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SOME TOPICS IN STATISTICAL INFORMATION THEORY

by

S. Kullback

Summary

Attention is focused on informational properties of
s:h-sigma-algebras of the fundamental probability space

in contrast to the discussion in Information Theory and

Statistics where attention is devoted to informational

properties of statistics that is, random variables. 1In
partidular, the integral representation theorem for dis-
crimination information is derived by methods believed
to be more inherently information-theoretic than others
that have been presented. Monotonic properties of con-

ditional discrimination information are derived.

0. Preliminaries. In [11l] attention was devoted to

informational properties of statistics, that is, random
variables. In this exposition however, the discussion
deals with informational properties of sub-sigma-algebras
of the fundamental probability space. 1In particular, we
shall present a proof of the integral representation
theorem of discrimination information which is believed

to be more information-theoretic in approach than other

— A it oot ol sl




devivations ot this bhasic rosult.,

We present here certain notations, lemmas, and results
on separable sigma-algebras which we shall use in this ex-
position.

We shall operate in the probability space (2,A,P). Let
Z, (v) and Z(w) be non-negative random variables such that
(0.1) p (A) = IAZt (w)dP(w), u(A) = IAZ(w)dP(w), A
are probability measures. We also write (0.1) in the Radon-
Niiiodym differential formalism as
(0.2) dut = thP, duy = 24dP.

72, (w) and Z(w) may be considered as generalized probability
densities. If we assume that u, is absolutely continuous
with respect to u, that is, “¢<<“' then

(0.3) dp‘ = Wtdu =WtZdP = thP, Wt = Z‘/Z a.s.

so that W, is a likelihood ratio. We shall also require
sequences of the generalized densities, corresponding
probability measures, and likelihood ratios, that is,

dw, = 2,,dP, dy =2 dP, n =1,2,...

(0.4) di W duy =W 2dp =2 AP, W = Z”/Z‘ a.s.

tn n tn 1 tan tn

We shall have occasion to deal with the properties of

rclative conditional expectations as described in [13, p. 344].

Let B be a sub-sigma-algebra of the sigma-algebra A,

that is, BzA. Corresponding to (0.2) and {0.3)




: b, _ =B s
(0.5) d;% = E ad?B, d“tB = E Z‘dPB, dutB = Ezw'duB
; / Z
! B _ Bt P B, _ .8 B
E,W, = E,— = (E2~%)/E°z = E'7,/EZ,

where Pg iz the restriction of P to B defined by PB(B)=P(B),

BB, and

' _ B
(0.6) 1g(B) = [gldP = [, (E"Z)aP,, BB

| (0.7) fg(Epx)duy = [ Xdu, BEB

| 0.8) rBzx = EBZ'EZX )

We shall need two results from probability theory (see

for example, [13, p. 140, prob. 16, 17] which we state as

lemmas.

E Lemma 0.1. f|z, =~ 2, |dP » 0, resp.
f|q‘ - 1]dP + 0 as n +» », if and only if

[7Z. .82 » [,2,dP, resp. [,2 dP + [ 24P as n + =

uniformly in AfA.

Lemma 0.2. If 2 3 Z' resp. Z‘ 13 Z, then

tn

a2, dP » [,z av resp. [,2 dP + [,2dP as n + » uniformly in

A A. The convergence in probability may be replaced by al-

most sure convergence.

Note that Lemmas 0.1 and 0.2 provide the chain of im-

plications
L
(0.9) u (A) » u(pA), uniformly in ACARZ, » Z =

e s s R

= 2 5 Z = LL(A) + Y(A), uniformly in AfFA and a similar




©1e with the subscript t, where

L,
(0.10) 2z - 2 4 [lz - z]ap + 0.

