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The exceptional utility and performance of the sequential, linear, 

unbiased, minimum variance estimator suffers severely In the presence of 

dynamic model errors. This problem -- perhaps the greatest detriment to the 

so-called Kaiman filter algorithm — Is discussed In light of Its divergent 

effect upon the estimation process. 

A number of optimal and suboptimal modifying techniques are described 

which attempt to prevent this divergence. Extensions are developed resulting 

In adaptive forms and a new algorithm 1s derived for sequentially estimating 

the state noise covarlance matrix. Performance of the techniques Is 

Illustrated by their application to, (1) the terminal phase of an Earth 

orbit rendezvous mission, and (2) the heliocentric trajectory determination 

of a solar electric propulsion space vehicle. Numerical results Indicate 

that the model error difficulties can be sufficiently countered, with 

particularly effective performance being supplemented by the sequential 

state noise covarlance estimator. 
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Chapter 1 

INTRODUCTION 
• 

1.1 Background and Scope 

The first solution to the problem of optimally estimating the values 

of a set of quantities from a large set of data Is generally attributed to 

Karl F. Gauss' method of least squares (1).* Although A. M. Legendre offered 

an early published version (2) In 1806, Gauss provided the basic mathematical 

derivation. Interestingly, the method was developed and applied to classical 

problems of orbit determination. Nearly 170 years later. It Is now used as a 

fundamental technique In space vehicle tracking and modern orbit determination. 

In fact, the wide applicability and use of least squares In all fields of 

engineering Is testimony to the genius and Insight of Gauss. 

Although Intermittent developments of some Importance occurred, 

particularly the Ideas of probabilistic approaches, It was not until after 

the first decade of the twentieth century that the foundations of estimation 

theory were extended at a level of significance parallel to Gauss'. R. A. 

Fisher (3) Introduced many of the terms used to characterize the performance 

of estimators; his concepts and efforts provided fertile ground for further 

developments and new approaches to estimation theory. In 1942, Norbert 

Wiener, considered today as one of the world's leading mathematical analysts, 

produced the so-called Wiener-Hopf Integral equation. The solution to this 

* Parenthesized numbers Indicate references as enumerated in the 
Reference section. When specific pages are referenced, they are separated 
from the reference number by a comma. Thus (5, 10-12) Indicates reference 
5, pages 10 through 12. 
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equation Is a weighting function which, when combined with a linear measure- 

ment, results In an estimate of the desired quantity which minimizes the 

error In a mean-square sense (more exactly the Wiener-Hopf Integral offers 

a method for producing linear, minimum variance unbiased estimates). 

Although Wiener's work 1s truly significant, the Integral equation 

Is limited In Its practical application. With the growth of statistical 

communication theory, Wiener's technique received wide attention. Several 

attempts were made to Improve and generalize the theory: however, none of 

these Increased Its basic utility and applicability. 

The development of the digital computer provided a practical alterna- 

tive approach to extending the applicability of estimation theory. Rather 

than attempt analytic extensions and solutions to the Wiener-Hopf Integral 

equation, R. E. Kaiman and R. S. Bucy (4) derived a differential equation 

from the Wiener-Hopf Integral. The computational efficiency of the digital 

computer made the numerical solution of the differential equation practical 

and resulted In a widely applicable algorithm for providing linear, unbiased, 

minimum-variance estimates. Today, particularly In navigation and guidance 

applications, "Kaiman Filtering" as It has come to be called, ranks next to 

least squares In popularity. 

In spite of the utility of the Kaiman filtering algorithm, the tech- 

nique suffers from a particularly severe problem known as divergence of the 

estimate. It usually arises from the fact that for the state vector to be 

estimated, the system dynamic model Is Incorrect. Operation of the Kaiman 

filtering algorithm In the presence of modeling errors produces estimates 

which are essentially worthless: the estimated state Is grossly In error. 

Divergence of the estimate, perhaps the greatest detriment to the 

Kaiman filtering algorithm, has received considerable attention. As a result. 
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various techniques have been devised to compensate for modeling error.    Such 

techniques may be thought of as falling loosely Into two major categories: 

adaptive and non-adaptive methods.    Non-adaptive methods generally attempt 

to Improve the estimation process by altering the filter structure In an a 

pfUoni and thus suboptimal manner.    They also Include a jcvucu approximations 

to the actual modeling errors.    Adaptive methods attempt to improve knowledge 

of the dynamic model or to Improve operation of the filter liuiöy the estimation 

process. 

The basic objective of this study is to investigate the utility of a 

variety of model error compensation techniques, both adaptive and non-adaptive, 

and to compare the effectiveness of these methods.    In the remainder of Chapter 

1, the Kaiman filter is Introduced and its properties discussed.    The model 

error problem is Illustrated by a simple example.    A brief literature survey 

of model error compensation techniques is also presented.    In Chapter 2, 

selected non-adaptive error compensation methods are presented and compared 

analytically.    In Chapter 3, various new and previously developed adaptive 

methods are discussed.    Chapters 4 and 5 illustrate the application of the 

various techniques to selected problems, and Chapter 6 concludes the study. 

1.2   The Kaiman Estimator and Some of Its Properties 

Many expositions of the Kaiman filtering algorithm exist in the 

literature, offering a number of unique, yet unifying approaches to the 

theory (5, 195-209).    Thus our purpose here is not to give a rigorous 

derivation of the Kaiman estimator.    However, as a point of departure and 

for the sake of consistency, a somewhat heuristic development will be 

presented.    Following this, some of the notable characteristics of the 

algorithm will be discussed. 
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Before proceeding, an Important preliminary must be treated.   For a 

given dynamic system, the problem Is generally one of observing or measuring. 

In a stochastic environment, some aspect of operation of the system, and 

then treating the measurement output In a Judicious manner In order to extract 

specific knowledge of the system's performance.   However, an Important 

distinction must be made concerning the measurement process.   On the one 

hand Is the case where the measurement process Is carried out continuously 

In time; this Is often found In analog computing applications.   On the other 

hand Is the case where measurements are made at discrete points In time In 

correspondence with digital computing applications.   While formulations of 

the linear, unbiased, minimum variance estimator are known for both cases, 

widespread application of the digital computer focuses attention upon the 

discrete formulation.    In the subsequent developments we will be concerned 

with this approach only. 

Within this scope the problem may be stated as follows:    (1) Given 

a dynamical system modeled by the linear difference equation 

xk ' %k.i 
x

k.i *r*,*-iVi' (1'2'1) 

where 

•k m x(tj  Is an n-vector of random state variables, and x * x(t ) k k o o 
Is given; 

*i, u i " *f*i,* tu J I* ^e nxn state transition matrix*, with *.  . ■ I; 

* The properties of the state transition matrix are well known.    Some 
of these are mentioned later. 



v. • w(tk)  is an m-vector of random input disturbances with the 

statistics 

E\wk\    - 0, E\ Wk ^ |   - Qk 6kjt E (Vj ^.2 |    = 0, 

(6     is the Kronecker delta; ( )T denotes transpose); 

r.. ^ , » IVt,. t,   J is the nw? disturbance transition matrix; and k,k-l k*    *-J 

(2) Given the linear observation-state relationship 

where 

yk m y(tk) is a p-vector of observations; 

H   m H(tk) is a p*n mapping matrix; 

y. « yftJ is a random p-vector of observation noise with statistics 

E\vkl   -M l^^l   -«»V'^VJ^I  -^ 

£" | y. w^ (   = Ö, for all Jt and j *; 

(3) Find an unbiased estimate, x , based on the set, V , of k observation 

vectors through time fc , 

Vk E lv ^ M' 
i.e., find^ ^jarr^lyl withfi1]^} = x^; 

(4) Such that x,  is formed as a linear combination of the k observation vectors: 

* If Q.   and ft,   are constant for all k, the corresponding noise processes 

are wide-sense stationary. 



and such that the state error covarlance 

Pk - P(tk\Vk) = I {(xk - Sik)(xk - &k)T) (1.2.4) 

at time, t , based on ^., is minimized. Note in (1.2.3)  that x.  is the 

estimate of x.  . based on ^ ,» and in this sense £   is based on all of the 

elements of l^.   In other words, given (1.2.1) and (l.z.?.)% the problem is 

to find L   and K   such that (1.2.3) is an unbiased, minimum variance estimate 

ofxk' 

In order to aid the discussion, some notational simplifications are 

made.    In general, the notation 

4|* • ^J V 
means the function, /, evaluated at t., based on the knowledge of ¥.,    For 

brevity we will simply equivalence this with the notation, / . When no 

confusion exists, the subscript /c will be eliminated altogether. Hence, 

♦ - ^j - *r V w 
r - r

ktk.i " rrV Vi; 

x'xk' xr V 

k        k\k k'  k 

X s X,   x X, i,   B X -   X 
k        k\k 

Qm9k
m ^V 

* - *» • ^ V 
F -'* - F»j* - w**i V 
F -F* • '»Iw - m*lW - n-i*T ♦ rVirT ri.i.«; 



K ' K.  ' K(tJ k k 

Proceedlnq, the requirement which must be satisfied If £ Is unbiased can be 

obtained by using (1.2.1), (1.2.2), and (1.2.3) to form the state estimate 

error, «, and then taking the expected value.   Thus, 

5* - xic -£* - *Vi+ ^-i - Lk Vi 'hh 

' toic-i * «Vj " ** Vl - Kk (Hk K-l + Hk **-! * "k* 

E{xk} ' xk- EiäJ - 0 

' K-l - Lk E{*k.l} - Kk Hk **k.l 

- 1(1 - KH)  * - L] «L. - 0 (1.2.6) 

where use Is made of the facts that £"{«,. ,) - o and E{vJ = o.   Satisfaction k-l k 

of equation (1.2.6) leads to the requirement that 

L * (I - KH) * (1.2.7) 

and thus (1.2.3) becomes 

^ - fl . UM Vi * ^ 

- • Bk_1 + K(yk - H * St^) (1.2.8) 

By using (1.2.l)t (1.2.2), and (1.2.8) the state error and the stue estimate 

error covarlance matrix can be obtained as follows: 

xu
m *K . * T u,. , - K(H t xu  , + H T wu , + v ) k k'l k-l k-l k-l 

* (I - KH)(t xu  . + T wu  ,)- K vu (1.2.9) k-l k-l k 

Pk'Frxk*Tk]BE{(I-KH)(*ik-l + ^*k-l,   ' 

(TT.    .  *T * //   .  TT)(r -  HT KT)  -   (I - Kll)(* »-, ♦ f h\    Ji'l KT - k-l k-l k-l k-l    k 
*P t* W T T        T T       1» 

* »J*i • ♦ ♦ «L. r ;r/ - r A'r; * A- OU pf r} it    Jk-J A-i A    Jit 



Combining terms, and recalling that ^te^.j «p ■ 0, ^fc^.j wj) a 0, 

E{wk V " ' and ff{l,Jk l,*-2} ' 0i ^see Pa9e 4) one obtains 

Pk- a - KH) (* i>     *T ^ r j^. rr;rj - HT KT) + K R KT (1.2,10) 

In view of the definition of P In equation (i.2.s)t 

P - (I - KH) P (I - HT KT) + K R KT (UZ. U) 

lie first variation Is now taken with respect to K. 

6P - (I - KH) P (-HT &}?) + K R 61? + (I - 6KH) T (I - HT KT)  + SK R KT 

(1.2.12) 

Necessary and sufficient conditions that P be a minimum are that (1) 6P = 0 

and (2) that the second variation of P be positive definite. Solving (1.2.12) 

for /f with öP - ö leads to 

* » P HT(H P H1 + R)'1 (1. 2. W 

For an arbitrary n-vector, s, the corresponding quadratic form for the second 

variation of P is required to be 

aT fi2P a - 8T 6K(H P HT + R)  6KT a > 0 (1 2 J4) 

Thus if P is positive definite, then the bracketed term in (1.2.14) must be 

positive definite, and fulfillment of (1.2.14) guarantees the existence of 

the Inverse in (1.2.13). 

With K given by (1.2.12) the updated state estimate error covariance 

may be obtained by substituting for K In equation (1.2.11). 

P -  (I - KH) P (I - HT KT) + K R KT 

* P - K H P - P HT KT + K(H P HT + R) KT 

-T-KHJ-T^lP + T HT(HT V HT + R)'1 (H7 HT + R) KT 

P'(I'KH)P (1.2.15) 
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which Is the required covarlance update equation. 

The system dynamics are given exactly by equation (1.2.1).    The 

random Input, wt Is unknown; however, being probabilistic In nature, the 

expected value of the equation may be taken conditioned upon the observations 

up through time, tk.   Thus 

with 

HtfJIÜ - E{wk} » o 

or 

Equation (1.2.16) provides the estimate of x at time t based upon observations 

through time t. .. It Is also an unbiased, minimum variance estimate (5, 201), 

and 

Tk " mjtlJ*-i; " * Vi *r ^ r ö rr r:.r. jr; 

Is the predicted value of the error covarlance at t   given observations 

through time t.   . (5, 201).   Equation (1.2.17) follows directly by forming 

the state estimate error covarlance using equations (1.2.1) and (1.2.16). 

Equations (1.2.16)% (1.2.17), (1.2.13), (1.2.8) and (l.s.15) are the 

equations of the classical linear, unbiased, minimum variance estimate. The 

algorithm, denoted as Algorithm I, Is summarized below. 

Given:   the a piiotU Information Ä   , P.. t/^ and fc - J.    Compute: 
0 0       * 

^ Kk ' ^k Hk(Hk *k ** * V"J     '•  fc • ^ ^ ^ **** 



k - k + 1 

xk k-1 

I 
Pk - * P^ f * r Vl r' 

i 
K ' P HT(H P HT + R)'1 

I 
£ * x + K(y - H x) 

I 
P  m   (I  -   KH)   P 

No Yes 

10 

End 

Figure 1.1   Kaiman Filter, Algorithm I 
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The Kaiman estimator above Is based on linear system dynamics.    It 

has been applied successfully to many nonlinear problems In the following 

manner. 

Consider the n-element state vector, x(t), whose values at discrete 

times are given by the nonlinear difference equation, 

mk) - fprrv^ y ♦ r^ K*^, (1.2. w 
where w is a random Input with properties as specified by (1.2.1) t and r Is 

the corresponding disturbance transition matrix.    Define a reference state, 

x*(t).    If F[X(t     ), t ] Is continuous for t   >t   > t     % then a linear 

approximation to F may be obtained by expanding in a Taylor series about 

WiwJ to obtain 

W * 
F(Xk_lt  tk)   * F(Xk^ttk) + ^ (Xk^ - Xk^) 

k-1 

m V * vr: "t-i-*k-i**' (1'2'w 
k-l 

where the subscripts denote values at the corresponding times.    Substituting 

into (1.2.18) we have, to first order in x     - 
k-l 

W * 

*        * oX k-l        k-l k,k-l    k-l 

Defining x.ix.- X* and ♦.  .   . = af. VW.   ,t, then obtain (1.2.1). 

A similar linearization is performed if the observation-state relation 

is also nonlinear, but with additive noise, v(t ). 

Y(tk) - G[X(tk)t tk] + v(tk) (1,S,£0) 

t Note that this is the definition of 4> for the linear case as well. 
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where J^tJ Is a p-vector of observations.    Defining a nominal or reference 

observation, 

V' G[Xk** V * V (2.2.2V 

where the subscripts again denote values at the corresponding time, and 

expanding In a Taylor series we have 

X*) + ... -f y.. (l.?..V.v.) 
k 1C V ■v 

ac « 

or to first order In X , 

»»• ••» 
x   -f y 

where 

»*" •»» ■Y« 

V •»» V», 

rj.s.rc"^ 

Thus the optimal linear estimator previously presented may be applied to the 

cases of nonlinear dynamics and observation processes.   However, accurate 

estimates of the deviation, f , from the reference or nominal solution require 
it 

that the linearity assumption be valid.    It Is possible that large deviations 

can violate the linearity assumption resulting In divergence of the estimate. 

One method of reducing this possibility Is to employ the so-called extended 

Kaiman filter In which a new reference Is chosen at each observation.    In 

particular, after each observation Is processed, the reference solution Is 

updated by setting the nominal equal to the new estimate: 

X* - /.  - f(X.     *    tj  + f. (1.2.24) k k k~l *    k k 

After forming r *, x^ Is set to zero so that £. = jr     « ö.   Then the next 
'    Jk        Jk k        k+1 

updated estimate, at t     , Is found as 

k+l ' Kk+1 yk+l 

or. In terms of x. 
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The notation 4L is no longer necessary since It Is Identical to X^.    The 

extended Kaiman algorithm. Algorithm II, is summarized in Figure 1.2 for the 

nonlinear problem. 

Usually the difference equation (1.2. V is obtained from the solution 

to the linear vector differential equation 

x(t) » A(t) x(t) + B(t) u(t) (1.2.1)7) 

where u(t) is some input.   For the nonlinear problem, A(t) » tftx t t)/yi (t), 

where x  satisfies the nonlinear differential equation, x (t) 'fix tt). 

The solution to (1.2.27) is well known (39, 41-43) (15, 31-43) in the form 

x(t) - |ft-j  t    J x(tu   ) + f      tft.  1) B(x)  u(t) d T (1.2.28) 

Vi 
The state transition matrix, $, satisfies the homogeneous differential equation 

♦Ct,   t ) 'Ad)  tft,   t )t  tft.,  t )  » I (1.2.29) 

i* also has the following properties: 

¥tit t) - Mt,, t) tft. t) 
1      k i      j j      k 

i      J J      ^ 

When u(t) is replaced by white noise, with E{u(t) i/tj)} ■ 

U(t) 6(t-r)*, difficulties occur in attempting to evaluate the resulting 

stochastic integral in (1.2.28).   The problem arises from the fact that the 

elements of white noise are uncorrelated in time, and hence are nowhere 

continuous.    A common approach to remedy this (44, 326-327) (39, 115-117) 

is to select At = t   - t      small compared to the system characteristic 
*        k-l 

^6(t - 1)  Is the Dlrac delta. 



Given: 

0*     0 

max 

I 
k - 1 

\ =f       f(X'  t) dt 
t
k-l 

I 
_ -A _ _ _ 
Pk 'J iA(t)P(t)  * P(t)AT(t) 

tk-l + B(t)Q(t)BT(t) ] dt 

k * k + 1 y* • y
k - <&* tk] 

I 
h • h "l 'ä* p» ** * v1 

****** ** h 

I 
Pk'(I- U>M Pk 

Figure 1.2   Extended Kaiman Filter:   Algorithm II 
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response time, and approximate u(r) as a constant vtt.J over M.* 

In this case we define 

tk-i 

This Is the approach taken to obtain equation (1.2. V.    An alternative method 

Is to define, formally, 

dw'* U(T) eft 

and employ the definition of the It6 stochastic Integral (5, 98) to obtain 

> 
/        tft^Tj B(J) dw   = ^j^i B

k <wk - »*.!> (1.2.SI) 
tk-l 

In this case one cannot write the form r.  ,   , w.   ,.    Another alternative, the k,k-l    k-l 

Stratonovlch stochastic Integral, yields the same result for this case 

(5, 116-120).    The most general consideration Is simply to define 

> 
W(tk-l) 'I        ****   T; B('C)  u(T) ** (1.2.32) 

tk-l 

In this case, r.  .   , = J.    The differences In these definitions are mam"- 
k,k-l 

fested In the estimation process through the corresponding covanance terms. 

Thus for (1.2.30) one finds 

r Eiw t/} T
T
 = 

k k 
f       *(tk, x) B(T) dx   E{uk_1 wj.2}/       BT(x)  fftp T) di   (1.2.3c: 

Vl tk-l 
For the Itö Integral, 

r E{IJ u}T) r3" - *. . .8. E{(W: - w: j(w: - w' J} »f ♦'    , 
k,k-l    k k        k-l       k        k-l k    k,k-l 

Carrying out the multiplication, this becomes 

* A white Gaussian process may be shown to be the limit of a white 
Gaussian sequence, e.g., (5, 83-85). 
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TEiw w1"} rr - ♦ fl E{w^ wf + wJJ_1 ij*J flr ^ (1.2.24) 

since Eiwlwf) - g^^A _       «.        

Finally, for ri.2.32; 

rff{ü ür} rr - E{W ü
T

} ■ 

,   ,   , | J   «rt^ T; B(T) Eiuf-c) u(p)} BT(P) r(tk, p) didp 

But E{u(t) uT(p)) - i/Ct; äCT - p;, and since (44, 332) 

f       Wt- p; rfp = {       *^J * 
Vi <*'  Vi > T > ^ 

then 
t 

Efaw'r}*f Wt^   X)  B(l)  U(i) BT(x)   ¥tk,   X)  dX (1.2.35} 
tk'l 

Noting Q = E{w   w*} « F{u wr}, one finds for (1.2.S3), (1.P..S4), and (l,St56)t 

respectively, 

r ^ r3"» r w rr (us.??a> 

T Q rT = 2 * B Q' Br QT (l,S.94a> 

r Q r7, = Q = f      *B U BT *T dx (1.2,Ma) 

Vi 
Thus, depending upon how one dz^inu, the stochastic integral in (2.2.28) 

various forms may be obtained for r Q TT. 

With the extended Kaiman form, the state transition matrix is used 

only in the prediction of the state error covariance matrix.    It is possible 

to eliminate the state transition matrix altogether by use of a differential 

equation for the error covariance, obtained by a straightforward limiting 
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process. First we write (1.2.1?)  such that the forcing term VQV7 Is in the 

form (1.2.35).    Letting T » t , t ■• t  , and defining At = T - t, we have 

Jt 
(US, 3«) 

Using the Taylor series expansion, 

m; = wttt) + h(ttt) u + ...] p(t)i*(ttt) + wtit) u + ...f 

/ 
t 

[/   ¥%9) B(8) U(e) BT(8)  *T(TS8) da + 

T-t 

4-   /    *(tta) B(8)  U(8) BT(8)  f(vt§} ds M + ...I (1.2.37) 

where Wt,t) - d^(itt)/dn evaluated at T = t.    The first integral In (1.2.3?) 

Is zero.   Applying Leibnitz1 rule to the second Integral we have 

jr   /    *rT,s; B(8)  U(8) BT(s) *T(ia§} da M = 

B(t) U(t) BT(t) Lt + §    t WT,8) 8(8)  U(a) BT(8)  *T(Xt9)] de M 

(1.Z.3S) 

Noting that the integral here is also zero, and that ^(t^) = Aft),  one 

finds on substituting Into (1.2.3?)  that 

m; = P(t)  + A(t) P(t)  bt + P(t) AT(t) at + B(t)   U(t)  BT(t) M + ... 

Now, by definition Ptt^) - p(t
k.1\

y
k.1

)* and ?rV " P(tk^Vk'i)'    Since n0 

new information is being added, then at t = t      we may make the substitution 

P(t) for P(t).    Then substracting P(t.) from both sides, dividing by Af and 

takinn the limit as At * 0, one obtains the differential equation 

P(t) = A(t) P(t) + P(t) AT(t) + B(t) Q(t) BT(t) ri.S.AJ' 
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Since /Ms a symmetric n*n matrix, only n(n+l)/2 equations need to be 

integrated.   4> is n*n and, in general, not symmetric, so a reduction in 

-mimertearl efforft? "öPtTTned' by'Tntegräfting the appropriate n(n+l)/2 

equations for P.   On the other hand, depending upon the specific problem at 

hand, it is often possible to reduce the number of equations in -t = .w by 

obtaining closed form solutions for some of the elements.    Also, it has been 

found that (1.2.39) can be a difficult equation to integrate numerically. 

1.3   Properties of the State Error Covariance 

This section deals with some characteristics of the state error 

covariance matrix.   We will not elaborate at length — a number of investi- 

gators have done extensive work in this area, notably Kaiman.   However, some 

of the key properties are presented. 

We first show that any covariance matrix is non-negative definite. 

For a vector random variable, z, with mean. Mi and covariance, z, consider 

the quadratic form 

q = a la (1.3.1) 

where a  is an arbitrary vector of constants. Since the expected value is a 

linear operator, 

q « aTE{(z-\i)(z-v)T) a - E{a'(z-v)(z-V)Ta} (1.3.2) 

Defining the scalar 

e = a (z-\i) 

we have 

q = E{8 8T} = Eis2} (1.3.3) 

which is never negative.   Thus Z is non-negative definite. 

