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CHAPTER 1

INTRODUCTION

1,1 Objective

This report is concerned with the problem of calculating the trans-
port properties of moderately dense gases, For one-component gases the
transport properties of interest are: the coefficient of thermal
conductivity A, the coefficient of shear viscosity n and the coefficient
of self-diffusion, D. For brevity we shall follow the literature in
referring to these transport coefficients simply as thermal conductivity A,
viscosity n and self-diffusion D,

The theory predicts that the first density correction to the transport

coefficients of a gas can be represented by a texrm linear in the density

n . Thus
)\=)\0+7lln+"' ]
n=n0+n1n+ » o o 3 (l'l)
nD=Do+D1n+-~~ (]

In this report we express the density as the number of molecules n per
unit volume., The mass density p is related to the number density n by
p=nm, where m is the mass of the individual molecules,

The coefficients 10, no and Do represent the transport properties

in the limit of low densities; in practice they are adequate at atmos-
pheric and subatmospheric pressures, A description of the dynamic
behavior of low density gases is based on the Boltzmann equation, The

transport coefficients AO' U and Do are then obtained by solving the

linearized Boltzmann equation according to a procedure introduced by
¥ For a bibliography see: M., H, Ernst, L., K, Haines and J, R, Dorfman,
Rev. Mod. Phys. 41, 296 (1969).
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Chapman and Enskog [1,2). The approximate nature of the Boltzmann
equation is twofold. First, the Boltzmann equation considers only
uncorrelated binary collisions. As a consSequence the transport
properties Ao. n, and D0 of the dilute gas are determined by collision
integrals involving the dynamics of collisions between two molecules
alone. The Boltzmann equation also neglects the interaction range o of
the molecules relative to mean free path. Thus the flux of energy,
momentum and mass is wholly attributed to the flux associated with the
free motion of the molecules between collisions,

In this report we focus our attention on the calculation of the
coefficients 11, n, and D1 that determine the first density corrections
to the transport properties. These new coefficients cannot be obtained
from the Boltzmann equation itself, and we need to consider appropriate
corrections to the Boltzmann equation in order to account for the dense
gas effects., In view of the complexity of this task we shall restrict
ourselves in this report to a calculation of these coefficients for a
gas of hard spherical molecules with diameter ¢ and mass m,

The coefficients Al and nl are to be regarded as the sum of two
terms. First, they contain a contribution AKU + AUK and nKU UK

1 1 1 1’

respectively, due to the difference in position of fwo molecules during

+n

a collision; this effect was neglected in the Boltzmann equation,

Secondly, Al and n contain a contribution AiK, niK that accounts for the

correlations in the positions and velocities of the molecules due to
successive collisions among three molecules [3].

KK KU UK KK KU UK
Ay = A0+ A+ A : n, =n; *n +n, .

1 1 1 1 (1.2)

12
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UK XU UK
1 amdny sty

spheres. They are proportional to the dilute gas values of the trans-

The contributions Ain + A are well known for a gas of hard

port properties and were rederived in Part I ([3].

KO  .UK 4 3 KU UK _ 8 3
= = 1.
Ay PRy =gmoAy oMy My =ETOR, (1.3)

These terms incorporate the transfer of energy and momentum between two
molecules during a collision; this transfer is often referred to as
collisional transfer [1]. Since there is no collisional transfer of
mass, the first density correction Dl to the self-diffusion is to be
attributed completely to collisions among three molecules.

For a gas of hard. spheres the initial density dependence of the

transport properties can thus be written as

_ 4 3 KK
)\—)\0+{§‘ncko+)\l }n ,

= 8 13 KK
n=n,+ {Egﬂo ny + NJ }n, (1.4)
nD=

D +D.n .
o 1

In a previous technical report, Part I of this series [3], we
. KK KK '
have demonstrated how the coefficients Al ; N, and D, are deter-
mined by sets of three-particle collision integrals that are related to
various types of collision sequences involving three molecules. It is
the purpose of the present report to show how one may evaluate these
three-particle collision integrals. Based on this work we shall

present tables of the contributions to the transport properties from

the various three-particle collision sequences.

13
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1.2 Molecular Collision Sequences

Before entering into a detailed discussion of the three-particle
collision integrals, we want to familiarize the reader with the types
of molecular collisions that are to be considered in the calculation
of the transport properties.

For a calculation of the coefficients AO' Ny and D in (1.4) it

0
is sufficient to consider the dynamics of a binary collision between
two molecules. For the sake of the discussion we represent such a
binary collision schematically by the diagram in Fig. 1. The lines in
this diagram represent the trajectories of the centers of the molecules,
and the circles represent the molecules themselves at the instant of
contact. Just as in Part I [3], we adopt again the convention that in

all figures the time increases when the diagrams are read from bottom

-
to top as indicated by arrows on the particle lines. Thus #»,; and;2

Vi V;
v v,

Figure 1. Schematic representation of a binary collision between
molecules 1 and 2. The lines represent trajectories of
the centers of the molecules and the circles depict the
molecules themselves at the time of contact.

14
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in Fig. 1 are the velocities of molecules 1 and 2 before the collision
and $i and 35 the velocities after the collision. The transport

properties in the dilute gas limit are determined by collision inte-

1’ ;2 and
3', ;é before and after a binary collision. For a gas of hard spheres

grals whose integrands depend only on the velocities v

these binary collision integrals were discussed extensively in earlier
technical reports [4,5] and they will be summarized in Section 2.1.

The transport coefficients AfK ; nfx and D1 are determined by
collision integrals whose integrands depend on the molecular velocities
before, between and after successive collisions among three molecules.
As a result, the three-particle collision integrals can be represented
by collision diagrams in very much the same way as the binary collision
integrals were represented by the diagram of Fig. 1.

A preliminary analysis and evaluation of three-particle collision
integrals was made earlier by Sengers [4,6,7]. This, and subsequent
work reported in AEDC-TR-71-51 [5], showed it to be advantagecus to
make a distinction between "genuine triple collisions"” and "successive
binary collisions".

We define a genuine triple collision as a collision during which
more than one pair of molecules lie inside each other's interaction
range. Now, in a gas of hard spheres, the duration of an individual
binary collision is negligibly brief compared to the time between
successive collisions; therefore, genuine triple collisions would never
physically occur in such a gas. Nevertheless, genuine triple collisions
will play a very significant role in our considerations here. The
reason is that the Boltzmann equation, from which the dilute, hard

sphere gas, transport coefficients Ao, no and D, are calculated,

0
15
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considers all binary collisions, including those in which the region
occupied by the colliding pair of molecules is already partly
occupied by a third molecule. This latter type of collision is
evidently a "genuine triple collision", in the sense defined above.
Thus, in correcting the Boltzmann equation results, it is necessary
to assess and subtract out the contributions of these physically
forbidden genuine triple collisions. The situation here is very much
analogous to that in equilibrium statistical mechanics, wherein the
ideal gas equation of state is corrected by assessing and subtracting
out contributions from physically forbidden excluded volume configu-
rations [8]. '

In so considering genuine triple collisions in a gas of hard
sphere molecules, we find it convenient to introduce several new
notions. We shall say that two hard spheres whose centers are separated
by a distance equal to 0 are "colliding", and two hard spheres whose
centers are separated by a distance Zess than ¢ are "overlapping"”. We
define an "overlap collision" to be a collision between two molecules
which occurs while at least one of the two molecules is overlapping
with a third molecule. We further distinguish between a "single~overlap
collision" and a “double—overlap collision", according to whether the
third molecule overlaps with just one or with both of the colliding
molecules. The notion of overlap collision was introduced in earlier
technical reports [3,5,9]. Such overlap collisions are evidently
genuine triple collisions. They may be regarded as accounting for
"excluded volume" effects, or, in the language of Part I, for the

"gtatistical correlations" [3].

16
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We have previously demonstrated [3,5,9] that the coefficients

KK
X » Ny and D1 can be decomposed into a series of four terms

Y

4 4
KK - KK
A = Z A My =1 M

, D, =) D, . (1.5)
- 1 1

1y u=1

For each transport coefficient, the terms in (1.5) are related to
the dynamics of one, two, three and four successive collisions among
three molecules. We represent the various collision sequences by
diagrams in Figs. 2-5, just as the diagram in Fig. 1 was used to
represent the collision sequence related to the dilute gas values

A, n0 and D The lines in Figs. 2-5 represent again the trajectories

0 0"
of the centers of the molecules, while the circles depict the molecules
themselves at the time of a collision. The explicit formulas for the
three-particle collision integrals will be introduced in the next
chapter. 1In this chapter we restrict ourselves to an explanation of
the various collision sequences that enter into a calculation of the
coefficients Alu' nlu' and Dlu'

The first terms (u=l) in the expression (1.5) account for binary
collisions in which both colliding molecules are overlapping with a
third molecule (double-overlap collisions). Such a double-overlap
collision is shown schematically in Fig. 2. The corresponding collision
integrals contain the dynamics of only one binary collision, but do account
for excluded volume effects due to the presence of a third molecule. We

have shown in earlier reports [3,5,9] that these double-overlap collisions

are precisely the collisions incorporated in the Enskog theory, and they

yield
= - 5 3 = e e 3 - 5 3
Ay 1270 Ag r Mg 120 Mg # P33 ® - 12" D0y - (1.6)
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Figure 2. Schematic representation of a double-overlap collision.
When molecules 1 and 2 are cQlliding, molecule 3 overlaps
with both 1 and 2.

We emphasize that these "Enskog values" xepresent corrections to the
dilute gas values due entirely to excluded volume effects.

The terms Alu' nlu and D,  for u=2,3,4 constitute corrections

1y
to the Enskog theory due to segquences of, respectively, two, three
and four successive collisions, as shown in Figs. 3-5. 1In each case,
we consider a collision between molecules 1 and 2 at the bottom of
the diagram, just as in Fig. l. However, in contrast to Fig. 1, we
now consider in addition the trajectories that account for the
possible interactions with a third molecule 3.

The terms 112, Nyge Dy, (U=2) are related to sequences of two
successive collisions of which at least one is a single-overlap
collisipn. The three possible events of this type are shown in
Fig. 3. The three events differ in that in Fig. 3a both collisions

are single-overlap collisions, while in Fig. 3b only the earlier

collision, and in Fig. 3¢ only the later collision, is a single-

18
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(). "ss™ (b) "SN" (c) "Ns"

Figure 3. Sequences of two successive collisions among three molecules.
{a) Molecules 2 and 3 overlap at both collisions (SS-collision).
(b) Molecules 2 and 3 overlap at the earlier collision only (SN-collision).

(c) Molecules 2 and 3 overlap at the later collision only (NS-collision).
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overlap collision. 1In Part I we have referred to these events as
SS-collision (Fig. 3a), SN-collision (Fig. 3b) and NS-collision
(Fig. 3c). These collision sequences account for a combination
of excluded volume (overlap collisions) and dynamical (two successive
collisions) effects.

The terms A_ , n._, D._ (pu=3) correspond to sequences of three

13 13 13

successive collisions, shown in Fig. 4. In Part I we have
referred to these sequences as recollisions (R), cyclic collisions
(C) and hypothetical collisions (H). Note that in the diagram of
Fig. 4b the intermediate collision between 1 and 3 is a "noninter-
acting" collision. That is, molecules 1 and 3 are indeed aimed to
collide, but they pass through each other's interaction sphere and
continue along the extension of their original trajectories. This
noninteracting collision represents a dynamical screening effect
due to the interfering presence of molecule 3. The sequences of
Fig. 4 do not contain any overlap collisions, and they account for
correlations that are of a purely dynamical nature [3,5,10].

Finally, the terms A H=4) correspond to sequences

14" Mg’ P1q ¢
of four successive collisons. The two collision sequences that
need to be considered are shown in Fig. 5. 2Any other possible
sequence of four successive collisions can be obtained from those
shown in Fig. 5 by time reversal and/or suitable permutation of

the particle numbers. These collision sequences, like those in
Fig. 4, account for purely dynamical correlations. It can be shown

that the expansion (1.5) for the coefficients Al’ N and D,

terminates after sequences of four successive collisions [5,10,11].
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1.3 Outline of Report

In this report we present calculations of the three-particle
collision integrals that determine the coefficients lfK , an and
D1 in the density expansion (1.4) of the transport properties. It

is convenient to consider dimensionless three-particle collision

integrals. For this purpose we define

by n D
_ M _ _ 5
A;u = 32 Mo n;u = __nlu , 13"1‘-u = —-Eol . (1.7)
11 11 11

so that, in accordance with (1.5) and (1.6)

.

4 i
KK __ 5 .3 *
A = oA 1+§)‘1u ,
H=2
a )
KK__ 5 3 *
ny =-gpmong | 1+1n] ' (1.8)
p=2 =" |
5 3 g*j
D, = = —ICD 1l + D .
1 127 0 L yep W]
The terms l;u, nIu and D;u represent corrections to the Enskog theory

due to sequences of 2(u=2), 3(u=3) and 4(y=4) successive collisions

among three molecules.

We shall proceed as follows. In Chapter II we formulate the
three-particle collision integrals. The collision integrals correspond-
ing to sequences of two successive collisions are then evaluated in
Chapter III, those corresponding to sequences of three successive col-

lisions are evaluated in Chapter IV, and the collision integrals
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corresponding to sequences of four successive collisions are evaluated
in Chapter V. The numerical results are compiled in tables of collision

-

integrals collected in the Appendix at the end of this report; these

tables are indicated by lower case roman numerals. For a survey and

discussion of the results the reader is referred to Chapter VI.
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CHAPTER II

FORMULATION OF COLLiSION INTEGRALS

2.1 Binary Collision Integrals

The transport coefficients ko, n, and D0 of the dilute gas are

given by [3]

A = [331(2) , N, = - [EE](Z) , D = l['c“c?]m . (2.1)

0] 10kT 0

where k is Boltzmann's constant and T the temperature. The symbols A
-t e - e -:
and C represent vector functions A(v), C(v), and B a tensor function

- ede -~
B(v), of the molecular velocity v; they are the solutions of the

linearized Boltzmann equations

]
[}
”~

i

2 5
fax ¢(V2)T12{A(V )+A<v )} 15KT )vl '

Jax (v,) lz{s (v))+B(v,)]

n
1
2
<

(2.2)

!
1
<t

| d

Sax,p v )T, Cv,) =
o adii -
As in Part I, we use again the convention that the phase xi=(vi,ri)
- -
represents the velocity vr:.L and position ri of molecule i. The symbol
1v1 indicates a traceless dyadic in the notation of:Chapman and

Cowling [l1]. The Maxwell-Boltzmann factor ¢(vi) is defined as

-

.l.

The functions K and E in this report are the same as those in
AEDC-TR-72-142 [3], but differ by a factor kT from those used in
some earlier reports [4,5] and publications [6,7,12].
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2

)% wo [ 2]
wlvy) = [mmj =P |7 2k - {2231
The operator T _ is a binary collision operator introduced by

12

Ernst et al. [13]; its definition and properties were discussed in
detail in Part I. The square brackets with superscript 2 in (2.1)

indicate binary collision integrals, defined as

2 2
- =% (2)_ -—1 - s ._ -
[2,a] "= 57 fav dx,9 (v )9 (v,) Yaw) T, ]} A(v ) .
m=1 n=1
(B,B] %= 53 fdv dx 0 (v )¢ (v,) ¥ B(v ):T,, ¥ B(v ) , (2.4)
m=1 n=1
[c,c1'"' = 3¢ fav, dx ¢ (v,)$(v,) ¥ Clv )T, C(v ) .

n=1

For convenience we introduce the dimensionless quantities

wo= [(R)%s, i, p o oofn) % (2.5)
i 2kT i i o " T12 2KT 12 : :
. . . g ) :* >k .

We also use dimensionless functions A", B" and C , defined by

A(vi) = EEEY‘L/; kKT A (wi) .

- 1 -

- 5 |mkT[/2 x>

Blvy) = 557 ['n B (W) ' (2.6)
P | 2 x>

C(vi) = 557 v[; o (Wi) .

The expressions (2.1) for AO' no and D0 may then be written as
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3.7
A = 2 | kT (a*a*} (2
o] 640 mT '
1
1% 2
_ 5 mkT 5y (2)
n, TeoZ [ ~ {B*B*} ' (2.7)
3 k'rJ bt mes 2
o = w2 @ ‘

where the curly brackets indicate dimensionless binary collision integrals,

2 2
a1 (2) _ 1 (w2+w?) e %
{ata*} ' = —_(21r) 7 fdwldwzdrze 12 mZ’lA W ) .'rlznZlA (wn) ,
2 > 2>
{ 34 (@ _ —7—/ faw aw,dr e - (W3 +02) Le*@): T LB @) . (2.8)
(2m) m=1 n=1
Gl A —2—;7— fdw, W, dx e - (W) H03) Z C* (W ) +To C* (W) :
(2m) n=1

-t

- . S
The functions A*, B* and C are usually approximated by a finite
(k)

sum of Sonine polynomials Sn (x), defined in Table I.

A*(W) = Z a (N)S(/k) (W)W .
k=1

3, . ML o

B*w) = § b (N)S(/k) w?)ww , (2.9)
k=0

c*m) = 2 c (N)S(/k) (whHw .
k=0

The coefficients (N), b, (N) and o, (N) of these expansions satisfy
% X k

a set of linear equations [2,12]
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Table I

Sonine Polynomials

T < (k) k 1 xt
S (x)t" = eXp{-—_—']’
kZO n (1-t) ! 1-t
General: s ¥ (x) = % (1) (Jcn) | x3
k=0 s =1
k=1 s ) = (m+1)-x
=2 § (1) (x) = oHLL(0¥2) _ (n40)x 4 gx?
=3 Sr(13) (x) = (n+1) (n-gZ) (n+3) _ (n+2)2(n+3)x+(n42-3)x2_ %x:"
=4 ng‘l) (x) = <ntl) (n+2)22§n+3) (n+4) _ (n+2) (nz3) (n+4) . .
+ (n+3)4(n+4)x2 _ (n-g4)x3 + ﬁx"
Orthogonality relation:
- 1
].xne xSék)(x) Séz)(x)dx = (n;?). sz ,

0
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‘fa (N al?) =6 (2=1,..,N)
k=1 k ke 1 rees !
Nflb (bl = s (2=0,..,N-1) (2.10)
- — geeyg 4 .
k=0 k kz L0
Nflc Mcl?) = 5 (2=0, .. ,N-1)
k=0 k k& ~ %20 et °
. (2) (2) (2)
Here sz is the Kronecker delta and akz . bkl and ckl are elements of

matrices of binary collision integrals+:

sl = s B i, s,
72 2
(2) (K) o212 o (2) (2335 (2)
by = 8. whiwW , s )i, (2.11)
/2 /2

L(2) _ (K) 2y (%) (2)
A {53/2 (WHW sg/2 (w?)w}

=1/2 in the definition (2.8) of the dinlensionless binary

(2)y _ (2) _ .(2) _
11 = Poo = S0 = 1*

The factor (2m)
collision integrals was chosen so that a

The binary collision integrals (2.1l1) are symmetric, i.e.

(2) _ (2) .. (2) _,(2) . (2) _ (2
a%g %k PPk “Pax Sy = cék) . (2.12)

We shall refer to the number N of Sonine polynomials retained in (2.9)

as the order of the Sonine approximation used. Thus, inserting

t The matrix elements aﬁi) and b(21

) o
matrix elements akz and bkz in AEDC-TR-69-68 [4,12],

used here are the same as the
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(2.9)-(2.11) into (2.7), we have for the "Nth Sonine approximation"

to the dilute gas transport coefficients,

1
RETR L
J\O(N) = BaoZ [mﬂ al(N) ’
1
/2
5 mkT
HO(N) = —7 [—."r—:l bO(N) ' (2.13)

1
/2
3 kT
Po™) = 557 m—n] o™

The problem of calculating the transport properties in the dilute

gas limit thus requires the calculation of the set of binary collision

(2)

integrals (2.11). For a gas of hard spheres these matrix elements ak2 g

(2) and c( ) can be readily evaluated. They are equal to the coef-
kl kL

ficients of sktz in the expansions [14]:

-1 -
2 zam kd ot (s+t)}/2st(1-st) P oindien)r” stetaesnT?
4 "2
k=1 2=1
(2.14a)

IR b (2.14b)
k=0 2=0

1 - =1 -
={1-§(s+t)}’5(1+§st+%szt2)(1-st) 4 %{1—%s+t)} %25t (1-st)

.3 _
- 4—;{1'-%(5+t) j /29242 (1-st) 2

oo <o 1 - =1 -
) c(i)sktz {1-2(s+6)} 2 (14st) (1-st) = H1-2(s+0)} st (1-st) 72 .
k=0 #=0 * 2 v

(2.14c)
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31

The Binary Collision Integrals a(z), b(z), c(z)
k2 '3 k2
(2) +1 a‘2’=-l 22 _ 1 (2)=_ 1
21 12 4 313 32 34 128
a2 -, 4 (2) _ _ 103 a2 - _ 59
272 16 23 128 924 512
2(2) _ , 5657 a(2) - _ 6783
333 1024 234 4096
(2) - B 149749
344 16384
(2) (2) _ 1 (2 _ _ 1
by =+ 1 bo1 =712 b2 =733
p(2) _ 205 L (2) _ _ 163
11 48 12 128
(2) - 4 11889
by’ =t 1022
(2) _ (2 o1 2 oL
Cog = *1 o1 =~ 3 So2- =~ 32
€11 16 ©13 128
(2) - 4 8358
€22 1024
. (2)__.(2) (2)_ (2) (2)_ (2)
Note: &, o"=dp " byo'=Ppr 7 Cp “Cpx
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Table IIX

The Coefficients ak(N) , bk(N) r Cx (N)

N=1 al(l)=l b_(1)=1 co(l)=l
——————— !—\—v—\—w—v————!—lﬁt—!—-—————ﬁu—\-—q—\—-—\—-v—-—-———ﬂ

al(2)=l.022727272 b0(2)=l-014851485 co(2)=l.017241379
N=2
a2(2)=0.09090909091 b1(2)=0.05940594059 cl(2)=0.06896551724

a1(3)=13024818524 b0(3)=1.015878912 co(3)=1.018689786
N=3 a2(3)=0.09678720258 bl(3)=0.06231945009 cl(3)=0.07306202215

a3(3)=0.01989514720 b2(3)=0.00956957592 c2(3)=0.01357698769

L e e e e e e e G Ee e mma e me mm e S ma G Gma SEA G e S e emm — = e S mm Sma e e em e e

a1(4)=l.025134456

a2(4)=0.09761889723
N=4

a3(4)=0.02183560672

a4(4)=0.00606324830
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For reasons that will become clear in Chapter III, we shall study in
this report the viscosity and the self-diffusion up to the third Sonine
approximation, and the thermal conductivity up to the fourth Sonine
approximation. The binary collision integrals required for this
analysis are listed in Table II, and the corresponding coefficients
ak(N), bk(N) and ck(N), obtained by solving the simultaneous equations
(2.10), are given in Table III.