We assemble here certain results on separable sigma-
algebras which we shall need [13).
(0.11) A separable sigma-algebra is a sigma-algebra that
is generated by (is minimal over) a countable class of sets.
(0.12) The minimal sigma-algebra over the union of a count-
able class of separable sigma-algebras is also a separable
sigma-algebra.
(0.13) The Borel sigma-algebra on the real line is separable.
(0.14) The inverse image of a separable sigma-algebra by a
measurable transformation is a Separable sigma-algebra.
(0.15) The sub-sigma-algebra induced by a random variable or
a counteble class of random variables is a Separable sigma-
algebra.
(0.16) A finite (countable) partition of a space Q is a
finite (countable) sequence of sets A‘ such that

In =@ AnNA =g i#j.
If A is a sigma-algébra of subsets of Q then the partition
is mecasurable A if A €A for all i. Let E = {E‘} be an

A-measurable partition. The A-measurable partition D={D‘}

is said to be a subpartition of E or finer than the parti-~

tion £ if each D; €D is such that Dy<F, €€ and we denote this

by D{ E or E ) D.
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(0.17) A sequence of partitions {E"} is said to be regqular
if each E" is a finite partitic.a and

E'y E2> €%,
(0.18) Let L" denote the finite algekra generated by the
partition [», then corresponding to (0.17)

El g E? = BV ens

-\

and jE® is an algebra. Let E be the minimal sigma-algebra
ovcr}gff, then E is said to be generated by the regular
sequence of partitions (0.17)

(0.19) It is clear that if a sigma-algebra is generated by
a regular sequence of partitions then it is separable.

Conversely, every separable sigma-algekra A can be generated

by a reqular sequence of partitions.




1. Introduction. The result in Corollary 3.2, page 16
[11] suggests that the discrimination information in the

sub-sigma-aigebra B=A generated by the partition {p, 1,

n
i =1,2,...,n, B €A, § B =0, be defined by (we shall
1 =1

use natural logarithms)

n H (B )
_ t 'y
(1.1) I(B;ut,u) —121 M, (B’)Ln TTBTY » B, €BCA,

Because of the convexity of the function x log ; for
Ion-negative x ard y, and additivity of the measures for
disjoint sets, for Ay, Az2eA, A\NA, = g,

b, (A)y) b, (Az)

(1:2) uy (A1) 2o —r 4 4 (A2) £n HE,)

NQ(A1)+NQ(A2)
(“t (A1) + M, (A2)) £n u(A,;) +u(a3z)
H, (A1+A,)

3+ — .
M (Batha) I oy

The property in (1.2) Suggests that the discrimination in-

v

formation in A be defined by (cf. [1],[2],[3],[6],[7],[81,

[10],[14],[15]) T
(1.3) T(Asy, ) = Afgg ! u(a) fn "ﬁuT:-)r

where the sup is taicen over all possible A-measurable finite
partitions of Q. For convenience hereafter we shall omit
the M, and p in I(B;u',xo and I(A;p',u) unless needed for

clarification.

If u, is not absolutely continuous with respect to M,




that is, there exists an A”A such that u(n) =0, i (A) #0

then T(A) = o, Accordingly we shall assume that B << .

Note that T(A) may be infinite in this case also. B, << p

is a recessary condition for T(A}<=. (See [11, pp. 5, 5.
Prob 5.7, p. 10}
It also seems intuitively reasonable to have defined

the discrimination information in A by (cf. [11, p. 5))
Z, (w)
(1.4) I(A) = [ 2, () &n <y dP(w).

The integral representation (1.4} may also be written
as
zt ’
(1.5) I(A) = [z, tn — 4P = W, tn W dp = /(¢n W, )dy =
dy,

=jdu'ln—di .

Using the additivity of the integval and Jensen's

inequality for convex functions (11, p. 16]

B
(1.6) [ W, tnwady=] Jo W tnwadu, acA, YA =,
[4 W,adu M, (&)

(1-7) !A1wt £n wtduZ[Aiwtdu ZHTAT= ]J’ (A’)lnm ’

1

: L (A )
t {
(1.8) f Wt £n Wtd].l 21 zl l.lt (A’ ) €n W "
hence
> Su D
(1.9) I(A) = [u enW dp 2 A,GR ! on (A) #n TRy S I,

where the sup is taken over all possible A-measurable finite
partitions of . A proof of the reverse of the inequality

in (1.9) may be obtained following the method in [15, pp. 24-25]}




or that in [8]. We shall not pursue this matter any further
ot thiz point but state the integral representation theorem

Theorem 1.1. I(A) = I(A), that is (1.3) and (1.5)

define the same value of the discrimination information.

Proofs of this theorem have involved martingale theory
(~r.g. [10]) or the use in [8] of the convexity property in
conjunction with the Darboux-Young approach to the integral
[13, p. 143 Ex 29].