Next, positive definite bounds may be established for the error 

covariance associated with the Kaiman filter.    In particular, Sorenson (7) 
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takes a rather unique approach by decomposing the system, equations (1.2.1) 

and (1.2.2) Into two separate parts.   One, denoted as p, has Input noise, 

—bwt-i^r-f-eet-woasuroiiiontst-thc others denoted as-wv-has-ne Input-nofse; and-- 

Imperfect measurements.   Thus, 

yk'yn
k + yp

k <'.*•" 

where the systems m and p are 

m: 

P- 

x   ■ to.   , 

ym = HxZ+v^ (1.3.P) "p k       k 

xf - tof , -f rw.   . 
it Jk-i k-1 

Sorensen then discusses the covanance properties for these two systems 

separately.    For the noise-free plant, m, the observability matrix, defined 

Jk 
Mu      = 'F 4?   .   , HT R'1 H.  t.    .   . (I.?.?) 
k,j       ^    i,j-l    i    J       i     i,j~l 

i-J 

Is used to establish the positive definite property of the state error 

covarlance matrix.   Specifically, a matrix Inversion lemma, the so-called 

Schur Identity given in Appendix A allows (1.2.15) to be written as 

Fj - [J-^ f J ?"= [P "im + Hi Fl1 HJ'1 (2,3.8) k      ^      k   k'    k      ^ k k   k     k 

where now p"« IfJ! . ♦T, since m Is the noise free plant.    Then, 

p-lm - t"1      P:1«' f "f    ^   ^ p"1 ff. ri. J.^.' 
Jk k,k~l    k-1    k,k-l k    k      k 
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The system Is said to be observable on the Interval [t.t t ] If the 

observatl11ty matrix M.   ., Is positive definite.    If this condition holds, 

-inil pj-lsalso positlve-defi^teY-the» 4i*M>~*m N Kl Ulm W   *" '"""' 

r" = *     rp"1,n ^ w    rJ $T (' ." to 'k     \,0 ^0     * "k,!1     vk,o ' ; 

where use Is made of the fact that 

* l**,*-I    k-l    k,k-l' 

»»:J    p"i,n t-T 

ktk-l      k-l    k,k-l 

« • P"2m *r 

*,*-J      *-J    k,k-l 

By arguments similar to the previous discussion, pj Is therefore positive 

definite for all fc, since the bracketed term in (1.3.10)  Is also. Additionally, 

Sorenson shows that M may be described In a recursive fashion by 

Mkfj ' Vu * <fj.i "I h1 h K.i-i (1'3' n> 
and since the second term on the right is non-negative definite, 

w.   ■ - M       . is also, thus allowing the conclusion, by (1.3.10) * that F" 
A/J        k~lfj k 

is positive definite for all k > J. 

Building on these facts, Sorenson also states the well known 

characteristic that pf generally tends to vanish for well-defined systems 

with no input noise.    First, the concept of <7-stage observability is defined. 

Given 1 ^q <N such that t   £ t and t   £ t , the system m is said to 

be o-stage observable on an Interval  [t„. t„] if and only if M,  ,      , is 1 O*    S' k,k-q+l 

positive definite for every t..    That this Implies M.      - M is positive 

definite may be readily seen by modifying (1.3.11)  to obtain 

M        = M + $T M ♦ ( '.3. "^ k,l        k-q,l *    k-q,0 mk,k'q+l  Vk-q,0 (-..-. 
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This follows by substituting Mk k   +J using (1.3.7).   Under c^-staqe 

observability, (1.3.12) suggests that In some sense M      Increases without 

Üöühä.    Consider the spectral norm of M and M'1'. 

where >*_„ and X*.   are the maximum and minimum eigenvalues of Af,   , .   Now ma* rain * k,l 

if M.   , Is q-stage observable, 

•"-"       max       min min 

with similar Inequalities for the other eigenvalues. Then 

and 

min 

Using this result together with (1.3.10), Sorenson realizes the 

following conclusion:   For a ^stage observable system, If IJA/"1,!! converges 

to zero more rapidly than  ||*. J |2 Increases, then the error covarlance pj 

vanishes as fe -»• ».   To verify this we merely need to show that the norm of 

the elements of (1.3.10) vanish.    First, for no a pfiioni. Information, 

P^110 = 0. Thus*, 

\.o <i *l,o > \.o V'o1* + "k.S1 *l.o (2"''W 

and 

^N<IIV0<iC^II^II2ll<ill "-*'"> 
f 

which vanish as fc -► » If the original hypotheses are met.    Further, as Ä: ■* », 

(1.3.15) tends to equality with Increasing accuracy.   The Implication Is that 

* A ^B > C means that /I - ß Is non-negative definite and B - /Is 
positive definite. 



for large fc, P" is essentially independent of P? for /7-staqe observable 

systems. 

For system p, where the measurements are perfect, one is able to 

conclude that the error covariance matrix is never positive definite.    Using 

(1.2. IS) and (1.2.13) t 

tf. Pj - HAI - K. HJ P.p 

k   k       k k   k     k 

- {H - H P?HT[H PFH7]'1 H] PU
P 

k k k 

- 0 (1.S.2?) 

Thus if P^ were positive definite, H   would have to assume the contradictory 

state of having to be identically zero. Utilizing the gains, xf and KP 

which are optimal for each system, Sorenson then shows that a lower bound 

on the total error covariance is given by 

P,, > P" + pf 
k —   k        k 

or 

p* i VoIPöJ" + "w'"'**,<> + ^ "•'■"> 
Utilizing the gain tff, which is suboptimal for the total system but may be 

optimal for either (but not both) of the systems m and p, an upper bound is 

established as 

P., < pf ^ Pf k —   k k 

where p"18 and pps are the corresponding covariances. If Af is chosen to be 

^J" (the optimal gain for system m), and used for both systems, then 

pk 1 *k,olp'olm * *»,jl"J Vo * *? (1'3-19) 

But P^will generally increase without bound since noise is continually 

being input to the system, and therefore, as Sorenson points out, (2.3.19) 
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Is an unsatisfactory bound. Note that In this case (1.3.17)  generally will 

not hold, since the gain Is not the optimal for system p. If in fact, 

TQkTT Is positive definite, then 

Pf -  [I - PmHT(H PmHT * R)'1 H] P J" 

( I - K* H)l * Pf, <I>r + TQU  ,rT] Jt-i Jt-1 

( I - K? H)[P* + t& P + ^Qk_^T\ 

> VQ.   ,rT + AP p > IU    ,rT (1.3.20) —     k-1 —     k-1 

This last Is true since p" and hence A7" eventually vanish.   Tnus (1.3.18) 
k 

and (1.3.19) represent positive definite bounds upon the total system error 

covarlance. P.. 

An alternate definition of observability requires that the information 

matrix, T.   ., be positive definite: 

If this condition holds, the system (1.P..J, 1.P..S) is said to be completely 

observable with respect to ly.t y ...,  ..., .'/.)•   Note that T    . is related 

to the observability matrix by 

«L ..•♦'. T       ♦ (l.S.SS) 
k,j        k,j-l    k,j    k,j-l 

and related to the error covariance by 

p'lm = 4r      p"Im 4 ^ T (IS  "3 rJk vO,k ^0     vo,k      lk,2 ii.*"-i 

This latter follows from (1.3.10).    A recursion for T may also be obtained 

using (1.3.11) and (1.3.22): 
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lk,j       j-l,k "k,j vj-l      *j-l,k "k-l,j vj-l,k * "k   k     k 

k-l,k   j-l,k-l    k-l,j    j-l,k-l vk-l,k       k "k      k 

Of 

Vi " **-!,* ViJ •*-!,* * ^ ^ ^  fe > ^ r,^-MJ 

A concept dual to that of observability Is controllability.    The 

controllability matrix is defined as 
k 

(LS.SS) 

The corresponding dynamic system is said to be completely controllable if, 

and only if, A.  . > ö for fc > o. 

Jazwinski (5, 234-243), drawing upon the work of Kaiman, Sorenson, 

and others, gives a comprehensive discussion of bounds and stability of 

the filter equations.    Extending the concepts of observability and control- 

lability, Jazwinski defines the system (1.2.1, 1.2.2) as being uniformly 

completely observable if there exist a positive Integer, #, and positive 

constants, a and 3* such that 

0<aIl  T*,*-iv±ßI 

for all k > N.    Similarly the system is uniformly completely controllable if 

where y and 6 are positive constants.    Using these definitions, Jazwinski's 

results are summarized in the following: 

Lemma. If the dynamical system (l.2.lt 1.2.2) is uniformly com- 

pletely observable and uniformly completely controllable, and if p >^ ö, 

then 
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a) Pk  Is uniformly bounded from above, 

b) P   Is uniformly bounded from below, 

c) Pk > 0t 

for all k >N.    Further, the filter of Algorithm I Is asymptotically stable; 

that Is, 

I l^v V " -Cl exPi-oi(tk - V
1 

for all tk >^ t0 (01 and 02 are constants). 

In (5, 244-251) Jazwinski also discusses error sensitivity.    In this 

latter regard, he proved the following: 

Theorem.    If P0 1 *Q . ^ 1 ^J • and \ 1 *£ for a11 k» then 

Pk - Pk and Pk - PkC for a11 k' 

The superscript, c, refers to the numerical values employed or cotrputed In 

the filtering algorithm.   The non-superscripted quantities refer to the 

actual or true values of the covarlances.    Note that the true values are 

seldom known In practice.   Hence, In light of this theorem we can enjoy the 

confidence that If conservative values are selected for the covarlances, then 

the true error covarlance Is bounded at any time by the computed error 

covariance. 

1.4 The Problem of Modeling Errors 

Up to this point In the discussion of Kaiman filtering it has been 

assumed that the system dynamics are known to within a degree of uncertainty 

represented by the statistics associated with the state noise, a.    If the 

uncertainties in the model dynamics are purely random with accurately known 

finite, bounded statistics, and more realistically if the uncertainties 

are small with respect to the state values, then generally the assumed 

dynamic modeling will yield good results. On the other hand, if there are 
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modeling errors which contain unbounded time correlated components, or 

dynamic biases as they are usually called, the estimation results based 

on such erroneous models become worthless. In such cases, the system is 

not uniformly completely controllable. In particular, the model errors 

manifest themselves in the «f-matrix which affects the predicted values of 

the state, x, and error covariance, P.    If the filter employs no process 

noise covariance, v, or only a constant Q, then as the estimation process, 

proceeds, the state error covariance usually* decreases and so, therefore, 

does the gain, K.   As the gain becomes smaller, the effects of the measure- 

ments in contributing information become less and less. The effects of 

modeling errors continue to grow, essentially no new information is added, 

and the state estimate diverges from its correct value. A simple example 

will be developed which will serve to illustrate these points. It is 

derived from information given in reference (9). 

Consider two spacecraft in orbit about the earth. Assume their 

orbits are approximately circular and coplanar, and that the vehicles are 

undergoing a rendezvous maneuver, and hence are separated by a distance of 

only a few kilometers. Referring to Figure 1.3, let r be the geocentric 

position vector of the target vehicle and i» be the geocentric position 

vector of the homing vehicle. Neglecting n-body and aspherical gravitational 

effects, the eguatlons of motion can be written as 

** - ^V = - -drr rh (1.4.1) n 

* Recall that | |4>  ||2 In (1.3.16)  must not Increase faster than 

rl \\M      II decreases. A similar characteristic Is required In the system 

with process noise. 
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where {')     <J( )/dt%  p » gravitational parameter of the earth, and (r| Is 

the magnitude of r. 

Figure 1.3 Vehicle Position Vectors 

Defining the range vector. 

P - rt - rÄ {1.4.t) 

and noting that |p| « |rh| or |rt(, one can expand about the target vehicle 

position vector In a Taylor series to obtain 

g(r.)  = g(Tj + 
*g(rt) 
ST   ^h -'t*   +* (2,4.3) 

h'      w'mt 

Neglecting e, which represents terms of second and higher order In p, and 

using (i.l.i)  and (1.4.?.)  leads to the following relation: 

If fc •  , 

*m~&f~  P 

Note that neglecting e, as well as the higher order gravitational effects 
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has Introduced errors In the dynamic model. However, for the time being 

assume that (1.4.4)  represents the true model, that the orbits are coplanar, 

and that the target vel.lcle orbit Is circular with the homing vehicle orbit 

nearly so. Further, for purposes of developing a simple navigation scheme 

the possibly questionable assumption will be made that the hominn vehicle 

Is closing at a constant rate, p, with respect to the target vehicle. Note 

that p is the magnitude of the time rate of change of the range vector, p. 

I.e., 

where p ■ dp/dt.    Throughout the rendezvous maneuver. It is necessary to have 

knowledge of p and p; however, for simplicity in the illustration, only p will 

be considered. 

To obtain Information about p a Doppler radar system is used to measure 

the closure rate. Associated with this range-rate radar are uncertainties 

assumed to manifest themselves as bounded, purely random errors, p , in the 

range-rate measurements. Assume the v   have the statistics 
rp 

EiVj) ■ 0, E{vk »j) • JM_ Jt « oonstant 

Making the following identifications with equations (1.2.1) and (l.s.2), 

P0 - P(0)t xk i p^ Hk i 1, yk-hk + vk 

and assuming no state noise (Q = o)t then the Kaiman estimation equations for 

Algorithm I are 

P* " 'pk-i 

rk       k-1 

K''pk + Wk - K] 

p
k' [1 ' Kk] h (1-4'6) 
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Recall that y   Is the measured range-rate at t , and that »>   = .7   - p , 
A X K A A 

Explicit expressions may be obtained for the above quantities In terms of 
A 

P/i» pn*  and hu'    In particular, the recurrence for p   leads to 

(1.4.7) 

"0' 'o' -"■ "k'   - r«.    V««W*W*   |        V 

r            0 
1
      '  (jrP0 + R) 

and 

„          po 
m      (mP0 + R) 

for m observations. Then for p , 
m 

■      0     k=l 

Vk 
(k + R/P0) 

(1.4.8) 

(1.4.9) 

From equations (l.4.?)-(l.4.9)% It follows that as m gets larger, the estimate 
A 

for p becomes Insensitive to the observation residual since the variance and 
Al 

hence the gain are becoming smaller. The Implication Is that eventually a 

point Is reached where K Is so small that taking further observations adds 

essentially no new Information about p. This Is an acceptable (and desirable) 

situation if no modeling errors are present, that Is If the assumption about 

a constant closure rate Is valid. 

To Investigate this assumption further, consider equation (1.4.4)  In 

terms of the relative derivatives of p. 

p « p -f 2 w x p -f d) x p -f w x ('üJ x p; (1.4.10) 
e 

where w Is the angular velocity of the llne-of-slght, p, and ( ) Is the time 

derivative relative to the target vehicle.    Using equation (1.4.4) one can 

find 
dg(r ) 

p =-r—^-p - 2 a) x p - u) x p - co x COJ x p; (1.4.11) 

From the first of (1.4.l)s 
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TBT*- lL-^ 2—   ^ V (1.4.12) K \rtr kj2      t    t 

So» 

r 

ktr kftl 2 

p « ^— (1-3 —^—* Jp-Swxp-dixp-uxfa)*/^       Ci.J. ir/J 
I» 3 
t1 I'.l 

If the rendezvous maneuver Is restricted such that p maintains a constant 

angle with respect to r , then w Is constant.    Further, because the target 

vehicle Is In circular orbit, 

/u/|rt|
9    k w = /u/|rt|
s    fc (1,4.16) 

where /c Is a unit vector perpendicular to the orbit plane.    In view of this 

restriction, 

r 
p   p 

p » y—   (1-3 -*—• >)p-2wxp-a)X('aixp; (1.4.16) 
ktl

3 ktl
2 

Now, take the scalar product of (1.4.16) with a unit vector In the p-dfrectlon 

to get 

T 

EJLE . fj =   . —tL_   ^ r/ - 3 ^-^ ; p - 2 ^ a) x ^ - ^ a. x ru) x Dj 
p 1^1« p       l^l« ^    p    p p 

^rprrj2 

» U—P ^  E—   V- w2  P (1.4.1?) 
ktl

3        Pkt|
5 

since pT^aj x p;   » p • fw x p; « w • <> x p; = ö, and pr[ü) x rw x p; ] = 

Tw • p)1 - cü2 p2 »   -w2 p2.    But CD2 « v/|r |3 ; hence. 
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;.■;. LV 

Next. 

P - P 

[ein ((Jit + t) 

-ooa (ut + e) 

0 
*    rt ' lrt 

008   a)t 

sin cot 

L    0 

where e is a small, constant angle representing the deviation of p from 

the local horizontal at the target vehicle (if e = o, p and i»   are perpen- 

dicular).   Then, since pr r   is the scalar product of p and r , 

p   r   » p|r I   [sin Cwt -f ü ooa wt - cos Cwt -f ej sin wt] 

■ p|r |   [sin wt cos wt oos e + oos2 wt sin e - 

cos üjfc sin wt cos e + sin2 ut sin e] 

■ p|r | stn e (1.4.19) 

Finally, through first order terms, and for closure along the line of sight 

at a constant angle, e, from the local horizontal, 

p = —^— p2  |i.  |2 sin2 e « -Ö—   p sin2 e 
PlrJ5 t |rt|

8 

or 

p - Y2 p = 0, Y2 = —™- s^n2 Cj a constant 
ktl

3 
(1.4.20) 

Thus, only in the special case where e » 0 is the assumption of a constant 

closure rate valid (p = o to first order). The solution to (1.4.20)  is 

found to be 

po p » p aosh yt + -r-   sinh yt (1.4.CD 

So, 

p « p Y sinh yt + p oosh yt (1.4.. 
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and it Is seen that there Is an unbounded growth in p.    A non-dimensional 

form of (1,4,ti) is plotted in Figure 1.4. 

Returning to the estimation problem, using the original model 

(constant p),  the observation-state relation becomes 

yk = 'Pk ^ Vk = (30 y 8inh ytk * ^0 OOBh ytk * Vk 

and 

^ - P^ = P0 Y einh ytk + h0 cosh ytk - hk + vk (1,4,tZ) 

So the estimate becomes 

K = K + (k; ff/p0; rpoY ainh ytk + poao8h ytk - K * vk) 

(k-V + R/P0     T     vk 

k + R/P0 
pk * (k + R/P0)    + 

(pn y ainh yt.  + pn oosh yt.) (l,4,t4) k + R/P0 ^0  ' ""^ '"Jt " K0 w'" "V 

Forming the error, p , by subtracting (1.4.24)  from (1.4.22)  gives 

•       \(k'1) * pJt " [   k + R, */J?0     J 

l). 

rp0 Y »inÄ Y^ * P0 c08^ Y^ - p^; - (k ffffj 

(1.4.25) 

From (1.4.24) one can see that as k increases, the additive effects of the 

last term become less (since y « l), and p   tends to a relatively constant 

value.    In (1.4.2s), the term in square brackets tends to :, and since p^ 

is approximately constant for large k, the hyperbolic trigonometric terms 

eventually dominate, driving the error to intolerably large values.    As 

before, the computed variance qiven by (hi.7) decreases to zero. 

Consideration of state noise to represent dynamic model uncertainties 

has been shown to have the effect of keeping the error covariance from 
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    Closure, Po < 0 

     Departure,  Po > 0 

Curves are labeled with 
values of POY/|PO| 

yt 

Figure 1.4   Non-Dimensional 1 zed Range Rate 
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vanishing, and likewise, the gain,    lor the rendezvous example, let  i  in 

equation  (1.2.1) be the identity matrix.    Further, let the process generatinq 

w   be stationary so that the variance, Q   ■ .,', is a positive constant.    Then, 

P^P^ + Q ;2.4.w 

For k = 1, 

Po + Q 
Kl  =  Pl/[Pl * If] m 

Po + Q + R 

Assuming the initial estimate error is zero, the actual a pxicii variance, 

Po, is simply H,    Then the simplification may be made that 

*. = JL±Ji=L±X    f = ä ft l    WTQ    2 + f * J
 ~ R 

and 

1 l       2 + f h 

For k = Z, 

K   =      P2      =      (1 + 3f + f2)/(2 + f)      m 1 + 3£ + f2 

Pz + R      (1 + Sf + f2)/(2 + f)  + 1      S * if + f 

mXl±JL±JL\ 

For k = Zt 

_ \il i SLLJÜ * A 
[(3 + 4]- + P)   + •'J 

s\l±JL±IJl±lL\R I   s + 4f + p      J^ 

„    _ f 1 + 6f + 5f2 + f3 1      2 + 6f + 5f2 + f- 
3 ~ [l + 6f + Sfi + f* + Z + 4f + p\~ 4 + Wf + 6p + j 

m \l + 6f+ 5f2 t  f
3   1 

3      14 + Wf + 6f2 + pj 

3 

73 
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For ft « 4, 

"      [    4 + 10 f + 6f2 + p } * 

v   \i tiof + isfZ t ml tji] 
^ = [5 + 20f + 21p- + 8f3 *f*j 

Finally, for k = 5t 

-   =   [l + ISf + 35f2 + r.sp + op -f /5] 
5        L     5 + 20f + Zip +  8P 7p J 

[1 + 15f + 35fz + 28p + ££* + P  ] 
5 ~   [6 + 35f + S6p + 36P + 10P + pj 

P5 = Ki R 

Examining these values leads, by induction, to the relationship 

Y(^\p 
few*/ 

/mfk+l \ jn 

m 

I 
K   =    «  (1.4.-7) 

m m 

where ä\ .       a! 

bUJ 

b]     (a-h)\ h\ 

the binomial coefficients, and / = Q/R.    P   and P   are given as before. J mm3 

It is important to investigate the limit of K   as k -* 0°.    Returning 

to the recursive relations 

k     Pu + R k 

Pfc • U - K.] P. 
k k      k 

Pk+1 'Pk+Q 

then 
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K—1 pk+i= W'^r-z p
k + Q 

p
kR 

 +Q (2.4.28) 

k 

Now, as fe ->• «>, 

?„, = Z ♦« (1,4,29) 
?<* + R 

where the notation P   means ,_ P.   . 

Solving for P   , 

«        Q ± /Q2 + 4RQ 

ri.J.oi.! 

where the -f sign is taken since it is required that P > 0.   However, 

K   ,      Po°       =    (Q + V Q2 + 4QR )/3 

P^* R (Q + S Q2 + 4QR )/2 + R 

m l+Sl+4/f 

1 + J 1 + 4/f + 2/f 

and therefore, 

|_ / + / i + 177 + s/fj 

Notinn that K„ < u and P   < ä, one may write 

K    < K.   <  1 »        k 

oo k 

(1,4.??.) 
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The fact that P and K do not vanish due to the presence of Q does 

not in general prevent divergence of the estimate, when unbounded model 

errors are present, but simply delays it. Forming the estimate for very 

large k  , one obtains approximately. 

r ^—i • 
|_i +    A + 4/f + 2/fj 

r 11 JitTn 1 
[i +    A + 4/f + 2/fj 

fPoY sinh yt    * Po aosh yt    + v } (1,4,34) 
A K K 

The corresponding error is approximately 

p    =         "             CpoY sinh yt   + po aoah yt.  ~ p.) 
K [1  +   /I  +  4/f +  2/fj * K K 

_ r   Lt /m77 _] (1,4,it) 

Thus the non-zero steady-state gain, A^, continues to provide information to 

improve the estimate of p.    Note that as Q% and hence /, becomes very large, 

the error asymptotically approaches the error due to the observation noise. 

However, after a sufficient amount of time, the estimate still diverges owing 

to the unboundedness of the model error. 

The guestion remains: "How does one compensate for modeling errors so 

as to allow a workable estimation algorithm which provides accurate and useful 

estimates?" 

1.5   Literature Survey 

The effects of dynamic model errors have been examined by a number of 

Investigators, among them Heffes (10), Schlee, ct at. (11), Price (12), 
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Huddle and Wismer (13), and Neal (14).    Most of these Investigations are 

concerned primarily with performance degradation of the estimation process 

(which is the Kaiman sequential estimator in all cases), and offer equations 

which provide a measure of the degradation.    These equations are generally 

based upon the error covariance and are structured in such a way that model 

errors may be seen through their effects on the error covariance. 

As mentioned in Section 1.1, model error compensation techniques may 

be classed loosely as adaptive or non-adaptive.   Techniques from both camps 

may be further classed according to their basic approach to the problem.    On 

the one hand are techniques which simply alter the actual estimation or filter- 

ing equations.    These approaches generally attempt to maintain the error 

covariance, and hence the gain, at a level which will continue to provide 

corrective Information for the state estimate.    On the other hand are found 

methods which attempt to improve knowledge of the dynamic model.    The former 

approaches usually aim at computational simplicity, but pay the price by 

compromising optimality.    The latter methods are usually more in keeping with 

the optimality properties but generally are computationally more demanding. 

The technique of representing modeling errors as white noise is an 

easily implemented approach which is perhaps the most conservative.    Numeri- 

cally, it amounts to merely increasing P   by adding the Q   . matrix to *?._, ^T. 

