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CHAPTER I 

INTRODUCTION 

1,1 Objective 

This report is concerned with the problem of calculating the trans- 

port properties of moderately dense gases, For one-component gases the 

transport properties of interest are:  the coefficient of thermal 

conductivity X,  the coefficient of shear viscosity n. and the coefficient 

of self-diffusion, D. For brevity we shall follow the literature in 

referring to these transport coefficients simply as thermal conductivity X, 

viscosity n and self-diffusion D, 

The theory predicts that the first density correction to the transport 

coefficients of a gas can be represented by a term linear in the density 

n . Thus 

X = XQ  + A.n + . • .        , 

n = nQ + rijn + . • .       , U.1) 

nD = D + D.n + • • •        . 

In this report we express the density as the number of molecules n per 

unit volume. The mass density p is related to the number density n by 

p=nm, where m is the mass of the individual molecules. 

The coefficients X , n and D represent the transport properties 

in the limit of low densities; in practice they are adequate at atmos- 

pheric and subatmospheric pressures. A description of the dynamic 

behavior of low density gases is based on the Boltzmann equation. The 

transport coefficients X   ,  n and D are then obtained by solving the 

linearized Boltzmann equation according to a procedure introduced by 

t — 
For a bibliography see: M. H, Ernst, L. K. Haines and J, R. Dorfman, 
Rev. Mod. Phys. 41, 296 (1969). 
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Chapman and Enskog [1,2]. The approximate nature of the Boltzmann 

equation is twofold. First, the Boltzmann equation considers only 

uncorrelated binary  collisions. As a consequence the transport 

properties A , n_ and DQ of the dilute gas are determined by collision 

integrals involving the dynamics of collisions between two molecules 

alone. The Boltzmann equation also neglects the interaction range a  of 

the molecules relative to mean free path. Thus the flux of energy, 

momentum and mass is wholly attributed to the flux associated with the 

free motion of the molecules between  collisions. 

In this report we focus our attention on the calculation of the 

coefficients A , TI and D that determine the first density corrections 

to the transport properties. These new coefficients cannot be obtained 

from the Boltzmann equation itself, and we need to consider appropriate 

corrections to the Boltzmann equation in order to account for the dense 

gas effects. In view of the complexity of this task we shall restrict 

ourselves in this report to a calculation of these coefficients for a 

gas of hard spherical molecules with diameter a  and mass m. 

The coefficients A. and n, are to be regarded as the sum of two 

KU    UK      KU    UK 
terms. First, they contain a contribution A.  + A.  and n  + n. , 

respectively, due to the difference in position of two molecules during 

a collision; this effect was neglected in the Boltzmann equation. 

KK   KK 
Secondly, A and n. contain a contribution A , n  that accounts for the 

correlations in the positions and velocities of the molecules due to 

successive collisions among three molecules [3]. 

.    -KK , .KU , ,UK KK A  KU L UK ., ,. 
1 = 1    1    1    '   ni = ni   ni   ni       ' 

12 
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The contributions X  + A. and n, + n, are well known for a gas of hard 

spheres. They are proportional to the dilute gas values of the trans- 

port properties and were rederived in Part I [3]. 

,KU , .UK  4 3.      KD .  UK   8 3 ,. ,. 
1   1 = T70 0 ' ni  ni ~ 15*° \    ' 

These terms incorporate the transfer of energy and momentum between two 

molecules during  a collision; this transfer is often referred to as 

collisional transfer [1]. Since there is no collisional transfer of 

mass, the first density correction D to the self-diffusion is to be 

attributed completely to collisions among three molecules. 

For a gas of hard- spheres the initial density dependence of the 

transport properties can thus be written as 

X = X0 + {fKT
3X0 + X^ } n , 1™3x„ + xp 

>   0   1 

8*~  , „KK Ti = T)0 + %fro
3n0 + n^ } n , (1.4) 

nD = D + D,n . 
o   1 

In a previous technical report, Part I of this series [3], we 

KK   KK 
have demonstrated how the coefficients X  , r|   and D are deter- 

mined by sets of three-particle collision integrals that are related to 

various types of collision sequences involving three molecules. It is 

the purpose of the present report to show how one may evaluate these 

three-particle collision integrals. Based on this work we shall 

present tables of the contributions to the transport properties from 

the various three-particle collision sequences. 

13 
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1.2 Molecular Collision Sequences 

Before entering into a detailed discussion of the three-particle 

collision integrals, we want to familiarize the reader with the types 

of molecular collisions that are to be considered in the calculation 

of the transport properties. 

For a calculation of the coefficients A0, n0 and D in (1.4) it 

is sufficient to consider the dynamics of a binary collision between 

two  molecules. For the sake of the discussion we represent such a 

binary collision schematically by the diagram in Fig. 1. The lines in 

this diagram represent the trajectories of the centers of the molecules, 

and the circles represent the molecules themselves at the instant of 

contact. Just as in Part I [3], we adopt again the convention that in 

all figures the time increases when the diagrams are read from bottom 

to top as indicated by arrows on the particle lines. Thus Vj and v2 

Figure 1.  Schematic representation of a binary collision between 
molecules 1 and 2. The lines represent trajectories of 
the centers of the molecules and the circles depict the 
molecules themselves at the time of contact. 

14 
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in Fig. 1 are the velocities of molecules 1 and 2 before  the collision 

and V and v" the velocities after  the collision-  The transport 
12 . 

properties in the dilute gas limit are determined by collision inte- 

grals whose integrands depend only on the velocities v , v and 

v', v' before and after a binary collision. For a gas of hard spheres 
1   « 

these binary collision integrals were discussed extensively in earlier 

technical reports [4,5] and they will be summarized in Section 2.1. 

KK   KK 
The transport coefficients X      ,  n   and D are determined by 

collision integrals whose integrands depend on the molecular velocities 

beforei between and after successive collisions among three molecules. 

As a result, the three-particle collision integrals can be represented 

by collision diagrams in very much the same way as the binary collision 

integrals were represented by the diagram of Fig. 1. 

A preliminary analysis and evaluation of three-particle collision 

integrals was made earlier by Sengers [4,6,7]. This, and subsequent 

work reported in AEDC-TR-71-51 [5], showed it to be advantageous to 

make a distinction between "genuine triple collisions" and "successive 

binary collisions". 

We define a genuine triple collision as a collision during which 

more than one pair of molecules lie inside each other's interaction 

range. Now, in a gas of hard spheres, the duration of an individual 

binary collision is negligibly brief compared to the time between 

successive collisions; therefore, genuine triple collisions would never 

physically  occur in such a gas. Nevertheless, genuine triple collisions 

will  play a very significant role in our considerations here. The 

reason is that the Boltzmann equation, from which the dilute, hard 

sphere gas, transport coefficients X , n and D are calculated, 

15 
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considers all  binary collisions, including those in which the region 

occupied by the colliding pair of molecules is already partly 

occupied by a third molecule. This latter type of collision is 

evidently a "genuine triple collision", in the sense defined above. 

Thus, in correcting the Boltzmann equation results, it is necessary 

to assess and subtract out the contributions of these physically 

forbidden genuine triple collisions. The situation here is very much 

analogous to that in equilibrium statistical mechanics, wherein the 

ideal gas equation of state is corrected by assessing and subtracting 

out contributions from physically forbidden excluded volume configu- 

rations [8]. 

In so considering genuine triple collisions in a gas of hard 

sphere molecules, we find it convenient to introduce several new 

notions. We shall say that two hard spheres whose centers are separated 

by a distance equal to  0 are "colliding", and two hard spheres whose 

centers are separated by a distance less than a  are "overlapping". We 

define an "overlap collision" to be a collision between two molecules 

which occurs while at least one of the two molecules is overlapping 

with a third molecule. We further distinguish between a "single-overlap 

collision" and a "double.—overlap collision", according to whether the 

third molecule overlaps with just one or with both of the colliding 

molecules. The notion of overlap collision was introduced in earlier 

technical reports [3,5,9]. Such overlap collisions are evidently 

genuine triple collisions. They may be regarded as accounting for 

"excluded volume" effects, or, in the language of Part I, for the 

"statistical correlations" [3]. 

16 
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We have previously demonstrated [3,5,9] that the coefficients 

,KK   KK « „ 
A  , n,  and D can be decomposed into a series of four terms 

l?   -lmi \ ■  -f -£ nlv .  D, -j=i Dly . (1.5, 

For each transport coefficient, the terms in (1.5) are related to 

the dynamics of one, two, three and four successive collisions among 

three molecules. We represent the various collision sequences by 

diagrams in Figs. 2-5, just as the diagram in Fig. 1 was used to 

represent the collision sequence related to the dilute gas values 

A , n and D . The lines in Figs. 2-5 represent again the trajectories 

of the centers of the molecules, while the circles depict the molecules 

themselves at the time of a collision. The explicit formulas for the 

three-particle collision integrals will be introduced in the next 

chapter. In this chapter we restrict ourselves to an explanation of 

the various collision sequences that enter into a calculation of the 

coefficients X, , T), , and D, . 
lu  lu     lu 

The first terms (U=l) in the expression (1.5) account for binary 

collisions in which both  colliding molecules are overlapping with a 

third molecule (double-overlap collisions). Such a double-overlap 

collision is shown schematically in Fig. 2. The corresponding collision 

integrals contain the dynamics of only one binary collision, but do account 

for excluded volume effects due to the presence of a third molecule. We 

have shown in earlier reports [3,5,9] that these double-overlap collisions 

are precisely the collisions incorporated in the Enskog theory, and they 

yield 

xn - - u*°\ '\i = - u*a\' D
II * - ilH'oo •    ci-6) 

17 
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Figure 2. Schematic representation of a double-overlap collision. 
When molecules 1 and 2 are colliding, molecule 3 overlaps 
with both 1 and 2. 

We emphasize that these "Enskog values" represent corrections to the 

dilute gas values due entirely to excluded volume effects. 

The terms A. , n, and D. for y=2,3,4 constitute corrections 
ly  ly    ly   i- ' ' 

to the Enskog theory due to sequences of, respectively, two, three 

and four successive collisions, as shown in Figs. 3-5. In each case, 

we consider a collision between molecules 1 and 2 at the bottom of 

the diagram, just as in Fig. 1. However, in contrast to Fig. 1, we 

now consider in addition the trajectories that account for the 

possible interactions with a third molecule 3. 

The terms A,-, n12' 
D12 (V=2) are related to sequences of two 

successive collisions of which at least one is a single-overlap 

collision. The three possible events of this type are shown in 

Fig. 3. The three events differ in that in Fig. 3a both collisions 

are single-overlap collisions, while in Fig. 3b only the earlier 

collision, and in Fig. 3c only the later collision, is a single- 

18 
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Figure 3.  Sequences of two successive collisions among three molecules. 

(a) Molecules 2 and 3 overlap at both collisions (SS-collision). 

(b) Molecules 2 and 3 overlap at the earlier collision only (SN-collision) 

(c) Molecules 2 and 3 overlap at the later collision only (NS-collision). 
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overlap collision. In Part I we have referred to these events as 

SS-collision (Fig. 3a), SN-collision (Fig. 3b) and NS-collision 

(Fig. 3c). These collision sequences account for a combination 

of excluded volume (overlap collisions) and dynamical (two successive 

collisions) effects. 

The terms A , ri , D  (y=3) correspond to sequences of three 
13  13  13 

successive collisions, shown in Fig. 4. In Part I we have 

referred to these sequences as recollisions (R), cyclic collisions 

(C) and hypothetical collisions (H). Note that in the diagram of 

Fig. 4b the intermediate collision between 1 and 3 is a "noninter- 

acting" collision. That is, molecules 1 and 3 are indeed aimed to 

collide, but they pass through each other's interaction sphere and 

continue along the extension of their original trajectories. This 

noninteracting collision represents a dynamical screening effect 

due to the interfering presence of molecule 3. The sequences of 

Fig. 4 do not  contain any overlap collisions, and they account for 

correlations that are of a purely dynamical nature [3,5,10]. 

Finally, the terms A , n,j, D,4 (u=4) correspond to sequences 

of four  successive collisons. The two collision sequences that 

need to be considered are shown in Fig. 5. Any other possible 

sequence of four successive collisions can be obtained from those 

shown in Fig. 5 by time reversal and/or suitable permutation of 

the particle numbers. These collision sequences, like those in 

Fig. 4, account for purely dynamical correlations. It can be shown 

that the expansion (1.5) for the coefficients A, , r\,  and D.. 

terminates after sequences of four successive collisions [5,10,11]. 

22 
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1.3 Outline'of Report 

In this report we present calculations of the three-particle 

KK   KK 
collision integrals that determine the coefficients X  , n   and 

D in the density expansion (1.4) of the transport properties. It 

is convenient to consider dimensionless three-particle collision 

integrals. For this purpose we define 

X,        n,        D, 
Aiy - xlx ' nly " nu '   iy " DU 

so that, in accordance with (1.5) and (1.6) 

Xl      ■-12TOX0 

4 

1 + 1  *! 
y-2 ly 

KK                5     3 
ni    = " 12™ % 1 + X niy 

• 
*                                                    ■ 

5      3 D     = TOD 
1            12          0 

1 +1 <v 

(1.7) 

(1.8) 

The terms X* , r\*    and D  represent corrections to the Enskog theory 

due to sequences of 2(y=2), 3(U=3) and 4(U=4) successive collisions 

among three molecules. 

We shall proceed as follows. In Chapter II we formulate the 

three-particle collision integrals. The collision integrals correspond- 

ing to sequences of two successive collisions are then evaluated in 

Chapter III, those corresponding to sequences of three successive col- 

lisions are evaluated in Chapter IV, and the collision integrals 

23 
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corresponding to sequences of four successive collisions are evaluated 

in Chapter V. The numerical results are compiled in tables of collision 

integrals collected in the Appendix at the end of this report; these 

tables are indicated by lower case roman numerals.  For a survey and 

discussion of the results the reader is referred to Chapter VI. 
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CHAPTER II 

FORMULATION OF COLLISION INTEGRALS 

2.1 Binary Collision Integrals 

The transport coefficients A , n and D of the dilute gas are 

given by [3] 

xo = " Ikr^'*] (2> ' % = " I5k?[S'*] l2)  ' Do - - 1™ (2> ' t2'u 

where k is Boltzmann's constant and T the temperature.  The symbols A 

and C represent vector functions A(v), C(v), and B a tensor function 

B(v), of the molecular velocity v; they are the solutions of the 

linearized Boltzmann equations 

/dx2<J>(v2)T12{A(v1)+A(v2)> = - fyv\-^)v1    , 

-*. -»- 

/dx2<(»{v2)T12{BCv1)+B(v2)} = - nwj*   , (2.2) 

As in Part I, we use again the convention that the phase x.=(v.,r.) 

-*■ -A. 

represents the velocity v. and position r. of molecule i. The symbol 

■»©*■ 
v v indicates a traceless dyadic in the notation of Chapman and 

Cowling [1] . The Maxwell-Boltzmann factor (()(v.) is defined as 

The functions A and B in this report are the same as those in 
AEDC-TR-72-142 [3], but differ by a factor kT from those used in 
some earlier reports [4,5] and publications [6,7,12]. 
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*<V= [z£r] Vz *** [- iff]     ' (2'3) 

The operator T  is a binary collision operator introduced by 

Ernst et al. [13]; its definition and properties were discussed in 

detail in Part I. The square brackets with superscript 2 in (2.1) 

indicate binary'collision integrals,  defined as 

2- 2 
[A,AJ U)= -±  /dVjdx ♦(*)$(* ) I  A(vm) -T   £ ACv ) 

m=l n=l 

[B,B]1   J=  — /dv.dx A(v.)<j>(vo)   £  B(v  ):T._  £  B(v  ) , (2.4) 
J. J.    J       x *;       _       ni       i.e.     .       n m=l        n=l 

2 
rC,C] (2)= ^7 /<£ dx $(v )*(v ) I C(V ) 'T C(v ) 

n=l 

For convenience we introduce the dimensionless quantities 

Wi   {2klj        Vi'  i  a  ' a!2  ° [2klJ T12     '        U,!" 

*  *    "*■* We also use dimensionless functions A , B and C , defined by 

tf-  >      15 A (V, ) = -  ; 
i     32a' 

1/2   ->■* ■* y± kT A (Wi)   , 

£.-»■ . 5 [mkT I h ±* .± 

The expressions (2.1) for AQ, nQ and D may then be written as 

26 



i     -     75 

AEDC-TR-73-171 

3ml    h 

o      64o* i^r]     {A'A } 

v2 
Do 8a 

r»i/2 {^*>(2) 
l_nnrj 

where the curly brackets indicate dimensionless binary collision integrals, 

{A?A*}<2) Kg- /dVVrV^ \  A*(W) -T*  f A* (W)    , 
(2TT)%   X 2 2        m=l   m   12n=l   n 

{|*1*}(2) 1 ;dSdSdry(MI+W2»     f i*(W ):   T?J 1*(W  ) , (2.8) 
(2TT)%   1    2 2        m=l   m   12n=l   n 

^}«a) —2   /ÄÄ --<w*+w*) |^fi -*a*s, 
(2Tr)y2   12 2        n^   n  12   n 

The functions A , B and C are usually approximated by a finite 

(k) 
sum of Sonine polynomials S  (x), defined in Table I. 

n 

**<*) - I a. (N)s|.k)(W2)W 
k=l k   /2 

B*(W) = £  h. (N)Si?-' (W2)WW     , (2.9) 
k=0 k   /2 

N-l 
-»■* -*■    r       (k)  2 ■*■ C*(W) = I     c. (N)sLK'(W2)W 

k=0 k   /2 

The coefficients a^(N), b(N) and c (N) of these expansions satisfy 

a set of linear equations [2,12] 
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Table  I 

Sonine Polynomials 

k=0 n (l-t)n+i x z 

General- S (k) <x)   -     7 (zlli(k±nLL_xJ General. Sn     ixj L      (j+n) !   (k-j)!   j!X 

k=0 S^0) (x)   -  1 

k=l S^l) (x) =   (n+1)- x 

k=2 S (2) (x) =   (n+1),(n+2)   -   (n+2)x + |x2 

n ^ * 

e (3),   . _   (n+1)(n+2)(n+3)   _   (n+2)(n+3)      (n+3)   2_ 1   a 
k=3 Sn     (x) g 5 x+     2     x       6x 

(4) ,   . _   (n+1) (n+2) (n+3) (n+4)   _   (n+2) (n+3) (n+4) 
K.— H D \XJ 94 fi 24~ 

.    (n+3)(n+4)„2   _   (n+4)   ,        1   u +  ^ x 6     x     +  2-^x 

Orthogonality relation: 

/ xVs™ (x)   s«» (»d. = ^- « 
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N 

k=l 

N-l 
y  bv(N)b<2)   =  6ffn U=0,..,N-1)    f (2.10) 

k=0 k        kl u 

N-l 

I 
k=0 
l\w4V   =  6Ä0 (*=0,..,N-1)   . 

Here 6  is the Kronecker delta and a  , b   and c . are elements of 

4. 
matrices of binary collision integrals': 

a(2) . {s<*>(W
2)ä f S<*>(W')W}

(2) ,  . 
K.SL 3/ 3/ 

b<?>    =   {S<k><W°W   ,   S«*V)Ä}(2)    , (2  11, 
KJt S/2 

5/2 

,c(2)   =   {s(k)(w2)w   ,   B(iV)»)Ö) 

kÄ 3/2 
34 

The factor (21T)    in the definition (2.8) of the dimensionless binary 

(2)    (2)    (2) collision integrals was chosen so that a^' = b^' = cQ0' = 1. 

The binary collision integrals (2.11) are symmetric, i.e. 

a_(2) = a{2) • b(2) = b(2) ■ c(2) - c(2) (2  121 

We shall refer to the number N of Sonine polynomials retained in (2.9) 

as the order of the Sonine approximation used. Thus, inserting 

The matrix elements a. . and b   used here are the same as the 
(0)    (Q) 

matrix elements a/^'and b>:' in AEDC-TR-69-68 [4,12J , 
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(2.9)-(2.11) into (2.7), we have for the "N  Sonine approximation" 

to the dilute gas transport coefficients, 

Xo(N)=i^l^l  a^(N) 
M/2 

hsü   v 

- [-ff1 V no(N)=Ii^l^J  b-(N)       ' (2-13) 

Do(N) -TF '-I *C«(N) 
» rkT~i/2   , 
F LJSFJ   V 

The problem of calculating the transport properties in the dilute 

gas limit thus requires the calculation of the set of binary collision 

(2) integrals (2.11). For a gas of hard spheres these matrix elements a/- , 

(2)     (2) 
b .  and c .  can be readily evaluated. They are equal to the coef- 

k Ü ficients of s t in the expansions [14]: 

I      I  a'fsV = {l-i(s+t)}
I/2st{l-st)-3 - i {i-i(s+t)}-1/2 s2t2(l-st)-2 , 

k=l £=1 kJ6 2 4    2 
(2.14a) 

00     00 

I       I    bg'.V- (2.14b) 
k=0 1=0 

={l-j(s+t)}/2(l+|st^2t2) (1-st)"4- -|{l-|s+t)}"/2st(l-st)"3 

- ^|{l-i(s+t)}
3/2
S
2t2(l-st)-2 

oo   oo 

l      l    c^fsV = {l4(s+t)}1/2(l+st)(l-st)"3- i{l-i(s+t)}"1/2st(l-st)"2 . 
k=0 £=0 kJt 2 4  2 

(2.14c) 
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Table II 

(2)   (2)   (2) 
The Binary Collision Integrals a - , b- , c . 

a(2)= + 1 
11 

(2)    1 
12   " 4 

a(2) = 
13 

1 
' " 32 

a(2)     1 
14     128 

a(2) = + Ä 22     16 
a(2) a23 

103 
" " 128 

(2) _   59 
24     512 

a(2) 

33 
5657 
1024 

(2)    6783 
34     4096 

(2)    149749 
a44     16384 

»J? = + * 00 
K<
2)
 -  1 

b01 " " 4 
b(2) 
02 

1 
32 

. (2)   . 205 
bll ~ + 48 

h(2) b12 

22 

163 
128 

11889 
1024 

«i? " + 1 00 
J2' -  ! 
01   " 4 

c(2^ C02 
1 

32 

CC2) = +££ 
Cll     16 

c(2) C12 
_- - 139 

128 

c(2) 
22 

8358 
1024 

Note: 
(2)  (2). b(2)=b(2).  (2)  (2) 

akA aHk ' ökÄ Dfck ' ckfc c£k 
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Table III 

The Coefficients ak(N) , bk<N), ck(N) 

N=l^ a1(l)=l b0(l)-l c0(l)-l 

rai(2)=i. 
N=2"{ 

\a <2)=0. 

=1.022727272 

=0.09090909091 

bQ(2)=1.014851485    cQ(2)=l.017241379 

b (2)=0.05940594059  c (2)=0.06896551724 

f SL±( 3) =1.024818524 bQ(3)=l.015878912 cQ(3)=1.018689786 

N=3*/a (3)=0.09678720258   b (3)=0.06231945009  c (3)=0.07306202215 
\ 2 1 1 

a (3)=0.01989514720   h(3)=0.00956957592  c(3)=0.01357698769 

f 
a (4)=1.025134456 
1 

a2(4)=0.09761889723 
N=4»j 

a (4)=0.02183560672 

a (4)=0.00606324830 
4 
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For reasons that will become clear in Chapter III, we shall study in 

this report the viscosity and the self-diffusion up to the third Sonine 

approximation, and the thermal conductivity up to the fourth Sonine 

approximation. The binary collision integrals required for this 

analysis are listed in Table II, and the corresponding coefficients 

a (N), b (N) and c (N) , obtained by solving the simultaneous equations 

(2.10), are given in Table III. 

The rate of convergence, as N increases, of the expansion (2.13) 

for the transport coefficients X   ,  r| and D is well established [1,2]. 

From Table III it is seen that the second Sonine approximations a, (2), 

b_(2) and cQ(2) modify the first approximation a (l)=bQ(l)=cn(l)=l by 

only a few percent. 

2.2 Three-Particle Collision integrals 

RK  KK 
The coefficients X    , n   and D in the density■expansion (1.4) 

for the transport properties are determined by three-particle collision 

integrals. In earlier technical reports we have presented two different 

methods for deriving these collision integrals. The method followed in 

AEDC-TR-71-51 was based on a geometrical analysis of the three-particle 

collision operator in the generalized Boltzmann equation [5,9]. In 

AEDC-TR-72-142 we presented a more algebraical derivation in which the 

three-particle collision operator was represented by a binary collision 

expansion [3].  Both methods yield the same results, and we obtained 

for the coefficients X,   , n  and D, , defined in (1«5) [see equation 
l]i  lu     lp 

(5.1) of Part I] 
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1        u=l   ■Ly       3WT     y-1 y 

(3)    , (2.15) -"-^ly-OTT^ö^ 

Dl    - I Dly - 3    I   [3'3]f 

Here A, B and C are the same functions as those in the expressions (2-1) 

for the dilute gas quantities XQ, ru and DQ.  However/ the square brackets 

now indicate three-particle collision integrals defined as 

(2.16) 

3 3 
[A/A]i53,=jr/dv1dx2dx3<j>(v1)<{.(v2)(|)(v3) I  A(vm).T (123) [ A(v J , 

m=l n=l 

[B,B]^3)=ir/dv1dx2dx3<p(v1)*(v2)*(v3) I  B(vm):T (123) f B(v) , 
m=l      M    n=l 

"" 3 
[C,C]^3)=3ir/dv1dx2dx3*(v1)*(v2)<|){v3) ? C(vn)-Ty(123) C(vn) . 

The operators T (123) (u=l,2,3,4) are three-particle collision operators 

defined in Part I. 

We introduce again dimensionless quantities as given by (1.7), (2.5), 

(2.6) and 

X/2 
T*(123) = a^y  Ty(123)  • (2.17) 
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Using (1.6) and (2.7) we may thus write 

1     12   Ol  * luJ 

- 4 
niK   = " 12m,,n0[1+ ^ niy] ' (2'18) 

D,        = ~ TT^^3D«[1+  I D,   1 i 1 12 0 *■_  lu U=2    p 

with 

x*ly *-  , n*ly = -  rs  V       iDj. V_   .   (2.19) 

{A?A*}(2) (B£*}
(2) {C*C*}(2) 

Here we have introduced dimensionless three-particle collision integrals 

defined as 

{£T}t3> 3d* -± /dw dW dW d£^;e-
(Wl+W2+W^ 

U  10TT 31 "*"i'*"2 3 2 3 

3 -v -^ 3 J. -k 
x £ A*(WJ -T*(123) J A*(W ) 

_    m U     -   n m=l n=l 

^r-OT- it /«lÄ/siÄs^.-«^«w 
(2.20) 

x I    B (W )• T(123) I    B (WJ  , 
,    m   u      ,    n m=l        K    n=l 

r£*±*i(3)     3/2       1   f *  -±    *   -■**,-*■* -(W*+W*+W*) 
{C,C  }      = TTTTBT TT JdWndW_dW dr*dr!!e      12    3 y 10TT0  3! 12    3     2    3 

3 _^ 
X 2 y    C*(W  ) -T*(123)   C*(W  ) 6_           n V                     n n=l 
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We may again represent the functions A , B and-C by the Sonine 

polynomial expansion (2.9). We then obtain for the coefficients 

X  , n •  and D in the m n  Sonine approximation 

*f<N)=-n™3 
4 

Ao(N)[1+J2
xiy(Nll     ' 

1—4 —< 
^(N^-^ua^CN) \l+   I   n*u(N)|        , (2.21) 

s r   4   *    "• Dl(N)=S""nTrc3D0(N) \±+  I  Dly(N_lJ       ' 

with 

xl» «> -qw X X a*(H) a*(N) "k*! v   • 

Diu(N'-c-^wXioCktN,ci(N,°"''' • 

Here we have defined elements a*?' ,b'?'  and c_f3' of matrices of 
kl,y  klj    k£ ,|i 

three-particle collision integrals^ 

(2.22) 

"''The matrix elements aj"|'  and b^j^ are related to the matrix elements 

eSP     and b^J     in AEDC-TR-69-68 [4,7,12] by 

f a(3)--^a(1) and ]  b(3)-2b(1) 
y£1

ak£,ü 5ak£     v£1 Dk£,if 5ök£  * 
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In earlier reports [3,5,9] we have shown that these matrices are symmetric 

in analogy with the result (2.12) for the binary collision matrices: 

„(3)   (3) .  . (3)  . (3)    „(3)    (3) avo ,,-aov ,,' Ko   ,.=b01, ,.;  CO.'..« c;,.'.. • (2.24) •kA,u ~S,k,y'    wk£fy~w£k#y'    na,u~ c£k,u 

2.3 Collision Integrals and Collision Diagrams 

It is seen from (2.21)-(2.23) that we have to evaluate a set of 

,Qx.xuxC ^xxxax„„ x^yxax» Wx „lc wuu lV,Ä>
(3) «"< '"' ^ ^ 

where ty  and X are functions of the dimensionless velocity W. These 

three-particle collision integrals of the form {^»xJ-j  and {i|>,x)u > 

integrals involve the dynamics of the three-particle collision sequences 

discussed in Section 1.2. However, in order to precisely specify the 

relationship between the collision integrals and the collision sequences, 

we use a diagrammatic notation which is a bit more abstract. 

We first make a distinction between interacting  collisions and 

noninteracting  collisions. In an interacting collision between two 

molecules, the molecular velocities change according to the usual laws 

of mechanics. In a noninteracting collision the colliding molecules 

pass through each other's interaction sphere undeflected. A noninter- 

acting collision may be decomposed into a noninteracting penetrating 
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collision, when the molecules enter each other's interaction sphere, 

followed by a period during which the two molecules are overlapping, 

followed in turn by a noninteracting separating  collision, when the 

particles leave each other's interaction sphere. We shall continue 

to indicate the trajectories of the centers of the molecules by line 

diagrams as in Figs. 3-5. However, we shall indicate whether at a 

given instant two particles are penetrating, separating or overlapping 

by the notation presented in Fig. 2 of Part I [3]. 

As an example, consider the collision integrals related to 

sequences of two  successive collisions. These "single-overlap" col- 

lision integrals can be formulated in terms of the SS-collision 

sequence and SN-collision sequence shown in Fig. 6.  In both collision 

sequences the collision between 1 and 2 is followed after some time T>0 

by a collision between 1 and 3. In Fig. 6a particles 2 and 3 overlap 

at both these collisions, as is indicated by the hash marks. In Fig. 6b 

particles 2 and 3 overlap at the time of the collision between 1 and 2, 

but, they leave each other's interaction sphere after some time T', with 

0<T'<T, i.e., before the collision between 1 and 3 occurs. We use roman 

numerals to indicate velocity regions  in the diagram of interest.  Thus, 

W.(I) represents the initial velocities, w.(II) the velocities between 

the two collisions, and W.(Ill) the final velocities, in the diagrams 

of Fig. 6. We shall use a similar notation to indicate the velocities 

in the sequences of three and four successive collisions. 

In Part I we have shown that the collision integrals 0|>,X} 
2 

and {^,X}    corresponding to the single-overlap collisions may be 

written as 
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m 

m 

r        (a) SS - SEQUENCE 

I      2   3 

T     (b) SN-SEQUENCE 

2  3 

Figure 6. Diagrams representing the SS-collision and SN-collision. 
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{*.X)i3)^.X}£)**.X>£)'KX.*>£) . (2.25a) 

{*.X>i3)-{t.X}S)+t*'X>£,+{X^}£) • (2.25b) 

The explicit formulae for these collision integrals are given by eqs. 

(5.16) and (5.21) of Part I [3]. In the terms of dimensionless 

quantities they may be written as 

^Ss'-li*  /   ^e-(Wi+W|+W3> (2.26a) 
ss 

3       3 
x  I    I  {*m(i)-i']n(ii)}*{xn(iii)-xn(ii)> 

m=l n=l 

»•JOS'-^k / *;-<&& n.» 
SS 

x 2{T|<1 (I) -\j)1 (II) }*{x1 (Hi) -x2 (ID } 

^Xlff-Sgr   /   ^HMl^+W3> (2.27a) 
ßSN 

3        3 

*   I    I   (t(iHfjn)Wx (iii)-x (ID) 
m=l n-1      m m n n 

{*'*>2!-&   I  ^V(Wl+W2+W3> «•"« 
fiSN 

x 2{^1(I)-^1(II)}*{X1(III)-X1(H)> 
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Here we have abbreviated i|/(W  (I))  by ^  (I),  etc.    The notation ty * y 
m       m 

indicates the appropriate scalar product between the vector or tensor 

-»■-»■ i, 

functions tf (W) and X (W)- Tne symbol dß represents a dimensionless 

volume element 

dfi* = dW dW dW dk drgjw21*^1    > (2.28) 

where k =r*-r* and r* =r*-r* are the relative positions of the molecules 

at the instant of the first (1-2) collision. The velocities W. without  a 

velocity region designation are understood to represent the velocities 

just after  the first collision: 

W.=W.(II) for i=l,2,3  . (2.29) 

The integrations in (2.26a) and (2.26b) are to be carried out over that 

subvolume fi  of the 14-dimensional space spanned by the variables W , 
üb X 

W_, W , k and r , for which the SS-collision sequence can be dynami- 

cally realized.  Similarly, the integrations in (2.27) are to be carried 

out over the subvolume Q      of the same 14-dimensional space which 
SN 

corresponds to the dynamical requirements of the SN-collision sequence. 

