AFRRI TN73-12 SEPTEMBER 1973

AFRRI TECHNICAL NOTE

ALLON OF ANY AN

A COMPUTER BASED PHYSIOLOGICAL TEMPERATURE MEASUREMENT SYSTEM

J. A. Willis W. L. McFarland

ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE Defense Nuclear Agency Bethesda, Maryland

Approved for public release; distribution unlimited

Research was conducted according to the principles enunciated in the "Guide for Laboratory Animal Facilities and Care," prepared by the National Academy of Sciences - National Research Council.

AFRRI TN73-12 September 1973

A COMPUTER BASED PHYSIOLOGICAL TEMPERATURE

MEASUREMENT SYSTEM

J. A. WILLIS W. L. McFARLAND

Roberts, Ceartes

R. E. CARTER Chairman Physical Sciences Department

m W. Cable

JOHN W. CABLE Lieutenant Colonel, USAF, VC Chairman Behavioral Sciences Department

Alam

MYRON I. VARON Captain MC USN Director

ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE Defense Nuclear Agency Bethesda, Maryland

Approved for public release; distribution unlimited

TABLE OF CONTENTS

																					Page
Abs	tract	•	•	·	•		•	•	•	•	•	•	•	•	•		•	•	•	•	iii
I.	Introduction .	•		•		•		•			•		•		•	•					1
п.	System Descrip	otion					•	•	•	•	•	•	•		•	•		•	•	•	2
	Thermistor	probe	s																		2
	Thermistor	drive	rs					•		•	•					•	•	•			2
	Analog to dig	gital	(A-	D)	co	nve	erte	\mathbf{r}	•	•			•	•	•	•	•	•			4
	Computer sy	stem		•		•	•		•	Ι.	•		•		•				•	•	4
	Software	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	5
III.	Discussion	•	•	•	•	•	•	•	•	•	•	•	•			•	٠	•	•	·	8
Refe	erences	•		•	•	•	•		•	•	•		•	•			•	·	•	·	9
App	endix A. Therm	nistor	D	riv	rer	Sc	hen	nati	ics	and	a c	irc	uit	De	sci	ript	ion	s.	•	•	11
App	endix B. Systen	ns So	ftw	var	e F	'lov	v C	har	ts		•						•			•	15

LIST OF FIGURES

		I	'age
Figure 1.	Block diagram of the system	•	2
Figure 2.	Example of temperature plot provided by the system	•	3
Figure 3.	Block diagram of the thermistor drive electronics	•	3
Figure A-1.	Schematic diagram of voltage reference module	•	11
Figure A-2.	Schematic diagram of thermistor drive and data amplifier module	•	12
Figure A-3.	Schematic diagram of power supply module	•	13
Figure B-1.	Channel calibration program flow chart	•	15
Figure B-2.	Thermistor calibration program flow chart		16
Figure B-3.	Data collection program flow chart	•	17
Figure B-4.	Temperature data reduction and plotting program flow chart		18

LIST OF TABLES

Table	A-I.	Parts List for Voltage Reference Module	•	•	·	·	11
Table 4	A-II.	Parts List for Thermistor Drive and Data Amplifier Module		•	·		12
Table A	-111.	Parts List for Power Supply Module					13

ABSTRACT

A computer based, multichannel physiological temperature monitoring system is described. Thermistor probes are used as temperature transducers. A constant current thermistor driver converts the resistance of the thermistor probe to a temperature dependent voltage. This voltage is digitized by a multichannel analog to digital converter on command of a small computer. The computer controls the rate of data collection, stores the data, and performs the necessary algebraic manipulations to convert the data to a tabular or graphic temperature display. System operation, including thermistor calibration, data collection, and data reduction is discussed. Flow charts of representative software and schematics of hardware are included.

I. INTRODUCTION

A system for the acquisition, storage, manipulation, and display of temperature data in physiological experiments is described. The system was developed to measure regional cerebral temperature changes during early transient incapacitation following high doscs of whole-body irradiation to subhuman primates.

Heat is a by-product of metabolic and functional activity in brain tissue. The rate of heat production and the rate of heat clearance can be related to changes in brain physiology.^{1,4} In normal brain tissue there are two distinctly different types of temperature change related to brain function. First, there are small changes, typically 0.05° C in magnitude, related to changes in regional activity. The time course of these changes tends to be short, lasting from a few seconds to several minutes.⁴ The second class of temperature changes is related to circadian rhythms. These changes are large, $1^{\circ}-2^{\circ}$ C, and of long duration, typically several hours. Brain temperature changes of long duration have been reported following whole-body irradiation in rabbits,² and since early transient incapacitation is a short duration phenomenon, it is reasonable to expect short duration changes in brain temperature to accompany it.

