point and
rotates with the evader. The transformation to the p-q coordinate frame

is accomplished by applying Egs (4-7) and (4-8).

In the subsequent analysis, the game parameters are

Vy, = 850 ft/sec

Ve = 780 ft/sec

a = 2000 ft

v variable
Thus P's objective is to reach a region where Py > 5/9 with' bore-sipht,
and E attempts to prevent this termination. Computation of a possible
end point is equivalent to assuming termination, aud backward integra-
tion then yields the paths and stratepgies which would result In the piven
ending for a free time differential game.

Flgure 6 (Page 27) shows a typical trajectory depicted in the p-q
frame. P's heading at various points is shown by the arrows. The first
consideration concerns the juxtaposition of P and E at the point lahelled
YA". Assume that the game were to commence at this point, and censider
P's velocity in relation to the velocity of € (Vo) as shown in Figure 7
overleaf.

!

It is heuristically obvious that E's best strategy at this point

would be a turn to the right, thus moving C away from P. V. ie a combina-

tion of V, and the angular velocity due to E's turn rate (%4). The velocity

1
e
3

Vo 1s gpreater than V5, and nence E could prevent P from reaching C and

E terminating at the specified end point, The deduction mude from this

3
=}
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____________ L,V RESULTANT VELOCITY
. OF 'C' 300
, ANGUL AR
. VELOCITY
3 OF 'C'% 150
TERMINAL
SURFACE 'C"
-asn 4
A -85(3/
! v-q
é VELOCITIES IN FT/SEC
1oy PURSUER AT POINT ‘A’ OF FIG. 6
i

Figure 7. Comparison of V, and Vg

reasoning is that, at some point, the trajectory in Fizure 6 has crossed

a singular surface; specifically, a dispersal surface. This invalidates

a portion of the tralectory. The questio: which then arises is how to

identify and locate the dispersal surface.

¢ The Dispersal Surface, From Chapter IIT, the major requirements for
a dispersal surface arve:

(&; Intersection of paths of different classes.

(b) At intersection, the states must be identical.

| (¢) The payoff at termination is the same for each path.
E Reconsidering Figure 6, 1t can be observed that for each end point
on tl.e positive q half-frame, there is a "mirror imape" end point in the

nepative half-plane. Thus the end polnts are symmetuvical ahbout the p-axls

29
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as are the resulting optimal trajectories. A direct outcome of this ob-
gervation is that symmetrical trajectories intersect on the p-axis., Hence
the requirements at (a) and (c) are fulfilled, the payoff for the present
example being a Py of 5/9 at tg.

Congidering requirement (b}, it is seen that, at the intersection of
gymretrical trajectories, the positional states p and q are equal for
coincidence. However, the reldtive heading state (x3-x;) is not the same
for both trajectories. Although the magnitudes are equal, the directions
are not. In only one case can coincidence of all three states be ohtained
for symmetrical trajectories and that occurs for x3=x, (i.e., co-heading)
at 1n£ersection on the p-axis. If two such symmetrical trajectories can
be found, then at least one point on the dispersal surface ¢an be identifiled.

The trajectcry analysis reveals that the end points defined for v<0
result in trajectories that contain a switch of up from +upp,y 0 =Uppaye
This 1s a dircct consequence of Aq passing through zero at some point in
the trajectory. Further study shows that for some value of v<0 the
conditions ;iven by Eqs (5-8) throuph (5-10) are satisfied, and hence that
a singular arc exists, In all the cases studied, this singular arc provides
a means of obtaining the previously discussed point on the dispersal surface.

Singular Arc Trajectories. The satisfaction of the necessary condi-

tions for a singular arc essentfallvy devolves iuto a one parameter search
over the values of v<0Q, Only one value of v results in the satisfaction
of the junction conditions for a singular arc for 3 given value of Vp,

Ve and Pg{tg). Once the conditions (5-7) through (5-10) are reached, I's
control 1is switched to the optimal walue of zero (Eq (5-11)). Backward
integration centinuves, and optimality of the resulting paths lg maintained.

