
wmmmmmmmr^mm PMHm I  WWHRIP* "^ 

AD-.770   )30 

SOME  TOPICS   IN  STATISTICAL   INFORMATION 
THEORY 

S.   Kullback 

George   Washington   University 

Prepared  for: 

Office  of   Naval   Research 

15   November   1973 

DISTRIBUTED BY: 

Knji 
National Technical Information Sonrice 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 

  ■■ -'  ■ —i  -■■        -- ■ --" '-   - ^-L-^^UJMJ»^«—a^tk-aa^^-mj« 



n.VW.pw.—imiivnn 

UNCLASSIFIED 
SiTimtv C'lnKHilii-iilft>n 

DATA R&D DOCUMENT CONTROL 
>♦. ufirt  t tiitsitii utum ol title, luuly »I iibstnit I ttint tnUvMinti «wnufrtfmn mu*t hv tnlerrd when the ovvtatl rrpotl j* chthhilltd) 

I     OMU., (NATINO    ACTtViTV   (i'i*fpoHtft UtllhOf) 

THE  GEORGE WASHINGTON UNIVERSITY 
DEPARTMENT OF STATISTICS 
WASHINGTON,   D.C.     20006 

?«. REPORT   fECURITV   CLASSIFICATION 

lb.   CROUP 

l    HI (>OM T   t l I I t 

SOME TOPICS IN STATISTICAL INFORMATION THEORY 

4   HI sc «if ' i vt  nor e* (Typr ol report and incluHivr dmlet) 

TECHNICAL  REPORT 
i   AUTHORISI (Firjsl name, middle mliial, lail name) 

S.   KULLBACK 

0     HfPORT   DATE 

November  15,  1973 
7a.   TOTAL  NO    OF  PAOes 

26 
76.   NO.   OF   REFS 

15 
8«.    CONTRACT   OR   GRANT   NO 9«.   ORIGINATOR'S  REPORT  NUMBERlS) 

N00014-67-A-0214-0015 
h.   PHOJEC T  NO 

NR-042-267 

13 

»b. OTHER REPORT NOISI (Any other nuntbatm that may b» aflfnad 
thlt report) 

tO     DISTRIBUTION   STATEMENT 

Unlimited.  Reproduction in whole or in part is permitted for any 
purpose of the United States Government. 

11      SuPPL EMENT »« V   NOTE! 12     SPONSORING MILI TARY   ACTIVITY 

OFFICE OF NAVAL RESEARCH 
STATISTICS & PROBABILITY PROGRAM 
ARLINGTON, VIRGINIA  22217 

11  ABSTRACT 

Attention is focused on informational properties of sub-sigma- 
algebras of the fundamental probability space in contrast to the 
discussion in Information Theory and Statistics (Wiley 1959, Dover 
Publications Lie. 1968} where attention is devoted to informational 
properties of statistics, that is, random variables.  Properties of 
relative conditional expectations and results on separable sigma- 
algebras are stated for later use. The discrimination information 
in a sigma-algebra (sub-sigma-algebra) is defined and various pro- 
perties developed, in particular the relation between information 
and sufficiency. The integral representative theorem for discrimina- 
tion information is derived by methods believed to be more inherently 
information-theoretic than others that have been presented.  Monotonie 
properties of conditional discrimination information are derived with 
respect io  either the conditioning sub-sigma-algebra or the condition- 
ed sub-sigma-algebra. 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Deportmenl of Comm.rct 
Sprinaflold VA 22131 3^ 

DO FORM 
I   MOV «s 

S/N  0101-807.6801 

1473 (PAGE   I) 
UNCLASSIFIED 
Security Clasiificition 

■■:—"■ -- ^— 
 ^ - -i       - ■'- •• ■"■■'■>-« 



mvwwpM 

S>curity ClwrfIcttlow 

H cv wonos 

STATISTICAL INFORMATION THEORY 

MINIMUM DISCRIMINATION 

SUB~SIGMA-ALGEB!AS 

MOLI WT NOLI WT 

kINH   C 

NOLI WT 

DD ,'-0r..1473 i"») 
(PAGE- 2) 

UNCLASSIFIED 
Security CUttiflcatlon 

 -.- - ■^->..-. —  •■■'■■ ——^..•——^.^■.,-.»—^^^^. IMlMIIMHMIIiiH 



SOME TOPICS IN STATISTICAL INFORMATION THEORY 

by 

S.   ROLLBACK 

TECHNICAL REPORT NO.   13 

November  15,   1973 

PREPARED UNDER CONTRACT N00C14-67-A-0214-00K^    L/    O 

Uj    OEC 4  1973 
(NR-042-267) 

OFFICE OF NAVAL RESEARCH 

Herbert Solomon, Project Director 

Reproduction in Whole or in Part is Permitted for 
any Purpose of the United States Government 

DEPARTMENT OF STATISTICS 

THE GEORGE WASHINGTON UNIVERSITY 

WASHINGTON, D.C.  20006 

■ • ■•■•"iiiiiiii •|III__U_ ■ in  ■■ iIM—, Iniimltmmlmm^^^mme^^^^^umm^mii 



ww^www^^ppn^^F»^ 

SOME TOPICS  IN STATISTICAL  INFORMATION THEORY 

by 

S.  Kullback 

Summary 

Attention is focused on informational properties of 

S' b-sigma-algebras of the fundamental probability space 

in contrast to the discussion in Information Theory and 

Statistics where attention is devoted to informational 

properties of statistics that is/  random variables.     In 

particular,  the integral representation theorem for dis- 

crimination information is derived by methods believed 

to be more inherently information-theoretic than others 

that have been presented.    Monotonie properties of con- 

ditional discrimination information are derived. 