The proof to be presented later in this exposition is
believed to be intrinsically more information-theoretic in
nacure. For other approaches see [2],[7],[14],[15].

Note that if in the probability space (2,A,P), A is
generated by a finite partition {A }, then (0.1) is
(1.10) u,(A)) = 7 (w)P(A), w@) =Z(wP(A ), wEA
and both (1.3) and (1.5) yield

W (A)
‘Zl M, (A’) £n —u-z-z—‘-)-= I(A).

We remark that instead of starting with the probability

(L.11) 1(A) =

space (%2,A,P) we could have started with the measure space
(2,A,)) where A is a sigma-finite measure on A. We assun-:
the existence of the non-negative A-measurable function X(m)
such that |

(1.12) P(A) = [,X(w)d)r(w), ACA

is a probability measure on A. W= then have (see [11, p. 5])



(1.13) duy = 2,dP = 2,Xd\ = £,d\, du = 2dP = 2Xd\ = £dX[\]

2, Z, £,
(1.14) [z, #n — dP = [z, &n -7 XdA = [f ¢n —¢ di.

2. Discrimination Information in a Sub-sigma-algebra. The

following discussion essentially extends some of the presen-
tation in [11, pages 1-78]. We shall use the notation in
(13} and in particular properties developed in [13, Chapter
VII, Conditioning, pp. 337 £f}. 1In particular we shall use
the fact that Jensen's inequality holds a.s. for conditional
expectation also. Let B be a sub-sigma-algebra of the sigma-
algebra A. The basic inequalit ' is that if g is a convex
function and EX is finite, then

(2.1) E{g(X)} 2 g(EX).

In the conditional form, we have

(2.2) EB{g(X)} 2 g(EBX) a.s.

Using the definition of conditional expectation, (2.2) and

(1.4),

Zt B zt
(2.3) I(A) = {2, tn — ap = [E°(3, 4n —) dpg
2 f Bz, ¢ =7,
E"Z2, £n drP, -
= 13 B

We define the right-hand side of (2.3) as the discrimination

information in the sub-sigma-algcbra B and note that, using

(0.5),

B E°z, B B
(2.4) 1(B) = [E°Z, fn =, dPy = [EW, £n E W, dug
= [(tn EBW )a = fdy 2 ——du‘B
b n Eg0, ”eB'j“tBn duB.

K (B)

Sup I ]Jt (Bk) £n _—]J—(FT

k




-10-

where the Sup is taken over all finite B-measurable parti-
tions of Q (see (2.15) and section 1). We can now state:

Theorecan 2.1. If B is a sub-sigma-algebra of A then

(2.5) 1I(A) 2 I(B).
Note that the coarsest possible sub-sigma-algebra is
B
that generated by (#,R2) and denoting it by BO,E °z‘ = EZ, = 1,
£%0z = Ez = 1 and
(2.6) I(By) = 0.

Theorem 2.2. I(A) 2 0 with equality if and only if

wt

z‘/z =1 a.s. (See [1l1], Theorem 3.1, p. 14]).

From (1.5) and (2.4), using the result that
(2.7) ,W,_ £In ngtdu = ]Eg(w. fn ng')dns = [ng. Ln E:w.dus

we have

_ " - [gB B
(2.8) I(A) - I(B) = W, £&n W dv - [E,W Ln E,W dug

B
/W, &n (W /E,W )du

Since
]W‘ du = fz;z dy = fz‘dP =1,
(2.9)  [ESW, dug = [(E°% /EPZ)an,
= jtzsz‘d?B = [2,8P = 1,

the right-hand side of (2.8) is a discrimination information

value, and as such non-negative. Let us define, using (2.8)



T
e B a bt | e b ke

-11-
above, and (0.2) and (0.5)
0 = o, tn o/uan = o, e W52
(2.10) 1(A|B) W £n (W/E W )dp = {2 £n dp =
2/E"Z

du,/dy, g
=f ap, on -gizﬂg— r
that is, I(A|B) is the conditional discrimination informa-
tion in A given B and hence
Theorem 2.3. If B is a sub-sigma-algebra of A

(2.11) T (A) I(B) + I(A|B).