A further charvacteristic of the sinpular arc is that My, may be
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switched arbitrarily to tupmax at any time on the arc while retaining
optimality. The major impertance of the singular arc is that it results
in av infinite number of trajectories. By judicious manipulation of the

time at which P's control is switched, once on the singular arc, a trajec~

tory can be obtained which intersects the p axis in such a wav that the
relative heading (x3~xa) is zero at the point of intersection. By the
previocus reasoning, this point‘is on a dispersal surface, and the tralec-

tories which produce it can be terminated at the point of intersection.

AT R S R

Partitions of the Came Space

The foregoing section discussed the ronstruction of optimal trajec-
4\ torles and the presence of a dispergal surface. A method was also devel-
oped whereby at least one point on this surface may be defi;ed. Two
factors now require consideration:
(a) Whether the game space is in any way partitioned,
(b) If partition is shown to exist, how it can be diagrammatically

represented,

The Existence .i Partitions. Observation of the behavior of many

optimal trajectories for -3.0 < v < 0.4 indicates that the point (xpg)
identified as being on the dispersal surface bounds the values of p at
which all other trajectorles intersect the p-axis. The twvplcal case 1s
f1llustrated in Figure 8 overleaf by several example tralectorles. TFrom a
heuristic standpoint, the above observation .nakes sense, since the point
Xps (Fig 8) includes the most advantageous heading for P on the nepative
p-axis. Hence, it could be concluded that, from a starting point at which
®3-x; = 0, P can achieve a PK(tf) = 5/9 from the least advantapgeous roint
ou the negative p-axis, {.e., the point furthest from C. The question 1s

whether this bound can be establislied mathematically.
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The Definition of Partion. A linear perturbation analvsis is devel-

oped in Appendix C which is used to show that xpg includes the least value
that p can assume for termination at PK("'f) = 579, Effectively, the
costate values A{t) can be regarded as influence coefficients on the payor.

function 3, where

T=  $(x) + vX(x) (5-12)
' tf

If xpg is defined as the starting point £or the game at time t = t, then
it can be shown that

87 w AT (e ) ax(ty) (5-13)
Thus the effect of small perturbations ax(ty) on J can be investigated

for xpg by considering the sign of aJ. Yurther, assuming bore-sight at

tg, X(x(tg)) = O and thus

T = ¢(x(tg)) (5-14)
Since ¢ = 1-Py (from Eq (4-4)), it follows that a positive AJ represents
a reduction in PK(tf).
Table 1 below shows the approximate values of A(t,) for the two

trajectories which intersect to give the point Xpg.

Table 1

Values of ipg(t,) at Xp¢

Trajectory 1 Trajectorv 2
{q(tg) » 0) (q(tg) < 0)
| AL (ry) -. 00046 ~.00046
1 Ap(t,) +.00044 +.00044
s (4]
i A3(ty) +.00001 ~. 00001

P S B

Three obscrvations mav be made about the behavior of bJ due to arbitrary
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ax(ty):

{a) Negative Ax; always result in a reduction in PK(tf) for constant
Xa and x3. Thus, by definition, E escapes.

(b) Positive 4x; always results in an increase in PK(tf), il.e.,

P captures.

(¢) Either + Axy or + 4x3 result in a reduction in PK(tf) for the
tvo trajectories, thus relievgng E of his dilemma over cholce of strategy
at t,, and enabling escape.

The conclusion made is that the point xng is one bound for the starting
polnts on the p~axis from which a Pg(tg¢) = 5/9 can be achieved. As such,
Xpg Provides a partition of the game space.

Obviously, the starting points discussed above are also bounded at
some paint on the positive p-axis. Physical argument indicates that this
polat is the point on the axis where Pg = 5/9 and P is boresighted on E.
This point is labelled xpp in Figure 8. It is readily deduced from the
dynamics of tlie game that P cannot capture from a point nearer to E on
the p-axis than Xxpp.

The overall conclusion made is that, at least for starting points
on the p-axis, the pgame cpace can be partitioned into sets of points which

represent escape and capture reglons.

Partition Diagrams

The optimal trajectories develsped for the constant velecity model
are 3~dimengional, the variables being the twe position coordinates and
the relative heading. This raises the problem of presentation. Two
methods appear to be available:

(a) Projection of the trajectories on te one plane of the space.