The rate of convexrgence, as N increases, of the expansion (2.13)

and D, is well established (1,2].

for the transport coefficients AO' o 0

From Table III it is seen that the second Sonine approximations a1(2),
b0(2) and c0(2) modify the first approximation a1(1)=b0(1)=c0(1)=1 by

only a few percent.

2.2 Three-Paxrticle Collision Integrals

The coefficients AfK, an and D, in the density-expansion (1.4)
for the transport properties are determined by three—particle collision
integrals. In earlier technical reports we have presented two different
methods for deriving these collision integrals. The method followed in
AEDC-TR-71-51 was based on a geometrical analysis of the three-particle
collision operator in the generalized Boltzmann equation [5,9]. 1In
AEDC-TR-72-142 we presented a more algebraical derivation in which the
three-particle collision operator was represented by a binary collision
expansion [3]. Both methods yield the same results, and we cbtained
for the coefficients Alp' n and D. , defined in (1.5) [see equation

1 1p
(5.1) of Part I]
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4 4
AKK =i z A = Z [AlA]
1 u=1 1lu 3m2 - u ’
4 4 R
KK _ _ 1 = =5(3) .
o= Limy <o LB (%151
4 4 p
1 c o1 (3)
l n=1 1lu 3 u=1 H

Here K, B and E are the same functions as those in the expressions (2-1)
for the dilute gas gquantities AO’ Ng and Dy. However, the square brackets

now indicate three-particle collision integrals defined as
(2.16)

(R, 81 3 =lorav, ax,dx,0 (v,) 0 (v,) 6 (v5) E A T (123) E A
m=1 n=1

- 3.»

5, B] 3 _Lrav dxzdx3q>(vl)¢(v2)¢(v ) { B (V) +T,, (123) EIEGF ),
m=1 n=

(2,81 (3)——fdv dx 0% 36 (v1) $ (v,) ¢ (v5) 2 Sy T, (123 EF) .
n=1

The operators TH(123) (u=1,2,3,4) are three-particle collision operators
defined in Part I.
We introduce again dimensionless guantities as given by (1.7), (2.5),

(2.6) and

. 0l /2
T (123) =°[2Tr} T (123) - (2.17)
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Using (1.6) and (2.7) we may thus write

4
KK _ _ 5.3 *
Al = E‘ITO’ }\o[l-l- 2 )xlu] '
p=2
KK 5__3 ] *
Ny = - pmoln 1+ § Ny ' (2.18)
u=2
5 3 <
D, = - oM0D,lL+ ) Dy,,] '
=2
with
~aten (3) Syaaq (3) T
farar! {3%8*} {c*c"y
Ay=-—— — /o =-=<z—— ,pj=-—Ft— - (219
@ CHUA {cien @

Here we have introduced dimensionless three-particle collision integrals

defined as

Sk (3) W2 1 > > 2 sy oy o (WEHRZWD)
A,A }U =Ton® 31 fdwldwzd 3dr2dr3e 123
3 3
-l — * —L* -
X i .
y A (W) T, (123) ya (W ) /

m=1 n=1

oo - e E s o pra2ara2i ca2
300 32 1 o o g goagtem (WIHHZHWD)
W —-Tow® 31 W AW AN drodr,
(2.20)
3 = 3 =
ok
x § B@).T (123 § B
n=1 H n=1

Sesk (3)_ 3VF L o o x ay  o (W22 W)
{c;c }u = Tom° 31 fdwldwzdw3dr2dr3e 17273

X 2

| B~10

'@y T2 @
_1C(n) T, (123) c W) .
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-

. . Wy x o J
We may again represent the functions A", B® and-¢" by the Sonine

polynomial expansion (2.9). We then obtain for the coefficients

ARK . 'r]]].q-< and Dl in the N*% sonine approximation

;Jf<<N)=-.ll-"§1roa>.0(N) 1+ { A (N] ;

* —
() =-Fmong () b lu(qﬂ : (2.21
D, (N)=-75 ﬂdaD (N) |1+ 2 Dlu(ﬁj ,
with
N N
1 (3)
Ay (N)=- ! ) a (Ma,(Ma ’
M alzN) k=1l 221 k L ke,
N-1 N=1 i
(3) 2,22
L () == 5-7-7 ! Z b, (N)b, (N) b, ' (2.22)
k=0 2=
N-1 N-1
1 (3)
D, (N)=- I} I ¢ (N)c,(N)e .
U co(Ni k=0 %20 k 2 k&,u
(3) b(3) (3) i
Here we have defined elewents a ARTL k,Q, u and ck L of matrices of

three-particle collision integrals"'

+The matrix elements a(3) and b(3) are related to the matrix elements
kL%,u kL,u

aéi) and béi) in AEDC-TR-69-68 [4,7,12] by

(3) __8, (1)

(o 5-gayy and ‘%bkl 5Pky

k2, 575%4 Wil

N e~1udn
[}

u
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kﬂ.,u 3/2 ’

(3) _rq(¥) R (2) 21 (3) '

bm’“-{ss/2 (W23)ww , Ss, (Wz)ww}u (2.23)
=88 wi s whin (P -

In earlier reports [3,5,9] we have shown that these matrices are symmetric

in analogy with the result (2.12) for the binary collision matrices:

(3) _,(3) . L)y ), _(3) _ _(3) ,
%k, w3k, bkz,u-bzk,u' Cke,u” Cak,p (2.24)

2.3 Collision Integrals and Collision Diagrams

It is seen from (2,21)-(2,23) that we have to evaluate a set of
three-particle collision integrals of the form {wrx}é3) and {¢.X}£3),
where ¥ and X are functions of the dimensionless velocity ﬁ. These
integrals involve the dynamics of the three-particle collision sequences
discussed in Section 1.2. However, in order to precisely specify the
relationship between the collision integrals and the collision sequences,
we use a diagrammatic notati;n which is a bit more abstract.

We first make a distinction between interacting collisions and
noninteracting collisions. In an interacting collision between two
molecules, the molecular velocities change according to the usual laws
of mechanics. In a noninteracting collision the colliding molecules

pass through each other's interaction sphere undeflected. A noninter-

acting collision may be decomposed into a noninteracting penetrating
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collision, when the molecules enter each other's interaction sphere,
followed by a period during which the two molecules are overlapping,
followed in turn by a noninteracting separating collision, when the
particles leave each othexr's interaction sphere. We shall continue

to indicate the trajectories of the centers of the molecules by line
diagrams as in Figs. 3-5. However, we shall indicate whether at a
given instant two particles are penetrating, separating or overlapping
by the notation presented in Fig. 2 of Part I [3].

As an example, consider the collision integrals related to
sequences of two successive collisions. These "single-overlap" col-
lision integrals can be formulated in terms of the SS-collision
sequence and SN-collision sequence shown in Fig. 6. In both collision
sequences the collision between 1 and 2 is followed after some time T>0
by a collision between 1 and 3. In Fig. 6a particles 2 and 3 overlap
at both these collisions, as is indicated by the hash marks. In Fig. 6b
particles 2 and 3 oyerlap at the time of the collision between 1 and 2,
but, they leave each other's interaction sphere after some time T', with
0<1'<1, i.e., before the collision between 1 and 3 occurs. We use roman
numerals to indicate veloecity regions in the diagram of interest. Thus,
ﬁi(l) represents the initial wvelocities, Wi(II) the velocities between
the two collisions, and ;i(III) the final velocities, in the diagrams
of Fig. 6. We shall use a similar notation to indicate the velocities
in the sequences of three and four successive collisions.

In Part I we have shown that the collision integrals {W,X}QB)

and {¢,X};3) corresponding to the single-overlap collisions may be

written as
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(a) SS- SEQUENCE

(R

m
—————— il
T
————— i
I /
m
I T (b) SN-SEQUENCE
il
—_ im -
1 /

Figure 6. Diagrams representing the SS~collision and SN-collision.

|
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woxd P =t Dt Dt ;
otV =t 3+, v ix :

The explicit formulae for these collision integrals are given by eqgs.

{5.16) and (5.21) of Part I [3]. In the terms of dimensionless

quantities they may be written as

P SR T
Wi D=2, [ agre )
QSS

3 3 '
x 11 W m-y nhy (mn-x (1D}
m=1 n=1

2 = 32 4132 4oa?
{¢:X}é:)=‘%€ / dﬂ*e (W1+W2+W3)
gSS

X z{wl(r)-wl(II)}*{xl(III)-xl(II)}

(3)_ 3/2 f & = (W2+W2+W?)
{w'X}SN =Ton® o de 1 72 "3
SN

3 3
x ¥ 3 Y, (D =Y (1D P {x_(11D)—x (11)}

n=1 n=1

P 2. .2 .2
{w.x};§’=-%f;g f a*e™ (W 1)
sy

X 2{w1(1)-w1(11)}*{xl(III)-XI(II)}
40
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-t
Here we have abbreviated W(Wh(l)) by wm(I), etc. The notation ¥ * Y
indicates the appropriate scalar product between the vector or tensor
- =
functions Y (W) and X(W). The symbol an* represents a dimensionless

volume element

I e O G O G

* -
1 AW dk, drg, (W, Ry ’ (2.28)

-t e e
where k1=ri-r5 and r§1=r§-ri are the relative positions of the molecules

at the instant of the first (1-2) collision. The velocities Wi without a

velocity region designation are understood to represent the velocities

just after the first collision:

-

Eizwi(rx) for i=1,2,3 . (2.29)

The integrations in (2.26a) and (2.26b) are to be carried out over that

subvolume QSS of the l4-dimensional space spanned by the variables El'
;2' §3, gl and ;;1, for which the SS-collision sequence can be dynami-
cally realized. Similarly, the integrations in (2.27) are to be carried
out over the subvolume QSN of the same l4-dimensional space which
corresponds to the dynamical requirements of the SN-collision sequence.

Notice that the subvolumes ﬂss and QSN have no points in common.

The collision integrals {w,x}(3) and {¢'X}(3), associated with

sequences of three successive collisions, are sums of three terms:

3
fwrx};3)={¢.x}é3)+{¢.x}é3)+{w.x}é3)E ) {w.x};g) ' (2.30a)
v=1
-~ ~ ~ ~ 3 -~
{¢.X}§3)={¢.x}é3)+{¢.x}é3)+{w.x}é3)E ) {w.x};g) . (2.30b)
v=1
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Here the index v refers to the R(v=l), H(v=2) and C(v=3) diagrams in
Fig. 7. These collision integrals are given by egs. (5.25), (5.29),

(5.32) and (5.35) of Part I [3] and read in dimensionless form

_  pea2n2 4na2
{w.x}§3’=(—1)v 1 %%%g-erR*e (W +W,+13) (2.31a)
Q
3v

3 3
X mzl nzl {IPm(I)-wm(II)}*{xn(rvv)-xn(xnv)} i

~ 1 3/5 P S S
{w.x}:§3)=(-l)v 1 %E%rjfgdﬂ*e (W1+W2+w3) (2.31b)
3v

3
x 2} {wn(I)-\bn(II)}*{xn(Ivv)-xn(Inv)} .
n=1

The symbols I, II, IIIv and IVv now refer to the velocity regions in the

diagrams of Fig. 7. The integration element dQ* is the same as in (2.28),
ith W , W, W, denoting the velocities, and k =r*-r%, % =ri-r*
wi 1* Wyr W, denoting the ve ocities, a 1=u:l—r2, ¥ "¥37t,

the relative positions, instantaneously after the first (1-2) collision.

denoting

Notice that nothing precludes the integration volumes 931, from

932' Q33

having non-empty intersections.

The collision integrals {¢:X}23) and {¢:X}23)

. associated with

sequences of four successive collisions can be decomposed as

W =0 3 3+ i S te xp B+ i B =

2
=) [{w.x}ég’ +{x.¢}i\3))] ' (2.32a)
v=1
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' \
I

-_— (a) R-SEQUENCE
I (v =1)
I /
2 | 3
7,
o=1Im, (b) H- SEQUENCE
(v=2)

(c) C - SEQUENCE
(v=3)

| 3

Figure 7. Diagrams representing the R-collision, H-collision, and

C-collision. 43
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ot =t S+ S S eix 0 B =

2 (3) (3)
Y SUBI RS it (2.32b)
v=1
where the index V now refers to the RH(V=1) and RC(v=2) diagrams in
FPig. 8. From egs. (5.39) and 5.42) of Part I we conclude that they

may be written as

.x} g)=('1)v %é?r" ] ng*e- Grp+ipHe3) (2.33a)
4v
3 3
x mzl nzl fy_(® -y, (10 belx (v )=x_(v )} ,
{w.x};3’=<-1>" %)/_12;‘ [Q‘m*e_ (544 (2.33b)
AV
3
* 2 nzl {¢n(1)-wn(II)}*{Xn(vv)_xn(Ivv)} '

where the integration variables, integration volumes and velocity regions
now refer to the diagrams in Fig. 8.

We note that all collision sequences begin with an interacting col-
lision between 1 and 2, which is followed by a collision between 1 and 3;
the collision between 1 and 3 may either be an interacting collision
(ss, SN, R, C, RH, RC) or a non-interacting penetrating collision (H).
These first two collisions are represented schematically in Fig. 9. The
initial velocities are El(I), EZ(I) and ﬁ3(1); the integration variables

- i - e

Wl' W2' W3 are the velocities after the first collision: w1=W1(II),

B e -

’v32='v32(11), W, =W, (II)=W,(I) . The vector 1'21 is the perihelion vector
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(a) RH - SEQUENCE
(v =1)

(b) RC - SEQUENCE
(v =2)

Figure 8. Diagrams representing the RH-collision and RC-collision.
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Figure 9. Schematic representation of the integration variables.

of the 1-2 collision. It will sometimes be convenient to replace the
integration variables ;;1 by ﬁz and T, where ﬂz is the perihelion
vector of the 1-3 collision and T the time between the two collisions.
From Fig. 9 it is clear that these quantities are related by
K, = Tao+W
2 T T31731T - (2. 342)

from which it follows that
drs. =|W.. -k, |dk.d
ry=W;; kyldk,ar . (2.34b)
In all our calculations, we shall begin by making the transformation

- -

wl,ﬁz,w3-+ WoiWyy Wy (2. 35)
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where the new velocity variables are defined by

- -1 a a - - _-‘ _l = -

Wy =3 (W +W,+W3) Wy=Ho=3 (Wy1+W3,)

- - - - _.n- l - - -

iy Wy =ity - G 20, )
317 371 370 321 31 K

Thus w0 is the velocity of the center of gravity of the three spheres,
while W21 and ﬁ31 are the respective velocities of spheres 2 and 3
relative to sphere 1. The Jacobian of this transformation is unity, so

that

Under this transformation the Maxwellian exponential in the integrands

becomes

2,022 va2 - 2
o~ (WY +W,4W3) _ -~ (3W,+E) (2.38)

r

where E depends only on ﬁZl and ﬁ31 according to

=
m

%(w;1+w§1-ﬁ21.ﬁ31) ) (2.39)

Since each collision conserves energy and momentum, E has the same
value in all velocity regions: =E(I)=E(II)=, etc.

Collecting the foregoing relations, we find that the common element
appearing in the various triple collision integrals can be written as

2 2 2
v (W24W24W3)

as 17273

-3W2 -E
et - - - P ~ - ~ —_ A 0 . (2.40)
dWodW21dW3ldk1dk2dT|W21,k1||W31,k2|e e
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This form will be our starting point for the explicit calculations in
the following sections, save for the following two minor exceptions:

First, in the single-overlap calculations, it is convenient to retain

%

31

(2.34). Second, in a special calculation of the R-sequence, and in

e
the integration variable r_., and thus not introduce the transformation

the calculations of the RH~and RC-sequences, it is convenient to

introduce the further transformation W21 > w12=—w21.

All the three-particle collision integrals are seen to be 14-
dimensiocnal. However, since the integrands are isotropic functions
of the vector variables, we are free to choose one of the vector
variables as the Z-axis and another as defining the XZ-plane. The two
vector variables chosen for this purpose will not be the same in all
calculations. However, it is always true that this process is equivalent
to performing three of the fourteen integrations. For when one vector
is picked as the Z-axis, we are essentially integrating over the polar
and azimuthal angles of that vector; similarly, when a second vector
is picked to define the XZ plane, we are essentially integrating over
the azimuthal angle of that vector. Hence, we shall always begin by
choosing our coordinate system in this way, and replacing the angular

integrations over the vector defining the Z-axis and the azimuthal

integration over the vector defining the Xz-plane by the factor

(2.27) (27) = 8m? (2.41)

Finally, the following definitions will be frequently employed

3 3
¥()= ] ¥,(I) = ] v(W (I)) , etc. for II,III,...
n=1 n=1 (2. 42)

3 3 .
X(1)= ] x,(I) ! x(W (I)) , etc. for II,III,...
n=1 n=1
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CHAPTER IIl1

SEQUENCES OF TWO SUCCESSIVE COLLISIONS (SINGLE-OVERLAP COLLISIONS)

3.1 Intrcduction

The collision integralsl{w,x}é3) and {¢,x}é3) are related to the

S5~ and SN-collision sequences-shown in Fig. 6. Both collision sequences
may be represented by the diagram of Fig. 10. 1In this diagram we require
that molecules 2 and 3 are overlapping at the instant of the 1-2 collision,
but we do not specify the time T' at which the particles 2 and 3 separate.
We shall refer to this diagram as the SO (single-overlap) diagram and to
{w'x}é3) and {w,x};3) as the SO (single-overlap) integrals. The SO-diagram
in Fig. 10 reproduces the SS-collision sequence in Fig. 6a if T'>T and it
reproduces the SN~collision sequence in Fig. 6b if T'<T. It thus follows

from (2.25)-(2.27) that we may write

R e e

{w,x}§3)=-ézg;-1rd9 e~ (W W5 #¥3) (3.1a)

10m QSO

3 3
xmzl ngl[{wm(l)-wm(II)}*{xn(III)-xn(II)}
+0(t=1") {x (I)=x (II) }+{y (III)-y (II)}],

{\P,x}2(3)=-3£2— fdsz o™ (W HH3+W3) (3.1b)

101° 250

xt2[{yy (1) =y, (II) I*{x; (III)-x, (IT)}
+ 0 (t=1') {xy (T)=xy (XT) 1*{y, (TID) = (IT)}] ,
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where

0 (t)=1 for t>0 and o (t)=0 for t<0, (3.2)

and where the inteqgration region Qso now refers to the SO~-diagram in
Fig., 10. From now on we shall always use dimensionless quantities, and
so we shall drop the asterisks in the dimensionless volume element dl*

. , ‘s Sk
and the dimensionless positions ri.

Figure 10. The SO-diagram associated with {w.x};3’ and {w.x}(3).
2
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Since the two collision integrals {er};B) and {w,x};3) refer
to the same collision sequence, it is convenient to design a notation
that covers both integrals. For any function o (W) and B(W) we

therefore define

2
(2,8), = :"— fasz o WIS |10 (1) o (1T) Jo{B (1TT) -8 (11) }
850

+ O(Tt-T") {B(T)-B(II) }»{a(TII) - (II}}] .