Notice that the subvolumes ß  and ß  have no points in common. 
SS     SN 

The collision integrals {^,X^   and {^»X^  » associated with 

sequences of three successive collisions, are sums of three terms: 

^,X>33)=^»X>^3)+^,X^3)+^,X}c3)= I  ^'X>33) . (2.30a) 

fo.X^^X^Wxl^+tt.xl^S I  fl»*)^  •      (2.30b) 
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Here the index v refers to the R(v=l),. H(V=2) and C(v=3) diagrams in 

Fig. 7. These collision integrals are given by egs. (-5.25), (5.29), 

(5.32) and (5.35) of Fart I [3] and read in dimensionless form 

{♦.X^-C-W^1 # /drtV<Wl+WI+W3> (2.31a) 
3V 

* I    I   {♦mCT)-*,(n)Mxll(w J-x.diy)  , 
m=l n=l 

r,  i (3) .  V-l 3/i f  jr>* -(W?+W*+W*) 
C*»X>3 '-(-1)   ISP"/ * e  12  3' (2.31b) 

Q3V 

3 
x 2 £ {* (I)Hp {II)}*(x (IV )-X (HI )} 

n«l 

The symbols I, II, III and IV now refer to the velocity regions in the 

diagrams of Fig. 7. The integration element dfi* is the same as in (2.28), 

with W , W , W denoting the velocities, and k =r*-r , r =r -r denoting 

the relative positions, instantaneously after the first (1-2) collision. 

Notice that nothing precludes the integration volumes ß , ß,~» ^7, from 

having non-empty intersections. 

The collision integrals {^,x).  and {^>,x}.     I  associated with 

sequences of four successive collisions can be decomposed as 

{^x}f)=[{^,x}^)+{x^}^)]+[^,x}^)+^^)] 

-r I rt*.X>i? +^X.*>iJ]      - (2.32a) 
v=i 
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(a)   R-SEQUENCE 

U =1) 

EC- 

n = in. (b) H- SEQUENCE 

U=2) 

) C - SEQUENCE 

U = 3) 

Figure 7. Diagrams representing the R-collision, H-collision, and 

C-collision.      43 



AEDC-TR-73-171 

2 
E Et^'X}]y)+{x^>^)]       r (2.32b) 
v=i HV *v 

where the index V now refers to the RH(v=l) and RC(V=2) diagrams in 

Fig. 8. From eqs. (5.39) and 5.42) of Part I we conclude that they 

may be written as 

(♦,X}£}-<-l>V ägr /  dfi%-^l+W2+W3> (2.33a) 
ß4V 

3  3 
* I Z {*n(«-*M(")MxBorv)-xB(wv)} 
m=l n=l 

^X}^>=(-DV f^ / dav(wi+w!+w!5 (2-33b> 
4V 

3 
x 2 X {*n(i)-*n(ii)}*{xn(vv)-xn(ivv)} 

n=l 

where the integration variables, integration volumes and velocity regions 

now refer to the diagrams in Fig. 8. 

We note that all collision sequences begin with an interacting col- 

lision between 1 and 2, which is followed by a collision between 1 and 3; 

the collision between 1 and 3 may either be an interacting collision 

(SS, SN, R, C, RH, RC) or a non-interacting penetrating collision (H). 

These first two collisions are represented schematically in Fig. 9. The 

initial velocities are W (I), W (I) and W (I); the integration variables 

-ft.      -k.      -A- -ft.    -ft. 

W-, W , W are the velocities after the first collision: W =W (II), 

W =W (II), W =W (II)=w (I). The vector k is the perihelion vector 
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m = m 

n 

i 

(a) RH - SEQUENCE 

(b) RC -SEQUENCE 

Figure 8. Diagrams representing the RH-collision and RC-collision. 
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Figure 9. Schematic representation of the integration variables. 

of the 1-2 collision. It will sometimes be convenient to replace the 

integration variables r,, by k2 and T, where k„ is the perihelion 

vector of the 1-3 collision and T the time between the two collisions. 

From Fig. 9 it is clear that these quantities are related by 

.*.* 
-k2 = r31+W31T  , 

from which it follows that 

(2.34a) 

* -A- rs *> 

dr-,, = |W-.. -k9 |dk,dr   . 31   '"31 ~2 (2.34b) 

In all our  calculations, we shall begin by making the transformation 

W1'W2'W3"**"  W0,W21'W31      ' (2.35) 
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where the new velocity variables are defined by 

"o =|<VVv"\ rSl-Ä0-3Ä21+Ä31) 

W21- W2-Wx    ^  or ^ VVl^r
2^      <2-36' 

W31= W3-Wx   J       ^Vvl^l"
2^!*  '■ 

-v. 

Thus W is the velocity of the center of gravity of the three spheres, 

while W_, and W . are the respective velocities of spheres 2 and 3 

relative to sphere 1. The Jacobian of this transformation is unity, so 

that 

^     ^     -^        ^     ^        ^ (2.37) 
dW1dW2dW3=dW0dW21dW31   . 

Under this transformation the Maxwellian exponential in the integrands 

becomes 

e-(W^+W|+W|)=e-(3Wj+E) (2.38) 

where E depends only on W21 and W31 according to 

E E |^1+W^-W21.^31)   . (2.39) 

Since each collision conserves energy and momentum, E has the same 

value in all velocity regions: E=E(I)=E(II)=, etc. 

Collecting the foregoing relations, we find that the common element 

appearing in the various triple collision integrals can be written as 

dß*e-(Wi+W!+W3> = 
— 3W^ -E 

= dW0dW21dW31dk1dk2dT|w21,k1||w31,k2|e  °e   *  (2-40) 
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This form will be our starting point for the explicit calculations in 

the following sections, save for the following two minor exceptions: 

First, in the single-overlap calculations, it is convenient to retain 

the integration variable r , and thus not introduce the transformation 

(2.34).  Second, in a special calculation of the R-sequence, and in 

the calculations of the RH-and RC-sequences, it is convenient to 

introduce the further transformation W  ■* W =-VT„. 
21   12  21 

All the three-particle collision integrals are seen to be 14- 

dimensional. However, since the integrands are isotropic functions 

of the vector variables, we are free to choose one of the vector 

variables as the Z-axis and another as defining the XZ-plane. The two 

vector variables chosen for this purpose will not be the same in all 

calculations. However, it is always true that this process is equivalent 

to performing three  of the fourteen integrations. For when one vector 

is picked as the Z-axis, we are essentially integrating over the polar 

and azimuthal angles of that vector; similarly, when a second vector 

is picked to define the xz plane, we are essentially integrating over 

the azimuthal angle of that vector. Hence, we shall always begin by 

choosing our coordinate system in this way, and replacing  the angular 

integrations over the vector defining the Z-axis and the azimuthal 

integration over the vector defining the XZ-plane by the factor 

(2«2TT) (2TT) = 8TT
2
  . (2.41) 

Finally, the following definitions will be frequently employed 

3 3 
Y(I)E I  * (I) E I  ty(w (I)) , etc. for II,III,... 

n=l       n=l  n 

(2.42) 
3 3 

X(I)E I  Xn(D =  I X(Wn(I)) , etc. for 11,111,... 
n=l       n=l  n 
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CHAPTER III 

SEQUENCES OP TWO SUCCESSIVE COLLISIONS (SINGLE-OVERLAP COLLISIONS) 

3.1  Introduction 

The collision integrals {^,x)i  and {^,X^  are related to the 

SS- and SN-collision sequences shown in Fig. 6. Both collision sequences 

may be represented by the diagram of Fig. 10. In this diagram we require 

that molecules 2 and 3 are overlapping at the instant of the 1-2 collision/ 

but we do not specify the time T* at which the particles 2 and 3 separate. 

We shall refer to this diagram as the SO (single-overlap) diagram and to 

{^,X}^3) and {I(J,X}   as the SO (single-overlap) integrals. The SO-diagram 
2 2 

in Fig. 10 reproduces the SS-collision sequence in Fig. 6a if T'>T and it 

reproduces the SN-collision sequence in Fig. 6b if T'<T. It thus follows 

from (2.25)-(2.27) that we may write 

3   3 
x I        I   [{^m(D-i|'m(II)}*{xn(III)-Xn(II)> 
m=l n=l 

+ e(T-T'){xm(i)-xra(ii)}*{^n(iii)-^n(ii)}], 

UfX}(3)=-3^ /an e-<Wl+W2+W3> (3,1b) 
10TT «go 

X'2[{^1(I)-1|;1(II)}*{x1(III)-X1(II)} 

+ e(x-T'){x1(i)-x1(ii)}*{^1(iii)-iP1(ii)>]  , 
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where 

9 (t)=l for t>0 and 0(t)=O for t<0. (3.2) 

and where the integration region ti      now refers to the SO-diagram in 

Fig. 10. From now on we shall always use dimensionless quantities, and 

so we shall drop the asterisks in the dimensionless volume element dfi* 

and the dimensionless positions r.. 

(IE) 

T 

Figure 10.     The SO-diagram associated with ty,x}(3)   and {iJJ,xJt3) 
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Since the two collision integrals {iJJ/XK  and ^'XK  refer 

to the same collision sequence, it is convenient to design a notation 

that covers both integrals. For any function a(W) and ß(W) we 

therefore define 

(a,ß), = -^fdfl e"(Wl+W2+W3)[{a(i)-a(ii)}*{ß(iii)-6(ii)} (3.3) 2   lOTT 
r| dfi 

"so 
+ 0(T-T'){ß(i)-ß(ii)}*{a(iii)-a(il)}] 

We may then rewrite (3.1a) and (3.1b) as 

{^X>23) - W'X>2  ' <3'4a> 

{*.X>23) = 2(^1,X1)2  , (3.4b) 

3 3 
where ¥ = Y i|) and X = Y x as defined in (2.42) . 

", m -in 
m=l        n=l 

As integration variables we choose the velocities W , W , W 

defined in (2.36) and the position vectors k and r  .  The domains of 

integration of these variables are defined by the SO-diagram in Fig. 10. 

To obtain specific limits  for the integrations, we consider the configu- 

ration of the particles in the rest frame of 1 just after the first 

collision. We take W  in the +Z-direction and k in the XZ-plane as 

shown in Fig. 11; thus we have integrated trivially over the polar and 

azimuthal angles of W  and the azimuthal angle of k , yielding an 

overall factor 8ir2 [see (2.41)]. The explicit limits of integration 
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action sphere of 2 

action sphere of I 

Figure 11. Schematic representation of the integration variables used 

in the calculation of the SO-integrals ( =2).    The figure 

shows the centers of 2 and 3 in the rest frame of 1 gust 
-+■ 

after  the first collision, with W  in the Z-direction and 
/\ 
k., in the XZ-plane. 
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are now obtained simply by examining the constraints which, are imposed 

on the geometry of Fig. 11 by the requirements of Fig. 10. 

The variable W (not shown in Fig. 11) represents the velocity of 

the center of gravity and, hence, does not affect the relative motion 

of the particles; thus the components of W may assume all possible 

values. The magnitude of W  is also unrestricted; the angles of W 

have already been integrated over in choosing W  to lie along the 

Z-axis. If 6 denotes the polar angle of k^ relative to the polar axis 

W , then 6 can vary from ir/2 to IT, so that cos6 varies from -1 to 0; 

the azimuthal angle of k has already been integrated over in picking 

k to lie in the XZ-plane. With k fixed, we next choose r  so that 3 

lies anywhere inside  the action sphere of 2 but outside  the action sphere 

of 1. Denoting r  by (r,0 ,(() ) with -k. as the polar axis, then we see 

from Fig. 11 that (J> can have any value between 0 and 2TT, COS0 any value 

between 1/2 and 1, and r any value between 1 and 2cos8 . With r  thus 

fixed, W  must then be aimed to hit the action sphere of 1. Denoting W 

by (W_.,6 , c|> ) with -r  as the polar axis,.:we may.deduce from Fig.. 11 

that the center of 3 will hit the action sphere of 1 provided that cos6 

lies between /l-r  and 1; then <i> may assume any value between 0 and 2ir, 
w 

while W  may assume any value between O.and °°. These considerations 

allow us to write the SO-integral (3.3) in the following explicit 

11-dimensional form 

t 
This collision integral was earlier derived in eq. (5-27) of 

AEDC-TR-71-51 [5]. 
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0 2TT       1 2cos8r 

(a,3)2 = ~M^J |/d3"o |dW21W21 /  dCOSÖ [d*r[ dcose
r/dr r2 

0 -10       1/2 

2TT 1 

x j dW31W3lJ d*w    J    dcos6w   (-W21cos6)e"(3Wö+E) 

o o       ,r^2 /l-r 

x  [{a(I)-a(II)}*{ß(III)-ß (ii)} 

+ 0(T-T,){ß(I)-ß(II)}*{a(III)-a(II)}] . (3.5) 

The integration variables in (3t5) completely define the vectors 
■Jb      -ft.        -V        >\ -*- 

W0f W21' W31' ^1 an(^ r31' ^ut ^"t ^S note(* that the polar and azimuthal 

angles of these vectors are not  all taken relative to the same frame. 

Thus, W , W and k are all defined relative to a coordinate system with 

Z-axis along W21 and XZ-plane in the plane of W  and k ; r  is defined 

A. -»• 
relative to a coordinate system with Z-axis along -k ; and W  is 

defined relative to a coordinate system with Z-axis along -r . However, 

-A-      -»- -A. 

by applying suitable rotation matrices, the components of W , W , W , 

k and r  can all be found relative to any desired frame and expressed 

explicitly in terms of the various integration variables in (3.5). The 

required rotation matrices are presented in Table IV. We shall return 

to this point later when we discuss the evaluation of the integrand. 
-*-   -j*     »a.     A        .fe 

In terms of the basic vectors W , W , w  , k and r , all other 
0  21  31  1     31 

quantities of interest can be calculated.  Thus, the time T is computed 

as the smaller (earlier) root of the quadratic equation 

l«31+»31Tl* =1  ' 31   31 
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Table IV 

Rotation Matrices 

Given two frames F and F', and a vector v.  Suppose Frame F' 

is obtained from Frame F by rotating frame F about axis i by an 

angle +0 [i.e., the rotation carries axis j toward axis k through an 

angle |6|, where ijk is a positive permutation of xyzl.     Then if 

(x,y,z) are the components of v with respect to frame F, the components 

(x',y/z') with respect to frame F» are obtained by 

where 

1    0    0 

0   cos8 sinö 

0  -sinö cos8 

Rx<6) = 

R (6) = 
y 

cos8  0  -sin8 

0    10 

sind  0   cos6 

R (6) = 
z 

cos6 sinö  0 

-sin8 cosö  0 

0    0    1 

Note:  cos(ir-8) ■ -cos9 

sinCrr-6) ■ sinö 

cos(-9) = cos8 

sin(-8) = -sinö 
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while  T'   is computed as  the positive   (future) root of 

|r32+W32T'|2  = 1       (r32  = Vr31'     W32  E w31-W21). 

Carrying out the algebra/ we find the explicit formulae 

T  = W~Jr(l-e)cos6w     , (3.6) 

and 

T'   = W32|:?32-W32+V(?32^32)2+(1-r32)J    ' 

where 

(3.7) 

e  EV1_ S§Se"     ' (3'8) 
w 

The collision vector k is then given by 

^2   =   "r3l"^31T     =   "r r31+"31(1~e)coS0w     * (3-9) 

Finally, we need the velocities in regions I and III in order to 

evaluate the integrand in (3.5). The region I and region III velocities 

are obtained from the region II velocities W_, W21, W., and the 

collision vectors k and k through the hard sphere collision formulae: 

w0<u    =w0 w0(iii)    = w0 

W21(I)   = W21-2W2r i^ki W21(III)   - W21-W31-k2k2      }.(3.10) 

W31(I)   = W31-W21"*A W31(III)   = W31-2W31-k2k2> 
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Therefore, once we write down the components of the vectors W , W  , 

W  , k , k in some common frame, expressing these components in terms 

of the integration variables in (3»5), we may proceed to express the 

full integrands in terms of the integrating variables, provided of 

course that the functional forms of a and 3 are given. 

In evaluating the integrand in (3-5), it will be observed that 

we always deal with differences  in various functions of the velocities 

before and after a collision. For all the functions a(=Y,X,i|;,x) which 

we shall be dealing with, it turns out that these differences satisfy 

the proportionalities 

aWo(i),;2i(i),w3i(D) - «W0,w2i/w3i) ccw^ , 

and >•  (3.11) 

a<w0(iii),w2l(iii),w31(iii)) - a(w0,w21,w31) «w31-k2 

This property {3.11) is a consequence of the velocity-change equations 

(3.10) and the simple polynomial forms which are used for the functions 

T\)  and X- Because of this property, it is convenient to define the 

p2*imed differences 

{a(i)-a(li)}' ={ a(i)-a(ll) J/W^-k^, (3.12a) 

-and 

{a(iii)-a(ii)}' = {a(iii)-a(ii)}/$31-k2   , (3.12b) 

for any function a of the velocities W , W , W f Since from Fig. 11 
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W21*kl " ^l0080 ' (3.13a) 

and from (3«9) and Fig. 11 

V¥ .k = W recos0 , (3.13b) 
31  2   31     w 

we can replace the unprlmed differences in (3«5) by the primed differences/ 

provided we introduce into the integrand an overall factor of 

(W„_.k_)(W„ .k ) * W„ W recos6cos9  • (3.13c) 
21  1   31  2     21 31 W 

In addition we make the variable changes 

0 0 

I    cos20   dcos6  ■>  ^    I       dcos36      , 

-1 

4 2cos6r (2cos6r) 

I r3dr - j   /   dr- 

1 1 

JcosS       dcosö    ■*■ s   I dcos26 w w       2   f w 

We thus conclude that expression  (3»5)   for the SO-integrals may be 

written as 
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(a,ß)    = 
A     5/2n 

—   rrfd3W, e"3W0   fdW^W*       fdW    w*      f Wjjj ° J        2121J       3131J 
00 0 0-1 

0   AEDC-TR-73-171 

dcos30 

2TT     1 (2cos6 )*    27T      1 
r 

I d<j)   I dcosB    I  dr*  J d(|)   j de« 

0     1/2       1       0      1-r"2 

dcos26 Ee w 

x [{a(i)-a(ii)}'*{ß(iii)-ß(ii)}' 

+ 0(T-T'){ß(i)-ß(ii)},*{a(iil)-a(li)}'j (3.14) 

In order to obtain the coefficients X1?(N), n?2(N) and D  (N) as 

(3)   (3) 
given by (2.22) we need to evaluate the matrix elements a »  , b - 

(3) and c -  . For the sake of simplicity we shall drop the U=2 designation 

. t 
in the matrix elements for the single-overlap collisions and write 

(3)     _      so (3)       _    so (3)     _    so 
"kA,2    ™   kfc '"    ckJL,2 - ckJl    * ■kü',2 =   akA ;   b'" -   -*■ ;   c-'«'- = c (3.15) 

From  (2.23)  and  (3.4)  we see that these matrix elements are given in 

terms of   (a,ß)_ by 

so r 3 
I   sg0   (wm)wm , I    sj*1 (W*)W u '2 mm -      /2       n     i m=l n=l 

n    n 

so 
3k£ ^111=1 

I ■£»<<4>«K.. J iC'e*^. m    mm n=l A      n   n n 
(3.16) 

/* 
cS°    =    2 sg* (WJ)wr s^ *§\ 

V. 

t    These matrix elements are related to the matrix elements 
c^,   in AEDC-TR-71-51   [5]   by 

so _ , so so _ 
ckJl " "ckÄ 

' ^t«* 
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In a previous technical report I5J we have evaluated the four 

lowest order elements of the matrices of SO-collision integrals (3.16). 

*      * 
These results enabled us to determine the coefficients A  (N), n  (N) 

12     12 
* 

and D (N) up to the second Sonine approximation N=2. The work 

indicated that the rate of convergence of the expansion (2#22) for the 

viscosity r\    and self-diffusion D is comparable to the rate of con- 

vergence of the expansion (2*13) for the dilute gas transport coefficients. 

However, the same conclusion could not be drawn for the thermal conduc- 

tivity coefficient A . In this report we shall evaluate all those 

matrix elements in (3*16) that are needed to evaluate the coefficients 

ru2(N) and D-2(N) up to the third Sonine approximation N=3, and the 

* 
coefficient ^.JN) UP to the fourth Sonine approximation N=4. We shall 

thus be able to establish the rate of convergence of the expansion (2.22) 

for all three transport coefficients. 

In evaluating the matrix elements (3»16) we shall follow two 

different approaches. In the first approach we integrate analytically 
-*■    -»> 

over W and W  in (3.14), thus reducing (a,ß)  from an 11-dimensional 
0      21 2 

integral form to a 7-dimensional integral form, and then we evaluate the 

various 7-dimensional integrals numerically using' a Monte Carlo technique. 

In the second approach, we apply the Monte Carlo technique directly to the 

11-dimensional form (3.14). The first approach yields fairly accurate re- 

sults, but the algebraic complexities introduced as a result of 

the analytic integrations over W and W  are so great that only the 

matrix elements for the first (N=l) and second (N=2) Sonine approxima- 

tions can be calculated with reasonable effort. The second approach 

yields less accurate results, but is algebraically simpler so that the 
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computation of the higher order Sonine. approximations can be effected. 

Clearly, this two-pronged approach, will provide us with a strong check 

on the consistency of our calculations of the single-overlap contribu- 

tions . 

3.2 Reduction of Collision Integrals to a 7-Dimensional Form 

When the explicit forms of the Sonine polynomials are inserted 

into (3.16) and use is made of the fact that I  W = 3W is the same 
n=l 

in all velocity regions, we obtain the following expressions for the 

so    ,so        ,    so matrix elements at . / b -  and c ?. 

so 
lll l w w2,    f ww2 

Ul m m    nil n nJ 

LiS? = l\ l ww*     I w w2l    - if I w w2,    y w w"l      , 12       2 [m^ m m    n£x n nJ 2      2 |n£1 m m'  ^ n nJ a 

21       2 [^ m m'^nnjj      2 ^ m m'  ^ n nJ 2 

f3- 3   - 1 7 f   3   - 3 1 
j ww2,   [ww2    - 7   y w w2,   y W w1*    , 

Ui m m  nil n nJ2    4Ui m ra  nii 
n nJ2 

-zffww*,    !WW2] + T(IWW\    y w w"l 4 Ul m m    nil  n nJ2      4 Ul m m    nil n ni 2 

so 
L22 

£9 
4 

(3.17) 
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10 2Ulmm    nilnnJ2       lm=lmmi11    n=lnnJ2 

b?? = ^f ! W°W ,    I w'wJ   - |f 1 w'w.    1 w'w xl 11 4 L£l m m    nil n n>2    2W=1 m m    n=l n n nJ 2 

_Zf y w°w w2,    y w°w 1    + [ f w°w w2,    f w°w w2 
2     L-  m m m'   ./,   n n  ,       I   £.   m m m'     £,   n n nJ ^m=l n=l * 2       Mn=l n—i 

(3.18) 

cTo  =  ^V^     ' 
so C01  =  5(W1'W1}2  "  2(W1,W1WJ)2     , 

C10   =  5(VV2   ~  2(W1
wi'W1)2      , (3ll9) 

Ctl " Tr^l^lV  5<"l'Wl*l)2   "  5<*lwl'"lJ2 

+   2(W1W2,W1W2)2      . 

SO Although a  , for example, is a sum of two integrals, we shall 

actually calculate it as the integral of a two-term integrand; this is 

possible since the integrating variables and domains are the same for 

both integrals, and is desirable  since it allows a precise estimate of 

SO the uncertainty in a . Essentially then, our task is to evaluate twelve 
12 

integrals; four-each of et.,  b . and c . as shown in (3.17)-(3.19) . All 

twelve integrals can be calculated in parallel, since the integrating 

variables and the domains are the same for all [cf. (3.14)]. 
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Each integral in (3.17)-(3.19) has as an integrand some specific 

polynomial form in terms of the velocities W ,  W , W , Our first step 
12  3 

is to express these polynomial forms in terms of the variables W , W , 
0  21 

W  defined in (2.36). The W -dependence of the integrands is then 

•a. 

isolated, and the W -integration in (3.14) can be done analytically. 

This process entails the application of various integral forms of the 

type found in Section 1.421 of Chapman and Cowling [1], as well as the 

performance of integrals of the type [cf. (3.14)] 

00 

f/pw0 ^e-3wo = 4, faw0 wS+V3w5     , 

o 

for various values of n. The integrals (3.14) are thereby reduced to 

8-dimensional integrals, in which the integrands depend only on the 

velocities W  and W  in regions I, II and III. Note that, the velocities 
21     31 

W  (I)/ W (I) and W  (III), W (III) are determined completely by the 

velocities W . and W  in region II and the collision vectors k and k 
21     31 12 

[see (3.10)]; the collision vector k in turn is determined by r  and 

W  [see (3.9)]. 

The fact that W can be integrated out with relative ease is a 
0 

consequence of the fact that the dynamics of the collision sequence is 

independent of the velocity of the center-of-mass of the three molecules. 

Another variable which does not affect the collision dynamics for hard 

sphere molecules is the scale with respect to which all the velocities 

are measured [this is because the angle of deflection for two colliding 

hard sphere molecules is independent of their velocities] .  Suppose, in 

fact, we measure the two velocity variables W  and W  in units of W  : 
21     31 21 
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*21 = W21*'     \ 

*31 = W2l"       J   • 
(3.20) 

Essentially,  this amounts to a change of variables in   (3.14)   of the form 

(W21,W31)     ■*•   (W21,  w=W31/W21)      , (3.21a) 

with 

dW21dW31 = W21«iW21dw  . (3.21b) 

The independence of the collision dynamics with respect to the velocity scale 

manifests itself in the following fact:  If relations (3.20) are introduced 

into the various integrands, then every term in these integrands is found to 

be homogenous in W ; that is, if F(w2-i'W-J-I ) *s a typical integrand term, 

then we discover that 

F(W21,W31) = F(W21z,W21w) = W21F(z,w) , 

with the value of n varying from term to term. We note in passing that k 

and 0(T-T') are homogeneous in W  of degree zero [cf. (3.6)-(3.9)], while 

E is homogeneous of degree two [cf. (2.39)]: 

E = W^E ,    E  = |(l+w2-Z*w)  • (3.22) 

[Like E, E = E/W* has the same value in all velocity regions.] Therefore, 

if F(W ,W ) is a typical term in the integrand of (3.14), where we now 

assume that W has already been integrated out, then we can perform the 

W-..- integration analytically on a term-by-term basis: 
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CO CO 

fdW31W31 J ?31W31   |dW21W5le'EF<W21,W31) 

0        0 

00 00 

= /aww^w3! aw21wj1 e"
w2iE W^FU,*) 

0       0 

00 00 

-|<WF(B,V) I dW21W2
8^"ne"W21E*   . (3.23) 

—E We note that the W -integration removes the factor e  and replaces 

it by the reciprocal of E raised to some half-odd-integer power. 

Recapitulating, the integrals in (3.17)-(3.19) are dealt with in the 

-*.    _v    -k 

following way: First, the integrand expressions involving W , W , W are 

converted to expressions involving W , W . W  by means of (2.36). Next, 

the W -integrations are performed analytically, thus reducing the" integral 

forms (a,ß)  in (3.14) from 11 to 8 dimensions. The remaining velocity 
2 

variables W , W  are then transformed to W , w as prescribed in (3.20), 

and the integral over the magnitude W  is performed analytically. The 

integral forms (ot,ß)  in (3.14) then become 7-dimension integrals over the 

variables cos36, d> , cos6 , r*,  6- , w, cos29 . The- algebra involved in 
r    r     w        w 

carrying out this program for the quantities in (3.17)-(3.19) is lengthy 

and complicated, and we shall only quote the results here. For this 

purpose we define the 7-dimensional integral form 
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(a,ß)2  = 

0 21 21T « 1 (2cos6   )*   1 

~T~£—I dcos38 I  d(J)     j d<J> I dw w3  I dcos6    j  ax1* ldcos2Qv 

-1 0 0 0 1/2 1        1-r"2 

(3.24) 

x eE*~9/2[{a(i)-a(ii)}'*{ß<ia:i)-ß(ii)}' 

+ 0(T-T• ){&.<!)-ß(ID}■*{** (iiff)-a(II)}']   , 

where T is given by  (3.6) with W      replaced by w and T'  is given by  (3.7) 

with W      replaced by w-z,  and where the primes are defined by  (3.12)  with 

W    *k    and W    •£    now replaced by z»k    and w*k ,  respectively.    In terms of 

(3.24)   the matrix elements   (3.17)-(3.19)  are 

all  "  3(L1'L1)2  +  TtKl'Kl*2   ' 

«?r> -»■-»■ 231   -»■-»■ ■*■-*■ 1287   -*■     -*■ 
a12  = 7<L1,

L1)2 + =r(KiiKi)2 +  ^V1^ + ±TT"(Kl»K2)2   • 

4° = 7(LlfLl)2  + ^(K^K^ +  33(L2/Ll)2 + 1^1^,^) 2   , 

a22  = ¥(£1'£1)2   +  77tL1,L2)2  +  77(1:2,4)2  +  429(L2,L2)2 

(3.25) 

+   1133(v     K   )       +   3003fK      K   )       +   30Q3fK      K   )       +   19305(K      K   ) 

+  ^^-(S,S)2   +   22(M,M)2   . 
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b00 = 2(L1'L1>2  ' 

b01 = T(L1'L1)2 + T(L1'^2)2 

.so _ 21,f f  .    99..- * . 
b10 " T(L1'L1)2 + T(L2'L1}2  ' (3>26) 

.so  301 ,J * ., . 231 (f    J v  , 231,f f , . 1287,fg £ . 
bll - _2T{L1'L1)2  "T'{L1'L2)2 + _8~{L2'L1)2 + ^  (L2'L2,2 

->--»■       "\"\   ■* ■*     429 
+ 44(1^,1^)2 + ^-'(M,M)2 - 2|Z'(S,S)2, 

C00 " *Ä1,ÄT*2  ' 

C01 " 6tÄl,£l*2 + 2tAl,Ä2*2   ' 

CJS = I(*1'V2+!^2'A1)2 • (3-27) 

c
l! - H(*1'*1J2 + T(VW "(V*1>2 + Tr«*2'*2>a 

+ 2£.(k,kV + 3(m,m)2 

To define the symbols K , K , L , L , S, M, %  , t ,  k and m appearing 
1   2   1   2 J.   * 

in (3.25)-(3.27), some preliminary remarks must be made. First of all, the 

transformation (3.20), which "scales" the velocities in region II, also ; 

induces a scaling of-velocities in regions I and III on account of (3.10). 

Thus, we have 
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Z(I)  = Z^Z-k^   , Z(III) m    3-W'k2k2   , 

(3.28) 

w(I) = w-Z'^kj^   , w(III) = w-2w«k k  , 

where, of course, z(II)=z and w(II)?w. Now, - it turns out to be more 

convenient to work with the auxiliary  velocity variables [cf. (2.36)] 

w10(i) = -|[z(i)+w(i)] 

w2Q(i) = -|[w(i)-2z(i)] ,     1=1,11,111 . (3.29) 

w30(i) = -i[z(i)-2w(i)] 

The velocities w , w , w  are the velocities of spheres 1, 2 and 3 

relative to the notion of the center of gravity. The expressions for the 
_&.     _fc.     -An 

quantities K  ,  K  , L   ,  etc.   are now defined in terms of these auxiliary 

velocities w     , w      and w    .       Specifically for any region we have 

\ =   E*"1.I1^ioWio     ' <3-30a) 

K2 =  E*~2
±l*io*Lo     ' (3.30b) 

1  ~ E    2JlWi°Wio     ' (3*30C) 

■*■ 3   3 
£2   E  E*"f J *±oSiowio     ' (3'30d) 
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S  5 E I wio     ' (3.30e) 

" ' ^illVlo^lo     ' (3*30f> 

Äl ~  E "° *10 ' (3.30g) 

Ä2 - E " wiow10  ' (3.30h) 'l( 

k = E""T wj0 , (3.30i) *4 ...a 

m = E*~* w1Qw10 . (3.30J) 

We also note that 
*    3 

I 
i=l 

E - _l*io     • (3.30k) 

From the expression (3.24) for the collision integrals we see that we 

need to evaluate the quantities {o(l)-a(il)}'={a(I)-a(H)}/z.£ and 

{a{lll)-a{ll)},={a(lil}-a(ll)}/w.k2 for all functions a defined in (3.30). 

With (3.28) and (3.29) we can express these quantities in terms of the 

vectors z, w, k., and k ; the results are listed in Table V. 

As a last step we need to express the vectors z, w, k. and k, in 

terms of the integration variables of (3.24). This step is not unique 

in that it depends upon which common frame one chooses to work in. In 

our calculations we worked in a frame in which the Z-axis pointed along 

-*3V The vectors w and r have a simple representation in this frame 

(see Fig. 11) 
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The Quantities {a(I)-a(II)}' and {a(III)-a(II)}' in the SO-lntegrals 

a {a(i)-a(ii)}' 

E*3/2S 2b(w20"wl0+ab) 

°\ bS-(w2o"wio+2ab^i 

S\ b (-2wJ0+ab)w10+b (2w^0+ab) w20- (w^+w^) (w^-w£0+2ab) ^ 

E*1^ 2(ak1k1-zk1) 

-4. 

E M 

—                               

^o-^ioV3 ^IO^O
5
 W*lo*io*i^oVl+2^30*i 

3 ^lo^io^r^o^o^r^so^ iV 

E*1/2k -b 

*i kl 

* 

E*1/2m 

-b^10+(wj0-ab)k1 

Notes:  1)  w1Q=--(z+w), w2Q=--(w-2z)> w3Q=--(z-2w), a=z-k1, b=w •£. 