Any system for the measurement of brain temperature must then meet the following criteria. First, it must possess adequate resolution to detect fluctuations in temperature of 0.05[°]C while possessing adequate dynamic range to detect changes of several degrees within the physiological temperature range of the animal. Second, it must possess adequate temporal resolution to detect fast changes while maintaining long-term stability to detect changes occurring over several hours.

II. SYSTEM DESCRIPTION

The system developed to meet these criteria uses thermistor probes for temperature sensing, thermistor drivers, an analog to digital converter, a digital computer, magnetic tape data storage, and graphic output via a high-speed line printer. The use of a digital computer provides multichannel capability; provides necessary resolution, dynamic range, and stability; and facilitates calibration, data manipulation, and display. A block diagram of this system is shown in Figure 1, and an example of the system's output is shown in Figure 2. Results of the experiments conducted at AFRRI on cerebral temperature following irradiation are published elsewhere.³ The function of each major system component will now be examined in detail.

<u>Thermistor probes</u>. The thermistor probes used with this system to measure regional cerebral temperature are Fenwal Electronics Model GB32. These thermistors have a nominal resistance of 2 kilohms at 20^oC.

<u>Thermistor drivers</u>. The thermistor driver module contains a reference voltage source, a constant current generator, and amplifiers. The reference voltage is derived from a standard mercury battery, is amplified, and is used to control the constant

Figure 1. Block diagram of the system

current source. This source is an operational amplifier, and the thermistor probe is included in its feedback loop. A differential amplifier measures the voltage drop across the thermistor and provides a voltage gain of two. A final stage is utilized to provide an additional voltage gain of 20 (Figure 3).

Figure 2. Example of temperature plot provided by the system as recorded by five thermistor probes (labeled A-E) in three regions of the brain of a rhesus monkey. Each point represents a 2-minute average of data taken once per second. Ionizing radiation was delivered to the animal in a pulse at time = 0.

Figure 3. Block diagram of the thermistor drive electronics. T is the thermistor.

Heating due to current in the thermistor probe itself must be minimized to insure accurate temperature measurement. Currents in excess of 1 milliampere cause appreciable heating in the GB32 thermistor so a value of 100 microamperes was chosen as the thermistor drive current. The GB32 thermistor's resistance at 38^oC is approximately 1000 ohms; therefore the voltage drop across the thermistor is approximately 0.1 volt. The AFRRI data acquisition system (DAS) analog to digital converter will accept signals between -8 and +8 volts dc. The overall voltage gain of the thermistor driver amplifiers is 40, yielding an 8-volt output at 20^oC. The thermistor drive current and amplifier gain settings are thus optimized for the GB32 thermistor within the physiological temperature range.

Analog to digital (A-D) converter. The component that limits the accuracy of the system is the A-D converter. The converter utilized in the present system is capable of 12-bit resolution, and sign, from -8 to +8 volts, giving an accuracy of one part in 8000, or 2 mV in 16 volts. With the thermistor drive electronics connected to the input, the A-D converter becomes an ohmmeter capable of .5-ohm resolution. At a physio-logical temperature of 38° C, a .5-ohm change in a GB32 thermistor represents a change in temperature of approximately .015°C. This is the resolution limit of the system.

<u>Computer system</u>. The computer controls the data collection process, manipulates the data, and stores it on magnetic tape. In addition, the computer controls the calibration of new thermistors and displays results from experimental temperature determinations.

The computer in the current system is an SDS-920. Data are input via the A-D converter described above. The rate of data collection is controlled by an external

clock, input to the computer via its priority interrupt system. Output is to 7-channel, 200-bit per inch magnetic tape for data storage, and to a high-speed line printer for data display.

Software. Data collection and reduction programs are written in FORTRAN. Input of data from the thermistor probes via the A-D converter is accomplished by a FORTRAN callable machine language subroutine "ADCIN". ADCIN digitizes the input signals on all eight inputs of the A-D converter and stores the digital values in eight memory locations which may be accessed by a subscripted variable in the subroutine call statement. Once entered, ADCIN waits in an endless loop until it receives an interrupt, then digitizes and exits to the main FORTRAN program. Frequency of digitization is thus dependent on the frequency of a clock interrupt.