As pointed out in the last section, this merely delays divergence if the 

errors are unbounded, but can be effective for small, bounded errors,  i.e., 

if the system is uniformly completely controllable.   The consideration of 

state noise is employed so often that it has become part of the standard 

linear, unbiased, minimum variance estimator (5, 194-209),  (15).    However,  in 

the face of incomplete knowledge of the dynamic model, Q       must be guessed. 
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Rather than arbitrarily select a complete matrix of values to be 

added to the error covariance, an effective and simple method is simply to 

scale the error covariance by a scalar.    This has been done recently by Tarn 

and Zaborszky (16).    A scalar, .-• N  /, is selected and used to scale /"   after 
K 

each covariance update.    In the application to an inertially navigated qllde 

vehicle, it was concluded that /     n < 7.5, and that satisfactory results 

were obtained for a = 1.P.. 

Fagin (17)  introduced the concept of exponential age-weightinq of the 

observations.    The effect is to downgrade the value of old observations so 

that the most current information dominates the estimate.    Fagin's development 

is based upon a recursive least squares derivation, where 

Ju - *[*£ *T(o3 k) P'1 *(ot k) x.] + 

k 
*   E   [2/, - n.  9(it k) x.]T h'.'1   [y. - //.  *(it k) x.] (1.6, V 

is minimized with respect to x ,    In the standard least squares approach. 

R'1 = R'1.    However, Fagin modifies R   as P-I , R-it 

R. = exp  [(tk - t.)/i] R t i >_k (1.6,?) 

where T is an arbitrarily chosen time constant.    The resulting estimation 

equations have a form different from those of Tarn and Zaborszky; however, 

they are equivalent (this will be shown in Chapter 2 along with certain 

requirements on the scaling factor). 

Miller (18) examines the behavior of the Kaiman filter for continuous 

and discrete time invariant systems with exponentially age-weighted observa- 

tions.    He derives equations for the filter eigenvalues to provide useful 

guides for choosing the aging time constant, T. 
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Schmidt (19), (20) offers two unlq'Jt methods for overcoming model 

errors.    One utilizes a scalar parameter b to scale the optimum qain, K, with 

an attendant increase in the updated covariance matrix.    A second technique 

adds a judiciously selected term to the Kaiman gain with the corresponding 

effect of an additive term to the updated covariance.    In both methods the 

values of the parameters involved are related to certain configurations of the 

Kaiman estimation equations.    Both techniques effectively over-weight the more 

recent data. 

Limited memory filtering is a useful technique for counteracting model 

errors.    Here, only a limited batch of observations are employed.    However, 

the "batch" is updated in the sense that old observations are effectively 

discarded as new observations are added.    Hence the dynamic model  is required 

to be commensurate with the data only over a short time interval.    While a 

number of limited memory filters have been developed, one of the most efficient 

and easiest to implement is due to Jazwinski (21). 

Adaptive techniques form the majority of model error compensation 

methods.    Here attempts are made to estimate a parameter vector, a, whose 

elements are unknowns in the model.    These may include elements in «t, H, Q, 

or /?.    Mehra (22) places adaptive methods into four categories. 

1. Bayesian 

2. Maximum likelihood 

3. Correlation 

4. Covariance matching 

Bayesian methods involve determining the a potWUofU probability 

density function, p(x * a|^J.    Employing Bayes' Theorem, 

s 

\ 
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pry Ja; pCa) 
p(xk, a|yj = P(zk\a, yk) p(a\Vk) = p(xk\at  y  g^j        (U6.3) 

k 

Since 

then 

pWAa) p(a) 
p(x.t a|yj = pCx. la,  VJ    ,     * .  (l.S.-J) k1       '   k r'-jfi-«   •A' 

f pry, [a; pra; & 
•5     " 

where /I Is the set of all a.    Usually a recursive formulation is desirable. 

Noting that 

substitution of (l.s,5) into ri.fi.4J yields 

prx., a|y.; =prx.k V 7—L-!LJ —— r;-''-f'' 

where P(^k_1) has been divided out of the numerator and denominator.    Now the 

optimal estimate of x   is the conditional mean (22, XIV. 1.1) 

V^JV = f *kV(*k\h)d*k 
xk 

and for the problem at hand. 

or 

Using the quotient in (1.5.4) substituted for pra|yj  completes the formu- 

lation of the algorithm. 
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The obvious difficulties in (l.G.4) are the evaluation of the pfttl^J 

integrals over 4«    Magill (25) develops the above algorithm approximating 

the integrals by summations of discrete probability distribution functions. 

Thus, 

and 

WaJyj - pr,JVi"V PrailVi; a.,.* 

where (1.5.6) has been employed.    This algorithm can be effective if the 

dimension of a is not too large.    To implement the procedure, the values of 

the a. must be precomputed; therefore, large n increases the computational 

load.    Further, the appropriate probability density and distribution functions 

must be assumed. 

Maximum likelihood estimation is based upon maximizing a likelihood 

function, L, formed as 

L = In p[xkS  a\Vk] 

with respect to the state, x, and the parameter vector, a.    Taking partial 

derivatives with respect to the appropriate elements produces a set of 

usually nonlinear algebraic equations.    Thus the disadvantage here is that 

an iterative method Is required to solve for the estimates, or else some 

approximation must be made which yields suboptimal estimates.   Further, the 

density function must be known, a puionl.    Alternately, using the marginal 

density function, p(a\Vk), It Is sometimes easier to derive an estimator for .7. 
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The basic approach of correlation methods Is to relate the auto- 

correlation function of the observations to the unknown parameters.    These 

methods are normally applicable only to constant coefficient systems and 

therefore will not be discussed further.    The Interested reader should see 

(29) and (30). 

Covariance matching techniques attempt to make the observed residuals 

match their theoretical  covariances through the appropriate choice of the 

unknown parameters.    Approximatinq the theoretical  covariance of the residuals 

by the sample covariance, one has 

where V is the theoretical covariance, 7 is the sample variance, and v is the 

vector of observation residuals.    The limit, m, is chosen to provide a sem- 

blance of smoothing.    Equating v and ?, 

V - "k [^Pk_1 *T + VQk VT] lFk + R - Vk (I.fi. ä\) 

Care must be taken to insure rank is consistent with the number of unknowns. 

For example, if Q is being estimated, //r must be of equal or greater rank 

than Q in order to obtain a unique solution for the elements of ,;.    Alter- 

natively, additional equations may be obtained for different times.    For 

elements of, say, *, (1,6,10) is nonlinear, hence an iterative method is 

generally required.    In passing, it is mentioned that covariance matching 

techniques appear to give fair results (24), and seem to be easiest to 

implement. 

The adaptive techniques discussed above have been used extensively to 

estimate the state noise covariance matrix, as well as other parameters.    We 

have already mentioned Magill's use of the Bayesian approach to develop an 
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adaptive algorithm for estimating parameters which are allowed to take on 

only a finite number of values. 

Maximum likelihood estimates of the state noise covariancc are 

obtained by Abramson (26), Sage and Husa (27), and Levy (28) to name a few. 

Abramson provides a complete and detailed development of optimal and sub- 

optimal methods for simultaneous estimation of the state and of the noise 

statistics. While his approach offers estimates of the diagonal elements of 

Qt  Sage and Husa (27) have extended the approach to yield estimates of all 

elements of Q,  although proof of convergence is not established. Usinci the 

Sage-Husa algorithm. Levy has constructed a reprocessing filter which period- 

ically reprocesses the accumulated data to obtain increasingly improved 

estimates of Q  (and R).    In the same work, Levy points out some shortcomings 

of the Sage-Husa approach, and subsequently produces a corrected iterative 

algorithm for simultaneous estimation of Q and R. 

Mehra (29) uses the innovations correlation approach to provide 

estimates of Q and R  for time invariant systems. The method is limited to 

cases for which the number of unknown elements of Q  is less than n  * p, 

where n  is the state vector dimension, and p is the observation vector 

dimension. In cases where this restriction is violated, the Kaiman gain 

may be estimated directly, although this alternative utilizes an iterative 

approach. In (30) Mehra applies the observations correlation approach to the 

identification of time invariant system parameters. 

Jazwinski (31) uses a maximum likelihood approach to develop a state 

noise covariance estimator. The joint probability density function of m 

residuals is maximized with respect to Q,    For the case of one residual, 

normally distributed, the result is identical with that for covariance match- 

ing. One residual is not a meaningful statistical sample; however, using the 
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sample variance of a larqer residual sample, Jazwinski has obtained 

satisfactory results (24). 

An effective approach to adaptively compensating for modeling errors 

is to consider the state noise as being correlated in time, and modeled by 

the first order Langevin differential equation, 

wft) = Cud)  + u(t) (1,5.11) 

where C is a diagonal matrix of constants, and u(t) is a white noise process 

with statistics, 

E[u(t)] = 0,  E[u(t)   u(8)] = V(t)  6(t - 8) 

By extending the state vector, x, to include the elements of v,  the problem 

resumes its original form with the only difference being a larger state 

vector. The specification of C is generally not an easy matter; however, by 

also including its elements in the state vector, the value of r may be 

adaptively estimated. This approach has been used successfully by Ingram (32) 

in representing the effects of time correlated random accelerations acting 

on the Apollo spacecraft. Schutz (33) has used the same approach to account 

for the effect of mascons in the lunar gravitational field. Tapley and 

Hagar (34) have successfully utilized equation (l.s.ll)  as well as the second 

order equation, 

ij(t) = aj(t) + u(t) d.s.:::' 

to represent time correlated uncertainties in the thrust acceleration vector 

of a continuous low thrust, solar-electric spacecraft. The possibility of 

utilizing higher order models to represent time correlated noise is also 

indicated in (34). 

A particular disadvantage of each of these techniques is that unless 

the constant matrix, c, has some state noise variance associated with it, 

it will settle to some constant value since its associated gain will vanish. 
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As a result, unless the correlated noise represents the model errors e/actl/, 

divergence of the estimate will eventually occur (35). 

It is obvious that there is great latitude in selecting functional 

forms to represent auto-correlated model errors, and these range from the 

use of simple constants by Russell and Curkendall (36)  to hiqher order- 

differential eguations (37).    An obvious problem is that of selecting the 

correct functional form or structure.    This problem has been touched on 

briefly by Lainiotis (38), and will be considered further in Chapter 3. 

1.6   Outline of the Investigation 

As stated in Section 1.1, this study investigates the utility of a 

variety of model error compensation technlgues and provides a comparison of 

the effectiveness of these methods.    The particular technlgues investiqateci 

are selected from those mentioned in the previous section, along with several 

extensions and new approaches.    The study is limited to implementation usinq 

the Kaiman sequential estimators (Algorithms I and II) presented in section 

1.2, and the error compensation methods studied are general enough to be 

applicable to time varying as well as time invariant systems. 

In Chapter 2 the suboptimal non-adaptive methods of the Schmidt 

modifications and of age-weighting devices are presented.    Also presented 

in this chapter is Jazwinski's limited memory filter algorithm. 

Chapter 3 is concerned with adaptive methods, both optimal and sub- 

optimal.   Jazwinski's adaptive technique for estimating the state noise 

covariance is presented.    Several extensions are given, and the covariance 

matching technique applied to yield adaptive forms for the Schmidt and aqe- 

weightlng algorithms presented in Chapter 2.    The briefly mentioned problem 

of structurally adaptive filtering is considered, and results are obtained 
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for certain restricted forms.    A now method is dovcloped for ostiiiidlimi the 

state noise covariance matrix.    The resultinq algorithm employs the lineiir 

minimum variance sequential estimator to adaptively estimate the state noise 

covariance elements for the case of linear observations.    The same approach 

is shown to be capable of modifying the error covariance elements directly. 

Chapters 4 and 5 apply the previously presented algorithms to two 

dynamic systems.    The scalar rendezvous problem presented in section i.4 is 

used to provide tractable, closed-form solutions and to offer insight into 

the nature of many of the methods.    In Chapter 5 a second problem of a more 

complex but realistic nature is investigated using the most promising 

approaches indicated in Chapter 4.    This concerns estimating the heliocentric 

trajectory of a continuous low thrust, solar-electric spacecraft, subject to 

errors in the thrust acceleration vector.    A complete description of this 

problem is given in Chapter 5. 

Chapter 6 is a concise summary of the investigation and presents the 

general conclusions and reconmendations for further study. 



Chapter 2 

NON-ADAPTIVE METHODS 

2.1   Age-Weighting of Data 

The rationale for age-weighting the observation data to compensate 

for model errors is this:    The Kaiman filter uses all the data as information 

for obtaining an estimate.    However, the dynamic model assumed in the process 

is in error and therefore yields a reasonable iinproximation to the true 

motion over only a finite interval of time.    Therefore, attemptinq to make 

the data consistent with an erroneous model over the total estimation period is 

unreasonable over a long period.    A logical alternative is to downgrade the impor 

tance of the older data.    Fagin (17) does precisely this by minimizing ,'.  in 

equation (1,6,2) where /?. = crr[(t,  - MA] R., with T arbitrarily chosen. 
i c       k        i i 

The results are eguations (:'.. l.'V with a = rspltt   -  t.)/i]. 

For the derivation here, a slightly different and more direct approach 

due to Tarn and Zaborszky (16)  is given.    Here, a general  function, ,-, is used 

as the weighting factor instead of the special case of an exponential.    Pro- 

ceeding heuristically, it is noted that aging the old data (decreasing its 

importance) will yield the same results as increasino the importance of the 

more current data.    This may be accomplished simply by scaling the error 

covariance by s, with g > 1.    Thus the error covariance and hence the gain 

is increased so that more importance is attached to the more recent observa- 

tions.    The subo timal covariance, denoted as /s, is <?;  with the Kaiman 

equations modified by simply substituting r* for r.    Thus, 
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*k-l      Blk-1 

?„ - ♦ P.S, ♦' + TQ. , rT 
k k-1 k-1 

*k " * VJ 

/r. • p, z/7"^ p. H
T
 + E]'

1 

k        k k 

k        k       klJ k k 

P.  = (I - K H) Pu I.". .'. " 
k k 

These are the results arrived at by Tarn and Zaborszky.    We note in passina 

that since their results contain both the additive state noise covariance and 

the a-factor, there is some redundancy.    The presence of the ^-factor simply 

slows the decrease in the error covariance, and the algorithm is therefore 

suboptimal.    Settinq Q = 0 in (?,.1.1) and usinq the definition of P8 one 

easily obtains Faqin's form, 

xk = * ^ 

_     71     —     71     if - j 
K. - p. r [// P, H  + -] 

k        k k s 

k        k        klJk kl 

Pk
a = 8(1 - KM) Pk r::.;. 

where e = exp [(t   - t      )/t]. 

The effects on the age-weiqhtinq algorithm for various values of . 

are now investiqated.    First, if s = i, equations (P..1.1) and 1". '.•,' are 

just the Kaiman equations of Alqorithm I.    If a is very larqe, the qain 

approaches a value such that HK = u in which case only the most recent 
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observation is considered in forming the estimate. This latter fact is seen 

by premultiplying (1.2.8) by H. 

To gain further insight into the algorithm, (2,1,2) is used to form 

the variance between a perfect measurement and a computed measurement (for 

a single observation), HP^HT.    For a perfect observation, y = Hx\ for the 

computed observation, y = H&.    Differencing these and taking the expected 

value gives 

y m y m 9 m B(* ' &) = u x 

which represents a measure of the estimation performance for comparison with 

the Kaiman filter. For the case of scalar observations (to which the vector 

case can always be reduced), (S.i.r.)  is used to obtain 

IIPsHT = s\HTfl
T-     mJhi      ] 

L (H P H    + R/a) J 

Introducing the definition 

a   - K/U P HT > 0, (S.1,'1) 

eguation (P..1.3) becomes 

// rs H
T
 = -—- (2.l.f) 

8   +  V 

For the optimal Kaiman filter, 8*1, and 

// p //T = -r-Y— rr.j.f) 1   +   0 

Forming the ration of (2.1.5) and (2.1.6), 

8R    . ULI = * + 8° >   1    s  >  1 (2 1?) 

Thus, the measure of performance, given by //PV for age-weighting, is 

bounded below by that for the optimal filter.    To obtain an upper bound, 

consider (2.1.S) in the limit M « -» ».    Employ L'Hospital's rule to find 
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Um   H P* HT * Um   -2£— = R (2,1,$) 
8   T   O 

0-KIO g-K» 

The values of HP HT are then bounded according to 

0 < —— < H P.S HT < R3  8  >  1 (S.2,0) 
1 + a —       k — 

for A: >  / (after the first observation). 

The variance of perfect measurements, HPlP, forms a useful common 

denominator for comparison amonq various algorithms.    Letting this quantity 

be denoted by r, the corresponding relationship with H may be found.    Again 

considering the case of scalar ouservations, equation (.•:. /..;'  is manipulated 

to give the following seguence: 

// P Z/7, = c = .-![// T Ur -HP HT(H T HT + - I'1 H P HT] 1 8 

€(H P H*)'1 = 8[1 - HP //T(7/ P HT + - )~1] 
3 

t + c(H P H7)'1 -= 8(H P HT + - )  - 8 HP HT 

a s 

s c + e(H P H7)'1 R m F a 

or 

m „fgfir: UR] 

This result is consistent with (S.1.9) as can be seen by solving (2,2.20) 

for e and noting the results as 8 -*■ 1 and s -> «>.    Note that n t * R, 3 + «,, 

and the estimate depends more and more upon the latest observations. 

Implementation of the standard age-weighting algorithm is straight- 

forward (Figure 2.1), and may be done using either equations (2.2,2) or 

(2.1.2). 
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k = k+1 

7y 

Given: 

B or e, k max 

I 
k = 1 

xk ' * Vi 

I 
k k-1 

I 
k ff' 

xk= x + K[ijk - Hx] 

I 
Pk=  (I - K H)  Pk 8 

No Sk = k    ^    ?** 

Figure 2.1    Age-Weighted Data Algorithm 
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2.2   Schmidt Suboptlmal Filter:    Scaling the Gain 

Schmidt (19) considers modifying the gain term directly using a 

scaling constant, b.   The state estimate Is then given by 

&k 
m *k * *> Ktbjt ' * *k] (2.2.2) 

and the corresponding error covariance can be found from 

i.mgmStms.-h X.ly, - H x.] = x. - b KAH x, + v, ] (r.i\: k        k        k        k k^k k'        k kl      k        k' 

Pk =  [l ~ h Kk H] l'k[l  ' b Kk H]T * b* K R KkT 

o i 

= F - b K H P - b P II7 KT + b2 K(H P ilT + F.) KT 

or 

p    • {J -   (P.b - b2) P   ^[H Pk HT + R]'1 H} f 

"roceedinq in a manner similar to that in section 2.1, Schmidt forms 

// P /l7 m II T iir -  (2l> - b?)  II P HT(H T llT + H)'1 H T llT 

Considering scalar measurements as before, Schmidt specifies Hi' u7 a 
A 

acceptable value, e, and subsequently solves for b, yielding 

b- 1 i% c(H P HT + R)  -  R II P HT ,„  ..   .. , 

(H P llT) 2 

for which real solutions exist when 

e>Ä r £££ ] = RII, 
[// P HT + R } 

and the positive sign in (2.2.5)  is taken to insure b ^ 2. 

The effects of various values of b may be seen readily by examining 

equation (2.2.3). 
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b = l Standard (optimum) Kaiman gain and error covariance update 

equation 

1 < b < 2       A smaller than optimum term Is subtracted from P   In forming 

the updated covariance, Pk 

b = 2 Pk = Pk 

b > 2 A positive term is added to P. 

Extending Schmidt's analysis, corresponding values of e are easily found to 

be 

lH P H1  + RJ 
for b = 2 

\    _HP
T
HT     1   <C<HPH* 

\_H P HT + R  J 
R I     _" h " I   < c < H P HT for 1 < b < 2 

c = H P HT for b = 2 

z > HP HT for b > 2 

Further, values for b and c may be found which yield HK * ;, thereby 

forcing the estimate to depend only upon the more recent observations.    In 

this case, 

b H K,   * b HP HT(H P HT + R)'1 < 1 
k — 

or 

H P^HT + R 
b< k_      T  

HPkHT 

Using (2.2.6) and (2.2.7), 

H P HT + R    >  2        t(H P HT + H)   -  R H P H1 

HP HT        ~' (HP HT)2 

one may solve for e to obtain 

c  < R 



& 

In vlnw of  {;.".('), (,,:.,,.'.,'<; requires  that 

—       7' u p. // 
k 

R + H P^HT 

k 

< Z  < R f2.S,9i 

or 

R H K <e <_R (2.2.10) 

For estimates based upon only the current observation, equality must hold in 

(2.2.8).    It may be recalled that this agrees with result obtained for the 

age-weighting algorithm. 

Implementation of this algorithm is straiqhtforward.    A slightly 

different approach involves using the fcllowing modified form of {:\:\:">: 

b = a. 
HP,   HT + R 

k  
—       T 

H p, r 
k 

(2,2,11 

where HK <_ a <_ 1.    The lower limit for a follows from the requirement that 

b > i.   When applied to the Kaiman gain, the following result is obtained: 

r S * * . a \H pf: R] 
I H P HT      J 

—     T 
P H P HT 

(U P 1}T + R)       HP HT 
a 

and the covariance update equation (2,2,3) becomes 

i- = T - [v.o. - (i + 
U P !lT 

- ; u- ] : 
// /■ // 

T 
(r.r. :, 

Suppose a ■ t/H. From the limits on a, the corresponding limits on t are 

seen to be those in f;?..';..";. Thus, e ■ / results in estimates based upon 

only the current observation. 

The gain scaling technique using a constant value of i can lead to 

some problems, and this will be shown specifically in Chapter 4. Another 

alternative method is to determine b  as 

i = 7 + 3 
R 

H P Hl 
0 < S < i 
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The limlU on f. correspond to the expected limit', far h discussed o.irluM-. 

In particular, 3 = f gives L> - / resulting in the optimal Kaiman filter; 

ß = 2 gives the value of b indicated by equality holding in fS.S.W, i.e., 

all information is obtained from the most recent observation.   Employing 

(2.2.24) In the gain and the error covariance update equation (2.2.3) gives 

the following: 

K' = b K 

=   (7  +     ß ^     ] P HT(ll P HT + R)'1 

II P II 

=  [P HT + ft li T llT/ll T llT]  (II P HT + H)'1 

it p ir H P H      (H P ii )2 (H r ir)- 

(S.S, W) 

P - {I -   [1 ^—^  1 P HT(H P HT + R)~l 11} P (S.S. ID 
(H P HT) 2 

Forming HPIl7 yields 

HpHT=(H PHT + 32 R) R (t^1$, 

H P H    + R 

It has been indicated by Schmidt (20) that this method of determininq r 

yields estimation results identical with his cdditive gain ttm algorithm 

discussed in the next section. 

The gain scaling technique for constant b or (9.2.14) to determine ' 

is diagrammed in Figure 2.2.    Figure 2.3 gives the logic flow for the modi- 

fied gain scaling algorithm using equations (2.2.12) - (2.2.1Z).   For this 

modified approach, it is possible that a value of c might be chosen which is 

initially less than the lower bound given by (2.2.9).    This is not generally 

desirable.    The philosophy here is to operate with the ordinary Kaiman filter 
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» 
Given: 

b or 3, k^ 

I 
i 

1 
k = 2 

k = k+1 

No 

ä 
X     =   •I'  X 

P.- ♦ P.   , ♦' 

yVo   ^. 

x = p //rrfl p //r -f R)'1 

i 
P.  =  [I -   (2b-b2)  K H] P 

k 

I 
x   =x + h K[y    - H x] 

-^M — r 

Figure 2.2    Schmidt Suboptimal  Filter:    Gain Scaling 
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L 

Yes 

I 
— T 

K   m   _     a 

i 

p. - ♦ p, ♦ 
k k 

No 

I 
K    = F HT[H F H7 + Rf1 

I 
d = 2 a - (1 + —~ )(<x)2 

HPH 

P        p_dP^ 
HPH 

p
k' 

(I - K H) P 

rs 

* 7 

k - k+J 

Figure 2.3   Modified Gain Sc-Jing Algorithm 
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equations, and when HPH7 = e, switch to the suboptimal modified gain scaling 

equations. 