2)  xy = r(xy+yx); xyz = -(xyz + xzy + yxz + yzx + zxy + zyx) 
2 6 

3)  {a(III)-a(II)}' is obtained from {a(I)-a(II)}' by the following 
trans format ion 

*1*2' ***' ^Z' "20^30' *3o"*20' ***''  ***'' 

where a' = wk_ and b' = w„ »k„ 
2 20 2 
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31 
w = 

wsinöw cos<J>w 

wsin6     sin6 

WCOSÖ w 

(3.32) 

The components of z and k are obtained by applying the appropriate 

rotation matrices, defined in Table IV, and the components of k are 

obtained by inserting (3.32a) and (3.32b) into (3.9). 

Z = Ry(-(TT-9r)).Rz(<t>r) -Ry(TT-e) 

sin9cos9  cos4>     - cos9sind> r        r r 
sin6sin<() 

sin6sin8  cos<J>    + cos9cos9 r r r 

(3.32c) 

k,= R   (-(TT-8   )) .R   (<J>  ) • 
1      y r        z    r 

0 
0 

-1 

-sin9r 
0 

cos9r 

r(e-l)cos9    sin9    cos* 
w w        rw 

r(e-l)cose    sin9„ sin<f> 
w w w 

r(e-l)cos29w+r 

(3.32d) 

(3.32e) 

with 

e  =   \    1 - 1-r 
cos2 9 w 

(3.32f) 

The remaining quantities in  (3.24)   are given by 
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Ef*= |(l+w2-z.w)        , (3.32g) 

T = w"1r(l-e)cos9w    , (3.32h) 

(r31+k,) • (w-z) 
ti = - —-  

(w-z)2 

+  ^rV V{(r,1+ic1)-(w-S)}
t+(W),{l-(?31+k1)

a} 
(w-z)2*  31 -1 J1 -1 

(3.32i) 

Substitution of the quantities of Table V into (3.24) and use of eqs. 

(3.32) completely specifies the SO-integrals in 7-dimensional form. 

3.3 Evaluation of 7-Dimensional SO-Integrals 

In the previous section we have reduced the SO-integrals to a 

7-dimensional form (3.24) with the functions a and ß defined in (3.30) and 

evaluated in Table V. Together with eqs. (3.32) the integrand is thus 

completely specified in terms of the integration variables. 

In order to evaluate these 7-dimensional collision integrals we 

resort to a Monte Carlo integration procedure. However, the integral form 

in (3.24) as it stands  is not yet analyzable by Monte Carlo techniques, 

because of the infinite range of the variable w. We must transform from the 

variable w to some variable u which has a finite range.    One candidate for 

such a transformation is 

u = (1+w11)"1 , 
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which/ for any n>l, maps the infinite range 0^w<°° onto the finite range 

(Ku£l. However, an important constraint on this or any such transform- 

ation is that its Jacobian must not cause the integrand to become 

unbounded as a function of u; for in a Monte Carlo procedure both  the 

integrating domain and the integrand values must be strictly finite. 

Consequently, to make a suitable choice of n we must examine in detail 

the behavior of the integrand in (3.24) near w=0 (u=l) and w*° (u=0). 

This is a rather laborius task; for not only does w enter into the 

integrand of (3.24) via the factor w3E*"9/2, but it also enters 

through the primed differences in braces in (3.24) [ef. Table V]. 

Thus, each term  in (3.25)-(3.27) must be examined in detail to determine 

its behavior near w=0 and w=°°.  It turns out that, for a  and ß equal to 

any of the quantities in (3.30), the-primed differences in (3.24) all 

remain finite near w=0 and w=°°. Since, asymptotically 

w3E*-9/2 s w>/ 2(w2_£.-+1)9/2 _ w3/(1+w9j f 

then we consider the problem of integrating w3/(l+w9) from w=0 to w^». 

The proposed transformation u=(1+w )  yields 

4-n       5-n /- 4-n       5-n 

1+w9 n  J[uy/n
+(l-u)9/n] ' 

0 0 

from which we deduce that we must pick n<4 to yield a bounded integrand. 

Since the highest value, n=4, should produce the smoothest behavior of 

the integrand (an important consideration in Monte Carlo applications), 
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we therefore choose for our w -+ u transformation 

u = (1+w-)"1 . (3.33) 

Since (3.33) implies that 

w3dw -4ä», 4  u2   ' 

then   (3.24)   can now be written 
0 27T        2TT        1        1 (2cos8  )•*  J, 

(a,ß)    = 
*      2 

—— |dcos38  i d<f>    f d<f>    I du i dcos9    Idr*   idcos29 V*/ J    *J    «J   J        *J     J « 
-1 0 0 0        1/21      1-r 2 

x —fg72-r{a(I)-a(ll)}'*{ß(III)-$(ii)}' 

+   0(T-T,){ß(I)-ß(II)},*{a(III)-a(II)}'l 

(3.34) 

where it is henceforth understood that the quantity w is given by the 

inverse of   (3.33): 

w-(1=11,1/4   B {335) 

One final transformation of variables is needed to effect a Monte 

Carlo calculation. We wish to transform the 7-dimensional integrating 

region Q, 

ß  =  { (cos39,4>   ,<)>   ,u,cos6   .r* ,cos29   ) || -l$cos39$0   , 

0<4>  <2TT, 0<<|>  <2TT, 0<U«;«1, i<cos9  <1, 

Kr"<(2cos9r.)'f, (l-r~2)*cos28  $l}, (3.36) 
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into a 7-dimensional unit cube 

U_  5  {(>iltk2,...f/Ly)\\ 0<K£4l;   1=1,2, ...,7}. (3.37) 

This transformation would be easy if fi were a rectangle; however, because 

the boundaries on the variable r1* depend on the variable cos6 , while the 
r 

boundaries on the variable cos20 depend on the variable r*, the method of 

effecting such a transformation is not so straightforward. This general 

problem is discussed in a separate technical report [15]. For the problem 

at hand we used the transformation scheme [5] 

cos39 = -1+*, , (3.38a) 

*r = 2ljK2   ' (3.38b) 

4>w = 2TT*3 , (3.38c) 

u - A4, w=[(l-u)/u]
1/4, (3.38d) 

2*5 = 4cos3er-3cos8r+l   , (3.38e) 

r*  =   [l+(4cos26  -l)*,]ff (3.38f) r          o 

cos26w =   (l-r"2)+r"2^7, (3.38g) 

where   (3.38e)   defines cos9    in terms of A    through an implicit inversion. 

The rationale for eqs.   (3.38a)-(3.38d)   is obvious  from  (3.36), or equivalently 

from the ranges of the first four integration variables in  (3.34).    The 

unusual appearance of eqs.   (3.38e)-(3.38g)   is a consequence of the interde- 

pendence of these variables;  these transformation equations were obtained 
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by a "successive conditioning method" discussed elsewhere [15]. Suffice 
i 

it to say here that the transformation (3.38) is such that its Jacobian 

is equal to the volume of £2, as may be verified directly: 

3(cos3e,<|>   ,$   ,u,cos6   ,r\cos2e   ) 2 
 -—- - -  = |Q| = ±™ . (3.39) 

3 (A.. ,X~ i • • • r&j) 

Thus, we may straightaway replace the integrating variables cos 0,<J) ,..., 

cos28 in (3.34) by the variables K ,K ,...,K  , provided we multiply the 
w 12     7 

integral by the constant factor in (3.39). Our final formula  for (a,3)2 

is therefore 

11       1 

0    0      0 

x [{a(I)-a(II)}'*{ß(III)-ß(II)}' 

+ 0(T-T-){ß(D-ß(II) },*{a(III)-a(II) }'l. (3.40) 

We now summarize the definitions of, and relations between, the various 

quantities that enter into our calculation of the y=2 quantities in (2.22). 

We have by (2.22) and (3.15) and (3.16) 

*i2<N> =ijw X tJ1
ak(N)a*(H,a5    ' 

*h™ = zjk [I] Xb*(N)b*(N)b*°     ' (3-41) 

D
£2<N>   =^TTck(N)cÄ(N,c- . 
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The coefficients a, (N), b. (N) and c.(N) are given in Table III. The 

matrix elements a**0, b3? and c3? are calculated from equations (3.25)- 

(3.27), and evidently involve evaluating integrals of the form (a,ß)~- 

These integrals are defined by (3.40), where: 

(i)  the quantities cos8,<J)r,<{>w,u (and w) , cos8r,r,cos9w are 

obtained from the integrating variables *-,-t ,.. .>t 

through eqs. (3.38),  

/ !_r-2 
(ii)  the quantity e = V 1 5— as given in (3.32f), 

cos 8W 

(iii) the vectors z,w,k-, ,k2,r31 are constructed in component form 

from the quantities, cos9,<f>r,<|)wfw,cos9r,r,cos9w through 

eqs. (3.32), 

(iv)  the quantities E*, T and T' are given in (3.32g), (3.32h) and 

(3.32i) and0(T-f') is defined by 

e(T-T') =< 
1 if T>T' 

0 if T<T' , 

(v)   the quantities K.,,K ,L ,L , S,M,Ä ,fc ,k,m in (3.25)-(3.27) 

are calculated in regions I, II and III from the vectors 

Z/Wjkwk  through the chain of equations (3.30), (3.29) and 

(3.28), 

(vi)  for a = any of the quantities K,,K_,...,k,m, the primed 

differences in (3.40) are calculated according to the rules 

{a(i)-a(ii)}' = (afD-adi)}/^^ , 

{adiD-adi)}' = {a(iii)-a(ii)}/w'k2 ; 

these quantities are given in Table V. 
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The Monte Carlo procedure for numerically calculating the quantities 

so  so  so 
a. », b. », c. » is essentially to average the integrand in (3.40) over a 

set of points {px}={ (A-J/Ai' ■ • ■ *A.i)) picked from a random, uniform distri- 

bution in the 7-dimensional unit cube U_ [cf. (3.37)]; 

(a,6)2 =<(—L-    ; L/2   rfa(I)-a(II)}'*{ß(Ill)-ß(ii)}'    (3.42) 
N24/6 u2E y/* L 

+0(T-T'){ß(I)-$(II)},*{a(III)-a(II)}'lV 

The uncertainty in estimating this average with a finite  set of points 

{P ,P2,...,P } is given by the r.m.s. deviation of the quantity being 

averaged, divided by •ST. Hence, our computational algorithm is: 

1° Generate 7 independent random numbers A.,,4.-,... ,<fc_ from a 

uniform distribution in the unit interval. 

2° Calculate the quantities cos9 ,<J> ,<J> ,u (and w) , cos6 ,r,cos6 
i  i  W J- w 

from Eqs. (3.38). In doing this, cos8 is obtained from H. 

by numerically inverting (3.38e), and cos8 , r and cos6 are 

obtained in that order  from (3.38e), (3.38f) and (3.38g). 

3° The appropriate integrands [i.e., the quantities in^ /*■" 

(3.42) for a and ß as prescribed by (3.25)-(3.27)] are 

evaluated at the given random point by following the procedures 

outlined in steps (ii)-(vi) above. 

4° The computed value of the integrand, as well as its square 

(for calculating the variance in order to estimate the un- 

certainty) , are added to respective running sums. 

5° Steps l°-4° are repeated as many times M as is practical, and 

then the running sums are converted to averages, thus yielding 

so  so    so the estimates of a  , b „ and c  along with the uncertainties 
k£  kit     kJl 

in these estimates.       78 
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6° In order to precisely estimate the variances/ each matrix 

element in (3.25)-{3.26) can be calculated as a single   (a,|3) 

integral by simply adding the appropriate integrands before 

averaging. Thus, for example as° in (3.25) is calculated by 

averaging an integrand which is equal to:  3*{integrand of 

(L1,L1)2) + ^p * {integrand of (K ,K ) }.  Similarly, Aj2<N) 

in (3.411 is most efficiently calculated as the average of an 

integrand which is the indicated linear combination of the 

■ so integrands of the a . quantities. 

In order to reduce the uncertainties in our results, we resorted 

to an empirically determined "importance sampling" procedure [15]. 

Instead of generating the variable K.   from the uniform  density function 

E<*.)=1, we generated K.  according to a properly chosen non-uniform 

density function P(/L.), and included in the integrand the factor l/P(A,,lf 

the latter "corrects" for the non-uniform sampling, and "smooths" 

the integrand. A numerical examination of the extreme values of our inte- 

grands led to the use of the following specific importance sampling 

density functions (all defined on the unit interval): 

Pj^) « expt-SQ-^)] , (3.43a) 

P2(*2) « l+0.7xsin(2TT7t2), (3.43b) 

P3(.*3) « 1+0.7)«sin(2ir>t3), (3.43c) 

P5(A5) « exp(-l.lxA5) , (3.43d) 

P6(-fc6) « exp(-0.8xA ) , (3.43e) 

P7(*7) «exp(-*7). (3.43f) 
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For a discussion of methods that generate random numbers from a 

prescribed non-uniform density function the reader is referred to a 

separate technical report [15]. 

One-variable importance sampling transformations of the kinds 

listed in (3.43) can be expected to reduce the variances by only a 

limited amount (even with due care in selecting an appropriate 

density function for each variable). Furthermore, as we are evaluating 

a total of 18 integrals simultaneously fl2 for the matrix elements af° 

b5' Ck? in (3-25>-<3-27>' and 6 for *i2(N)' ni2(N)' D12(N) in (3'41) 

for N=l and 2], then we cannot expect a single set of importance 

sampling formulae to be optimum for all integrals. As it turned out, the 

1*     * . * 
quantities A  and n  were more in need of help than D , and the formu- 

lae in (3.43) were chosen accordingly. The effect of this importance 

sampling procedure on the calculation of the SO-integrals was documented 

in AEDC-TR-71-51 [5]. The transformations (3.43) reduced the uncertainties 

JL, Jb 

in A.- and n  to approximately 2/5 of the uncertainties obtained with 

"straight" sampling; they also led to a slight reduction of the uncer- 

tainty in D  by a factor 8/9. The uncertainty in a Monte Carlo calcu- 

lation is directly proportional to the r.m.s. variation in the integrand 

and inversely proportional to the square root  of the number of points 

sampled. The computer running time is essentially proportional to the 

number of points.sampled, and is increased only very slightly by the 

incorporation of the importance sampling procedure of (3.43).  As a 

result, a one-hour computer run with- importance sampling produced results 

for A  and r\      comparable in accuracy to a five-hour computer run 

without  importance sampling. 
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The results of our calculations of the single-overlap collision 

integrals thus obtained will be presented and discussed in Section 3.5. 

3.4 Evaluation of 11-Dimensional SO-Integrals 

In the previous two sections we considered those matrix elements 

SO    SO        SO * 
a «, h. - and c. « that are needed to determine the coefficients X  (N) , 

H* (N) and D* (N) in (2.22) up to the second  Sonine approximation N=2. 

However, preliminary calculations of these collision integrals showed 

that the second Sonine approximation X  (2) for the thermal conductivity 

coefficient X* modified the first Sonine approximation X* (1) by a 

significant amount [5]. It thus appeared desirable to make a more care- 

ful study of the rate of convergence of the expansion (2.22) for X , 

n* and D* . For this purpose we need to consider matrix elements cor- 

responding to higher order Sonine approximations (N>2). 

In view of the algebraic complexities encountered in the last 

section for N=2, calculations for N>2 by that method are out of the 

question, and besides, this would not test the correctness of our 

calculations for N<2. Any attempt to reduce the dimensionality of our 

integrals below 7 would just compound the algebraic complexities, and 

could clearly not correct any previously made errors. As an alternate 

procedure we attempted to perform the single-overlap calculations directly 

from the 11-dimensional integral form (3.141, From an "orthodox" Monte 

Carlo standpoint this strategy appeared to be rather foolish, since it 

violated a cardinal rule of proceeding as far as possible analytically 

before resorting to a Monte Carlo procedure; furthermore, the infinite 
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ranges in (3.14) of the variables W , W  and w_, would seem to doom such 

a procedure anyway. Nevertheless, our strategy proved to be quite 

successful, as our results in Section 3.4 will show. In this section we 

shall give the specifics of our calculation of the 11-dimensional colli- 

sion integrals. 

We shall evaluate the coefficients r\ (N) and D (N) up to the 

third Sonine approximation N=3 and the coefficient X (N) up to the 

fourth Sonine approximation N=4. The expressions for the matrix 

elements to be considered are given in Tables VI-VIII. 
3       3 

In these expressions we have deleted terms with £ W and £ H2, 
n=l n   n=l 

since they contribute nothing. The first four elements in Tables VI-VIII 

were given earlier in (3.17)-(3.19). However, our object is now to cal- 

culate the matrix elements in the 11-dimensional form (3.14). 

We begin by specifying the vector W in the polar form (W_,9 ,<|> ) , 

where the polar angle 9 and azimuthal angle <j> are defined relative to 

the coordinate frame shown in Fig. 11. Thus, 

d3W„ = W^dW„dcos9„d<()rt. 0   0 0    0 T0 

Further, from the definition of E in (2.39) we have 

e"
E - .*» . .-& . e+5V53X . 

Thus, the integral form in (3.14) can be written 
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Table VI 

ÄEDC-TR-73-171 

The Matrix Elements ä 
so 

so 
lll 

so 
l12 

so 
l21 

3 _ 3 -*      1 
ii, mm'   ?,   n nl m=l n=l ' 

a so 
13 

so 
l31 

so 
l23 

tso l32 

so 
33 

U£l m * nk n 2  n  2  n  j 

f   3 -    i       i 3 -       1 
I   L-  m 2 m 2 m '  fr*   n n 

■ (! *A JA<^k+k>) vm=l- n=l- J 

' i K^Mitte) - i-**i m=l n=l n- n- 

fa,   m z- m z m     . *■_.,-  n-   8   n 4 n o n *-m=l n=l 

m—1 n=J: 

l_ --i  m   8   m 4 m 6 m      ....,- n   8   n- 4- n o n   I». 
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Table VI (continued) 

so 
l14 

so 
l41 

so 
l24 

so 
l42 

'.mm      '■,   n    16 n 16 n 12 n  24 n^ 
L m=l n=l 2 

■( 
'.   m 16 m 16 m  12  m 24 m      '-,   n n nt=l n—J.            -^ 

m=l n—1                                                       ^ 

'.   m 16 m 16 m 12 m 24 m      _-,   n z n  ^ n , m=± n—J.                       <•' 

so 
l34 

so 
l43 

so 
l44 

£,   mv   8 m 4 m * ' 

3 ^ 

6m      '.   n    16  n 16  n 12 n 24 n l 
n=l >2 

v m=l                                                   \ n-i j 

■{ *■,   m    16 m 16 m 12 m 24 m    __. m=l n—x 

^ 

16  n 16 n 12  n  24  n 
y 

Note:     Cafßl2 is defined in  (3.141, 
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SO 
The Matrix Elements bj*& 

bo» ■ (J.SvJiW') 

b!? - I lÄ'l'V.'H'^1, 
'01 

SO/ 
>10 

-.    Ill  111. __.1 m=l n=l 

3 ^, V 

^m=l n=-j. 

so 
»11 

3   .+. 3   ,- 

so 
502 

b so 
20 

m=l Ifc-i 

- (!,vv vvn'T-!»M™;'+^<!»n-k'>] 

,>m=l " * 

so 
'12 

3   .* * M    /63_?T.T2J-lM.,* % j-ix f 5M.* _iw6 
lm=l n=l 

so 
}22 

3   .* - 

3     2 n  £ n     j 2 

Note:      (a,ß),  is defined in   (3.14)?   I  is the unit tensor. 
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Table VIII 

so The Matrix Elements c^. 

SO 
c00 2 («i.»i]2 

cso = C01 2 (V Vrwij2 

cso = c10 2 (si<i-"i>.*i)2 

cso = cll 2 (vl-wi> < Vfwi>)2 

cso = c02 2 (»,, vM-ft1*"!^ 
cso = c20 2 (VT-5»H»;> < *i] 2 

cSO = c12 2 pi«K>'«i«2Kn^a 
cSO = C21 2 (5i(¥-5MHwi»'5i(fwl)J2 

cso = c22 2 pi<T-lHi+iwi»'Si<T-|«i+i"x>]2 

Note:  (a,3)2 is defined in (3.14). 
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oo oo 

-3W" 
(a,ß),  = 

/-3w2  r -^w2    r 
dW0Wäe       ° J dW2Ae  3  21 J dW31W 

_2W2 
,1   e  3W31 
'31e 

0 0 0 

2ir 2ir 2ir 1 0 1 

x    I   d«|>0 J   d<J>w j  d<|>r   i dcos60     ldcos39     j dcosS^ 

0 0 0-1 -1 

(2cos9   )*        l 

1/2 

1 1-r 

2-*-        ■*■ 
dcos2«     e exp(=Won *W-,) w 3"21 "31' 

[{a (I)-a (II) },*{ß(lll)-ß(ii) }• 

+ 0(T-T') {ß(I)-ß(Il) }'*{a(III)-a(I) }■].        (3.44) 

The basic vectors, namely the velocities W_, ^2l' 
W31 *n re9i°n IJ 

and the vectors ic    and r    , may be written in component form by referring 

to Figure 11 and applying the necessary rotation matrices defined in 

Table IV.    Thus, we have relative to the coordinate frame indicated in 

Fig.   11, 

W0  = 

Wosin0ocos<|>o 

W0sin60sinij)0 

.    wocos60     J 

(3.45a) 

W21 = 

0 

0 

w, 21 

(3.45b) 
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W31 =  R  (-(ir-6)).Rz(-«r).8  (ir-er). 

W,..sine cos* 

W31sin0wsincf.w 

WO-COS0 31 w 

kl = 

-sine 

0 

cosO 

(3.45c) 

(3.45d) 

r31 =   R  (-(7T-9)) 

rsinö cosifc r        r 
rsinö  sin<j> r r 
rcosö 

r -J 

(3.45e) 

In addition, the component representation of k is found by inserting 

(3.45c) and (3.45e) into (3.9), which we repeat here for convenience: 

kj = ~r3i~rW3id"e)cos8 w (3.45f) 

The differences between these-component formulae.and those in (3.32) which 

were used in the 7-dimensional calculation are due simply to the fact that 

we are using different coordinate frames in the two cases. This is per- 

missible since the final answers are scalars, and hence can depend only 

on the vector dot products, which are the same in all coordinate frames. 
-*.  -*.   -*- 

Eqs. (3.45a)-(3.45c) express the region II velocities W , W , W 

in terms of the integrating variables in (3.44), and eqs. (3.45d)-(3.45f) 

do the same for the collision vectors k and k . With these quantities 

-k A *k 
we may calculate the velocities W_(i), W--, (i) , W .(i) in regions i=I and 

■Ai -Jh .A. 

III by means of eqs. (3.10), and the velocities W(i), W (i), W (i) are 

then calculated from (2.36): 
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wx(i) = w0-i[w21(i)+w31(i)]     ,n 

W2(i> = W0-|[W31{i)-2W21(i)]  , [  i-I,II,III . 

W3(i) = W0-|[W21(i)-2W31(i)]  , 

(3.46) 

Thus, starting from a set of prescribed values for the eleven integrating 

variables in (3.44), we see that we may calculate the velocities ft. (i) , 

-J. -A. 

W (i), W (i) for all regions i=1,11,III. This enables us to calculate 

the primed differences in (3.44) where a and ß are any of the specific 

. velocity functions appearing in the expressions for the matrix elements 

in Tables VI-VIII.  Since T, T' and £ are also known in terms of the 

integrating variables [cf.(3.6), (3.7) and (3.8)], then it would appear 

that we have everything needed to calculate the quantities aso, bso and 

c^, and hence the quantities A*(N), n?,(N) and D?2(N) in (3.41). 

The difficulty with (3.44) from a Monte Carlo standpoint is the 

infinite ranges associated with the variables W , W , and W . Our 
0  21      31 

method of getting around this difficulty is as follows: 

For a fixed integer n>0 and seal.a>Of define the function 

P(x;n,a) =  A(n,a)xne"ax , (3.47a) 

where A(n,a) is such that 

00 

|P(x;n, a)dx = 1 . (3.47b) 

Using standard integral tables, one finds that the required formula for 

A(n,a) is 
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'2     1/2 
— a ,    n=0 
/a 

2 2n/2a(n+1>/2 

A(n,a)     =   i   ~pi^-s-"{xi-l)     ' n=2'4'6'--- • (3.47c) 

2a(n+l)/2//^ ,, n=1,3,5,... 

u = I P(x';n,c 

We now consider the transformation x -*■ u defined by 

x 

ra)dx' E F(x;n,a)  . (3.48a) 

0 

Since P(x;n,a)>0 on CKx<00, and since F(0;n,a)=0 while F(°°;n,a)=l 

[cf. (3.47b)], then (3.48a) defines an invertible mapping of the 

interval 0£x<°° onto the interval 0€u<l. Formally, we write the 

inverse of (3.48a) as 

x - F_1(u;n,a). (3.48b) 

The Jacobian of the transformation (3.48a) is evidently such that 

du = P(x;n,a)dx, or, using (3.47a), 

xne-aX dx = A_1(n,a)du. (3.48c) 
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Returning now to (3.44), we introduce the transformations 

W
0 * 

U0' W21 * U21' W31 "* U31 accordin9 to 

u0 = F(W0,2,3)  , 

u21= F(W21,4,§) , y C3.49) 

U31- F(W31,3,§) . 

This implies, by  (3.48c),  that 

"3wn "iw2l ,     -|W31 
Wje       °dW0*W21e 3  21dW21.W|ie       31dW31 

- A"1(2,3)du0'A"1(4,|)du21-A"1(3/|)du31 

=    I/? 2T7)dU0dU21du31   ' (3'50> 

where we have used the explicit formulae in  (3.47c).    Inserting   (3.50) 

into   (3.44), we thus obtain 

11 1 2ir 2rr       2TT 1 
l 

dcos8, 

0 0 0 "0 0 0 -1 

±1 1 M 2IT 2TT 1 

<a'0>2 ■ ^77J"<au0jf du21JI du31 Jf a*0jf ä+w|**r/ 

0 1 (2cose^)"   1 5- 
r      r       r     r iw2i*w3i 

x I dcos36 | dcos6r I  dr* I dcos26w e e 

-1     1/2       1    1-r"2 

x [{a(l)-a(II)},*{$(III)-ß(II)}' 

+ 0(T-T'){ß(I)-ß(II)} '»{odlD-odDH ' 

91 (3.51) 
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where it is henceforth understood that the quantities WQ, W21, W_. are 

to be obtained from the following formulae [cf. (3.49) and (3.48b)]: 

WQ = F
-1(u0;2,3) , (3.52a) 

-1      2 
W21= F 

x(u21;4/3)f (3.52b) 

W31= F
_1(u3;L;3,|). (3.52c) 

We assume for the present that it Is possible to calculate and invert the 

functions F, as required by (3.52); we shall consider the details of how 

this is to be accomplished later. 

The formula for (a,8)  in (3.51) is now expressed as an integral over 

the finite  11-dimensional volume SI',  defined by 

n' = {(u0,u21/u31,<|)0/<()wf<j)r,cose0/cos3e,coser,r\cos2ew)| | 

0<u0*l, 04u21<l/ 0«£u31sl, 0«{>0<2Tr# 

0«4>w<2ir,,0<<|>r«2Trr-l«cose0<l,-l«cos3 9  <0f 

^cos8 <1,     l<r^(2cos0   )\   (l-r~2)$cos2e «1}   . (3.53) 

For Monte Carlo purposes, it is convenient to.change variables in such a 

way that the volume SI'  is transformed into an 11-dimensional unit cube 

Ull   ~  { (*i»*2',,"*ll)ll°<*i*1;   isl'2"..»ll)   . (3.54) 

We choose to do this by essentially the same transformation (3.38) which 

carried the 7-dimensional region ß in (3.36) into a 7-dimensional cube U 

in (3.37): 
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u0 = \, (3.55a) 

u21= 12, (3.55b) 

u31= A3, (3.55c) 

4>0  = 2ir*4, (3.55d) 

<f>w =  2TT/15, (3.55e) 

*r =  27r*6' (3.55f) 

cos90  = -l+2*7, (3.55g) 

cos36  = -l+^8/ (3.55h) 

2*g = 4cos
36r-3cos6r+l, (3.55i) 

r1*   =   [l+(4cos26r-l)/L10]2, (3.55J) 

cos26w =   (l-r"2)+r~2*i;L. (3.55k) 

The first 8 transformation formulae here are obvious from (3.51) and the 

last three transformation formulae are identical to the last three formulae 

in (3.38); note that (3.55i) defines cosö in terms of A through an implicit 
r 9 

inversion.    As in the 7-dimensional case, the Jacobian of this transformation 

is simply equal to the volume of ß1: 

3(uofu21/u3iy(Doy..wcosi?6w) 647r3 
 ^-^-^——j—^ |fl   |   - -T_ . (3.56) 
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Thus, we may straightaway replace the integrating variables in (3.51) 

by the variables K ,K  ,... ,<* , provided we multiply the integral by 

the constant factor in (3.56). Our final formula  for (a,ß)  is 

therefore 
11 1 

(a'e)2 - iU Jd/li Jdv- Jd^iieexp(iw2i-w3i) 
0 0 0 

(3.57) 

x   rjadJ-adDj^fßdlD-ßdl)}' 

+0(T-T') {ß(l)-ßdl) }>*{a(IXX)-a(Xl) }'l. 

In summary, the calculation of the 11-dimensional integrals proceeds in 

the following way: 

(i)  The quantities u. ,u_. ,u„, ,d>- ,<j> ,d> ,cos0 .cos0,cos8 ,r, 
0 21 31 0 w r    0        r 

cos6 are obtained from the integrating variables 4 #<%....., 

ft      through egs. (3.55) [with an implied inversion in (3.55i)]. 

(ii) The quantities W ,W ,W  are obtained from u ,u ,u  through 
0 21 31 0 21 31 

eqs. (3.52) [cf. discussion below]. 

(iii) The vectors Wß,W21,W ,1?^,.. are obtained from (3.45), using 

the matrices in Table IV. 

(iv) The quantities e,T,T',k are calculated from eqs. (3.6)-(3.9), 

and e(T-T') is set to 1 if T>T' or 0 if T^T1. 

(v)  From the region II velocities W ,W  and W , and the collision 

JS A "*■ "*■ "*■ 
vectors K, and k„, the velocities W,(i), W (i), W (i) in 

12 12     3 

regions i=I,II,III are calculated via eqs. (3.10) and (3.46). 
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(vi)  The primed differences in (3.57) are then calculated 

according to the definitions (3.12) for the quantities 

a and 8 appearing in the expressions for the matrix 

elements in Tables VI-VIII. 

(vii) The various matrix elements aso, bso, cso are calculated 
k£  k£  kx, 

by evaluating the integrals (ot,ß)  in Tables VI-VIII; 

the coefficients X*   (N), n* (N), D* (N) are computed from 
12     12     12 

(3.41) using the coefficients given in Table III. 

We now describe how the crucial calculations in (3.52) were carried 

out. The function F(x;n,a) is defined in (3.48a). Using the definitions 

of P(x;n,a) and A(n,a) in eqs. (3.47), one can derive by a semewhat te- 

dious induction argument the following explicit expression for F(x;n,a): 

rerf (x/I)- -rie'^x/i °f   <lH_!_  > n even , err(x/a; 7^   x^a i     _____ ^2v_^ 

F(x;n,a,) = 
ax2(n-D/2 

J. - e     l (ax"') , n odd 
v=0   vl 

(3.58) 

Here, erf(x) is the "error function", 

x 

erf(x) =7=1 e_t dt   (x»0) , (3.59) 

0 

and F(x;n=0,a)=erf (xvT). Now, for fixed values of n and a, eq. (3.58) 

allows us to evaluate 

u=F(x;n,a), 

for any given  x in (O,00). Thus, by using a numerical inversion technique 

on the computer, it is possible, for fixed values of n and a, to find the 

value of x which satisfies the above relation for a given  value of u in 
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(0,1). This is precisely the procedure that we used. We employed an 

alternating "successive bisection/inverse linear interpolation" method 

to accomplish the numerical inversion [the inverse linear interpolation 

procedure by itself will not converge for values of u near 1, since 

dx/du-»00 as u*-l]. The evaluation of F(x;n,a) for a given x was always 

carried out in double-precision to minimize computer round-off error. 

This procedure required a double-precision error function subroutine 

for even values of n . The double-precision error function calculation 

is rather involved, with the result that inversions of u=F(x;n,a) for n 

even are considerably slower than for n odd.  In the actual calculations, 

we found it convenient to modify   (3.44) by changing W*-+w' and W* -*«' , 

and then incorporating into the integrand a factor 1/W W ). Then the 
0 21 

n-values in (3.49) are all odd, so that the inversions required by (3.52) 

are more rapidly accomplished (but note that the factor in (3.50) must be 

modified accordingly). 

An important point which was not  investigated analytically was the 

boundedness of the integrand in (3.51), especially for W ,W ,W -*». 

The boundedness of the integrand in the original integral (3.44) was 

assured by the exponentials multiplying dW, dW  and dW , but it is 

quite possible that, in transforming from an infinite to a finite inte- 

gration region by means of (3.49), we rendered the integrand unbounded. 

Certainly, the factor exp(|w *W ) in (3.51) as well as the Sonine 
3 21 31 

polynomials used for a and $ are unbounded functions of W  and W  . 