0.     Preliminaries.'    In   [11]   attention was devoted to 

informational properties of statistics,  that is,  random 

variables.     In this exposition however,  the discussion 

daals v/ith informational properties of sub-sigma-algebras 

of  the  fundamental probability space.     In particular,  we 

shall present a proof of the  integral representation 

theorem of discrimination information which  is believed 

to be more  information-theoretic in approach than other 

■    ■..'.-   ■■ ■ ■ ■  .„.„^jmm.j^j^n^Maai^i 
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ilci i \.ii Jon;; fit   thLü bci«ic rouult. 

Wo present here certain notations,  lemmas,  and results 

on separable  sigma-algebras which we  shall use in this  ex- 

position. 

Wo shall  operate in  the probability space   (fi,A,P).     Let 

Zt ((..)   and  Z (w)   be non-negative  random variables such that 

(0.1)      iJt (A)   -  /AZt (a))dP(ü))/      M(A)   =  /AZ(w)dP(w),  AfA 

ere  probability measures.    We also v;rite   (0.1)   in the Radon- 

N'i;;odym differential formalism as 

(0.2)     djJt   =  Z  dP,    dp    =  ZdP. 

Zt (to)   and Z (to)   may be considered as generalized probability 

densities.     If we assume that iJt   is absolutely continuous 

with respect to   p,   that is,   p <<p,   then 

(0.3)     dpt   =-- Wtdp    = WtZdP =  ZtdP,     Wt     = Zt/Z    a.s. 

GO that Wt      is  a  likelihood ratio.     We  shall also require 

sequences  of  the  generalized densities,   corresponding 

probability measures,  and  likelihood ratios,  that is, 

dK„   ^  ZtB
dP'     d^   = z

Il
dP'     n =  1/2,... 

(0.4)     du      = W    dp    = W    Z dP = Z    dp,  W      = Z    /Z       a.s. 
«n in« tnn tn *« tnn 

Wc  shall have occasion to deal with the properties of 

relative conditiondl expectations  as described in   [13,  p.   344] 

Let  8 be  a sub-sigma-algebra of the  sigma-algebra A, 

that  is,   fi=A.     Corresponding to   (0.2)   and   (0.3) 

 ■ ■-   ninii - --■"-- 



KSä   . 

-3- 

(0.5)      dnß   =  Eb^PR,   djit8   =   EßZtdP8,   djJtB =  EßWtdyß 

EZWt   =  EZ-iC   (EBZ-^t)/Eß2   «   E8Zt/E8Z, 

where Pg  is  the restriction of  P  to  B defined by Pg(B)=P(B), 

BtB,   and 

B, 
(0.6)      I1R(B)   =  /„ZdP  =   /n(EDZ)dPR/      B€B B B B 

(0.7)     /B(E®X)dyB = /BXdp,     B€B 

(0.8)      K8ZX  =  EBZ'E8X   . 

We  shall need two results  from probability theory   (see 

for example,   [13,  p.   140,  prob.   16,   17] which we  state as 

lemmas. 

Lemma 0.1.     /|ztll   -  Zt |dP -> 0,   resp. 

I\z    -   5|dP ■> 0 as n ■+ o»,  if  and only if 

/AZt.dP * /AZtdP'   resp*   V«dP - /AZdP as n ^  ^ 

uniformly in A€A. 

Lemma 0.2.     If  Zt      
P Z,    resp.   Z    * Z,  then 

/.Z     dP ■*■ /.Z dP resp.   /^Z dP ■*■ /aZdP as n ->■ » uniformly  in 
At^ At *»n A 

AfA.  The convergence in probability may be replaced by al- 

most sure convergence. 

Note that Lemmas 0.1 and 0.2 provide the chain of im- 

plications 
Li 

(0.9)  p (A) -> u(A) , uniformly in A€A»ZB-*- Z => 

=» Z 5 z r> y (A) -»• p(A) , uniformly in A?A and a similar 

r\mi;mmm^^m^ ■MMiMIMIIIMilMii 
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'."io with the subscript t, where 

(0.10)     ZB   -► z «  /Iz^- Z|dP -»■ 0. 

We assemble here certain results on separable sigma- 

algebras which we  shall need   I13J . 

(0.11)     A separable sigma-algebra is a sigma-algebra that 

is generated by   (is minimal over)   a countable class of sets. 

(0.12)     The minimal sigma-algebra over the union of a count- 

able class of separable sigma-algebras  is also a separable 

sigma-algebra. 