2.3 Schmidt Suboptimal Filter; Additive Gain Term 

A second approach taken by Schmidt (19) is to add a judiciously chosen 

term, L%  to the optimal gain, K.    This approach is possible only for scalar 

observations. The suboptimal term is given as 

e^ = 3—T    
RH_    T  (2,$,!) 

so that the actual suboptimal gain is found as 

T — T        — ip _ 7 tf ft 
= P    H   [H P    tr  -h R]   ■L  -h  ß —  (2.3.2) 

* * (H H )   [H P,  H    + R] 
k 

If 3 is chosen as 

-     „T 

3 = 3' [^] 
then 

iiT 

H Hl 

If one considers the estimate of x with no a ptUoKi information, one obtains 

where // is the pseudo inverse (45, 82-89) of//. 

T // B 

Then (2.3.2)  is simply a linear combination of two gains: the optimal gain 

for all the observations, and the gain for no a ptUofU  information, given by 

the pseudo inverse, H . 
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The updated covarlance equation Is also modified.    Using (."..<.") to 

form the state estimate, 

xk = xk + Mklyk-H xk] (2. 3.3) 

and subsequently the estimate error, 

*k ' *k ' Mk[H *k * vk] (2'3-4) 

the error covarlance Is determined as 

E{xk xk} ' Pjc' (I - KB) Pk(I - M H)T + M R fiF 

= (I - M H) P - P HT ff + M(H P HT + R) Mr 

But since 

T r 
M(H P HT + R) =  (P HT + £ £-£-; ),    P    = (I - M H)  P    + B »—|   ff 

*'* " k HHT      (iSS) 

Thus the updated covarlance matrix Is of the same form as the optimal equation 

with the exception that the suboptimal gain, #, Is used, and an additional 

term Is added. An alternative form of (2.3.5) may be found as 

Pk - (I ~ K H) Pk + B2 R L H/(H HT) (2. 3.6) 

This Is the form derived by Schmidt. 

Reasonable limits for B are readily established by considering HM, 

formed using (2.3.2). 

H M * HP HT(H P HT + R)'1 + B R(H P HT + R)'1 

= (H P HT + B R) (R P RT + R)'1 (S, 3. 7) 

As before, for HH * 1,  the most recent observation drives the estimate. 

Hence using (2.3.7) 

H M < 1 ~> B <_ 1 

The lower limit on B  Is established heuristically by considering the fact 

that B < 0 decreases the optimal gain, an effect which counters the idea of 
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depending more on the recent observations.    Thus limits on ß are 

0 z.6 I1 ir.,,<,(i) 

For p. ^ 0, M = /C; for 3 = 7 only the current observation is used to determine 

the estimate. 

It is interesting to extend Schmidt's analysis, and find the relation- 

ship between b and 3.    Forming HPH   from equation (S,3,6)t 

H P HT = HP HT -(HP nT) 2(H P HT + R)'1 + 32  RZ(H P HT + R)'1 

Denoting c = HPHT, as in section 2.2, an expression for 3 may be found. 

t(H T nT + 10  =  (HP H7) (H P HT + R)  -   (II T' liT) 2 V- 32  .V2 

or 

v^ ,  Jz(H P HT + R)  - H P HT R .,    .   ,, 

ff2 

where the positive sign is taken in light of (S.S.S).    Now comparing this 

with the expression for b in section 2.2, b may be rewritten as 

b = 1 + &     J (S. 5.10) 
HPH 

Equation (2.3.20) is identical with (2.2.14), and therefore provides the 

link between the gain scaling and additive gain term algorithms.    It should 

be noted that this relationship is derived by forming HPHT, and then developing 

the equation based on this.    By examining equations (2.2.25), (P..3.2), 

(2.2.27), and (2.3.6) one will see that these gains and covariances differ 

by the presence or absence of the error covariance matrix in the suboptimal 

term.    The case where it is present, i.e., the suboptimal gain term is given 

as 

.    $ HP H1  

(U P HT) (H P HT + R) 



Is In fact more general.    This is true because when the suboptimal gain term 

is 

(H HT) (H P HT + R) 

any zero terms in H prevent contribution to the corresponding optimal Kaiman 

gain term. Usually this does not occur for the former case. 

Note that in deriving (2.3.10), when HPHT is formed for each instance, 

the differences in the suboptimal covariance terms disappear. Hence these 

differences do not occur in (2.3.10). 

Conditions for 3 may be established similar to those for b  in section 

2.2. In particular, 

3 = ö Standard (optimum) Kaiman gain and error covariance update 

equation 

0 < & < 
„ TT „r      A smaller than optimum term is subtracted from F,  in forming H P H r k 

D 
the updated covariance, p 

= H P H P    =P 
p          R k        k 

o s HPHT A positive term is added to P, 
p <     5— * 

Employing (2.3.8) and (2.3.9), limits may be found for c. 

ß  = Je(H P HT + R)   - H P HT R    <  1 

R2 

or, using the inequality, 

e<R (2.3.11) 

which is just the condition established in section 2.2. 

As in the previous section, real solutions require the radicand to 

be positive; i.e.. 
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— 7' 
H ii r ii 

" ill r if' 4 H) 

which is just the inequality (2*2,6), 

The implementation of this algorithm is given in Figure 2.4. 

2.4 Limited Memory Filter 

The philosophy behind the limited memory filter is similar to that 

of the suboptimal techniques presented in the previous sections. However, 

rather than weight the data in some arbitrary sense, limited memory filters 

"discard" old observations. 

Jazwinski (21) develops a limited memory which is suboptimal only in 

the sense that it does not take into account the information from all observa- 

tions in forming the state estimate. However, the filter equations 

developed are, in fact, optimal over the set of observations considered. 

In other words, for some subset of the total observations, the limited memory 

filter provides a linear, minimum variance, unbiased estimate of the state. 

Jazwinski's derivation applies to the general, nonlinear case. However, 

it requires assumption of the probability density function. He also shows 

that the linear limited memory filter may be derived from least squares con- 

siderations. Since concern here is with the linear problem, this approach 

is sufficient for our purposes. The derivation is duplicated here. 

Consider the estimate of the state at time t,  based on observations 
k 

through time t .    As defined in Chapter 1, this is denoted as i, i . The m r k\m 

least squares estimate of x at t   based on observations through time t.  is 

derived (5, 206) as follows:    Form the performance index, r'  , as 
A 

j. - *rx  - x , )T irl, (x  - x , ) + k m        m\m        m\m    m        m\m 

k 
*    L    (y. • H. x.r R'/ty. - H. x.) :.•'.-;..' ,Tf.*   "i       ii        J'I        ii 
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Given: 

Sj k max 

I 
k * 1 

k = k+1 

—2J-" 

I 
p.- ♦ p,  . ♦ 

I 
Mk =  [P HT + & R HT/(H HT)](H P HT + R)'i 

I 
*kmxk* Mk{h - H xk] 

I 
T 

P    =  (T - M H)  P + ß ^ A/2' 

No Yes 

Figure 2.4   Schmidt Suboptimal Filter: 

Additive Gain Term 



Kecalliruj that ./:.  - *.      x , k k,m    m 

k k        k\m        k,m    m\m    k,m 

65 

* *£ '*> - '* **■* '*' "i^ H.  ♦,   .   x.) 
i    i,k    k 

/ f     4    ri I 

Further, define 

Wi 

'm+2 

and 

l^k    J 

CJ 

n-1 

f 
LStL 

Then, 

H = 

H        * 
mtl    m+l,k 

H * 
/n+2    m+2 tk 

L  * 

i 1 
1 -i   • ID   *      I 
Fir ' 

J 

,T ^-i 
^ - *^ - ^iJ Py\J*„ - K\J* *(y - » V  f   ^ - ff »J ,.   _   ;/   ^.   l*   Li  m*tZ 

k\m        k\m    k        k\m n 4 .:' 

Next take the gradient of J   with respect to .r , and set it equal to zero. 

6e7.   = P'-f   (*.' &.\   )   -HTR '1(U - H Xj   m 0 
k        k\m   k        k\m * k ( ö.».r 

Solving for x    s Ä ■   we obtain, 

Kx* ■ t^Z"!    +HT R '1 H]'1 [S* R'1 y +P'\1 x, ,  ] k\k k\m '       l » Jt|m    Jt|mJ 

or 

«»(»•"»iX^''?*^'»!-' rr.^'.bV 
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The fact that /', i, ■ [f'i   + //' H 'l Ti]'1 follows from equation fJ.S.äj. 
k\k k\m 

Notice that If there Is no a pfUo^U Information about x, then ?"f   ■ o 
k k \in 

and (2.4.6)  reduces to the standard weighted least squares algorithm. In 

this case, letting N = k - mt equation (2.4.6)  Is used to obtain * 

xk\(N) 

or 

[H    H    X H]      H1 R    * y 

-^i/«. "T R'1 y '•,.^ " Xk\(N)   =  ' k\(N) 

Now combining equations  (2.4.6) and (2.4.?) one obtains the following 

sequence: 

*k\k = P/c|*[P*jw  *k\m  * rÄJ/n *k\m] 

P
k\k Xk\k = Pk\(N)  *k\(N)  + Pk\m *k\m 

Bk | (N)  - Pk | (N) V'kik *k \k - PÄ |m *k |J {*'4- *> 

with 

k\(N)        l k\k        klm1 

The limited memory filter equations described above are obviously 

more complex to Implement than the previously presented filtering algorithms. 

Essentially two Kaiman sequences are required to be run for each "batch" of 

N observations, and three matrix Inverses are required every .V observations. 

Further, the limited memory filter estimate Is obtained only every :.' 

* £. i ,..x  is the state estimate at t,  based on observations to t, , less k I (N) A k 

those to t  ,  i.e., on the batch of the last N = k - m observations.  The 
m 

same meaning applies to the error covarlance, Pk\,N)- 
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observations.    This number may be Increased, but only at the expense of a 

larger number of Inverses of P. K, PU-» and p
k\(N)- 

It Is possible to modify Jazwlnskl's algorithm In order to eliminate 

one of the matrix Inversions.   By factoring out Pkikt equation (2.4.9) may 

be written as 

pk\m = [I - pk\k f'kU'1 p
k\k 

(s-4':0) 

Also, solving (2.4.9)  for ^Zu and substituting Into (2.4.8)  yields 

k\(N) k\k        k\(N)     k\m'^ k\k k\m' 

Thus the Inversion of p. .    has been eliminated, and (:].4. lo) and C". /. /y> are 
k\k 

the equations to be employed. It Is, of course, necessary to obtain a\. and 
n   I /C 

hence p ,    Is required. 

The limited memory filter Is Implemented as a sequential estimator. 

Figure 2.5 diagrams the modified procedure which uses (2.4.10)  and (2,4,2V. 

The Kaiman filter equations are run from k = 0 to k = m ^ ,v,  processing obser- 

vations and obtaining estimates in the usual manner. This represents an 

initialization phase. The values of p . and x  . are stored. The Kaiman 
m|m     m(m 

equations are then run from k * m to k * m + N,  a^o in the usual manner, and 

the state transition matrix «t    is obtained using * ^  = *    , $    ,    ■ 
n&N,m *    k+2,k        k+2,k+l     k+l,k 

The predicted values, p  , and x  . are found using 4»    and equations 

(2.4.10)  and (2.4.11)  applied to obtain £ .,. , and p .,,/,,. The process 
nH-N | (N)        _,    m+N \ (S) 

is then repeated (except for the Initialization phase) using the limited 

memory filter outputs as the inputs for the next cycle (from "i = 2A? to m • J.v). 

It appears from examination of the equations for finding * , 

(2.4.9) or (2.4.11) t that numerical problems could be encountefd, pa ticularly 

where short word length computers must be used.    Equations (2.4.9) and 
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I 
m = k 

I 

Save 

X     i m \m y 
P   l *     / k m m * K 

= N 

i liven: 

X
Q* 

po 
k      , N max 

I 
k = 0,m = N 

k = k+1 

I 
x   — 
k 

*km 

Kkm 

Xk\k 

Jdji. 

Xk\k-1 "  * Vl|*-J 

P. i.    . = * P.    ,|.    ,  * k\k-l k-l\k-l 

Pk HT(H PkH
T + Ft)'1 

= xk + K(yk - H xk) 

m  (I ~  K H)  P 

Yen 

|m        k,m    m\m      k,m 

|m        k,m    m\m     k,m 

(N, =(r-Pk\kPk\m'
lrlpk\k 

(N) = Xk\k't' Pk\(N)   Pk\m    (*k\k A:|m 

k\k      xk\(N)   *    r*|jlc        *| (N) 

Figure 2.5   Modified Limited Memory Filter 
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(P..4. JO) require computation of the Inverse of the difference of the Inverses 

of two matrices of similar values. 

It Is possible to offset this state of affairs.   An alternative due 

to Jazwinski (5, 258), reduces the number of p-matrix Inversions to one by 

working directly with the Inverses only.    Equation (1.3.9) from section 1.3 

provides the necessary recursion relation.    Dropping the w-subscripts from 

(1.3.9) one obtains at time t , based on measurements to t     , 

k\k-l k,k~l    k-l\k-l    k,k-l k       k k 

For prediction only, the information term, HT ff1 H, for time t is ignored. 

Thus at t., based on measurements to t , 
A m 

Pjl1 = *ZT   P']    K1 (3.4,13) k\m        k,m    m\m    k,m 

This, of course, requires taking the inverse of $. If * Is symplectic*, its 

Inverse is readily obtained. Alternatively, Instead of integrating $ » 4 $, 

the Inverse may be found by direct integration, h'1  is found as follows: 

«T1 * = J 

1******0 

$ - _$ ^ 

It should be apparent that all the previously presented algorithms 

may be Implemented such that x and P are obtained by integrating their 

* An even-dimensioned nwtrix,  $,  is said to be symplectic if 

♦   J $ = J, where J = ■[".] 
Post-multiplying by $  and pre-multiplying by J  gives 

-J      r 
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appropriate differential equations. Similarly, differential equations may 

be obtained for the prediction and update of P'1.    First, 

p'1 P = I 

P*P4'P*P*0 

•-2 -i   •     -i p * m      -P * P P  x 

and using equation (1.2.39) with Q = 0* one obtains for the prediction, 

p'irt; = -p"irt; A<t) - AT(t) p'1(t) (r.4.i-n 

The differential equation for updating P~   may be found by applying a limiting 

process to (2.4.i2) similar to that used in obtaining equation (1.2.39). 

First, 

P~1(T)   m  (f"7"'!,    t)   P'1(t)   fl(tt   t)   + HT(X)   R'1(X)   H(X) 

= [♦"rrt, t) + rTrt, t) &t * ...] p~1(t) 

• [*'JrtJ t) + '$'T(f, t) ht + ...] + H
T

(T) R'^X) IKX) 

Carrying out the indicated multiplication, 

P'^x)  m P'1^)  - AT(t)  lrl(t)  M - P~1(t)  A(t)   +  ...   + llT(x)   R'1(x)   H(X) 

Performing the limiting process requires subtracting P~ (t) from both sides, 

and dividing by ht.    However, when taking the limit as At -► 0 the information 

term becomes infinite implying that the observations are perfect (no observa- 

tion noise).    This Is inconsistent with the postulated observation process, 

hence we replace* .^Ct; with R(x)/M.    With this change, the limiting process 

is applied to obtain 

P'1(t)  = -AT(t)  P~1(t)  - P'1 A(t)  + HT(t)  R'1(t)  H(t) (2,-1.U) 

*  Further rationale and a discussion of a white noise process as the 

limit of a white noise sequence is given in (5, 83-84). 
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with 

p-1(0) = P^1 

When the Information term, //r /?"   //, is added at discrete times, the approach 

used is to predict to t = t   using (2.4.14) and then add the information 

terms at t t i.e., 

/c|>c-i ^ 
/c-2 

Reverting to the notation associated with the filter, there results 

pl\   -   "f   IP"1^!* ^ >t^J * >»Tf*J P^ait )\ dt (:].4.I7) k\m J. ' m ' m 

. k-1   I    tj+l        . _ . 

v- ffr^i; R'
1
(C+I) tKj+v 

with 

P'1^   |ö; = Ö (2.4. IS) 

As before, it is not necessary to compute P".    (although Pi    is required) 

since equation (2.4.11) provides the limited memory estimate.    Thus only one 

P-matrix inversion is required:    that of P~\, . to obtain p, >,„,.   However, 
k\(N) k\ (N) 

the inverse of the state transition matrix is required, or else (2.i.l?)  and 

(2.4.18)  must be used. If *  cannot be easily obtained, the advantage of 

this approach is somewhat decreased. The implementation of the alternate 

limited memory filter is diagramed in Figure 2.6. 
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K^ = P^ HT(H P,  HT + R)'1 

k        k k 
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Äjfc|* ^^jw1    p*|jt"" rjt|rw; 

ri(|ure ?.b    Altertidt« Mini tod Memory I i I UM1 



73 

2.5   Summary 

In this chapter the non-adaptive error compensation algorithms of 

age-weighting, gain-scaling, additive gain term, and limited memory filter- 

ing have been presented.    Some of the original algorithms have been extended 

to provide alternate forms, and relationships derived showing certain 

equivalences among the first three. 

Equations (2.1.1) give the basic age-weighting algorithm as conceived 

by Tarn and Zaborsky, with Fagin's form given by (:',. I. V. 

Schmidt's gain-scaling algorithm is given by equations (V.,'Z.l) and 

(2,2.3),    The relationship between the scaling factor, £>, and e i=HUiT) is 

given by (2.2.6).    Modifications of the algorithm are given by the alternate 

equations for determining 2>, equations (2.2.11) and (2.2.14). 

The second filter design of Schmidt's adds a judiciously selected 

term to the optimal gain, K,    The resulting gain and covariance are given by 

equations (2.2.2) and (2.3.5) or (2.3.6).    The weighting factor, ß, associated 

with the additional gain term is shown to be related to e by equation (r.,<.*■*, 

and related to b by (2.3.7). 

Jazwinski's limited memory filter is given by equations (5.4.s) and 

(2.4.9) together with the Kaiman filtering algorithm.    A modification to the 

basic limited memory filter eliminates one of the three matrix inverses, and 

is given by (2.4.10) and (2.4.11).    An alternate form employs the inverse of 

the error covariance directly, thereby reducing the number of matrix inverses 

to one, and is particularly advantageous if the state transition matrix is 

symplectic. 

In the next chapter we turn our attention to adaptive techniques, 

both optimal and suboptimal. 



Chapter 3 

ADAPTIVE METHODS 

3.1   Estimating the State Noise Covariance 

When modeling errors are assumed to be represented as purely random, 

uncorrelated noise, it is often a problem to determine the appropriate value 

of Qt the state noise covariance.    As indicated in section 1.5, there is a 

preponderance of adaptive techniques which may be used to estimate the 

appropriate noise covariances.    Most of these, particularly Bayesian and 

maximum lUelihood approaches, have been thoroughly investigated (25), (26), 

(27), (28).    In this section an adaptive method due to Jazwinski is presented 

which offers a reasonably simple and easily implemented scheme for adaptively 

estimating the state noise covariance matrix.    While the algorithm is derived 

using a maximum likelihood approach, an interesting property is that in a 

simplified form it becomes just the covariance matching technique. 

Consider the following predicted residuals, called the innovations (23) 

For simplicity, r   is assumed to be restricted to the scalar case.    Fonning 

the covariance of r, one obtains 
k 

since E{x   o T} = 0.    F is given by equation (J,2,17).    It can be shown (23) 

that the innovations given by (c.l.l)  are uncorrelated, i.e.. 

74 
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and that ?. is a Gaussian white noise sequence. Thus the joint probability 

density function of the innovations sequence ?*.,• ^2» •"• ^k+N ^s 

where 

p'W = ^r [Vj p/c+J- "Ij * R*i] '* 

j-J—> 11 007? 

Suppose during operation of the filter equations (say. Algorithm I)  that 

t = tk% and the predicted values Pk+1 and xk+1 are to be computed.    For <V 

predicted residuals the object is to find Q.»    (the state noise covariance at 

t   based on N innovations) such that (3.1.3) is maximized.    In other words, 

Q  iN is that value of Q which yields the most likely innovations sequence 

^k+i* I'k+21 '" rk+N '   Tt,us very ^ar9e values 0^ Ö imply less likely 

sequences of the Innovations. 

Consider the maximization of (3.1.3) for the case of one residual. 

First, the likelihood function is chosen as the joint density (3.1.4), and 

its logarithm is taken to facilitate the maximization (since p and its 

logarithm are monotonic, extremizing In p extremizes p). 

J.b, p(7M) = ln(^)- -  U, (Hktl Pktl Bit + W 

(-^h—) 
V Hk+i pk+i 

Hk+i * Fk+i 1 (3.1.5) 

Taking the variation with respect to Q gives 

2        .      r2 I   „   t  rr „T 6J =   { - V =—r +  *  -z  \ H & P H 
i (H P HT + R) [H P HT + R]2    \ 

and assuming H&PHT > 0,  the necessary condition 6J = 0 yields the equation 
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7': - H T> UT -  li = 0 (2.1.7) 

The sufficient condition for a maximum is 6V < 0% hence, 

{. 2 7« * 

(H P HT + R) 2       [// P HT + R]3 
< 0 

or 

"2    .     .      r.,   -   „r r* > h [H P H   + R] (i>. 

which is met if (3.1.7) holds.    Next, using (l,S.17)t 

k+1    k+l,k  'Jk|j    k+l.k    k+1 

/c+i *+J    k+l,k    k    k+l,k    k+1 k+1 

This equation is simply the equation for the covariance matching approach to 

estimating Q based on one residual, r     .    In evaluating (3,1.9) the actual 

residual given by equation (3.1.1) is used.    Further, for Q to be non-negative 

definite, the right hand side must be positive.    Otherwise Q  ,    is set to 

zero.    Unfortunately, HT Is usually not invertable, hence, resort must be 

made to a pseudo-inverse or some other technique.    Defining, for convenience, 

A E // r 

the pseudo inverse of A (45, 82-89) 

AAr 

yields 

Qk\l=Ji  &Ll - H  * Pk *T HT -  R] -~ (3.1.10) 
*li      AAi      **■* * AAr 

Equation (3.1.10)  does not provide a unique solution for Q.    However, in the 

special case where ^ is a scalar, say q,  one does obtain a unique solution: 

_r2 - H SP $T HT - R /7 7 77) qk\l       T  (3,1.11) 
*\1 A Ar 
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Here again we require the right hand side to be non-negative.    A disadvantage 

is that one residual is hardly a sound statistical sample upon which to base 

an estimate of Q.    A pat hoc modification found to be effective is to employ 

the sample mean of the square of N predicted residuals, 

N-l _ 

in place of J*.
2
,- This requires storing N observations, which would not be 

so bad in itself, but the state estimate then either periodically lags the 

observations by N points, or else the last N estimates must be reprocessed. 

Either way the result is the same, but the former is computationally more 

efficient since the state estimate is obtained only once for each time point. 

Another modification which is computationally easier to employ and 

which does not severly degrade the accuracy of the algorithm is to use the 

sample mean of the history of the last N predicted residuals squared. In 

this case, 

ff-J   _ 

N      N     f-'/1      m-j 
,7=0 

In this approach the filter equations are operated for the first m observa- 

tions, storing the predicted residual at each time point, t      .    For each 

m <_ N, the sample mean, 

n-I 
Y -- T,     V 2 ., m = 1,   2,   ...,  N (3,1,14) 

,]=0 

is formed and used in the estimation of Q.    For each m ^ N a  new squared 

residual is added, and the oldest one is discarded. In this way a "moving 

window" viewing the most recent N  squared residuals is maintained. This 

modified approach is diagrammed in Figure 3.1. 
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k        k k 
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Figure 3.1   Adaptive Estimation of Q 
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Note that both of the approaches reduce to the optimal case of one 

predicted residual when N = 1.    In this case (x.l.JPJ and (z.un) are 

identical. 

Further modifications are possible to improve the single residual 

estimator (5, 314); however, these tend to become rather complex.    Also, 

when more than one residual is used in (2.1.3), the resulting set of equations 

to be solved is nonlinear.    In fact, they are basically the types of equations 

found in other adaptive filtering methods (26), (28). 

3.2   Adaptive Estimation of Suboptimal Filter Parameters 

Since the suboptimal methods of Chapter 2 effectively alter the 

state error covariance, it is reasonable to assume that the adaptive algorithm 

of section 3.1 can be applied to estimate the various suboptimal filter para- 

meters.    In each case, relating the parameters to the state noise covariance 

provides the necessary link to allow the adaptive estimation of the 

parameters. 

For the data age-weighting technique, we can equate the standard 

error covariance prediction equation (2.8,17) to the age-weighted error 

covariance prediction equation (with Q = o)'. 

P    , . ♦ p   4r * r Q, vT « $ e P $T (.-•..". '' k+l k k 

Using this relation in (3.1.7)  gives 

k+l        k+l k k+l k+l 

or solving for the scalar, s, 

H * p r ü 

Again the pobt hot modification is imde      I y   given by (3,1.1V) or ,.-. r.:.-' 
N 

is utilized. 