(b) Parameterization of one of the variables.

34

oy




TSR T T Ty SR EAS

TRETETRG o Ty

LU et g A S S Sl

GA/HMC/V3~4

Both of the possibilities offer advantages. Using one varilable as a
parameter allows the neutral starting points o be represented as a two
dimensional curve enclosing the capture spoce. Projection permits the
capture space to he diagrammed as bounds on two of the variables. Both

methods are considered.

The Parameter Method. Partirion of the values of p has been shown
for those starting points on the axis co-linesr with V. (the p-axis).
Effectively, this represeuts a parameterization in q for q=0. Charac-

teristically, each optimal trajectory obtained for the game intersects

the p-axis (q=0) at particular values of p and (x3-x4). The perturbatiocn

analysis previously developed can be used to show that the relative
heading at intersection 1is critical, and thus represents a bound on the
pursuer's heading for termination at Py(tg) = 5/9. For g=0, the game
space can thus be divided into escape and capture regions as shown in
Figure 9 overleaf.

The Projection Method. The obvious plane on which to protect the

capture region is the p-q plane, since this represents a simple physical
interpretation. To fully define the capture/escape regions, the pro-

jections would enclose all the positions (p,q) from which P cculd attain

capture given that his heading was sufficlently advantageous. The bound

on the region would be those points where I had the most advantageous
heading and could achieve a maximum Pg(tg) of 5/9.

The methods developed here do not include a simple way of obtaining
a complete partjition of the pame gpace. Fach value of relative heading
requires consideration and the bound on position must be established for

each., 5o far, it appears that this can only be achieved by a long and

tedious analysis of the optimal trajectories obtained from all admissable
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end points.

However, It scems from the results cbtained that a reasonable
approximation can be made. Analysis of the available trajectories re-
veals that the singular arc trajectory "enclos.s" (in the positional
sense) all other trajectories except those resulting from a switch in
u, on the singular arc itself. An approximate partition made on this
basis is shown in Figure 10. The escape region could be considered as
the positions from which P cannot capture regardless of heading. It
should be remarked that this partition is not mathematically justified,
but represents the author's interpretation of the optimal trajectories

studied.

Summary

This chapter contains the major part of the analysis of the problem
of defining the escape and capture regions for the pursuit-evasion game
studied. The analysis was achieved by a largely experimental means, that
is, by physical examination of the optimal trajectories generated.
Mathematical deduction enabled specific definition in some cases, but in
general no compact analytical method could be develoned. However, there
appears to be sufficient evidence to suggest that the game space for this

class of game can be partitioned into escape and capture regions.
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VI. Apalysis of the Variable Velocityv Model

Chapter V dealt with the major part of the analysis done on the
pursuit-evaslon problem treated in the thesis. A certain amount of
effort was expended on the variable velocity model, and the purpose of

this chapter is to show the formulation and discuss the solutions obtained.

Mathematical Statement

The state and costate differential equations are
Xl - XSCOS X3 - X6COS X4

Xy = xssin X3 - xésin Xy

W TR TN RTTAAFY G T ARRG T T T P

-3 . 8
3 Xy = = (6-1)
?- E '
. rn’ ;4 L g-— ue
}V xe
3 . A Ac
: - 2 o 24 2 a5 2 2
‘, Xg Al + A2x5 + A3x5 + 3 (up + 1) + 5 (up + 1)
: 5 5
1
1 * - A 3 . A
é Xg = A+ Ajx, + A3x€2 + 24 ‘“e2 + 1) + 25 (ueZ + 1)2
: 2 6

X6 x6

:\1-0
)‘2"0
] Ay = xs(klsin Xy = Aycos x3)

4 = Xg(=Aysin x;, + Aycos x,) (6-2)

- ; - g -
5 Alcos X4 kzsin X4 + XJ ; 5 up \5[1\2 +>2A3x5

|
>t e
n

L |

-2 {\l‘_ {(u 2 + 1) - 6A5 (u 2 .
3P ’ P
15 x5
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st e maniginnipd
RN 3

1
.