We may then rewrite (3.la) and (3.1b) as

. x}‘3’ w0,

b = 20

er 5 7
3 3
where ¥ =} b, and X = = ) X, s defined in (2.42).
m=1 n=1
As integration variables we choose the velocities Wo, W21, 331
defined in (2.36) and the position vectors k and r The domains of

1 31°

integration of these variables are defined by the SO-diagram in Fig. 10.
To obtain specific limits for the integrations, we consider the configu-
ration of the particles in the rest frame of 1 just after the first
collision. We take 321 in the +Z-direction and'ﬁl in the XZ-plane as

shown in Fig. 11; thus we have integrated trivially over the polar and

-t ~
azimuthal angles of W._. and the azimuthal angle of kl, vielding an

21

overall factor 8T2 [see (2.41)]. The explicit limits of integration
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Figure 11.

~~action sphere of 2

action sphere of |

Schematic representation of the integration variables used
in the calculation of the SO-integrals ( =2). The figure
shows the centers of 2 and 3 in the rest frame of 1 just
after the first collision, with % in the Z-direction and

12

J'El in the X2Z-plane.
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are now obtained simply by examining the constraints which are imposed
on the geometry of Fig. 11 by the requirements of Fig. 10.

The variable ﬁo (not shown in Fig. 11) represents the velocity of
the center of gravity and, hence, does not affect the relative motion
of the particles; thus the components of ﬁo may assume all possible

values. The magnitude of W, . is also unrestricted; the angles of W

21

-
have already been integrated over in choosing W

21

21 to lie along the

Z-axis. If 6 denotes the polar angle of il relative to the polar axis

-

W21' then 0 can vary from T/2 to T, so that cos® varies from -1 to O;

the azimuthal angle of k., has already been integrated over in picking

1

A A e
k1 to lie in the XZ-plane. With kl fixed, we next choose X, SO that 3

lies anywhere inside the action sphere of 2 but outside the action sphere

of 1. Denoting r by (r,er,¢r) with -k. as the polar axis, then we see

31 1

from Fig. 11 that ¢r can have any value between 0 and 2T, cosBr any value

between 1/2 and 1, and r any value between 1 and 2coser. With r 1 thus

3

-~ Y
fixed.,W31 must then be aimed to hit the action sphere of 1. Denoting W

by (W31,6w, ¢w) with I,

31

1 s the .polar axis,..we may:deduce from Fig. 11

that the eenter of 3 will hit the action sphere of 1 provided that cosew
. fo =2
lies between vl-r ~ and 1; then ¢W may assume any value between 0 and 2T,

while W31 may assume any value between 0_and «©. These considerations

allow us to write the SO-integral (3.3) in the following explicit
.'.

ll-dimensional form

-I.

This collision integral was earlier derived in eqg. (5~27) of

AEDC~TR-71-51 [5].
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0 27 1 2cosh
1zf *
(@,B), = fffi wofdwnw;lf dcos6 fd¢_ dcoserfdr r?
0 -1 0 1/2 1
27 1
fdw3lwglfd¢w f dc:oseW ( W21cose)e (3Wy+E)
0 0 g2
X [{a(I)~a(II)}*{B(III)-B(II)}
+ @ (t-1"){B(I)~B(II) }x{a(III)-a(II)}]. (3.5)

The integration variables in (3,5) completely define the vectors

WO’ W21, w31, k1 and X3p: but it is noted that the polar and azimuthal

angles of these vectors are not all taken relative to the same frame.

Thus, W 0’ ﬁ&land k1 are all defined relative to a coordinate system with

~ -
Z-axis along W and XZ-plane in the plane of W21 d k ; r31 is defined

relative to a coordinate system with Z-axis along -kl; and W31 is

defined relative to a coordinate system with Z-axis along -r3l. However,

by applying suitable rotation matrices, the components of WO’ W21, W31,

ﬁl and ;31 can all be found relative to any desired frame and expressed
explicitly in terms of the various integration variables in (3.5). The
regquired rotation matrices are presented in Table IV. We shall return
to this point later when we discuss the evaluation of the integrand.

- - A

- -
In terms of the basic vectors W _, W _, W __, k dr 11 other
e e ic vec s 0 21 31 1 an 31’ a e

quantities of interest can be calculated. Thus, the time T is computed

as the smaller (earlier) root of the guadratic equation
-t - 2 =
]r31 + W31T] 1,
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Table IV

Rotation Matrices

-l
Given two frames F and F', and a vector v. Suppose Frame F'

is obtained from Frame F by rotating frame F about axis i by an
angle +0 [i.e., the rotation carries axis j toward axis k through an

angle |9| , where ijk is a positive permutation of xyzl. Then if

(x,y,2) are the components of v with respect to frame F, the components
]

x
(x}y z') with respect to frame F' are obtained by (y') = R, (6)(}() ’

z z
where
! 0 o |
Rx(B) = 0 cosb sinb
0 ~sinf cosB_J
[ cosB 0 -sind ]
(0) = 0 1l 0
RY )
| sin® O cosf |
cosf sin® O
: nz(e) = | -sinf® cosB 0
0 0 1
Note: cos(W-8) = —cosb cos(—B') = cosf
sin(w=-8) = sinb sin(-8) = -sinf
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while T' is computed as the positive (future) root of

234031 |2 = 1 (ryy = kytrgy, Wiy 2 Wyy-W,)).

Carrxying out the algebra, we find the explicit formulae

T = W;ir(l-e)cosew , _ (3.6)
and
o= Wt e A B R (122 ) (3.7)
32 32°732 32732 32 ’ °
where
=2
l-r

E S\l =% . (3.8)

coszew

~
The collision vector k2 is then given by

-t

22 = —r31-w3lr = -r[§31+ﬁ31(1-e)coseé] . (3.9)

Finally, we need the velocities in regions I and III in order to

evaluate the integrand in (3.5). The region I and region III velocities

are obtained from the region II velocities WO' W21, Wy, and the
~ ~
collision vectors k1 and k2 through the hard sphere collision formulae:
WolI) =W, Vg (III) = W,
- - -t A A - il . A A
WZl(I) = W21'2W21’ klkl W21(III) = W21-W31'k2k2 (3.10)
W31(I) = W31-W21'k1k1 W31(III) = W3l-2W31'k2k2
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-~ -

Therefore, once we write down the components of the vectors Wo, w21,

- A

W3l, ﬁl' k2 in some common frame, expressing these components in terms
of the integration variables in (3+5), we may proceed to express the
full integrands in terms of the integrating variables, provided of
course that the functional forms of o and B are given.

In evaluating the integrand in (3.5), it will be observed that
we always deal with differences in various functions of the velocities
before and after a collision. For all the functions a(=¥,X,y,X) which
we shall be dealing with, it turns out that these differences satisfy

the proportionalities

- - - - - -

I), W I), W I -~ (W _,W « W .k
G(WO( ) 21( ), 31( )) ( 00 21 31) 21" ’

>

and (3,11)

— by - -

Ol(Wo(III),WZl(III) ,W31(III)) - Ol(Wo,WZl 31) « W3l-k2 .

This property (3,11) is a consequence of the velocity-change equations
(3.10) and the simple polynomial forms which are used for the functions
P and X. Because of this property, it is convenient to define the

primed differences
{e@-oan}) ={a@m-oa jmw, -k, (3.12a)
-and

{atzzn) ~a(zn}' = {o(zIn)~a@n}A (3.12b)

312 !

-t

s W..y Since from Fig. 11

£ i iti W, W
for any function o of the velocities o’ W21 31
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-y P
Wy kg = Wyyc088 (3.13a)
and from (3.9) and Fig. 11
Wk =W 8 3.13b
. = E -
31"t T W3 FECOSY, ¢ ( )

we can replace the unprimed differences in (3¢5) by the primed differences,

provided we introduce into the integrand an overall factor of

—t FS -t A
(Wzln kl) (W31- k2) = V9121W31r&:cosOc¢:sBW .

(3.13¢)

In addition we make the variable changes

0
cos20 dcosb -+ %‘f dcos®e ,
-1

iLt-"\c>

2cosez (2cos6, 4
fr“’dr -+ %‘j dr*® ,
1l 1
1 1
cosb ~ dcose - %f dcoszeW .
Ymp~2 1-r 2

We thus conclude that expression (3.5) for the SO~integrals may be

written as
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[+0]
1 3 -3u2 L
(@,B), = .’. a’w_e "0 aw__w dcos?
2 5/2m" ff 0 f 21 21 f 31 31-[
[+ ]

(2cose )

j o, f f f f

1/2 l—r

x [{a(m)-a(xr)} ' *{B(xI1)-B(II)}"*

+ O(T-t){B(D)-B () } ' *{o(IID) - (XT) }'] . (3.14)

(N) and D (N) as

(3) (3)
k&,2" "k&,2

Por the sake of simplicity we shall drop the =2 designation

In order to obtain the coefficients XIZ(N), n12

given by (2.22) we need to evaluate the matrix elements a

(3)
k&,2 °

:+ b
and c

in the matrix elements for the single-overlap collisions and write+

(3) - _so (3) _ . SO0 _ (3) oS°
%g,2° %k’ Pxe,2 TP’ %e,27 %kt (3.13)

From (2.23) and (3.4) we see that these matrix elements are given in

terms of (u,B)é b

so  _ (k) (2) 2,

m=1 n"l

5 .
so _ (k) (), 2.0

bkﬂ, [mzl S/ (W )W A nzl Ss/2 (Wn)Wn“Tn]z ' (3.16)
so _ (k) .2, (L) 2.

ck2 = 2 [S 3/2 (Wl) Wl R 53/2 (Wl) Wl]z .

¥ These matrix elements are related to the matrix elements akk’ bkland
ckl in AEDC-TR-71-51 [5] by

so _ _ BS° - _p SO _ _.
Y i Y L k% T TOkL’ k% T “Cke ¢
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In a previous technical report [5] we have evaluated the four
lowest order elements of the matrices of SQ-collision integrals (3,16).

These results enabled us to determine the coefficients RIZ(N), n;z(N)

*
and Dlz(N) up to the second Sonine approximation N=2. The work

indicated that the rate of convergence of the expansion (2.22) for the

*

1

vergence of the expansion (2.13) for the dilute gas transport coefficients.

viscosity n; and self-diffusion D_ is comparable to the rate of con-
However, the same conclusion could not be drawn for the thermal conduc-
tivity coefficient XI. In this report we shall evaluate all those
matrix elements in (3.16) that are needed to evaluate the coefficients
nzz(N) and D;z(N) up to the third Sonine approximation N=3, and the
coefficient XI;N)'qp to the fourth Sonine approximation N=4. We shall
thus be able to establish the rate of convergence of the expansion (2.22)
for all three transport coefficients.

In evaluating the matrix elements (3.16) we shall follow two
different approaches. In the first approach we integrate analytically

-

over W, and ;21 in (3.14), thus reducing (a,B)2 from an 1l-dimensional
integral form to a 7-dimensional integral form, and then we evaluate the
various 7-dimensional integrals numerically using a Monte Carloc technique.
In the second approac@, we apply the Monte Carlo technique directly to the
1ll-dimensional form (3.14). The first approach yields fairly accurate re-
sults, but the algebraic complexities introduced as a result of

-

the analytic integrations over WO and w21 are so great that only the
matrix elements for the first (N=1) and second (N=2) Sonine approxima-
tions can be calculated with reasonable effort. The second approach

yields less accurate results, but is algebraically simpler so that the
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computation of the higher order Sonine. approximations can be effected.

Clearly, this two-pronged approach will provide us with a strong check

on the consistency of our calculations of the single-overlap contribu-

tions.

3.2 Reduction of Collision Integrals to a 7-Dimensional Form

When the explicit forms of the Sonine polynomials are inserted

<IN -~
into (3.16) and use is made of the fact that Z W, = 3Wo is the same
n=1
in all velocity regions, we obtain the following expressions for the

matrix elements éi;, ﬁii and ciz.
3 3
SO = 2 = 2
as, = | ] W W, wa] ,
11 2, mm n=lnn2
aS°—7’§ﬁW2 ZWWZ] I3 wowe oW
— - ’ -—
12 2~m=lmm n=1 P B/, 2 =lmm’n_lnm2 !
’3 3 hN
a,, = 5| J W w?, wa] -—[ZWW, I WW
21 2{(2y ™ m n=1 PR}, 2| mm n=1 ® BJ, !
as°—49[ W_wW2 sz] 7[m2v71w2 fww“]
= I ’ = 3% 4
22 4 Sy w2y, 4 2, mom n—lnn2’
7 [ § = ook % = o2 1 ) =l § = ook
- W W', W W ] + = wWww, W W ] .
mel B op B R), dlgopmm’ oy nng,

(3.17)
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[={e) %"O" %.\o_\
b =[ Fl WW] ’
00 mel MW 2, NN,
3 3 e 3 3 3
sO '7[ -0 a0 a0 a0 2
brs =35 I WW wa]- YWUW, )} WWW '
01 2m=lmm'n=lnn2 lp=1 MM’ 2, "n"n"nj,
3 3 3 3
SO 7[ -~ -~ - ( - O - 2 0 - W
b>Y = 5| I WW wa]- ) w2, Y WW /
10 2m=1mm' ne1 P R, lp=] ™ ™ n=1] B Ny
(3.18)
3 3 3
so _ 49[ § wow o 7( % =ox sox
b2? = =| ] WwwW wa]——[{ww,{www]
11 4Lm=1 mm’ n=1 n'nj, 2 m=1 mm’ -, nnmj,
e 3 3 3 3
7 z_\o_s 2 -~ 0 -~ 0 2 -0 - 2
-5 WWW 2ww]+[2www,2www] .
ZLm=1 mmm'’ n=1 nn 2 m=1 mm m nal nnnj,
SO _ -
coo = 2(W1IW1)2 ’
Coy = 5(Wp, W)y = 2(W Wy W),
cS9 - 5(W,,W.)., - 2(W.W2,W,) (3419)
10 1’71°2 11712 ¢
eSO = 23 W.) .- 5(W.,W,W2). - 5(W.W2,W,)
11~ 2 1771°2 177171°2 171’712
o w2 T vyl
+ 2(W1W ,Wlwl)z .

Although ai:, for example, is a sum of two integrals, we shall
actually calculate it as the integral of a two-term integrand; this is
possible since the integrating variables and domains are the same for

both integrals, and is desirable since it allows a precise estimate of

the uncertainty in ai:. Essentially then, our task is to evaluate twelve

S0 S0
b

integrals; four-each of akl' and cSo as shown in (3.17)-(3.19). all

k% k2

twelve integrals can be calculated in parallel, since the integrating

variables and the domains are the same for all [cf. (3.14)].
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Each integral in (3.17)-(3.19) has as an integrand some specific
polynomial form in terms of the velocities ﬁl' W P W « Our first step

2 3

is to express these polynomial forms in terms of the variables ﬁo, ﬁzl'

-

w31 defined in (2.36). The ﬁo—dependence of the.integrands is then
isolated, and the ﬁo-integration in (3.14) can be done analytically.
This process entails the application of various integral forms of the
type found in Section 1.421 of Chapman and Cowling [l], as well as the

performance of integrals of the type [cf. (3.14)]

3z -3W2 _ +2 -3w?
fffdwowge 0_41rfdwox«v{)1 e "o ,
[++]

o

for various values of n. The integrals (3.14) are thereby reduced to
8-dimensional integrals, in which the integrands depend only on the
velocities w2l and W31 in regions I, II and III. Note that, the velocities
WZI(I)' W31(I) and w21(III), W31(III) are determined completely by the
velocities W__ and W3l in region II and the collision vectors £ and ﬁz

21

1
[see (3.10)]; the collision vector ﬂz in turn is determined by r

and
31

-

W31 [see (3.9)].

The fact that %0 can be integrated out with relative ease is a
consequence of the fact that the dynamics of the collision sequence is
independent of the velocity of the center-of-mass of the three molecules.
Another variable which does not affect the collision dynamics for hard
sphere molecules is the scale with respect to which all the velocities
are measured [this is because the angle of deflection for two colliding
hard sphere molecules is independent of their velocities]. Suppose, in

fact, we measure the two velocity variables W and W in units of W :
21 31 21
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Wor = W 2,
"21 = W21® (3.20)
W3y = Wy v .

Essentially, this amounts to a change of variables in (3.14) of the form

with
szldW31 = WZldWZIdW . (3.21b)

The independence of the collision dynamics with respect to the velocity scale
manifests itself in the following fact: If relations (3.20) are introduced
into the various integrands, then every term in these integrands is found to

-
be homogenous in W_.; that is, if F(W ) is a typical integrand temm,

21 2131

then we discover that
- - ~ - 3 n ~ -
_F(W21,W3l) = F(Wle’WZlW) = WZIF(Z'W) ‘

with the value of n varying from term to term. We note in passing that ﬂz

and O(t~T') are homogeneous in W__ of degree zero [cf. (3.6)-(3.9)], while

21

E is homogeneous of degree two [cf. (2.39)]:

E = W2.E E' = 2(l+w?-zw) (3.22)

217 ! -3 :
[Like E, E* = E/W;l has the same value in all velocity regions.] Therefore,
if F(ﬁ21’ﬁ31) is a typical term in the integrand of (3.14), where we now

assume that ﬁo has already been integrated out, then we can perform the

W21_ integration analytically on a term-by-term basis:
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3 4 -E o, =~
fdw3lw31de21W21 e “F(Wy,,Ws3,)
0 0

[++] o0

= b .3 4 - ==
| aww w® | AW, Wi, e 21 w’z‘lp(z,w)
0 0

8 A + -T2 *
= awwF(2,%) fdwzlwzslne Wi, E . (3.23)
0 0

We note that the Wzl-integration removes the factor e-E and replaces
it by the reciprocal of E" raised to some half-odd-integer power.

Recapitulating, the integrals in (3.17)-(3.19) are dealt with in the

- -

following way: First, the integrand expressions involving ﬁl' WZ' W3 are
converted to expressions involving Wo, W21’ W31 by means of (2.36). Next,

the Wo-integrations are performed analytically, thus reducing the integral
forms (a,B)2 in (3.14) from 11 to 8 dimensions. The remaining velocity
variables ﬁ21, ﬁ31 are then transformed to ﬁ21, W as prescribed in (3.20),
and the integral over the magnitude w21 is performed analytically. The
integral forms (a,B)2 in (3.14) then become 7-dimension integrals over the
variables cos®0, ¢r' coser, r*, ¢w, w, coszew. The algebra involved in
carrying out this program for the quantities in (3.17)-(3.19) is lengthy

and complicated, and we shall only gquote the results here. For this

purpose we define the 7-dimensional integral form
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(a.B)z =

1 (2cose »* 1

z/g fdcossefdd’ fdd) f J-dcose fdr"fdcos

where T is given by (3.6) with W3

wiﬂia
32

-

21 1

W k andvv ﬁ

31 2

now replaced by 2-£1 and wek

%=
X £E 9/2

[{a (1) - (1T) } *+{B (TEI)-B(IT) }"

+ (-t {B(T)-B(IT) } r*{ (1IX) - (IT) }'] ,

2

(3.24) the matrix elements (3.17)-(3.19) are

, respectively.

(3.24)

1 replaced by w and 1' is given by (3.7)
replaced by w-z, and where the primes are defined by (3.12) with

In terms of

SO
11

=1

SO
31

SO

= 3(L1,L

)2+

- e

_b -~

7(L1.L1)2 +

Bl R R

1133
=T (K Ky

4719

99
K K)o

_L—b

231 =
3 (Kl,Kl)2 + 33(L1,L2)2

e

231 =

———(K 1)2 + 33(L2,Ll)2
) 3%?3 1'i2)2 + 3003(K

- -
- e
- -
M,M

22(S,8), + 22(M,M), .

1287

1287

T(KZI 1)2 ’

+ 429¢

1)2

(K

-

-

L, i

-

2)2

+ 19305

Xy),

’

(3.25)
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oL g 2
bog = 3(LyrIy)y
boy = %%(El’il)z + %?‘Ll'iz)z ’

s0 21.*
(3.26)

SO 301 > =, . 23l(£:,

50 _ ;0 o
oo = (*1r%)2
so _ § -~ 2 o~
C1o = 01802 + 5005000, (3.27)

so _ 55,, 15 , 15 , 99
et TGy kpd ot e ty) g + T hpa R0,

) =2
+-%mm5+3mmb ]

-t

q ﬁ ’ iz, k and m appearing

3427
i

To define the symbols Kl, Kz, 1’ Ly
in (3.25)-(3.27), some preliminary remarks must be made. First of all, the
transformation (3.20), which "scales" the velocities in region II, also °

induces a scaling -of:velocities in regions I and III on account of (3.10).