(0.13)     The Borel sigma-algebra on the real  line is separable. 

(0.14)     The inverse image of a separable sigma-algebra by a 

measurable transformation is a separable sigma-algebra. 

(0.15)     The sub-sigma-algebra induced by a random variable or 

a countcble class of random variables is a separable sigma- 
algebra. 

(0.16)     A finite   (countable)   partition of a space fl is a 

finite   (countable)   sequence of sets A    such that 

l\   ~ n Ain ^     = 0r    i^j. 

If A is a sigma-algebra of subsets of 0 then the partition 

is measurable A if Aj €A    for all i.     Let  E =  {E  }    be an 

A-measurable partition.    The A-measurable partition t?={D } 

is said to be a subpartition of E or finer than the parti- 

tion E if each Dj€P is such that D CTEJ eE and we denote this 

hy V ^ E or E yv. 

   —   -   -       '***M~m^—*^—^ .  -   -- —   — ' ui^^^M^Mmt 



r 

-5- 

(Ü.17)     A sequence of partitions   {EM  is  said to be  regular 

if each  E"   is a finite partition and 

E^   E2 >  E3/...     . 

(0.18)     Let  t"  denote  the  finite  algebra generated by  the 

partition  Cn,   then corresponding to   (0.17) 

F1 c E2  c E3 c  ... 
(X> 

and ij P is an algebra.  Let E be the minimal sigraa-algebra 

over UP , then E is said to be generated by the regular 

sequence of partitions (0.17) 

(0.19)  It is clear that if a sigraa-algebra is generated by 

a regular sequence of partitions then it is separable. 

Conversely, every separable sigraa-algebra A can be generated 

by a regular sequence of partitions. 

■■ "-  ■  ■-' -- ■ —-■-. -  -..-.  a  1 ^^^^Mvu^aemäM**,********** 
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1-     Introduction.     The result in Corollary  3.2,  page 16 

(11]  suggests  that the discrimination information in the 

sub-signui-algebra  BcA generated by the partition  {B, ), 
n 

L = 1,2,... tv,    B1 6A, I Bi   = fl, be defined by (we shall 
i = i 

use natural logarithms) 

M. (B. ) ; M. (B ) 
(1.1)  I(8Mit,p)=I Mt (Bt)£n ^3^ ,  B^BCA. 

Because of the convexity of the function x log - for 

nn-negativo x ar.d y, and additivity of the measures for 

disjoint sets, for Ai, AzfA,  AiOAz = |J, 

Pt(Ai) u (A2) 
(1.2)  Mt (Aa) In  -^^ + ^ (A2) £n -^ 

Pt (Ai)+M (A2) 
> 0. (A,) + ^(A,)) in    V(hl)+V\A2) 

yt (AI+A2) 
= pt(Ai+A2) In     y(Al+A2)  . 

The property in (1.2) suggests that the discrimination in- 

formation in A be defined by (cf. [1],[2],[3J, [6],[7],[8], 

[10],[14],[15]) 

(1.3)  I(A;pt,p) = A^P I     ^(A,) ^n^| 

where the sup is taken over all possible A-measurable finite 

partitions of ß. For convenience hereafter we shall omit 

the nt and JJ in I(8;Mt,J-0 end  I(A;pt,p) unless needed for 

clarification. 

If j.it is not absolutely continuous with respect to y, 

'■ '■ ■ ■ • — ■ ■ -     - * 
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thnt is, there exists an h"K  such that p(A) - 0, }Jt (A) ^ 0 

then r(A) - ».  Accordingly we shall assume that pt »'< JJ. 

Note that r(A) may be infinite in this case also. pt << p 

is a recessary condition for T(A)<«».  (See [11, pp. 5, 5. 

Prob 5.7, p. 10] 

It also seems intuitively reasonable to have defined 

the discrimination information in A by (cf. (11, p. 5]) 

(1.4) 1(A) = / Zt (w) in  -^y- dP(a)). 

The integral representation (1.4) may also be written 

as 
Zt 

(1.5) 1(A)   =    /Zt   £n -g d? =    /Wt   £n Wtdy = /(^n Wt)dpt   = 
dyt 

=  / d^^ ~v    • 

Using  the  additivity of  the  integral  and Jensen's 

inequality  for convex functions   (11,   p.   16] 

(1.6) / Wt   In Wtdp »Jj /A    Wt   In Wtdp,     A^A, ^^A,   = ß, 

(1.7) /^ Wt   In Wtdp > /^W^M £n    ^    ^    =   H (A, Un -^  , 

" y  (A ) 
(1.8) /Wt£nwtdp>j ^(A^^n-^fy     , 

hence 

U (A ) 
(1.9) 1(A) = /Wt£nWtdn > ASu^  I     v%  (A )  £n -^y = 1(A) , 

where the sup is taken over all possible A-measurable finite 

partitions of ß.  A proof of the reverse of the inequality 

in (1.9) may be obtained following the method in [15, pp. 24-25] 

 -■ — • - 
■ mm „mmmä^tn t^^mmammmmmm 



-8-

or that in [B]. We shall not pursue this matter any further 

~! t t!ai. ~: point but !~tate the integral representation theorem 

Theorem 1.1. I(A) = I(A), that is (1.3) and (1.5) 

define the same value of the discrimination information. 