Ag = Ajcos x4 * Assin x4 + Ay Emi ug = Agldy + Zagxg
x5

- 2y (uez + 1) - ﬁéi.(ue2 + 1)2}
" s’ ’

When the optimal controls arve intesior te the control constraints, then

for the minimax value of H it is necessary that:

N

* *
B, = 0 and H

- 0 (6~3)
P Yo

Application of these conditions gives the two egquations:

: Agnch A g X 5
up5+( 45+1)up--—3i--—-é——=0 (6~4)
2A5 As 4.&5
Agxeh Ay g Xed '
ue3 + ¢ ~:i~§~»+ 1) vy - A S =0 (6=5)
Examination of the coefficients of Eqs (6-4) and (6-5) shows that the :

equations have one real root. Numerical solution ylelds up* and ug" .

The minimax value of H may be verified by the sufficient conditions:
w* >0 and H* <0 (6-6)
up up Ue Ug

If the optimal controls are on the respective constralnt boundaries,

then the wminimax of H is obtained by the direct application of Eq (3-7).

Trajectory Analvsis

To enable comparison with the constant velocity results the same end

point conditions were used, i.e.,

xi(tg) = 0
xg{ty) = 850 ft/sec
xgte) = 780 ft/sec
v veriable

40



GA/MC/73-4

B

A number of optimal trajecrorfes were obtained and subjected to a

BT

sinilar snalysis to that usad In the constant velocity model. The
trajectories obtained behaved in very much the same manner as for the
previous model. However, the same conclusions are difficult to draw
because of the introduction of variable x5 and xg (Vp and Ve) which adds

: two dimensions to the solution trajectories. These are now 5~dimensional,

S L e i e R

as would be the resulting capture/escape regionz of the game space.

The problem introduced by the added dimensions proved insuperable.
When the analysis was commenced, it was hoped that the aircraft velocities
on the solution trajectories would remain largely constant., This did not

prove to be the case, and no acceptable method could be found of handling

the added dimensions dlagrammatically. However, some general cenclusions
can be nade.

Dispersal Surfaces. The existence of a dispersal surface for the

variable velocity model can be demonsitrated by similar reasoning to that
employed previously in Chaptex V. It also appears from observation of
the solution trajectories that the point on the dispersal surface on the
p-axis provides a bound on starting points on this axis. However, even
when q is set to zero in this way, the starting points from intersections
on the p-axis are 4-dimensional, and conseouently difficult to represent
by diagrams.

Capture/Escape Regions., The tralectorv which vields the point

(xpg) on the dispersal surface alse appears to play an important role in
defining escape and capture regions. In the projecticn on the p-q plane,

the trajectory yielding xpg appears to "enclose" most of the trajectories

wvhich have the r.quired ending. It does irot, as such, constitote a

mathematical partition of the game space, but it deoes provide an indication
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of the size and shape of the projection of the partition. This in turn
gives an indication of the capebility of the pursuer to achieve capture.
Figure 11 overleaf shows the trajectory which results in xp¢ for the preseat
case. As before, the position coordinates xy “nd xy are transformed to

the p~q frame by using Eqs (4-7) and (4-8),

Sumtary

The results achieved for the variable velocity model do not enable
the definition of escape and capture regions tor this model. However,
some contributions are made. The presence of the dispersal surface is
demonstrated, and the trajectories obtained give an indication of the

pursuer's capability against a maneuvering cpponent.
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VII. Discussion of Results

The purpose of this chapter {s to discuss the results obtained,
and to conslder some of the possible implications of the methods developed
in the thesis. Also considered is the extent to which th~ thesis objec~

tives were achieved.

Thesis Objectives

The thesls objectives were threefold:

{a) To develop a method of defining escape and capture regions for
a two aircraft pursuit-evasion game,

(b) To consider the Jdependence of these regions on the variables
in the problem. !

(¢} To consider the impact that definition of the regions mipht
have on tactics and design,

The second two objectives are, of couise, dependent on the first; these
are discussed subsequently,

It 1s f21t that the primary objective has only partially been
attained. Partition of the game space into escape and capture regions
was achieved in only certaln cases for the most simple model. However,
the wmethods developed appear to offer possibilities to future researchers,
and represent at least the initial steps toward complete sclution of the

problem.