Three main FORTRAN programs utilize ADCIN. The first program is used to calibrate each channel of the resistance-measuring system of the A-D converter and the thermistor drivers. Each channel of the system is calibrated by connecting its input to a resistance box and collecting 60 data points at resistance settings between 500 and 1500 ohms in 100-ohm increments. A linear regression subroutine then provides an equation relating the integer output from the A-D converter to the actual resistance input to the thermistor driver for that channel. The program is capable of sequentially calibrating several channels and yields a paper tape output that contains the calibration equation and channel identification information.

Since thermistor probes are permanently implanted in animals and thus are used only once, a program was developed to calibrate large numbers of thermistors. A reference thermistor, connected to one channel of the system, is used as the

standard against which the other thermistors are calibrated; therefore, the accuracy of the system depends on the calibration of this reference thermistor. In the brain temperature study, an overall accuracy of $\pm 0.1^{\circ}$ C was adequate over the physiological temperature range of interest. Accordingly, a steel-clad Yellow Springs Instrument Company telethermometer probe was calibrated in a water bath against a laboratory thermometer of 0.1° C accuracy. Temperature and probe resistances as measured with a standardized digital ohmmeter were recorded over a temperature range of $20^{\circ}-50^{\circ}$ C. A least squares regression analysis was used to fit a calibration equation to the data.

In the thermistor calibration program, the reference thermistor is connected to one channel of the system, while another channel is connected to the thermistor to be calibrated. Up to 12 thermistor probes may be calibrated by switching between them sequentially during the calibration procedure. The reference and probe thermistors are then immersed in a water bath, and data are collected at temperatures from 35° to 45° C in 0.5° C increments, using ADCIN. At each point, the reference thermistor is the independent variable while the output of the unknown thermistor is the dependent variable. The channel calibration paper tape is read into the system and is used to allow the computer to calculate the resistance of both the reference and probe thermistors. Using the calibration constants for the reference thermistor, the temperature of the water bath is calculated. After the resistance of the thermistor probe and the bath temperature at each calibration point have been determined, a linear regression analysis is performed to yield a calibration equation for each thermistor probe of the following form:

Ln R = mT + b

where R =thermistor resistance,

T = temperature of bath,

and m and b are constants unique to each thermistor. This calibration information is then output on paper tape along with probe identification information for later input during the data reduction phase.

The data collection program simply collects data from all eight channels of the A-D converter, via ADCIN, and outputs the average of each 10 samples along with a time code expressed in seconds of the day on digital magnetic tape in binary format. Since temperature in most physiological applications does not change rapidly, the sampling rate is once per second.

Prior to each thermistor calibration run and each data collection run, the channel calibration program must be used to eliminate errors due to drift in the A-D converter and the thermistor drive electronics. The thermistor probes need to be calibrated only once since their characteristics are stable with time.

The final program reduces the data from the data collection program. This program accepts a resistance calibration tape, a thermistor calibration tape, and a punched card assigning each thermistor to an input channel. The computer reads the magnetic tape generated by the data collection program, calculates the temperature measured by each channel and, at the discretion of the operator, plots the average of from 1 to n 10-second data points on the line printer. A good working plot is obtained by averaging 2 minutes of data (n = 12), as illustrated in Figure 2. Thermistor

driver schematics and circuit descriptions, together with flow charts of all software, are included in the appendixes.

III. DISCUSSION

This system has been used successfully to investigate the effects of radiation on cortical and deep brain temperatures in the monkey. Its accuracy is largely dependent on the care taken in calibrating both the reference thermistor and the individual thermistor probes. Experience has shown that the precision of the system approaches the theoretical resolution limit of $.015^{\circ}$ C when the data are averaged by the present data collection program. Absolute accuracy, however, is no better than the calibration accuracy of the reference thermistor. In the present brain temperature application, accuracy of $\pm 0.1^{\circ}$ C is considered adequate.

The primary advantage of this system is that the data are available in a format that may be easily manipulated by the computer. Temperature differentials are easily plotted, and correlation analysis of temperature with other physiological parameters is facilitated.

The primary disadvantage relative to the present system is that the data acquisition program requires considerable computer time since the SDS-920 is not capable of time-sharing operation. If the system were adapted to run with a time-sharing computer, more extensive use of this temperature monitoring system would be practical.

REFERENCES

- 1. Hayward, J. N. and Baker, M. A. A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res. 16:417-440, 1969.
- 2. Leith, J. T. and Levy, C. K. Intracerebral temperature changes after Xirradiation in the rabbit. Int. J. Radiation Biol. 18:291-295, 1970.
- 3. McFarland, W. L. and Willis, J. A. Cerebral temperature changes in the monkey (Macaca mulatta) after 2500 rads ionizing radiation. Bethesda, Maryland, Armed Forces Radiobiology Research Institute Scientific Report (in preparation).
- Serota, H. M. and Gerard, R. W. Localized thermal changes in the cat's brain. J. Neurophysiol. 1:115-124, 1938.