Proof~ of this theorem hava involved martingale theory 

C0.g. [10]) or the use in [8] of the convexity property in 

conjunction \·lith the Darboux-Young approach to the integra 

[ J 3 , p. 14 3 Ex 2 9] • 

The proof to be presented later in this expositio~ is 

Lclicved to be intrinsically more information-theoretic in 

n ;ttur:; . For other approaches see [2],[7 ), [14],[15]. 

Note that if in the probability space (O,A,P), A is 

g::.merated by a finite partit·"on {~ }, then (0.1) is 

(1.10) ~t(A 1 ) ~ 7.t (w)P(A
1
), ~(A1 ) = Z(w')P(A

1
), wE)\ 

and both· (1.3) and (1.5) 

( 1.11) i (A) = l ll (A ) 
s - 1 t s 

yield 
~ (A,) 

ln ~ (;, ) = I (A) • .. . . 

\>Je remark ·that instead of starting with the probability 

spc.1cc (rl,A,P) \'It could have started with the measure space 

(H,A .• >..) \'l.herc >.. is a sigma-finite measure on A. We assum:=~ 

th~ existence of the non-negative A-measurable function X(w) 

such that 

(1.12 ) P(A) = /AX(w)d).(w), AEA 

is a probability measure on A. Wa then have (see [11, p. 5]) 
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(1.13) dMi   «  ZtdP =  ZtXdA    =  fjdX,     dy    = ZdP =  ZXdA  =  fdA[X] 

Z Z f 
(1.14) /Zt in -^ dP = /Zt in -j XdA = /ft £n -^ dA. 

2. Discrimination Information in a Sub-sigma-algebra. The 

following discussion essentially extends some of the presen- 

tation in [11, pages 1-78]. We shall use the notation in 

[13j and in particular properties developed in [13, Chapter 

VII, Conditioning, pp. 337 ff].  In particular we shall use 

the fact that Jensen's inequality holds a.s. for conditional 

expectation also.  Let B be a sub-sigma-algebra of the sigma- 

algebra A. The basic inequaliL is that if g is a convex 

function and EX is finite, then 

(2.1) E{g(X)} > g(EX). 

In the conditional form, we have 

(2.2) EB{g(X)}   >  g(EBX)   a.s. 

Using  the definition of  conditional expectation,   (2.2)   and 

(1.4), 

8 
(2.3)     1(A)   = /zt    in ^ dP = /EB(Zt   in !l)   dP 

EBZ, 
* /E8Zt   in * 

t:.Di» 
dPR  . 

We define the right-hand side of (2.3) as the discrimination 

information in the sub-sigma-algabra B and note that, using 

(0.5), R 

E   Z 
(2.4)     1(8)   = /EBZt   in -g-^- dPg = /EBWt   in EBWtdyB 

E   Z j 

/UnE*Wt)d,tg = /d,i8in 
Mt8 

= Sup I     pt(Bk)   in-1^ 
k (B.) 

T 

dH '8 

. —,     .    ._ _.._    . . 
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\vhere the Sup is taken over all finite 8-measurable parti-

tion!; of Q (see (2.15) and section 1). We can now state: 

Theore&n 2 .1. If 8 is a sub-sigma-algebra of A then 

(2.5) I(A) ~ I(8). 

Note that the coarsest possible sub-sigma-algebra is 
8 

that generated by (J,O) and denoting it by 8
0

,E 0 z, = EZ, = 1, 

E8oz = EZ = 1 and 

(2.6) 1(80 . = 0. 

Theorem 2.2. I(A) ~ 0 with equality if and only if 

wt = z, /Z = 1 a.s. (See [11, Theorem 3.1, p. 14]). 

we have 

(2. 8) I (A) - I (8) = lw, tn w, d p - IE:w, tn E:w, dlJB 

= lw, ln <w, /E:w, ) d ll 

z, z, /Z 
= I -z ln B 8 dlJ. 

E Z /E Z 
' 

Since 
z, 

1 \'l, d ll = I z d ll = I z, dP = 1 , 

(2. 9 > IE:w, dJJ8 = 1 (E8z.. /E8z> dJJ8 

= IE8Z,dP8 = IZ,dP = 1, 

the right-hand side of (2.8) is a dizcrimination information 

value, and as such non-negative. Let us define, using (2.8) 
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dbovj,   and   (0.2)   and   (0.5) _ 
Z   /E  z 

(2..LÜ)     I(A(S)   -  /Wf    In   (Wt/E^Wt)dp = /Zt   In ~—g-*- dP = 
Z/E  Z 

dMt/djJtB 

= / d»Jt   ^ dpydpB       •' 

that is, I(A|B) is the conditional discrimination informa- 

tion in A given B and hence 

Theorem 2.3.  If 8 is a sub-sigma-algebra of A 

(2.11) T(A) = 1(8) + I(A|8). 