Theorem 2.4. If B is a sub-sigma~algebra of A, then
(2.12) 1I(A) I(B)

if and only if I(A|B) = 0, that is, if and only if
(2.13) z,/2 = B2, /EBz. a.s.
Proof. Apply Thcorem 2.2 and (2.10).
If B is a sub-sigma-algebra of A and satisfies Theorem

2.4, then we say that B is a sufficient sub-sigma-algebra

for A. (see [13, p. 3461, [11, pp. 18-221,)

If B is generated by a finite partition, then on a

non-null atom B¢B, the conditional expected value EBX is a

constant and its value is

(2.14) EBx = stsr [gXdP, ueB.

Thus
B Bz

Z E
B t
= E"Z, £Ln
Z th i EBZ

fs @ W (8)
“ZP(%)‘F(—T [p 24P ‘3“7—* Iy B) tn Sy

B’ 1

B E
(2.15) 1(B) = fE°z  fn :

dPB

Z




il -

-12-
ivote Lhat in this case
. 4 _ = ;
(2.16) 5 z/ W IBde = 2/(u(B)/P(B)), uEB
Llnd
2, /E"2,
(2.17) I(A8) = [ 2 fn —~——g— dP
Z/D 2
=Y [, 2 {n —‘——g—’- ap
¢ Bt 2/E72
.- Z,P(B )u(B )
'%’B,Zt tn u,F)zp(BYdP
z, z,/u,(B,)
=) Jp gy ‘z7ma—rdp
= 7;‘%“31”"‘“3"
where
] z, z2,/n, (B))
(2.18) I(A|B)) = IB, VBT Ln —7-7——r-dP
db, - dn/u (B,)
= [131 [ E0 M du7u(B )
1 z b, (B,)

t f
= -“T(B_,T ‘{B Zt £n 7 dp - {n ——_—)— }

t \

= ——T——— g w Zn W dp - £n EuégL% .

t

Note that I(AIB‘) is a discrimination information, and

v

(2.19) I(AIBx ) 20




i i S e B e B

=15

with equality if and only if

(2.20) 2,/2 = (B)/u(B), weB,,

(see [11, Corollary 3.1, p. 15}.)
To obtain another representation for I(A|B) when B
is a separable sub-sigma-algebra of A we proceed as follows.
It follows from (2.18) that
Z u (B )

t
(2.21) ;“t(Bt) I(AlB,) = § jB’z‘ tn — ap - Z”'(B‘) tn —r=

7 u, (B )
2 t t
f t £n —Z— ap - gl.lt (B‘ ) £n —“ET

b (B )

I(A) - )u (B ) 2 .
§ t gl n u(% S

Now let I1(B) denote the class of finite B-measurable parti-

tions of @, then (see [8]1)

u (B )
(2.22) inf Ju (B )I(A|B ) = inf {I(4) - (B ) &n —— -1}
I (B) 2& 1 l 1 H?B) g”t 1 i uins
% (B)
= I(A) - sup gvt (B, ) £n EY

I(A) - I(B) = 1(A|B).

From (2.22) we note that I(B|B) = 0.

Let W, be defined as in (0.3) and denote by BW the
t

21
class of sets W, (B) where B ranges over linear Borel sets,

L that is
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(2.23) W, (B) = {w:W, (w)€B].

“w is the minimal sigma-algebra with respect to which W,
t

is measurable and Bw is a separable sub-sigma-algebra of A.
t
For convenience we shall hercafter denote Bw by B'. We
t

shall now show that B, is a sufficient sub-sigmn-algebra

for A.

Theorem 2.5. B, is a sufficient sub-sigma-algebra

for A, that is, I(A) = I(Bt).
Proof.

B,
(2.24) I(A) = [W &n W dp= [E,'(W, £n W, )dug

B, &
2 [E; W, 2nE, wtdet = I(8,) = [W, £&n W,du = I(A)

where we have used the fact that since wt is measurable B‘
B
then E,'W, =W, [pu]. Note that using (0.5)
EB' z,/E:B‘ z =% /2,

vhich is the necessary and sufficient condition (2.13) for

neorcem 2.4.