We are indebted to I. Stegun and R. Zucker of the National Bureau 
of Standards for providing us with a double-precision error function 
subroutine (subroutine ERRINT). 
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Essentially, we proceeded blindly in the hope that the intricasies of 

the integrand (i.e., the differences and scalar products that are taken) 

would work to counteract these features and keep things bounded.  The final 

*     *        * 
answers for >L_{N), TI _(N) and D (Nl seemed satisfactory in this respect, 

The Monte Carlo algorithm for numerically calculating the quantities 

a  , b  , c  is to evaluate (3.57) for the required functions a and ß 
kl      k£  k£ 

by averaging its integrand over a set of points {P1}={/1 ,fi?~,,..,K )} 

picked from a random, uniform distribution in the 11-dimensional unit 

cube U  [cf. (3.54)]: 

(a,ß)2 = <^   e exp (fw21
;w31)  IjoKD-aduJWBdiD-Bdi)}' 

+ 0(T-T,){ß(l)-ß(li)},*{a(iii)-a(ii)}'|^> . (3.60) 

^Ull 

The uncertainty in estimating this average with a finite  set of points 

{P
1,P2,...,PM} is given by the r.m.s. deviation of the quantity being 

averaged, divided by vfö.  Hence, the Monte Carlo algorithm is: 

1° Generate 11 independent random numbers K  ,K ,...,K      from a 
1 2     11 

uniform distribution in the unit interval. 

2° Using the steps (i)-(vii)[following eq. (3.57)], evaluate 

the various integrands at the point (A. ,H. ,... ,K    ) . 
1 2     11 

3° Add the values of these integrands, and also the squares of 

these values (for computing the r.m.s. deviations), to 

respective running sums. 
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4° Repeat steps l°-3° as many times M as is practical, and then 

convert the running sums to averages, thus yielding the esti- 

mates of the integrals along with the uncertainties in these 

estimates. 

As in the calculations of the 7-dimensional integrals, we again 

used an empirically determined, single-variable importance sampling 

procedure to reduce the uncertainties in our results.  The specific 

importance sampling functions used were as follows: 

P1<*1 

P2(*2 

P3U3 

V*4 

V*5 

V*6 
p7u7 

P9U9 

P10 (*10 

Pll(*ll 

1+0.45003(2^) , 

piecewise linear function 
through points (0.0,1.0), 
(0.8,1.0), (0.9,1.5),(0.95, 
2.0) ,(0.98,4.0) ,(1.0,9.0) 

l+.0.45cos(27r^..) , 

1+ 0.65cos(2irA.5) , 

1+ 0.65cos(27T/tc) , b 

exp(-*7) , 

exp[-3(l-A6)] , 

exp(-2/t9) 

exp(-^1Q) , 

exp(-2/Li;L) 

(3.61a) 

(3.61b) 

(3.61c) 

(3.61d) 

(3.61e) 

(3.61f) 

(3.61g) 

(3.61h) 

(3.61i) 

(3.61J) 

This importance sampling proceedure reduced the r.m.s. variation in the 

key integrands by a factor of nearly 4, and thus reduced the running time 

required for a given level of accuracy by a factor of roughly 4 =16. 
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3.5 Single-Overlap Results 

The single-overlap collision integrals derived in Section 3.2 

were computed in a 7-dimensional form according to the procedure 

described in Section 3.3 by a computer program called Subroutine OVKLAP. 

Those collision integrals were evaluated that determine the contribution 

to the transport coefficients in the first (N=l) and second (N=2) Sonine 

approximations. The values thus obtained for the coefficients X     , n* , 
12  12 

■f* 
D  are presented in Table i. At the same time we calculated the values 
12 

SO   so   so of the individual matrix elements a M, b ., c  ; the values obtained for 
k£  kA  k£ 

these matrix elements are presented in Table ii . 

For each quantity we show the results of four "runs" of Subroutine 

OVRLAP on the University of Maryland 1108 computer.  Each run used 200,000 

random points in the 7-dimensional unit cube, and required about 40 

minutes of "c.p.u. time" or 22 minutes of "core time" [computer charges 

are calculated on the basis of core  time]. The uncertainties in each run 

represent one standard deviation (~65% confidence limits) and become two 

standard deviations <~95% confidence limits) in the averages.    This 

procedure, of performing each calculation as four independent "runs" and 

then averaging the results, was followed in almost all our calculations. 

It is to be preferred over making a single long run [i.e. in this case 

the "averages" are equivalent to one  run with 800,000 random points in 

the 7-dimensional unit cube], because it allows one to insure that the 

fluctuations in the results are indeed of the same order of magnitude as 

t 
Tables of three-particle collision integrals are headed with lower 
case Roman numerals and are placed in the Appendix. 
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the r.m.s. deviations predict. This procedure was also used as a 

precaution against having a single long computer run totally invalidated 

by a computer fault. 

Monte Carlo estimates for these single-overlap collision integrals 

were first reported in AEDC-TR-71-51 J5]. The earlier results were 

obtained with the same subroutine/ but were based on 50,000 random points. 

A comparison between the new and earlier results is presented in Table iii. 

As can be seen from this table, we have now reduced the uncertainty in 

these collision integrals by a factor 4 to 5. 

In order to interpret the results we remind the reader of the fact 

*   *      # 
that the coefficients X , r\      and D  represent the first (U=2) correc- 

12  12     12 

tions to the value unity  predicted by the theory of Enskog [cf.(2.21)]. 

From Table i we conclude that in the first Sonine approximation""" 

A* (1) = -0.0303±0.0003 
12 

n* (1) = -0.0633±0.0004  , (3.62) 
12 

D* (1) = -0.1195±0.0005 
12 

and in the second Sonine approximation 

X*   (2) = -0.0248±0.0003 

Tl* (2) = -0.062110.0004  . (3.63) 
12 

D* (2) = -0.116010.0005 

T 
All uncertainties quoted in the text represent two  standard 
deviations (95% confidence limits). 
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The single-overlap collisions are thus seen to reduce the excluded 

volume effect (unity) predicted by the theory of Enskog. 

It was also inferred from these calculations, that the differences 

between the second and first Sonine approximations are 

X* (2)-A* (1) - +0.0055±0.0001   , 
12    12 

n* (2)-n* (1) = +0.0012±0.0001   , (3.64) 
12    12 

D* (2)-D* (1) = +0.0035±0.0001 
12    12 

The second Sonine approximations X (2), f| (2) and D (2) for the transport 
0     0       0 

coefficients in the loü density limit  (2.13) modify the first Sonine 

approximations X (1) , n (1) and D (1) by about 2% as can be seen from 
0     0       0 

Table III. On comparing (3..64) and (3.62) we note that the second Sonine 

* * 
approximations r|  (2) and 0  (2) modify the first Sonine approximations 

12        12 

again by a few percent; however the coefficient X  (2) for the thermal 

conductivity differs from X  (1) by as much as 18%. This phenomenon was 
12 

noted earlier in AEDC-TR-71-51 [5] and it motivated us to conduct a study 

of the rate of convergence of the Sonine expansion (3.41) for the coef- 

*   *     * 
ficients X  , n  and D 

12  12     12 

For a study of the higher Sonine approximations we used the 11-dimen- 

sional Monte Carlo procedure described in Section 3.4.  Prom the results 

quoted in (3.63)-(3.64) we see that the uncertainties in the differences 

X* (2)-X* (1), n* (2)-n* (1), D* (2)-D* (1) are smaller than the uncertain- 
12    12     12    12     12    12 

ties in the individual coefficients (3.62) and (3.64), owing to a strong 

positive correlation between the first and the second Sonine approximation 

integrands. Similarly, in order to determine the effect of the higher 

order approximations a higher precision can be obtained by calculating 

the differences X* (N)-X* (N-l), n* (N)-n* (N-l), D* (N)-D* (N-l) directly. 
12    12       12    12       12    12 
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We have computed these differences up to the third Sonine approximation 

(N=3) for r\      and D  and up to the fourth Sonine approximation (N=4) for 

X  .  The results were obtained by the 11-dimensional Monte Carlo pro- 
12 

cedure using a computer program called Subroutine 0VLP11; the results are 

presented in Table iv. Again each quantity was determined from four 

independent runs of Subroutine OVLPll. For the thermal conductivity 

quantities each of the four runs used 100,000 random points in the 11- 

dimensional unit cube and required 22 minutes of c.p.u. time or 17 

minutes of core time.  For the other quantities, each of the four runs 

used 30,000 random points in the 11-dimensional unit cube and required 

about 11 minutes of c.p.u. time or 9 minutes of core time.  The values 

so  so  so obtained simultaneously for the individual matrix elements a, b ., c fl 
KJ6      JCXr      KXr 

are presented in Table v. 

For the collision integrals that determine the first and second 

*   *   * 
Sonine approximations to X , r\     , D  we can make a comparison between 

12  12  12 . 

the numerical estimates obtained with the 7-dimensional and 11-dimen- 

sional Monte Carlo procedures. Such a comparison is presented in Table vi; 

it turns out that the results of the two different integration procedures 

are in excellent agreement.  Considering the relative complexities of the 

7-dimensional and the 11-dimensional integrals we judge the 11-dimen- 

sional approach to be the more appropriate computational scheme for 

determining the higher order Sonine approximations. 

Another consistency check on our calculations is provided by the 

symmetry relations (3.15) 

=SO _ _SO   i,SO _ vSO    „SO _ _SO /■>   ec* 
\& ~ alk'    bkJt ~ blk'    °k£ ~ cJlk- (3,65) 
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Our programs deliberately avoided assuming these relations. Thus the 

fact that all the relations (3.65) are held in Tables ii and v to within 

the calculated uncertainties constitutes another check of the consist- 

ency of these computations. 

The data in Tables i and iv enable us to determine the rate of 

convergence of the Sonine expansion (3.41) for the contributions 

it it ie 
X  » T| , D  from the single-overlap collisions. The results are 

summarized in Table IX. It turns out that the rate of convergence, in 

particular for the thermal conductivity, is lower than the rate of con- 

vergence of the corresponding expansion (2.13) for the transport coef- 

ficients X , r\   ,  D  from the linearized Boltzmann equation.  In order 

to determine the coefficients X , n , D to within one percent it is 
0  0  0 

sufficient to terminate the expansion (2.13) after the second Sonine 

approximation. However, if one wants to determine the coefficients 

*   *   * * 
X , T\    , D  to within one percent, it is necessary to evaluate r|  (N) 
12  12  12 12 

D (N) up to the third Sonine approximation, and X  (N) up to the fourth 
12 12 

Sonine approximation. Note that all higher order Sonine approximations 

have the effect of reducing the difference with the value unity estimated 

by the theory of Enskog. 

An independent attempt to evaluate the effect of the overlap col- 

lisions on the first density correction to the transport properties was 

made by Condiff and coworkers [16,17]. For this purpose, they evaluated 

a contribution to the transport coefficients classified as X  , T) 
EVD  EVD 

* • 
and D .  The abbreviation "EVD" indicates that these terms incorporate 

EVD 

excluded volume as well as dynamical effects.  However, as pointed out in 

Part I [3], the EVD term of Condiff et al. does not account for all 

103 



AEDC-TR-73-171 

Table IX 

Rate of Convergence of Sonine Expansion for the Single-Overlap 

Contributions. 

Absolute value [a] Percentage [b] 

x*2(i) 

X*2<2)-A*2(U 

X*2(3)-X*2<2) 

X*2(4)-X*2(3) 

-0.0303+0.0003 

+0.0055±0.0Q01 

+0.0014±0.0001 

+0.00035±0.00003 

100 

-18 

-5 

-1 

n*2(D 

T)^2(2)-T)^2(l) 

n12(3,~nl2(2) 

-0.0633±0.0004 

+0.001210.0001 

+0.00038±0.00006 

100 

-2 

-0.6 

D*2(l) 

D*2{2)-D*2{1) 

D*2(3)-D*2(2) 

-0.1195±0.0005 

+0.0035±0.0001 

+0.0011+0.0001 

100 

-3 

-0.9 

[a] Uncertainties represent two standard deviations. 

[b] Change in going from the N  to the «(N+l)   Sonine 
approximation in percentage of the value for N=l. 
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single-overlap contributions; it includes the SS-collisions and SN- 

collisions in Fig. 3 but does not incorporate the NS-collision sequence. 

Thus Condiff et al. did not evaluate the full collision integrals 

t^rXJ   and  ty'XJ   defined in (2.25) but considered instead 

(3.66) 
{* Y}(3) = U,X>(3) . {^,X>(3) 
V,Ä EVD        SS SN 

[The additional collision integral corresponding to the NS-collision 

sequence was incorporated by Condiff et al. in a term called TCI as 

discussed in AEDC-TR-72-142 [3]] . On comparing (3.66) with (2.26) and 

(3.1) we see that the EVD contributions may be calculated by our com- 

putational procedure provided that we replace 0(T-T") by zero for all 

values of T and T". 

We have thus calculated the coefficients X ,. H   and D   up to 
EVD   EVD      EVD 

the second Sonine approximation using again our subroutine OVKLAP. The 

results are presented in Table vii. Each run involved 100,000 points 

in the 7-dimensional unit cube and required about 20 minutes of c.p.u. 

time or 11 minutes core time. Condiff et al. have evaluated the coef- 

ficients X*  (1), n*  (1) and D*  (1) in the first Sonine approximation. 
EVD     EVD        EVD 

Since they did not include the quantity 0(T-T*) in (3.1) they were able 

to evaluate their results as 3-dimensional integrals using a 

Gaussian-Legendre numerical technique. Thus a comparison of our values 

for X  (1), n  (1) and D  (1) with those obtained by Condiff et al. 
EVD     EVD        EVD 

yields another consistency check of our Monte Carlo procedure.  The 

results obtained for X  , n.   and D   by the two investigations are 
EVD  EVD     EVD 
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summarized in Table X.  The numerical estimates for the first Sonine 

approximations are in excellent agreement.  In addition, our program 

enables us to determine the effect of the higher order Sonine approxi- 

*    *        * 
mations to the coefficients A   , n    and D  .  It appears that the 

EVD   EVD      EVD 
rate of convergence of the Sonine expansion for the EVD terms is the 

same as that for the total contribution from the single-overlap col- 

, * 
lisions, shown in Table IX; the second Sonine approximation A   (2), 

EVD 
*       * 

H   (2), D  (2) again modify the first approximation by 18%, 2% and 
EVD     EVD 

3%, respectively. 
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Table X 

EVD Integrals 

7-dimensional 
Monte Carlo   [a] 

Condiff et al-[16,17] 

W1} 

A
EVD(2)-XEVD{1) 

-0.0261±0.0004 

+0.0046+0.0001 

-0.02622810.000001 

nEVD(1) 

nEVD(2)'T1EVD(1) 

-0.0527±0.0004 

+0.001H0.0001 

-0.05270710.000001 

DEVD(1) 

%)     (2)-DEVD(1) 

-0.0947±0.0004 

+0.0032±0.0001 

-0.09442+0.00002 

[a]  Uncertainties represent two standard deviations. 
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Chapter IV 

SEQUENCES OF THÄEE SUCCESSIVE COLLISIONS 

4.1 Introduction 

In order to determine the contribution of sequences of three suc- 

cessive collisions (u=3) we need to consider the collision integrals (2.30) 

{*,X}j3) = I   {*,X>3
(3) . 

J    v=l    JV 

(4.1) 

{*,X>3<§) = I   {^X}3
(3) , J    v=l 

where {l|»»xH  an^ ^tX^i^   ar&  defined in (2.31).  It is again convenient 

to introduce a notation that covers both the collision integrals {^»xH3' 

and {^/X}'3''  For this purpose we define in analogy to (3.3) 

<a,«3     -   (»D^1^    fdfie-(Wi+W2+W3) Jv IOTT6    I 

fi3v 

*{a(I)-a(II)}*{3(IVv)-0(IIIv)},       (4.2) 

where the Roman numerals refer to the velocity regions in the diagrams 

of Fig. 7. 

A more detailed representation of these collision sequences is given 

in Fig. 12. The velocities W^W^II) are the velocities after the first 

collision. The collision vector of the first collision is indicated by 

k^ and that of the second collision by k~. The integrand is completely 
/V       A 

specified by the variables W^ W2» »3# k^,  k_ and the time T between the 
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t 
(ET,) 

f- 
(HI,) 

4-- 
(II) +- 
(I) 

1 

—4-  (a) R-SEQUENCE 

t 
(E£) 

im=<ni8) 

{-'- 
(i) 

I 

(b)   H-SEQUENCE 
(i/=2) 

T<T„ 

(c) C -SEQUENCE 
U*3) 

(3) (3) Figure 12.    Diagrams associated with, (ipi*},      and {ipfjc},     . 
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first and the second collision. The initial velocities H.(I) are given 

by 

W1(I) = Wl+W2l"klkl 

W2(I) = V
W21,klkl (4,3) 

w3(i) = w3 

The formulae for the velocities W.(Ill) and W.(IV) in regions III and IV, 

/\ 
and also the formulae for the collision vector k of the third collision 

3 

and the time T between the second and third collisions, depend upon 

whether we consider the R(V=1), H(v=2) or C(V=3) diagrams. We thus write 

W.(Ill ), Wi(IVv), k3v and Tv to distinguish these quantities for the 

different diagrams, as indicated in Fig. 12.  The velocities W.(Ill ) and 
V 

W, (IV )   are given by i      v 

(v=l)<^ 

W1(III1)   = W1+W31-k2k2 

^(IIIj^)   = w2 

W3
(III1}   = VÄ3l'kÄ 

w1(iv1)    = W1(III1)-W21(III1) '*31*31 

-k. A A 

w2 (iv^    - w2 diij^) -w21 (in^ 'k31k31 

(4.4) 

(4.5) 
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W1(III2) 

w2(in2) 

- w, 

= w. 

:v=2) <^ 

W3(III2) = w3 

w2(iv2) 

«<3(IV2) 

= w, 
/v    x\ 

W2+W32*k32k32 
A A 

W3"W32*k32k32 

(4.6) 

(4.7) 

(v=3) <^ 

w1(in3) 

w2(in3) 

w3(in3) 

w1dv3) 

w2(iv3) 

w3(iv3) 

= w,+w l'"31 ■kA 

= w. 

VW3l'k^2 

w1(in3) 
A A. 

W2(III3)+W32(III3)*k33k33 

w3(in3)-w32(iii3) -k33k33 

(4.8) 

(4.9) 

In terms of the definition (4.2) we may rewrite the collision 

integrals (4.1) as 

(4.10) 

3 3 
where ¥= £  ipm and X= I xn 

as in   (2.42) ,  and 
m=l n=l 

U,XKL3) = 2 X  (♦a,xn)3v 
n=l '3v 

(4.11) 
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From Fig. 12 we note that, for V=2 and v=3, only particle 2 participates 

in both  the first and the third collisions; hence, for v=2 and v>=3 only 

the term n=2 contributes to (4.11). However, for v=l, particles 1 and 2 

participate in the first and third collisions; hence, for this diagram 

the two terms n=l and n=2 contribute to (4.11). The collision integrals 

(4.11) for the self-diffusion thus reduce to 

(3)   _ 
{*<X>3v     -   2<*2'X2>3v  +  "l,v(*l'Xl>3v 

(4.12) 

where 6   is the Kronecker delta. 

In determining the effects of three and four successive collisions 

on the transport coefficients A , n , D we shall consider only the first 
111 

Sonine approximation N=l in C2,211, The consequences of this limitation will 

be discussed in Section 6.1, We thus consider the collision integrals 

X13(1> 

n13(i) 

D13(l) 

v=l 

3 

13v 

-     I  ^,„(1) 
v=l 13V 

X^3V«« 

(4.13) 

where 

X13v(1>= 

W1) = 

m=l n=l 3V 

-O.^ j^g» <«>)vm. Ug> <*;>»;& 
3V 

(4.14) 
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D13v(l)=-2 sg}Wj)w2f s^(w^)w2 

-26 l,v 

3v 

si/°
)(w«,*i'4>i,*i 

(4.14  cont.) 

3V 

In these expressions we may insert the explicit forms of the Sonine 

polynomials (see Table I).  Using the fact that T W and Y W2 do not ^n n    ^n n 

change in a collision, the collision integrals (4.14) reduce to 

X13v(1)=- 

W1>=- 

v £, m m'_£,  n n ta=l n=l J 3v 

(   3 - -      3 

I WmW  .   I w,w 
U=l mm n=l n nJ3v 

(4.15) 

D13v(l)=-  2[l+«lfV] w2,w2 
3v 

In the last equation for the self-diffusion coefficient D,„   (1)  we have 
^ 13V 

made use of the fact that 

{W1 (I) -Wx (II) } • {^ (IV.^ -^ (III) x)} 

= {W2 (I) -W2 (II) } • {W2 (IV^ -w2 (III1) } 

as follows immediately from (4.3) and (4.5). 

In order to evaluate the collision integrals (4.15) we shall proceed 

as follows. In Sections 4.2 and 4.3 we shall develop a uniform approach 

for the three different collision sequences (R, H and C). We shall thus 

formulate a method in which the R-, H-,and C-collision integrals are 

computed simultaneously. In addition we shall develop in Section 4.4 a 

different procedure especially designed for the R-collision integrals. 

This additional special method will be presented for the following two reasons. 
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First, by comparing the results of the two calculation procedures for 

the R-collision integrals we shall obtain a strong consistency check 

on our computation methods. Secondly, this special method for the 

R-collision integrals will form the basis of our analysis of the col- 

lision integrals associated with sequences of four collisions to be 

discussed in Chapter V.  The results for the collision integrals 

associated with three successive collisions will be presented in 

Section 4.5. 

4«2 Analysis of R-, H- and C-Collision Sequences 

The collision integrals (4.15) are all defined in terms of the 

integral form (4.2).  Using (2.40) we thus consider 

(a,3)3v = (-1)V_1 ^ J   dW0dW21dW31dk1dk2dT|w21.k1[|w31.k2 

3v 

x e  0 e_J:,{a(I)-ot(Il)}*{3(lVv)-ß(IIIv)}, (4.16) 

where the velocities W , W  and W  are defined in (2.36).  The velocity 

W is the same in all velocity regions between collisions.  The expressions 

for the relative velocities in the various regions follow from (4.3)-(4.9). 

The formulae (4.5), (4.7) and (4.9) for the region IV  velocities naturally 

involve (and assume the existence of) the third collision vectors k  .  To 
3V 

obtain the formulae for k  , and the times T between the second and third 
3V V 

collisions, we proceed as follows.  First, denoting by P . . the position 
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vector of i relative to j at the instant of the second collision (with 

collision vector kA, it will be seen from Fig,  12 that,  for any of the y- 

diagrams, 

where 

p21 = "kl+W21T   ' 

P32  - k12-W21T   ' 

A A 

(4.17) 

kl2   ~ kl"k2     * (4.18) 

In terms of these relative position vectors p..  at the second collision, 
iD 

A 

it is seen from Fig.   12  that the third collision vectors k      are given by 

k31 =  'P21~W21(III1)T1  ' (4.19a) 

k32  =   P32+W32(III2)T2     ' (4.19b) 

k33  = "P32+"32(III3)T3     * (4.19c) 

where the corresponding times T    between the second and third collisions 

are obtained as the smaller   (earlier)  solutions of the quadratic equations 

|p21+W21(III1)T1|
t-l   , 

|p32+W32(III2)T2|
2=l , (4.20) 

|?32+W32(III3)T3|2=1 . 

(The equations   (4.20)  which determine T    are just the requirements 

I Ä        I 2 * k   =1.)   In summary, the third collision vectors k  are obtained 
3v 3V 

from the integrating variables W_., W  , k.., k_ and T in the following 

way: First, the vectors P21 and p  are calculated according to (4.17); 
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next, the region III velocities are calculated according to (4.4), (4.6) 

and (4.8); then the times T are calculated by solving eqs. (4.20); and 

finally, the vectors k  are obtained from eqs. (4.19). 

One other dynamical quantity of interest in Fig. 12 is the time T 

between the 1-3 penetrating and separating collisions in the »-diagram. 

Since the position vector of 3 relative to 1 at a time t after the 

penetrating collision is evidently -k_ + W31t, then T is obtained simply 

by solving the equation 

|-k2+w317|
2=i  . 

Expanding, and discarding the solution T=0 (which corresponds to the 

penetrating rather than the separating collision), we obtain 

_  2W-1«k, 
T =    „        . (4.21) 

w31 

In order to evaluate (4.16) we adopt the coordinate system shown in 

Fig. 13. This is the rest frame of 1 between the first and second col- 

lisions (the figure shows the centers of 1, 2 and 3 at the moment of the 

first collision), with W  defining the Z-axis and k,  defining the XZ- 
21 1 

plane. We have just seen how all the dynamical quantities in each v- 

diagram can be calculated from the "basic" variables W».., W,.,, k.,, k_, T. 

In the frame shown in Fig. 13, the basic vectors have the representations:"r 

W21 = [ 0) , (4.22a) 

The angle 6, in this chapter is the same angle as 6 in the preceding 
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r 

Z- axis 

W   =W   w 
21 21      21 

I- 
II 

W   =W    w     ^  * 

X*axis 

action sphere  of  I 

Figure 13- Schematic representation of the integration variables used in 

the calculations of the u=3 (R,C, and H) integrals. The figure 

shows the rest frame of 1 just after  the first collision, with 

WL, in the Z-direction and k, in the XZ-plane. 
21 1 c 
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^-sin81 

kx -  I     0        | . (4.22b) 
COSÖ. 

(sin92cos<f>2 

sin82sin<f>2 I # (4.22c) 

cos62 

^sinö-cos (c()2+<)>_)^ 

W31=  I sin63sin(<(>2+<{>3) I . (4.22d) 

cosS-, 

Note from  (4.22d)   that the azimuthal angle <J>    of W      is defined relative 

to an initial plane through k    and the Z-axis   (thus, when <j> =0 the vectors 
y\ /\ 

W , W  and k are coplanar). The reason for doing this will become 
31  21     2 

apparent later.  With the angles 0,, 6 . 6 . d> , A thus defined, and with 
12  3  2  3 

the angular integrations on W  and the azimuthal integration on k having 

been trivially carried out in accordance with (2.41) , (4.16) becomes 

oo 0 

<«,ß)3v  =   (-D^1 ^ß jjj^O e_3W0 /dW21W2l/dcosei 

TT 2lT °° TT 2lT » 

I   de2sin82 I   d(|>2   I  dW^W^   I d63sin93  I d<|>3 I   dT      (4.23) 

-E x  e3vlw21*k1l|w31'k2|e~£,{a(I)-a(II)}*{3(IVv)-ß(IIIv)} • 
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Here» the quantity 0, is defined to be unity whenever the integrating 

variables are such that the v-diagram collision sequence can be realized, 

and zero otherwise. 

Note from Fig. 13 that 

W21'k, = W2iCOs6, , 

(4.24) 
W3l"k2  = W31COs93 ' 

_». 
where 01 is defined to be the angle between W      and k ,  and is given in 

3 31 2 

terms of the integrating variables by the formula 

cos0' = 'cos0 cos0 +sin9 sin9 cosij)       , (4.25) 

as may be seen by calculating W    -k    from  (4.22c)   and  (-4.22d).    Now,  it is 

clear from Pig.   13 that the only condition imposed by the first collision is 

■cos61 <  0       ., (4.26a) 

and that the only condition imposed by the .second collision {other than the 

condition T>0,, which has already been taken care of in (4.23)0 is 

■cosB^ > '0    . (4.26b) 

Hence, (4.23) can be written 

09 00 00 

00 0 0 .0 
'0 TT TT '2!FT 2lT 

x I  dcose± i  dB2 I   d03 I  d(J)2 I  d<J>3 9lease^) (4.27) 

-1 © 0 0 0 

x  93v  sin^sin^cose-j-cos©'^ e"E{a (I)-a(II) }*{ß{IVv) ~'ß (IIIV) }  , 
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where now  Q   =1 or 0 according to whether the integrating variables do 
3V 

or do not permit the third collision to occur.  That is, 0 now concerns 
V 

only the third aoVlision in diagram v, since the first and second col- 

lisions are now assured through the limits of integration on cos61 and 

T and the theta function on cos8".  [For the H diagram only,0 must 

also  require T > T-] 
2 

We next impose upon (4.27) a change of variables (W ,T)-»-(w ,T*) , 

according to 

W31 = W31/W2l\ 
(4.28) 

T*   = W   T 

This transformation is evidently such that dW dx = dw dT*, and is made in 

anticipation of a later analytical integration over the variable W .. In 

essence, this transformation induces a scaling of the velocities in all 

regions, henceforth denoted by a lower case  w, and a scaling of all times 

between collisions, henceforth denoted by an asterisk.    We shall also use 

a prime  to denote velocity region III for the R- and C-diagrams; note from 

(4.4) and (4.8) that the velocities in region III for the H- and C-diagrams 

bear indeed the same relationships to the integration variables.  The 

region III velocities for the H-diagram are simply the (unprimed) region 

II velocities, as shown in (4.6). We now rewrite the relative velocities 

in the various regions as follows. With 

W21 E W2l/W21 - W21 
<4.29) 

W31 " ^1^21 ' W31W3: 
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w21 E W21 ~ W3l'k2k2 

'     = w^,   -  2w„, «kjc. '31  " "31 '31  "2~2 

(4.30) 

the scaled velocities in the various regions of the R-,  C- and H- 

diagrams are: 

W21(II)   = W21(II)/W21 = w2L 

w31(II)   =  W31(II)/W21 - w31 

(4.31) 

w21(I) E W21(I)/W21 = w21 - 2w21.k1k1, 

w31(I) = W31(I)/W21 = w31 - w2l'
klkl 

(4.32) 

<v=l)< 

w21(IV1) 

^(IV^ 

w21(III1) =  W^CEII^/W^ = w21, 

W31(III1) 5 W31(III1)/W21 = w31j 

W21(IV1)/W21 = W21 - 2w21-k31k31 

w^av^/w^ = w31 - w21-k31k31 

(4.33) 

(4.34) 

w21(III2)   = W21(III2)/W21  = w21l 

w31(in2)  = w31(in2)/w21 = w31 

(v=2)< 

w21(IV2) 

?31(iv2) 

y\    /v 

W21(IV2)/W21 = w21 + w32-k32k32 

W31(IV2)/W21 = w31 - w32-k32k32 

(4.35) 

(4.36) 
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(V=3) < 

w21(IV3) 

^w31(IV3) 

w21(III3) =  W21 (1113)^21 " w21 

W31(III3) E W31(III3)/W21 = W31 

W21(IV3)/W21 = w^ + w'2.k33k33" 

w31(iv3)/w21 = w]x - w3Vk33k33 

(4.37) 

(4.38) 

In   (4.36)  w32=w3i"w2i and in   C4-38>  "^^Si-^l'    The relative positions 

(4.17)  at the instant of the second collision may be written 

p21 = "k1+w21T*    , 

P32 = k12"w21T*    ' 

(4.39) 

where k       is defined in   (4.18) 

by  [see   (4.19)] 

The third collision vectors k      are given 

31 "p2l"W21Tl 

k32 

'33 

P32+W32T2 

P32+W32T3 

(4.40) 

where the scaled times T between the second and third collisions are the 

(earlier) solutions of the quadratic equations [see (4.20)] 

*l 2=1 
lp21 + w21Tll2=1 

1P32 + ^32T2l2=1 

lp32 + "32T3l2=1 

(4.41) 
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And finally, the scaled tine between the penetrating and separating 

collisions in the H-diagram is seen from (4-21) to be 

2«3JL*2 
T* 5 W21T = "w^"    ' (4"42) 

After the scaling transformation (4.28) the integral (4.27) becomes 

00 00 CO 

dT* 

0 

0 7T IT 2TT 27T 

I dcos01   1 d62 j d93   j d<j>2   I d(J)3 0 (cose3)e3v 

x sin02sin03cos01cos9^ {a(l)-a(ll)}*{ß(lVv)-6(lllv)} ,    (4.43) 

where we have defined a "scaled E" [see (2.39) and note from (4.29) that 

w2  =1] : 
21 

E* = -(1+w2 -w  «w  ) . (4.44) 
3    31  21  31 

The W and W_.. integrations in (4.43) will eventually be performed 

analytically.  The remaining 7-dimensional integral will be evaluated by 

Monte Carlo methods, but for this it will be necessary to first get rid 

of the infinite integration limits on the two variables w  and T*.  The 
31 

variable w  can be handled similarly to the variable w in the single 

overlap calculation [see (3.33)]. However, the variable T* presents a 

more serious problem, the solution of which is very intimately connected 

with the behavior of the quantities 0 , i.e., with the conditions imposed 
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by the existence of the third collisions.  We shall now consider this 

matter in detail. 

According to the diagrams in Fig. 12, the third collisions are all 

interacting.  Thus, a first requirement for the existence of the third 

collision is that the colliding particles be separated (non-overlapping) 

at the instant of the second  collision.  Hence, we require 

P21l
2 > 1   for v=l 

|p  |2 > 1  for v=2 and 3 
32 

(4.45) 

Given that the particles involved in the third collision are not overlap- 

ping at the instant of the second collision, it remains only to require 
* A. 

that k  exist, i.e., that k  be calculable as a real vector from (4.40). 
3V 3V 

For this, it is necessary and sufficient that the corresponding quadratic 

equation in (4.41) yield for T* a real 3  positive  number.  Each of these 

quadratic equations is evidently of the form 

|p + WT*|2 = 1 , 

where p2>l because of (4.45). It is straightforward to show that, given 

p2>l, a real, positive solution T* exists if and only if 

wp<0 

and j, ^ 
(wxp)

2-w2<0 

Therefore, the necessary and sufficient conditions for the third collisions 

to occur are as follows: 
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R(v=l) 

H(v=2) 

C(v=3) 

P21>1 

W21,p21<0 

KT
X
PO-,)

2
-W^<0 '21 ^21' 

P|2>1 

w32,p3'2<0 

(w„xp„)2-w^<0 '32 H32 32 

P32>1 

w32.p32<o 

(w32Xp32} "w32<0 

(4.46) 

(4.47) 

(4.48) 

When these conditions are satisfied, eqs. (4.41) will have two positive 

roots (as expected), and we must evidently take T* to be the smaller root: 

V -  [-"21-P21- /(w21-P21)
2-w2i(P^-l)]/w2J , 

=  E"32'P32_ v/(^32*P32)2"W32(p32"1U/ W32 '        (4.49) 

=  E*32 " p32" /(^32,p32)2-W32(p32-1U / w3 

V 
T * T3 

2 
32 

The corresponding vectors k  are then obtained from (4.40), (4.39). and (4.49). 
3V 

For a given V, 0  will be unity if all three inequalities in (4.46), 

(4.47) or (4.48) are satisfied [and, for V=2, if the condition T*>7* is 

also satisfied]; otherwise, 9  will be zero. Now, in order to resolve 
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the problem of the infinite range on T in (4.43), it is necessary to 

express the conditions (4.46)-(4.48) directly in terms of T , and to then 

analyze them into neu  conditions which yield expressions for upper limits 

* 
on T . 