Ml» 

y   - '•' jt  f,     ., 

// «l- /' ♦' // 

Since 0 is required to be greater than or equal to ;, (3.2.3) may not be 

employed until 

N — 

To adaptively estimate the qain scaling parameter, b, in section 2.2, 

the optimal and suboptimal gain expressions are equated. 

b F' HT(H P' HT + R)'1 = (P' + Q')  HT(U P' HT + H Q' HT + Ix)'1        . „   cl 

where P' ± t p t7 and Q' ± T Q TT.    Solving for // Q' HT one obtains, after 

premultiplying by tf, 

b H P' HT(H P' HT + H Q' HT + R)  = H(P' + Q') HT(H P HT + R) 

HQ'HT = HTQTTHT= (b-1) H P' HT(H P' HT . R) ^^ 
k [R -   (b-1)  H P' HT] 

Substituting into equation (t.1.9), 

(b-1) H P' HT(H P' HT + H) „ 0, UT      _ 
 r = yN ' H P   H    ' h 

R -  (b-1) H P' HT N 

which, solved for b, yields 

CY« - W  [H <b P Q7, HT + R] 
b = — ——     >1 (3.2.7) 

H i p r H 

where the inequality on the right is a condition on b established in section 

2.2, Also it is noted that equation (3.2.7) requires Y„ > ^» a condition on 

its use. 

The modification (2.2.11) to the qain scaling technique may be formu- 

lated similarly to adaptively estimate its associated parameter, a. Equating 

(2.2.12) with the gain equation gives 
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F-   H . a   = (P' + Q') HT(H P' HT + H Q' HT + R)'1 (3. 2. 8} 
H P' HT 

which, when premultiplled by S and solved for H Q' ^r yields 

Substituting into (3.1.9)  and solving for a yields the simple equation, 

o- 1 - ff/Y., i .<..'\ (V1 
N 

Conditions on a require that (S.u..10) produce an a>_H K, 

For the modification given by (2,2,14) the appropriate adaptive form 

is similarly found.    Equating the gains, 

(P' + Q")  HT(H P' HT + H Q' H7" + R)'1 = 

(P' HT + $ R P HT/H P' HT)   (H P' HT + h)'1 (3.2. 22) 

premultiplyinq by B and solving for // Q" H
T
 gives 

// f UT(U P' llT + H)  + H Q' HT(H P' HT + H)   = 

II P' HT(H P' HT + R) + H P' UT H Q' HT + 3 H(H P' HT + H)  + & R 11 .?' HT 

H Q' HT R(l ~ 3;  =3 MH P' llT + R) 

HQ'IIT.HVQTTHT- Wfj'J'lf V 

(As before, P' = «t P / and $' = r (? rr.)    Substituting into (3.1.P) and 

solving for 3 one obtains 

ß=7_     (H P' HT + R) _  ; _   [H  SP $T HT + /.'] (!,Z,1?} 

with the conditions on 0 that ö < 3 < 1 and hence 
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Finally we note that for the additive gain term technique, a similar 

procedure to determine the adaptive form yields results identical with 

equation  (3.2.1PJ.    This is true because equating gains and premultiplying 

by // gives ff ß /? iF/H HT - 0 ff, and from then on the equations are identical. 

The previously discussed suboptimal adaptive algorithms are easily 

implemented in accordance with Figures 3.2, 3.3, and 3.4.    Either of the 

predicted residual sample means discussed in section 3.1 may be used; hence 

their computation is not shown in these figures. 

3.3    Estimation of Auto-Correlated Model Errors 

One of the most effective and useful ways to compensate for dynamic 

modeling errors is to estimate such biases directly, including them as part 

of the state vector.    In general, model errors are not purely random, but have 

time correlated components as well.    Thus, by assuming some functional  form 

for these components, their values may be estimated from observation point 

to observation point. 

There are several advantages in this approach.    First, of course, is 

that the estimation accuracy is improved since model errors are compensated. 

Second, insight into the nature of the modeling errors is obtained as an 

additional benefit, and through off-line data analysis, the form of the 

dynamic model can be refined for future use.    Third, since the state vector 

is simply augmented, the estimation equations remain essentially unchanged 

from the classical Kaiman sequential  form.    Of course, lengthening the state 

vector increases the computational  load; however, this is not often a 

detriment considering the state of present computer technology. 

A further motivation for the adaptive estimation of model errors 

should be noted.    It is true that small bounded errors may be effectively 
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compensated (as long as filter operation is within the range of linearity 

of the system dynamics) by using a "state noise" approach, i.e., simply 

determining the ©-matrix.   However, for large or unbounded errors such 

an approach is usually impractical if not impossible.   Thus extracting as 

much of the auto-correlated error as possible from the model uncertainties 

results in a smaller, purely random component.    Consequently, the associated 

state noise covariance matrix, Q, is less, and since this establishes a 

minimum upon the state error covariance matrix, a smaller Q offers greater 

confidence in the state estimate. 

The question concerning the type of functions to be used in modeling 

the correlated errors is really an open one.   The answer depends upon the 

application where two important considerations are the filter operating time 

and the sampling interval (more will be said of this later).   Approaches have 

included the use of simple power series in time, Tchebycheff polynomials, and 

Fourier series.    For our purposes, the term structure is introduced to mean 

the functional form of the correlated model errors.*   Thus the structure may 

be line.r or nonlinear according to the form of the model error approximating 

functions.    Incidentally, the case of purely random errors is denoted here 

as a null structure — no time correlated components.    Usually, the assumed 

error form is some linear combination of a linear or nonlinear structure and 

a null structure, i.e., of a time correlated component and a purely random 

component. 

The incorporation of model error structures into the estimation process 

can occur in basically one of two explicit ways.    Denoting the vector of 

* Lalnlotls  (38) uses structure to mean the dimensionality of the state 
vector.    Our definition may be seen to Include this aspect. 



error components by e, one can write a differential form, 

e(t) = g(et aa   t) + h(t) u (t) 

a(t)  = 0 (Z.ZA) 

or an algebraic form, eit) • Gie^ a, t) + H(t) v (t) with the accompanying 

differential form 

e0(t) = 0 

a(t)  = 0 (.-. c. t' 

where a is a parameter vector of constants, and e   is the initial condition 

vector, e(tj% and w   is state noise with covariance Mt)*    u (t) is zero 
0 6 e 

mean, uncorrelated noise with covariance* E{u (t) u T(a)} = Q (t) 6(t - a). 
e e e 

Which form is used is of no particular importance in the subsequent discussion, 

If a closed form solution, or even an approximate solution, is available for 

the expected value of (3.2.2),  an easier implementation may be possible since 

the corresponding components of the state transition matrix are simply the 

identity matrix of appropriate dimension. If no explicit solution of E{e} 

is available, clearly (z.s.l)  is to be used. Further, if g(et a, t)  is 

nonlinear in e  and a, an appropriate linearization must be made in order to 

use the estimation equations described in section 1.2. 

Since the model errors are estimated as part of the state vector, each 

time the estimate, SftJ, is obtained the model is updated. Thus if 

s = f(x$  e, t)  is the subvector of the complete state vector time derivative. 

* &(t - s)  Is ehe Dlrac delta. Although w    is not dlfferentlable In 
e 

the classical sense,  u    can be thought of as the "derivative" of w  ,  and e e 

hence as an uncorrelated random variable with infinite covariance.    A 

discussion of stochastic calculus is given in (5). 
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x(t)t  for which the errors are to be ■Included, then t ■ f(£» i, t)  represents 

the updated portion of the model. 

Note that In (3.3.V  or (3.3.2)  the adaptive nature of the algorithm 

lies In the fact that the constant parameter vector, a. Is estimated as well. 

Hence, If a reasonably accurate structure Is assumed, subsequent estimation 

provides accurate values of a.   There Is a danger In using the forms as 

presented In (3.3.1)  and (3.3.2).    As the estimation process Is carried out, 

the a-vector converges to a constant value with the corresponding error co- 

variance and hence gain terms approaching zero. Thus If the assumed structure 

is not an accurate approximation over the filter operating period, the eventual 

"hardening" of the structure as a takes on its constant value may, and usually 

will, produce divergence of the estimate. Since one either does not really 

know the error structure or else it is computationally too complex. It Is 

usually a good idea to model the a-vector with a null structure, i.e., as a 

random parameter: 

a(t) = u    .    S{u ] = 0, E{u (t) u T(':)}  = Q (t) 6(f  - TJ      (3.*,*) a * a '        a a a 

This keeps the error covariance from vanishing, and the gain will remain at 

some significant non-zero level such that the value of a(t)  is changed to 

allow the assumed structure to conform more accurately to the actual model 

errors. 

Before discussing some specific examples of the structures used in 

the investigation, it will be advantageous to specifically define the error 

vector, e (dimensioned r), and parameter vector, a (dimensioned «), with 

regard to the previously mentioned forms.    The differential approach is 

selected so that 

e(t) = g(et a,   t) + h(t) ujt) 

a(t) - ujt) r.c. r 



We define the random variable 

uTft) = [ue(t):ua(i)] 

with statistics 

VbUt) \ = 0,   Hiuit)   N  (*)]  - 1i(tl    ''(I   -  ft 

For the cases where the algebraic fonn Is to be employed, . 0(   '   Is simply 

Included In the parameter vector, .J .    The form (t.S.-!)  will be used as a 

general reference In the sequel, with the appropriate modifications for 

e (t)  beinq understood.    Finally, the Implementation is shown in Fiqutes 

1.1 and 1.2 with the modification that the state vector includes the compon- 

ents e and a; i.e.; 

x(t)  ia redefined to he 

'x(t) 

e(t) 

a(t)J 

(S.t.S) 

where the x(t) on the right is the original state vector. 

A Simple Linear Structure.    One of the simplest model error structures 

is a linear function of time. 

e(t) = t?    -hob (S. ?. c) 

where 

u. 
0 0 

Hence, 

a(t) = 
u 

• • • 
u. 

u (t) « u(t) (3.3.7) 

and 



t'(t) - alt /ji .f. 
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r 
IL.r. (9,9.$) 

Note that without the presence of state noise, u   and M , the coefficient 

terms, o   and <? , will take on nonvarylnq values, and the resulting "hardened" 

linear structure will probably not represent the model errors very well 

(unless, of course, the error actually ib linear).    The presence of the 

state noise keeps the gain from vanishing, and on the average (9,9,0) should 

approximate the model errors fairly well over a short Interval. 

Further discussion and applications of this model are given In 

Chapters 4 and 5. 

The Ornsteln-Uhlenbeck Stochastic Process.    Another simple structure 

Is that Introduced by Ornsteln and Uhlenbeck as a model to describe the 

velocity of a particle undergoing a Brownian motion (40, 516).    This model 

has been used successfully by Ingram (32), Tapley and Ingram (41), and 

Tapley and Hagar (34), (35), In orbit determination studies.    The Ornsteln- 

Uhlenbeck process obeys a simple linear, first order differential equation 

(Langevin's equation) of the following type: 

la) ♦ r^ctg t(t) - H (t) (.<..<.."' 

where* a is a vector of constant parameters and n ft)  is Gaussian white noise. 

The process is stationary, unbiased, and, by solution of (3,9,9)» is expo- 

nentially correlated in time.    Further discussions of the properties of this 

process are given in (5, 70-74) and (40, 516-524).    For our purposes 

application to adaptive model error compensation gives 

* The notation  ["a J   Implies a diagonal matrix whose elements are the 

components of the vector,  a. 
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e(t) = c(t) = -f-ot J t(t) + M (t) 

a(t) m (x(t) = u (t) 
01 

u(t) 

a 

(3.3.10) 

Further discussion and applications of this model are given in Chapters 4 

and 5. 

Harmonically Bound Motion.    If a particle undergoing Brownian motion 

is suddenly subjected to a displacement-proportional force, the equation of 

motion is simply that of a randomly forced harmonic oscillator (40, 524-525): 

c(t) -^ r« j l(t) ^ t^ß j i.(t) = u (t) (t.t.iD 

where a and ß are constant parameter vectors, and N (t) is Gaussian white 

noise.    This process is stationary, unbiased, and has autocorrelation properties 

dependent upon the signs of fa J and ["3 J-    This equation has been employed 

successfully as a model error compensation structure in low thrust space 

vehicle navigation by Tapley and Hagar, (34) and (35).    Application of this 

structure to adaptive error compensation gives 

e(t) = 

a(t) ' 

z(t) 
• •  • • 

OLd) 
• • • • 

set; 

r     0    n 

r)(t) 

raj T\(t) -  r 3 J z(t) + H (t) 

u (t) a 

yt; 
= u  (t) a 

u(t) 

Uri(t)   - (3.3.22) 

Further discussion and applications of this model are given in Chapters 4 

and 5. 
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3.4   Linear Transformation of the Ornstein-Uhlenbeck Process 

The model error forms presented In the last section were chosen In 

an apparently arbitrary fashion.    In this section, a unifying derivation is 

presented from which each of the previous models can be obtained under appro- 

priate assumptions.   The general result is a representation shown to be 

equivalent to an exponential multiplying a Fourier series. 

Consider the Ornstein-Uhlenbeck process of equation (z.3.9).    Let 

c(t} be a (21 + i;-vector related to the r-vector, c(t)t by a constant 

r * (21 + i) matrix, C', whose values may be complex. 

e(t) = C' c(t) (3.4.1) 

Further, let ed) satisfy the differential equation (3.3..a).    For the ./-th 

component of e(t), 

21+1 
e.(t) = E     <    e    ft) 

21+1 y* 
JT     <?' [e (t ) exp( -a   t) +   f       ext'( -a   §} u (e) da] 

m=l 

21+1 

I ff,       jm    m   0       r        m w1 

where the a   are also allowed to be complex.    Taking the expected value, the 
in 

second term in brackets vanishes.   By absorbing the t(tJ into the o* , one 
o jm 

then obtains 

21+1 
E{ejt)) z e*(t) =   T,     a,   exp( -ex    t) (3.4.3) 

with oJ   = a'   e (0).    This is the general form of the transformation.   With 
jm        jm    m 

a,   and a   complex, the only restriction is that c .*(t) is usually required 
jm m j 

to be real in order to represent real model errors.    If a   is further 
m 

restricted to be of the form 
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where i ■ /^T, and If the limits on the summation are changed to run from 

-I to +lt (3.4.2) becomes 

i.*(t) » exp( -p. t)    5Z    o.   exp( - i m u. 
3 ^      -Til   > i 

t; (S.4.5) 

With c.   of the form jm 

lo      2 

'jm 

e.   - t r. jm jm 

0   „JE iü 
jm 2 

m > 0 

m < 0 

then equation (3.4.6) can be written as 

I 
e/(t) ■ ejcpf - pt)   T*   {a,    cos^m w. t/* ♦ r.    st«('m w. t^}        (3.4.6) 

1 1      r**0     jm j jm j 

where use has been made of the definitions 

oo8 (j) ■ [expd $) + exp(- i $)]/2, sin $ = [expd $J - exp(- i $)]/2i 

Thus under the foregoing restrictions, the process reduces to an exponential 

multiplying a truncated Fourier series.   Some special cases are now considered 

which yield the models of section 3.3. 

Case 1.    Let I = /, p   = 0% and using the series expansion for otn and 

(fan through the first order, (z.4.6) becomes 

e*(l;) =n.    + r., tu. t fV.-;.i}) 
J Ji       ]i   J 

which becomes the linear form (2.3.6) upon making the Identifications 

Oo  '8ji'   aos 

10 

^rO' 

*ii = rn "J '  c'i = 
u 

0   ,   . L   r J J 
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Case 2.   Let I = 0% but retain the exponential form.    Then 'z.^.tj 

gl ves 

e*(t) ' B.    exp( -p.    t) (3.4.8) 

which Is the solution to the differential equation 

e*(t) =   -p   e .*(t) 

This Is obviously of the form of the mean of (t.t.ü) with 

Case 3.    Let 7 = /, and set .'?     = 0.    Then (i>.4.P) becomes 

e*(t) = exp( -p.  Din .. (•(><? a),  f + P.. Bin u).  t] (•■'.-/..'U 

which Is the solution to the harmonic oscillator 

e*(t) -f 2p. e*(t)  +  (p.*  - w.7) e*(t) » 0 

Making the identifications 

the result is of the form of the mean of (i.A. ID. 

It should be apparent that more complex structures can be obtained 

easily from (3.4.6).    For example, without restricting e     to be zero, the 

resulting form of (3.4.6) with 7 =7 satisfies the nonhomogeneous differential 

equation, 

e*(t) + p. e*(t) + a).2 e*(t) + w.2 s.^ exp( -p . t) = 0 

3.5   Structural Adaptation 

With the general form (3.4.6) established as being capable of repre- 

senting a number of different functions, it is possible, at least in theory, 

to adaot structurally to a close approximation of the dynamic model errors. 

By defining the vector of model errors and parameters. 
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z(t) 

9JU 

e (t) 
m 

PjftJ 

w (t) 
/n 

and selecting ■ to be large enough (based on the degree of sophistication of 

the a pfiioxi dynamic model), the filtering equations (Algorithms I or II, 

Chapter 1) will produce values for the p. and w. which will result in an 

approximation, <?., to the true structure of the model error?.    The obvious 

disadvantage is in the implementation:   a large n produces a very significant 

computational load.    Thus the flexibility for structural adaptation, as 

offered by a form such as (3.4.6), Is partially offset by the need to exercise 

parexic judgment in selecting a value of m. 

3.6   A Sequential State Noise Covariance Estimator 

In this section we return to the problem of estimating the state noise 

covariance matrix.    A new approach is taken, although the technique is simply 

the formulation of a Kaiman filter algorithm applied to a vector whose 

elements are those of the state noise covariance matrix, f.    With this ob- 

jective in mind, once we have obtained the analogous state-observation and 

state dynamics linear relationships, the appropriate estimation equations can 

be written down immediately.    The resulting method will be shown to yield a 

minimum variance estimate of the state noise covariance matrix elements, 

subject to the additional restriction that «; be non-negative definite. 
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We begin by establishing the square of the kth predicted residual as 

the required observation. From section 3.1, the predicted residual Is 

defined as 

' yk' Hk *ktk-l Xk-1 

' "k *kfk-l h-l + "k rk,k-l Wk-1 + l\ (''6'1) 

Continuing with the previous assumption that we are dealing with scalar 

observations, we then form 

Eiru *S) ' EirJ) - f. R  Hj + «L (3.6.2) k   k k k   k   k k 

and define the error, e, as 

ejk 'V ' t&J} (3.6.3) 

where ^{6} » o.   Then 

r,.2 - f» Pu Hj + Ru + eu (3.6.4) k k   k   k k       k 

Further, assume that ^   Is exactly known and define 

^u • J'v2 - K (3.6.6) k       k k 

VumHu'PuHj (3.6.6) k       k   k   k 

so that 

Du * V^ + eu (3.6.7) . 
k       k       k 

Now vk Is a function of Q^j* since 

?* - V^J pk-i C-J * vk,k-i Qk~i C-i (3'e'8) 

and It Is Q.j that we are trying to estimate.    If a Kaiman filtering algo- 

rithm Is to be developed, then a linear equation relating Q       to r   must 

be obtained.   To this end, the elements of Q are first placed In a vector, e, 
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such that the elements are stored row-wise. Further, use Is made of the 

fact that Q is symmetric so that only the upper triangular portion is stored. 

Thus, 

q    ■ (q,,  ... q.    o,. ... o_ q,, ...  q    ,      q    ) (2.6,9) 

where m x m is the dimension of Q, and q      ■ qd.J is therefore the 

m(rrH-l)/2 x 2 state vector to be estimated.    Proceeding formally, consider a 

Taylor series expansion for v   expanded about the value, q      = 0% and 

truncated to the linear term: 

VW = rA 
»K. 

^-i=ö 

9^-i 
^v- Jt-i (he, to) 

Vi-0 

P' CO;  is simply (3.6.6) with Q.   . = ö.    In analogy with the linearized observa- 

tion state equation (1.2.ZS), we use (3.6.10) and write (3.6.7) as 

where 

^ • V ^rö; ■ ^2 - h h *** 
%-f0 

k    3Vi (3.6.1?.) 

The final task in developing the components cf the observation equation is to 

determine the elements of J,.    Since P,, and hence F., is linear in ^,  ,, k                     k k                                   k-1 

equation (3.6.10) is exacf; we write (3.6.10) 

Vk(qk-l) " vk(0) * t>vk
(0) (3.6. IS) 

The expansion of v   with respect to Q   . yields 



•r. - t(H. P. H.T) ' H.T. .  . 6Q.  1 T. .  1 HJ k k   k   k k    k,k-l      k-1    k,k~l    k 

k lk.k-l Vi lk,k-l nk 
(3.6.14) 

where 60^ - (L . - Oj.j ■ Q^j since the expansion Is about the nominal value 

Q*     m a.    Now the key factor In the development hinges on the ability to 

express the elements of H Q H   In the form 

T        T «7 q (s.e.it) 

where J Is composed of the elements of H and 1.    To this end we digress for 

a moment and prove the following: 

Theorem I.    Given the matrices A, B, c and X of dimensions 7 x w, 

m * n, nl * m2, and m * m respectively, then the Z * M matrix, AXB, can be 

written In the vector form, Cx, where x   =* (x,, x„...x.   x^. x... ..x. ...x   )t 11    12        lm    22    23        2m        mm 

an m2-vector, and C = {a    } with the o.. being given by 

aiJ = a\(i-l)/n+l\,\(,i-l)/m+l\ b[mod(j-lim) + l)]Anoda-l,n) + 1] 

where 

and 

lei « integer part of s 

modfe,  t) = 8 - \-7\ t 

Proof.   Writing AXB In expanded form results in the following 

sequence; 

AXB 

a,, ,..  a, ii    lm 

all "'  a m 

11 

a 11 

X . _ • • • X - 

X    _ • • • X ml mm 

b ..  ... b , 11 In 

b  , ... b ml mn 

lm 

11 lm 

m m 
T x., b .. ... J x. . b . H    Ij    jl k    Ij    jn 
V J 

m m 
1 x   . b,.  ... J" .r . / ':    mj jl           L.    m 7 
./ ,/  " 

jn 



AXH 

m m 

I 
i .1 
la,. J x. . b .,  .   .   .  la,.  T x. . l>. 

mm mm 
y a,. y £.. i., . . . y a7. y x.. /-, 
t 3 ' J 

The general element of AXB Is further expanded as 

(Z.6.16) 

m m 
J J a, . h ,    x. . = a, , h ,    x,,  + a, ,     „  ,,, . ... ... , L.  L.    ki    jp    ij        kl     Ip    11 kl     2p    12 kl    mp    1m 
t  .7 

A^     If»    21 k2    2p    22 k2    mp    ?p 

km    mp    mm ' 

In vector form this becomes 

m m 
1 1 a, . b .    x. . = (a, , h,    ii, , I'      ... ft. /' ) f H    ki    jp    ij kl     lp    kl     2p km    mp 

r 
ii 

.12 

mm 

(»i.e. / " 

Arranging the elements of (2.6. ie)  into a column vector and using (,<.('. D 

results in 

m m 

i J    ll    J1    V 

m m 
J" J" a,. i . x. . H  J Ii jn    ij 

m m 
1 1 ai ■ b.. x.j 't h    li    jl    ij 

m m 
y y a7. fc. x.. 
h H    lx    jn    ij 

11 ''ll   ' 

ii  in 

all bll 

.   a 
1m  ' ml 

a.    b im mn 

lm    ml 

a*, b,    . . . a7 b 11    In lm    mn 

11 

X lm 

■21 

x 2m 

mm 
(3.6,18) 
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Deflnlnq the elements in the nl * m2  matrix on the right as the elements of 

C completes the proof. 

In view of this theorem we also have the following: 

Corollary. Given the conditions of the Theorem I above, let X and 

AXB be symmetric. Then AXB may be placed In the vector form Ck where 

xr = (mm,  ... x,   x„„ ... x, ... x >» is a vector of m(mH)/2 elements and 
11 Itn    22 2TH nun 

0 is an ln(ln+l)/2 * m(m+l)/2 matrix with elements 

ciJ 

a     b       a    for a = r   , pg   rs ^      ^ 

a
nnbr*+  ar,r-bn*      *      fOV  q   *   T (3.6.19) I   pg    rs       pr   gs 

and where 

p = \(i+t-l)/n + 1\ 

q = \(j+u-l)/m + 1\ 

r = [mod(,j+u-l, m) + 1] 

a = [modd+t-l,  n) + 1] 

t m \i/n\    and   u = \J/m\ 

The equations for the indeces of the terms in Theorem I and the corollary 

follow by induction. 