3. M Inforimation=-th oretic Approach. We <hall now con-

sider an approach to “he integral representation which is
belicved to be of intsrest in that it isg intrinsically
information-thaorctic in nature,

Suppose that thore is an increasing Sequence of sub-
sigma-algebras of A such that
(3.0) Bo CBIC Bz Coe o Bn C.ooc B A

where B is the minimal sigma-algebra containing uB
n

A

usually denoted by B | B, or B =\ .,

Considar 8
B EPn+17 B
EZ B B E°Z
g — d° = [E°Z &n 3 dP + fE°Z £n 3 dap

E™2Z E™2 E™r+17

(3.1)  [EB2 ¢n

s ot si
so that since B B

B E""‘-'Z B B E™n+1 7
(3.2) [E"z ¢n 5 dp = fE™+1 (E°z pn 5 ) dp
Bz E™gZ
E% 41 g
= jEBﬂ”z fn —r—dp 2 0
E™ 2

B‘” (EBn z) = EBr- Z) we

(recall that £%+1 (8) = gBiss g 409 &
may write (3.1) as
8, B,
B E°Z B, ETh+1 g
(3.3) [E"Z fn 22 dP = [E®+13 pp dp +
R g S 2

B
= [EBz ¢n -f-; 2__ ap.
E™R*1 oy

Hence using the notation




-l6a-

B
) . B E"Z
3.4 L(B:p = 1% £&n — dP
(3.4) (B:B ) = 53;2

we have the chain of inequalities

(3.5) 1(B:B)) > 1(B:8,)

ees2 I(B:B) 2 I(8:8,,,) 2...> ¢

whcre it is seen from (3.3) thet I(B:Bn) = I(B:B

ne) @

& I(Bn+1:8n) = 0. Since the munotonically decreasing

Sequence {(3.5) is bounded beloyw it converges and hence

(3.6) I(B:B,) - 1(B:8B,,,) = [EBar1g gy Bl dP +0, n +
Erg

lence using the result in [12], (3.6) implies

(3.7) ijBn+1z - Ean] dP + 0, n + w,

Indeed, by considering I1(B:B,,,) - I(B:B,) we can also get

(3.8) fIE% 2z - 5Bzl @ sg mn s

’

hence the sequence EB“Z is L, fundamental and there exists

an XGLl such that

(3.9) “E&Z-deP*O,n-pm

’

and

(3.10) /EBnZdP > [XdP, n o «,

that ig

(3.11) fxdap =1

since fE™2dP = 1 for all n (see [13, p. 157, 161]).
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without restricting the generality we may take X to
Le B-neasurable by the following argument. Using the
result in [13, p. 348]) that

T, La
X +' X = EBx, - £Cx

we have

B, 8_Bs B
fle "2z - x|ap+ 0, n»>® = [|[E'E 2 - E X|dP » 0,

n—)on
B, B
= [|IE"Z -EX|dP+ 0, n+w
: B_B, B, , B
since E'E "2 = E "Z. If X is B-measurable E'X = X a.s.
We shall now show that X = EBZ a.s. Applying lemma

0.1 to (3.9) we have
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(3.12) [,% zap + [, xdp.
1. A€B, , then for n 2 k

) B B
(3.15) [ e"™zap = [ B zdP

O wldac

—~

3.14) [,xap = [ Ezap.
Since (3.14) is true for AeBk, it is true for AGUBk.

“'hus the probability measures defined by the integrals in

(3.14) arc identical on the field UB, and hence by the ex-
X

tension tneorem (13, p. 87] (3.14) holds for A€B. The

Radon-Nikodym theorem then yields from (3.14) that
; ; B
{(3.15) X = E Z[PB].
Since
.B B < B B
(3.16) f|E®»2z - E°2|dP £ f|E™2 - X|dP + [|X - E"Z|dP
we see from (3.9) and (3.15) that (cf. [4, pp. 319, 331})
. B .B
(3.17) [|E»Z - E°2|dP + 0, n + =,

Since, using theorem 2.2

B
(3.18) fE"z en T2 ap = 0

Bz a.s., then in view of (3.15) we

if and only if X = E
conjecture that the sequence (3.5) has the limit zero,
that is,

(3.19) 1lim I(B:B ) = 0

11-»00
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We show that (3.19) is true as fHllows. We write

B

B
(8:B ) = [EB E’Z 4p - [gB B, Buy 4
I(B:B ) = [E"Z £n = dP = [E°Z gn E°Z 4P - [E°% {n E "2 4P

B

= jEBz {n E°Z AP - [EB"Z n ET2 ap.