The T dependence in (4.46)-(4.48) enters via the quantities p . and 

p32 in (4.39).  Substituting (4.39) into (4.46)-(4.48) we find after 

some algebra (note w-n
=w

0,)
: 

T*
2
-2T*(W91«k,)>0  , (4.50a) '21 "l1 

A      A 

(v=l)«^   T (W2l'w21} < w21*kl ' (4.50b) 

L1T*
2
-2B1T*-C1<0 , (4.50c) 

T*2-2T*(w21-k12)-(l-kJ2)>0 , (4.51a) 

(v=2,3)^   T*Fv > Gv , (4.51b) 

|AVT*
2
-2BVT*-CV<0 , (4.51c) 

where A^,  B   , C   , F  , G    are defined by 

Al   =   <W21XW21)2 

Bl   -   (w21Xw21}*(w21xkl}    V     ' (4.52) 

Cl   -=   ^1'k1)2 
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/\ /\ 
A„   H 

B, 

(W32XW21) 

(w32XW21)Mw32xK12) 

(w32«k12)2+(i^2) 
ä A 

G„   = 

w32*w21 

32     12 

(4.53) 

(w^xw2i)-2 

B3; E ^2xw21).{W:;.2xk12) 

cr, = 

'32' ^1-2' 

W32*w21 

w3'-2-'>fc2l. 

'1-2; (4.-54) 

The. th±rd; conditions,'   (4.5"0c)   and' (4.5"lc) ,- evidently require that- a5 

certain. quadratic1 form' in T* be negative;   i-t- will- be convenient- to denote 

the roots- o'fe these"1 quadratic forms"  (when- they exist)   by' t^ and- t^:- 

11 v,     L u--' V AvSJ/Av •' C4'.5-5).' 

The? requirements" (41.50)' f or-' the- R^d-iagr'am are s'ömewnät simp-IeY" läiän 

the-requirements: ('4.51) for- the H and-C diagrams, and- wi-l-l Be- considered- 

first.. Since-w'.,.*-k,.=cose\-,,, then because-cos9V^O"'iri' (4*.43:) i:t: is: seen 
2i 1-    1- i- 

that"-requirement: (4v50a)' is always' satisfied-. 
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Furthermore, using the conditions w »k <0, w «k >0 and T >0, the 

remaining two requirements (4.50b) and (4.50c) may be shown to be 

equivalent with 

ä     /\ 

kl*k2<0 ' (4.56a) 
A A. t   A A 

(v=l) < w-, -k.  >   (w    »k 
1)/(*1*ka) 31'K2  '   <w21 V/(W ' (4.56b) 

0<T*<t1 . (4.56c) 

The conditions   (4.56a)   and  (4.56b)  were first noted by Weinstock   [18]. 

Since   (4.56a)   and  (4.56b)   do not involve conditions on T*,  then  (4.56c) 

implies that the infinite upper limit on the T* integration in   (4.43)   can 

be replaced by tt,  as defined by  (4.55)  and (4.52): 

+ 00 t, 

v=l; 

'o 
/-''■*/"• 

With requirement (4.56c) thus met, the quantity 0  is then 1 or 0 

according to whether the two requirements (4.56a) and (4.56b) are or 

are not both satisfied. 

We turn now to the more difficult task'of analyzing the requirements 

(4.51) for the H- and C-diagrams. Here we find that it is not possible 

to obtain a single condition on T* analogous to (4.56c); instead all 

three inequalities will provide conditions on T , as well as requirements 

independent of T . 

Consider first (4.51a), which requires that a certain quadratic 

form in T* be positive. Since this quadratic form is concave up, then 
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if it has no real roots it will indeed always be positive.     However,   if 

the roots to the quadratic do exist, 

t*   = w21-k12   ±   /(w21.k12)2+(l-k^)'   , (4.57) 

then the quadratic form will be positive only if either T*<t or T*>t 

An examination of the discriminant of the quadratic form in (_4T51al, 

taking cognizance of the fact that T* in any case is restricted to positive 

values, leads to the following restrictions: 

If k?2<l, then require  T*>t+ 

(4.58) 

12  '     21 12      x 21 12'  ""12 

either T*<t~ or T*>t4 

If k* >1, and w «ic >0 and (w *k ) > kT.,-1,  then require 

Consider next (4.51b). If Fy and G^ both have the same sign, then 

(4.51b) implies that T must be bounded by the quantity 

t^ B  Gv/Fv  (>0 ) . (4.59) 

However, the mere fact that T* is positive evidently prohibits the combi- 

nation F <0 and Gv>0. Thus, (4.51b) leads to the following restrictions: 

If F 40, then require G <0. 

If F '<0 and G <0, then require T*<t° . (4.60) 

If Fv>0 and Gv>0, then require T*>t° . 
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Finally, we consider (4.51c).  From (4.53) and (4.54) it is seen 

that A>0.  In the special case A=0, it is seen that we will also have 

B =0, and (4.51c) reduces to the simple requirement that CL.>0.  In the 

usual case where A>0, then (4.51c) evidently requires that a certain 

concave-up quadratic form in T* be negative. Thus, the roots t* [see 

(4.55)] to this quadratic form must  exist, and T* must lie between them 

subject to the condition T*>0.  Therefore, (4.51c) leads to the following 

restrictions: 

If A=0, then require Cv>0      , 

If A ^0 and B >0, then require C > -B2 /A   » 

If A 40 and B 40,   then require C >0         , 
V V V 

If A ¥0 then require Max(0,t~) <x* <t+  . 
V V v 

(4.61) 

We see, then, that the existence of the third collision for V=l 

requires only the satisfaction of (4.56), whereas for V=2 and 3 we must 

satisfy (4.58), (4.60) and (4.61). Nevertheless, we have derived a set of 

conditions which determines whether 0  is 1 or 0, and which when 0 =1 
3V 3v 

provides lower and upper bounds, say T^and 1^2K  on T*. -The require- 

ments for ©3V=1, and the consequent formulae for T* 'and T^
2', are 

summarized in Table XI. Again, .0  in (4.43) is 1 if all the V require- 

ments in Table XI are satisfied, and 0  is zero otherwise. Furthermore, 

from the quantities T^ 'and T*2' found by the prescription in Table XI, 

the T integration in (4.43) can be dealt with in the following manner: 
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Table XI 

Requirements for €>3y=l and Formulae for T*  and T* 

v=l (R diagram) 

Require k,'k2<0 and w,, 'k.2> 
w2l'kl 

A.   ys 
krk2 

Put T^^O and T|2)= t* . 

v=2 and 3 (H- and C-diagrams)- 

.•  If Bv>0: Require Cv>-B*/Av. 

If B <0: Require Cv>0. 

Either way, put T^^MaxtOjt") and 3\J2J-t*. 

!•  If Fv<0: Require Gv<0 and T^     <t-*'t 

and reset T^2)=Min(T^2),t") 

If Fv>0 and Gv>0: Require T^
2'>'t° 

and reset T^'-MaxtT^1' ,t°) . 

»•  If k^2<l: Require T
t2)>t+, 

and reset T^1'=Max(T^1'ft
+) ■ 

If k?o>l and w2i*ki2>0 and *w21*k12*2>k12-1' and 

(i) if T^^t":  Require T*2)>t+# 

and reset T^L>=Max (T^1*,t+) • 

(ii) if Ty1J<t" and T^2)<t+: Reset T^2,=Min(T^2) ,t~) . 

(iii) if T^1}<t" and T,J2';>t+: With T*-T^1) + (T^
2)

 -T(J} )T 

and 0<T<1, require either T <t or T >t . 

4- For v=2 only, require T*<T* 
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T(2) 

ft m i*-' n 

dT  = A„ I dr  , (4.62) 

0      T 
V 

where     Av E T^2)-T^1)    , (4.63) 

and      T* = T(1)+A T    , (4.64) 

It is important to notice here that a given value of the variable T 

produces different  values of T* for V=l,2 and 3; in other words, the 

transformation T+T is different for each V 

In terms of this new variable T, (4.43) can be written 

00 oo i 

oo 0 0 0 

0 ir TT ■       2ir      27T 

:   I dcose^^ / d&2  I d8    I d«J)    I d<J>3 0(cos6.! x | dcosG, I ddn | d6^ | d<j)„ I d<J>3 0(cos63> 9^ cos6;i        (4.65) 

-1       0    0    0    0 

x Avsin02sin83cos9^ {a(I)-a(II)}*{ß(!Vv)-3(lllv)> 

where 6  and A are determined from Table XI with the quantities A , 

BV' Cv' FV' GV' tv'  t±'   K  defined through (4.52)-(4.55), (4.57), (4.59). 

In transforming from T to T in (4.62) we transformed a possibly 

infinite range (T'
1
', T*2*) into the finite range (0,1), which of course 

was our intention. However, in so doing we introduced a possibly infinite 
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factor T -T =A into the integrand. We must therefore investigate 

to see if any divergences A^-»00 are adequately controlled by approaches 

to zero of other factors in the integrand of (4.65). This problem was 

analyzed earlier in AEDC-TR-69-68 [4,7]. 

To begin with, we note from Table XI that t* is always  an upper 

bound for ä  .    For V=l we have Ay=t^; however, for v=2 and 3, A may be 

less than t^, not only because Tl ' may be positive, but also because T*2' 

may be determined not by t^ but rather by t° or t" [see Table XI].  But 

in any case, we should first investigate when and how t*-*», since this 

will give us a definite bound on the behavior of A . 

t+ is defined in (4.55), and from the definitions of the quantities 

Av, By,, Cv in (4.52)-(4.54) , it is clear that the numerator in (4.55) is 

strictly finite,so that the only way for t^ to become infinite is for A^ 

to vanish. Furthermore, as each B is proportional to vK.i  it is clear 

that the divergences in t,^ are of the type 

V 

From the definitions of A., A„, A, in (4.52)-(4.54) one calculates 

w31COs2ö3 ~ 2w3icos93cose2 + -H 
1/2 

I _ _ Z   £.   A    I *Y_ _ — Ä « Q   I  —« « Q £ ^    I 

,-1/2  _   Al        ■ — w^coselsinö.  ' <4'66a> 

-1/2        til"  2w31cose     +  lj 
A9 * «     ptnfl        ~ • (4.66b) 

1/2 
Iw^sin2^  + 2w31(cos82cose^-cos03)   +  lj 

w31[si]#e3 + sin92cos&Msin82cose'-2sin93cos<{>3) 
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From (4.66a) we see that A. can become infinite only if cosöi or 

sin60 vanish, in which cases A diverges like (cos9'sin9 )  ; however, 
* 1 3   * 

since the integrand in (4.65) contains A multiplied by (cos8'sin0 ), 

then the integrand will always be bounded.  [This need for sin6~ is the 

reason why we write sin9_d9 instead of dcosö in (4.65).] 

From (4.66b) we see that A can become infinite only if sinö 

vanishes, in which case A, may diverge like (sin6,)~ ; however, since 

the integrand in (4.65) contains A multiplied by (sin8 ), then the 

integrand will always be bounded.   [This need for sin8 is the reason 

why we write sinö d8 instead of dcos9 in (4.65).] 

The situation for A_ is more complicated. A detailed analysis 

of the denominator of A'1'2 in (4.66c) yields the following conclusions: 

In varying circumstances this denominator can go to zero like either 

sin8 or (sind cos0'); in either case the integrand in (4.65) clearly 

remains bounded. The only other way in which the denominator in (4.66c) 

can approach zeror with A determined by the diverging t"t and not  by t° 

or t~, is in the double limit  8 -+7T/2 and $ -*0; in this case it is found 

jl/2 
tne denominator in (4.bbc) approacnes zero ±ijce u^-ei j-cos~o +<p sin~o 

Thus 

that the denominator in   (4.66c)   approaches zero like (3-8 ) 2cos29 +<J>|sin28   I 

-1/2 
lim A,OC lim [(l-V2 cos29, + $|sin28 ] 
e2-iT/2    3      e2*»/2   L2    2 3        J * 

if» -»-o <J>3-»-0 (4.67) 

In this case only will the integrand in  (4.65)  become unbounded. 

To eliminate this divergence for the C-diagram, we transform 

variables   (62/<j>3) "*  (r'x) *V 

rcosx = TT—2e2ii 

rsinx = 4>o/2 
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Under this transformation, 

ir 2ir IT r  ( 

fa fa -j**j 
IT 2ir IT r

n(*) 

rdr  , (4.69) 

0 0 0 "0 

where 

rQ(x)   = Min -^-,    ,      *   ,]   . (4.70) sinx'   jcosxjj 

The double limit 8    ■* TT/2,  $    + 0 is equivalent.to the single limit r ■* 0,  so the 

divergence of the quantity in brackets in   (4.65)  now has the following 

character: 

(sin Ojcose^sineg) (d92d<|>3) 

«j>3-»-0 

= lim 
(sin283)(rdrdx) 

r+o   7r2cos2xcos203+4r
2sin2xsin283 

1/2 

sin263 drdx 

jcos2xcos263+4sin
2xsin263 
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where we have used the fact that cosG" -»■ sin0 in the indiaated limit-. 

Evidently, the denominator can now vanish either if (x-*Tr/2, 6,-*0) or if 

(x+0,  8 _-»ir/2).  In the former case the denominator goes to zero like sin0_, 

which clearly causes no problems; in the latter case it can be shown that, 

if the C-diagram is dynamically possible at all, then A is determined by t" 

[which is always bounded] and not  by t .  In conclusion, the transformation 

(4.68) indeed removes the divergence of the integrand for V=3. We remark 

that the behavior of A with respect to <j>_ as analyzed above was the reason 

for measuring <j>, relative to an initial plane through k. and the Z-axis, 

rather than the XZ-plane of Fig. 13. 

It is convenient to introduce a further scaling transformation on the 

variable r in (4.68) by 

r = r/rQ(x)  , (4.71) 

The integral  (4.65)   thus transforms to 

00 00 

»o 0 

10 TT 2TT IT        1 

x   J dT    / dcosSj^ / d0     / d<|>2   / dx j dr 0(cos8^)  9      cosSj^ (4.72) 

0-1 0 0 0 0 

x   [A r r2(x)sine2cos8^sin03J{a(I)-a(II)}*{ß(IVv)-ß(IIIv)}   • 

t The variable r is the same as the variable p in ref. [4,7]. There is a 
misprint in these references:  In eq. (2.7-24)  of ref.[4] and in eq. 
(8.24) of ref. [7] pjnax should read p^gx- 
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Here E is given by (4.44), 0- and A are determined through Table XI, 

r (x) is given by (4.70), and the angles 8. and <f>_ are now  defined in terms 

of r and x by 

8    E JETT - r rQ(x)cosx] 

L = 2r r   (x)sinx 

(4.73) 

4.3 Parallel Evaluation of R-, H- and C-Integrals 

The collision integrals to be considered are given by (4.15) in terms 

of the 11-dimensional integral form (4.72). We can reduce this integral to 

a 7-dimensional integral, just as the 11-dimensional SO-integral (3.14) was 

reduced to the 7-dimensional SO-integral (3.24). That is, we integrate 

analytically over W and W . Then the collision integral» (4.15) reduce 

to integrals that are closely analogous to (3.25), (3.26) and (3.27). 

X13V(1) = -3(W3V - f (VV3V ' (4'74) 

ni3V(1) ="1(£1'V3V ■ (4-75) 

D*3V(1) =-2[l+6ljV](w20,w20)3v     , (4.76) 

where K and L are again the functions defined in (3.30a) and (3.30c): 
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*1 E E*-1..L"iowio      ' <4-77a> i=l 

3 

I 
i=l 

•*• 3 
■*■    _     *-l/2 r -*■    -*■ Li   -  E )   W.   W.      ' (4.77b) 

with 

w10(i)  = -5[w21(i)^31(i)] 

w20(i) 5 -il^dJ-^U,,        f    W'11'1 W   ' (4.78) 

w3()(i)  5-|[w21(i)-2w31(i)] 

and where now 

10 IT 2tf IT 1 

df 

0 0-1 0 0 0 0 

J. U ll ^.l II j. 

(a,a)3v =  <-l)V  ^   / dw31wL / d* / dcos81  J d93    fd<|>2 j dx J 

x   9(cose3
,)'e3^cos291dvE*"9/2 (4.79) 

* ^Avr0<x)"in62cose3sine33 ^a t1)_a <">) **fa (IVV) -a (IHV)}' 

In this equation we have introduced primed differences {a (I)-a (II)'}' and 

{a(iv )-a(iil )}' which are defined in analogy to (3.12), as 

{a(l)-oKll)}' =  {oKD-adl)}/^']^  , (4.80a) 

{a(ivv)-a(inv)}' = {a(ivv)-a(inv)}/dv , (4.80b) 

138 



AEDC-TR-73-171 

where 

W2l'k31  f°r V=1  ' 

dV ~i   *32**32  for V=2  ' {4'81) 

"32*k33  f°rV=3  ' 

this is done in recognition of the fact, that for the functions a  that appear 

in (4.74)-(4.76), a(I)-a(Il) is proportional to w -k and a(iv)-a(lil ) is 

proportional to d . The primed differences (4.80) can be calculated explicitly 

in terms of the velocities w.. and w'. [see (4.30)] and the collision vectors 
ID     i-3 

k and k, ; the results are presented in Table XII. 

The 7-dimensional integrals (4.79) will be evaluated by a Monte Carlo 

procedure in very much the same way as the evaluation of the 7-dimensional 

SO-integrals deseribed in Section 3.3. For this purpose we reduce again the 

w,.-integration to a finite interval by the transformation (3.33) 

u=(l+w,t)'1  , (4.82) 

for which w* dw_=--du/u2.  In addition, the form of (4.79) also suggests 

the transformation 

0 

(4.83) 
J. 

-1 -1 

u u 

/dcos6.cos2e. = ^ ldcos39, i   i ^j 

t A review made (at the time of this writing) of the logic leading to 
(4.82) suggests that for the integrals (4.79) a more suitable choice 
would have been u=(l+w3)-1. 
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Table XII 

The Quantities {ajtX)-a(XI)}' and {a(IV )-a(IIIv)}' in the Three-Collision 

Integrals. 

a=iE*1/2 t 2                1 

{a (I)-a(II)}' = (*2i,Ji} kiki" "aiki 

{odv^-adii )}• = 
_fc-                A                A,           /\                        ^          A. 

(W2l'k31)k31k31 " W21k31 

{a(iv2)-a(iii2)}' 

{a(iv3)-a(iii3)}' 

■ 

^_^__ 
afc              A              A          A.                      _j*         A 

(W32*k32)k32k32 " W32k32 

-fc.                  A                  A            A                             .».           A 

<w32,k33,k33*33 " *32k33 

0t=3E K 

{a(i)-a(ix)}' = w21[2(w31.k1)-(w21.k1)] 

+ k1[-l+2(W21.w31)-2(w21.k1){2wiL.k1)-(w21 •kj) >] 

{adv1)-a(in1)}' = •»»^»»-«"Sl'Sjl" 

+ k31 r-w'J+2 (w21-w31) -2 <w21-k31)l2( W^.^) ■ 
A 

-(w21-k31)}] 

{a(iv2)-a(iii2)}> = w21[2(w31.k32)-(w32.k32)] 

- w31[2(w21-k32)+(w32.k32)] 

+ k32I1-*5l+2("32'k32,t;»31,k324*21,k32}l 

{a(iv3)-a(in3)}' = w21[2(w31.k33)-(w32.k33)] 

- w31[2<w2'1.k33) + (:32.k33)] 

+ k33Iw2i^2(w32'k33,{w3i'k33^2i,k33}1 
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Table. XII (continued) 

-hi 

20. 

{o(l]-a(ll)}' - -k2 

{adv^-odli^}' = -k31 

{d(iv2)-a(iii2)}' ■» +k32 

{a(iv3)-a(iii3)}' = +k33 

Note: w  = W  is a unit'vector in accordance with (4.29) 
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We thus rewrite  (4.79)  as 

TT 1 TT 0 2TT        1 1 

(a,a) 3V =   (-1)V —    I d6_ / dr   fdx    |dcos38. / d<J>_/  du / 

2WeJ    3J     J     J lJ    2J     J 
dt 

0 0 0-1 0 0 0 

~   2 

x 0(cose^)03v 

A^rr* (x) sine2cos6^sin63 

2 *9/2 
u E 

(4.84) 

x {a(i)-a(ii)}'*{a(ivv)-a(iiiv)}' 

where it is henceforth understood that w  is given by the inverse of (4.82) 

w3i- hd 
1/4 

(4.85) 

One final transformation of variables is needed to simplify the Honte 

Carlo formulae. Namely, we want to transform the 7-dimensional "box", which 

forms the integrating region in (4.84), into a 7-dimensional "cube". This 

is easily accomplished by putting 

e3 =. ^ 

r    = K„ 

x -ir*3 

cos^ =  (-l+^4) 

*2 = 27T45 

u = 1e,    w31=[(l-u)/u] 

T = fl„ 

1/4 

(4.86) 
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Since the Jacobian of this transformation is evidently 

3(9 ,r,x,cos 9 ,(J> ,u,T) 
 - ±—± ^=2TT

3
      , (4.87) 

3 (/L. ,K  ,.. . ,/L_) 

then we obtain our final formula  for the integral form (a,a). 

11       1 

"a,-*(-1,V^/dri/ar2"-/' 
(a»a)o., = (-1) -^ f drn | dr„... | dr? 0(c6s6^) 0 

0   '0 

A d rr*(x)sin9 cos9'sin9 
x  v v " S  {a(i)-^(II)}■*{a(IVv)•^(IIIv)}, . (4.88) 

u2E 

Thus, in terms of the integral form (4.88), we can calculate the 

desired three-collision quantities in (4.13), (4.74), (4.75) and (4.76). 

The Monte Carlo procedure for numerically evaluating the integral (4.88) 

is, of course, to average the integrand over a set of points 

{P.} - {(A, ,K ,... „•*_-)} picked from a random,' uniform distribution in the 

7-dimensional unit cube U_: 

A, d rr* (x) sin9 ,cos9 !sin8_ 
»     /, ,*V 71T ni      Q1.Q   V V 0     2   3   3 (a,a)_ = <(-l)  0(cos9i)0  _==—^i^^^^—  
3V  N   8v^    3 3V      u*E*

9/2 

x {a(l)-a(H)}i*{a(IVv)-a(IIIv)}j>   .     (4.89) 
U7 
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The uncertainty in estimating this average with a finite  set of points 

{pJp?...,P } is given by the r.m.s. deviation of the quantity being 

averaged, divided by /Ü.    Hence, our computational algorithm is: 

1° Generate 7 independent random numbers H  ,n. ,... ,K-  from 

a uniform distribution in the unit interval. 

2° Calculate the quantities 6,, if, x, 8 , <J> , u (and w ) and 

T from equation (4.86). 

3° Calculate r (x) from (4.70), and calculate 0_ and <f>, from 

(4.73). 

4° Calculate cos6' from (4.25), and so evaluate the theta 

function 0(cosd'). 

5° Construct the vectors w21=W21» 
w3i-w3iW3i' ki and k7 from 

(4.22). 

* 
6° Calculate E from (4.44). 

7° From the velocities w2i'
w3i'w35~w31~w21' an<* t*ie c°msi°n 

A „^  jta  «^  «^  jt 

vector "k ,  calculate the velocities w" ,w' »W32
=w3i~w2l 

from (4.30).  [Not necessary for v=2.] 

8° Calculate the quantities A , B , C,  P , G from (4.52)- 
ji SL       /\ VVVVV 

(4.54), where k =k.-k . Then calculate the quantities 

<V t±f  K from   (4,55)' (4-57)' (4-59)- 

9° Determine 0_ , T*  and T*  in accordance with the 

prescription given in Table XI.  (For v=2, defer checking 

requirement 4° in Table XI until step 11°.) 
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10°  Calculate T from (4.64) and obtain the vectors p.. and 

p.. defined in (4.39). Note that T depends on the 

index V of the diagram. Thus 

S21 " "*1 + ;21(TV1>+V> 

P32 - *12 
_ ^X^+V» 

(4.90) 

are different for the three diagrams1 Next, calculate 

T from (4.49) and then the collision vectors k from 

(4.40). Finally, calculate the quantities d from (4.81) 

_* 
11°  For v=2, calculate T from (4.42) and check requirement 

4° in Table XI. 

12°  Calculate the primed differences (4.80) as given in Table XII. 

13°  Using the values found in the preceding steps, evaluate 

the required quantities in angular brackets in (4.89) and 

also the squares of these quantities (for computing the 

variances), and add these to respective cumulating sums. 

14°  Return to 1° and repeat for as many times M as is practical. 

Then convert the sums to averages, and so obtain Monte Carlo 

estimates of the three-collision quantities in (4.74)-(4.76), 

and (4.13), together with the uncertainties in these esti- 

mates . 

In order to obtain a correct estimate of the uncertainty in a sum 

of integrals, such as in (4.74) and (4.13), we add the integrands first, 

rather than the integrals last. 

If the cos9' test in 4° fails, i.e., if 0(cos6')=O, then all integrands 

can be set to zero and we may immediately go to 14°. Likewise, if and when 
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any of the 6  requirements in Table XI (see steps 9° and 11°) are 

found not  to be satisfied, the corresponding V integrand may be imme- 

diately set to zero. 

One practical difficulty arises, when the unit vector k_ 

is computed as a difference between two possibly very large vectors 

* 
[see (4.40), and note that the quantities p.. and T can become very 

large]. Among the precautions taken to circumvent this problem was 

the use of the double-precision computation mode on the Univac 1108 for 

all calculations of dynamical quantities.  In addition, we found it 

advantageous to first calculate the impact vectors b 

b3l"" P21+w21<w2l'P21>  ' 
A     -I. 

b32 =  P32 " W32(W32*P32)  ' (4'91) 

b33 =  P32 - «32 «V^  ' 

and then calculate the collision vectors k, from 

*31-  *31 * »21 ^^51 

*32 -  ^32 " "32 ^*S   ' (4'92) 

*33 =  S33-;32'^3 

instead of from (4.40). 

As was done with the single-overlap calculations, an empirically- 

determined "importance sampling" procedure was used to decrease the un- 

certainties in the Monte Carlo calculations.  For the record, the following 

importance sampling distributions were used [cf. (3.43) and the discussion 

thereof]: . 
I 4n 



AEDC TR-73-171 

(4. .93a) 

(4. ,93b) 

(4. .93c) 

(4. .93d) 

(4. .93e) 

P1(A1) <* expt-3^) 

P2(^2) cs exp[-2(l-A.2)] , 

W " exp [-1.5(1-^)] 

Pc (*..-) « 1+0.6 cos (274.)  , 
5  5 5 

P6**6J " exP("3'8 Ai5 

We note that (4'.93e) produces a sharp bias towards values of u near 1, or 

w  near 0. The need for such a transformation indicates that the magni- 

tudes of the integrands were becoming large for values of w  near 0 and 

is quite probably a reflection of the fact that the transformation in. (4'. 82-) 

used the exponent 4 instead of 3 . Had we used the exponent 3, the optimum 

form of P_ would undoubtedly be different from (4.93e) 
o 

The results of these calculations for the R-, H- and C- integrals are 

presented and discussed in Section 4.5. 

For many points in the 7-dimensional unit cube U the conditions 

for ®3V=1 (i.e. the condition that either/or a R-, H- and C-collision is 

dynamically possible) are not satisfied and the corresponding integrand 

will be zero. The fraction of the unit, cube where the integrand is non- 

vanishing is the efficiency ratio. This efficiency ratio depends, of 

course, on the importance sampling used. For the importance sampling 

(4.93) the efficiency ratio turns out to be 15% for the R-integrals, 10% 

for the H-integrals and 5% for the C-integrals. 

t 
Cf. footnote on page 129. 
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4.4 Special Evaluation of R-Integrals 

The R-collision sequence is dynamically simpler than the H- and 

C-collision sequences.  It thus lends itself more readily to a treatment 

in which the efficiency ratio is appreciably larger than the efficiency 

ratio of 15% connected with the method of the previous section. 

We work in the rest frame of particle 2 between the first and third 

collisions [in this section we need not append the subscript V to the 
A. 

quantities k , III and IV, since V=l is always understood). He take the 

center of particle 2 as the origin, W (II)=W.  in the +Z-direction, and 

k. in the first quadrant of the YZ-plane. The situation is as shown in 

Fig. 14.  The center of 1 is at point P  at the first collision, moves 

up to point P  for the second collision, and 'then comes back to point 

P  for the third collision. For fixed P.. it is seen that, as point P._ 

varies from infinitesimally above P.. to infinitely far above P.., the 

possible locations for P-„ on the action sphere of 2 vary from an infinite- 

simal neighborhood of P.. to the entire +z-hemisphere; however, in no  case 

can P.. ever lie in the -Z-hemisphere. The following is also true: For 

any fixed k satisfying 

0 < 9^ TT/2   , (4.94) 

and for any fixed k_ in the +Z-hemisphere, i.e.. 

0 < 83< TT/2  "* 

0  <   <f>3<   2TT 
(4.95) 

it is always possible to find a "critical point" P above P.. such that 

PP.  must be larger than P,,P in order that a recollision with perihelion 
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W5I     WI2  W3I 

Vw«w. 

W|2SW|2W|2 

Y-axis 

action sphere   of 2 

Figure 14.  Schematic representation of the integration variables used in 

the special calculation of the R-integrals. The origin is the 

center of 2 between the first and third collisions, with 

W (II)=W  in the +Z-direction and k in the first quadrant 

of the YZ-plane. 
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A 

vector k_ is possible. The point P is in fact the intersection of the 

line extending from P  in the +Z-direction with the plane tangent to the 

action sphere of 2 at P  (i.e., the plane through the tip of and perpen- 

dicular to k,). 

Instead of dealing directly with the distances P-,-,?-,- and P,,P , both 

of which can become infinitely large, we consider the velocity of 1 relative 

to 2 following the second collision, W12(III)=W' ; let 6 and $ denote, 

respectively, the polar and azimuthal angles of this vector. For fixed 
A A 
k and k satisfying (4.94) and (4.95), it is clear from Fig. 14 that the 

azimuthal angle <j> of W is completely determined, while the condition 

P P  > P P is equivalent to requiring the polar angle 9 to be greater 
11 12   H c 

than a certain critical angle 6 , which is also completely determined. A 

somewhat intricate analysis of the geometry of Fig. 14 reveals that the 

azimuthal angle <j> and critical polar angle 6 of W* are given in terms 

of the angles 9 , 0 , <{> by the following formulae: For the azimuthal angle 
JL J    -j 

we have 

cos<f>    = sin8  cos4>-/B 

sini^    -  (sin9 sin(J)_-sin91 )/B j 
(4.96) 

where 

B =   [(sin93cos(J>3)2 +   (sin93sin(()3-sin91)2]1/2 , (4.97) 

is the projection of P P _ onto the XY-plane, as shown in Fig. 14. For 

the critical polar angle 9 we find 

cos6„ -   -7=       ...M ' (4.98) 
sin9_ (sin9.sin<f>3-sin93) 

(l-sin81sin93sin$3)2-cos291cos293 
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Thus, with k and k specified according to (4.94) and (4.95), W' is 

specified by fixing its azimuthal angle according to (4.96), and requiring 

that its polar angle satisfy the condition 

-1 < cos9 < cos0   . (4.99) 
c 

-».     -k. 

The magnitudes of both W  and W" are evidently unrestricted: 

0 < w  < oo (4.100) 
12 ' 

0 < w-2 < oo       . (4.101) 

With W , W , k. and k fixed, it remains only to specify the vectors 

k and W (ll)=w . We let 8 and <J> denote the polar and azimuthal angles 

of k ; and we let 0 and <J> denote the polar and azimuthal angles of W 

relative to a coordinate system with fc„ in the +Z-direction.    By definition 

we have 
A.  A 

W -k =? cos8       f (4.102) 

and an obvious requirement for the second collision to occur at all is [see 

Fig. 14] 

0 < cos0 < 1       . (4.103) 

Apart from requirement (4.103), the only other condition on W  and k- is 

that they be such as to satisfy the velocity-change equation 

%2 ""u* *3l"V2   ' <4-104) 

for fixed vectors W  and W' . In fact, (4.104), together with (4.103), is 

seen to determine completely  the vector k according to 
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*2 " (^i2-*12)/l%2-"l2l    ' (4'105) 

and also the magnitude of W  according to 

W31 = |w^2-W12|/=ose       . (4.106) 

The polar angle <f of W  is evidently unrestricted: 

0 < <J> < 2ir  . (4.107) 

It follows from the foregoing observations that, in addition to the 

four variables W and W , the following set of seven variables can serve 

as integrating variables for the R*-integralss 

cos9. in (0,1) 

COS0 in (0,1) 

♦3 
in (0,2TT) 

cos6 in (-i,cosec) 

w* W12 
in (0,«) 

cosd in (0,1) 

4» in (0,2ir) 

(4.108) 

The attractive feature of these variables is that only one of them has a 

non constant limit [the upper limit on cos6 is the complicated but bounded 

function of 6 , 8 , <f> in (4.98)], and only one variable has an infinite 

range [the upper limit on W' is •]. 