Thus, we have
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- _ A— l\.l\ A - _ A'-_;.A ~
z(I) = z-2z kKiky z(III) = =7 kk, |,
(3.28)
w(I) = w—z-klk1 , w(III) = w—2w-k2k2 '
-where, of course, Z(II)Zz and W(II)3w. Now,-it turns out to be more
convenient to work with the auxiliary velocity variables [cf. (2.36)]
Wy (i) = -2[Z(i)+w(i)]
10 =73 _
Wy (i) = -%[G(i)-zZ(i)l ' i=I,II,III . (3.29)
-~ . - .~.. -
w3o(1) = -3[2(1)-2w(1)]

The velocities ;10' ;20' 330 are the velocities of spheres 1, 2 and 3

relative to the motion of the center of gravity. The expressions for the

- L e
quantities Kl’ K2, Ll' etc. are now defined in terms of these auxiliary

velocities W, ., W.. and W_ .. Specifically for any region we have

10 20 30
3
- _ *..l -
Ky 2 E -] w, wi (3.30a)
i=1
3
- - *_2 -
Ky = E ° ] w Wi, . (3.30b)
i=1
: *_L f - -
L, = E 2 . W , (3.30c)
1 j=1 do'io
: _ *_i 3 - - 2
L, = E Z_leio io¥io ! (3.30d)

1
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%3 3
SszE fJw (3.30e)
i=1 *©
.;: _ *..1 3 - - -~
M= E .Z Wi oWioV¥io (3.30f)
i=l
2, = E Wio (3.309)
== _ *_1 -
%9 £ E v&dwio . (3.30h)
*_% 2
k =E 2wy o (3.30i)
: _ * [P
m=E WigWg - (3.303)
We also note that
* 3 2
E = _leio . {3.30k)
l=

From the expression (3.24) for the collision integrals we see that we
need to evaluate the quantities {u(I)-a(II)}'={a(I)-a(II)}/2.ﬁ1 and
{u(III)-a(II)}'={a(III)-u(IIj}/ﬁ.£2 for all functions @ defined in (3.30).
With (3.28) and (3.29) we can express these quantities in terms of the

~

vectors 2, ;, k1 and £2; the results are listed in Table V.

As a last step we need to express the vectors z, W, ﬁl and 22 in
terms of the integration variables of (3.24). This step is not unique
in that it depends upon which common frame one chooses to work in. In
our calculations we worked in a frame in which the Z-axis pointed along

-?31. The vectors w and ¥ have a simple representation in this frame

{(see Fig. 11)
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Table V

The Quantities {a(I)-a(II)}' and {a(III)-a(II)}' in the SO-Integrals

o {a(n)-0 (1)}
*3/2 2 2
E S 2b(w20 wlo+ab)
* A2 w2 -
E Kl bz (w20 wlo+2ab)k1
* 2 2 - 2 = 2 , 2 2 _ 2 2
- - +
E K2 b( 2w10+ab)wlo+b(2w20+ab)w20 (w10+w20)(w20-w10 2ab)k1
E L1 2(ak1k1-zkl)
*3/2:: a3 - _ - - 2 2 AN 2 —~ A- 2 > & -~ A
E L v, W507P%1 0W1072 (] 620 K1 K1 F2¥ 0¥) 0KT 2920 2051 H23PY3 0Ky
-
= AR LY
E M 3w %1 0%17Y20" 2051723051 %1
*
B /% -b
ll kl
* - 2 = A
EZ, bw) ot (W) gm3P Ky
*1/2_.: A A - A
+
E m aklkl 2w10 1
- 1 A - - l - A - 1 A - A A - A
Notes: 1) w10=-§(z+w), W20=-§(w-22)1 W3o=-§(z-2w), a=z-k1, b=w30-k1.
: 1 XV N W N 1 [ SN Y K W W i NN N RN RN,
2)  xy = F(xytyx); xyz = z(xyz + xzy + yxz + yzx + zxy + zyx)
3) {a(III)-0(II)}' is obtained from {a(I)-a(II)}*' by the following

transformation
~ ~ A = =t - - - - ' v
=]
kl o y  W*Z, wzd+w3o, wsd+w20, a*xa', b*b',
hi ' Wk d b' W X
where a' = w k2 and b' = wzo-k2
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Ws;_new COS¢w

, W = w51an 51n¢w ) (3.32)

W (]
cosb_

I
H © ©

The components of z and ﬁl are obtained by applying the appropriate
rotation matrices, defined in Table IV, and the components of ﬁz are

obtained by inserting (3.32a) and (3.32b) into (3.9).

n 0
z = R, (~(n-6.))-R, (¢ ) -R, (n1-6) - ?_ =
sinecos_(-)_-rcosdbr - 005631n¢r
= sinesin¢r " (3.32c)
51n651n6rcos¢r + cosecoser
~ 0 [~sin6y,
k=R _(=(m=0 )).R_ (d )] O = 0 ’ (3.324)
1y r S 1 cosfy
r(e-l)cosew s:!.new coscpw
i2= r(e—l)cosew s:.new s;n¢w X (3.32e)
r(s—l)coszew+r
with

A / -2
- _ l-x
ez \/1 5os70, : (3.32£)

The remaining quantities in (3.24) are given by
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pi= %(1+w2_2.§) . (3.329)

T = w'lr(l-e)cosew , (3.32h)
-> A 3> A

. (r31+k1)°(w—z)

(w-z) 2

1 -+ > > A -)-Az—-) A,
" ?5:5721&‘r31+k1)'(w-z)}’+(w—z) {1-(x,,+k,) %,

(3.321)

Substitution of the quantities of Table V into (3.24) and use of egs.

(3.32) completely specifies the SO-integrals in 7-dimensional form.

3.3 Evaluation of 7-Dimensional SO-Integrals

In the previous section we have reduced the SO-integrals to a
7-dimensional form (3.24) with the functions @ and B defined in (3.30) and
evaluated in Table V. Together with egs. (3.32) the integrand is thus
completely specified in terms of the integration variables.

In order to evaluate these 7-dimensional collision integrals we
resort to a Monte Carlo integration procedure. However, the integral form
in (3.24) a8 it stands is net yet analyzable by Ménte Carlo techniques,
because of the infinite range of the yariable w, We must transform from the
variable w to some variable u which has a finite range. One candidate for

such a transformation is

u = (1+w?) ",

72



AEDC-TR-73-171
which, for any n>»l, maps the infinite range 0Sw<® onto the finite range
O€u<€l. However, an important constraint on this or any such transform-
ation is that its Jacobian must not cause the integrand to become
unbounded as a function of u; for in a Monte Carlo procedure both the
integrating domain and the integrand values must be strictly finite.
Consequently, to make a suitable choice of n we must examine in detail
the behavior of the integrand in (3.24) near w=0 (u=l) and we= (u=0).
This is a rather laborius task; for not only does w enter into the
integrand of (3.24) via the factor w’E*'g/z, but it also enters
through the primed differences in braces in (3.24) [ef. Table V].

Thus, each term in (3.25)-(3.27) must be examined in detail to determine
its behavior near w=0 and w=». It turns out that, for ¢ and B equal to
any of the guantities in (3.30), the-primed differences in (3.24) all
remain finite near w=0 and w=*. Since, asymptotically

3E*-9/2 _

= wi/ %(wz-é‘-v‘m)g/z

W ~ w3/ (1+w?) ,

then we consider the problem of integrating w®/(l+w®) from w=0 to w=e.

The proposed transformation u=(1+wn)-1 yields

o 1l
f i 1 f(l u)41-1‘-1n u5-n
w - . o
dw = = du
A L+w? 2 0[u9/n+(l-u)9/n] '

from which we deduce that we must pick n{4 to yield a bounded integrand.
Since the highest value, n=4, should produce the smoothest behavior of

the integrand (an important consideration in Monte Carlo applications),
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we therefore choose for our w * u transformation

u= (w91, (3.33)

Since (3.33) implies that

widw = -

L] )
2

then (3.24) can now be written
(2cos9 )"

0 1/2

% uTEfwz-[{a(I)-a(II)}'*{B(III)-B(II)}'

(oL,B)2

+ e(-r--c'){sm-e(n)}'*{a(m)-a(n)}'],

(3.34)

where it is henceforth understood that the quantity w is given by the

inverse of (3.33):
< (l-uy 1/4
w ‘('1‘#1)1/ . (3.35)

One final transformation of variables is needed to effect a Monte
Carlo calculation. We wish to transform the 7-dimensional integrating

region {1,

Q = {(cos39,¢r,¢w,u,coser,r“,coszew)H -1€cosd6g0 ,

0<¢r<2ﬂ,0<¢w<2n,0<us<1,%<coser<l,
l<r"<(2coser)“,(l-r-z)scoszﬂwsl}, (3.36)
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into a 7-dimensional unit cube

Uy = {1y, 00 0nq) || 0<2 €1 i=1,2,...,7}. (3.37)

This transformation would be easy if {} were a rectangle; however, because

the boundaries on the variable r‘

depend on the variable coser, while the
boundaries on the variable coszew depend on the variable r*, the method of
effecting such a transformation is not so straightforward. This general

problem is discussed in a separate technical report [15]. For the problem

at hand we used the transformation scheme [5]

cosdp = -l (3.38a)
6, = 2mn, , (3.38b)

6, = 2mag , (3.38¢)

u =y, wsl(i-w/u1t/4, (3.38d)

21y = 4cosser-3coser+l , (3.38¢e)

r = [1+(4cos®e_-1)n.12, (3.38f£)
coszeW = (l-r_2)+r_2)L7, (3.38q)

where (3;38e) defines coser in terms of ns through an implicit inversion.

The rationale for eds. (3.38a)-(3.38d) is obvious from (3.36),or equivalently
from the ranges of the first four integration variables in (3.34). The
unusual appearance of egs. (3.38e)-(3.38g) is a consequence of the interde-

pendence of these variables; these transformation equations were obtained
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by a "successive conditioning method" discussed elsewhere [15]. Suffice
!

it to say here that the transformation (3.38) is such that its Jacobian
is equal to the volume of §), as may be verified directly:

3(cos®6,¢_,¢.,u,cosé_,r"*,cos?6_) 2
E_w r W ___ - |g| = 18T, (3.39)

3
Y CT TR )

Thus, we may straightaway replace the integrating variables cosse,¢r,...,
coszﬂw in (3.34) by the variables X ,X,,..., X, provided we multiply the
integral by the constant factor in (3.39). oOur final formula for (a.B),

is therefore

1 1 1
_ 7 £
(Q,B)z —5—4—'fd’£l fd)l.z.-ofd’l,7;—2;;g7-2—
0 0 0

X [ﬁa(l)-a(II)}'*{B(III)-B(II)}'

+ O(t-1') {B(I)=B(II)}'*{a(III)-a(II) }'] . (3.40)

We now summarize the definitions of, and relations between, the various
quantities that enter into our calculation of the =2 quantities in (2.22).

We have by (2.22) and (3.15) and (3.16)

N
* SO
AT, (N) = ] a, (N)a,(N)a :
12 ay (M) L, 2% % 13

N-1 Nil so
b, (N)b, (N)b ' (3.41)
k=0 220 k L ki

N-1 N-1
D¥_(N) = I ] e (N)c, (N)c3° .
12 CAY ) I T Tt S e 1

ni, (M) By (N)
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The coefficients ak(N), bk(N) and ck(N) are given in Table III. The

matrix elements akz, b5° and c3© are calculated from egquations (3.25)-

ki

(3.27), and evidently involve evaluating integrals of the form (G,B)z.

These integrals are defined by (3.40), where:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

the quantities cose,¢r,¢w,u {and w), coser,r,cosew are

obtained from the integrating variables % ,A_,...X

1772 7
through egs. (3.38),
=2
the quantity € = l-ghzi-—-as given in (3.32f),
cos“0,,

the vectors 2';’E1'£2';31 are constructed in component form
from the quantities, cose,¢r,¢w,w,coser,r,cosew through
eqs. (3.32),
the quantities E*, T and T' are given in (3.32g), (3.32h) and
(3.32i) and O (T-T') is defined by

1if 1

O (t-1") =
0 if 1<T‘

’

FFP

the quantities il,xz,nl,Lz,s,m z ,zz,k,ﬁ in (3.25)-(3.27)

are calculated in regions I, II and III from the vectors
A A

z,w,kl,k through the chain of equations (3.30), (3.29) and

(3.28),

for o = any of the quantities ii,iz,...,k,m, the primed

differences in (3.40) are calculated according to the rules

{a(-axn}’ = {a(:)-a(zx)}/E-ﬁl '
fain-aan} = {e@m-aan}ik, ;

these quantities are given in Table V.
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The Monte Carlo procedure for numerically calculating the quantities

sO _.so so
Agr ka' g is essentially to average the integrand in (3.40) over a

set of points {pi}={(n§,n§,...,n§)} picked from a random, uniform distri-

bution in the 7-dimensional unit cube U7 [cf. (3.37)];

? [{G(I)-G(II)}'*{B(III)-B(II)}' (3.42)

24/6 u2E /?

(a,B)z =

+o(t~t") {B(1)-B(II) } r#{a(1I1)~a (1) } ':|>u
7
The uncertainty in estimating this average with a finite set of points
{p!,p%,...,PM} is given by the r.m.s. devia£ion of the quantity being
averaged, divided by vM. Hence, our computational algorithm is:
1° Generate 7 independent random numbers &1,n2,...,n7 from a
uniform distribution in the unit interval.
2° Calculate the quantities coser,¢r,¢w,u (and w), coser,r,cosew
from Egqs. (3.38). In doing this, coser is obtained from o
by numerically inverting (3.38e), and coser, r and cosew are
obtained in that order from (3.38e), (3.38f) and (3.38g).
3° The appropriate integrands [i.e., the quantities in(( :>in
(3.42) for o and B as prescribed by (3.25)-(3.27)] are
evaluated at the given random point by following the procedures
outlined in steps (ii)-(vi) above.
4° The computed value of the integrand, as well as its square
(for calculating the variance in order to estimate the un-
certainty), are added to respective running sums.
5° sSteps 1°-4° are repeated as many times M as is practical, and
then the running sums are converted to averages, thus yielding
the estimates of aso' b2° and ¢5° along with the uncertainties

k2 k2 k2
in these estimates. 78
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6° In order to precisely estimate the variances, each matrix
element in (3.25)-(3.26) can be calculated as a single (a,B)2
integral by simply adding the appropriate integrands before

averaging. Thus, for example a%% in (3.25) is calculated by

11
averaging an integrand which is equal to: 3X{integrand of
. 99 . = = - *
(Ll’Ll)Z} + 1r-x {integrand of (Kl.Kl)z}. Similarly, Alz(N)

in (3.41) 1is most efficiently calculated as the average of an

integrand which is the indicated linear combination of the

integrands of the aiz quantities.

In order to reduce the uncertainties in our results, we resorted

to an empirically determined "importance sampling” procedure [15].
Instead of generating the variable x; from the untform density function
P(7;)=1, we generated A, according to a properly chosen non-uniform
density function P(%1.), and included in the integrand the factor 1/Pemi);
the latter "corrects" for the non-uniform sampling, and "smooths"
the integrand. A numerical examination of the extreme values of our inte-
grands led to the use of the following specific importance sampling

density functions (all defined on the unit interval):

Pty « expl-3(1-2))], (3.43a)
Pz(%z) « 1+0.7xsin(2ﬂ12), (3.43b)
P3(ﬂ3) « 1+0.7XSin(2ﬂd3), (3.43c)
Pglhg) « exp(-l.lxﬂs), (3.434)
Pe(ﬂe) « exp(-O.SXﬂG), (3.43e)
Pyn;) = expl-n,). (3.43f)
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For a discussion of methods that generate random numbers from a
prescribed non-uniform density function the reader is referred to a
separate technical report [15].

One-variable importance sampling transformations of the kinds
listed in (3.43) can be expected to reduce the variances by only a
limited amount (even with due care in selecting an appropriate
density function for each variable). Furthermore, as we are evaluating
a total of 18 integrals simultaneously (12 for the matrix elements a;z
bRos Cpg in (3.25)-(3.27), and 6 for A} (N), ny, M), DIZ(N) in (3.41)

for N=1 and 2], then we cannot expect a single set of importance

sampling formulae to be optimum for all integrals. As it turned out, the

*

iti A
quantities 12

and n;z were more in need of help than DIZ, and the formu-
lae in (3.43) were chosen accordingly. The effect of this importance
sampling procedure on the caleulation of the SO-integrals was documented
in AEDC-TR-71-51 [5]. The_transformations {3.43) reduced the uncertainties
in AIZ and n;z to approximately 2/5 of the uncertainties obtained with
"straight" sampling; they also led to a slight reduction of the uncer-
tainty in DIz by a factor 8/9. The uncertainty in a Monte Carlo calcu-
lation is directly proportional to the r.m.s. variation in the integrand
and inversely proportional to the square root of the number of points
sampled, The computer running time is essentially proportional to the
number of points.sampled, and is increased only very slightly by the
incorporation of the importance sampling procedure of (3.43). As a
result, a one-hour computer run with- importance sampling produced results

for 112 and n* comparable in accuracy to a five-hour computer run

12

without importance sampling.
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The results of our calculations of the single~overlap collision

integrals thus obtained will be presented and discussed in Section 3.5.

3.4 Evaluation of ll-Dimensional SO-Integrals

In the previous two sections we considered those matrix elements

f-Te) SO so J . . *
akl' bkl and ckl that are needed to determine the coefficients llz(N),

”Iz‘“’ and Diz(N) in (2.22) up to the second Sonine approximation N=2.
However, preliminary calculations of these collision integrals showed
that the second Sonine approximation A;z(Z) for the thermal conductivity

coefficient A; modified the first Sonine approximation Aiztl) by a

2
significant amount [5]. It thus appeared desirable to make a more care-

*
12’

For this purpose we need to consider matrix elements cor-

ful study of the rate of convergence of the expansion (2.22) for A
nIz and DIZ'
responding to higher order Sonine approximations (N>2).

In view of the algebraic complexities encountered in the last
section for N=2, calculations for N>2 by that method are out of the
question, and besides, this would not test the correctness of our
calculations for N<2, 2any attempt to reduce the dimensionality of our
integrals below 7 would just compound the algebraic complexities, and
could clearly not correct any previously made errors. As an alternate
procedure we attempted to perform the single-overlap calculations directly
from the ll-dimensional integral form (3.14), From an “oxrthodox" Monte
Carlo standpoint this strategy appeared to be rather foolish, since it

violated a cardinal rule of proceeding as far as possible analytically

before resorting to a Monte Carlo procedure; furthermore, the infinite
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’ w21 and w31 would seem to doom such

a procedure anyway. Nevertheless, our strategy proved to be quite

ranges in (3.14) of the variables ﬁo
successful, as our results in Section 3.4 will show. In this section we

shall give the specifics of our calculation of the ll-dimensional colli-

sion integrals.

We shall evaluate the coefficients nIz(N) and DIZ(N) up to the
third Sonine approximation N=3 and the coefficient XIZ(N) up to the
fourth Sonine approximation N=4. The expressions for the matrix
elements to be considered are given in Tables VI-VIIIX.

In these expressions we have deleted terms with Elwn and § w;,
since they contribute nothing. The first four elemen:; in TabI:;IVI-VIII
were g%ven earlier in (3.17)-(3.19). However, our object is now to cal-
culate the matrix elements in the 1ll-dimensicnal form (3.14).

We begin by specifying the vector W, in the polar form (Wo,60,¢o),

0
where the polar angle Bo and azimuthal angle ¢0 are defined relative to
the coordinate frame shown in Fig. 11l. Thus,

I o w2
d Wo Wodwodcoseod¢o.

Further, from the definition of E in (2.39) we have

w2 2R +20_ W
cEog32r 331 32173

Thus, the integral form in (3.14) can be written
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Table Vi

The Matrikx Elements a']siz
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Table VI (continued)

AEDC-TR-73-171

w g
|
o
|
©w O
o~
— 1@2
v g —-
1%6 + 0
oo
u...vqm )Y 0]
o = 1
| o o
o B W—~
|
m|eo o |-
6( 2(
a
1= 4
—~ —~
e~a ]
] =]
- )m
© ©
=
< 1_4
(o]
| |
v g © £
N 1_2
|- -
+ +
z B + g
oo oo
9_1 9_1
o E N E
146 ~ o
on | o |
2( 2(
] ]
1= 1=
- ~
ol 1% k]
=] g
| W N
il ]
om o
tn < 0n <
o [4,]

84

(0,B), is defined in (3.14).