Analysis Methods

The methods used here to analyze solution trajectories are larcely
empirical. That is. many trajectorles were penerated and conclusions
made from their physical behavior. It does not ssem that anv concise

analytical method exists which would reduce this physical effort. A
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second major problem, previously mentioned, concerns the dimensions

of the game space and the solution trajectories. The inability of
conventional graphical techniques to handle surfaces of 4 or more dimen-
slons handicaps the analysis of solutiens. Removal of this restraint
would also ease the difficulties encounutered in presentation of the
solutions.

The most basic ingredient of the methods used was to specify the
sets of admissable end points for the differential game. While this re-
gults in many trajectories which may be tedious to analyze, it avolds
the necessity of solving a two point boundary value problem (TPBVP). The
TPBVP.in a differential game can be extremely difficult to solve be-~
cause of the iterative nature of solution wmethods. Also, the solution
provides information about only one trajectory, scome portions of which
may be non-optimal due to the presence of singular surfaces in the game
space. In contrast, provided admigsable end points can be specified,
backward integration iz a very speedy and simple method of obtaining many
solution trajectories. This type of approach may well have applications

in other fields of optimal control and differential games.

Variation of Came Parameters

Some effort was made to evaluate the dependence of the partitions
of the space on the game parameters, but insufficient analysis was
achieved to enable specific conclusions to be made, The most significant
parameter is considered to be thc distance thai the Py region is from E.
At maximum lcad factor of 5, E's turn rate 1s about 0.2 rads/sec, which
means that the Py = 1.0 point has an angalar velocity of 1000 ft/sec.
This single factor contributes greatlv to E's abllity to escape. Reducing

\'/

e causes E to be lift-limited in £light (Appendix A); at the velocity
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used in illustration (780 fr/sec) E's turn rate is still about 0.18 rads/
sec.

Some experiment was made in two areas for:the constant velocity
model:

(a) 1Increasing P's velocity advantage over E

(b) Arbirrarily reducing E'sy tufning capability (“emax)‘

Both these variations produced results analogous to the case analyzed
in Chapter V with the expected increase in the sizes of the capture regions.
However, beyond a certain reduction in uemax' the behavior of the solu-
tions changed. The envelope of adnissable end points reduces in size,
and no singular arc trajectories can be found. In addition, those
trajectories examined did not appear to eaclose the capture space in the
same manner as before. The value of uemax at which most investipation
was done was equivalent to a maximum load factor of 2.5.

Insufficient investigation was achieved to allow specific conclusions,
but the following ob:evvations are made:

(a) It 18 probable that solution trajecteries are non~unique; that
is, two or more trajectories have the same end point. The analvsis of
numerical solutions is then invalid.

(b) Consideration of solutions for low values of Py (e.g., Pp = 579)
may be misleading when E's turning capability is drastically reduced,

This is because P may be able to excede the selected PK(tf) easily from
a great variety of "advantageous' positions. Solutions with a low value
of Pg(tg) may then only have significance if they arise from initial

conditions at which P is at a diszdvantage relative to E.

Toctical and Design Implications

As previously stated, the simpiicity of the aircraft models uvsed In

46
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the thesis limit the conclusions that may be drawn about real air

combat situations. However, there are inferences which are considered
to have some validity.

The most obvious conclusion is that the capture reglons are ex-
4 tremely small for two-dimensional maneuver., The single most important
factor contributing to this is the angular velocity which the Py, regions
move as a result of the evader™s turn rate. In reality, however, the
% situation is not quite as adverse as it appears, since current analysis
shows that the pursuer dnes in fact have some opportunity for a "side~
shot." That is, in turning, the evader opens up a Py region on the
inside of the turn. 7This was not modeled for this investigation, and

el represents an area where further fruitful research might be accomplished.

Also it is difficult to logically extend the results of this in~
vestigation to three dimensions. One observation is that the results ob-
tained here are valid for motion in any plane In the absence of gravity.