Before attempting to express the integral form (a,ß)  in (4.2) as an 

integral over the variables in (4.108), let us collect the formulae giving 

all the quantities of dynamical interest in terms of these new variables. 
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In anticipation of the subsequent analytical "scaling integration" 

over the variable W, „, we shall express all velocities W.. in terms of 
12 r 13 

their "scaled" values, 

w. . =  W../W,„. 
i]   ij' 12 

(4.109) 

In the coordinate frame of Fig. 14 we have 

W12 = 
(4.110a) 

k.  = 

0 

sin6. 

COS0 
1 J 

(4.110b) 

k„ = 

sin9 cos<|>, 

sin9 sin<J>. 

cos8_ 

(4.110c) 

12   12 

sin9cos$ 

sin9sin<(> 

cos0 

(4.110d) 

where <f> is defined in (4.96) and (4.97); 

A 
k. 

sin8 cos<f> 

sin9-sin4> 

cos9_ 

(4.110e) 

where we have used (4.105) to deduce that the azimuthal angle of k. is the same 

as that of w" ,while the polar angle of k. is given by 

cos9 = (w'_cos9-l)/6 
(4.111) 

sinG = w' sin9/6 
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with 

= |w' -S_ J- /w7^ ö = Iwi2~
W12I= / Wi2"2wi2COSe+1   ' (4.112) 

w31 = Rz(-*).y-e2). 
w    sin6cos<j> 

w    sinösincj) 

W_..COs8 

(4.113) 

where the rotation matrices (defined in Table IV) transform the components 

of w  out of the frame defined relative to k_ as polar axis, and where w 31 

is given by [cf. (4.106) and (4.112)] 

w  = 6/cos9 . (4.114) 

In terms of the above quantities, the scaled relative velocities in the 

various regions are as follows [cf. (4.31)-(4.34)]: 

w12(II) =w12 

w31(II) -w31 
(4.115) 

w12(lll)=wi2 

w31(III)=:31 = w31 - 2w31-k2k2 
(4.116) 

«12(D     =w12- Ä^kj 

*31(I)     = "31 + "l2"*A 
(4.117) 

w12(IV)   -wia-  2wi2-k3k3 

«3i(IV) = "3i 
+%2 "Va 

(4.118) 
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It is clear, then, that the set of variables, W , W , and the ones 

listed in (4.108) [with W' replaced by w'^WJo/W-i,] >  indeed constitutes a 

viable set of integrating variables for the integrals (a,$) . given in (4.2). 

However, the transformation from the set of variables in (2.28) and (4.2) to 

our new set is not altogether trivial. We now direct our attention to this 

problem. 

To begin with, we make a change of variables similar to (2.35) except 

we use W  instead of W  : 

w0 = \(w1+w2+w3)^ f wx = w0+|(Wl2-w31) 
wi2=Vw2 Y   or 1   »2- vi^u^si* (4'119) 

w   = w -w 
31    W3     1 

W3=W0+i(2W31+W12) 

so that 

Wl+W2+W3 = 3Wn+E     ' (4.120) 

with 

E E I{Wi2
+w231+"l2^31)  ' (4*121) 

Introducing this transformation into (4.2) and introducing also the trans- 

formation (2.34) we have 

/dV (0t,B>31 = 'S*    I  dV^3A
dJ;2dTl"l2^lll«31^2lÖ W°e E 

n. 

x {a(i)-a(ii)}*{ß(iv)-3(iii)}   • (4.122) 

155 



AEDC-TR-73-171 

Here, ti    is the integration region appropriate to the R(V=1)-diagram in 
R 

Fig. 12; the velocity regions refer, of course, also to this diagram. 

Taking W  along the Z-axis and k in the YZ-plane performs three trivial 

integrations and introduces an overall factor of Sir2 in accordance with 

(2.41). Using the previously defined angular variables, and noting that 

the occurrence of the first and second collisions requires 

W12*kl = w12COs8l> ° ' (4.123) 

W3l'k2 = W3icos9 * ° ' (4.124) 

we may write   (4.122)  as 

2TT 
P   m   — #» — — 

(a,ß)31 = i^ll   |   \   §d*wn | dW01W*-> I   dcosO,   f dcosO   f d<j> /   /   |d3"o / dW21W21 /   doos6i  / dcos^   / d 

<» 0 0 0 0 

fflh" 
2   „* 

- "3W0 E 

* dcos6_d<J>2dT 0  cos8 cos8e 

x{a(l)-a(ii)}*{ß(iv)-ß(lll)}        . (4.125) 

In (4.125) we have put the upper limits on the variables cos8 , cos6 <f> 
1     i 

as required by (4.108). However, the limits on the variables W,_, cos8_, 

<J> and T are not known at the moment; therefore, we have introduced the 

quantity 0 which is 1 or 0 depending on whether the requirements for the 
hi. 

R-collision are or are not satisfied.  If we now introduce the scaling 

transformation 

W31 +  W31=W31^21 

t ' (4.126) 
T - T =W12T 

156 



AEDC-TR-73-1 71 

and define 

E* = fu-^+V^l'   ' (4.127) 

then (4.125) becomes 

(a,ß) = 12/2 
31 = sir1» 

«>                                      Ä   1                      1 2TT 

I  I   Id3^0e      ° I   dW12W12e    12      I  dcos9i I  dcos8 I 

00                              0                                     0                   0 0 

x  jJJ I dw31dcos62d<f>2dT* 0R w^cosS cos9 

x {a(i)-a(ll)}*{6(iv)-ß(lll)}      . (4.128) 

Our task now is to transform the variables (w,.. ,cos9 ,<(>_,T ) into the 

"desired" variables (w' ,cos9 ,<(> ,cos9); note that we may then omit the 

quantity 0 in (4.128) by simply inserting the integration limits on these 
R 

new variables as indicated in (4.108). The difficult part of this task is 

to compute the Jacobian of this transformation: 

J = 
3(w31,cos62,j>2,T ) 

8(w',cos63,<|>3,cos9) 
(4.129) 

For this purpose we note from (4.111), (4.112) and (4.114) that w  and 

cos6 are given by 

w3i = E*i2"2wi2cos8 + Ü A /cos9 

cos8 = (w* cos6-l)/[w'|-2w' cos9 + 1] 
1/2 

(4.130a) 

(4.130b) 

Further, since (f>2=<J>, then we have from (4.96) 
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$    = arctan 
sin0 sin<J> -sinö 

sinÖ  cosfj) (4.130c) 

Finally, to calculate an expression for T we need only to observe that 

T  = W  T P  P 
12   11 12 

Hence, an analysis of the geometry of Fig. 14 yields the expression 

[cf. (4.97)] 

2,1/2 T* = -cot6[(sin9 cos$ )z+(sine3sin<{> -sinö )2] '  + cos6 - cosO^  (4.130d) 

Equations (4.130) evidently permit us to calculate the Jacobian (4.129) 

This computation is rather lengthy, but yields the result 

J = 
-w" w' *k_ 

12 12 3 

6 Bsinöcosö 
(4.131) 

where 6 and B are defined in (4.112) and (4.97), and where the minus sign 

appears because the only negative quantity on the right side of (4.131) is 

the inner product w' -k  [see Fig. 14]. 

We now insert in (4.128) the transformation 

00 1 2TT COS0 

//// 
dw    dcosö d(() dT 0R=    JdWi2J"dCOSe3j   d*3 jl dcosö    I   d<f>„   J dcos0 J 

0 -1 

Writing J as in (4.131) and w  as in (4.114), we obtain the result 
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,       0, 12/2 (a,B),n =  
31 5TT* 

///d3v 3W° /^/^ 
00 0 

1 1 2ir        «> 1 2TT        cosG 

x  I dcosS     I dcos8 fl <3$   f dw'     I dcos8     I d$3      I     dcos8 

0 0 0        0 0 0-1 

6w' w' 'k cos8 
*  -= {a(i)-o(li)}*{ß(iv)-ß(lii)}     .       (4.132) 

Bcos 8sin8 

We can eliminate the singularity at sin9=0 by changing variables from cos8 

to 9. Thus, 

31 57T- 

00 

fff^    "3W0    /\„    „6     -W12E* 
JJJ       °B J        I*"6 

0 

1 1 2TT IT 1 2TT <*> 

t I  dcos8  I dcos8 f d<f I d9 f dcosS I d$ I dwj. 

0        0        0    0    0      0    0 

OW' Wf "k cosö 
x 0(8-9 )  12 12 3„ -{ct(i)-a(ii)}*{3(iv)-ß(iii)} ,     (4.133) 

c     Bcos39 

where the theta function 0 (8-8 ) is unity if cosö < cos8  [see (4.99)] and is' c c 

zero otherwise. 

Using this integral form we want to evaluate again the recollision con- 

tributions (4.15) to the transport coefficients 
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X*131(i) = -(lwmw^Iwnw^)  , 
vm=l    n=l   ' 31 

^m=l    n=l   -^31 

D*31(l) = - 4(.W2,W2) 

\2±(1)  = -LLWmWm'_lWnW„J3i ' (4'134) 

Each integral of (4.134) contains a specific polynomial in W ,W ,W . We 

express these polynomials in terms of the variables W ,W ,W  according 

to (4.119).  The W -dependence is thereby rendered explicit, and the W - 

integration in (4.133) can then be carried out analytically. The poly- 

nomials now involve only the velocities W  and W    Scaling according 

to (4.126) will then render the W  dependence explicit, and the W - 

integration in (4.133) can be carried out analytically. These operations 

leave us with 7-dimensional integral expressions for the quantities in 

(4.134). It is found that, after the W -dependence has been integrated 

out, the quantity {a(I)-a(II)} always contains the factor w *k , while 

the quantity {ß(IV)-ß(IH) } always contains the factor w* #k-, for all 

functions a and (3 with which we shall be concerned. Hence we introduce 

again the primed differences 

{a(i)-a(ii)}' = (am-odi)}/^'^ , (4.135a) 

{a(IV)-a(ill)}' E {adv)-a(iii)}/w^2»k3 . (4.135b) 

if we carry out the W - and W. -integrations, we obtain [c.f.(4.74)~ 

(4.76)] 
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it -».-». no _k.  .A. 

X131(1) * "3(L1'L1)31 " 4 ^l'Vai ' (4.136) 

ni31(1) = "l(h'V31 ' (4.137) 

D*31(l) = -4(w20,w20)31 , (4.138) 

where the functions K. and L. are again defined by (4.77) with 

"l0(i) = 3["l2(i)""31(i)1 

w2Q(i) =-|c2w12(i)4^31(i)]  (1-1,II,III,IV) >-  , (4.139) 

w3Q(i) = i[2w31(i)+w12(i)] 

and where (a,a)  is now given by 

1 1 2TTTT1 2TTco 

(a,0t)3i=-_|    1 f  —_3|   _3 f   _„f    i    _r f   _..i2 -I   dcose^^ I  dcos63 I   d<f»3 I   d9 I   dcosGl    d$  I  dw^, 

0    0   0     0    0 

6w,3(w' *k )2cos26 
x 6(9-9 ) 12««^Ü 3  {a(I)-a(II)}■*{a(IV)-a(III)}, 

BJ9/2Boos»8 

(4.140) 

The integrand {a(I)-a(II)}'*{a(IV)-a(III)}' may again be obtained from the 

formulas presented in Table XII. 

At this point we might compare the above expression for (a,a) . with 

the expression (4.79). In (4.79) we had to concern ourselves with the 
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dependence of the integrand on w , in order to effect a suitable change 

of variable w..-*1 u which transformed the infinite range 0<w3.«» into a 

finite range 0<u<l.  In (4.140) we face a similar problem with the infinitely 

ranging variable w" , but it is the case that the asymptotic behavior of the 

integrand in (4.140) on w1  is not  the same as the asymptotic behavior of 

the integrand in (4.79) on w .; thus, a full investigation of the w' -depend- 

ence of the integrand in (4.140) for the functions a required by (4.136)- 

*-9/2 (4.138) is necessary.  Both (4.140) and (4.79) involve the factor E    , 

* 
and this, causes no boundedness problems since E can never approach zero 

[from (4.127), E >-{ (w -1)2+w }>0 ]. However, in (4.79) we had to investi- 

gate the unbounded behavior of A in order to be certain that the quantities 

multiplying A always kept the integrand bounded.  In (4.140) we must 

similarly concern ourselves with the behavior of the integrand when B-K) and 

when cos6-*0. 

The analysis of the behavior of the integrand in (4.140) for the cases 

w" -*-0, w' -*°°, cos6-K) and B+0 is quite lengthy, and we shall give only a 

brief summary of the results here. 

A detailed investigation of the w' behavior of all integrands of inter- 

est leads to the conclusion that the transformation 

with 

u = (l+w£*) *     , (4.141a) 

Wi2dWi2=-5 7   . <4.141b) 
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maps the infinite w' -range onto the unit interval in such a way as to 

keep all integrands smooth and bounded at the limits w' -*-0(ir>-l) and 

w' -*>°(u-K)).  With this transformation, (4.140) becomes 

1 1        2TT     7T    1       2H   1 

I dcos6      I  dcosö3   I   d<t>3 /  d9 I  dcosB   | d$ | (a,a)       =-2ll    i  dcosO,     |  dcosO.,   f    d«t», |   d8 f   dcos8   | d<f> f   du 

0 0 0        0 

A A 

6(w"   *k )2     \ /cos20 
x 0(8-6 )       ^—     —-—-     {a(I)-a(II)}'*{a(IV)-a(III)}•  , 

c 2  *9/2      3S B 1   u E        cos 6 ' l 

(4.142) 

where it is henceforth understood that w"  is given by 

. -fHv" (4.143) 

Next, we investigate the boundedness of the first factor in paren- 

thesis in the integrand of (4.142). For this purpose it is useful to 

-*■ * 

eliminate w  from the expression for E in (4.127). It turns out that 

this leads to 

E* - e/cos26 , (4.144a) 

where 

e = 3[w{| + w'   {cos8(cos6cos9-sin8sin8cos<J>)-2cos6} + f) . (4.144b) 

163 



AEDC-TR-73-171 

Thus we have 

5(w^2«k3)
2    5(wJ2*k3)

2cos60 

2 *9/2  3 =      TV2 (4.145) 
u E   cos36       u e 

Now the limit u-K> need not concern us, since the u (or W ) behavior 

of the integrand has already been judged acceptable. However, we must 

look at the possibility of e-*0. A detailed analysis of (4.144b) reveals 

that e=0 if and only if w' =1 and  sin6=0 and  cos9=0. Further analysis 

shows that 

for w' =1, 8 near 0, 6 near IT/2: 

e=s-(sin26+cos26-sin6cos0cos<J>), 

6*sin6, (4.146) 

|w12*k3l<sine 

Therefore, when e is near zero we have 

6(w' •k_)2cos6e     sin6 sin20 cos60 
12 3       $ 1  ,     (4.147) 

e9^2 Max(sin90,cos96) 

which shows that the first factor in parenthesis in the integrand of (4.142) 

is always bounded. 

Finally, we investigate the boundedness of the second factor in 

parenthesis in (4.142). The problem here, of course, is with the case 

B=0, where B is defined by (4.97).  The geometrical meaning of B is indi- 

cated in Fig. 14. 164 
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Since, according to Fig. 14, B is the distance from the tip of k to 

the line extending vertically upwards from the tip of k , it is con- 

venient to introduce a polar representation (9',$') of k in a frame 

having k as its polar axis.  Such a frame is obtained simply by rotating 

the frame in Fig. 14 about the X-axis through an angle -6,- The angles 

(9',<Ji') and <9-,<J> ) are thus related by 

sin9 cos<t> 

sind .sind» 
3   3 

cos9_ 

Rx(+9l) 

sin9'cos<|>' 

sin9'sin<{>' 

cosG' 

(4.148) 

where the rotation matrix R (6,) is defined in Table IV. Eq. (4.148) 
x 1 

shows how the components of k in the coordinate frame of Fig. 14 (i.e., 

the angles 9 and <f> ) are obtained from the components of k in a frame 

whose Z-axis points along k (i.e., the angles 9' and <J>") . In particular, 

one calculates from (4.148) that 

cos9 = -sin6 sin9'sin<|>' + cos9 cos9' (4.149) 

With  (4.148)  we can express B in  (4.97)   in terms of 9   ,9',(f)'  as follows: 

B =  [2(l-cos9')   -  {sin9'sin9  sin<|>'  +   (l-cos9')cos9  }2]1'2 
(4.150) 

From this expression (and the geometry of Fig. 14) It may be deduced 

that B=0 is and only if 9'=0. A more detailed analysis reveals that 

the most rapid approach of B*0 with 9'-»-0 occurs when we also have 

(J> -HT/2; specifically, we have for 
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<J>' = TT/2, 9' near 0, 8 near ir/2: 

B ~Vj sin9^cos2ei   , (4.151) 

whence 

cos2 9 

B  / 

/2 
Sin93 

Consequently, the second factor in parenthesis In the integrand of (4.142) 

can blow up like l/sin6' in the limit 9'-K). To circumvent this problem, 

we change variables (cos9_, <)>,)-»■ (9',<{>') according to 

dcos63d<j>3 = dcos9^d4>^ = sin&^de^d«^   . (4.152) 

Since this transformation introduces a factor sin6', it clearly solves our 

problems when B->0. However, the limits on 9' and <{>', will be rather com- 

plicated, since the lower limit on cos6 was 0 and not -1. The simplest way 

to proceed is to let 9' and <J>' vary over their full limits, and to insert 

a theta function requiring the quantity in (4.149) to be positive. Thus, 

our expression for (a,a)  in (4.142) now becomes 

1      TT   2ir   - TT   1      2TT1 

I   dcosgj^    I   d93    /   d<j>3   / d9   Jdcos9     Id*     fc (arOt)31 = - ?-£-  I dcose,   i de;  f  a<}>;  | d9  I dcose   I a*    f du 

oo oo 

/    6(w'   -k )2   \/sin8'cos2ei 

x 0(cos9j  0(cos8 -cos8>      *j, J       1 X 

3 C u2E*9/2cos39/ B 

x {a(I)-a(II)},*{a(IV)-a(III)}, 
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where now the integrand is a bounded function of the integrating variables 

for all functions a of interest, and where it is henceforth understood that 

the angles 6_ and <J>_ are given by (4.148} . 

A final trivial transformation of variables is made to simplify the 

Monte Carlo evaluation of (a,a)  . Namely, we transform the 7-dimensional 

"box" which forms the integrating region for (4.153), into a 7-dimensional 

unit "cube": 

cos6 = A. 

93 - **2 

<J>^ = 2TT(* +0.25) / 

9 = Tttl. 

cosB = K, 

<{> = 2TT4. 
6 

U = V wi2
=[(1'u)/ul 

1/4 

(4.154a) 

(4.154b) 

(4.154c) 

(4.154d) 

(4.154e) 

(4.154f) 

(4.154g) 

Since the Jacobian of this transformation is 

a (cose, ,6' <|):,8,cos0,<(),u) 
 k £ *  = A-** = 4^ 

"d {K.,fL, ... ,*._) 

then we obtain our final formula  for (a,a)31: 

(4.155) 
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1       1 

3—  /"l/ dV-'-  J^7
0( (a,a)31 = - 

7 Q    I dA  I <W2   I dA? 0(cos6 ) 0(cos8c-cose) 

6(w|2-k3)
2 \ /sinG^cos^ 

 ^75 z\\  5 1 fa tt)-a (ID }'*{<*) IV)-cUni)}'      . (4.156) 

Using the integral form (4.156) we may now calculate the R-collision 

integrals (4.136)-(4.138). The Monte Carlo procedure for numerically 

evaluating the integral (4.156) is to average the integrand over a set of 

points {P }={/t ,K ,..,,K }  picked from a random, uniform distribution in 

the 7-dimensional unit cube U : 

^ 7/7w2 /  *Cw"   -1c >2     \ / sin9:cos2e 
(a,a)      m<^-  /VJ"    6(cos8J  0(cos6_-cos8)' '" x 

\ 

8       3      c     I 2„*9/2  3S / \    B     / \ u E   cos 9 / \ ' 

x {a(i)-a(li)}'*{a(iv)-a(iii)}^>     .      (4.157) 
U7 

The uncertainty in estimating this average with a finite  set of points 

12     M 
{P ,P , ...,P } is given by the r.m.s. deviation of the quantity being 

averaged, divided by /M . Hence, our computational algorithm is as 

follows: 
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1°  Generate 7 independent random numbers fl. ,fl  ,... ,K    from 

a uniform distribution in the unit interval. 

2°  Calculate the quantities 0 ,9',<f>',9,9,(|>,u (and w" ) from 

eqs. (4.154). 

3°  From 9 ,9' and (j>^, calculate 0, and <j>, from (4.148). Set 

the first theta function in (4.157) to 0 or 1 according to 

whether cos9  [see (4.149)] is negative or positive. If 

cos0 <0 proceed to step 11° with all integrands equal to 

zero, noting that the coordinates fl.tfict^f-i*1-  have not 

been used and need not be regenerated for the next point. 

4°  Prom 9 ,6 , and 4>_, calculate cos0 from (4.98), and set 

the second theta function in (4.157) to 0 or 1 according 

to whether cos6 is greater than or less than cos9 .  If 

cos9>cos6 proceed to step 11° with all integrands equal 

to zero, noting that the coordinates flc,fl.,fl-  have not been D 6 7 

used and need not be regenerated for the next point. 

5°  Calculate B and <j) according to (4.97) and (4.96). Calculate 

6,9_ and w  according to (4.112), (4.111) and (4.114). 

6°  Calculate the vectors k , k and k according to (4.110b), 

(4.110e) and (4.110c). Calculate the velocities w  and 

w' according to (4.110a) and (4.110d). Calculate the 

velocity w  according to (4.113), and calculate the 

velocity w' according to the definition in (4.116). 

* 
7°  Using the above vectors, calculate E according to (4.127), 

and also calculate w' »k. 
12 3 
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8°  From the region II velocities w, _ and w„, and the collision 
* 12     31 

vector k., calculate the region I velocities according to 

(4.117). Similarly, from the region III velocities w' 

-ft. A 

and w" and the collision vector k , calculate the 

region IV velocities according to (4.118). 

-A.       -4. -V 

9°  Evaluate the velocities w , w  and w, in all velocity 

regions according to (4.139). Then evaluate the quantities 

K and L in all velocity regions according to (4.77a) and 

(4.77b). 

10°  Using the definitions (4.135), calculate the primed 

differences in (4.157) for the functions a appearing in 

(4.136)-(4.138)(see Table XII). 

11°  Using the values found in the preceeding steps, evaluate the 

required integrands in angular brackets in (4.157), and 

also the squares of these integrands (for computing the 

variances), and add these to respective cumulating sums. 

12°  Return to 1°, and repeat for as many times M as is 

practical. Then convert the sums to averages, and so 

obtain the Monte Carlo estimates of the quantities in 

(4.136)-(4.138), together with the uncertainties in these 

estimates. 

In the actual calculations, steps 8°-10° were combined by calculating 

the primed differences in quantities K ,L and w_n analytically in terms of 

the velocities in regions II and III and the other integrating variables 

as indicated in Table XII. The computer calculations were carried out in 
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double-precision to minimize the effects of round-off errors on certain 

critical dynamical quantities. 

Again, an empirically determined importance sample procedure was 

used to effect a substantial reduction in the uncertainties without 

increasing the number of sampling points M. This time the following 

importance sampling distributions were used [cf. (3.43) and the 

discussion thereof]: 

P2(*2) « exp(-9t2) , (4.158a) 

P3(*3) 
a [(A3-0.5f + (0.15)8] \ »l"1. (4.158b) 

PC(A_) = exp[-3(l-*_)]       , (4.158c) 
0  3 D 

P^(AJ * 1+0.65 cos(2TTA )    . (4.158d) 
6  6 6 

The heavy bias in (4.158a) toward low K  -values indicates, according to 

A A 
(4.154b) and Fig. 14, that the configurations for which k. and k, are 

close together contribute strongly to the R-integrals. The additive 

constant 0.25 in (4.154e) was inserted to simplify the importance sampling 

on the K   variable in (4.158b). 

The results of these special calculations for the R-integrals are 

presented and discussed in the next section. 
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The "parallel calculations" of the R-, H- and C-integrals described 

in Section 4.3 were carried out by means of a computer program called 

Subroutine RHC. The "special calculation" of the R-integrals as described 

in Section 4.4 was carried out by means of a computer program called Sub- 

routine RECOLL. 

The results of the calculations of the R-integral are presented in 

Table viii. Eight runs were made with subroutine RHC and four runs were 

made with subroutine RECOLL.  Each RHC run used 500,000 random points 

[with approximately 15% of them actually satisfying the conditions for 

non-zero theta functions 0(cos8') and 6   in eq. (4.89)], and required 

about 36 minutes of "cpu time", or 18 minutes of chargeable "core time", on 

the Univ. of Md. Univac 1108 Computer.  Each RECOLL run used 200,000 random 

points [with approximately 52% of them actually satisfying the conditions 

for non-zero theta functions 0(cos6 -cos9) and 0(cos9_) in eq. (4.157)], 

and required about 13 minutes of "cpu time", or 5 minutes of chargeable 

"core time", on the same computer. The agreement between the RHC results 

and the RECOLL results is seen to be quite satisfactory; in view of the 

considerable difference between the computation schemes outlined in 

Sections 4.3 and 4.4, this constitutes a very strong consistency check on 

our R-collision integrals. We take for our "best values" the averages of 

all twelve runs in Table viii; the uncertainties quoted in these "grand 

averages" evidently represent a conservative estimate of the 95% confidence 

limits. 

The first four RHC runs listed in Table viii actually calculated the 

R-, H- and C-integrals simultaneously. The H- and C-r&sults- are presented 

in Tables ix and x. Like numbered runs in Tables ix, x and xi and in the 
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upper part of Table viii refer to the same physical computer run. We 

mentioned that each of these four runs used 500,000 random points in the 

7-dimensional unit cube, and required about 36 minutes of "cpu time", 

or 18 minutes of chargeable "core time", on the Univ. of Hd. Univac 1108 

Computer. The percentages of the 500,000 points which satisfy the 

theta function requirements (i.e., the dynamical conditions) of the 

various diagrams were approximately as follows: 

15.5% satisfied R , 

9.3% satisfied H , 

4.5% satisfied C , 

11.9% satisfied R only , 

3.6% satisfied H only , 

2.3% satisfied C only  , 

3.6% satisfied R and H only , 

0.03%satisfied R and C only , 

2.1% satisfied H and C only , 

0.04% satisfied R and H and C. 

Little objective significance can be attached to the above figures, 

since they will vary drastically with whether or not importance sampling 

is employed; these figures are for the importance sampling scheme described 

in eqs. (4.93). 

Concerning the results obtained for the R-, HT, >and C-collision 

integrals, we may note the following features. 

1°  The sign  of the contribution from a given diagram is usually 

N (-1) , where N is the number of non-interacting collisions 
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required by the diagram (N=0 for the R- and C-diagrams, 

N=l for the H-diagram). Note that this rule holds for the 

Enskog (N=2) and S0(N=1) contributions as well. The only 

exceptions  to this rule seem to be the H-diagram contribution 

to the viscosity (which is positive instead of negative) and 

the C-diagram contribution to the viscosity (which is 

evidently consistent with zero). 

2° ■ The C-diagram contributes least of the three-collision 

diagrams. 

3°  For the thermal conductivity and the viscosity, the H-diagram 

contributes more strongly than the R-diagram. 

4° For the self-diffusion, the R- and H-contributions are both 

large and of comparable size, but are of opposite sign. 

Thus, the R- and H-contributions largely cancel each other 

for the self-diffusion. 

Results obtained for the total contributions from the sequences of 

three successive collisions are shown in Table xi. The totals X* (1), 

r|* (1) and Dt,d) were calculated as separate averages of the sums  of the 

R-, H- and C-integrands in the four main runs, i.e., first four runs, of 

Subroutine RHC.  Since about 25% of the points which satisfied some one 

diagram also satisfied at least one other diagram, this procedure allowed 

us to incorporate whatever correlations were present in deducing error 

estimates for the total contributions. Thus the errors in the totals, such 

as A* (1) , are somewhat less than the combined uncertainties in ^„(1), 
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A*  (1) and ^133(
1)» and similarly for the viscosity and self-diffusion. 

The results for the three-collision contributions are summarized 

in Table XIII.  For the final values of these collision integrals we 

have selected the average values for the H- and C-collision integrals 

in Tables ix and x and the grand average for the R-collision integral 

in Table viii.  The error estimates for the total three-collision con- 

tributions are obtained from the four main results in Table xi as dis- 

cussed above. 

The most outstanding feature of the net three-collision results is 

that A* (1) is negative whereas n* (1) and D* (1) are both positive. 

The difference in sign between A* (1) and n*,(D is traceable to the 

difference in sign between their H-diagram contributions, which dominates 

in both cases. We note that if the R-diagram contribution to the self- 

diffusion had not been doubled by the fact that the same two particles 

participate in the first and last collisions [see (4.76)], then D* (1) 

would have been dominated by its negative H-diagram contribution just as 

A* (1) was. 

Evidently, the three-collision contribution to A (1) tends to rein- 

force the single-overlap contribution, whereas the three-collision con- 

tributions to nfd) and D*(l) tend to offset the respective single-overlap 

contributions. 

In Chapter III we calculated the single-overlap integrals in two 

different ways, thus providing a consistency check on our computer 

programs.  In this chapter we have calculated the R-collision integrals 

by two different proceedures, thus testing the consistency of 
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Table XIII 

Summary of Three-collision Results 

Coef.   = R-contribution +  H-contribution +  C-contribution  = Total 

X*3<1> +0.0128+0.0002 -0.0307±0.0004 +0.0051±0.0003 -0.0128±0.0005 

nj,(i) +0.0101±0.0003 +0.0276±0.0004 -0.0001±0.0002 +0.0376±0.0005 

Dj,(l) +0.0980±0.0008 -0.0917+0.0008 +0.0282±0.0007 +0.0345±0.0013 

Note: All uncertainties represent 95% confidence limits. 
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these results as well. We note that the H- and C-collision integrals 

are computed from Subroutine RHC by the same logic as the R-collision 

integrals.  In addition, however, it is possible to make a consistency 

check relating the procedure for calculating the H-collision integrals 

with the single-overlap collision integrals. We shall refer to this 

check as the "H-SO Test." 

The "H-SO Test" is obtained by considering the collision integrals 

that account for the contributions from the NS-collision sequence in 

(2.25) 

{♦.X}£}-{X.*>2}i  {*rX>£} - ft,*}^    i (4.159) 

The SN- and NS-collision sequences are represented schematically in Fig. 15. 

The SN-collision sequence is the same as that shown in Fig. 6b. The NS- 

collision sequence is related to the SN-collision sequence by time reversal. 

As pointed out in Section 3.1, the SN-collision sequence is obtained from 

Fig. 10 if we require T'<T, where T" is the time that particles 2 and 3 

separate. Thus the collision integrals (4.159) are given by the single- 

overlap collision integrals (3.1), (3.3) or (3.42) if we replace the inte- 

grand A+©(T-T')B with 0(T-T')B. They may thus be obtained directly from 

Subroutine OVRLAP if we drop the first term of the integrand A+0 (T-T')B 

in (3.42). 

On the other hand, the NS-collision sequence may also be obtained from 

Fig. 12b, if we replace the condition T<T? with the condition T>T-. Thus 

the same collision integrals may also be computed from Subroutine RHC by 

evaluating (4.89) for V=2, when the condition T<T_ is replaced with the 
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condition T>T
2* 

Botn procedures should yield the same results, since 

it follows from (4.159) that in the first Enskog approximation 

XSN(1) =XNS(1)'  nSN(1) =nNS(1)'  DSN(1) = DNS(1)  " (4"160) 

2 3 

SN-SEQUENCE NS -SEQUENCE 

Fig. 15.  The SN- and NS-collision sequences. 
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The results obtained for the SN-collision integrals (from Subroutine 

OVRLAP) and for the NS-collision integrals (from Subroutine RHC) are 

presented in Table xii. The agreement between the results obtained 

with the two different procedures is seen to be quite satisfactory. 

The "H-SO Test" may also be formulated in the following way. If we 

drop the requirement T<T_ in the calculation of the H-collision integrals, 

Subroutine RHC yields the combined contributions from the H-collisions and 

NS-collisions. The results of these computations are given in Table xiii. 

The same results should be obtained if we add the H-collision integrals 

from Table ix to the NS-collision integrals obtained from Subroutine 

OVRLAP after replacing the integrand A-tÖB with 0B. The latter values are 

presented in the last row of Table xiii. In view of the differences between 

the procedures used to evaluate the SO- and the H-integrals, this agreement 

constitutes almost as strong a check on our H-integrals in Subroutine RHC 

as Subroutine RECOLL did for the R-integrals. 