La

B
We have shown that E "2 + EB

P B

B
Z which implies that E "2 -+ E"Z.

The convergence in probability implies that there exists a
sequence {n, } of integers increasing to infinity such that
[13, p. 151]

B

n a,Ss.
->

E *g2 B

E"Z.

i B B
Since the convex function E "Z £#n E "2 2 -1/e, the Fatou-

Lebesgue Thecrem [13, p. 152] yields

. . Bﬂ By > B B
(3.20) 1lim inf fE X2 fn E 2 dP Z [E"Z 4n E 2 dP.
But the convexity,Jensen's inequality, and the smoothing

property of conditioning [13, p. 348, 351] lead to

B B B B
(3.21) [EBz tn EPz ap 2 fE"Z tn E "z daP 2 [E "z tn E "z 4P
for all n, m such that n>m.

From the monotonic property in (3.21) combined with

(3.20) we conclude that

B . B B
lim fE "2 gn E °¥2 dP . [E"Z fn E'Z dP
or
lim I(B:B, ) = 0.
k
Since I(B:B,) converges, it must converge to the same limit,

that is, we have (3.19).

g Sk s MmJ
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Note that if we interpret I(B:B-) as a measure of the

closencus of the approximation to the measures over B by
the measures over B, the sequence (3.5) implies that thce
approximation gets better as n gets larger and in the limit
tiie approximation is exact to within sets of measure zero.

A similar argument ofcourse follows for z, . If we

start with

R EB . B Eg‘+1wt
(3.22) fEth Zn -—é;—-— du = szW‘ in N e— dp +
Ez W' Ez“Wt
.B ngt
+ szwt in N ST du
E n+ly
Z t
since
5 Egn+1wt B Egn+1w
(3.23) fe W, 4n i du = [ES*IW, fn ——p— du i
EZ Wt Ez“Wt

we can repeat the preceding argument and conclude that i

1 flﬂg“vh - Y, |dp >0, n+e
3.24)° [y,an =1,

_ B
Y, = E W, luBl

——
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EBW
: .B Z ¢

(3.25) lim lbzwt £n _Fn—. du = 0.
« n->oo EZ w

We shall now use these results to show that

B B = 5 B B
(3.26) I(B) = [E,W, £n E;Wy dp = Jim fE "W, fn E,"W, dy =

n oo

= 1lim I(Bn) 3

L -reo

Using the result in theorem 2.3 we may write

1(3]8,) = I(8,|8,) + I(B|B))

I(B|B,) = I(8,[B,) + I(8|B,)
{3.2my . . : - e

I{B|B, ) = I(5,,, 1B, ) + I(B]Bk“)

or using the relations in (3.27)

(3.28) I(5]B)) = 1(8) = 1(8,,, |8,) + I(B|B , )

where
= ngt
(3.29)  I(E]|By) = [ E %, 2n B, du-
£, N,

Since the relation (2.25) applied to (3.29) implies
(3.30) I(B'BN) +> 0 25 N » o

we get from (3.70) (s=e (2.8), (2.10))

(3.51) I(®) = I(B,, [&) =] (L(§,,) - I(§)) = lim I(8 ).
k-0 k=0

R -»0

From (3.31) it is scen that if I(8) < » then I (B.,18) 0,

e e e s e o L
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n >« If I(B,,|B,)> I < ®asn - «, then by the Toeplitz

temma [13, p. 238] lim - I(8,) = I.

fn -0
We are now in a position to apply (3.31) to prove the
integral representation theorem.
In the preliminaries it was seen that a separable sigma-
algebra can be gunerated by a regular sequence of partitions,

and using the notation of (0.18) we have

= ~

(3.32) £ | E .

Accordingly, as a special case of (3.31) we have that

(3.33) lim I(E') = I(E) .

a >

Recalling (1.11), (2.15) and Theorem 2.5, we note that (3.33)

is the integral representation theorem, that is
(3.34) I(A) = Sup Ji (A) 2n be (A ) T(A)
. = u -
P Y Al NIA‘$

where the sup is taken over all possible A-measurable finite

partitions of @, and in particular if the B. are generated

by finitc partitions then (3.31) is the same as (2.4).