An inference from this is that it is difficult to see how the pursuer's

capability could be improved in three-dimensional maneuver. Specific
results in thig area are once agiin subject to a great deal wmore re-
search.

From the tactical view point, it is felt that there is sufficient

evidence from this research to indicate severe limitatlons on the use of

TR T BRI

this particular airborne missile system. While its performance against

LR ek

an unsuspecting target may be adequate, evasive maneuvers on the part of
the evader cause a great reduction in the pursuer's capability.

In the design field, the approach presented here is felt to have
i considerable potential. This pctential 1lies not oily In evaluating the

i{ capability of a given system, but alsc in the comparison of different
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wespons systems. Realization of the potential is dependent upon several
factors. A refinement of the generéi approach developed 1s necessary,
and the obstacle of graphically displaying multi-dimensional surfaces
wust be overcome. Of the two, the latter presents the greatest problem,

and solution would greatly benefit future research.

Summary
In general, the research presented here has met with limited success
in relation to the overall objectives. However, several original solu-

tion methods are cmployed, and the devalopment potential offers many

opportunities for future research.
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VIII. Conclusilons and Recommendations

Conclusions

A two aifrcraft pursuit-evasion game has been posed asz a free time,
zero sum, perfect information differential game. A method of determining
admissable end polnts to the game was developed, permitting the use of
nunmerical backward integratioq techniques to produce optimal trajectories.

Two aircraft models were used, in both of which motion was restricted
to level flight at constant altitude, The simpler model had the addition-
al restraint that both aircraft move with constant velocity. Ezxamination
of the optimal trajectories obtained ylelded a partition of the game
space into escape and capture regions under certain conditions for the
simple model. Complete partition of the game space was noé achiaved for
either model, but the existence of partition is shown, and a general
approximation made within the limfts of the graphical techniques available.

From the practical standpoint, it can be concluded that a wearon
system with characteristics similar to those considered in the present
case way have severe limications when faced with Iintelligent opposition.
Although the constraints impcsed in this analysis are unrealistic in some
senses, there is sufficient evidence to make the preceding conclusion.

In terms of evaluating the capability cf air-to-air weapon svstems,
the methecds developed here are considered to have significant potential;
this potential is dependent upon further refinement of the techniques

employed.

Recommendations
The methods developed In thilg thesis represent the first steps

towards an analvtical soluiion to the problem of defining escape and
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%

g capture regions for geyxial pursnitngvaaion games. The greatest hurdle
%- . encountered was the graphical limitations on presentation. In the

% event that further research is attempted, the following areas are

% recommended :

? (a) Refipement and generalization of the analyeis of optimal

trajecteries generated by backward integration.

(t) Determination of graphical methods for demonstrating multi-

dimensional surfaces snd trajectories.

Bl

TP

o0

RERELTEHT IS TR
~

B P TR, T e

TR

P TSI TI 4Ta)

50



GA/MC/73-4

% . Bibliopgraphy

1. Anderson, Gerald M. Necessarv Conditions for Sincular Solutions
in Differential Games with Controlg Appearing Linearly. Proceedings
of the First Intevnatiunal Conference on the Theory and Application
of Differential Gawes. Amherst, Massachusgetts: University of

il SR ot LR K B R

3

3 Hassachusetts, 1969,

L

3 2. Bryson, A. E. and Y. C. Ho. Applied Optimal Control, Walthanm,
9 Magsachusetts: Blaisdell Publishing Company, 1969.

1

E 3. Isaacs, R. Differential CGames. New York: John ley and Sons,
E Inc., 1965.

-

1 : 4. McDonneil Douglas Aircraft Covporation. Fi4-E Performance Data and
: Substantiation. ¥696 V.1. St. Louis:

T AU

4

VIS PR

R G s o

e e T 1

51

g



Ejr T T T, N
¢

GA/MC/73-4

Appendix A

Development of the Aircraft Model

Purpoge
The purpcse of this appendix is to show the development of the
aircraft dynamic model used in the thesis. The model is generalized

to 3 dimensjons and then specialized to the final planar model used.