Note:




Table VII AEDG-TR-73-171

The Matrix EIements-biz

3 3
f°=[zﬁﬁ”2ﬁﬁ]
00 m=I.m m n=1 n'nj,
[Jo} (R U R 7 2. ]:.;
boo = [ YW w , ) {WW (5-W2)+3IW, }]
0l m=1 m m.'n=1 nn2 37 2

- 3 R . = 3 i~
blo = [ ] W (2-w2)esTwy, ) W |
m. ; " : v |4

3' -s -~
SO _ R 3 7 a2y 2130
by, = [ Z ww (5 wm)+ IW Z { (2 Wn)+3IWn}]
m=1 2
b39 = [ % W W E W W (83-2y24d w'*)+-1( 2w - lW“)}]
. 14
02 mel ™ M a2 8 2 n 2 2 n2n 5
b0 = % (W W (83-dwzedye ‘)43 1( 2wt -Lwe)y, ¥ wWow
2°_m=l ' (8 2"m 2 m 2m2m 2

3 -L
SO _ R Y 4} W (63 92 Loou 4 Lys
b3S = [ ] (Ww (5-W)+3 IW 2 {ww (3 2wn+2v\rm)+ 1( Wn n)}]2

3 . | - |
so _ [ 3 g (6382, Lur o1 wa e 13
bat = [ PIRLANG = 43 Gus-fus) 1, _Z_ Wi (3= wn)+3.IWn}]
m=1 n=1 2
3 - 3
so_ (% e 63 %relayals Qe lusy ). T (63-Tuzadut
b32 = [mzl{ i (5 =5V 5e) +3T (5¥ W)} L (W, (F=5w 43wy
13 s _Lysy
+31 (5W 2Wn)}]2

Note: (o, B)2 is defined in (3.14); I is the unit tensor.
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Table VIIX

The Matrix Elements czz.

cgo = 2 tﬁl’ﬁl]z

cpy = 2 ‘7’1 -ﬁl‘%’wﬂz

cig = 2 in(%-Wi), 1)

59 = 2 (R G, Ty G,

053 = 2 iy, o g

o = 2 [ B-Juigwp, W)

i3 = 2 [l Gy, Wy i)
2= 2 [T, ® Gw)

55 = 2 [y CP-gwisgh), W Cgiapn]
Note:

(u,B)2 is defined in (3.14).
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1 ~3%g [ -$M51 ( -
a,B aw,Wle s s o 331
B2 070 M21%21 de31W31
0 0 0
r} 2w 2w 1 0 1
X fd%f d¢wfd¢r dcos®, [dcos®® fdcoser
(2cosb )*

2 -
f fdcos 8 € exp( 21-W31)

X [{a(I)-a(II) }'«{B(111)-R (11) }"

+e('r-t'){B(I)-B(II)}'*{a(III)-a(I)}']. (3.44)

The basic vectors, namely the velocities ﬁo, ﬁzl' ﬁBl in region II
and the vectors il and ?31, may be written in component form by referring
to Figure 1l and applying the necessary rotation matrices defined in

Table IV. Thus, we have relative to the coordinate frame indicated in

Fig. 11,
W051neocos¢o

Wo = Wosineosinq)0 ; (3.45a)

Wocose0

[=]

(3.45b)

=
I
o

21 ©

=
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W315inewc°s¢w
Wy, = Ry(-(w-e))-Rz(-¢r)-gy(n-er)- W3lsinewsin¢w ' (3.45c)
W3lcosew
-sinb
kl = 0 , (3.454)
cosf
rsi-nercos¢r
ry; = ﬁy(-(n—e))- rs-inersind)r . (3.45e)
rcoser

In addition, the component representation of k2 is found by inserting

(3.45c) and (3.45e) into (3.9), which we repeat here for convenience:

k2 = -r3l—rw3l(l-e)cos9w . (3.45fF)

-

The differences between these. component formulae.and theose in (3.32) which
were used in the 7-dimensional calculation are due simply to the fact that
we are using different coordinate frames in the two cases. This is per-
missible since the final answers are scalars, and hence can depend only
on the vector dot products, which are the same in all coordinate frames.

- - —t

Egs. (3.45a)-(3.45c) express the region II velocities wo, W21, W31
in terms of the integrating variables in (3.44), and egs. (3.45d)-(3.45f)
do the same for the collision vectors ﬂl and ﬁz. With these quantities
we may calculate the velocitiés ﬁo(i), ﬁzl(i), ﬁ3l(i) in regions i=I and
III by means of egs. (3.10), and the velocities alti), Gzti), E3(i) are

then calculated from (2.386):
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=}
= Wi

ﬁz(i) = 0--[ﬁ31(i)-2ﬁ21(i)] , i=I,I1I,III . (3.46)

w

e

Wyld) = Wy-3[W,, (1) -2W5, (i)]

[

]
-

W

Thus, starting from a set of prescribed values for the eleven integrating
variables in (3.44), we see that we may calculate the velocities Wi(i),
§2(1>, ﬁs(i) for all regions i=I,II,III. This enables us to calculate
the primed differences in (3.44) where 0 and B are any of the specific
.velocity functions appearing in the expressions for the matrix elements
in Tables VI-VIII. Since T, T' and € are also known in terms of the
integrating variables [cf.(3.6), (3.7) and (3.8)], then it would appear
that we have everything needed to calculate the quantities a;z, b:z and
ci;, and hence the quantities l;z(N), niz(N) and D;Z(N) in (3.41).

The difficulty with (3.44) from a Monte Carlo standpoint is the
infinite ranges associated with the variables Wo, W _,and W __. Our

21 31
method of getting around this difficulty is as follows:

For a fixed integer n>0 and real a>0, define the function

w2
P(x;n,a) = A(n,a)xne ax ” (3.47a)
where A(n,a) is such that

.. )

fP (x;n,a)dx =1 . (3.47b)
0

Using standard integral tables, one finds that the required formula for

A(n,a) is
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_2 172
v
2 2n/2a(n+1)/2

/= 137577 (n=1)

2 a"‘“)/z/(“'1 1, n=1,3,5,...

. n=0

A(n'a) = ’ n=2'4'6'-.- .

2

We now consider the transformation x + u defined by

b
u =.I.P(x';n,a)dx' = F(x;n,a) .
0
Since P(x;n,a)>0 on 0<x<», and since F(0;n,a)=0 while F(®;n,a)=1
[cE. (3.47b)], then (3.48a) defines an invertible mapping of the
interval 0¢x<« onto the intgrval 0€u€l., Formally, we write the

inverse of (3.48a) as
X = F-l(u;n,a).

The Jacobian of the transformation (3.48a) is evidently such that
du = P(x;n,a)dx, or, using (3.47a),

- 2 -
xne ax dx = A 1(n,a)du.

90

(3.47¢)

(3.48a)

(3.48b)

(3.48¢c)



AEDC-TR-73-171

Returning now to (3.44), we introduce the transformations

w U, W21 > Uyqyr W3l + Uy according to

uo = F(W012'3) ’
_ 2
u21- F(Wzl '415) ’ (3.49)
_ 2
u3l-' F(W3l'3’-‘) .
This implies, by (3.48¢c), that
2 2
-3w? w2 ~5w2
2 0 s _ 3721 3731 _
Woge AW, Wy,e dw,, *W3,e dwy, =
= a-l va~ e Zyau. .. a 13 2
= A 7(2,3)du,r AT (4,5)du,y A (3,5)duy,
N
= =3 du...du (3.50)

T 310 dugdu,,duy, o

where we have used the explicit formulae in (3.47c). Inserting (3.50)

into (3.44), we thus obtain

1 1 1 21 2n 2m 1
_ __ 3"

(c:t,B)2 = m[duofduzlfdu:;lf d¢of dq:wj‘dcbr"‘dcos(-)0

0 0 0 0 0 0 -1
[

0 (2cos6.)" 1 2 W
fdcos efdcose f dr"fdcos 6 e 3 721731
-1 1/ l l-r

X [{oe(I)-alII)}'*{8(III)-A(II}}"'

+ 0(T-T"){B(I)-B(II)} '*{a(III)~a(II)} ZI

5 (3.51)
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where it is henceforth understood that the guantities Wb, W21, W31 are

to be obtained from the following formulae [cf. (3.49) and (3.48b)]:

W, = F_l(u0;2,3) , (3.52a)
_ 1 2

Wy = Fl(uy,:4,5), (3.52b)
I | 2 2

Wy = Fl(ug,:3,3). (3.52¢)

We assume for the present that it is posgsible to calculate and invert the
functions F, as required by (3.52); we shall consider the details of how
this is to be accomplished later.

The formula for (a,B)2 in (3.51) is now expressed as an integral over

the finite ll-dimensional volume ', defined by-
Q' = {(uo,u21,u31,¢0,¢w,¢r,coseo,cos36,coser,r“,coszew)]|
OsuosL 0<u21<L 0<u31sL 0<¢0<2ﬂ,

0<¢w<2nh0<¢r<2nL-lscoseosl,—1<cosa6 <0,

%&cosersl, 1<r“<(2coser)“, (l—r_z)scoszew<1} 5 (3.53)

For Monte Carlo purposes, it is convenient to .change variables in such a

way that the volume ' is transformed into an ll-dimensional unit'cube
Uy = {(nl,nz,...,nll)H0<aisl; i=1,2,...,11} . (3.54)

We choose to do this by essentially the same transformation (3.38) which

carried the 7-dimensional region  in (3.36) into a 7-dimensional cube U7

in (3.37):
92



AEDC-TR-73-171

U, = 1y, (3.55a)
Uyy= 2o (3.55b)
Uz = g, (3.55c)

$g = 2Ty, (3.55d)

¢w = 2nn5, (3.55e)

¢r = 2ﬂn6, (3.55f)
cose0 = —l+2n7, (3.55q)
cos®® = -l+ng, (3.55h)
2ng = 4cosaer—3coser+1, (3.551i)

b 2 2 0

r' = [1+(4cos Gr—l)nlol ’ (3.55j)
cos?0, = (1-r %) +r 2n .. (3.55k)

The first 8 transformation formulae here are obvious from (3.51) and the

last three transformation formulae are identical to the last three fomulae
in_(3.38); note that (3.55i) defines coser in terms of ng through an implicit
inversion. As in the 7-dimensional case, the Jacobian of this transformation

is simply equal to the volume of Q':

0 (uolu211u3ll¢0' ee ,Cos2ew)
a (11112113, s s s ,’Lll)

64m?

= |Q'| = — - (3.56)
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Thus, we may straightaway replace the integrating variables in (3.51)

by the variables &_,A_;...,1, ., provided we multiply the integral by

1" 2 11

the constant factor in (3.56). Our final formula for (a,B)2 is

therefore

(OL,B)Z =

1 1

1
27 2
0

0 0
(3.57)

x [{a(I)—a(II)}'*{B(III)-B(II)}'

+G(T—T'){B(I)-B(II)}'*{a(III)—G(II)}{].

In summary, the calculation of the ll-dimensional integrals proceeds in

the following way:

(1)

(i1)

(1ii)

(iv)

(v)

The quantities uo,u21,u3l,¢o,¢w,¢r,coseo,cose,coser,r,

cosew are obtained from the integrating.variables n ,42,...,

1
&11 through egs. (3.55) [with an implied inversion in (3.55i)].

Th titi W /W W
e quantities W ,W_ /W

eqs. (3.52) [cf. discussion below].

are obtained from u through

u
0'%21""31

- =S -

The vectors ab'wzl'wal'ﬁl'r3l are obtained from (3.45), using
the matrices in Table IV.

The quantities e,T,T',ﬁz are calculated from egs. (3.6)-(3.9),
and O(1-1') is set to 1 if T>T' or 0 if T¢T'.

From the region II velocities ;0'§21 and 331, and the collision
vectors ﬁl and ﬁz, the velocities %1(1), az(i), %3(1) in

regions i=I,II,III are calculated via eqgs. (3.10) and (3.46).
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(vi) The primed differences in (3.57) are then calculated
according to the definitions (3.12) for the quantities
o and B appearing in the expressions for the matrix
elements in Tables VI-VIII.

(vii) The various matrix elements aS%, bS9, c5© are calculated

k& k& k&
by evaluating the integrals (oz,B)2 in Tables VI-VIII;

the coefficients A* (N), n* (n), D*
12 12 1

(N) are computed from
(3.41) using the coefficients given in Table III.

We now describe how the crucial calculations in (3.52) were carried
out. The function F(x;n,a) is defined in (3.48a). Using the definitions
.of P(x;n,a) and A(n,a) in egs. (3.47), one can derive by a semewhat te-
dious induction argument the following explicit expression for F(x;n,a):

—aw2 _ n/2 24 V-1
erf (xv/a)- 7%e 4% xva { (oax ) s Toeven .,
v=1

T35~ (2o-17
F(x;n,a,)
_axz(n—l)/2

1-e ) (ax?)" , n odd .
v=0 vl
{(3.58)
Here, erf(x) is the "error function",
X
_ 2 -t?
erf(x) = 7= e dt (x>0), (3.59)
0

and F(x;n=0,a)=erf (xya). Now, for fixed values of n and a, eq. (3.58)
allows us to evaluate

u=F(X;n,a),
for any given x in (0,). Thus, by using a numerical inversion technique
on the computer, it is possible, for fixed values of n and a, to find the
value of x which satisfies the above relation for a given value of u in
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(0,1). This is precisely the procedure that we used. We employed an
alternating "successive bisection/inverse linear interpolation" method
to accomplish the numerical inversion [the inverse linear interpolation
procedure by itself will not converge for values of u near 1, since
dx/du>® as u*l]. The evaluation of F(x;n,a) for a given x was always
carried out in double-precision to minimize computer round-off error.
This procedure required a double-precision error function subroutine
for even values of nf. The double-precision error function calculation
is rather involved, with the result that inversions of u=F(x;n,a) for n
even are considerably slower than for n odd. In the actual calculations,
we found it convenient to modify (3.44) by changing wé*wg and ng*wgl,
and then incorporating into the integrand a factor 1/w0w21). Then the
n-values in (3.49) are all odd, so that the inversions required by (3.52)
are more rapidly accomplished (but note that the factor in (3.50) must be
modified accordingly).

An important point which was 7ot investigated analytically was the

bounéedness of the integrand in (3.51), especially for W

W -
0'%217 31
The boundedness of the integrand in the original integral (3.44) was

assured by the exponentials multiplying dw,., dw2 and dW__, but it is

0 1 3l

quite possible that, in transforming from an infinite to a finite inte-
gration region by means of (3.49), we rendered the integrand unbounded.
Certainly, the factor exp(%*ZI'W3l) in (3.51) as well as the Sonine

polynomials used for o and B are unbounded functions of W21 and W31.

1.
We are indebted to I. Stegun and R. Zucker of the National Bureau
of Standards for providing us with a double-precision error function
subroutine (subroutine ERRINT).
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Essentially, we proceeded blindly in the hope that the intricasies of
the integrand (i.e., the differences and scalar procducts that are taken)
would work to counteract these features and keep things bounded. The final
answers for AIZ(N), nzz(N) and Dzz(N) seemed satisfactory in this respect,
The Monte Carlo algorithm for numerically calculating the quantities
so . so

a%, b°°, ¢°° is to evaluate (3.57) for the required functions 0 and B
k% k& k&

by averaging its integrand over a set of points {Pi}={ai,az,...,nil)}
picked from a random, uniform distribution in the ll-dimensional unit

cube Ull [cf. (3.54)]:

-+

2 . B
(a.8)2 = <Ei;% € exp (%%21—w31) [ﬁa(x)-a(::)}'*{B(III)-B(II)}-

+ O(t-1"){B(1)-B(II) } ' *{a(IIT) -t (II)}" . (3.60)

11

The uncertainty in estimating this average with a finite set of points
{pt,p?%,...,P"} is given by the r.m.s. deviation of the quantity being
averaged, divided by VM. Hence, the Monte Carlo algorithm is:
1° Generate 11 independent random numbers nl,nz,...,nll from a
uniform distribution in the unit interval.
2° Using the steps (i)-(vii) [following eg. (3.57)), evaluate
the various integrands at the point (nl,aé,...,nll).
3° BAdd the values of these integrands, and also the squares of

these values (for computing the r.m.s. deviations), to

respective running sums.
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4° Repeat steps 1°-3° as many times M as is practical, and then
convert the running sums to averages, thus yielding the esti-
mates of the integrals along with the uncertainties in these
estimates.
As in the calculaticons of the 7-dimensional integrals, we again
used an empirically determined, single-variable importance sampling
procedure to reduce the uncertainties in our results. The specific

importance sampling functions used were as follows:

Pi(n,) = 1+0.45cos(2nal), (3.61a)
P (1) piecewise linear function
272 through points (0,0,1.0), (3.61b)
P (1.) (0.8,1.0), (0.9,1.5),(0.95,
3'"3 2.0),(0.98,4.0),(1.0,9.0)
Pylr,) « l+.0.45cos(2wa4), (3.61c)
Pg(15) = 1+.0.65cos (27ry), (3.614)
Pelrg) = 1+ 0.65cos(2nn6), (3.61e)
P7(A7) « exp(—&7), (3.61f)
PS(AB) o exp[i3(l—A6)], (3.61qg)
Pg(ng) « exp(-2n9) (3.61h)
Pigltig) = exp(-nlo), (3.611i)
Pyp{nyp) = exp(-Zkll). (3.6175)

This importance sampling proceedure reduced the r.m.s. variation in the
key integrands by a factor of nearly 4, and thus reduced the running time

required for a given level of accuracy by a factor of roughly 4%=16.
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3.5 Single-Overlap Results

The single-overlap collision integrals derived in Section 3.2
were computed in a 7-dimensional form according to the procedure
described in Section 3.3 by a computer program called Subroutine OVRLAP.
Those collision integrals were evaluated that determine the contribution

to the transport coefficients in the first (N=1) and second (N=2) Sonine

approximations. The values thus obtained for the coefficients l; , Nt

12
D;z are presented in Table iT At the same time we calculated the values

={e] SO SO
+ b r C i
k& k& k&

these matrix elements are presented in Table ii.

of the individual matrix elements a the values obtained for
For each quantity we show the results of four "runs" of Subroutine
OVRLAP on the University of Maryland 1108 computer. Each run used 200,000
random points in the 7-dimensional unit cube, and required about 40
minutes of "c.p.u. time" or 22 minutes of "core time" [computer charges
are calculated on the basis of core time]. The uncertainties in each run
represent one standard deviation (~65% confidence limits) and become two
standard deviations (~95% confidence limits) in the averages. This
procedure, of performing each calculation as four independent "runs" and
then averaging the results, was followed in almost all our calculations.
It is to be preferred over making a single long run [i.e. in this case
the "averages" are equivalent to ozne run with 800,000 random points in
the 7-dimensional unit cube], because it allows one to insure that the

fluctuations in the results are indeed of the same order of magnitude as

.I-

Tables of three-particle collision integrals are headed with lower
case Roman numerals and are placed in the Appendix,
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the r.m.s. deviations predict. This procedure was also used as a
precaution against having a single long computer run totally invalidated
by a computer fault.

Monte Carlo estimates for these single-overlap collision integrals
were first reported in AEDC-TR-71-51 [5]. The earlier results were
obtained with the same subroutine, but were based on 50,000 random points.
A comparison between the new and earlier results is presented in Table iii.
As can be seen from this table, we have now reduced the uncertainty in
these collision integrals by a factor 4 to 5.

In order to interpret the results we remind the reader of the fact
that the coefficients A;z, n;z and DIZ represent the first (U=2) correc-
tions to the value unity predicted by the theory of Enskog [cf.(2.21)].

From Table i we conclude that in the first Sonine approximation+

A¥ (1) = -0.0303+0.0003
12( )

n* (1) = -0.0633+0.0004 (3.62)
12

p* (1) = -0.1195+0.0005
12 '

and in the second Sonine approximation

* = =0UV. ic
A7, (2) 0.0248%0.0003
"12(2) = -0.0621+0.0004 . (3.63)
n;2(2) = -0.1160%0.0005

‘-F

All uncertainties quoted in the text represent two standard
deviations (95% confidence limits).
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The single-overlap collisions are thus seen to reduce the excluded
volume effect (unity) predicted by the theory of Enskog.
It was also inferred from these calculations, that the differences

between the second and first Sonine approximations are

AY (2)-A* (1) = +0.0055%0.0001 ,

12 12

n* (2)-n* (1) = +0.0012£0.0001 , (3.64)
12 12

+0.003510.0001 .

p* (2)-p* (1
12( ) 12( )

The second Sonine approximations AO(Z), n0(2) and D0(2) for the transport
coefficients in the low demsity limit (2.13) modify the first Sonine
approximations Ao(l), no(l) and D0(1) by about 2% as can be seen from
Table III. On comparing (3.64) and (3.62) we note that the second Sonine
approximations nIZ(Z) and DIZ(Z) modify the first Sonine approximations
again by a few percent; however the coefficient Azz(Z) for the thermal
conductivity differs from Azz(l) by as much as 18%. This phenomenon was
noted earlier in AEDC-TR-71-51 [5] and it motivated us to conduct a study
of the rate of convergence of the Sonine expansion (3.41l) for the coef-
ficients A* , n* and D" .

12 12 12

For a study of the higher Sonine approximations we used the ll-dimen-

sional Monte Carlo procedure described in Section 3.4. From the results
quoted in (3.63)-(3.64) we see that the uncertainties in the differences

A* (2)-A* (v, n* @)-n* ), o*
12( ) 12( ) n12( ) an( ) 1

2(2)-D12(l) are smaller than the uncertain-
ties in the individual coefficients (3.62) and (3.64), owing to a strong
positive correlation between the first and the second Sonine approximation
integrands. Similarly, in order to determine the effect of the higher

order approximations a higher precision can be obtained by calculating

the differences A* (N)-A* (N-1 * -n* (n-1 D* (N)-D* (N-1) ai tly.
12( ) 12( ) nlz( ) nlz( ), 12( ) 12( } directly
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We have computed these differences up to the third Sonine approximation
{(N=3) for nIZ and DIZ and up to the fourth Sonine approximation (N=4) for

k;z. The results were obtained by the ll-dimensional Monte Carlo pro-
cedure using a computer program called Subroutine OVLPll; the results are
presented in Table iv. Again each quantity was determined from four
independent runs of Subroutine OVLPll. For the thermal conductivity
guantities each of the four runs used 100,000 random points in the 11-
dimensional unit cube and required 22 minutes of c.p.u. time or 17
minutes of core time. For the other quantities, each of the four runs
used 30,000 random points in the ll-dimensional unit cube and required
about 11 minutes of c.p.u. time or 9 minutes of core time. The values
obtained simultaneous}y for the individual matrix elements a:z, b:Z' c:z
are presented in Table v.