Theorem 2.4.  If 8 is a sub-sigma-algebra of A, then 

(2.12) 1(A) = 1(8) 

if and only if I(A|8) = 0, thai: is, if and only if 

(2.13) Zt/Z =-- EBZt/E
8Z.  a.s. 

Proof.  Apply Theorem 2.2 and (2.10). 

If 8 is a sub-sigma-algebra of A and satisfies Theorem 

2.4, then we say that 8 is a sufficient sub-sigma-algebra 

for A.  (See (13, p. 346], (11, pp. 18-22].) 

If 8 is generated by a finite partition, then on a 

non-null atom B^B, the conditional expected value EX is a 

constant and its value is 

(2.14)  EBX = ^j- /BXdP, w^B. 

Thus _ 

,8„       .     A    - -   -       " ^ 
dP 

EUZ B 

(2.15,     KB,   =/EB2i     ta .^^       8Z     tnl\ 

■   ■■     —   in iam m in  M i • « ~ ■■-'        ■  ■   ■   ->-^. .^.^^.- ■-   ^_-^^.^.. ,    , .^.^^^^^^^^^^^m^^^L^im^^äk 
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K'oLo   Lh.it  in this  cane 

( 2.1C)      -|~«   Z/ ^y     /BZdP  =   Z/(M(B)/P{B);,     üC B 

cjnd 

g  /E8Z 
(2.17)      I(A|Ö)    -   /   Z     fn g-i- dP 

Z/EÖZ 

•     öl Z/EbZ 

=   1   ^B^t    £n   tit(B1)ZP(B1)   dP 

= ^^B.)  /B. TTTflTT   tn   z/y(B1i    dp 

=   Ili^B^KAJB^ 

wliort 

(2.18)      I(A|B   ) 
^B, MTiipr £n  ZTüTBTJ   

dp 

= / 
dMt dp^p^B,) 

Bi   MTHT) tn 
du/yCB^ 

y. (D. ) If t Mt v i ' 
" MT^T 

yB1 
Zt ^ T 

dP - ^ -TiTBTy 

Note that .I(A|B1) is a discrimination information, and 

(2.19)  KAjBj ) > 0 

■ .IIII..I.II..II.I   ir nnianii« ,     !      , M|ini|(|.^Mii|MMilMMllllldMMIIMIMI^MMilMlll^^ 
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with equality if and only if 

(2.20)  Zt/Z « Mt (Bj)/y(Bi),  W6B, , 

(see [11, Corollary 3.1, p. 15].) 

To obtain another representation for  I(Ajo)   when ß 

is  a separable sub-sigma-algebra of A we proceed as  follows. 

It  follows  from   (2.18)   that 

(2.21)     Ut^)   liAlBt)   = I  I^Zt   in^dP -  l^iB^     tn^-y 

= /Zt   £n -1 dP  -  Jyt (B^   ^n 
TUT 

= I(A)   -  ^t(Bt)     ^n-l^y    . 

Now let n(ß)   denote the class of finite B-measurable parti- 

tions  of ß,   then   (see   18]) 

V   (B   ) 
(2.22)     inf    Jyt (B )I(A|BI )   = inf    {1(A)   -  U   (B )   In    *, ' >   } 

n(B)   »        * ! n(B) i  *     * ^^i ) 

= 1(A)   - sup    l^ (B,)   In -j-^y 
n(8)  i y(Di , 

=  1(A)   -  l(B)   =  I(A|B). 

From   (2.22)   we note  that  I(B|B)   =0. 

Let Wt   be defined as  in   (0.3)   and denote by  CTi7    the 
W 

t 
.i 

class of sets Wt  (B) where B ranges over linear Borel sets, 

that is 

1 

    -      ■   — ^^.»^^^.^M^ 
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(2.23) W^J(B) = {a):Wt (a))GBJ\ 

l'>      is the miniival s i.gma-algebra with respect to which W 

is measurablo and 6W is a separable sub-sigma-algebra of A. 
t 

For convenience we shall hereafter denote Bw by 8 .  We 

shall now show that 8t is a sufficient sub-sigm.i-algebra 

for A. 

Theorein 2.5.     Bt   is a sufficient sub-sigma-algebra 

for A,   that is,  1(A)   = KB ) . 

Proof. 

(2.24) 1(A)   = /Wt   ^n Wt dp =  /E^   in Wt )dpß 

>  /Ez Wt   In E^ Wtdjiß    =  I(Bt)   = /Wt   In Wtdy =  1(A) 

where we have used the fact that since W    is measurable B 

B 
then E^Wt   = Wt [JJJ.    Note that using   (0.5) 

E     Zt /E     Z  =   Zt /Z , 

\/hich  is  the necessary  and sufficient condition   (2.13)   for 

Theorem 2.4. 

iMmmiin.f   niniMriMiMiiif.iiiurii.hr mil«! i iinrnMniMiirMinllfiiiiiiii aMgaggmMligi—MB 
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•^  ^il Inff'nnation-th ioretic Approach. We ^hr-Ol now con- 

sider an approach to 'SIQ  integral representation which is 

belirvod to be of interest in that it is intrinsically 

information-theoretic in nature. 