Alrceraft Dynamics

The model is based upen empirical data for the F4-E published in
Reference (4). For each of 3 altitudes analytic functions are developed
for ;hrust (T) and lift limit. The coefficient of drag (CD) is related
analytically to lift coerficient (CL) for subsonic flight with validity
up to a Mach No (M) of 0.9.

Thrust (T). Both aircraft are assumed to be using full after-
burner thrust during combat. Figure 12 overleaf shows the variation
of thrust with velocity and altitude. A linear approximation to the

curves over the velocity range of interest yilelds

T = a + bh + ¢V (A-1)
where

a = 22,346.7 1b

b = 0.7018 1b/ft

¢ = 18.141 1b/ft/sec

For a constant altitude of 20,000 ft. the relation becomes

T = 8310.7 + 18.141V (A-2)

Lift Limit. The maximum lift that can be developed for a given

velocity is

L= 33 pv25C (A-3)

Lmax

[ ]
w3

P
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and load factor (n) is defined as

o=k {a-4)
W
hence the maximum load factor attainable is
2
Omax = 12' QY_GS_ CLmax (#-5)

For flight regimes where n is not limited by Eq (A-5), the maximum
value of n is taken as 5. This represents a realistic limit imposed by
a pilot's capability to withstand sustained acceleration forces. Lift
limited load factor is plutted agzinst velocity in Figure 14 (Page 56)

with altitude as a parameter. A linear fit gives

noag = 0.16 + (0.61422 - .000304h) (V -~ 250) (A~6)

For planar flight at 20,000 ft
Dpax = 01.875 + 00814V (A~7)

Drag Coefficlient. Cp is graphed in Figure 13 (Page 54) as a

functioca of Cp- A quartic curve fit is made, giving

C. =

p™Cpot ¥ C 24 kch4 (A-83

L

where Cpo = 0.0185
kl = (0,1007

kg = 0.3261

Equations of Motion

Figure 15 (Page 57) shouws diagramaticallyv the variables used to
describe the aircraft states in 3 dimensions. The equations cf motion
may bhe written

= Vcosycos®

o .

v Veosysing

&
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| Vsiny
. - § m glsing (4-9)
WVcosy
v = & ¢ keosd o eosy)
v W
=2(-0
% Constant altituds €light requires that
Leosd = W (A-10)
and hence
neba l (A-11)
¥ cosé
thus
g aing = j-%; (nz--ll)”2 , (A~12)
If the contrel, u, is defined by
u =+ (n-1)i/2 (A-13)
then for constant altitude flight, Eq (A-9) can be written
x = Vcosd
y = Vsine (A-14)
P = £U
v
Vel (T-D)
The Llimits on u such that
E Ymin < Y 5 Ypax (A-13)
é are imposed by the lirdts on load {actor n.
: The dray is glven by
D~ % ov25(Cpy + kG2 + kG B (A~13)
1 38
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and

- L 2
1 pves
2

(A-17)

thus

(1) As(u2+1)2
4 2 +

D= Ayv? + A -
v v

(A-18)

where

1
hy = = 0SCpg (A-19)

2kyW?
A" L (A"ZO)
ps

2kWh
5% s

(A-21)

From Eq (A-2), thrust can be written

T m A + AV (a-22)

Using Eqs (A-1b; and (A-22), equations of motion become

M .

w Veosd

= Vgin®é

g .

gu
v

De
[ ]

. A4(uz+1) As(u2+1)2
Vo= + AVt A3V2 + -t

(A=23)
v? vé

For constant velocity flight v = 0.
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Appendix B

The Necessary and Junction Conditions

for Singular Arcs

Purpcse

The purpose of this appendix is to snmmarize the necegsary and
junction cunditions for singularx arcs in the optimal sclutions to a
differential game vhere the plgyers' controls appear linearly in the

Haziltonian. The summary is based upon the derivation developed in

Ref (1).

Problem Formulation

The state equations are

i » £(%,u,v) (8-1)

and f i linear in u and v. The Hamiltonian (H) is

Ho= s (8-2)

where x is the n-dimensional stat: vector, and ) the n-dimensional co-

state vector, subject to
Aw -~ Hﬁ {B~3)
The terminal values x(tg) and A(tg) are assumed specified.