For application of the preceding results, particularly
(3.31) to stochastic processes we state as Lemma 3.1 a
result which is Theorem 1.6, page 604 of ([4].

Lemma 3.1. Let A be a sigma-algebra of w sets, and let

{x(t,w), tcT} be a family of w functions measurable with
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respect to A,  Let BS be the sigma-algebra generated by

{x(t,w), tescT}. Suppose that T is non-denumerable. ‘'"hen

if AEBT there is a denumerable subset S \depending on '} of

ae g

T, such that AEBS. If X(w) is an w function measurable with

respect to BT' there is a denumerable subset S (depending on

X) such that X is measurable with respect to BS.

Now let {x(t,w), t€T} be an arbitrary system of random
variables defining a stochastic process. Let BN be the
sigma-algebra generated by the sub-system {x(t,w), tencr}

and BT the sigma-algebra generated by the system of random

variables defining the stochastic process. We can now state

Theorem 3.1.

(3.35) I(B) = sup 1I(B,)
T Nek o

where N is the class of all finite subsets of T.

Proof. I T is countable, then it is possible to choose
finite subsets NJ c N2 C ... 3uch that BT is the smallest

sigma-algebra containing‘u BN and (3.35) is then essentially
=1 N,

(3.31). If T is not countable we shall use Lemma 3.1. If

I(BS) = w, then I(BT) = o, Suppose I(BT) < o, then

8p  _Bp By : .
EZ W, = E Zt/E Z (sce (0.5)) exists and is of course
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Inzasurable with respect to BT. But according to Lemma 3.1
cvery function measurable with respect to BT is measurable
with vespect to BS for at least one countable S © T so that

B B B B B B
(3.36) EZTWt = EZSWt (M], or E TZt/E)‘Tz = E SZQ/E SZ a.s.

Since (3.36) is the necessary and sufficient condition that

I(Bq) = I(BT) we get

(3.37) I(B) = I(B.) = sup I(B,).
T S NEN N

For a similar result see [9].

4. Monotonicity. If the sigma-algebra B in (3.0) is not

the sigma-algebra A of the probability space (R,A,P) then
again using theorem 2.3 as in (3.27) we have

(4.1) I(A)

I(B) + I(AIB)

1]

(4.2) I(A) = I(B)) + I(A|B ).

Wa can now derive certain limiting relations in which A
plays a role. From (4.2) and (3.31) we see that

(4.3) I(A) = lim I(8,) + lim I(A|8,)

B 00 n ~»o0

= I(B) + lim I(A[B,),

1 -»00
hence for I(A) < =

(4.4) I(A) - I(3) = I(A|B) = lim I(A|B).

R -»c0
Siriilarly from

(4.5) I(B) = I(B)) + I(B|B )




| L ] g —
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(4.¢) I(B) = lim I(B, ) + lim I(8|B,)

n 0o n >0

. so that if I(B) < e«

(4.7) I(B) = lim T(B ) @ lim I(BIBn) =0,

L =] 8 a2

Note that if I(A) < « and B, < Bn, then using (4.2) we have

(4.8) I(Al8,) - 1(A|B)) = 1(B) - I(B) 2 0.
Similarl, for B, < B, < B, we have
(4.9) I(BnIBk)' > I(B.lBk).

As a matter of fact for B1 (a2 B, C A we can write

if I(A) < » (for a related discussion see [8])

(4.10) I1(A[B)) = 1(8,[B)) + I(AlB,)

which can be proven either directly or from tha fact that

(4-11) [T - T(B)] = [1(8,) - 1(8,)] + [I(A) - 1(3,)].

Since the information values in (4.10) are nonnegative it

followé that

(4.12) 1(A|B,) 2 I(A|B,)

with equality if and only if I(legx) = 0 and

(4.13) I(A[l-:l) > I(leBl)_ |

w''h éqdality if and only if I(AIBZ) = 0.

Using A in place of B in (3.27) we have corresponding

tp (3.28)

(4.14) 1(AlB)) = 1(A) =L 16, 18) + 1(Alg, )
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S0 that using (4.4)
(4.15) 1I(A) =kZ°I(BH||Bk) + I(A]B).

In connection with the results of this section see
3

the axiomatic approach in [5].
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