Suppose thct there is an increasing sequence of sub- 

sigma-algebras of A such that 

(3.0)  B c 8 c B. c.c 8Ä c...c ScA 

where ß is the minimal sigma-algebra containing y8 , 
n 

usually denoted by 8     |   8#  or 8 = VB   , 

Consiu3r 

(3.1)     /E0Z In ZJ~ dP -  /EÖZ In —^  dP + /EÖZ  In    g  Z      dP 
E ? Z E a Z E  «l + i Z 

so  thot since       R „ 

(3.2)     /EßZ  ^n —g—- c!P  =  /E8" + i    (E8Z  ^n -^   )   dP 
E " Z " " E^Z 

E
8f. H 25 

= /E^+iZ  in —.  dp >  o 
E '• Z 

(recall that ^> (E6
2)   = E^M z and E8,M ^B. £)   = ^ z)  ^ 

may write   (3.1)   as 

(3.3)     /EBZ  to^.Sldp =  /E^.lz  inE^dp + 
E     Z Eq, z 

- /EBZ  £n -|-Z__ dp. 
E^+i Z 

Hence  using the notatiov: 

.■■^■■M^..,,   ■-,■     I        ,     .-■■.-^■M.^. .■■h^,„^tJ.^      -■-■—- H        -       --  ,|rfrt.a^|M^MMM|Mai-,iwr.   L. 
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(3.4) 1(0:8 ) « /EßZ £n -|-- dP 

we have tho chain of inequalities 

(3.5) l(B:Bo)   >  Kß.-ß,) >...>   I(ß:Bn) > I(8:BB + 1) >...> 0 

where it is seen from (3.3) the-t I(8:8B) = I(8:BB + X) «• 

« 1(8,+! :Bn) " 0. Since the raonotonically decreasing 

sequence (3.5) is bounded below it converges and hence 
8 

(3.6) 1(5:8.)   -  I(8:8B+1)   - /E8^iZ  In E T*2 dP -^ 0,  n  -^ «>. 
E0«Z 

Hence  using the  result in   [12],   (3.6)   implies 

(3.7) /jEß» + iZ  - EB»Z|   dP -> 0#  n  H. co. 

Indeed,  by considering I(8:8B + ,)   -  1(8:8,,)  we can also get 

(3.8) /(E
8B

 
+
 
,Z  - SB*Z\   dP -► 0    m^ ->■ oo, 

hence  the sequence E ^ Z is L1  fundamental and there exists 

an  X(cL    such  that 

(3.9) /(EBcZ - X|   dP -► 0,  n + », 

cind 

(3.10) /Eßa ZdP •> JXdP,      n •* oo, 

that  is 

(3.11) /XdP  =  1 

since /E
8

" ZdP = 1  for all n   (see   [13,  p.   157,   161]). 

- — - ii ■ ■  -■ i   ---—■——>—-————'— 
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W.U.hout restricting the generality we may take X to 

bo  6-Moasurablo by the  following argument.     Using the 

result   in   [13,  p.   348]   that 

.B. Li .A Xn    "l  X  -■ E\      >  EUX 

we have 

.ßr. B   ß» 
/|E0rZ - x|dP ■> 0,  n -> »     - /IEVZ  - E x|dP -  0, 

n 

Bn_       „B =»  /lE^Z  - EDx|dP -•• 0,  n -► » 

since EBE n Z = E nZ.  If X is B-measurable E X = X a.s. 

We shall now show that X = EBZ a.s.  Applying lemma 

0.1 to (3.9) we have 

■——--"        ■  — ....■.»^—. .......   .-...^   ..^-^^^M ■M^tfMMMHHWIiHIMIM 
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(.5.12)     /AIiB« ZdP •> /AXdP. 

i.:  A6Bk ,   then  for n > k 

(3. Hi)  /AB
8n-ZdP « /AE

8ZdP 

:;o taut 

C.IO  /AXdP = /AE
BZdP. 

Since (3.14) is true for ^Bk » it is true for ACUB^ . 

'J'IVUG the probability measures defined by the integrals in 

(3.14) Eire identical on the field UB,, and hence by the ex- 
k * 

tension theorem   [13,  p.   87]   (3.14)   holds  for A€B.     The 

:<adon-Nikodym theorem then yields   from   (3.14)   that 

(3.15) X - EBZ[PB]. 

Since 

(3.16) /|E8nZ   - EBZ|dP  <  /|E8«Z   -  X|dP + /|X - EBZ|dP 

v/e sec  from   (3.9)   and   (3.15)   that   (of.   [4,  pp.   319,   331]) 

(3.17) /iEBnZ  - EBZ|dP ■<■ 0,     n •* «. 

Since,   using theorem 2.2 

(3.18) /EBZ  ^n £— dP = 0 

if and only if X = E Z a.s., then in view of (3.15) we 

conjecture   that the sequence (3.5) has the limit zero, 

that is, 

(3.19) lim  KB:^ ) = 0 
n-K» 

■--■■■■--■ —   - ■ -■ — .„__1B1M^^Mat mam i «HNMHMMMHaMHUMri 
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Wo show that   (3.19)   is true as follows.    We write 

I(B:B„ )   - /EBZ  In -i-^- dP - /EBZ  ^n EBZ dP - /E8Z  in E** Z dP 

= /EÖZ -Cn EÖZ dP - /E nZ  £n E n Z dP. 