Since X is symmetric, x, . * x.. , i j j.   Then the redundant elements 

of x may be eliminated so that x = fx.,...x, x,,„...x„ x,,...x, ...x ) 
11 lm    22        2m    33        3m        mm 

is m(m+l)/2.    In Cx the elements of c corresponding to x. ., for i > J, are 

simply added to those corresponding to x. ., for I < J.   Further, the syinnetry 

of AXB yields 

mm mm 
1 1 a., x. . b.   = I I a  . x. . b ,. H H   ki    13    jp     h k   pi    ij    jk 

hence the duplicated rows of C need not be included. As a result, the 

elements of c are given by (3.6.19). 
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In light of this corollary, the validity of (3.6.15) Is established. 

A simple example will serve to Illustrate the application.   Consider a 2 * 2 

Q-matrlx, with HT as a 3-vector.    Then 

Q ■ 
Clll qi2 

q21 q22 

■ - [Äj h2 h3] 

'Yli Yi2' 

V = Y2J y22 

y31 Y32 

and 

n = ih1 h2 hj 

yil yi2 

y21 y22 

y31 y32 

[\ hi  yil     \ hi yi2\ (3.6.20) 

Making the Identifications 

A = BT = H Ts     X = Q 

then application of the corollary to Theorem I yields 

«' M' - (<lu l12 q22) 

and 

c = J ■  [(j^irJ'^js^Xf^g  (f^vj2] 

H T Q TT H* = J q 

Note that In cases where ./ has only one row (as In this example), then we can 

write the zquotiXy 

(3.6.22} 

This example corresponds to the case of scalar observations. In line with 

our previous developments we continue with this assumption, although It Is 

not a restriction. 
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With the validity of (3.6.11) established and Its elements determined. It 

Is Important to consider the variance of S" .    This Is necessary as the Inverse 

of this variance and some of Its elements appear In the filter gain. 

Defining 

and 

o* -' e{l
k h

T) • ff«*!> 
then 

+ E{ek IJp Jk
T + Ei*^} (s.e.rs) 

Letting 

and 

T.=E{Q.7} (S,e.t4) k k 

then (2.6. 22) becomes 

G = JSJT + 2J'C + T (z.e. SS) 

In the ordinary Kaiman filter the observation error Is assumed to be uncor- 

related with the a pfiioii state estimate.    Here this case Is not generally 

true; both 0 and q are functions of u, and this correlation Is reflected In 

c.   However, It Is difficult at best to determine appropriate values for the 

elements of c.    Thus, In view of this lack of knowledge, a viable alternative 

Is simple to assume c = o so that (2.6.24) becomes 

G = J S JT + T 
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This expression Is directly analogous to the observation residual variance of 

the ordinary Kaiman filter. 

We now lack only a "dynamics" relationship governing the prediction of 

q.    Assume that q       Is linearly related to q      by an appropriate state 

transition matrix, y(t,   „ t,   J: 
k-r   k-2 

Hk-1        k-l,k-2 Hk-2 

If the process generating the elements of state noise vector, ut is wide-sense 

stationary, then the state noise covariance matrix is constant.    Making this 

assumption we have 

qk-i = qk-2 

and hence f Is the identity matrix, r.    Such an assumption may not be overly 

restrictive since usually the dynamic model governing « can be determined such 

that u Is at least bounded over the Interval of Interest, t   < t <_ t . 

We are now In a position to write down the estimation equations. 

Making use of the definitions (3.6.24) and employing the assumption c = 0, the 

appropriate relationships may be written directly as 

VW     Vi ■**-* (?. 6. :7a) 

Mk = 'kJkT/(Jk'k'JkT + Tk) f*'*-S7b) 

sk = (I- Mk V Vf - Jk MkT) * Mk Tk \r (*-e-s?J) 

where w.  Is the filter gain, and 

There are additional restrictions which must be set forth before the algorithm 

may be used.    Recall that Q must be non-negative definite.   However, it is 
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not unlikely that fJ.f.ftoJ may produce an estimate q which does not conform 

to this requirement, particularly during Initial (transient) operation of 

the filter.    In order to accommodate the non-negative definite constraint 

we call upon the properties of the covariance, Q.    First, recall that for 

the diagonal elements, q    > 

qii > 0 (S.e.M) 

Also, the q.., i * j, may be written in terms of the correlation coefficient, 

V as 

^•^ii -^7^7 (s'e'3C} 

where 

Now since (3.6.29)  and (3.6.30)  are inherent properties of a covariance 

matrix, and since any covariance matrix must be non-negative definite, 

(3.6.29)  and (3.6.30)  may be used to insure the restriction on Q  is met. 

Thus if any diagonal element Is estimated to he negative, it is then set 

to zero. Correspondingly the appropriate gain element is recomputed to agree 

with this modification: 

or 

m -    -«T^AÄ - Jq) (3.6.31) 

whsre m is the corresponding element of M .    After performinq this test. If 

l^ijl > /^i S» (S-e-*£' 

then set 

jy - maxi -AJJ JJJ * w^C /^j q^ , q^V (3.6.33) 



where the superscript, m, means the value computed by (z.r>.',]>,,) % and where 

the max and min functions mean take the respective maximum or minimum values 

of the arguments.    Further, the corresponding gain term Is modified 

as 

The foregoing restrictions do not destroy the unbiased property of the 

estimate, i.e., E{q) = q.    Further, since the Kaiman filter normally produces 

a minimum variance estimate, the restrictions on q result in a constrained 

minimum variance estimate.    Of course, this is true only within the validity 

of the assumption E{qQ] ■ o. 

No mention has yet been made as to the choice of the residual error 

variance, r.    Since it is somewhat difficult to select this value, it may be 

estimated also.    One way is to use a method proposed by Tapley and Born (43). 

The technique is simple and straightforward, and is the average of the <x 

poAtziioKi residuals given by the following recursive equation: 

> ■•■ -^ vW^-vw' T. = (i - ■-) T, , * f CA, - J, a. j2 (s.e.M) 

An initial value which may be used is /'   ■ A ?, since if j ,? = s, 

h2  = 07   -  T 

Since (x.6.3ü) Is the average of all the residuals up through t , as k 

becomes larger, each new residual has less effect in detennining .   .    This is 

acceptable if 9 is wide-sense stationary, in which case f is constant.    If 

this is not the case, then a modification which offsets this effect is to 

use only the last N residuals.    Thus for k ^ v, equation ($.6.5$) is employed, 

At each t,  the feth residual is saved.    Then for k > N use 
k 

instead of (3.6.M), and continue to save the most current A' residuals. 
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The Implementation of the sequential state noise covariance estimation 

algorithm Is diagrammed In Figure 3.5. 

Although we have been concerned here with estimating only the elements 

of Q, It should be obvious that the algorithm may be extended to include the 

simultaneous estimation of the observation error variance ff.    In this case, 

an augmented state vector, n, is defined as 

a     (q H)T 

Then A and ./ are redefined as 

and 

A = r2 - // /  llT m ,i a + () 

J - (G 1) (t.tt..< ■' 

The corresponding estimation equations are of the same form, although T is 

replaced by r2, and s replaces q. 

It was indicated earlier that the assumption of scalar observations 

is not a restriction.    Consider the case where HT is 7 * m.    Then HTQTTHT 

is  I x I,    Correspondingly, 

r 1? = H <i> P $T UT + H r Q V'r HT 4- R + Q .    , .'. ;■'.. ; 

is also I * I.    Since the terms of (3,8.38) are symmetric, the corollary to 

Theorem I applies, and we can write 

*r2 = *(!! * P b1, H7)  + J a + *F + *e (t.e.st 

where each of the terms Is ^ ^7   + i)/2 * 2.    For instance, i^ ? = :, 

*r2 m Cri2 riTz r22;rwith similar arrangements for *(H$F<t>'rHT) t *Ft and *e' 

Thus, 

*(H ♦ P *T HT}  = *V(0)  = 
ii 

f12 
r 
22 Jq*0 
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Use ordinary 

Kaiman filter 

for state 

eatimates with Q 

obtained from q 

m 'a 

Given: 

Ä0'  Po'  V 

max 

I 
ft = 1 

3 
*Jk - 

***■ ■l 

h = ^Pk *T 

^k = Vk - H xk 

I 
\ = *k-H pk "T -R 

Sk = Sk-1 '     «k-l = %-2 

Mk" *k 'JkTs(Jk h 'k + V 

%-i = VJ * Mk(Ak - jn ^-J; 

(b - J q) 

q.. = 0 

Yes 

For each i t j 

'ij •        ii ^JJ*    ij 

^'"-i'^-i + fi -VW 

k        k-1      N      k        k ^k-1 )' N   ^k-N ' ''k-N $k-H'l}' 

Figure 3.5   State Noise Covariance Sequential Estimator 
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•ä- 
2i 

?22 

^e = 
e 

11 
JI2 

22 

(3.6.40) 

The rest of the algorithm Is obtained in a straightforward manner, similar to 

that for Algorithm I (Chapter 1), subject to the non-negative definite 

restrictions for ^. 

Finally we note that the estimator developed above suffers certain 

disadvantages.    One of the more serious is the assumption of a specific model 

for Q.   This may be reasonable for a portion of the filter operating range. 

However, if the state noise process, u, changes its behavior drastically after 

steady state conditions have been essentially reached, the filter has no 

power to adapt to the corresponding new value of ^.    Recall that this is due 

to the fact that the associated error covariance practically vanishes, and, 

similarly, so does the corresponding gain.    This situation is exactly analogous 

to the original dynamic model error problem, and is the most serious disadvan- 

tage of this ^-estimator.    However, this being the case, we can apply any of 

the previously developed compensation algorithms, including another state 

noise covariance sequential estimator. 

For example, an obvious method is to include a state noise fourth 

moment matrix*, w.    In this way the prediction of S.  given by (S.6.Z7a) is 

* By using another filter to estimate W,  this approach could be continued 
ad infcnitum, becoming computationally very burdensome very quickly.    The 
author's opinion is that anything much more complex than (t.ft.41) Is seldom 
practical. 
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modified to 

3.7 Summary 

This chanter has presented a selection of adaptive optimal and sub- 

optimal algorithms to compensate for model errors. In all cases the emphasis 

has been on simplicity and generalIty. Jazwlnskl's algorithm for estimating 

the state noise covarlance matrix has been shown to be optimal based on a 

single predicted residual. By using the mean of a sample of sguared predicted 

residuals, an element of smoothing Is Introduced, but also at the expense of 

Introducing suboptimalIty. 

The basis of Jazwlnskl's algorithm has also been shown to be applicable 

to a number of the algorithms of Chapter 2, allowing the suboptimal parameters 

to be adaptively determined. 

In section 3.3 the approach (different from all the previous ones) of 

attempting to estimate the actual model errors has been taken. This adaptive 

method has been shown to require the assumption of a particular functional 

form to represent the structure of the model error. Several examples have 

been presented, and a general functional form developed to allow a measure 

of structural adaptation. This has been In the form of a generalized 

Ornsteln-Uhlenbeck process, capable of structurally approximating (having 

the approximate functional form of) a number of different functions. 

A Kaiman filtering algorithm for sequentially estimating the state 

noise covarlance matrix, Q*  has been developed in section 3.6. The algorithm 

Is somewhat more complex than those previously presented, but has been shown 

to provide a minimum variance estimate of v, subject to the constraint that 

Q be non-negative definite. 



Chapter 4 

APPLICATIONS:    RENDEZVOUS MISSION 

■ 

4.1 Introduction 

In this chapter the algorithms presented In the foregoing chapters 

are applied to the rendezvous problem formulated in Section 1.4.    The interest 

here is to gain familiarity with the operation of the various estimation 

algorithms.    Through the development of explicit equations, and plots of their 

behavior, qualitative insight may be gained into the performance of the 

algorithms. 

4.2 Age-Weighting of Data 

The standard age-weighting algorithm is easily applied to the rendez- 

vous problem discussed in Section 1.4.   Modifying the estimation equations 

(1.4.6) to conform to the age-weighting algorithm, equations (ü..l.l)t result 

in the following sequence: 

K= K-i 

\ - Vi 

PA = p * *to - P] 

Pk « 8[1 - K] P (4.2.1) 

where it is tacitly assumed that R is constant.    Starting with P(t ) - F , 

the gain and covariance recursions above may be applied to arrive at the 
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steady state gain and covariance values*.   Thus. 

k = 1: 

Kl "?i[?2 * Ä/ö1'1 

P0 
" (P0 + R/B) 

''i '   1   Ui'n + /./«J.T 'e 0 

(P0 + R/B) 

k = 2: 

P0 R 

P. • P. - 2      ' 1       (Po + H/s) 

K2 =^2(^2 * R/s]'1 

Pg  l</(P0  +  H/O) 

[ (H0 5 K/a)  * h/nj 

P- ä 

2       [Por? + 1/B) + R/82J (P0 + 

' po R/lpon * 1/s) * R/82] 

We) 

* The gain and covariance update equations could be used to solve 
directly for the steady state conditions.    However, using the recursion 
equations to compute values recursively and then Inductively determining the 
steady state conditions provide Insight Into the operation of the algorithm. 
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k » 3; 

P0R 

P, - P- = 3     rJ     PJ1 f l/e) + R/si 

-1 
K3 - P3[PJ + R/e] 

P0 R/[Po(1 * 1/a) * M* * 
po H/lro(1 * 1/8) * R/8^ * ^ 

"o 
/'0 ^ /'0C/A ♦ //A2-' v- K/iO        r0( i + j/fi + ?>.'' -^ .v^J 

pj Ä po h'/^po(1 + 1/s + 1/o2) * /,'/i!,, 

Continuing the recursion, one obtains for k = m: 

K    - "" 
m m-1 . 

P0 r I/** * R/8m 

poR 

^-—JTI—;  (4-2-s) 

0
 d'O 

The summation in K   and P   is simply a geometric series with sum, as w ■»■ «>, 

00 

E Va-^ - T-^777 (4.2.3) 
d'O 1 " 1/8 

Thus, as m > », A:   and P   become 
m m 

p
ol ra 

where iim R/e"1 » ö, since a > ;, and 

oo g 
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For very large *:, the estimate of p. Including the first order model error 

effects, is found to be approximately 

Pjt " P* ^    ,     rpoY sinh ytk * 'Qo **H ytk " K * »k* 

or 

Using (i.4.p,:,)t the correspondinq error is given approximately by the 

following expression 

K " i (()oy 8inh yik + 'po ooeh Y^; " f f* ' ^T1 vk NtS'7) 

For large e, the effect of the unbounded error term (first term on the right) 

Is small.    Correspondingly, the random effects are more predominant, and In 

the limit as e -»■ <» the error is due strictly to measurement noise.    Because 

the time correlated term completely dominates the noise term when k Is large, 

continued filter operation is possible only when s Is very large.    In fact, 

best performance results here when e is very large since then all the 

Information Is derived from the most current observations.    As expected 

(section 2.1) the error covariance In this case becomes, by (4*2,6)% H. 

4.3   Schmidt Suboptimal Filter:    Gain Scaling 

In section 2.2 it was Indicated that the use of a constant value of 

b can lead to certain difficulties.    This is exemplified here when one 

attempts to find the steady state gain and error variance.    The error co- 

variance recursion is used to solve for the steady state variance directly: 

f„ - 'J - <"> - "'> FTT 1 K 
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In steady state, P  - p   = p. ■ 

P - Ci - r» - b*) j^y  ] P 

0 =    -(2b - b2)  j-2-- (4.3.8) 

This implies either P^ = 0 or b = 2.    Thus for ; < ^ < 2,  it simply takes 

longer for the steady state condition of P « ö (and hence Km o)  to be reached. 

For i = 2, P = P . In this case, the estimate eventually diverges. 

For the method where (V.v.lPJ  and (2,2,23)  are employed, the steady 

state variance, P . is found not to vanish, since in this case r is found to 
00 CO 

be 

The corresponding gain is simply 

K    = a (4.3.10 
00 

As a -► i, only the most recent observations contribute information.    Con- 

sequently, Km* 1 and P^ ■* R. 

The corresponding estimate and error for large k are determined as 

ft 7 « — 

K* K + R rv8in}i ytk+ 'poao8h ytk - K ♦ »k* 

- (1 - j:) Pk + j: rp0Y einh ytk + P0 tveh ytk + i^) (4.?.11) 

and 

K**1-*"w8inh^k*hoo8h^ - (1-^) K-f^\ (AX„ 
]) 

When b  is determined by equation (2.2.14) t  the steady state gain and variance 

are also seen not to disappear. Using the covariance recursion, one finds 

for the steady state. 
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2     r,2 to.^.t + m.j.m.tyL 

2   D2 

p = [i - (i - tf R2/r2) (p g R)] p 

ß2  A'2   ,       P2 
lpm  (, . ü-^; 

P?      '   (P + R) J 

p + n 

Solving for P, one finds that 

P = ß /? (4.3. W 

For the steady state gain, 

which yields, on suKstituting for p from (4.3.13), 

^•bKm^Jj (4.3.11) 

When 3 = 1?, one has the optimal Kaiman filter, and the steady state values 

of gain and variance are zero.    For 3 = 1* P = /? and K' = 2, as expected. 

For very large fe, the estimate of p, including the first order model 

error effects, is found to be approximately 

K*K + TTI tv •** ^h * 'p oo8h yt
k - K+ vk] 

or 

p*= fr^K*i*7 lPoY8inh ytk * 'Qoa09h ytk* vk] N'*'25) 

The corresponding error is found to be approximately 

K 
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             - -    (4.2.16) 

Again the results are as expected.    For 3 = <?, the error consists of only the 

time varylrq term.    For ß » l, the error Is due solely to the measurement 

noise. 

4.4   Schmidt Suboptimal Filter:   Additive Gain Term 

Using the same procedures as In section 4.3 for /- = i + l> v /', 

identical results are obtained for the steady gain and variance.    Using 

equation (2.3.6), 

p = (i 2— ; p + äLsi 1      P+F'P+R 

(P + $2  R)  R 
P + R 

P = $ R (4.4.1) 

For the gain, 

"'TTR + PTR 

or using P = $ R, 

u   i ß M,srfi 
It Is noted that the difference between the two algorithms, discussed in 

section 2.3, does not appear here.    In other words, for the gain scaling 

suboptimal term, the variance term divides out, yielding the identical 

results In gain and variance. 



117 

4.5 Limited Memory Filter 

To apply the limited memory filter to the rendezvous problem, assume 

we have available p i and P . , and It Is desired to obtain the limited m|m in|in 

memory estimate over the set of (k - m) observations.   The necessary quanti- 

ties required by equations (2.4.8) and (2.4.9) are given below. 

K\k' K\k ■ K\k-i * Kk 'kik-i 

t       k 

where the predicted residual 1s 
t 

and the gain at t . is 

P I m\m 
Kj = (J-m) P\+F    >    *,+ 1 ^J Zk 

tn \w 

Similarly, , 

(4,6.£) 

' mm 

and 

P. I    -Pi (4,5.4) k\m        mm 

P. \ „    .i the error covariance based on observations from t   to f. , may be 
k I (k-m) m k 

found directly from equations (2.4.9)  or (2,4.10)  or may be computed recur- 

sively by (2.4.12).    The computation using equation (2.4,9)  yields 

/•       _ rp  "■*  f<  T  1~ 
JtlCA-m;   l Jtl*   Alm J 

[(k-m) P t    * R * 1 ,  m|m     1     l-l 
P  I    R             ' ^ I m|m mjmJ 
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or 

pk\(k-m) ' R/(k-m) (4'5'5) 

It Is noted in passing that for k-m * 1 , i.e., one observation, the cor- 

responding error covariance is as expected, P^i^     * ff. 

Using equation (;',.4.8) the limited memory estimate is ^ound. 

'*  r/c-m;       (k-m)    )       PIA I   «■      -^ ,  / •    i   ,. ,.      /'   I    k 1 f mm '        ,i*tn+l  (,;-w  /'   i    + H\       m\m I w m in J 

Cfe-m;   /     /?      pm m ff .■'-.,    ^-üö  Pi    TB \ 1 f^w+I mm ' '=mfj      * mm 

or 

pJt  C*-m;       ''mm      l m m      (k-m)1   .^ ,     (J-m)  P   ,    +F (4,6,9) 11 ' j=*m+l      ' m|m 

Thus, the outputs of (4.5.1)) and (4.F>.6) are the limited memory error co- 

variance and estimate. Note that when k-m • /, the estimate depends only 

upon the most recent observation. In this case (-1.5.6)  gives 

• 
p*Ui; = p*-j|*-i ♦ rk\k-i 

m P0Y sinh ytk + p0 ao»h ytk + vk 

4.6   Numerical Results 

The foregoing sections have considered the application of some of the 

error compensation methods to the rendezvous problem.    In particular, various 

closed form expressions for the range-rate estimate, error, and steady-state 

gain and covariance equations were derived.    Such expressions help provide 

analytical Insight into the filter structures.   However, the performance of 

the algorithms can be seen best, perhaps, through numerical simulations. 
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Thus, In this section numerical results are obtained for each of the 

compensation algorithms previously presented. 

To carry out the simulations, nominal parameter values defining the 

dynamic model were selected as shown In Table 4.1.    The model error parameter, 

Y, Is defined by equation (i.4.".0) as 

2 _ jiu r = 8tH      f 

and reflects the gravitational parameter, u, the target vehicle radial distance, 

r , and the llne-of-slqht angle (above the local horizontal).    For Earth orbit, 

p = 398603.2 kmVsec2.    Thus, using the value of y given in the table, values 

of e are determined for various values of [rJ.    For example, an orbital 

altitude of 160 km (|rJ = 6538.165 km) corresponds to e = 4.96°; at 240 km, 

c = 5.1°. 

Parameter Value 

Initial ranget p0 10 km 

Initial range rate, p0 -1 m/sea 
• 

Initial range rate error, p0 0 m 

A prUoni variance,  P0 10 (m/eea)2 

Obeervation error varianae, R .01 (m/aeo)2 

Observation interval. At 10 sea 

Model error parameter, y .18 x 10'* (sea)' i 

Table 4.1   Nominal Simulation Parameters 
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In performing the simulations, the nominal or assumed model, as 

before. Is p^ = p.  2.    The true dynamics are computed according to the 

linearized model, equation (1.4.22).   The true range rate observations are 

computed by adding a random number, distributed* N(ot R), to the true range 

rate from (1.4.22).    The observation deviation Is then found by (1.4.23), 

and the filtering equations of the various alnorlthms are applied to obtain 

the gain, estimate and updated state error variance.    In all cases investi- 

gated, the true initial error is zero, as seen from Table 4.1.    Also, to 

provide a common basis for evaluation, the error sequence is identical in all 

cases. 

Standard Minimum Variance Estimates.    To provide some standards of 

reference. Figure 4.1 shows the behavior of the ordinary minimum variance 

algorithm in the presence of model error with no model error compensation 

techniques employed.    Also shown is the case with perfect modelling.    The 

ordinate axis represents the estimate error in meters, with the abscissa 

measuring time in seconds.    Three curves are shown.    The solid line represents 

the actual estimate error, p , where the model error (1.4.2b) is present.    The 

dotted line gives the estimate error for no modelling error.    The dashed line 

represents the computed error standard deviation (s.d.), a   = •?" •    Note 

that this curve is the same for both cases, regardless of the presence or 

absence of model errors, since the estimation algorithms are identical. 

For the Incorrect model, the rapid rate at which the estimate of the 

range rate diverges is rather astonishing.    Thus at typical Earth orbit 

* The notation N(0t R) means that a random number Is sampled from a 
normal distribution of zero mean and variance,  R.    In the simulations, 
normally distributed random numbers were calculated using the Central Limit 
Theorem (46,  98-99).    Further, the same sequence of random numbers was 
repeated from run to run. 

♦ 
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altitudes, relatively small  llne-of-slqht amiles -- on the order of 5° -- 

produce a dramatic divergence of the ranqe rate estimate.    ON the other hand, 

for the exact model  (l.'l.v.v.)  the power of the Kaiman filter Is reflected by 

the dotted curve:    after 1500 seconds the error has practically disappeared. 

Thus these two curves can be seen to bound the performance of any of the 

compensation algorithms Investigated for this problem. 

Commonality of the Algorithms.    Because of the fact we are dealing 

with a single state variable, it is possible to relate most of the suboptimal 

filter parameters to obtain equivalent steady stage filter performance.    In 

other words, through appropriate expressions relating the filter parameters 

to each other, it is possible to obtain a value for each parameter which will 

produce equivalent steady state performance for each algorithm.    (Exceptions, 

which are treated separately, are the ordinary [b ■ constant] gain scaling 

algorithm and the limited memory filter.) 