Another attempt to calculate the three-collision integrals has been 

made by Condiff and cöwörkers [16,17]- As pointed out in AEDC-TR-72-142[3] 

they consider the collision integrals {^,x)R » ^'X^H+NS' ^'^C 

together with the EVD-integrals defined in (3.66). Their results, there- 

fore, should be compared with the numbers listed in Tables vii, viii, xiii 

and x.  The computer results, found originally by Condiff and coworkers, 

differed in various aspects from the numerical results presented in this 

report. However, after making a comparison with our results they were 

able to locate some errors in their original calculations. At the time 

of this writing, Condiff has informed us that his group has now been able 

to confirm the results presented in this report [17]. 
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CHAPTER V 

SEQUENCES OF FOUR SUCCESSIVE COLLISIONS 

5.1 Introduction 

In this chapter we consider the contributions from four successive 

collisions among three molecules (U=4). The corresponding collision inte- 

grals 

2 

(*,x><3> -  lji*.x}£ * <x,<5]    . 

{♦.X>J3) ■ J^*'X>J? + {X.*)J?]  . (5.D 

were defined in (2.32) and (2.33). They are related to the RH-collision 

sequence (V=l) and RC-collision sequence (v=2) shown in Fig. 8. We shall 

only evaluate the four-collision contribution to the transport coefficients 

in the first Sonine approximation. In this approximation ty=x so that we 

consider 

{*,*>i3) = 21 (t,*)^ 
V=l 

(5.2) 

9 

it»*}™   - 2 I  {*,t>^} 

V=l 

The geometry of the RH-collision sequence and the RC-collision sequence 

is shown schematically in Fig. 16.  In analogy to the procedure followed in. 

Chapter III and IV we define 
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(nn = us;) (a) RH - SEQUENCE 

A 

(BL) 

H ; TT\ (b) RC-SEQUENCE 
U«2) 

(m)                   / 
■I --/- (n)          ws / 

A   \ 

IM 
/w, 

r 

V, T 

.   1 
(I)     /    ' \ '31 

Figure 16.     Diagrams associated with [ty,x}d      and {ty,y}.     • 
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/ 
ß 

4V 

A A 

(a,a)       =   (-1)V -^      I      dw.dw_dw-.dk.dk dT 
4V 6 I 0     12     31     i     2 

(5.3) 

-3W*-E *  |w12-3t1l |w31-k2|e'JVB{a(l)-a{ii)}*{a(vv)-a(ivv)}, 

where the integration variables W.fW .W ,k ,k and the quantity E are the 

same as in Section 4.4 for the R-integrals. In terms of the integral form (5.2) 

we may rewrite the collision integrals (5.3) as 

0>.Ml
A
3)  =    I   ^,V) , (5.4a) 

v=i 

3 
where ¥■ Y ty    as in  (2.42),  and 

m=l 

ÜMM4      = 2 I   (♦2f*2)4v- (5.4b) 
v=l 

In (5.4b) we use the fact that only particle 2 is involved in both the first 

and last collisions; thus only the n=2 term in (2.33b) yields a non-vanishing 

contribution. 

We observe from Fig. 16 that velocity regions I, II and III are the same 

for the RH- and RC-diagrams, and in fact coincide with the first three velocity 

regions of the R-diagram in Fig. 12. In other words, the functional depen- 

-*.    J.    J.      J. - 
dence of the vectors W  (I),W  (I),W  (III),W- (III) and k upon the 
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integrating variables w12
EWi2{II)' W3lHWJl(II)' kl' k2 and T are the same 

for the RH-, RC- and R-diagrams; they are again given by (4.3), (4.4) and 

(4.19a). For the RH-diagram (V=l) we want the third collision with peri- 

helion vector k_ to be non-intevaating  and followed by an interacting 

collision between particles 2 and 3. For the RC-diagram we want the third 

collision with perihelion vector k to be interesting  and followed by an 

interacting collision between particles 2 and 3. Clearly, then, the 

integrating volumes ß . and ß  in (5.3) are each subvolwnes  of ß , the 

R-diagram integrating volume. Thus, we define theta functions 0  by 

-i. _i.  _w  Ä A *"* 

1, if ^n»
w
12'

W3i'ki ,k2'T are such tliat' if tne ^3 collision 

0   =   ^        be made {v=l: non-ihteracting/V=2: interacting}, then a      (5.5) 

2-3 collision will follow; 

> 0, otherwise. 

Then (5.3) can be written as 

2 
-3W -E V 3/2 C  -»■ -  - "    " 1*  " 1 I--  - . "3Wn 

(ot,a)4v = 2(-l) -21±   / dw^w^dw^dk^dr |w12-k1||w31-k1|e  ° 
107T  •/ 

% 

x 04v {a(i)-ot(ir)}*{a(vv)-a(ivv)}   . (5.6) 

From eqs. (2.22), (2.23), (5.1) and (5.4) we see that the four-collision 

contribution to the transport coefficients is given by 
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ON) = l n* (H) , 
V=l 

(5.7) 

D14(N) = I  D14V(N)  ' 
V=l 

where, for the first Sonine approximation (N=l), 

X14V(1) " m^1 3/2 m m n^ 3/2 n a 
4v 

W1} = I  si°i(w2)w°w , I si°>(w2>w°w 
„^ 5/2 m mm ^ 5/2 n n n 

4V 

(5.8) 

W1} " -2 S3/2(W2,"2'SV2(W2)«2 
4V 

(5.8) 

In these last equations we may insert the explicit forms of the Sonine poly- 

nomials in Table I, and use the fact that £ W and Z  W do not change in a 
n n    n n 

collision, to obtain the more explicit expressions 

W1' - 
3 ^    3 ^ 
y w- w2, y w w2 

'•.mm L.  n n m=l   n=l 
4V 

W1' ■ y w w , y w w 
''.mm *■_ n n 

m=l    n=l 
(5.9) 

4V 

4v(1) " -2(V"2) 
4v 

in terms of the integrals form (5.6). 
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5.2 Evaluation of RH- and RC-Integrals 

i 

According to (5.6) both the RH- and the RC-integrals may be formulated 

as integrals over the same region as the R-integrals. We therefore may 

adopt the same procedure as followed in evaluating the R-integrals. Of 

the two procedures for calculating the R-integrals described in Chapter IV, 

the special procedure described in Section 4.4 is better suited for this 

purpose, since it yields the higher efficiency ratio. 

In view of the similarities between (5.6) and (4.122), it is clear 

that we may use the integrating variables specified in Fig. 14 and employ 

the same logic as that used in going from (4.122) to (4.133), to obtain 

t«,a,4v - -2(-l)- ^Jffd>W™ofdvl 
-W*E* 

,6 12 
,-. ,  ,  , ~ _,        ^.12 

00 

1 1 2TT -n       l 2jr       «° 

x  / dcos8     IdcosO     / d<j>     /d8   / dcosö   / d<j>   / dw' 

0 

ow    w'   *k cos9 
x   9(6-9 )    12 12 ^3 -8. 1{a(i)-a(ii)}*{a(V)-a(iv )}    .       (5.10) 

C _        3Q 4V V V Bcos 8 

We recall from Section 4.4 that E*  is given by   (4.127),  8     is given by 
c 

(4.98), &  is given by (4.112), B is given by (4.97), lower case w's denote 

velocities "scaled" according to (4.109), unprimed velocities refer to 
A    A   A 

region II, primed velocities refer to region HI, and the vectors k ,k ,k , 

w ,w' and w  are given explicitly in terms of the integrating variables 

by (4.110)-(4.113). The velocities in regions I,II,III,IV and V are given 

in terms of the aforementioned vectors by the following equations [cf. (4.115)- 

(4.118) and Fig. 16]: 
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w12(D       = w12 - 2w12.klkl 

"31(I>        =^31+;i2-Vl 

C5.ll) 

w12(II)     -w12 

"31(II)     ="31 

(5.12) 

W12(III)   = wi2 

w31(III)   =w'31=    w31- 2w31-k2k2 

(5.13) 

(V =1) 

w12(IVl)   =wiz 

"31(IV1}   = «31 

W     = W12(W1}   - W32(IVl)-k41k41 

VV     = *31(W1>   " "32(IV-k41k41 

(5.14) 

(5.15) 

(V =2) 
< 

^w12(IV2) 

w31(IV2) 

" »ia ~  ^i2-k3k3 
Jk. -1- A    A 

= <■>  ^-w'    -k,k 31 12     3 3 

W12(V2) W12CIV2)   * W32(IV2)"k42k42 
A /\ 

K w3icV W31(IV2)   " W32(IV2)'k42k42 

(5.16) 

(5.17) 

We observe that the formulae (5.15) and (5.17) for the velocities in 

regions V require the fourth collision vectors, k. . • The conditions for 

the existence oft, are of course precisely the conditions for 0,.% = 1 in 4V 4V 

(5.10), namely, that the positions and velocities of 2 and 3 immediately 
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following the third collision be such that 2 and 3 will indeed collide in 

the future. The position and velocity of 3 relative to 2 immediately follow- 

ing the third collision in diagram v are as follows: 

r = k - k + (W' /w^2) (B/sin8) , (5.18a) 

*V = *31(IV + "l2(IV ' (5.18b) 

If we denote by T' the time between the second and third collisions 

( =T. in Fig. 12 ), then (5.18a] follows from the two equations 

W12T* = B/sin9 and r = k - W'T* - it + W' T1, both of which can be 
2 

deduced from the geometry of Fig. 14. We can be assured that r > 1, i.e., 

that particles 2 and 3 are separated at the instant of the third collision, 

since otherwise the third collision would be an "overlap collision," in 

violation of the theorem which says that a collision sequence containing 

an overlap collision cannot contain more than three complete collisions 

t        2 [5,10]. Given r > 1, the necessary and sufficient conditions for a future 

collision between 2 and 3 in diagram V are [cf. eqs. (4.46)-(4.48)]: 

wv r < 0      , 

04v=i <=> i {5'19) 

(wv x r)
2 - wv

2 < 0  . 

When both of these conditions are satisfied then the vector k. , exists and is 4v 

given by 

By the same theorem, we need not make sure that, in the RH-diagram, 
particles 1 and 2 separate before particles 2 and 3 collide in the fourth 
collision. 
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■* I"-*-     «/"■*■   2    2  2 WV K,r +V(wy-r)  ~ wy (r -^J 
k4v = -r + -^ -  (5.20) 

We note in passing that the inner products appearing in the velocity change 

equations (5.15) and (5.17) can be shown from (5.18b) and (5.20) to be given 

by 

"32(IV '*4V = + V(wv-r)2-wv
2(r2-l)   . (5.21) 

In summary, with r and w as defined in (5.18), 0  in (5.10) is 1 

or 0 according as conditions (5.19) are or are not both satisfied; further, 

if 0, =1 then k t  is given by (5.20). 4V 4v 

All quantities in the expression (5.10) for (ct,a)  are now well 

defined analytically. The functions a needed in (5.19) are polynomials in 

-».  -».  -*. 
the velocities W , W , W . Using the transformation equations (4.119), we 

now express these functions as polynomials in terms of the variables W , 

W  and W . The W -dependence is thereby rendered explicit, and the W - 

integration in (5.10) can then be carried out analytically. The integrands 

will then involve only the velocities W  and W . Scaling according to 

(4.109) will then render the W  dependence explicit, and the W. -integration 

in (5.10) can then be carried out analytically. These operations transform 

eqs. (5.9) into [cf. (4.136)-(4.138)] 

X*Uva)   '^Vl'^l'VV^       ' (5'22) 
-A.   -A. 

<Ma)   " " f&l'V« ' (5'23) 

D
I4V

(1) " -2(*20^20>4V ' <5-24) 
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where L and K are defined in (3.30) or (4.77), with the velocities 

-X _k. -A. 

w (i), w (i), w (i) given in the various regions i = I, II, III, IV , v 
A.\J £t\j Jv V      V 

according to   (4.139),  and where now  (a,(X) .    is given as the 7-dimensional 

integral form 

1 1 2ir      IT      1 2TT     °° 

-l)"^"1 2-|  /dcos91 /dcos93 /d^ IdQ Idcos6 /dj> /dw' 
477 0 0 000 00 

2 " 
ow'   (w'   * k ) cosO 

x   -Q(6-ec)  04v |     "*V2BcSg    ^(»^(n)}^^)^)}     .       (5.25) 

The integral (5.25) is still not quite in a form suitable for evalua- 

tion by a Monte Carlo procedure. First, we have to choose a suitable change 

of variables w"  ■* u which maps the infinite interval 0 < w* < °° onto the 

finite interval 0 < u < 1. After a detailed analysis of the w*  behavior 

of the integrand in (5.25), it was determined that a suitable transformation 

is 

for which 

u = f 1 + w^)"1 f (5.26a) 

Wi2dWi2 
=-J^2       - {5'26b) 

u 

Inserting this transformation into (5.25), we obtain 

189 



AEDC-TR-73-171 

(a'a)4V =   (-1} 12TT2 
dcosö. 

2TT TT 

dcosö. d<f). 

2TT 

de 

o' 

dcos6 

o' 

d$ 

o'     o 

du 

6(w*   -k )cos9    , 
* 0(cos9_-cos6)   0,,,!    - t~    J x I   {a(I)-a(II)}*{a(V,)-(IV,i)}     ,        (5.27) 

4V      29/2D       3i 1 U E       Bcos 0 V 

where it is henceforth understood that the variable w' 

w 12 M 1/3 (5.28) 

31 

It remains now only to investigate the boundedness of the integrand 

in (5.27) with respect to the zeros of the quantities B and cos9. This 

has essentially already been done in connection with the formula for (a,a) 

in (4.142). However, it will be observed that the quantity in parenthesis 

in the integrand of (5.27) is not exactly the same as the product of the 

quantities in parentheses in the integrand of (4.142). The difference is 

due to the fact that, in (4.142), the velocity region differences are the 

piÄMQA differences defined in (4.135), whereas in (5.25) we have the ordi- 

nary unprimed differences. The point is that the extra factors cos0 and 

w' *k in (4.142), which appeared respectively in the differences 

{ot(I)-a(II)} and {ß(IV)-ß(III)}, both played key roles in these boundedness 

considerations. Now, in (5.27), we will still get a factor of wl2 l" eoso 

from the difference {a(I)-»(113 }';" however, the quantity {u(V )-a(lV )} will 

be proportional to ^o^17^ "k4\> -ift9t€ad of wi2'k3' Hence' for <5«27) we 

need to examine the boundedness of the factor 
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ö(wj2"k3)(w32(rov,-k4yMICO,,ei 
2 *9/2   35 u E   cos 9 

B (5.29) 

instead of what appears in (4.142). 

The first factor in (5.29) differs from the first factor in (4.142) 

only in the replacement of one of the w' -k., factors by w__ (IV\) »k.,.. 12 3 32  V  4V 

Now, in analyzing the behavior of the first factor in (4.142), we found that 

the only possible divergence could occur for cos8 near 0 and  sin9 near 0. A 

detailed analysis reveals that this situation can occur only when the first 

three collisions are all "grazing" collisions, in which the particles are 

always moving nearly parallel. From the RH- and RC-diagrams in Pig. 12, it 

is clear that in such a case"the fourth collisions will necessarily be "graz- 

ing" collisions also, so that the w*k factor for that collision will likewise 

be very small. Therefore, we may expect the term w (IV )"^4« to approach 

zero essentially as fast as  w' -k  approaches zero, at least, in the double 

limit 9 -*• 7T/2 and 9 -*• 0, so that the first factor in (5.29) should be always 

bounded just as the first factor in (4.142) was seen to be [cf. (4.147)]. 

The second factor in (5.29) is obviously the same as the second factor 

in (4.142). Now, in (4.151) we saw that this factor diverges like l/sin9* 

as 9' ■+ 0, where 9'  is the angle between k„ and k [cf. Fig. 14] . We thus 

found it necessary to change variables from (cos0_,<j>_) to (9', <)>' ) according 

to (4.152).  Eq. (5.27) then becomes 
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(a'a)4v= ^    12U2 
dcosS. 

o 

■jr   2fT 
r 

do! 

o' 

d^ 

■n     i 
r 

27T   j 

dÖ 

0J   0 

dcos6 d* 

o  o 

du 

x  0(cos0,) 0(cos9 -cos9) G, 
3       c       4v 

r   6(w;[2-
yk3)cöseisine^ 

2 *9/2    3~ 
k   u E   Bcos 0   s 

x  {a(i)-a{ii)}*{a{vv)-a(ivv)} , (5.30) 

where it is henceforth understood that the angles 0 and $ are given by 

(4.148), and where the new theta function insures that the condition 

COS0 > 0 will be fulfilled as was required by (5.27) [see also eq. (4.149)]. 

We shall not use primed differences in (5.30) as we did in (4.153), but it 

is clear that the integrand in (5.30) taken  06 a ulhoZe.  is a bounded function 

of all the integrating variables. 

One last transformation of variables is made in preparation for the 

Monte Carlo calculations.  In this transformation, we transform the 7-dimen- 

sional integrating region in (5.30) into a 7-dimensional unit cube according 

to [cf. (4.154)] 

C0s9 = H. 

^3     =  27T(/l3+0*25> 

e = T\fi. 

cos0 = K- 

<j>   =   2TT/1 

u = V wi2
=r(1-u>/uJ 

1/3 

(5.31a) 

(5.31b) 

(5.31c) 

(5.31d) 

(5.31e) 

(5.31f) 

(5.31g) 
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[The additive constant in (5.31c) is inserted to simplify the importance 

4 
sampling procedure later.]  The Jacobian of this transformation is 4TT 

[cf. (4.155)], so we obtain as our final formula  for (a,a) 4V 

(a ̂ ,= '-"H*/«'i/''J-/
äS 

6w" -k cos9 sinQ' 
x eCcose ) 9(cos8 -C088) 9  |     3     — 

1  u E   Bcos 8 

x {a(i)-a(ii)}*{a(vv)-a(ivv)}    . (5.32) 

Before summarizing the Monte Carlo computation algorithm for the four 

collision integrals, we first describe a trick which we used to essentially 

double the efficiency of our computational procedure. The philosophy of our 

computation of the RH- and RC-diagrams has obviously been to first construct 

an R-collision sequence [cf. Fig. 12], and then, by making the third colli- 

sion {non-interacting/interacting}, to simply inquire as to whether or not 

particles 2 and 3 will subsequently collide, in which case we will have an 

{RH/RC} collision sequence. Our "trick" to increase our computing efficiency 

follows from the symmetry of the R-diagram and the invariance of all our 

integrals to a change in sign of all velocities: we could equally well 

place the fourth collision before  the first collision in the R-diagram, 

provided we allow this collision with perihelion vector k to be non-inter- 

acting as well as interacting. In other words, once we have set up the 

collision vectors k,, k„ and k , we can attempt to construct a four-collision 
12     3 

sequence either  by checking to see if 2 and 3 collide after  the third colli- 

sion with collision vector k or  by checking to see if 2 and 3 
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collide before  the first collision with collision vector k <  In the 

former case we make the check with the k collision penetrating as well 

as interacting, in order to check for both the RH- and RC-diagrams.  In 

the latter case we make the check with the k collision separating as 

well as interacting for the same reason.  In Part I of this series we 

have referred to the collision sequences thus obtained as HR- and 

CR-collision sequences [3].  It is thus possible to evaluate concurrently 

the RH- and RC-collision integrals as well as the HR- and CR-collision 

integrals. Since [3] 

<* ♦>« - <*•♦>« 

{* *}£} = c*.*}^ 

(5.33) 

with a similar identity for the self-diffusions collision integrals, the 

two sets of integrals should be equal. By thus calculating both  the RH- 

and RC-integrals and  the HR- and CR-integrals, we obtain not only an 

important consistency check, but also two separate numerical estimates 

for the same collision integrals. 
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The relationship between these collision sequences is made more 

clear in Fig. 17. Fig. 17a shows schematically how the RH- and RC- 

collision sequences are constructed according to the treatment outlined 

thus far in this section. The regions between the first and third 

collisions are constructed from the R-diagram mathematically by setting 

the integration variables in (5.30) subject to the requirements imposed 

by the theta functions on cos6 and cos6. The region before the first 

collision is then determined, as is also the region after the third 

collisions. Of course, in the region after the third collision, we have 

two situations    to investigate, namely, for the third collision non- 

interacting (v=l) and interacting (V=2) .  In each case we construct the 

velocity w and position vector r of 3 relative to 2 immediately after 

the third collision [cf. (5.18)], and, if conditions (5.19) are satisfied, 

we then construct the fourth collision vector k. thereby completing the 

RH- and/or RC diagram. 

But there is another way of constructing sequences of four successive 

collisions and this method is illustrated by the diagram of Fig. 17b. We 

shall refer to this diagram as the "reversed" diagram to distinguish it 

from the "direct" diagram of Fig. 17a.  In the reversed diagram, we shall 

denote the collision^vectors by K. instead of k., the scaled velocities 
l l 

by (i),, instead of w. ., and the velocity regions by lower case instead of 
ID i] 

upper case Roman numerals. The reversed diagram is "reversed" in the sense 

that it is of precisely the same structure as the direct diagram except for 

a reversal of all velocities; this may be seen by imagining the reversed 

For this reason we have not schematized the velocities of 1 and 2 
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" 
IV. 

m 

ST      t 

Jj 

♦    2 

(a)   DIRECT   (RH.RC) 
4 v -diagrams 

(b)  REVERSED (HR.CR) 
4 v -diagrams 

Figure 17.       Relationship between RH- and RC-collisions   (Fig,   17a) 

and HR- and CR-collisions. (F±g.  17b). 
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diagram in Fig. 17b, together with its velocity region designations, to be 

turned upside down. Now, it is seen from the figure that some simple, direct 

relationships exist between the dynamical variables in the first four velo- 

city regions of the two diagrams.  Specifically, once the basic R-diagram 

has been set up, i.e., once a set of values for the integrating variables 

in (5.30) have been found which satisfy the theta function conditions on 

cos0 3 and cosG, then the dynamical variables in the first four velocity 

regions of the "reversed" diagram are obtained from those of the "direct" 

diagram according to the following formulae: 

Kl  = k3     , (5.34a) 
A A, 

K2  =  k2       , (5.34b) 
/\ 

<3     = kl      , (5.34c) 

W..(i)  = w (IV )   \ (5.35a) 

to (ii) E "±j = »ij  / (5.35b) 

u±.(iii) = ü)'  = w±.  >     ij = 12,31   .        (5.35c) 

"ij(ivl} = ^ij = "ij  I (5.35d) 

w±. (iv2) = »yd)    J (5.35c) J 
We may then investigate whether the fourth collision occurs in the reversed 

diagram by a procedure similar to that used for the direct diagram [cf. the 

discussion of equations (5.18) - (5.20)]. Thus, letting p and w  denote 

the position and velocity of 3 relative to 2 at the instant of the K3 

collision in the reversed V-diagram, we have 
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p = k - k - w  (ßcote + cos93 - cos6 ) (5.36a) 

Wy= w31(I) +wi2(I)      . (5.36b) 

Since p is the position of 3 relative to 2 at the instant of the k 

* A A 
collision, and since the scaled time T between the k and k collisions 

is given by (4.130d) and (4.97), then (5.36a) follows directly from the 

"*"  A "*■  * Ä "*"  * relation p = k +w T -k -w T , which relation is easily read off from 

Fig. 14.  Now, the conditions on p and 0) which insure the existence of 

A _v        .4. 

K      are the same as those on r and w in the direct diagram, except we 

must take into account the fact that all velocities are reversed. Hence, 

from (5.19), the necessary and sufficient conditions for the existence of 

the fourth collision in the reversed v-diagram are 

(OJV X p) * - W* < 0   . 
reversed n  _ ■, *>_x * ^   ^ n   n (5.37) 

When both of these conditions are satisfied, then the vector K. 
4V 

exists and is given by [cf. (5.20)] 

^  .. \o -p - V(w -p)2 - w=;(p2-i)l 
K4v " -p + V- r ■     ' (5-38) 

The velocities in region v are then given by [cf. (5.15) and (5.17)] 

b) (v ) = (0  (iv ) - ü) (iv ) «IC K 
12V V    12v  v'    32 VV  4V 4V 

u3icV =ü}3i(iV ■•n'^V« 

(5.39) 
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where [cf. (5.21)] 

U32<ivv)-IC4v= - V(WV-P)2 - Wj(p2-lj   . (5.40) 

In evaluating (a,a) for the HR- and CR-diagrams, we use the same 

formula (5.30) as for the RH- and RC-diagrams, but with two exceptions: 

first, we replace the 0. condition (5.19) by the condition (5.37); and 

second, we replace the velocity functions a in (5.30) by 

a(i) = a(w12(i), w31(D) ■*■ a(i) = a(aJ12(i), w31(i))  ,      (5.41) 

and similarly for II -*■  ii, IV ■*■ iv and V •*■ v . 

Calculating simultaneously the RH-, RC-collision integrals and the 

HR-, CR-collision integrals provide us with a strong consistency check. 

The independence of the two procedures is further enhanced by the fact 

that a given set of values for the integrating variables in (5.30) can 

never  satisfy both a direct and a reversed diagram; otherwise we would 

have a collision sequence containing a total of five complete collisions, 

which is known to be dynamically impossible [10,11]. Of course, nothing 

prevents a given point in the integrating region of (5.30) from simul- 

taneously satisfying the conditions for an RH- and an RC-diagram in the 

direct mode, or from simultaneously satisfying the conditions for an HR- 

and CR-diagram in the reverse mode. 

Operationally, it is thus a fairly simple matter to graft onto the 

procedure for calculating (o^a). ir* (5.32) for the RH- and RC- 

integrals. The Monte Carlo procedure for numerically evaluating the 

integral (5.32) is to average the integrand over a set of points 
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{p } = {K.  ,  K  ,   ..., K  } picked from a random, uniform distribution in 

the 7-dimensional unit cube U„: 

v-1 7i/fiir2 /6(w' -kJcos6 sin8' 
(Qt,«)^^-!)^1 ^~-   0(cos63) 0(cos8 -cos6)0 

4V  2*9/2^  32 1 u E   Bcos 8 

x {a(i)-a(ii)}*{a(vv)-a(ivv)j^>    . (5.42) 
U7 

The uncertainty in estimating this average with a finite  set of points 

1   2        M 
{P , P , ..., P } is given by the r.m.s. deviation of the quantity being 

averaged, divided by i/vL.    Hence, our computational algorithm is as follows: 

o 
1 Generate 7 independent-random numbers K., H ,..., K 

from a uniform distribution in the unit interval. 

2 Calculate the quantities 9 , 8', <j>', 8, 0, <J>, u (and w' ) from 

equations (5..31). 

3 From 8 , 8* and <(>', calculate 8 and <j> from (4.148). Set 

the first theta function in (5.42) to 0 or 1 according to 

whether cos6  [see (4.149)] is negative or positive. If 

cos8 < 0 proceed to step 14 with all integrands equal 

to zero, noting that the coordinates K , H.  , H, ,  A. have 
4   b   6   / 

not been used and need not be regenerated for the next 

point. 
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4 From 81, 83  and d>3, calculate cos6 from (4.98)  and 
c 

set the second theta function in (5.42) to 0 or 1 accord- 

ing to whether cosö is greater or less than cos9 .  If 

cos9 > cos6  ,  proceed to step 14 with all integrands c 
equal to zero, noting that the coordinates 1-, n.r. %■- 

b   0   7 

have not been used and need not be regenerated for the 

next point. 

5 Calculate B and <j) according to (4.97) and (4.96). 

Calculate 6, 0 and w  according to (4.112), (4.111) 

and (4.114). 

6 Calculate the vectors k , k and k according to <4.110b,c,e) 

Calculate the velocities w  and w'  according to (4.110a) 

and (4.110d). Calculate the velocity w  according to 

(4.113) and calculate the velocity w  according to (5.13). 

o -*•-*■ 
7 From the region II velocities w  and w  and the colli- 

yv LZ 31 
sion vector k , calculate the region I velocities according 

to (5.11).  Similarly, from the region III velocities w 

and w  and the collision vector k , calculate the velocities 

in region IV and IV according to (5.14) and (5.16). 

8 Set up the equivalent HR- and CR-diagram quantities in 

(5.34) and (5.35).  [On tfte computer this can be 

accomplished automatically by means of the "equivalencing" 

operation.] 

o -*■•*■ 
9 Calculate the vectors r and w according to (5.18), and put 

the dÄJiZCJt  0. % equal to 1 or 0 according to whether r and w , 4v V 
do or do not satisfy both inequalities in (5.19). If the 

inequalities are satisfied for V*l and/or 2, calculate the 

corresponding collision vector k  from (5.20) and the 

corresponding region V velocities from (5.15) and/or (5.17) 
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[making use of (5.21)]. if, on the other hand, 0i,i and/or 

0i,2 is found to be zero, put the corresponding RH- and/or 

RC-integrands to zero. 

o -*■    -*■ 
10 Calculate the vectors p and to according to (5.36), and put 

the ti&V2AAzd  0  equal to 1 or 0 according to whether p and 
4V 

to do or do not satisfy both inequalities in (5.37).  If the 

inequalities are satisfied for V = 1 and/or 2, calculate the 

corresponding collision vector K      from (5.38) and the 

corresponding region v velocities from (5.39) [making use of 

(5.40)].  If, on the other hand, 0m and/or 0i,2 is found to 

be zero, put the corresponding HR- and/or CR-integrands to 

zero. 

11 If none,  of the direct diagrams (RH, RC) or the reversed 

diagrams (HR, CR) is satisfied, proceed immediately to 

step 14 with all integrands equal to zero. If &*ltj  of the four 

diagrams are satisfied, calculate E* according to (4.127) so 

that all the quantities in parentheses in (5.42) are now known, 

and proceed to the next step. 

12 For each of the satisfied diagrams, calculate the velocities 

w , w , w  (or their reversed diagram counterparts toio, 

to2o, toao in all velocity regions according to (4.139). Then 

evaluate the quantities K_ and L in all velocity regions 

according to  (4.77). 

13°  Calculate the differences {a(I)-a(II)} and {a(V) ror(-IV )}, 

or their reversed diagram counterparts {ot(i)-a(ü)} and 

{a(v )-a(iv )}, for the appropriate diagram and the functions 

a required by (5.22) - (5.24). 

14   Using the values found in the preceeding steps, evaluate the 

required integrands in angular brackets in (5.42), and also 

the squares of these integrands (for computing the variances), 

and add these to respective cumulating sums. 
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15   Return to 1 , and repeat for as many times M as is practical. 

Then convert the cumulating sums to averages, and so obtain 

the Monte Carlo estimates of the quantities (5.22) - (5.24) , 

as calculated for both the "direct" diagrams (RH, RC) and the 

"reversed" diagrams (HR, CR), together with the uncertainties 

in these estimates. 

In the actual calculations extensive use was made of the "equivalence" 

feature of Fortran, in order to facilitate nearly simultaneous treatments 

of the direct (RH, RC) and the reversed (HR, CR) diagrams.  In addition, 

the double-precision mode was utilized in order to minimize the effects of 

computer round-off in the calculation of certain critical dynamical quanti- 

ties. The RH-, RC-, HR- and CR-averages were all computed separately. We 

also computed the sum RH+RC, as required by (5.7), as the average of the 

sum of the RH- and RC-integrands in order to correetly assess the uncer- 

tainties in the final answer for the four-collision contribution to the 

transport coefficients; again, the same procedure was used to evaluate the 

combined contribution from the HR- and CR-diagrams. 

As in all our Monte Carlo calculations, an empirically-determined 

"importance sampling" procedure was used to effect a substantial reduction 

in the uncertainties without increasing the number of sampling points used. 

This time the following importance sampling distributions were used [cf. 

(3.43) and the discussion thereof]: 
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P^C^)     «    expt-S^) 

VV « exp(-l(Vl2) 

P3(^3) « [(*3-0.5)2 +  (0.05)2]_1 

P
4
(V " exp(-2.5A4) 

P5(^t5) oc exp[-(X^t5)T 

P6(V " exPt-2^-^6)5 

P_(*7) oc 1 + 0.85 cos(2TTfc ) 

(5.43a) 

(5.43b) 

(5.43c) 

(5.43d) 

(5.43e) 

(5.43f) 

(5.43g) 

On the basis of preliminary computer runs made without importance 

sampling, we estimate that this procedure improved the efficiency of our 

calculations by a factor of roughly 200; i.e., we would have had to run on 

the computer for approximately 200 hours (Aiitkout  importance sampling to 

obtain results comparable in accuracy to a 1 hour computer run i&Lth  importance 

sampling. It is interesting to compare the above importance sampling scheme 

to that used in the special calculation of the R-diagram in (4.158), inasmuch 

as that calculation of the R-diagram forms the basis for our present calcu- 

lation of the RH- and RC-diagrams. We note that we still employ a strong 

bias in favor of low K -  values and values of K    near 1/2; but in addition, 

we have added a bias in favor of low K -  values, and an oscillatory bias 

on H. . 

On the basis of the above importance sampling transformations, we 

have deduced that the following configurations contribute most strongly to 

the 4-collision integrals [cf. Fig. 14]: 
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• k very close to the Y-axis. 

• k very close to k , lying just above k 

in the YZ-plane. 

• 6 small 

• w' very large for the "direct" diagrams and 

very small for the "reversed" diagrams. 

The last point reveals that (5.43g) actually represents a "compromise" 

between the direct and reversed calculations. We might add that the reali- 

zation of the R-diagram oXOYKL  requires only the above condition on k , and 

indeed favors values of 9 near TT over values near zero. 

The results of our four-collision calculations are presented in the 

next section. 