A payoff function 7 is specified and the objective of the game is

to find u* and v* for the saddle point solution

min max J (u*, v*) = max min J (u*, v¥*) (B-4)
u v v u

over the time internal [rn‘ tf]. The controls u and v are subject to

the cenatraints

|ui f~umax ' ]vl hl Vmax (B-5)
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Necessary Conditions

For a saddle point golution in J, a saddle point in H is necessary

such that

min max H = max min H (B~6)
u v v u

If switching functions Su and Sv are defined such that

9K

Su(md) = == (8-7)
Se(x)) = 28 (B-8)
- av

then the saddle point controls are given by

ue w . if S5, <0

u
, (B~9)
U U if Su > 0
vV e vpax if Sy > 0
{B~10)
V™ Vi if Sv <0

Singular Solutions

Due to the linearity in u apnd v, the Hamiitenian may be written

Bl g +s, u+s, v (B~11)

A v
Assume that S, = 0, so that H becomes independeat of u; thus minimization

of H with respect to u is not possible.

Necessary and Junction Conditions. It can be shown that along a

singular arc, in general

Sy(xd) = S, od) =« v .25 8 P =0 (B-12)

where successive differentiation vields a function vhich is explicit in u

5,99 (x,2,0) = 0 (B~14)
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Eq (B~1l4) may be solved to yield the minimizing u* on the singular arc,
. and Eqs (B-13) must hold across the junctions between singular and non~

singular arcs.

One further necessary condition 1s that
s,y <0 (B~15)
du

where q is odd.
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Appendix C
Pevelopment of Influence Functions
fox a Differential Game
Purpose

The purpose of this appendix 1s to show how the costates (A(t)) can
be used as influence functious to determine the effect of small perturba-

tions (Ax(t)) on an optimal trajectory for a class of differential garmes.

Mathematical Development

A differential game is assumed with augmented objective function

T = 4(x(eg)) + vx(x(te)) (c-1)
subject to the differential constraints ’
x = £(x,u,v) (c-2)

where the controls, u and v arc bounded by

Upin < U S Upay ()]
Vain 2V 2 Vgax (-9

The Hamiltonian, H i{s formed such that

Ho= 2\ (C-5)

whence, application of the necessary conditions for optimality vields

e ]

© - f

fom e

A (C-6}

I

with the end conditions
Altg) = Ty (c-7)
making a first order expansion of Eqs (C-2) and (C-5) at sowme time, t

. T
Ax = EE‘AE + iu Au + {v Av (C-8&)
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. T
ax = - £ 8 (c~9)

Combining Eqs £{C-8) and (C-9)

PR LR TR A R T

AT ax + AT Ax = AT(£T Ax) + ATf Au + ATf Av (C-10)
A R A N AtfL

‘ T

i o T T

AYE Au 4+ AE AV

On an optimal trajectory, the necessary conditions following must be

gatisfied if u and v are unconstrained

i s E R e R R e T

H, =0, H, =0 (C~11)
Hence from Eq (C-5)
£, =0, £,~0 ’ (€-12)

If u and v are on the constraint boundaries then

bu~=O0, Avs=0 (c~13)

Using Eqs {(C~12) and (C~13) in Eq {C-10), then

AT ax + 2T ax = 0 {€-14)
and hence
te . . te
r o ax + Aaxyde = 5 [ 9= (WTax)ydr = 0 (c-15)
S g 4t T
Q Q
afew |, - 0l =0 (c-16)
f to
st = Tax) | (C-17)
Q
Now, from Eq (C-1)
AT » (T Ax) | (C-18)
x =t
= £
Thus, combining Tgs (C~7) and (C-18)
_— T
MY = (30 ax) ], (C-19)

f
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The implication of Eqs (C~17) and {(C-19) is thac
5 T
Ay = (A M), : {¢c-20)
o
Thus, it can be shown that the coatates at t, (_)_\_(to)) are Influence
coefficients on AJ at te, allowing the Jetermination of the effects of

some A_x_(tc) on the objective function, J.

4
r
!
§
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