We have shown that E nZ  ^  E8Z which implies that E nZ •>  EBZ. 

The convergence in probability implies that there exists a 

sequence {rik} of integers increasing to infinity such that 

[13,   p.   151] j 
o 

E "^ Z a4S- EBZ. 

B      B 
Since the convex function E1lZ£nEnZ^ -1/e, the Fatou- 

Lebesgue Theorem [13, p. 152] yields 

R        R 
(3.20) lim inf /E ""Z ^n E n*Z  dP £ /EBZ in  E8Z dP. 

But the convexity,Jensen's inequality, and the smoothing 

property of conditioning [13, p. 348, 351] lead to 

R     R    v  B      B        B      B 
(3.21) /E0Z In  EÖZ dP = JE  BZ In  E "Z dP i JE  "Z in  E BZ dP 

for all n, m such that n>m. 

From the monotonic property in (3.21) combined v/ith 

(3.20) we conclude that 

8.       B R      R 
lim /E nicZ £n E nv:Z dP := /E

0Z In  EÖZ dP 

or 

lim I(B:B„ ) = 0. 

Since  I(B:BB)   converges,   it must converge to the same  limit, 

that is,  we have   (3.19). 

 ' ■      -r-, ,  .-I., . ■   ^    - „■■.■^,~V—^MIM^^l^Jl 
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Noto that if v/e interpret 1(6:8 ) as a measure of the 

closenotis of the approximation to the measures over 8 by 

the iiicuisurrjs over ßn the sequence (3.5) implies that the 

approximation gets better as n gets larger and in the limit 

tho.  approximation is exact to within sets of measure zero. 

A similar argument ofcourse follows for Z , If we 

«tart with 

r   B                E7Wt                      ,   8                E^lWt (3.22)     KV    in -j.     du-/E°W.   ^n -^     dp    + 
EZBWt EzBWt 

.B„  ,  EZWt + /EJW. In -j^— dy z *   TA + IW Ez
n * a Wt 

since 
R                           R 

(3.23)  /E°W  £n -^     av=lE*"l«t   tn -\  du 

we can repeat the preceding argument and conclude that 

\ /li^" Wt - Yt |dy -> 0, n H- « 

/ 
(3.24) •'   /ytdp  =  1, 

( Yt   =  EZWt    ^B1 

n |aBaa^jj   „^^...^^^..^M 
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(3.25)     Lim    /E°Wt   In -g^- dM =  0 

We shall now use these results to show that 

(3.26)     1(6)   = /E^Wt   in E^Wt   dp =   Jim /E^Wt   £n E^nWt   d 
n -foo 

=   .Tim 1(8  ) . 
n 

Using the  result in theorem 2.3 we may write 

1(3I60)   =  I(8a|B0)   + KBJBJ) 

KBlBj)  = KBJB,)   + I(B|B2) 

\ 3 % /*   I ] •mm m        m        m m        m m 

I^|Bk)   =  I(6k + 1|Bk)   + I(8|Bk + i) 

or using  the  relations  in   (3.27) 
n 

(3.28) I(G|B   )   =  1(B)   = 7   1(8.   , j 8fc )   +  I(B|B +i ) 

whore R 

r, E,W. 
(3.29) I(e|Bw)   = /  EJW.    Irx ~^-i- dp. 

E2
NWt 

Since the  relation   (3.25)   applied  to   (3.29)   implies 

(3.30) I(B|BN)   -> 0   US N + oo 

we  gtt  from   (3.?)    (.:.ee   (2.8),   (2.10)) 

(3.31) 1(B) - ; KG,^ |^ ) ■-' I   (I(^ + 1 ) - KE^ )) = lim KBii ) 

From (3.31) it is seen that if KB) < « then I (8 f |B ) ->■ 0, 

 ■. *. ^ i ^-_ .  —-    — -     -■   
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n -+ ..... If I <B •• 1 IB
11 

) - .- I < oo as n -.- <», then by the Toeplit~ 

lemma [13, p. 238] lim! I(B.> =I. 
• +co n 

\'le are now in a position to apply (3.31) to prove the 

integral representation theorem. 

In the preliminaries it was seen that a separable sigma

algebra can be g~~nerated by a regular sequence of partitions, 

and using the notation of (0.18) we have 

{ 3. 32) 
:II "' 

E I E. 

Accordingly, as a special case of (3. 31) we have ·that 

(3.33) lim I(E")=I(E_) 
• +aD 

Recalling (1.11), (2.15) and Theorem 2.5, we note that (3.33) 

is the 

(3.34) 

integral representation theorem, that is 

Jlt (A,) 
I(A) = Sup l~ (J\) ln JJ(A,) = Y(A) 

where the sup is taken over all possible A-measurable finite 

partitions of ·U, and in particular if the 8 are generated • 
by f i_ni t e partitions then (3. 31) is the same as (2. 4) • 

For application of the preceding results, parti~.ularly 

(3.31) to stochastic processes we state as Lemma 3.1 a 

r r:sult \-lhich is Theorem 1.6, page 604 of [4]. 