For the collision integrals that determine the first and second
Scnine approximations to l;z, n;z, DI2 we can make a ?omparison between
the numerical estimates obtained with the 7-dimensional and 1ll-dimen-
sional Monte Carlo procedures. Such a comparison is presented in Table vi;
it turns out that the results of the two different integration procedures
are in excellent agreement. Considering the relative complexities of the
7-dimensional and the ll-dimensional integrals we judge the ll-dimen-
sional approach to be the more appropriate.computational scheme for
determining the higher order Sonine approximations.

Another consistency check on our calculations is provided by the

symmetry relations (3.15)

SO _ SO sO _ SO SO = SO .
e = %k’ Pxe T Pex’ Ske T ik (3.65)
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Our programs deliberately avoided assuming these relations. Thus the
fact that all the relations (3.65) are held in Tables ii and v to within
the calculated uncertainties constitutes another check of the consist-
ency of these computations.

The data in Tables i and iv enable us to determine the rate of
convergence of the Sonine expansion (3.41) for the contributions
A;z, nIz, DIZ from the single-overlap collisions. The results are
summarized in Table IX. It turns out that the rate of convergence, in
particular for the thermal conductivity, is lower than the rate of con-
vergence of the corresponding expansion (2.13) for the transport coef-

ficients AO' no, D from the linearized Boltzmann equation. In order

0
to determine the coefficients AO, no, D0 to within one percent it is
sufficient to terminate the expansion (2.13) after the second Sonine
approximation. However, if one wants to determine the coefficients

A, n' ., D to with t t luate n° (N)

within one percent, it is necess o evaluate
12" M2 P12 P ! ary N
DIZ(N) up to the third Sonine approximation, and AIZ(N) up to the fourth
Sonine approximation. Note that all higher order Sonine approximations
have the effect of reducing the difference with the value unity estimated
by the theory of Enskog.
An independent attempt to evaluate the effect of the overlap col-

lisions on the first density correction to the transport properties was

made by Condiff and coworkers [16,17). For this purpose, they evaluated

*
a contribution to the transport coefficients classified as X* N
. EVD EVD
and D;VD' The abbreviation "EVD" indicates that these terms incorporate

excluded volume as well as dynamical effects. However, as peinted out in

Part I [3], the EVD term of Condiff et al. does not account for all
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Rate of Convergence of Sonine Expansion for the Single-Overlap

Contributions.

Table IX

Absolute wvalue [a]

Percentage [b]

*

A12(1)
x *
A12(2)=2p5 (1)
F 3 x
A1 (3)=27,(2)

* *
A12(4)=2,5,(3)

*
nlz(l)
* *
n12(2)-ﬂ12(1)

* *
ﬂ12(3)—n12(2)

x
Dlz(l)
- x* *
Dy5(2)-Dy, (1)

* *
D12(3)-D12(2)

-0.0303+0.0003

+0.0055%0.0001

+0.0014+0.0001

+0.00035:0.00003

-0.0633x0.0004

+0.0012+0.0001

+0.00038+0.00006

-0.1195+0.0005

+0.0035+£0.0001

+0.0011+0.0001

100

-18

[al] Uncertainties represent two standard deviations.

[b] Change in going from the Nt

h

to the 0(N+1)th Sonine

approximation in percentage of the value for N=1.
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single~-overlap contributions; it includes the SS~collisions and SN-
collisions in Fig. 3 but does not incorporate the NS-collision sequence.
Thus Condiff et al. did not evaluate the full collision integrals

{¢'X};3) and {w,x};s) defined in (2.25) but considered instead

{¢,x}éag = {¢:X}ég) + {w:x}ég) 2
- N - (3.66)
(3) = {y,x}(3) ., {y,x}(3) .

v.x)gvp ss * X SN

[The additional collision integral corresponding to the NS-collision
sequence was incorporated by Condiff et al. in a term called TCl as
discussed in AEDC-TR-72-142 {3]] . On comparing (3.66) with (2.26) and
(3.1) we see that the EVD contributions may be calculated by our com—
putational procedure provided that we replace ©(T-T') by zero for all
values of T and T'.

*

We have thus calculated the coefficients A* and D* up to
gleusate -l EvD’ TEVD EVD ¥

the second Sonine approximation using again our subroutine OVRLAP, The
results are presented in Table vii. Each run involved 100,000 points
in the 7-dimensional unit cube and required about 20 minutes of c.p.u.
time or 11 minutes core time. Condiff et al. have evaluated the coef-

ficients A* (1), n*
EVD EVD

(1) and D;VD(I) in the first Sonine approximation.

Since they did not include the quantity O(T-T') in (3.1) they were able

to evaluate their results as 3-dimensional integrals using a

Gaussian-Legendre numerical technique, Thus a comparison of our values

for A* (1), n* (1) and D* (1) with those cbtained by Condiff et al.
EVD EVD EVD

yields another consistency check of our Monte Carlo procedure. The

* * *
results obtained for A and D by the two investigations are
EvD’ "EVD EVD ¥ g
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summarized in Table X. The numerical estimates for the first Sonine
approximations are in excellent agreement. In addition, our program
enables us to determine the effect of the higher order Sonine approxi-
mations to the coefficients A" ’ n* and D° . It appears that the
EVD EVD EVD
rate of convergence of the Sonine expansion for the EVD terms is the
same as that for the total contribution from the single-overlap col-
lisions, shown in Table IX; the second Sonine approximation A;VD(Z),
n;vn(z), D;vn(z) again modify the first approximation by 18%, 2% and

3%, respectively.
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Table X

EVD Integrals

7-dimensional Condiff et al.[1l6,17]
Monte Carlo [al
A;VD(I) -0.0261%£0.0004 -0.026228x0.000001
% %
AEVD(Z) AEVD(l) +0.0046x0.0001
n;vn(l) -0.0527+0.0004 -0.0527070.000001
%
nEVD(Z)-nEVD(l) +0.0011+0.0001
Dryp (1) -0.094740.0004 -0.09442:0.00002
% *
DEW) (2) DEVD(l) +0.0032+£0.0001

[a]l Uncertainties represent two standard deviations.
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Chapter IV

SEQUENCES OF THREE SUCCESSIVE COLLISIONS

4.1 Introduction

In order to determine the contribution of sequences of three suc-

cessive collisions (y=3) we need to consider the collision integrals (2.30)

w,x$¥ = z i,
(4.1)
{¢1X}§3)

i
M
,-,
'€—
><

where {w,x}gg) and {w,x}ég) are defined in (2.31). It is again convenient
to introduce a notation that covers both the collision integrals {¢,x}§3)

and {W,x};3). For this purpose we define in analogy to (3.3)

2
(@,8) 5, = (-1)V71 3"_ fdﬂ - (W] +WZ+H3)

n3v

>'{a(I)'-o'.(II)}s\r{B(IV\))—B(III\,)}r (4.2)

where the Roman numerals refer to the velocity regions in the diagrams
of Fig. 7.

A more detailed representation of these collision sequences is given
in Fig. 12. The velocities W —W (II) are the velocities gfter the first
collision. The collision vector of the first collision is indicated by
£1 and that of the second collision by £2' The integrand is completely

specified by the variables ﬁl’ ﬁz, ﬁ3, kl’ k2 and the time T between the
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(1) T
+_ N _+ (a) R - SEQUENCE
T (v =1)

(v=2)

3
(c) C -SEQUENCE
(v=3)

(3)
}3

Figure 12, Dilagrams associated with {y,Y and {lp,x}f) .
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first and the second collision. The initial velocities ﬁi(I) are given

by
Wy (1) = Wy+Wy, kK ¢
W (D) = W, .

The formulae for the velocities ﬁi(III) and ﬁi(IV) in regions III and IV,
and also the formulae for the collision vector 23 of the third collision
and the time Tv between the second and third collisions, depend upon
whether we consider the R(v=l), H(v=2) or C(v=3) diagrams. We thus write
ﬁi(IIIv)' ﬁi(IVv), ?3v and T, to distinguish these quantities for the
different diagrams, as indicated in Fig. 12. The velocities ai(IIIv) and
Ei(IVv) are given by

{ o "]‘;
W (IIT)) = Wiy, -k kK,

WZ(IIIl) =W, (4.4)

a - > AN
W3 (III;) = W3-Wsp-kok,

(v=1) <

= Wl(IIIl)+W21(IIll)'k31 31

= Wz(IIIl)-Wzl(IIIl)'k3lk3l (4.5)

Lﬁf(lvl) = W3(IIIl)
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«d N
Wl(IIIZ) = Wl
WZ(IIIZ) = W, (4.6)
W3(IIlz) = W3

(v=2) <
_Wl(IVZ) = W1
Wy IVy) = WyHWy,yka3oks; (4.7)
W3 (IV5) = Wy=W3p7K32%32
{ - - [V N
Wl(III3) = W1+W3l-k2k2
WZ(III3) = W2 (4.8)
W3(III3) = W3-W31-k2k2

(v=3)<::
Wl(IV3) = Wl(III3)
W2(1V3) = WZ(III3)+W32(III3) -k33k33 (4.9)
W3(IV3) = W3(III3)—W32(III3_)°k33k33
~

In terms of the definition (4.2) we may rewrite the collision

integrals (4.1) as
(3) _
3 3
where ¥= ] y_ and X= ) X, as in (2.42), and
m=1 n=1

(5) 2
{v,x} =2 ) (¥ ,x.) . (4.11)
3v n=1 B "B 3v
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From Fig. 12 we note that, for v=2 and v=3, only particle 2 participates
in both the first and the third collisions; hence, for v=2 and v=3 only
the term n=2 contributes to (4.1l). However, for v=1, particles 1 and 2
participate in the first and third collisions; hence, for this diagram

the two terms n=1 and n=2 contribute to (4.11). The collision integrals

(4.11) for the self-diffusion thus reduce to

i, x}‘3’ = 20050%) 3y *+ 26, (01x)) 5y - (4.12)

where 61 v is the Kronecker delta.
In determining the effects of three and four successive collisions
on the transport coefficients Xl, nl, Dl we shall consider only the first

Sonine approximation N=1 in (2,21), The consequences of this limitation will

be discussed in Section 6.1, We thus consider the collision integrals

AT (1) = f Ar e (1)

13 vop 13V ’

(1) § Y (1) (4.13)
n . n ’ .13

13 yop 13V

2 3
Dy3(1) = } Dyg (1) .

v=1
where
[ 3
v =1 / n-l nn 3V

® - (0) 2 (0)

Ny 3, (1)= 2 S, (W)W W, nzls,ry2 (W2VW W . (4.14)
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2|50 wayd . si0) (e
o ()==2{83," (W5)H,, S3,° (WH)W, "

(4.14 cont.)

_ g (0) g (0)
28, / (w )w / (w2 .

3\)

In these expressions we may insert the explicit forms of the Sonine
polynomials (see Table I). Using the fact that zn ﬁn and Zn W: do not

change in a collision, the collision integrals (4.14) reduce to

( 3 . 3 .
y=< I W w2, wa’] p
- 3v

* o e 3 S o
ﬂ13\)(1)= - Z mem, z W W ) 7 (4.15)

In the last equation for the self-diffusion coefficient DI3v(1) we have

made use of the fact that
{Wl (1) -W, (I1) }- {Wl (Iv,) W, (III),) }

={W2 (I)-W, (II) } -{W2 (Ivl)-w2 (IIIl) 1

14

as follows immediately from (4.3) and (4.5).

In order to evaluate the collision integrals (4.15) we shall proceed
as follows. In Sections 4.2 and 4.3 we shall develop a uniform approach
for the three different collision sequences (R, H and C). We shall thus
formulate a method in which the R~, H-, and C-collision integrals are
computed simultaneously. In addition we shall develop in Section 4.4 a
different procedure especially designed for the R-collision integrals.

This additional special method will be presented for the following two reasons.
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First, by comparing the results of the two calculation procedures for
the R-collision integrals we shall obtain a strong consistency check
on our coﬁputation methods. Secondly, this special method for the
R-collision integrals will form the basis of our analysis of the col-
lision integrals associated with sequences of four collisions to be
discussed in Chapter V. The results for the collision integrals
associated with three successive.collisions will be presented in

Section 4.5.

4.2 Analysis of R-, H~ and C-Collision Sequences

The collision integrals (4.15) are all defined in terms of the

integral form (4.2). Using (2.40) we thus consider

v=1 3/2

(a,B) 4, = (-1) Tom | WodW,,dW,,dk,dk,dt[W,, ok, | ltjﬂ31-k2|
93u
-3W2 -E
x € 0 e {a(I)—a(II)}*{B(Ivv)—e(IIIv)}, (4.16)

where the velocities ﬁo, ﬁ21 and ﬁ31 are defined in (2.36). The velocity

-

W0 is the same in all velocity regions between collisions. The expressions

for the relative velocities in the various regions follow from (4.3)-(4.9).

The formulae (4.5), {4.7) and {(4.9) for the region IVv velocities naturally

~

involve {and assume the existence of) the third collision vectors k v To
A
obtain the formulae for k3v, and the times Tv between the second and third

collisions, we proceed as follows. First, denoting by Sij the position
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vector of i relative to j at the instant of the second collision (with

L]
collision vector X,). it will be seen from Fig, 12 that, for any of the y-

diagrams, N A L
P21 = KWy T
- A -~ (4.17)
P3p = Kyp=WyT »
where
ky, = kl-ﬁz 5 (4.18)

=
In terms of these relative position vectors pij at the setond collision,

A
it is seen from Fig. 12 that the third collision vectors k3v are givenh by

3y = =Pyq~Wyq (III )T, , (4.19a)
K3y = P3,+W3, (III )T, (4.19b)
K3y = P3ptiy, (III;)T, . (4.19¢c)

where the corresponding times Tv between the second and third collisions

are obtained as the smaller (earlier) solutions of the quadratic equatiohs

-t -t 2—
[p21+W21(IIIl)Tl| =1 ,
|332+ﬁ32(1112)r2|2=1 , (4.20)

- - 2_
|p32+w32(1113)r3| =1 .

(The equations (4.20) which determine Tv are just the requirements

A A

]k3v|2=1,) In summary, the third collision vectors k3v are obtained

from the integrating variables ﬁZl' ﬁ31, kl' k2 and T in the following

way: First, the vectors 321 and 332 are calculated according to (4.17);

115



AEDC-TR-73-171

next, the region IIIv velocities are calculated according to (4.4), (4.6)
and (4.8); then the times T, are calculated by solving egs. (4.20); and
finally, the vectors £3v are obtained from egs. (4.19).

One other dynamical quantity of interest in Fig. 12 is the time T
between the 1-3 penetrating and separating collisions in the B-diagram.
Since the position vector of 3 relative to 1 at a time t after the
penetrating collision is evidently -ﬁz + a3lt, then T is obtained simply

by solving the equation

|-k2+ﬁ3l?|2=l

Expanding, and discarding the solution T=0 (which corresponds to the

penetrating rather than the separating collision), we obtain

T = —e—= . (4.21)

In order to evaluate (4.16) we adopt the coordinate system shown in
Fig. 13. This is the rest frame of 1 between the first and second col-

lisions (the figure shows the cenfers of 1, 2 and 3 at the moment of the

~

first collision), with ﬁ21 defining the 2Z-axis and k, defining the XZ-

1
plane. We have just seen how all the dynamical quantities in each v-

- - ~ ~
diagram can be calculated from the "basic" variables Wopr W3pe Ky Ky Te

In the frame shown in Fig. 13, the basic vectors have the representations:+

0
Wy, = (0] (4.22a)
1

.i.

The angle 61 in this chapter is the same angle as 0 in the preceding
chapter. 116
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X- axis

action sphere of |

Figure 13. Schematic representation of the integration variables used in
the calculations of the p=3 (R,C, and H) integrals. The figure
shows the rest frame of 1 just after the first collision, with

W21 in the Z-direction and k1 in the XZ-plane.
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-sinB
kl = 0 (4.22b)
cosel

sinezcos¢2
2 sinezsinq)2 ’ (4.22¢)
c0592

~AD
1]

sin93cos(¢2+¢3)
W= sinB3sin(¢2+¢3) . (4.224)
cose3

o)
Note from (4.22d4) that the azimuthal angle ¢3 of W31 is defined relative

to an initial plane through k2 and the Z-axis (thus, when ¢3=0 the vectors
A ~ A

W3l' W21 and k2 are coplanar). The reason for doing this will become

apparent later. With the angles Bl, 82, 83, ¢2, ¢3 thus defined, and with

Fad
21 and the azimuthal integration on kl having

been trivially carried out in accordance with (2.41)., (4.16) becomes

-
the angular integrations on W

0o 0 .
— (.1 V-1 12V2 3> -3w? 2
(0,B)5, = (-1) —SF.[I:"C] Wy e "0 deZJ.Wzl dcos6,
- 0 -1
27 0
) ’ ]
X fde siné fd¢2de3lW3lfd63s:|.n63fd¢3f dt (4.23)
0 0 0

x e3v|ﬁ21-ﬂl| |ﬁ3l-]22|e-E{a(I)-a(II)}*{B(IV\,)-B(III\))} .
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Here, the gquantity e3v is defined to be unity whenever the integrating
variables are such that the v-diagram collision sequence can be realized,
and zero otherwise.

Note from Fig. 13 that

W21-k1 = W21°°591'

- ~ {4.24)
o = 2]

W3l k‘2 W3icose3 .

A

where Bé is defined to be the angle between ﬁ3l-and k2,.and is given in

terms of the integrating variables by the formula
' v =, i ind .. 4.25
c0563 cosszcose3+51n6251n63cos¢3 ' ( )
as may be seen by wcalculating W31'k2 from (4.22¢c) and {(4.228). Now, it is
clear from Fig. 13 that the only condition imposed by the first collision is

'cosel <0 ’ (4.268.)

and that the only condition imposed by the second wcollision [other than the

condition 1>0, which has already been taken wcare of in (4.23)] is

Hence, (4.23) can be written

(c,8)5, = (-1 )V lzrffﬁ Woe 3W2 fdwnw;lf dW31W31 fd'r
2m
fdcose f«de fde fd¢2fd-¢3 0 {cos63) (4.27)

X '93\) sin®.sind cosel-cose" e Efa (I)-a(ID) }'*{-'B(IV\))--'B(III\,)}

2 3 3
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where now CBV=1 or 0 according to whether the integrating variables do
or do not permit the third collision to occur. That is, ev now concerns
only the third collision in diagram v, since the first and second col-
lisions are now assured through the limits of integration on cosB1 and
T and the theta function on cosB;. [For the H diagram only, 02 must
also require 'rz> T-]

We next impose upon (4.27) a change of variables (W31,T)+(w31,1*),
according to

W31 = W31/Wy
‘ ) (4.28)

™* =W

21"

This transformation is evidently éuch that dW3ldT = dw31dr*, and is made in

anticipation of a later analytical integration over the variable W21' In
essence, this transformation induces a scaling of the velocities in all
regions, henceforth denoted by a Zower case w, and a scaling of all times
between collisions, henceforth denoted by an asterisk. We shall also use
a prime to denote velocity region III for the R- and C-diagrams; note from
(4.4) and (4.8) that the velocities in region III for the R~ and C-diagrams
bear indeed the same relationships to the integration variables. The
region III velocities for the H~-diagram are simply the (unprimed) region

II velocities, as shown in (4.6). We now rewrite the relative wvelocities

in the various regions as follows. With

m
=

Y21 _
TN R ) (4.29)
W31 = W3 /Wy = wy W,
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Wi = w W..k.k
21 = Wa3 ~ W3p kok (4.750)
Wi = Wy - 20y ckok,
the scaled velocities in the various regions of the R-, C- and H-
diagrams are:
Woy (II) = Wy (1) /Wyy = Wy,
R R R , (4.31)
Wap (I1) = Wap (ID)/Wyy = Wy
Wop (1) = Wy  (I)/Wyy = Wy = 2wy, tkiky
-~ - - - ~ A ’ (4 32)
P - = - _ —ha
Wy (IIIy) = Wy (III))/Wyy = Wy (4.33)
Wy (IIT)) = Way (ITI;) /W, = WY,
(v=1)¢
Wyp (IVy) = Wy (IV))/Wyy = w3y - zwél k31K31
= ol - ~ -~ ’ (4-34)
- — 1
Wiy (IV)) = Wy (IV)) /Wy = Wy = WSy -Kypkqy
Wyy (IIT,) = W 1(1112)/W21 = Wy
= . ' (4.35)
Wy (IIT,) = W) (IIL)/M,; = Wy,
(v=2)4
Wop (IVy) = Woq (IVy)/Wyy = wyy + 32’k32k32
L R . ' (4.36)
W3p (IVy) = Wiy (IV5) /Wyy = wWay - koK3,
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Wy (III5) = W, (III4) /Wy = Wiy
e - - r (4037)
- . [}
Waq (III3) = Wy, (ITI5)/Wyy = w3y
(v=3) ¢
Wy (IV3) = Way (IV3) /Wy = Wyy + W3y kggkag
AR ] (4.38)

o = W e B .
\wyy (IV3) = Way (IV5)/Wyy = w3y = w3ykggkag

In (4.36) w32=w31-w21 and in (4.38) w§2=w§1-wél. The relative positions

(4.17) at the instant of the second collision may be written

Pap = "Kytwy T* (435
=k

P -—\ *
P32 127%211"

where k12 is defined in (4.18). The third collision vectors £3v are given

by [see (4.19)]

~ — — *
k3y = =P21"W31T1 -
~ - - *
I: _ - +.\-' *

33 © P32™W32%3 v

where the scaled times T; between the second and third collisions are the

(earlier) solutions of the quadratic equations [see (4.20)]
logy *+ wyytpl®=1
lpgp + Wa,Tp| =1 ' (4.41)

-~ ﬂ' * -
|p3p * wipTal®=1 .
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And finally, the scaled time between the penetrating and separating
collisions in the H-diagram is seen from (4.21) to be
_ 2w31'k2

THEW, T=—2 - (4.42)
“§ 31

After the scaling transformation (4.28) the integral (4.27) becomes

[+ ] o0 o0
v 12/32 3> ~3W2 § —Wa E* 3
= (- ==Y 0 21
(0,6)3\) (-1) S'n“’fj‘dwoe fdw21w21e dwg,wo, | at*
o 0 0 0
0 - T T 27 2w
1
X fdcosel !dezfd63 fdd)z fd¢3 G(cose3)@3v
-1 0 0 0

X sinf,sinf cosf, cosf {a(I)ﬁa(II)}*{B(IVv)-B(IIIV)} ' (4.43)

where we have defined a "scaled E" [see (2.39) and note from (4.29) that

- 2 2 - -~
* = 214wl e ) 4.44
Br 2 SUhwy 7wy "Ysy) (4.44)

The W. and W.,. integrations in (4.43) will eventually be performed

0 21
analytically. The remaining 7-dimensional integral will be evaluated by
Monte Carlo methods, but for this it will be necessary to first get rid
of the infinite integration limits on the two variables w31 and T*. The
variable w3l can be handled similarly to the variable w in the single
overlap calculation [see (3.33)]. However, the variable T* presents a

more serious problem, the solution of which is very intimately connected

with the behavior of the quantities 93\), i.e., with the conditions imposed
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by the existence of the third collisions. We shall now consider this
matter in detail.