Consider the steady state relations for the age-weighting, modified 

gain scaling, and additive gain term algorithms.    These are given by (4.2.5), 

(4.2.13), and (4.3.1?), or (4.4.1) respectively as 

oo e 

p   . -AÜ 
■«     ? - a 

P   = 6 /? 00 

(Recall that this last equation is the same for the modified gain scaling of 

equation (2.2.14)  and for the additive gain term.) For equivalent steady 

state performance each of the above expressions must be equal to any other, 

thus providing the necessary relationships relating the filter parameters. 

Therefore, 

\ 
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(4.6.2) 2 - a        a 

For the case where the state noise covarlance is employed, the steady state 

expression given by (1.4.32), may be equated to the corresponding expressions 

containing the suboptimal filter parameters.   Thus, 

2 + /l + 4/f 

1 + /I + 4/f   + 2/f 

(1.4.3':.) 

where f ■ Q/R% may be included in (4.6.1) so that 

8 - a 
8-1 m 1 + SI + 4/f 

8 1 + /I * 4/f   + S/f 

(4.6.?.) 

Using these equations, a table of values may be constructed.    Table 4.2 gives 

such appropriate values which yield the equivalent filter performance. The 

table was constructed by selecting various values of ß and then solving for 

the corresponding values of a, d, and Q. 

3 a a 1 
'1 r- 

0. 0. 1.0 0. 0. 

.10 .1818 1.111 .011JH . in 

.SO . 3333 1.P.50 .OMflli fi; • 

.30 .4615 1.42$ . ir.sea . .•>■/•' 

.40 .5714 1.667 . •'(>■('"'•■>' . •/« 

.50 .6667 2.000 ..W0/> 

.60 .7500 2.500 .ttWS . 9!i 

.70 • üci ob 3. 333 i.e?3ii i-t • % 

.80 .8889 5.000 6, •W.-V . 9R 

.90 .9474 10.00 8. WOR . iiF 

.99 .9950 100.0 $8.01R . ME 

1.00 1.000 00 09 R 

Table 4.2    Fi 
Equivalent 

Iter Parameter Values for 
Steady State Performance 

\ 
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Mqures 4.2a through 4./c Illustrate llio riuiiif>r1c.il niuivdlenct* in 

terms of filter performance.    The curves were actually generated using the 

additive gain term algorithm for 6 = .1« .3» »e% .9, and i.o, respectively. 

However, steady state conditions, and hence equivalent performance, are 

quickly reached.    These curves therefore Illustrate essentially the same 

performance for each of the algorithms.   As in Figure 4.1, the solid line 

represents the actual estimate error, p .   The dashed lines represent plus 

and minus values of the computed standard deviation, o  . 

In examining the figures one finds that the maximum and minimum error 

values Increase with increasing values of the filter parameters.    In the 

extreme (Figure 4.2e), the estimate follows the observations, and the errors 

are greatest in absolute value.    Based on the sample of 384 points, 71.6U 

of the estimates are within the la value* of .1 meter, determined from the 

error covariance computed by the filter.    In Figure 4.2a the absolute value 

of the maximum and minimum errors are smallest.    Here, 64.06% of the 384 

points are within the lo value of .03163.   However, the model error appears 

to be showing itself in the form of a bias; the majority of the error values 

lie above the expected value of zero.    In Figure 4.2b the error does not 

exhibit such a bias, thus suggesting parameter values somewhere between those 

for Figures 4.2a and 4.2b (e.g., -1 IB ^ .3) -- at least for the time inverval 

of 3840 seconds.    However, regardless of the value selected, as long as 6 < 1, 

divergence can be expected to occur eventually.    This follows from the 

unboundedness of the error, equation (4.3.20). 

Because the steady state variance associated with the ordinary gain 

scaling {b ■ constant^ is zero, the equivalence developed above cannot be 

*    A short discussion of an  Interpretation of 0  in light  of normal 
orgodir processes   Is given in Appendix D. 

\ 
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obtained.    Thus this algorithm results in a completely different, and not 

very effective, filter performance.    This is seen in Figure 4.3, which shows 

the estimate errors for the gain scaling algorithm using values of b = 1.3, 

1.6, and 1.9, respectively.    Clearly the performance is unacceptable; diver- 

gence occurs soon in all  cases.    The values /   - 1.3 and b = 1.6 are seen to 

have little effect on the estimation performance.    Only when b becomes close 

to 2 does the algorithm have an effect in delaying the divergence.    Even then, 

the variance eventually becomes zero, although it simply takes longer.    Recall 

from equation (4.2.12) that b = 2 prevents any change in the variance, and 

hence P^ - P0-    For this problem the ordinary gain scaling is obviously not 

acceptable. 

Adaptive Estimation of State Noise Covariance and Suboptimal Parameters 

Numerical simulations were performed for each of the adaptive forms for esti- 

mating the state noise covariance and suboptimal parameters, as presented in 

sections 3.1 and 3.2.    In these simulations, the values of y given by (3.1.23) 

and (3.1.14) were used (the sample mean of the square of the previous N 

predicted residuals.    Initially, (3.1,14) was used to "build up" the set of 

N residuals.    Subsequently (3.1.13) was used to compute y .    Use of equation 
N 

(3.1.12) was not investigated due to the inherent disadvantage of either having 

the estimate lag the observations, or having to reprocess or smooth the 

estimates. 

In computing the various parameters, the following equations were 

employed: 

Qk = max [0.,  Yw -  /^ -  A'] (-l.e.,^ 

3U = max [1.,  (y%, - W/P, ] (4.0.3b) 

bk - max [l.t  (yN - WCP. * ^/F^] (4,6.?s) 
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ak = max [(yN - R)/yN, Pj/(?k * *>] (4.6.2d) 

$k' 1. - (Pk + R)/max [(Pk + R)t y^l (4.6.3e) 

These equations yield appropriate values for the parameters according to the 

values of yN.    They also automatically Incorporate the attendant limits on the 

parameter values, which Is the reason for the presence of the nax function. 

In carrying out the simulation, some particularly Interesting, if not 

surprising, results were obtained.   Three different values of N were used in 

computing y , namely N = 1, 10, and 20.    In each case, the algorithms exhibited 

very similar behavior, with the exception of the ordinary gain scaling algo- 

rithm.    In fact, it was found that the performances of Jazwinski's adaptive 

^-estimator yielded results identical with the adaptive age-weighting algo- 

rithm.    Further, identical results were also obtained with the adaptive forms 

of the two modified gain scaling algorithms and the additive gain term approach 

of Schmidt.    However, some small differences were noted between these two sets 

of performances.    The simulation results are shown for each N in Figures 4.4, 

4.5, and 4.6, respectively. 

Figure 4.4a shows the estimate error and tia curves for Jazwinski's 

g-estimator and adaptive age-weighting with N = l.    Here, 64.84% of the 384 

estimates are within the computed la of the true value.    Very similar estimate 

error behavior is shown in Figure 4.4b for the modified gain scaling algo- 

rithms and additive gain term technique.   Although the performances are nearly 

the same for the two sets of plots, in this latter case only 59.35% of the 

384 estimates are within la of the true value.    On this basis the adaptive 

forms of the state noise covariance and age-weighting algorithms appear to 

offer greater confidence in their associated estimates.   This suggestion 

seems to be further substantiated by Figures 4.5a and 4.5b.    Here the same 

type of Information is plotted as in Figures 4.4, but now N = 10.    The 
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percentages of the 384 points lying within tia of the mean are 55.99°; and 

50.78% respectively for Figures 4.5a and 4.5b.    The same trend is present 

for the case where N - r.o. Figures 4.6a and b.    Here the respective percentages 

are 59.9% and 51.30%.    Thus the implication is that the former algorithms 

offer greater confidence, as measured by the computed covariance. 

Another notable characteristic is present in each of Figures 4.5a and 

4.5b.    Close examination suggests the appearance of the model error bias, 

since the majority of the error values appear above the expected zero value 

on both sets of plots.    This implies that when more residuals are used in 

forming y , the bias errors have more opportunity to affect the estimate. 

Increasing the residual sample size to N - 20 yields the plots shown in 

Figures 4.6 which confirm this suspicion.    In retrospect this should not be 

surprising; as ^ -^ «> the adaptive algorithms cease to operate, and the bias 

errors dominate producing divergence of the estimate. 

For each of the values of N = l, 10t 20,  the adaptive form of the 

ordinary gain scaling algorithm yields the results plotted In Figures 4.4c, 

4.5c, and 4.6c.    Clearly these results are unacceptable.    Initially the error 

variance is large; hence the adaptive algorithm obtains no information from 

the residuals since y   Is generally small and hence (4.6.Zo) produces b   = 1. 

As the process continues, y   tends to Increase, but the sensitivity of the 

algorithm is simply not sufficient to control the divergence of the estimate. 

There appears to be a simple explanation for this.    For the adaptive form of 

each algorithm consider the sensitivity of the gain to changes In the residual 

sample, y .    This Is determined by using the appropriate member of equations 

(4,6.3)  in forming the corresponding gain, and then taking the partial deriva- 

tive with respect to yM.    In all but the case of the ordinary gain scaling 

algorithm, the partial derivative is 
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'**     JL • • ■■ 

For the ordinary gain scaling, 

M       I 

From these equations the reason for the very different behavior should be 

apparent.    First, note that when the residuals are very small the sensitivity 

given by (4.6.4) is very high.   This is desirable since the gain values then 

respond quickly to changes in y .   However, for gain scaling, a similar 

sensitivity requires that P be very small.    This is exactly the type of 

behavior displayed in Figure 4.6c.   Only when the error variance has decreased 

significantly does the adaptive feature begin to operate.    Thus based upon 

the indicated performance, the ordinary gain scaling algorithm will be dis- 

missed from further consideration as a viable filtering algorithm. 

No discussion has been given yet concerning the computed values of 

the state noise variance or suboptimal filter parameters.   An obvious approach 

is simply to "shotgun" the reader with a set of some 21 graphs of estimation 

curves and then pick through the data a "pellet" at a time.    A preferred 

approach, and the one followed here, is to offer a representative sample and 

then to note certain trends determined from examination of this and previous 

data.    In this manner we hope to avoid "blowing the reader's mind" * and 

still provide a further measure of insight into the behavior and relationships 

of the algorithms. 

We proceed by offering, as the representative sample, plots of the 

state noise standard deviation, < = /?, given in Figures 4.7a through c. 

Figure 4.7a gives the values of < determined from Jazwinski's ^-estimator 

* This obvious pun could not be resisted. 
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based upon single residuals {N - / for y ).    During the initial phase of 

operation, while the state error covariance Is reasonably large, few non- 

zero values of Q are computed.   After 800 seconds, the error covariance has 

decreased, and there is a high frequency of non-zero estimates.    In Figure 

4.7b, the values of < are shown based upon a 10-residual sample size (.'. ■ 2J 

for v   ).   Here both the frequency and magnitude of computed values of K are 

less than for the single residual case.    Figure 4.7c continues the trend. 

In all cases the estimated values of Q clearly result in the desired increases 

of the la curves of Figures 4.4a, 4.5a, and 4.6a.    Note, however, that as 

the residual sample size, /v, increases, the state estimate bias error becomes 

more prominent.    As pointed out earlier, as N ■*■ «, we eventually have no 

(^-estimates being produced, and thus the state estimate diverges. 

For the suboptimal parameters, excluding ordinary gain scaling as 

stated earlier, similar results have been consistently obtained.    Of course, 

the limiting values are different; hovever, the parameter estimates show the 

same random "spike" behavior as those for <.    Similarly, the frequency and 

magnitude of the values decrease with increasing N, resulting in eventual 

dominance of the bias error in the state estimate.    Further evidence of 

similar performance for the- suboptimal parameter adaptive estimation is 

given by the similarities of the error curves  in Fiqures 4.4-4.6.    If signifi- 

cant differences existed in tne adaptive computation, these would also be 

manifested as significant differences in the various error and lo curves.    On 

this basis one may conclude -- and the estimated parameter data bear this 

out — that no fundamental differences exist in the performance of 

Jazwinski's adaptive state noise covariance estimator and the remaining 

adaptive suboptimal parameter algorithms for this scalar example.    (This 

last qualification Is Important and will be discussed in section 4.7.) 
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Limited Memory Filter.    Figures 4.8a through 4.8c show the estimate 

error for Jazwinski's limited memory filter.    The fi u es correspond to the 

values of the "memory length," i.e., the number of observations processed 

between applications of the limited memory updates.    Thus memory lengths of 

1, 10, and 20 observations are reflected in the performance given by Figures 

4.8a, b, and c, respectively. 

In Figure 4.8a the filter follows the observations.    Comparison with 

Figure 4.2e clearly indicates identical behavior, as expected, with the 

corresponding steady state covariance, P   • R. 

For N = 10 the estimate error is plotted in Figure 4.8b.    In this case 

the bias error appears as an excess of points above the time axis.    However, 

toward the end of the interval, the central tendency is back toward zero mean. 

To investigate this further, the case of a 20-observation memory was run.    The 

results appear in Figure 4.8c.   As expected, the bias effects are even more 

pronounced.    Indeed, if the memory size is made as long as the complete ob- 

servation period, the performance is simply that obtained for no error 

compensation; i.e., the estimate error grows without bound. 

In both 4.8b and c the typical behavior of the covariance may be 

noted.   This is expressed as the saw-tooth form of the ±]a curves.   Each 

peak corresponds to an increase in the variance produced by the limited 

memory updated.    After each update, the variance begins decreasing in accord- 

ance with the operation of the ordinary Kaiman filter equations.    The width 

of each of the saw-tooth pulses is therefore directly proportional to the 

memory length. 

The accuracies obtained with the limited memory filter are generally 

on the order of those obtained by the adaptive forms of the suboptimal 
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algorithms. However, based on the numerical results, the memory length must 

be smaller than the residual sample size used in the adaptive algorithms. 

For this scalar problem the limited memory filter requires no more 

computational effort than the other adaptive forms.    In vector problems 

involving many state elements, the computational load becomes quite severe 

due to the required matrix inverses.    For this reason the limited memory 

filter loses its attractiveness for use in more complex problems. 

Sequential Estimation of the State Noise Covariance.    We turn now to 

the performance of the sequential estimator for Q.    Initial runs of 3840 

seconds were made using a pfvioni values for the error variance, 5 ■ EQ2}, 

the residual error variance, T ■ ^{e2}, and the initial value of Q as follows: 

50 = 1.0  (m/seo)" 

r,-V-^-p,;1 

Q% = 0.   (m/sec)2 

The performance was slightly better than for Jazwinski's adaptive ^-estimator, 

although the bias error was apparent.   The estimated values of Q took some 

time to "settle."   This appeared to occur near the end of the interval.    To 

investigate this further, the interval was doubled to 7680 seconds; the 

results are shown in Figures 4.9a and b, which show the estimate errors for 

p and estimates of Q respectively.    Also shown are the corresponding p-error 

la curves.    The la value for the p error appears to have a mean of approxi- 

mately .04 m/sec, with 70.05% of the error being within lo.    The corresponding 

value of K = i^ is around .015 m/sec.    At the final time, the confidence in 

the estimate jf Q is reflected by a la value of »^ = .027 (m/sec)2.   The 

data indicated that all the ^-estimates lie under the /& curve, suggesting a 

decrease in the a piuofU S.    Though not immediately obvious, close examination 
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of the   Ai-curve and the ►-curv«? reveals a sli'iht troml to increasing values. 

This Is not surprising since we know the actual error is increasing,  (the 

bias error is obvious here In Figure 4.9a), and hence the ^-filter is simply 

trying to adapt to this.    Further, one can expect that divergence of * will 

eventually occur as the ^'-filter saturates, and no new informdtion is added. 

Recall  that this is due to the assumption that the error is a stationary 

random process, i.e., constant Q.    An obvious remedy is to include a process 

(state) noise variance term in the ^-estimator, as suggested by equation 

(3.e.4J),    Another alternative is to improve the assumed model so that the 

assumption of constant Q is more accurate.    This approach 1s considered in 

the discussion on estimating model errors. 

A notable aspect of the sequential ^-filter performance is the fact 

that the h curve has been found not to decrease as rapidly as for the ordinary 

Kaiman filter.    Consideration of the constraint on the estimate. I.e.,   ,'^  ^ 

reminds one that the filter is minimum variance only in the a postcticli sense. 

Thus the variance cannot decrease any more rapidly due to this constraint on 

Q.    Further,  large values of      result in slow decrease in .■.    This behavior 

happens  to hold an advantage.    Since the attendant filter does not decrease 

as  rapidly, the filter operates for a longer period of time before saturating. 

On the other hand, the estimates take longer to "settle down."    Some idea of 

the effect of different a pKloHÄ values of the error variance, .-, may be 

gained from Figures 4.10 and 4.11.    Figures 4.10a and b show the p error 

performance and estimates of Q for 50 ■ S(t^) = .OKn/sea)1*.    The performance 

of the range rite and Q estimates appears to be about the same as those In 

Figures 4.9a and b, although now 64.2% of the error is within  ;o.    Similarly, 

at the final time the computed standard deviation in the estimate of „ is 

Js m .026(m/se(;)2. 
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Figures 4.11a and b show the p error and Q estimates for St = 

7ö~^f/^/.'7.^•Jl,.    Here the ranqe rate estimate is not very good.    A large bias 

appears early, although this decreases as larger ^-estimates are obtained 

(Figure 4.11b).    Still, only 30.08% of the estimates lie under the lo curve. 

At the end of the simulation rf = .9?3 x in'- (m tuu^- . 

A number of runs were made to investigate the effects of different 

a pnionJ values of v.    The results indicated that the a \*\ivX{  value has little 

effect upon both the estimates of /' and Q.    Using the algorithm of equation 

('/>,'' !U>)t the estimated values of /  decreased monotonically from 21.94 (m/sec)1' 

to .2571 (m/sec)1*.    Presumably if more points were taken, this would decrease 

even further.    The modification, given by equation (S.0,M) of using a limited 

batch of A-residuaIs was not investigated for this problem, but is treated in 

the next chapter. 

Estimation of Model Errors.    Suppose the assumption of a constant 

closure rate is modified so as to be a linear function of time.    We thus assume 

the model error may be approximated by equation (3.3.6).    If we further assume 

ao = 0 and o £ <?,, then the range rate model becomes 

**-VJ +W\-I (4'e'e} 

where a   is unknown, and is to be estimated along with p .    The term w' is a 

process noise term added to a and represents fundamental uncertainties in 

knowledge of a.    Its statistics are E{w'] = 0 and E{w'2} = q.    There are now 

two state variables, and the problem may be cast in the canonical form as 

**- [:],-D':][l/[M-- k-1   Xk-1 "Jt-J 

(4.6.71 
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In this recast form, the approach Is to use the standard minimum variance 

filter with the corresponding ^-matrix being 

a » [1       0] (4.6.8) 

In light of this extended form, it is important to raise the question of 

observability.    Consider the information matrix given by equation i !..-.rj) 

with j = l. 

k 

k,l       fa wi,k    i      i        i    ik 

Substituting for «I», //, and Rt 

'.e.i 

\. 
^   r   i      öl PI (10C) ^  ^J f1   ''VVl 

•mk £ \(t.-tk)    u.-tjA (4'e'i:) 

Forming the quadratic form using an arbitrary 2-vector, 2, yields 

«r T.   , 3 = WOk   £   [a. + ajt. - t.)]2 (4.6.11} 
K,l i=l ~ 2      1 * 

which is clearly positive for all non-zero values of s and ^ > 1.    Thus our 

assumed dynamics represent a completely observable system.   Note that this 

would not be true were we interested only in o, since the observations do 

not relate directly to <?.    Rather, information about a is obtained only 

through its correlation with p.   Thus in estimating 0 it is the cross- 

correlation, a.    (normalized by the variances a.2 and R) which comprises the 

gain, K , for o, 

A:  = a. /(a.2 + R) (4.6.::) 
c        pc      p 

We note in passing that the system is also completely controllable 

since 
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C       *   J k   i  \>   0 Kk o = q  % 

which follows from (1.3.25). 

In carrying out the simulations for this formulation, the a pticii 

values of o = 0 and Eio2} = l.0(m/8ea2)2 are used.    Initial results with 

Q = EiiM ) » ö are shown in Figure 4.12a.    The performance is such that as 

the error covariance decreases, so does the gain, and hence the constant a 

tends to a particular value.   However, the true error actually changes in a 

non-linear manner so the bias error begins to dominate after about 800 seconds. 

(Only 26.82% of the 384 points are within  la of the expected value.)    This, 

of course, is due to the fact that Q ■ 0.    Now examining the /o-curve suggests 

that a reasonable la steady-state value of .02 m/sec for p might be acceptable. 

The value of Q which yields this io-value may be found using the covariance 

prediction and update equations.    For the prediction. 

or 

LP2 1      P2 2 J    lO ljlp2i      pzaJLAt        I J   10      qJ (1.6. /.v' 

Carrying out the multiplication yields 

Pu = Pu ♦ 2pit At + p2 2 At2 it.ti. 14a) 

Pl2   = Pl2   ^  P2 2   At (4,0,1-JV) 

P22 = P22 + q r-;.tr.;-;.' 

where the symmetry of P is recognized as piz  = P21. 

For the update equation, 
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P = (1 - K H)  P 

or 

in   oi pc,   oiirpn pi2"| 

iL^      ll    Lfe2      ojfLpai P22J 

[Pn   pi2"|  ra-ki) pn (i-kx) pi?    l 

P21   P22J  \_-k2 pn + P21 -*i pu ♦ FitJ (4.8.IS) 

Employing the definition of Kt and again recognizing the symmetry of F, 

Ä Pu 
Pu - IJ - z I Pn = — 

\      pu ♦ i?/ pu ♦ Ä (4.6.16a) 

pu =(2 - _   11     ) 
Pi 1     \ _ Ä P12 

P12 = — 
p\\  + R ' Pw + K (4.6.26b) 

Pi72 

pu ■   - T p22 (4,9.190) 
pu   -f Ä 

Solving (4.6.16a) for pu gives 

Pn = pn RAä - pnJ (4.6.17) 

For steady state conditions, the p.. in (4.6.14) equal the p.. in (4.6.16). 

Substituting (4.e.l4e) into (4.6.160) and solving for p^ yields 

P12 -    Sq( Pu  + R) (4.6.15) 

Substituting this into (4.6.16b) gives the equation for r^ as 

/■!.■   • H //O",!   * WJ  /^pii ♦ /.) i/.r'.;.-'' 

Next equate (i.e. Ill*) and (-i.e.I'D. and substitute (I.CUD for ii- to obtain 

P22 ■ At   ^'pn ♦ w   r; - 7-^—  ; i i.e.rs* 
pn + R 
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Finally, use ('1.6.17), (4.6.19), and (4.6.20) to solve (4.6.14a) for a. The 

result is 

Pti* 

i ? /■ /j   _    .,       k /«o  _   «       1 2 
(4.e.T.i) 

Lt*<B - pu)(SR - pxx) 

Using the suggested steady state value of a ■ .02 m/sec, then pj   ■ or • 

4 « lO'^n/sec)' and, approximately, 

'I  -■  . /   "   tO'%(m/niu'')i 

The values of A/  and /.' are taken from Table 4.1. 

Usintj this value of ./ along with the other initial and a ["nVvi  values 

(c = 0 and Kin2]  -   l.o 'n*/iieoH) produces the results shown in Figure 4.12b. 

Here definite improvement is achieved as expected.    74.74^ of the 384 points 

are within the steady state la value of .0209 m/sec as opposed to the 26.82.- 

associated with Figure 4.12a.    Notable characteristics are the apparent 

oscillations of the error, and the fact that the majority of points lie above 

the time axis.    Oscillatory error behavior is known to be characteristic of 

optimal approximations, e.g., (48, 75), and here optimalitv is clearly an 

objective.    The latter characteristic implies, as in earlier runs, that the 

bias error is becoming apparent.   An obvious suggestion is to increase j. 

The results for q * .1 * w'6(m/sec2)2 are shown in Figure 4.12c.    This 

arbitrary increase in q produces a steady state Jo value of .053 m/sec, and 

bounds 83.33% of the error points.    In light of these results, it appears that 

the optimum q is probably between ,2 * 10~9(n/8ee2)2 and .1 * ::~6fr et?*)2. 

To pursue the question of optimum Q, and also to investigate the 

sequential Q estimation algorithm further, the idea of estimating >, arises. 