Lemma 3.1. Let A be a sigma-algebra of w sets, and let 

{x(t,w), t CT} be a family of w functions measurable wi~~ 
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rospect to A.  Let Bg be the sigma-algebra generated by 

{x(t,w), t(ESc:T}.  Suppose that T is non-denumerablo.  '.^hcn 

if A6BT there is a denumerable subset S (depending on .'.; of 

T, such that ACBg.  If X(u)) is an w function measurable with 

retipect to B-,, there is a denumerable subset S (depending on 

X) such that X is measurable with respect to B-. 
5 

Now let {x(t,a)), t€T} be an arbitrary system of random 

variables defining a stochastic process. Let BN be the 

sigma-algebra generated by the sub-system {x(t/w)/ tCN^T} 

and B- the sigma-algebra generated by the system of random 

variables defining the stochastic process. We can now state 

Theorem 3.1. 

(3.33)  I(BJ = sup  I(BM) 
T   N€W    N 

where W is the class of all finite subsets of T. 

Proof.  If T is countable, then it is possible to choose 

finite subsets N c N c ... .-uch that B is the snallest 

sigma-algebra containing U BN and (3.35) is then essentially 

(3.31).  If T is not countable we shall use Lemma 3.1.  If 

I(BS) = co,   then I (B ) = a..  Suppose I(BT) < «>, then 

R        R      R 

Ez Wt = E Zt/E Z (see (0.5)) exists and is of course 

 -—  ■■- ■   ■■■•--■ mm .,.,1-,J.^—^.   
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mjnsurable with respect to BT. But according to Lemma 3.1 

every function measurable with respect to B_ is measurable 

v.ith rcspsct to Bg for at least one countable S c T so that 

ßT Be S-p BT Be Be 
(3.36) Ez

XWt   =  Ez\    []i]t   or E   ^Zt/E ^Z   = E   bZt/E   bZ     a.s. 

Since   (3.36)   is the necessary and sufficient condition that 

I(8S)   -  I(BT)   we   get 

(3.37) I{B_)   =  KB»)   = sup  I(BM). 
T S       New       N 

For a similar result see [9]. 

4. Monotonicity. If the sigma-algebra B in (3.0) is not 

the sigma-algebra A of the probability space (fi,A,P) then 

again using theorem 2.3 ar. in (3.27) we have 

(4.1) 1(A) = 1(B) + KAjB) 

(4.2) 1(A) = KB ) + l(AlB ). 

We can now derive certain limiting relations in which A 

plays a role. From (4.2) and (3.31) we see that 

(4.3) 1(A) = lim !()? ) + lim I(A B ) 
n -H» n -x» 

= 1(B) + lim KA|B. ) , 
B 

n ->co 

hance for 1(A) < «. 

(4.4)  1(A) - KB) - KAI6) = lim KAlB'). 
1 B 

B-KO 

Sirilarly from 

(4.5)  1(B) = KB) + I(B|B ) 

- ■- - -    1  
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H.G)     1(B)   =  lim    i(Bt )   + lim    I(S|B  ) 
B -H» n -voo 

so  that if 1(B)   < « 

(4.7) 1(B)  = lim    T(B  ) « Um    KB|B  )   = 0. 

Note that if T.(A)   < " and B   c B  f  then using   (4.2)  we have 

(4.8) KAlB)   -  KAJB  )  = KB )   - KB )   ^ 0. 

Siruilarl,   for Bk c:  B   c B we have 

(4.9) KB  |B )   >  KB   |B ). 
n      k ■       k 

As a matter of fact for BL   c 8« c A we can write 

if 1(A)   < <*>  (for a related discussion see   [8]) 

(4.10) KAlBJ   = KBjßj)  + I(AlB2) 

which can be proven either directly or from tha fact that 

(4.11) [KA)   - KBJ]  =  IKB2)  - KBi)]   +  IKA)  - I(B2)]. 

Since the information values in   (4.10)   are nonnegative it 

follows that 

(4.12) I(A|0x)   >   I(A|B2) 

with equality  if  and only if I(B   |B )   = 0  and 

(4.13) KAlrj   >   KBjö^ . 

v;".'-h equality if  and only if I(A|8  )   = 0. 

Using A in place of B in  (3.27)  we have corresponding 

tp   (3.28) 

(4.14) I(A|B0)   = 1(A)   =1  I(Bk + i 16,)+ I(A|Bk + i ) 

-—  ^.^.-.—.-■.--—m .■..- a M ^^MiMMMMi 
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ao  thaL  UGing   (4.4) 

(4.15)     i(A)   ^I.K^JB,)   + i(A|B). 

in connection with the  results of this section see 

the  axiomatic cipproach  in   [5J . 

 ■ — - ■•■■■" IHIM^^i^^^ ^^mmmtimmmm J 
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