According to the diagrams in Fig. 12, the third collisions are all
interacting. Thus, a first requirement for the existence of the thirad
collision is that the colliding particles be separated (non-overlapping)

at the instant of the second collision. Hence, we require

IE [2 > 1 for v=1

21

N (4.45)
[p32|2 >1 for v=2 and 3

Given that the particles involved in the third collision are not overlap-
ping at the instant of the second collision, it remains only to require
that ;3v exist, i.e., that £3V be calculable as a real vector from (4.40).
For this, it is necessary and sufficient that the corresponding quadratic
equation in (4.41) yield for ¥ a real , positive number. Each of these

quadratic equations is evidently of the form

o + w16|z=l,
where pz>l because of (4.45). It is straightforward to show that, given
pz>l, a real,_positive solution T; exists if and only if

wep<0

and o
(wxp)2-w?<o

Therefore, the necessary and sufficient conditions for the third collisions

to occur are as follows:
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R({v=1) wil-p21<0 . (4.46)

2
32”1
H(v=2) W3y Pgp<0 (4.47)
(wypXp3p) “=w3,<0
°32>1
C (v=3) Wy, P3,<0 (4.48)

When these conditions are satisfied, egs. (4.41l) will have two positive

roots (as expected), and we must evidently take TG to be the smaller root:

- - - - ﬁT
o _ . _ . 2_  12¢.2 _ 2
Tt = [Wil Po1= /gy Py 2wt (03 1)_/‘”2'1 '
¥ = oo o= - Ji= .z 2_..2 2 _ Y] 2
== __;' .-L - ol ." 2 _..,'2 2 _ ‘ 2
T3* = [W32 by~ VW], pyp) 2-wid(p2, 1)_/"'32 :

The corresponding vectors ﬁ3 are then obtained from (4.40), (4.39). and (4.49).
AV
For a given v, G3v will be unity if all three inequalities in (4.46),
(4.47) or (4.48) are satisfied [and, for v=2, if the condition T;>?* is

also satisfied]; otherwise, 93u will be zero. Now, in order to resolve
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the problem of the infinite range on ™ in (4.43), it is necessary to

express the conditions (4.46)-(4.48) directly in terms of T*, and to then

analyze them into new conditions which yield expressions for upper limits
*

on T .

The T* dependence in (4.46)-(4.48) enters via the quantities 321 and

P3p in (4.39). Substituting (4.39) into (4.46)-(4.48) we find after

some algebra (note w215w21):
*2 or* (wa. k.0
T “=-271 (w21 l) ’ (4.50a)
_ * ~ .n A' .A
{v=1) TH (WS Wyp ) < Wh vk (4.50b)
t*2_2B_1*-C. <0 (4.50c)
1 1 1 Z .
*2_ * ~ -" _ 12
T %217 (wy,; °k; ) - (1-ki,) >0 (4.51a)
(v=2,3 T*Fv > G, , (4.51b)
2
Avr* -2BvT*-Cv<0 , (4.51c)

where Av, Bv, Cv' Fv' Gv are defined by

ol A 2

Ay = (wyyxwa,)
_ A . ~ 2

Cy = (wyy7ky)
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(w3pxwWs)

(Wypxwyy) e (“ xK) )
= 6_‘H 2, ] = ? e
(Wyp°kyp) "#{1<ki5)

W32°'Woy

~
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(4.53)

(4.54)

(4.50c) and (4.5Ic), eévidently requif¥eé that &

certain. quadratic form in t* be regative; it will bé convéniént to dérote

the roots. of these quddratic foris (when- thiey exist) by t'\") and t{)'::-

B‘2 “+A Cv_l/

(4.55)

The® requilrements (4450) for tle R=diagram are Soiewhat: simpley” tHan

the. requirements: (4.51) for the H and C didgranis, and-will Be- considered

~ A

first.. Since.w:

21 "L

that: requirement:

*%.=cosf:

(4.50a) is always' satisfied.
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~ ~ ~

A .
Furthermore, using the conditions w21°k1<0, w31'k2>0 and T*>0, the

remaining two reguirements (4.50b) and (4.50c) may be shown to be

equivalent with

K, *k,<0 : (4.56a)
(v=1){ gy vy > (g 0ky) [0k, , (4.56b)
0<t*<t] . (4.56¢c)

The conditions (4.56a) and (4.56b) were first noted by Weinstock [18].
Since (4.56a) and (4.56b) do not involve conditions on T*, then (4.56¢)
implies that the infinite upper limit on the T integration in (4.43) can

be replaced by tl, as defined by (4.55) and (4.52):

+
-] tl

v=1: f_d't*—>f dt* .
0 0

With requirement (4.56c) thus met, the quantity 931 is then 1 or O
according to whether the two requirements (4.56a) and (4.56b) are or
are not both satisfied.

We turn now to the more difficult task™of analyzing the requirements
(4.51) for the H~ and C-diagrams. Here we find that it is not possible
to obtain a single condition on T* analogous to (4.56¢); instead all
three inequalities will provide conditions on t*, as well as requirements
independent of *.

Consider first (4.5la), which requires that a certain quadratic

form in T* be positive. Since this quadratic form is concave up, then
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if it has no real roots it will indeed always be positive. However, if

the roots to the quadratic do exist,

+

t w * /(w

) War* k1, 21 k) #+(1-k} ) , (4.57)

then the quadratic form will be positive only if either T"<t~ or 'l'*>t+
An examination of the discriminant of the quadratic form in (4,5la),
taking cognizance of the fact that T* in any case is restricted to positive

values, leads to the following restrictions:

» If kiz<l, then require Tt*>tt

(4.58)

2 > > 2 i
» If k12 1, and w2:L k12 0 and (w2:L 12) k .\1, then require

either T¥*<t™ or T*>tt.

Consider next (4.51b). If Fv and G,, both have the same sign, then

(4.51b) implies that T” must be bounded by the quantity
€ = G/F, (>0) . (4.59)

However, the mere fact that t" is positive evidently prohibits the combi-

nation F\)<° and Gv>0. Thus, (4.51b) leads to the following restrictions:

» If FVSO, then require Gv<0.
B> If F <0 and G <0, then require ‘r*<tG . (4.60)

B If F >0 and G0, then require r*>t; .
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Finally, we consider (4.51c). From (4.53) and (4.54) it is seen
that Av>0. In the special case Av=0, it is seen that we will also have
Bv=0, and (4.51c) reduces to the simple requirement that cv>0. In the
usual case where A\)>0' then (4.51lc) evidently requires that a certain
concave—-up quadratic form in ™ be negative. Thus, the roots ts [see
(4.55)] to this quadratic form mugt exist, and T* must lie between them

subject to the condition 1% 0. Therefore, (4.5lc) leads to the following

restrictions:
» If A =0, then require (>0 2
£ > i -g2
» I Av#o and B\) 0, then require c\) > B\) /A\) ’
(4.€1)
» 1If Av#o and Bv\<0, then require Cv>0 ,
»

if Av#o then require Max(O,t;) <T* <t: .

We see, theh, that the existence of the third coliision for v=1
requires only the satisfaction of (4.56), whereas for v=2 and 3 ve must
satisfy (4.58), (4.60) and (4.61l). Nevertheless, we have derived a set of
conditions which determines whether va is 1 or 0, and which when C5v=l
provides lower and upper bounds, say Tél)and Téz), on T*. .The require-
ments for €5v=1, and the consequent formulae for Tél)and Téz), are

summarized in Table XI. Again, -©

v in (4.43) is 1 4f all the V require-

ments in Table XI are satisfied, and 63\) is zero otherwise. Furthermore,
from the quantities T\()l)and T\(,z) found by the prescription in Table XI,

the T* integration in (4.43) can be dealt with in the following manner:
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Table XI

Requirements for 63v=1 and Formulae for Té}) and Téz)

=] (R diagram)

~ A - ~ w21-kl
Require kl'k2<0 and w3l-k2> —_—
k,*k
172
(1) _ (2)_ .+
Put T, =0 and "= tl .

v=2 and 3 (H~ and C-diagrams}

. : _n?
1* 1If Bv>°' Require Cv> Bv/Av'

If Bv<0: Require Cv>0'
(2)

. (1)_ - L.t
Either way, put T, —Max(O,tv) and T _tv‘

(1)
v

(2) _yrs (2) .o
and reset Tv —Mln(Tv 'tv)

. . 4 e’
2 If Fv<0. Require Gv<0 and T <tv'

. ; (2) 40
If Fv>0 and Gv>°' Require T “7>t8

(l)=Max(T(l)

and reset Tv v

,t;).
3* If kiz<1: Require T(2)>t+,

v
(1)_ (1) +
o =Max (T "'t") -

>0 and (w

and reset T

2 ~ T
If k12>1 and Wop k12

(1)
v

o 2.1,.2
21 klz) >k12-1, and
>t : Require T( )>t ’

and reset T61)=Max (Tél),

)¢ ana 72

(1)

\Y

(i) if T

4 .

(ii) if T <t Reset T\§2)=Min(T\§2) ,£7).

(iii) if 7' <t” and T\52)>t+: With T*=T61)+(T£2)—T(%))¥

and 0<t<1, require either *<¢t” or *>tt,

?(T*

4®* For v=2 only, require a°
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2 (2) .
fdt f dt = A, foﬁ , (4.62)
(1)
0 T} 0

: here A, = T\Ez)—T\El) , (4.63)
* (1) ~
and T = Tv +Avr ;o (4.64)

It is important to notice here that a given value of the variable T
produces different values of T* for v=1,2 and 3; in other words, the
transformation T+1* is different for each v

In terms of this new variable T, (4.43) can be written

® 1
2 E*
- v 12/‘ 21 .
(0,8) = (-1) fffdw & fdw21W21e f dw31w31fd‘r
0 0

0] T > 27 21
x."dcosel./.dez.I.d93.l.d¢2.’.d¢3 9(cosB§) 93v cose1 (4.65)
-1 0 0 0 0

x Avsinezsine3coseé {a(I)-a(II)}*{B(Ivv)-B(IIIv)} ,

where 93v and Av are determined from Table XI with the quantities Av.
T, e i - (4. : 4.59).
B, C,» Fv, Gv. tv, L defined through (4.52)-(4.55), (4.57), ( )
In transforming from TX to T in (4.62) we transformed a possibly
infinite range (Tél), Téz)) into the finite range (0,1), which of course

was our intention. However, in so doing we introduced a possibly infinite
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(2) (1) . . .
factor Tv _Tv =Av into the integrand. We must therefore investigate

to see if any divergences Av*w are adequately controlled by approaches
to zero of other factors in the integrand of (4.65). This problem was
analyzed earlier in AEDC-TR-69-68 [4,7].

To begin with, we note from Table XI that tt is always an upper

bound for Av‘ For v=1 we have Av=t$; however, for v=2 and 3, Av may be

(1)
v

less than tc, not only because T

may be positive, but also because Téz)
may be determined not by t$ but rather by t) or t~ [see Table XI]. But
in any case, we should first investigate when and how tﬁ*w, since this
will give us a definite bound on the behavior of Av'

t! is defined in (4.55), and from the definitions of the quantities
Ay, By, C,, in (4.52)-(4.54), it is clear that the numerator in (4.55) is
strictly finite, so that the only way for t$ to become infinite is for AU
to vanish. Furthermore, as each Bv is proportional to #S;, it is clear
that the divergences in t$ are of the type

lim t} « A;1/2 .

A -0
v

From the definitions of Al' Az, A3 in (4.52)-(4.54) one calculates

1/2
1/2 _ [%glcoszeé - 2w,,cos0jcost, + i]

1 W,,C0808151inb, ' (4.66a)
\ ]1/2
2 W..sSin® ’ R

31 3

1/2
2 tom 2 1.
A-l/z _ '_f"315m 63 + 2x.r31(cosezcose)3 cosf,) + 1]

Y . _ . et 1/2
Wiy sze3 + s1n62cosea(sn.n32cose§ 251n93cos¢3)

133 (4.66c)
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From (4.66a) we see that Al can become infinite only if coseé or
s:i.ne2 vanish, in which cases Al diverges like (cosB;sinBZ)-l; however,
since the integrand in (4.65) contains Al multiplied by (cosB;sinez),
then tﬁe integrand will always be bounded. [This need for sine2 is the
reason why we write sin62d92 instead of dc0592 in (4.65).]

From (4.66b) we see that A2 can become infinite only if sine3
vanishes, in which case A2 may diverge like (sinB3)-1; however, since
the integrand in (4.65) contains A2 multiplied by (sin63), then the
integrand will always be bounded. {This need for sinB3 is the reason
why we write sin93d93 instead of dcose3 in (4.65).]

The situation for A3 is more complicated. A detailed analysis
of the denominator of Agl/z in (4.66c) yields the following conclusions:
In varying circumstances this denominator can go to zero like either
sine3 or (sin92c056;); in either case the integrand in (4.65) clearly
remains bounded. The only other way in which the denominator in (4.66c)
can approach zero, with A3 determined by the diverging t; and not by t;
or tt, is in the double limit GZ*N/Z and ¢j+°; in this case it is found
that the denominator in (4.66c) approaches zero like{E%—ez)zcosze3+¢§sin26;]l/?

Thus

-1/2
lim A,OC 1lim [(1—'- _212 c05263 + ¢§sin293] .

8.,1/2 37 o/2 2

In this case only will the integrand in (4.65) become unbounded.
To eliminate this divergence for the C-diagram, we transform

variables (0,,¢,) ~* (r,x) by

=26

rcosx
. (4.68)

rsinx

$4/2
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Under this transformation,

T 2T m r_(x)
fdez fd¢3 = fdx f rdr , (4.69)
0 0 0 0
where
> m- T T
ro(x’ - MJ'n[sinx’ |cosx|] . (4.70)

The double limit 62 + /2, ¢3 %+ 0 is equivalent.to the single limit r * 0, so the
divergence of the quantity in brackets in (4.65) now has the followiﬁg

character:

(sin ezcoseisinezi) (de 2d¢3)

lim T
T 2 2 2 2.2 1/2
62—>1r/2_ [[2 62] cos“0,+¢3sin 63]

$3-0

(sin263) (rdrdx)

= lim 1/2 =
0 E'Z'rzcoszxcosze3+4rzsin2xsin29g

sin293 drdx

1l/2
B‘cos 2xcos? 63+4sin2xsin2 e;l /
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where we have used the fact that cosei *:sine3 in the indicated limit:
Evidently, the denominator can now vanish either if (x*m/2, 93+0) or if
{x»0, 93+w/2). In the former case the denominator goes to zero like sin03,
which clearly causes no problems; in the latter case it can be shown that,
if the C~diagram is dynamically possible at all, then 4, is determined by t
[wvhich is always bounded] and not by t;. In conclusion, the transformation
(4.68) indeed removes the divergence of the integrand for v=3. We remark
that the behavior of A3 with respect to ¢3 as analyzed above was the reason
for measuring ¢3 relative to an initial plane through ;2 and the 2Z-axis,
rather than the XZ-plane of Fig. 13.

It is convenient to introduce a further scaling transformation on the

variable r in (4.68) by
r = r/ro(x) ' (4.71)

The integral (4.65) thus transforms to+

[ -] [-+]
/3 -3w2 -2 E
= (oY 12v2 > 0 6 21 3
(0.8)3“ {(-1) ———5““ ff 4a Woe fdw21W21e fdw3lw31
© 0 0
1l 0 m 2% /! 1l
X e . ]
fd'r fdcoselfd63 fd¢2 fdxfdr O(cosd') O, cosd (4.72)
0 -1 0 0 0 0

~ 2 . 1t - - >
X [Avr ro(x)51n92cose3s:m93:|{G(I) G(II)}*{B(IV\)) B(IIIv)}

+ The variable r is the same as the variable p in ref. [4,7]. There is a
misprint in these references: 1In eq. (2.7-24) of ref.[4] and in eq.

2
(8.24) of ref.[7]) Prax should read Prax®
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*
Here E is given by (4.44), O_, and Av are determined through Table XI,

3v
ro(x) is given by (4.70), and the angles 62 and ¢3 are now defined in terms

of r and x by
6. = l[‘n‘ - T r_(x)cosx]
-2 0

(4.73)

-
w
mn

2y ro(x)sinx

4.3 Parallel Evaluation of R-, H- and C-Integrals

The collision integrals to be considered are given by (4.15) in terms
of the ll-dimensional integral form (4.72). We can reduce this integral to
a 7-dimensional integral, just as the ll-dimensional SO-integral (3.14) was
reduced to the 7-dimen;ional SO-integral (3.24). That is, we integrate

analytically over W, and W Then the collision integrals (4.15) reduce

0 21°
to integrals that are closely analogous to (3.25), (3.26) and (3.27).

* - _ : : _2 -

Mgy = =3I - 22 &Ky, (4.74)
o 2@ 2 4.75)
My ) = =30 s0y) gy ’ (4.

* - .

Dy (1) = =20148; 3Gy, w,0) o , (4.76)

where El and il are again the functions defined in (3.30a) and (3.30c):
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- - *_1 E - 2
Kl = E LYW : (4.77a)
i=1l
T =gl % w, w, ' (4.77b)
1~ , io io y
i=1
with
W, (1) = —=[w,. (i)+w_. (i)]
10 321 31
=2 1> e (i=1,II,III ,IV ) ,
wzo(l) = 3[w31(1)-2w21(1)] viTy (4.78)
V. (1) B -ifw.. (1)-2w.. (1)1
30 - o3t21 31
and where now
© 1 0 T om T 1
(@), = (-1)" 78 dw, w’ at | dcosé ae as dx | &%
%3y a2 31731 1 3 2
0 0o -1 ) 0 0 o
X G(cos65).93\-‘)coszeld:\’E*-9/2 (4.79)

x Ebvrg(x)EsinezcoseésineéJ{a(I)-a(II)}'*{a(IVv)-a(IIIv)}' .

In this equation we have introduced primed differences {a(I)-a(II)}' and

{u(IVv)-a(IIIv)}' which are defined in analogy to (3.12), as

{a(T)-a(II)}"' = {a(I)-cKII)}/ﬁél°§l ' (4.80a)
{“(IVQ"“(IIIv’}' = {a(Ivs)-a(IIIv)}/dv . (4.80Db)
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where
-s' ." _
w21 k31 for v=1 ,
- A
dV = w32°k32 for v=2 , (4.81)
_\.. .A o
w32 k33 for v=3 .

This is done in recognition of the fact, that for the functions o that appear
- A
in (4.74)-(4.76), a(I)-0(II) is proportional to w21-k1 and a(IVv)—u(IIIv) is

proportional to dv. The primed differences (4.80) can be calculated explicitly

in terms of the velocities ;ij and ;ij [see (4.30)] and the collision vectors

k1 and kav; the results are presented in Table XII.