5.3 Four-Collision Results 

The calculations of both the RH-, RC- and the HR-, CR- integrals were 

carried out in the manner described in the preceding sections by means of 

a computer program called Subroutine FOUR. In Tables xiv, xv, and xvi we 

present the results of four separate runs-of Subroutine FOUR. Each run used 

250,000 random points in the 7-dimensional unit cube, and required approxi- 

mately 18 minutes of c.p.u. time on the NWC Univac 1108 Computer. The 

uncertainties in these tables represent again one standard deviation for 

the "runs" and two standard deviations for the "averages". 

The results of the runs are statistically rather ragged, as is 

evidenced not only by the fluctuations in the CLveAageA   from run to run, 
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but even more by the fluctuations in the unczftXaiyvtiZA  associated with 

these averages. In this respect, the results would have been considerably 

improved by a ten-fold increase in the number of sampling points used. 

However, what is most significant about these results is that they are five 

to six orders of magnitude smaller than the Enskog contribution (which is 

unity in our units); moreover, compared to the three-collision results in 

Table XIII, we have 

|X* (1)| * (0.2 x io"4) x \\*  (i)| 
14" ''   ,w""      '   '13' 

1*4(1)| * (0.3 x 10'
4) x |n*3i 

)*4(1)| ^ (1.3 x io-4) x |D*4< 

\r\*A(l)\  *  (0.3 x io'4) x |n*7(D|    r (5.44) 

|D* (1)| ^ (1.3 x io"4) x |D* (1)| 

Thai, tkz ^ouA-cottl&ion cowtJiihvJU.ovu> ajtz fioughZy tfouA ondznA  OjJ magnitude. 

&mattzn. than tkz tfoi&z-col&L&ion contJUhution&, and can thzKzlonz bz nzgtzctzd 

&0fi aJLL pM.cXi.caZ puApo6Z6.     This can be regarded as the chief result of our 

four-collision calculations. From earlier preliminary studies of sequences 

of four successive collisions by Foch and Cohen [19] and by Sengers [4] 

it could be anticipated that the effect of these collision sequences on the 

transport coefficients would be small.  The study reported here has now 

definitely established the order of magnitude of these correction terms. 

Some remarks should perhaps be made concerning the handling of the 

uncertainties in Tables xiv, xv and xvi. We note that the total contributions 

presented in Table xvi are in each case equal to the sum of the individual 

terms: 

*;4(D -j *i4vU>, n*4(D « f nj4v(l) andD*4(l) = f D*  (l)   . 
v=l V=l V=l 
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However, it is seen that the uncertainties in X  (1), n* (1) and D* (1) 

are LoAb  than what might be expected from the uncertainties in the separate 

contributions.  It is emphasized, though, that the uncertainties in X,AX) » 

n* (1), D* (1) were calculated dUiQjcXty  in the Monte Carlo program, by the 

device of averaging an integrand which was the sum of the integrands of the 

two separate terms (v=l,2). The fact that the summed integrands had smaller 

uncertainties than expected merely indicates the presence of fluctuations 

in the separate integrands which were negatively correlated. We shall see how 

this came about more clearly below, but our point here is that the uncertainties 

quoted for X -(1), Ti "(1), and D* (1) in Table xvi were honestly obtained. In 

calculating the uncertainties in the aveAage<& in Tables xiv, xv, and xvi, we 

used again the rule that the two-standard deviation uncertainty in the average 

of four repeated Monte Carlo runs is equal to the square root of the average 

of the AquuViU  of the one-standard deviations which were found in the runs. 

This is a generalization of the usual rule (namely, that the constant  one- 

standard deviation found in four repeated runs can be regarded as two 

standard deviations for the average of the four runs) to cover the case in 

which the uncertainties in the repeated runs vafiy  from run to run. 

The crucial check on our calculations lies in comparing the results 

for the RH- and RC-integrals {top part of Tables xiv and xv) with the 

results for the HR- and CR-integrals, respectively (bottom part of 

Tables xiv and xv). The agreement is seen to be quite good, considerably 

better, in fact, than the agreement between different runs. This consti- 

tutes a very strong consistency check on our calculations of the four- 

collision integrals. 
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Our final results for the four-collision contributions are 

summarized in Table XIV.. These values were obtained by regarding the 

runs represented in Table xvi as eight independent, statistically equiva- 

lent runs. We note that the RH- (= HR-) integrals are all negative and 

that the RC- (= CR-) integrals are all positive. The RH-integrals yield 

the dominant contributions; the resultant four-collision contributions are 

thus all negative, although in the case of the thermal conductivity our 

statistics will evidently admit a small positive value, or even the null 

value. Again, in view of the extreme smallness of these four-collision 

quantities, their precise values are not terribly important. 

We conclude with a few remarks concerning the efficiencies of these 

four-collision calculations: 

1°  Of the one million points sampled in the four runs, 48% were 

found to satisfy the basic R-diagram. Of these, 0.48% satisfied 

at least one of the direct diagrams, while 0.51% satisfied at 

least one of the reversed diagrams. 

2   The percentage breakdown of all the points that satisfied 

either an RH- or an RC-diagram was (rather surprisingly) 

essentially the same as that of the points that satisfied 

either an HR-or a CR-diagram. .This percentage was as 

follows: 

99.9% satisfied RH 

71% satisfied RC 

29% satisfied RH only 

0.1% satisfied RC only 

71% satisfied RH and RC 
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Table XIV 

Summary of Four-Collision Results 

Coef. = 
1 

RH-contribution + II RC-contributxon ■_    Total 

**14<1> (-0.06+0.07)xl0~5 (+0.04+0.03)XIO-5 (-0.02+p.06)X10~5 

n*14(D (-0.21+0.04)xio"5 (+0.H+0.03) xio"5 (-0.10+0.03)xio"5 

D14(1) (-0.69+0.09)xi(f5 (+0-25+0.04)xio"5 (-0.44+0.08)xio"5 

Note: All uncertainties represent 95% confidence limits. 
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What is noteworthy about these figures is that they imply that the 

RC-integrating region is about 7/10 the size of the RH-integrating 

region, and is aimoit wholly contained Än&idz  the RH-integrating region 

This large overlap between the RH- and RC-integrating regions is what 

allowed, e.g., the uncertainty in A?i»(l)  to be considerably less that the 

combined uncertainties in Xui(l)  and Xii»2(l). 

While the foregoing efficiency figures are interesting, one ought not 

to read too much into them, since they are all relative to the particular 

set of dynamical variables used as well as the nature of the importance 

sampling procedures employed. The point is that the Alze.  of an integrating 

region can be changed simply by changing the integrating variables: only 

the lull JLYVtfLQfUll  is invariant with respect to which set of integrating 

variables is employed. 
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Chapter VI 

CONCLUSIONS 

6.1  Summary of Results 

We may now collect and combine the results of the calculations in 

the preceding three sections to obtain the Wit.  three-body contributions 

to the linear density transport coefficients in the first Sonine approxi- 

mation. These final results are given in Table XV.  In considering 

Table XV we recall from (2.21) that the kinetic contributions to the first 

density coefficients can be written in the Nth Sonine approximations as 

4 
,KK/_     5 „a X,(N) - - Y5 TO8 Xo(N) I  X* (N) 
1        " v-1 iy 

H, (N) = - T| TO3 *o(N) I  H  (N)     , (6.1) 
1      XiJ      y=l M 

4 
üf^N) = " rfmr3 D0(N) I  D* (N) 
1        " 11=1 ±U 

Here XQ(N), no(N) and Do(N) are the Nth Sonine approximation to the 

transport coefficients in the dilute limit as given by the Boltzmann 

equation, and a is the diameter of the hard sphere molecules. 

In these equations, the u=l terms are the "double-overlap" 

contributions which we have previously shown to be identical with the 

contributions estimated by Enskog [3]. Our definitions are such that 

these u=l terms are unity in all Sonine approximations. The remaining 

terms, the U=2 "single-overlap' contributions, the TJ=3 "three-collision" 

contributions, and the u=4 "four-collision" contributions, are the 
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Table XV 

Summary of Three-Particle Collision Contributions to the 

Transport Coefficients in tne First Bonine Approximation 

> m 
o o 
H 

Coef. ' 1 (y*i) 
1              II 

y               (V=2)     *        (V=3)    *         (U=4)       «     Total 

XV1} l -0.0303+0.0003 -0.0128+0.0005 (-0.02+0.06) x 10"5 1 - (0.0431+0.0006) 

"l« l -0.0633+0.0004 +0.0376+0.0005 (-0.10+0.03) x 10~5 

(-0.44+0.08) x 10"5 

1 - (0.0257+0,0007) 

1 - (0.0850+0.0014) »V11 l -0.1195+0.0005 +0.0345+0.0013 

Note: Uncertainties represent 95% confidence limits. 
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values tabulated in Table XV in the first Sonine approximation. From 

(2.18) and Table XV we thus conclude 

X^   (1) = - j^a* AQ   [1-(0.0431 ± 0.0006)J 

VV C                 - 

n^   U) = - l^irc3 nQ   [1-C0.0257   ±  0.0007)] 

Dl(1) = " T2irCl3 °0  I:i~t0*0850 * 0-0014)] 

£6.2) 

We see that the net effect of the v=2,3,4 contributions is to dzcA£XL&Z 

the Enskog value by roughly 4.3% for the thermal conductivity, 2,6% for 

the viscosity, and 8.5% for the self-diffusion, in the first Sonine 

approximation, 

The values quoted in Table XV all correspond to the first Sonine 

approximation . This approximation is entirely adequate to determine the 

relative contributions of the various three-particle collisions to the 

transport properties. With respect to the absolute value of these contri- 

butions, we found in Chapter III that the results for y=2 changed somewhat 

when going to higher Sonine approximations, namely, by 3% for the viscosity 

n?_, 4% for the self-diffusion D* and around 24% for the thermal conductivity 

A* .  it is reasonable to expect that the higher Sonine approximation could 

affect the three-collision results Cnf,, D?v M^ ^Y a similar amount. The 

contributions due to four successive collisions (u=41 have been definitely 

established to be negligibly small. 

An announcement of these results was included in a paper presented at 

the International Symposium "100 Years Boltzmann Equation" in Vienna T20]. 

It should be noted that (6.2) represents only the effect of three- 

particle collisions on the first density corrections to the transport 

properties. The full first density coefficients are given by (.1.2) and 

(1.3). 
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X, = w3Xo[| - 5§ {1 + l2 X^} 

*-w'*lT5-T2<1 + Ja
x!«> 

(6.3) 

or 

and 

23  3T 

60
TOXO Xi  = — TO3Xo M- 

Dl = ■ 12 ™3Xo hj^l 

(6.4) 

(6.5) 

The factors in front of the brackets in (6.4) and (6.5) represent the 

predictions of the theory of Enskog. Using the values of Table XV we 

conclude that the actual first density coefficients are 

A. (1) = -^Tra3Ao [1 + (0.0468 + 0.0007)] 
1      60 "~ 

n, (i) = I-Tra3n0 d + (0.0918 + 0.0025)] 
1      60 "~ 

D-(l) =-|rTO3Do E1+ (0.0850 + 0.0014)] 

(6.6) 

where the numbers refer again to the first Sonine approximation. Thus 

the sequences of 2, 3, and 4 successive collisions modify the Enskog values 

for the total first density coefficients by 4.7% for the thermal conduc- 

tivity, 9.2% for the viscosity and 8.5% for the self-diffusion. 
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6.2  Discussion of Results 

Our results, presented in (6.2) and (6.6)r show that the theory of 

Enskog accounts for over 90% of the total three-particle collision 

contribution. In Chapter I we mentioned that the theory of Enskog [y=l 

in (6.1)] incorporates only excluded volume effects. The next term 

(u=2) contains some excluded volume effects via the single-overlap 

collisions and some dynamical effects via sequences of two successive 

collisions; from Table XV we see that the magnitude of this term is of 

the order of 10% or less compared to the Enskog value. The contributions 

from sequences of three successive collisions (y=3) is even slightly 

smaller, while the contributions from sequences of four successive 

collisions (y=4) appears to be negligible. As mentioned in Chapter I, the 

Vs 3 and y=4 terms represent effects that are of a purely dynamical nature. 

The density dependence of the equilibrium properties of a gas of 

hard spheres is completely determined by excluded volume effects. We 

conclude that the density dependence of non-equilibrium properties, such 

as the transport properties, is dominated by the same excluded volume 

effects. The terras accounting for dynamical correlations due to sequences 

of successive collisions can profitably be treated as correction terms 

to the theory of Enskog. 

A first attempt to estimate the effect of three-particle collisions 

on the transport coefficients was made by Sengers. He concluded from 

preliminary results [4,6,7,21] 
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A^U)   --|2 Tff3Xo   [l-(0.05 +  0.02)] 

nyxu =* 12 *a n° [1_(0-04 ± °-01>J        ' <6-7> 

Di(1)   =a_l2
7ra3Do [1-(0-09 ± o.o4)] 

These results were obtained before the three-particle collision integrals 

were separated according to the number of successive collisions. Our new 

more precise results in (6.2) evidently are in agreement with and improve 

upon these earlier preliminary estimates. 

In principle, it is also possible to compute the transport coefficients 

as a function of density by molecular dynamics computations. For a gas 

of hard spheres such a study was made by Alder and coworkers [22,23]. 

However, while this method has been rather successful at high densities, 

molecular dynamics calculations become inaccurate at low densities and 

they do not yield accurate predictions for the first density coefficients 

^l» Hi» and Di.  In practice, therefore, our results complement the 

molecular dynamics work of Alder et al. by providing accurate estimates 

for the transport properties at moderate densities. 
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APPENDIX 

TABLES OF THREE-PARTICLE COLLISION INTEGRALS 
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Table i 

*   *     * 
The Coefficients A  , n  and D.  from 7-Dimensional Monte Carlo 

First Sonine approximation: N=l 

Run xj2<i> n*12d) D*12(l) 

1 

2 

3 

4 

-0.0297±0.0003 

-0.0300±0.0003 

-0.0307±0.0003 

-0.0307+0.0003 

-0.0&29±0.0004 

-0.0632±0.0004 

-O.0636±0.0004 

-0.0634±0.0004 

-0.1192±0.0004 

-0.120110.0004 

-0.119610.0005 

-0.119210.0005 

AVG -0.030310.0003 -0.0633±0.0004 -0.119510.0005 

Second Sonine approximation: N»2 

Run X;2(2) n*2(2) D;2(2) 

1 

2 

3 

4 

-0.0242±0.0003 

-0.0245+0.0003 

-0.0251±0.0003 

-0.0252+0.0003 

-0.0618±0.0004 

-0.0621±0.0004 

-0.0624±0.0004 

-0.0622±0.0004 

-0.1157+0.0004 

-0.1166+0.0004 

-0.1159+0.0005 

-0.115610.0005 

AV6 -0.0248+0.0003 -0.0621+0.0004 -0.116010.0005 

Note: Uncertainties in "runs" represent one standard deviation and 

uncertainties in "averages" represent two standard deviations. 
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Table ii 

SO  so  so 
Matrix Elements a^., b. -, c. j from 7-Dimensional Monte Carlo 

Run 
so 

ail 
so 

S12 
so 

a21 
so 

a22 

1 +0.0297±0.0003 -0.0330±0.0002 -0.032910.0002 -0.026010.0006 

2 +0.0300±0.0003 -0.0329±0.0002 -0.032910.0002 -0.025510.0006 

3 +0.0307±0.0003 -0.033310-0002 -0.033510.0002 -0.024510.0006 

4 +0.0307±0.0003 -0.032810.0002 -0.033010.0002 -0.024410.0006 

AVG +0.0303±0.0003 -0,0330±0.0002 -0.0331+0.0002 -0.025110.0006 

Run bS° 
00 b01 

so 
b10 

bS° 
11 

1 +0.0629±0.0004 -0.019210.0002 -0,019110.0002 +0.0666+0.0007 

2 +0.0632±0.0004 -0.019210.0002 -0.019310.0002 +0.0666+0.0007 

3 +0.0636±0.0004 -0.019810.0002 -0.019810.0002" +0.067710.0007 

4 +0.063410.0004 -0.0195±0.0002 -0.019610.0002 +0,067310.0007 

AVG +0.0633±0.0004 -0.0194±0,0002 -0.019510.0002 +0.067110,0007 

Run 
so 

coo 
so 

C01 
so 

C10 
so 

Cll 

1 +0.119210.0004 -0.039610.0003 -0.039310.0003 -0.032410.0008 

2 +0.1201+0.0004 -0.0400±0.0003 -0.039910.0003 -0.033210.0008 

3 +0.1196±0.0005 -0.0406±0.0003 -0,0402+0.0003 -0,030510.0008 

4 •  +0.1192±0.0005 -0.039910.0003 -0.040H0.0003 -0.030710.0008 

AVG +0.1195±0.0005 -0.040010.0003 
1 

-0.0399±0.0003 -0.031710.0008 

Note: Uncertainties in "runs" represent one standard deviation and 

uncertainties in "averages" represent two standard deviations. 
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Table iii 

Comparison with Previous Single-Overlap Results 

AEDC-TR-71-51[5] This work 

so 
all 
so 

ai2 
so 

a21 
so 

a22 

+0.028+0.002 

-0.033+0.001 

-0.033+0.001 

-0.028+0.003 

+0.0303+0.0003 

-0.0330+0.0002 

-0.0331+0.0002 

-0.0251+0.0006 

bS° 
00 

boi 

KSO bio 

KSO bll 

+0.063+0.002 

-0.019+0.001 

-0.020+0.001 

+0.063+0.004 

+0.0633+0.0004 

-0.0194+0.0002 

-0.0195+0.0002 

+0.0671+0.0007 

so 
coo 
so 

C01 
so 

C10 
so 

cll 

+0.118+0.002 

-0.039+0.001 

-0.040+0.001 

-0.032+0.003 

+0.1195+0.0005 

-0.0400+0.0003 

-0.0399+0.0003 

-0.0317+0.0008 

XJ2(1) 

X*2(2) 

n*12d) 

n*2(2> 

DJ2(D 

Dj2(2) 

-0.028+0.002 

-0.023+0.002 

-0.063+0.002 

-0.062+0.002 

-0.118+0.002 

-0.115+0.002 

-0.0303+0.0003 

-0.0248+0.0003 

-0.0633+0.0004 

-0.0621+0.0004 

-0.1195+0.0005 

-0.1160+0.0005 

Note: Uncertainties represent two standard deviations or 

95% confidence limits. 
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Table iv 

Successive Sonine Approximations from 11-Diraensional Monte Carlo 

Run x*12d) X*2(2)-X*2(l) X*2(3)-X*2(2) X;2(4)-X*2(3) 

1 
2 
3 
4 

-0.029±0.001 
-0.029±0.001 
-0.032±0.001 
-0.031±0.001 

+0.0058±O.0003 
+0.0057±0.0003 
+0.0060±O.Q004 
+0.0054+0.0003 

+0.0015±0.0001 
+0.0013±0.0001 
+0.0014±0.0001 
+0.0014+0.0001 

+0.00038±0.00003 
+0.00034±0.00004 
+0.00036+0.00003 
+0.00031+0.00003 

AVG -0.030±0.001 +0.0057±0.0003 +0.0014±0.0001 +0.00035±0.00003 

Run n^CU n*2(2)-n*2d) nj2(3)-n*2(2) 

1 
2 
3 
4 

-0.066±0.001 
-0.062+0.001 
-0.063±0.001 
-0.062±0.001 

+0.0010±0.0003 
+0.0013±0.0002i 

+0.0013+O.0002 
+0.0012+0.0002 

+0.00034+0.00006 
+0.00032+O.00005 
+0.00044+0.00006 
+0.00041+0.00006 

AVG -0.063±0.001 +0.0012+0.0003 +0.00038+0.00006 

Run D*12(l> D*12(2,V12(1) D*12(3)-D*12(2) 

1 
2 
3 
4 

-0.120+0.002 
-0.117±0.002 
-0.117±0.002 
-0.121±0.002 

+0.0040±0.0004 
+0.0039±0.0003 
+0.0034+0.0003 
+0.0028+0.0004 

+0.0011±0.0001 
+0.0011±0.0001 
+0.0011±0.0001 
+0.0009±0.0001 

AVG -0.119±0.002 +0.0035±0.0004 +0.0011±0.0001 

Note: Uncertainties in "runs" represent one standard deviation and 
uncertainties in "averages" represent two standard deviations. 
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Table v 

so 
Matrix Elements a??, b!*?,  o°J from 11-Dimensional Monte Carlo 

a__ = 

a,, = 

a„^ = 

so 
all = 

so 
a12 = 

so 
a21 = 

so 
*22 
so 

*13 
so 
31 
so 

*23 
so 

a32 = 

so 
a33 = 

so 
a14 = 
so 

a41 = 

so 
*24 
so 

*42 
so 

*34 
so 

a„„ = 

a,„ = 

a,. = 

a43 = 
so 

a44 = 

+0.030+0.001 

-0.034+0.002 

-0.034+0.002 

-0.027+0.006 

-0.017+0.003 

-0.015+0.003 

-0.094+0.009 

-0.095+0.009 

-0.12+0.02 

-0.005+0.003 

-0.007+0.003 

-0.07+0.01 

-0.06+0.01 

-0.15+0.02 

-0.16+0.02 

-0.21+0.03 

br: = 

bso = 
00 

boi - 

bio = 

so 
311 
so 

302 

320 
so 

312 
so 

S21 
so 

D22 

b;„ = 

b"; = 

+0.063+0.001 

-0.020+0.003 

-0.020+0.003 

+0.061+0.007 

-0.011+0.004 

-0.011+0.004 

-0.11+0.02 

-0.12+0.02 

-0.09+0.05 

so 
coo = 

so 
'01 
so 
'10 
so 

:11 
so 

:02 
so 

:20 
so 

=12 
so 

321 
so 

:22 

cA, = 

c.„ = 

c,, ■ 

c__ = 

c„ = 

c,_ = 

o_, = 

+0.119+0.002 

-0.039+0.003 

-0.040+0.003 

-0.026+0.008 

-0.018+0.004 

-0.020+0.004 

-0.16+0.01 

-0.16+0.01 

-0.18+0.02 

Note: uncertainties represent two standard deviations. 
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Table vi 

Comparison Between 7-Dimensional and 11-Dimensional Monte Carlo Results 

matrix elements 7-dimensional 
Monte Carlo 

11-dimensional 
Monte Carlo 

so 
all 
so 

a12 
so 

a21 
so 

a22 

+0.0303+0.0003 

-0.0330+0.0002 

-0.0331+0.0002 

-0.0251+0.0006 

+0.030+0.001 

-0.034+0.002 

-0.034+0.002 

-0.027+0.006 

bS° 
00 

boi 

bio 

bll 

+0.0633+0.0004 

-0.0194+0.0002 

-0.0195+0.0002 

+0.0671+0.0007 

+0.063+0.001 

-0.020+0.003 

-0.020+0.003 

+0.061+0.007 

so 
coo 
so 

coi 
so 

C10 
so 

cll 

X*12(2)-XJ2(1) 

n*12(2)-nJ2(D 

D*12(2)-D*2(l) 

+0.1195+0.0005 

-0.0400+0.0003 

-0.0399+0.0003 

-0.0317+0.0008 

+0.0055+0.0001 

+0.0012+0.0001 

+0.0035+0.0001 

+0.119+0.002 

-0.039+0.003 

-0.040+0.003 

-0.026+0.008 

+0.0057+0.0003 

+0.0012+0.0003 

+0.0035+0.0004 

Note: Uncertainties represent two standard deviations. 
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Tabel vii 

EVD Collision Collision from 7-Dimensional Monte Carlo 

First Sonine approximation: N=l 

Run C(1) 
W1} W" 

1 
2 
3 
4 

-0.0260±0.0004 
-0.0264±0.0004 
-0.0261±0.0004 
-0.0260±0.0004 

-0.052510.0004 
-0.053210.0004 
-0.0529+0.0004 
-0.0522+0.0004 

-0.094910.0004 
-0.0948+0.0004 
-0.094610.0004 
-0.094510.0004 

AVG -0.0261±0.0004 -0.052710.0004 -0.094710.0004 

Second Sonine approximation: N=2 

Run 4D
(2

> W2> W2) 

1 
2 
3 
4 

-0.0214±0.0004 
-0.0219±0.0004 
-0.0215±0.0004 
-0.0214+0.0004 

-0.051410.0004 
-0.052010.0004 
-0.051710.0004 
-0.051110:0004 

-0.091710.0004 
-0.0916+0.0004 
-0.0914+0.0004 
-0.0913+0.0004 

AVG -0.0215±0-.0004 -0.051610.0004 -0.0915+0.0004 

Note: Uncertainties in 
uncertainties in 

'runs" represent one standard deviation and 
averages" represent two standard deviations. 
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Table viii 

R-Collision Integrals 

Run xm(1) n*131(D D*131(1) 

results from Subroutine RHC 

1 
2 
3 
4 
5 
6 
7 
8 

+0.012710.0002 
+0.0129+0.0002 
+0.0129+0.0002 
+0.012810.0002 
+0.012810.0002 
+0.012710.0002 
+0.0128+0.0002 
+0.012710.0002 

+0.010210;0003 
+0.010510.0003 
+0.00961O.0003 
+0.010410.0003 
+0.0101+0.0003 
+0.010310.0003 
+0.010210.0003 
+0.009810.0003 

+0.096810.0007 
+0.097810.0007 
+0.0972±0.0008 
+0.097910.0007 
+0.0986±0.0008 
+0.0992+0.0008 
+0.0982+0.0008 
+0.096810.0008 

AVG +0.012810.0002 +0.010110.0003 +0.097810.0008 

results from Subroutine RECOLL 

1 
2 
3 
4 

+0.012940.0002 
+0.0127+0.0002 
+0.012810.0002 
+0.0127+0.0002 

+0.0095+0.0003 
+0.009910.0003 
+0.010210.0003 
+0.010210.0003 

+0.098610.0008 
+0.097810.0008 
+0.098410.0008 
+0.098610.0008 

AVG +0.0128+0.0002 +0.010010.0003 +0.098410.0008 

averages of all runs above 

GRAND 

AVG 
+0.012810.0002 +0.010110.0003 + 0.0980+0.0008 

Note:  Uncertainties in 
uncertainties in 

'runs" represent one standard deviation/ and 
'averages" represent two standard deviations. 
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Table ix 

H-Collision Integrals 

Run A132a) n*32(U Dj,a(U 

1 
2 
3 
4 

-0.030410;0004 
-0.030710.0004 
-0.031210.0004 
-0.030610.0004 

+0.027210.0004 
+0.027410.0004 
+0.028010.0004 
+0.027610.0004 

-0.091410.0008 
-0.091210.0008 
-0.091810.0008 
-0.092410.0008 

!      AVG -0.030710.0004 +0.027610.0004 -0.091710.0008 

Table x 

C-Collision integrals 

Run X*133(1) n*133(D D133(1) 

1 
2 
3 
4 

+0.005210.0003 
+0.005010.0003 
+0.004910.0004 
+0.0055+0.0003 

-0.000310.0002 
-0.000210.. 0002 
-0.000210.0003 
+0.000210.0002 

+0.027510.0006 
+0.028710.0006 
+0.028710.0011 
+0.027710.0005 

AVG +0.0051+0.0003 -0.000110.0002 + 0.028210,. 0007 

Note:  Uncertainties in 
uncertainties in 

'runs" represent one standard deviation, and 
'averages" represent two standard deviations. 
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Table xi 

Total contributions from three successive collisions 

Run A*13(l) nj,(i> D*3(l) 

1 
2 
3 
4 

-0.0125+0.0005 
-0.0129±0.0005 
-0.0134±0.0006 
-0.0123±0.0005 

+0.0371+0.0005 
+0.0377±0.0005 
+0.037310.0006 
+0.0382±0.0005 

+0.0329+0.0012 
+0.0352+0.0012 
+0.0340±0.0015 
+0.0333±0.0012 

AVG 

i , , 

-0.0128±0.0005 +0.0376±0.0005 +0.0339+0.0013 

Note: Uncertainties in "runs" represent one standard deviation, and 
uncertainties in "averages" represent two standard deviations. 
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Table xii 

SN- and NS-Collision Integrals 

SN-integrals from Subroutine OVRLAP 

Run 4(i> 4(l) 4(1) 

1 

2 

3 

4 

-0.003810.0002 

-0.003810.0002 

-0.0038+0.0002 

-0.003710.0002 

-0.010510*0003 

-0.010210.0003 

-0.010810.0003 

-0.010110.0003 

-0.0250+0.0004 

-0.0251+0.0004 

-0.0249+0.0004 

-0.0255+0.0004 

AVG -0.003810.0002 -0.0104+0.0003 -0.0251+0.0004 

NS-Integrals from Subroutine RHC 

Run 4<1J 4(l) D
NS(1J 

1 

2 

3 

4 

-0.004110:0003 

-0.0036+0.0003 

-0.0040+0.0003 

-0.004110.0003 

-0.0109+0-0004 

-0.010510.0004 

-0.010010.0004 

-0.010510.0004 

-0.0251+0.0006 

-0.0245+0.0006 

-0.0243+0.0006 

-0.0250+0.0006 

AVG -0.004010.0003 -0.010510.0004 -0.0247+0.0006 

Note: Uncertainties in "runs" represent one standard deviation, and 
uncertainties in "averages" represent two standard deviations. 
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Table xiii 

Combined Contributions from H- and NS-Collisions 

Run x*d)+x;s(i) nJw^dJ DH{I)+D;S
(I) 

from Subroutine RHC ignoring condition T<T2 

1 

2 

3 

4 

-0.0346+0.0007 

-0.0342+0.0006 

-0.0347+0.0006 

-0.0338+0.0007 

+0.0180+0.0007 

+0.0167+0.0007 

+0.0170+0.0007 

+0.0172+0.0007 

-0.1173+0.0013 

-0.1180+0.0013 

-0.1181+0.0013 

-0.1158+0.0013 

AVG -0.0343+0.0007 +0.0172+0.0007 -0.1173+0.0013 

from Subroutine RHC and Subroutine OVRLAP 

with integrand A+0B replaced with 0B 

AVG -0.0345+0.0006 +0.0172+0.0007 -0.1168+0.0012 

Note: Uncertainties in "runs" represent one standard deviation, and 

uncertainties in "averages" represent two standard deviations. 
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Table xiv 

RH- and HR-Integrals 

RH-Integrals 

Run A141(1)X1°5 n*41d)xio5 
D*41(1)X105 

1 

2 

3 

4 

-0.07+0.11 

-0.08+0.08 

+0.05+0.06 

-0.12+0.09 

-0.26+0.06 

-0.23+0.04 

-0.13+0.02 

-0.24+0.06 

-0.80+0.14 

-0.69+0.11 

-0.42+0.05 

-0.60+0.09 

AVG -0.08+0.09 -0.21+0.05 -0.63+0.10 

HR-Integrals 

Run Xj41(l)xlo5 ni41(1)Xl°5 D*41(1)X105 

1 

2 

3 

4 

-0.20+0.06 

-0.06+0.10 

+0.16+0.14 

-0.07+0.07 

-0.23+0.04 

-0.24+0.06 

-0.11+0.05 

-0.22+0.05 

-0.67+0.09 

-0.77+0.16 

-0.82+0.19 

-0.71+0.11 

AVG -0.04+0.10 -0.20+0.05 -0.75+0.14 

Note:  Uncertainties in "runs" represent one standard deviation and 

uncertainties in "averages" represent two standard deviations. 

230 



AEDC-TR-73-171 

Table xv 

RC- and CR-Integrals 

RC-Integrals 

Run x*142ci)xio5 n*42<i)*io5 D*142U)X105 

1 

2 

3 

4 

+0.04+0.04 

+0.05+0.02 

-0.02+0.04 

+0.04+0.05 

+0.12+0.03 

+0.09+0.02 

+0.07+0.02 

+0.13+0.04 

+0.28+0.06 

+0.23+0.04 

+0.20+0.03 

+0.23+0.04 

AVG +0.03+0.04 +0.10+0.03 +0.24+0.04 

CR-Integrals 

Run AJ42CI>*IO5 nJ42U)xio5 D*42(1)X105 

1 

2 

3 

4 

+0.07+0.03 

+0.09+0.05 

+0.04+0.03 

+0.01+0.04 

+0.12+0.03 

+0.16+0.05 

+0.08+0.02 

+0.11+0.04 

+0.23+0.05 

+0.27+0.05 

+0.30+0.07 

+0.27+0.05 

AVG +0.05+0.04 +0.12+0.04 +0.27+0.06 

.   .                             .    J 

Note:  Uncertainties in "runs" represent one standard deviation and 

uncertainties in "averages" represent two standard deviations. 
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Table xvi 

Total Contributions from Four Successive Collisions 

RH + RC 

Run A*4(1)X105 n*4(i)xio5 
DJ4(1)XIO

5 

1 

2 

3 

4 

-0.03+0.10 

-0.13+0.07 

+0.03+0.04 

-0.08+0.08 

-0.14+0.06 

-0.14+0.04 

-0.06+0.02 

-0.11+0.03 

-0.52+0.13 

-0.46+0.09 

-0.22+0.03 

-0.37+0.07 

AVG -0.05+0.08 -0.11+0.04 -0.39+0.09 

HR    + CR 

Run X*4(1)X105 n*4(i)xio5 D*4(l)xl05 

1 

2 

3 

4 

-0.13+0.05 

+0.03+0.08 

+0.20+0.13 

-0.06+0.05 

-0.11+0.03 

-0.08+0.04 

-0.03+0.05 

-0.11+0.03 

-0.44+0.07 

-0.50+0.12 

-0.52+0.17 

-0.44+0.09 

AVG +0.01+0.08 -0.08+0.04 -0.48+0.12 

Note: Uncertainties in "runs" represent one standard deviation and 

uncertainties in "averages" represent two standard deviations. 
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