APPENDIX A

Thermistor Driver Schematics and Circuit Descriptions

Table A-I. Parts List for Voltage Reference Module

A1	Analag Devices model 118 - K aperational amplifier
B 1	1.35 V mercury battery Mollory RM - 42R
P1	100 ohm trimpot
P2	10 kilahm trimpat
P3	50 kilohm trimpot
SWI	SPDT minioture switch

Figure A-2. Schematic diagram of thermistor drive and data amplifier module

Table A-II. Parts List for Thermistor Drive and Data Amplifier Module

A1, A2, A4	Analog Devices model 118-K aperatianol amplifiers	R2	500 ohm 1 % film resistar, ½ wott
A3	Anolog Devices model 40 - K FET aperatianal amplifier	R3	2000 ohm 1 % film resistar, ½ wott
C1, C3	.1 microforad 100 Valt Mylar capacitor	R4	100 ahm 1% film resistor, ½ wott
C2	.068 microfarad 100 Valt Mylor capacitar	R5, R6	1 megohm 1% film resistar, ½ wott
P1	1000 ahm 10-turn patentiameter, Amphenal 4101B	R7, R8	2 megahm 1% film resistar, ½ wott
P2, P3, P5	50 kilahm trimpat	R11	200 kilohm 1 % film resistor, ½ wott
P4	1000 ahm trimpat	SW - 1, SW - 2	DPDT minioture switch JBT-type JMT 223 or equivolent
R1, R9, R10	10 kilohm 1% film resistor, ½ wott	Т	Thermistor opprax 2K ot 20 ^a C for physialagical data acquisition

Table A-III. Parts List for Power Supply Module

F1	½ ompere slo-blow fuse					
P1, P2	10 kilohm trimpots					
PS-1	Analog Devices model MDP - 15/300 power supply module					
SW - 1	SPDT minioture switch JBT type JMT-123 or equivalent					

APPENDIX B

Systems Software Flow Charts

Figure B-1. Channel calibration program flow chart

Figure B-2. Thermistor calibration program flow chart

Figure B-3. Data collection program flow chart

Figure B-4. Temperature data reduction and plotting program flow chart

Figure B-4 (continued)

UNCLASSIFIED						
Security Classification				-		
DOCUMENT CONT (Security classification of title, body of abstract and indexing)	ROL DATA - R	& D Intered when the	overall report is classified)			
Armed Forces Radiobiology Research Institute	9	28. REPORT SE UNCLAS	SIFIED	_		
Defense Nuclear Agency		2b. GROUP		-		
Bethesda, Maryland 20014		N/A				
3. REPORT TITLE						
A COMPUTER BASED PHYSIOLOGICAL	TEMPERATU	JRE MEASU	JREMENT SYSTEM			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
5. AUTHOR(S) (First name, middle initial, last name)						
J. A. Willis and W. L. McFarland						
6. REPORT DATE	78. TOTAL NO. O	FPAGES	7b. NO. OF REFS	_		
September 1973	20		4			
88. CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUM	BER(S)			
D. PROJECT NO. NWED QAXM		AFRRI TN	73-12			
c. Task and Subtask A 905	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)					
d. Work Unit 07	1					
10. DISTRIBUTION STATEMENT						
Assessed for asklip solution distribution and	iner it a d					
Approved for public release; distribution uni	imited					
				_		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY			
Defense Nuclear Agency						
	Washingto	on, D. C. 2	20305			
13. ABSTRACT		A				
A computer based, multichannel phys	siological ten	perature m	nonitoring system			
is described. Thermistor probes are used	l as temperat	ure transdu	cers. A constant			
current thermistor driver converts the res	istance of the	e thermisto:	r probe to a tem-			
perature dependent voltage. This voltage	is digitized b	y a multich	annel analog to			
digital converter on command of a small co	omputer. The	e computer	controls the rate of			
data collection, stores the data, and perform	rms the neces	ssary algeb	raic manipulations			
to convert the data to a tabular or graphic	temperature	display. S	ystem operation,			
including thermistor calibration, data colle	ection, and da	ata reductio	on is discussed.			
Flow charts of representative software and	l schematics	of hardware	e are included.			
DD 1 NOV 65 1473		UNC	LASSIFIED			