The 7-dimensional integrals (4.79) will be evaluated by a Monte Carlo
procedure in very much the same way as the evaluation of the 7-dimensional

SO-integrals deseribed in Section 3.3. For this purpose we reduce again the

-'.

wsl-integration to a finite interval by the transformation (3.33)

u=(14w*) L, (4.82)

for which wgldw31=-%du/uz. In addition, the form of (4.79) also suggests

the transformation

0 0
2 _ 1 3
fdcoselcos 91-— 3 fdcos 61 . (4.83)
-1 -1

T A review made (at the time of this writing) of the logic leading to
(4.82) suggests that for the integrals (4.79) a more suitable choice
would have been u=(l+w’)-1,

139



AEDC-TR-73171

Table XIT

The Quantities {a(I)-a(II)}' and {u(Ivv)-a(Inv)}' in the Three-Collision

Integrals.

140

1*/23
a=3E L,
- A A A +="2'
{o(T)-a(11)}"' = (w21°k1)k1k1 - W,k
-le ~A ~ ~ -T_A
{a(xvl)-a(xnl)}' = (W), "kyydky k) = Wy koo
- a A A > ~
{a () e (III) }' = (wyy kg )ky kay = Wa ks,
{a () -a(zz)}r = (w3, kygdkyakyy = "52"33
_ [ =8
0a=3E Kl
{a(n)~a (1)} = "21[2“"31 kl) “"21 1)1
+ Je [-142 () "W 1) =20 ¢ 1){2V3Lk )= (W - kl) h
{a(rvl)-a(znl)}' = [2(w31 31) (51-1:31)1
+ X [w21+2(w21 wz;l) 2(w21 31)£2(w .k) (wl 31)}]
{0(IV,) @ (TIT )} " = Wy, (20, *ky )= 0y ok, )]
- “31[2(;21']232’*(;32"232’]
+k 3201 —w? +2“’32 32){"31 32%Y21° 32}]
{0(T9,)~a (ITT)}* = Wy, (20w}, "k, )= (wh, Ky )]
- *31[2("21 33)”"32 ky3)1
'2_ A a' .A a' .A
+ kyylwy-wi+2 (w3,° kyg) {wg) "kggtwy) ka3t




Table. XII (continued)
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20.
{a(1)-a(I1)}"* -ﬂl
{a(v)-a(mIr)} = -k,
{a(v,)-a(rrr )} +ﬁ32
{a(v,)a(r1r )} = +§33_
Note: -‘;21 = ;121 is' a unit vector in accordance with (4.29).
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We thus rewrite (4.79) as

| 1l w 0 27 1 1l
\) 7 ~ 3 -~
c,0},. = (-1) —— do dr fdx Jdcos’0 as du § 4t
3v 2*12/E f 3f f f 1f 2
0 0 0 -1 0 0 0

Avd rr 2 (x)sind cosB s:.ne
E*9/2

X 9(cos95)93 (4.84)

x {a(I)-a(11>}'*{a(Ivv)-a(IIIv)}' '

where it is henceforth understood that Va1 is given by the inverse of (4.82)

1-u 1/4

w31 = [—E— 3 (4.85)

One final transformation of variables is needed to simplify the Monte
Carlo formulae. Namely, we want to transform the 7-dimensional "box", which
forms the integrating region in (4.84), into a 7-dimensional "cube". This

is easily accomplished by putting

N2
n

g

-

™
[}
3
o>

cos’6, = (-:.+IL ) ' “.e8)
1 4
¢2 = 2m,g '
w =g wysta-wmtt
T = . .
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Since the Jacobian of this transformation is evidently

~ 3 -~
a (93,r,x' coSs el,ﬂbz,U;T)

2 = 278 ' (4.87)

0 (lLl,)L .,)L7)

2"

then we obtain our final formula for the integral form (a,q)

(OL:G-)3 = (—l)\)"—ﬂf f fdr O(cose ) (-)

A d rr (x) sinb cose s:.ne

3 ' '
X - E*9/2 {o (D)= (xD) }'*{a(Iv, )= (111 ) } (4.88)

Thus, in terms of the integral form (4.88), we can calculate the
desired three-collision quantities in (4.13), (4.74), (4.75) and (4.76).
The Monte Carlo procedure for numerically evaluating the integral (4.88)
is, of course, to avérage the intedgrand over a set of points
{p,} = {r],41, ... n5)} picked from a randoii, uniforii distribiticii in the

7-dimensional unit cube U.:

2t
) cose sme
v m derr (x)SLn s9 §s1nd,
(0,a) 5 = <<(-1 @(cose3)93v E*9/2
x {a(I)—a(II)}l*{a(IVv)-a(IIIv)bﬁ . (4.89)
7
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The uncertainty in estimating this average with a finite set of points
{P}Pf...,PM} is given by the r.m.s. deviation of the quantity being

averaged, divided by /M. Hence, our computational algorithm is:

1° Generate 7 independent random numbers nl,nz,...,n from

a uniform distribution in the unit interval.

2° cCalculate the quantities 63, ¥, x, 61, ¢2, u (and w_.) and

31
T from equation (4.86).

3° calculate ro(x) from (4.70), and calculate 92 and ¢3 from
(4.73).

4° Calculate coseé from (4.25), and so evaluate the theta

function O(coseé).

- ~

Fe ~
-]
5 Construct the vectors w21‘w21 31'w31W31' kl and k2 from
(4.22).

*
6° Calculate E from (4.44).

- =l

7° From the velocities w Zw ~w 1’ and the collision

21'¥317¥32%3; 2
- -

-k L} l
vector kz, calculate the velocities w 31 32_w31 21

from (4.30). [Not necessary for v=2.]

8° Calculate the quantltles A 5 B 3 c F , Gv from (4.52)~

v
(4. 54), where klz_kl k2 Then calculate the quantities
+
t;, t 5 tv from (4.55), (4.57), (4.59).

. (1)
° e
9 Determine 2y’ Tv

and Téz) in accordance with the
prescription given in Table XI. (For v=2, defer checking

requirement 4° in Table XI until step 11°.)
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* -~
Calculate T from (4.64) and obtain the vectors p21 and
- %*
p31 defined in (4.39). Note that T depends on the
index v of the diagram. Thus

p21 = 'kl + w21('1‘ v +Av'r) 7

(4.90)
-~ -~ _ - (1) ~
p32 = k12 w21(Tv +AVT) -

are different for the three diagrams! Next, calculate

%* A~
Tv from (4.49) and then the collision vectors k v from

3
(4.40). Finally, calculate the quantities dv from (4.81).

-t
For v=2, calculate T from (4.42) and check requirement
4° in Table XI. N

Calculate the primed differences (4.80) as given in Table XII.

Using the values found in the preceding steps, evaluate
the required quantities in angular brackets in (4.89) and
also the squares of these quantities (for computing the

variances), and add these to respective cumulating sums.

Return to 1° and repeat for as many times M as is practical.
Then convert the sums to averages, and so obtain Monte Carlo
estimates of the three-collision quantities in (4.74)-(4.76),
and (4.13), together with the uncertainties in these esti-

mates.

In order to obtain a correct estimate of the uncertainty in a sum

of integrals, such as in (4.74) and (4.13), we add the integrands first,

rather than the integrals last.

If the coses test in 4° fails, i.e., if G(c0395)=0,-then all integrands

can be set to zero and we may immediately go to 14°. Likewise, if and when
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any of the 93v requirements in Table XI (see steps 9° and 11°) are
found not to be satisfied, the corresponding V integrand may be imme-
diately set to zero.

One practical difficulty arises, when the unit vector ﬂ3v
is computed as a difference between two possibly very large vectors
fsee (4.40), and note that the quantities pij and T: can become very
iarge]. Among the precautions taken to circumvent this problem was
the use of the double-precision computation mode on the Univac 1108 for

all calculations of dynamical quantities. In addition, we found it

advantageous to first calculate the impact vectors b3v

= al ~ A .
= - [ [
ba1 Py * Wi (wy,%Py) v
b32 = 032 - w32(w32‘032) ' (4.91)
b e A' l\' -
by = Py = W3 {W3ptP55)
and then calculate the collision vectors i3v from
~ - l\'
k3p = bgy +wy; vi-by,
k32 = b32 - w32 lfl-b32 ’ (4.92)
A - - - A' o 2
ky3 = b3y = W3y ¥l-byy

instead of from (4.40).

As was done with the single-overlap calculations, an empirically-
determined "importance sampling" procedure was used to decrease the un-
certainties in the Monte Carlo calculations. For the record, the follewing
importance sampling distributions were used [cf. (3.43) and the discussion

thereof] : 146



AEDC-TR-73-171

Pl(nl) « exp(-3nl) ’ ’ (4.93a)
pz(nz) « exp[-z(l-nz)] ‘ ' {4.93b)
P4(M4) « exp[-1.5(l-k4)] q (4.93¢)
Ps(&s) « 1+0.6 cos(2ﬂ&5) ’ (4.93d)
Ps(ns) « exp(-3.8.k1) . {4.93e)

We note that (4.93e) produces a sharp bias towards values of u near 1, or
W,y hear 0. The need for such a transformation indicates that the magni-
tudes of the integrands were becoming large for values of w31 near 0 and

is quite probably a reflection of the fact that the transformation in (4.82)
used the exponent 4 instead of 3+. Had we used the exponent 3, the optimum
form of P6 would undoubtedly be different from (4.93e)

The results of these calculations for the R-, H- and C- integrals are

presented and discussed in Section 4.5.

For many points in the 7-dimensional unit cube U7 the conditions
for 03v=1 (i.e. the condition that either/or a R-, H- and C-collision is
dynamically possible) are not satisfied and the corresponding integrand
will be zero. The fraction of the unit. cube where the integrand is non-
vanishing is the efficiency ratio. This efficiency ratio depends, of
course, on the importance sampling used. For the importance sampling

{4.93) the efficiency ratio turns out to be 15% for the R-integrals, 10%

for the H-integrals and 5% for the C-integrals.

T Cf. footnote on page 129.
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4.4 Special Evaluation of R-Integrals

The R-collision sequence is dynamically simpler than the H~ and
C~collision sequences. It thus lends itself more readily to a treatment
in which the efficiency ratio is appreciably larger than the efficiency
ratio of 15% connected with the method of the previous section.

We work in the rest frame of particle 2 between the first and third
collisions [in this section we need not append the subscript v to the
quantities £3, III and IV, since V=1 is always understood]. We take the
center of particle 2 as the origin, -ﬁlz(II)E_ﬁl2 in the +Z-direction, and

il in the first quadrant of the YZ~plane. The situation is as shown in

Fig. 14. The center of 1 is at point P at the first collision, moves

11
up to point P12 for the second collision, and then comes back to point

P for the third collision. For fixed P it is seen that, as point P

13 11 12

varies from infinitesimally above P_. to infinitely far above P 1’ the

11 1

possible locations for P13 on the action sphere of 2 vary from an infinite-

simal neighborhood of P to the entire +Z-hemisphere; however, in 7o case

11

can P13 ever lie in the -Z-hemisphere. The following is also true: For

any fixed k1 satisfying
0 < Bl< m/2 : (4.94;

A

and for any fixed k3 in the +Z-hemisphere, i.e.,

0 < 93< m/2

’ (4095)
0 < ¢.< 2m

it is always possible to find a "critical point" Pc above Pll such that

must be larger than Plch in order that a recollision with perihelion

P11P12
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oction sphere of 2

Schematic representation of the integration variables used in
the special calculation of the R-integrals. The origin is the

center of 2 between the first and third collisions, with

wlz(II)Ew12 in the +2Z-direction and il in the first quadrant

of the YZ-plane.
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~
vector k3 is possible. The peoint Pc is in fact the intersection of the

line extending from P in the +Z-direction with the plane tangent to the

1l

action sphere of 2 at P (i.e., the plane through the tip of and perpen-

13
dicular to §3).

Instead of dealing directly with the distances P and P Pc, both

11F12 11

of which can become infinitely large, we consider the velocity of 1 relative

to 2 following the second collision, ﬁlz(III)éﬁiz; let 6 and ¢ denote,

respectively, the polar and azimuthal angles of this vector. For fixed

ﬁl and ﬁ3 satisfying (4.94) and (4.95), it is clear from Fig. 14 that the

azimuthal angle ¢ of ﬁiz is completely determined, while the condition

Pllplz > Plch is equivalent to requiring the polar angle O to be greater

than a certain critical angle Gc, which is also completely determined. A
somewhat intricate analysis of the geometry of Fig. 14 reveals that the

azimuthal angle ¢ and critical polar angle Bc of aiz are given in terms

of the angles 91, 63, ¢3 by the following formulae: For the azimuthal angle

we have

cosp = sin63cos¢3/B

’ (4.96)
sinp = (sin93sin¢3-sin91)/B

where

172 ,

B = [(sine3cos¢3)2 + (sin93sin¢3-sin01)2] (4.97)

is the projection of P12P13

the critical polar angle Gc we find

onto the XY-plane, as shown in Fig. 14. For

sin63(sinﬁlsin¢3-sin63)

cosec = o (4.98)

[}l-sinelsinGBSin¢3)2-coszalc0326;]1/2
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3 ~ . .
Thus, with kl 12 is

specified by fixing its azimuthal angle according to (4.96), and requiring

and k, specified according to (4.94) and (4.95), W

that its polar angle satisfy the condition

-1 < cosb < cosBc . (4.99)

The magnitudes of both le and W!_ are evidently unrestricted:

12
0< U, < . (4.100)
0 < W, < ® . (4.101)

- - A A
With le, Wiz, kl and k3 fixed, it remains only to specify the vectors

k2 and w3l(II)=w31. We let 62 and ¢2 denote the polar and azimuthal angles

~

of kz; and we let 5 and 6 denote the polar and azimuthal angles of w31

relative to a coordinate system with k2 in the +I-direction. By definition

we have

~

WSl-k2 = cosB , (4.102)

and an obvious requirement for the second collision to occur at all is [see
Fig. 14]

0 < cosb < 1 . (4.103)

Apart from requirement (4.103), the only other condition on §31 and k2 is

that they be such as to satisfy the velocity-change equation

-he - A A
=W, .+ W

| a
Wip = Wit Wyptkky, {4.104)

-

. =>
for fixed vectors W., and W!

12 12° In fact, (4.104),- together with (4.103), is

seen to determine eompletely the vector k., according to

2
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I\

k, = (wi2 12)/lw12 12 , (4.105)
and also the magnitude of §31 according to
Wy = |"12 12|/cose . (4.106)
The polar angle a of §31 is evidently unrestricteéd:
0<$<om . (4.107)

It follows from the foregoing observations that, in addition to the
four variables Wo and le, the following set of seven variables can serve

as integrating variables for the R-~integrals:

cosB1 in (0,1)

cose3 in (0,1)

¢, in (0,2m)
cosf in (—1.cosec) s (4.108)
Wiz in (0,%)

cosd in (0,1)

)

in (0,2m)

The attractive feature of these variables is that only one of them has a
non constant limit [the upper limit on cos® is the complicated but bounded
function of 91' 63, ¢3 in (4.98)], and only one variable has an infinite
range [the upper limit on W is =),

Before attempting to express the integral form (a,B)31 in (4.2) as an
integral over the variables in (4.108), let us collect the formulae giving

all the quantities of dynamical interest in terms of these new variables.
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In anticipation of the subsequent analytical "scaling integration"

-l
over the variable le, we shall express all velocities Wij in terms of

their "scaled" values,

-

wij = Wij/wl2' (4.109)

In the coordinate frame of Fig. 14 we have

12 {(4.110a)

£}
"
"' o o!

0

1 51n91 ' (4.110Db)

cose1

ks
0

51n93cos¢3

~?>
L]

3 sinB3sin¢3 ’ (4.110c)
B cosB3
Fsinﬂcosd)
wiz = wiz sinfsind v (4.1104)

cos0

vhere ¢ is defined in (4.96) and (4.97);

sinBzcos¢

i‘cz =| sinB, sind (4.110e)

c0592

where we have used (4.105) to deduce that the azimuthal angle of ﬁz is the same

- A
as that of wiz,while the polar angle of k2 is given by

cosB., = (w!.cosB-1)/6
< ke (4.111)

sine2 = wizsine/G
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with
= | _'h - 12_Hot
§ = Iw12 w12| /;12 2w} cosOH (4.112)
N w31s1n?cos?
Way = Rz(-¢)°Ry(-62)' w3151nesin¢ . {(4.113)
w31cose

where the rotation matrices (defined in Table IV) transform the components
of Va1 out of the frame defined relative to k2 as polar axis, and where Waq

is given by [cf. (4.106) and (4.112)]

Wy = 8/cosf . (4.114)

In terms of the above quantities, the scaled relative velocities in the

various regions are as follows [cf. (4.31)-(4.34)]:

w. (II) = w

2 12 (4.115)

W3y (I1) = wy,y

W, (III)= w!
=w!_ = - k. .k

Wy (TII)= Wy, Swgy = gy tkoky ,

W, (I) =w.. - 2w kX

e ok a2 gl , (4.117)

wap (1) = wyy + w ok k)

Wy, (V) =Wl - 2wy, k3ky

2 A0 . (4.118)
—— ' L

Wap (IV) = Wi + Wiy ckokg
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—

It is clear, then, that the set of variables, WO' le, and the ones

listed in (4.108) [with Wiz

viable set of integrating variables for the integrals (OL,B)3l given in (4.2).

! "y 3 1
replaced by wlz_wlz/wlzl' indeed constitutes a

However, the transformation from the set of variables in (2.28) and (4.2) to
our new set is not altogether trivial. We now direct our attention to this

problem.

To begin with, we make a change of variables similar to (2.35) except

-l —
we use W instead of W_,:

12 21
-ﬁ =l(ﬁ+§+§) ?ﬂ =-ﬁ+-]-‘(;z —-VTI )
0 31 2 3 1l 03 12 31
- -l - - - 1 - -
w12 wl-w2 or W2 = w0-3(2w12+ 31) (4.119)
Wyy= W30y Wy = Wt (20,40, 5)
so that
2 2 2 _ 2
w1+w2+w3 = 3W0+E ’ (4.120)
with
E = 2(w2_ 4wl +W. *W..) (4.121)
3'712 731 '12 31 * *

Introducing this transformation into (4.2) and introducing also the trans-

formation (2.34) we have

-3w2 -E
(@,B) 5, = - fdwodwlzdw31dkldk2dT|W12 kll lw31 k,le e

g

x {a(T)-o(IT)}*{B(IV)-B(III)} . (4.122)
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Here, §)_ is the integration region appropriate to the R(v=1l)-diagram in

R

Fig. 12; the velocity regions refer, of course, also to this diagram.

Taking W.,. along the Z-axis and ﬁ in the YZ-plane performs three trivial

12

integrations and introduces an overall factor of 8m% in accordance with

1

(2.41). Using the previously defined angular variables, and noting that

the occurrence of the first and second collisions requires

] = >
le kl wlzcosel o, (4.123)
ey .A - ~ >
W31 k2- w31cose o, (4.124)

we may write (4.122) as

o 1 1 2m
_ 122 5y 3 - P
(a,8)31 = o fffd Wofdwzlwzl dcosel dcosb@ f d¢
L 0 o 0 0
. . -3W3-E*
x
f f f dw3lw3ldcosezd¢2d‘r GRcoselcosee

x{a(1)-a(11) }+{Bxv)-B(TID)} . (4.125)

In (4.125) we have put the upper limits on the variables cosel, cos8 $
’

as required by (4.108). However, the limits on the variables W31, cosez,

¢2 and T are not known at the moment; therefore, we have introduced the
quantity GR which is 1 or 0 depending on whether the requirements for the
R-collision are or are not satisfied. If we now introduce the scaling
transformation

Wap ™ W3y=W4 My,
' (4.126)

*
T+ T =
—leT
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and define

E = Z(l+w? +w ) ’ (4.127)

then (4.125) becomes

o 1 1 21
V2 -3wg iz
_12v/2 3> 3 - "
(0!.,8)31 = —5‘”“ 4 Woe dw12w12 fdcoselfdcosa fdd)
© 0 0 4) 0
.’:’:l:/:&w dcosb d¢ ar” © W; cosbB cose
x {o(n)-a(x1) }+{B(xv)-B(xID)} . (4.128)

*
Our task now is to transform the variables (w3l,cosez,¢2,r ) into the

"desired" variables (wi2

quantity OR in (4.128) by simply inserting the integration limits on these

,cose3,¢3,cose); note that we may then omit the

new variables as indicated in (4.108). The difficult part of this task is
to compute the Jacobian of this transformation:
3 8 *
(w31,cos 2,¢2,T )

J = . (4.129)
a(wiz,cose3,¢3,cose)

For this purpose we note from (4.111), (4.112) and (4.114) that w_. and

31
c0562 are given by
2 % 9
= V1€ _ow! + l] .
Wi [;12 2w12cose /cos (4.130a)
2 1/2
c0592 = (w cosG 1)/[w' —2wi2cose 1] . (4.130b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>