However, in applying the sequential algorithm strictly to the formulation 

given by (4.6.7) the observability problem is brought out again, this time 

with regard to estimating Q.    In writing the information matrix, T^, 
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corresponding to the estimation of Q one finds that T0 » o.   Because of the 

way the problem is formulated, the equation for r2 does not contain , expli- 

citly. Thus in forming T^, the measurement mapping term is zero for all time, 

and hence so is T0. In other words, the term corresponding to .. in equation 

(l.3.P,l)  is zero. Hence, the Q corresponding to a  is not observable. 

Consider the formulation of the original problem as a differential 

equation. In vector form 

x = A x + B u 

or 

CH: ;][:]•[:]■ 
where the identifications are obvious. The term, u, is a process noise term 

with the statistics F{U] = 0 and f{u2} ■ q $(t-t). Now the solution to this 

differential form is clearly not (4.6.7), but rather 

t. 

k   L o 

rVW 
A- ,•/ k-1 

1        (t-X) 
k 

0 1 
u d 1 

(t.e.s?) 

Taking the approach of equation (1.2,30)t where u is assumed constant over 

fV ik-i]' yields 

xk = "U-i ** * Tk,k.i VJ 
f A   M    ^ * 

where 

k,k-l 

ht Lt2' 
o ' 0 
ii 

3    u\-l ' 
. 0 M _ ■ Vi- 4.e.:c) 

It is important to note that one form, (4.6.?)  or (4.P."4) , is not necessarily 

more correct than the other.    In both cases uncertainty has been introduced 

(Vtbitfianitij; hence the measure of correctness rests in the dicicc of the 
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model, and ultimately in the performance of the estimation process. For our 

purposes here (4.6.24) is indeed necessary since this appears to be the only 

way in which we can "get a handle" on Q. 

To bring this approach to fruition, use (4.6.':4) to form the error 

covariance prediction equation as 

pmiPV + TQ  r 

where 

rgr7 = 
At       % 

0        At 

2-i r 
0      0 

10     q 

M      0 

M2 

M. 

"A/- At3] 
4 •1 

=  <1 
Af3 

At2. 

Now in forming the measurement equation to be used in the Q estimation we 

obtain 

.T   ,.T (r2 - ii 'i' / ♦' //   - R). = (ii r .; r  s  + 9) , rT „T 

or 

f.i 
1    ', * \ 

Correspondingly, the information, T*, is no longer zero. 

k,l 
k r At6 

in 

i   .6.'' .  .- •) 

4,0.rp) 

and we have complete observability with respect to the A . 

While (4.6.27) is certainly a viable approach, it involves an approxi- 

mation, namely that u is constant over the interval  [t ^  '...J*    T^5 

assumption can be dispensed with by forming IVf    in accordance with equation 

f/.,*;..-i.W.    Thus, 

t. 

TQTT = L <S>(tkt «; Bfe) q i(e-r} BT(}')  ifct.,  r)   Iv 
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Carrying out the first integration, 

T       **    p     At"! p     0'\[1       0] 
J.        [o 2J [0      qj Ut      l] 

da 

k-1 

or 

u3 
At 

3 O 

njrT = q 
M2 

-  2 At 

(4.e.cp) 

The difference between (4.6.29) and (4.6.26) is approximately the factor. At. 

Forming the measurement equation we have 

and similarly the information 

(:.e..\ 

k,l 
k T A/ 

0 (■4. ,?..>." 

insures complete observability.    Owing simply to the more rigorous approach. 

(4.6.7,0) will be used for the estimation of q. 

Using this alternate formulation. Figures 4.13 through 4.15 snow the 

estimation performance for the three a \viio\i values, s0 ■ /c'1"8,   /r"10, and 

10mll(m/eeoi)ki respectively.    The results indicate increasing estimation 

accuracy of the range rate with decreasing a piicni values of S.    In particu- 

lar, for 5. -- w~a('n/^1ee2)',, 74.22% of the range rste error values are less 

than the lo curve (Figures4.13a).    From Figure 4.13b the final value of a is 

approximately 4.h x w'6(m/seo2)2.    In Figure 4,14a, 50 ■ ;;'~10i" i't-.'2'1*, 

78.78% of the range rate error points are less than Jo, and the maximum value 

of «7 (Figure 4.14b)  is approximately 2. x lo's(m/eej2)2.    For st = i:'lz, 

80.1% of the rang*? rate errors a1-« within la of the expected zero mean .(Figure 

4.15a).    The maximum (7-value is approximately J. 7 x lo~l0(":/ece2)2 (Figure 

• 
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4.15a).    While the actual magnitudes of the ^'-estimates become smaller as 

the a pxioni S is decreased, within each case the sequence of Q values 

increases.    This, of course, results in increasing the error variance of p. 

As before, this may be attributed to the error growth, for while the error 

has been reduced, it has not been eliminated. 

Note that for ^ ■ lo'^tm/see2)*,  comparatively large values of Q 

are obtained.    This is due to the fact that initially large values of the 

gain are computed thus tending to make the values of a "follow"  the observii- 

tions.    The result is that the erratic behavi .r of a from one observation  to 

the next appears to be quite random.    The sequential ^-estimator sees this 

and produces correspondingly large values of Q,    As smaller values of . 0 

are employed, this effect becomes less, thus allowing the values of  • to 

become more stable.    Figures 4.14a and 4.15a show this to some extent.    The 

estimates of Q do not increase quite as rapidly; their magnitudes are less, 

and the values tend to reach their maximums sooner. 

From these results it is apparent that various a pfiioli values of 5 

have definite effects upon the values of the ^-estimates. However, through 

reasonably careful selection of S * practical filter operation can be realized. 

4.7   Summary and Conclusions 

In this chapter the salient aspects of the estimation techniques 

found in Chapters 2 and 3 have been investigated, and the algorithms applied 

to the rendezvous problem formulated in Chapter 1.    Explicit closed form 

expressions have been obtained, in whole or in part, for the age-weighting, 

ordinary and modified gain scaling, additive gain term, and limited memory 

filter algorithms.    For these as well as all the other algorithms, numerical 

results have been obtained. 
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Certain enuivalenccs were shown to exist in both the adaptive .md 

non-adaptive forms of the age-weighting, modified gain scalirui, addltfvo (tain 

term, and state noise covariance algorithms.    While these, as well as the 

limited memory algorithm, were found to be acceptable estimators, the ordinary 

gain scaling technique {b = constant) was shown to be unacceptable, in both 

its adaptive and non-adaptive form. 

The adaptive techniques, based on Jazwinski's maximum likelihood method 

as well as the sequential ^'-estimator, are seen to be a step closer to accurate 

estimation.    The techniques based on Jazwinski's approach have the particular 

advantages of being both simple and completely adaptive.    The primary dis 

advantage is the fact that usually smoothing must be introduced in the form 

of a residual sample, thus destroying the optimality of the method. 

The Kaiman filter for sequentially estimating the state noise co- 

variance appears to give slightly better performance than Jazwinski's adaptive 

estimator.    Within the stated assumptions, the method is a constrained minimum 

variance estimator.    However, the technique is more complex to implement. 

Further, the assumption of EiqQ) = 0 destroys the optimality.    If, *n fact, 

Q does not represent a stationary process, then the assumption of constant ., 

introduces modeling error, thus requiring more accurate modeling or some 

technique to prevent saturation of the ^'-filter. 

The estimation of modeling errors has been shown to be particularly 

useful  in that this approach attempts, in some way, to improve the dynamic 

model.    Invariably the chosen structure is not sufficiently exact to allow 

the filter to operate to saturation.    Thus, some model error compensation 

technique must still be employed, e.g., state noise covariance.    In this 

regard, the sequential state noise covariance estimator has been shown to be 

effective. 
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The rendezvous problem investigated here involves a single state 

variable, and as such, the information and comparisons presented must be 

accepted in this light.   When the algorithms are extended to «Uate vectors 

of more than one variable, some of the algorithms lose their similarities. 

In particular, the modified gain scaling, additive gain term, ^mi state noise 

covariance algorithms in both their adaptive and non-adtipUvo lorn« produce 

results which are generally different from one another,    further, .'a/winski's 

adaptive ^'-estimator requires a pseudo-inverse  in computiwi a    -matrix.     Ihi - 

disadvantage is not suffered by the sequential   .-es(imaior.    Hie  I united memory 

filter is, in an a poiteKioli sense, an optimal estimator.    However, applied 

to the vector case, it requires considerable numerical computalion.    lo  in- 

vestigate these algorithms as applied to the vector case of more than one 

variable is an undertaking of considerably greater scope.    Further,  the 

insight provided by the closed-form expressions for many of the algorithms 

would be difficult, if not impractical, to obtain because of the greater 

problem complexity. 

Based in general upon the results obtained in this chapter, the model 

error estimation technique and the sequential state noise covariance estimator 

have been selected for application to a multi-element state vector problem. 

The choice of this approach is due to the inherent potential for effective 

application to more complex problems.    As indicated in Chapter 1, the problem 

is the orbit determination of a low thrust space vehicle which is subject to 

thrusting errors.    This investigation is carried out in the next chapter. 



Chapter 5 

APPLICATIONS:    LOW THRUST VEHICLE 

ORBIT DETERMINATION 

5.1    Introduction 

This chapter is concerned with the problem of estimatinq the state 

of a continuously thrusting, solar electric propulsion (SEP) space vehicle. 

The problem is compounded by the fact that the propulsion system is subject 

to certain mechanization and control errors.    While errors arise from various 

other sources  (49), for the SEP vehicle, the primary errors are due to 

anomalies in the propulsion system.    Our aim here is to investigate the 

practicality of estimatinq not only the vehicle state, but the corresponding 

thrust acceleration errors as well. 

A number of investigators have considered low thrust SEP missions. 

In (50), Rourke and Jordan investigated guidance and navigation approaches 

for two SEP interplanetary missions, although model errors were not estimated. 

Russell  and Curkendall  (36) obtained effective results by using piecewise 

constant functions to model acceleration errors.    Tapley and Hagar investi- 

gated the estimation of acceleration errors (34)  as well as inertia! measuring 

unit, errors (35) for an SEP vehicle.    These approaches employed Kaiman filter- 

ing utilizing the differential equation for / .    Errors were successfully 

modeled as first and second order Gauss-Markov processes, although Earth 

rotational dynamics were not considered.    Carpenter and Pitkin (37) investi- 

gated orbit determination for an SEP vehicle.    Here the total thrust 

acceleration was assumed to be unknown, but approximated as the solution 

159 
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to a set of uncoupled linear differential equations.   However, the approach 

followed a least squares linearized simultaneous solution with no statistical 

measures being employed. 

As indicated in the previous chapter, our approach here is to assume 

a structure for the acceleration errors.    Then, employing the selected filter- 

ing equations, the parameters associated with the assumed model error structure, 

as well as the position and velocity of the vehicle are to be estimated. 

In the following sections, the specific dynamics and estimation 

equations are developed.    Five different model structures are investigated 

as to their ability to represent the acceleration errors.    Each is developed 

separately, and numerical simulations are carried out to obtain comparative 

estimation performance.    Corresponding to each of these structures, purely 

random errors are also assumed to be present.    Associated covariances are 

either input, or estimated using the sequential i.'-estimator, 

5.2   Problem Description 

In the problem considered, the motion of the solar electric spacecraft 

is assumed to be influenced by random errors in the thrust acceleration vector. 

The nominal SEP mission simulation is initiated at escape from the Earth's 

sphere of Influence and terminates with a flyby of the asteroid Eros.    En- 

counter with Eros occurs at a distance of 1.45 astronomical units (a.u,), 

152 days after heliocentric injection. 

If the only central  force attraction considered is the sun, the 

equations of motion for the SEP spacecraft are 

r* = f 

v ■ -=^-   r + r ic.r.;' 
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where, as shown In Figure 5.1, r is a 3-vector of heliocentric position com- 

ponents, xt y, z; y is a 3-vector of heliocentric velocity component'  .", }', 

Z; |r| is the magnitude of r; and p is the gravitational parameter of the sun. 

f is the heliocentric thrust acceleration vector composed of the design thrust 

acceleration, 7*t as well as thrust acceleration errors, ".Yr , from a number 

of sources (beam voltage and current, grid warpage, deadband control errors, 

etc.).    The heliocentric components of T7,  [T   T   T9] , may be expressed in 

a vehicle centered, orbit frame as [T   T   T ]*> where the two vectors are 

related by 

T = 7'., 

COB ty     -sin ty     0 

sin ty       oo3 ip     0 

0 0 1 

m              ^ r*      T 
T 

X 

T 
y 

=    M m 

'Y 

m ,n 

z. -   z J 

where i|> is the heliocentric orientation angle (see Figure 5.1).    The two 

reference frames are oriented such that the z and z axes are parallel; the 

X and x axes form the angle, i|>, as do the y and y axes, with 

cos ty = X/(XZ +  Y2)'' ,     sin i> = y/(X2  +  Y2)'2 

5.3   Acceleration Error Simulation 

The SEP spacecraft is driven by an electric engine which in turn 

obtains its power from solar energy conversion devices, i.e., solar cells. 

While the actual solar flux density follows the inverse-square law, for 

outbound missions the actual available thruster power varies as i»,,T.    This 

is due to improved efficiency of the solar cells at lower temperatures (50, 2) 

In addition to the thruster power variations, the propellant mass flow rate, 

/>, affects the magnitude of the thrust acceleration.    In particular the 

magnitude, a« of the thrust acceleration,   ', is given (50, 3) as 



M.;1 

in 

I 
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6 i 

* (Ja 
fr     v     t 1 

where /     is the engine specific impulse, £?„ is sea level Earth nravitational 

acceleration, and Ar is the instantaneous spacecraft mass.    These quantities in 

turn are functions of numerous propulsion system narametors, all with various 

uncertainties.    Some of these have been mentioned -- beam vo1ta(io and current, 

qrid warpaqe, and deadband control errors. 

Reqardless of the sources of error, their effect is to produce un- 

certainties in the thrust acceleration program.    For the orbit determination 

function, we are interested in the errors at this total level, and it is at 

this level we propose to account for them.    Now since we are not concerned 

here with the guidance problem, the design thrust program is arbitrary.    Hence, 

for simulation purposes, a constant design thrust acceleration magnitude is 

selected.    Further, the program is such that the nominal  thrust acceleration 

vector, '/"♦, is oriented colinear with the y-axis of the orbital  frame.    The 

true thrust acceleration vector, '/', can be resolved into its orbit framo 

components, f , v , and v   , in terms of its maqnitude, ,;, and the clock and 

cone angles, 8 and y. respectively (see Figure 5.1).    Thus, 

sin Y      008  9 

~ a cos  Y 

ein Y     sin 0 

and 

i i-. r. i 

where a*  is the nominal constant thrust acceleration magnitude and bj.  is 

associated error. With zero error, the thrust acceleration is nominal. 

this case, 

-1 
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T -■ r* 

-i-tii i|» 

0 

In the presence of thrusting errors, Y. 0. and 6a are non-zero thus nroducinq 

an off-nominal thrust acceleration vector. 

The acceleration error maanitude is simulated using 

6a = (Sa. sin iat + u (6,3,B) o a 

where «fa. and u are constants and where M    is a random variable with the 

statistics 

Eiu ] = 0 y    E{u 2} = o.2 (6,3,e 
a a a 

In the error simulation the instantaneous values of the pointino angles, ^ 

and 0, are assumed to be related as shown in Figure 5.2.    This figure shows 

the x-z plane of the orbital frame.    Assuming the cone angle, ), is small, 

the radius of the circle is the maxiinum deviation, sin ~ ~ ~, of the normal- 

ized thrust vector* from its nominal position co-aligned with they-axis. 

Next, the quantity 

d = e(t - tj (£.:. 7) 
b 

is the distance that the tip of the normalized thrust vector has moved since 

it last touched the boundary given by the circle of radius y.    The rate, e, 

is simulated as a constant plus an additive noise component obtained from a 

normal distribution, N(0. o 2)\ t is the current mission time, and t.   is the 
s b 

time the boundary circle was last touched by the normalized thrust vector. 

The angle, ^,  is obtained by sampling from a uniform distribution, ' i.',  -'lv
:,. 

With this information the instantaneous values of y and 0 can be obtained at 

each point in time.    To clarify the process, the simulation loaic is given 

*    That  is,  a unit vector in the direction of  the thrust vector. 
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in Finure 5.3. Assume the initial values of >, .1«, ;;, r , ö. and o :  and oj 
D H f 

are «liven.    To detonnine the values of y and ii at /   , the dlttance,   .  , Is 

first computed.    Using the law of cosines, the anules y    and r    are deter- 

mined.    Then 6   is computed by adding or subtracting r    according to the sign 

of «J>.    Next a test is made to determine if the computed >    lies within the 
A 

boundary circle.    If it does, then sample values from the normal distributions, 

NfO, o 2) and N(o3 o*) are added to y   and 6    respectively.    If the test is 

not passed, then new values of 0, 4», s, and t    are found.    Normally distributed 

noise is then added to Vi. and 0    as before.    For each point in mission simu- 
A A 

lation time, the seguence is repeated to obtain appropriate simulation values 

for the pointing angles. 

5.4   .Observation fieomotry and Equations 

Two observation types are employed for estimating the state voitor. 

These are the radar-measured range rate, p, of the vehicle, and the .uuile, 

r,  fonned by the lines-of-sight to the Earth and to a specified navigation 

star (see Figure 5.4).    In computing range-rate, the motion of the tracking 

station, due to Earth rotation* as well as orbital revolution, is taken into 

account. 

Consider Figure 5.4.    The range vector can be expressed as 

P  ar   P -   r      »   J»  -    '■.'      -    R iT.-;.  .' ' 
S M 

where r is the heliocentric position vector of the vehicle; i*   is the helic- 

centric position vector of the tracking station; R    is the geocentric position 

vector of the station; and /?   is the heliocentric position vector of the 

Earth.    In the figure, the reference frame X'Y'Z' is a geocentric frame 

*    The diurnal effects of station motion have been shown to provide a 
significant contribution in obtaining accurate orbit determination (51,  34). 



167 

^ ^ 
CM CM 

>■ <X) 
t> ö * n 
C5 Q> 

v— 
^ ö: 

+ + 
•^ •H + + 
A: A! 

«D 

II II 
M N + +• 
■v; A; 

a> 

* ■ 

m .* 

r —i 

M + 
■y v»- 

1 L, 
I 4 
S 

<v 
<N 

fo H 
o + 
ti A; 

•^ + i 
A; ^^ 

,'«        ^ « 
'£ + •i 

A; "i 
i >- + —\ M 

A CM + w 
4-1 'S **- 

1 ^ r >- s 
ti ÖJ 

M k ■^ •^ 
+ 4- fQ 
A; 1 

OS ^ lu- 
II II II ll 

M "i •"1 »H + + + + 
AC A; A; A; 

'V ^ . n cr> 

T 
I 
I 

c 
o 

«3 

(A 
M 
ai 

i— 

c 
< 

C 
•r- 
■M 
C 
•r- 
o 



168 

S 
CO 

I 
O 

o 

1/1 

IT) 

^ H 



169 

aligned with m. The X and X'  axes are assumed to be aligned, pointinq to 

the First Point of Aires, T. x"Y"z" is a geocentric frame whose .v"-r" plane 

contains the equator. Thus, X"Y"Z"  is rotated about A' through the angle, 

E, the obliquity of the ecliptic (e = 23k0)'    The heliocentric components of 

R   are simply 

'x 
e 

R   = 
e y 

e 

Z 
e 

=     R 

OOS   £ 

sin z, 

0 

i .' 

where  \i< I  is the magnitude of R , and ;; Is the Earth's heliocentric orienM- e' " e 

tion annle.    The heliocentric components of R   are A  , \   , and      ;  thev art? a s      s M 

given by 

/.■ 

where 

A' 

K /.' " 
.9 

I 0 0 

0 Ci'l'i   E -i'iH   C 

0 01«   t acr  c 

and 

/,■ " 
.s' /.' 

(••( ),T    (|> OOB   \ 

(ton di       Ptn A a a 

The anqle, 4> » is the qeoqraphic latitude of the trackinq station, and ^    is 

the right ascension of the station. 

Now taking the derivative of (5.4.1) with respect to time gives 

p = r-r = p - R   - R 
s s        e 

m r -  B -  fl     X  R    -  R 
s        s        s        e e e 

(6.4.^) 
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where (  )  is the relative derivative, fi   is the angular velocity of the 

station, and o^ is the orbital velocity of the Earth.    To simplify the com- 

putational process, the assumption is made that the Earth's orbit is circular 

and hence co   and R   are constant.    The annular velocity, Q , is composed of 

the sidereal rotation rate, u , and w : 
s e 

s        s        e 

= £" 0) " -f ü) 
s e (6.4.7> 

ui " is aligned with z" and w   is aligned with z.    Thus 
s e 

p = /• - r 

with 

r   = (E M " + u ) * R   + u)   x /? s s e s        e        e 

Multiplying out £" w " gives 

(JÜ      - -0) ein t 

to       ffoa c s 

Using (6.4.S) - (5.4.5),  (5.4.7) and (5.4.9), eguation (5.4.8) becomes 

r»   =• 

('a)    - ai " aoa c) X    - a) " ein £ 7 
es s        s s 

(u}    + ta " nos c)  X 
es s 

tii " ein e X 
s s 

+ H 

or 

1  p' 

('(o   A'ri i   - ui ") --^.,.■' (1)    sin \    - io   ■".■"'.■ t" ein £ 
«? s ate s 

Cd)    ^ u) " (\\' i '   .vv d)    (Vfl  \ 

o 
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with \   ■■= \u) \  t and i; • |w |  t.    Thus the desired range rate may be found 

as the magnitude, p, of (b.4.1). 

The star-vehlcle-Earth anqle Is measured on board the spacecraft.    It 

Is found simply as 

r - ooo 
I K, - H     J 

For each simulated observation, random noise, ;'., Is added  to  th^ 

deterministic value by sampllnq from a normal distribution.    If the disctvtt" 

observations at time /, are specified nenerically as li, the associated sfatis 

tics for vnj are 

5.5   Error Compensation Mo de Is 

As indicated in section 5.?, the simulated thrust acceleration  is 

composed of a nominal or pronrammed thrust acceleration,    H, plus an error 

component, m(t).    The nominal dynamic model  assumed for the estimation process 

is essentially the same as equation (i>.::.7).    Of course, the accelerating 

error vector, m(t), is unknown.    We assume an approximation, ?(*)* to •M ,'', 

where e(t)  Is modeled as a stochastic process with {,■(''! satisfyinq one of 

several possible first or second order differential equations.    The elements 

of eft) are the three orthogonal components of the acceleration error, and 

are expressed In the orbital frame. 

While the general form given by equation (?,4.6) might be employed to 

obtain a single representation for the error, the selection and use of 

specific models offers the opportunity to Investigate the effects of different 

structures, i.e., itAuctiVutt ieniitivittj.    For this reason five different 
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models are employed:    three basic forms, two of which have two separate 

configurations.    These are described in the following paragraphs. 

Model 0.    In this model the acceleration error components arp assumed 

to be represented as purely random process noise.    Thus unlv a selected slate 

noise covariance matrix is employed to maintain a positivr dt»finite error 

covariance, and hence filter operation, and to prevent dlvemence.    In this 

case we define the estimated state vector to be x    s i''1  '* J« ^"d the 

corresponding differential eguations are 

r = v 

o = 
M3 

r + T* + M it 1 .'  . r .  ; 

M is given by C'*.,','.,"J, and u is random state noise representing the accelem- 

tion errors.    The a plivti statistics  for u arc 

/■'(/<) = o ,   i-^Hjd) u.(i)] - <i.(f} 'Wz-i' 

where / > (.»•, .7, ;:). 

ModelJ.    The thrust acceleration error component along the orbit 

frame y-axis (in the direction of the nominal  thrust)  is approximated by a 

first, order Markov process; the .c- and 2- components, in the orbit frame, are 

assumed to be purely random processes.    Here the nominal differential  eguations 

are 

p ~ D 

0 -    - /■ f T* + M <    • «   •  < 

with the addition of one of the following two confiqurations 

a) e = H 

b) ■Oß  + u a, = u a. 1 .» . t 
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The random variables u % u , u , and u   have the statistics 
X        Z       f u 

SiuJ = 0 ,    K{uAl)  uJx)) =<i,(f,)   6(t-T) 

where / c{x1 zs e, a}.    For each of the configurations a) or b) above, the 

correspondinq state vectors to be estimated are 

respectively, 

or X - 

r 

o 

i 

Model  2.    The thrust acceleration error component alomi the orbit 

frame y-axis  is approximated by a second order Markov process.    The .-  and   .- 

components are aqain assumed to be purely random elements.    The correspondinq 

nominal differential equations are then 

r =  o 

o - 

e * g 

t- + T* + M 

i ■■ z 

t)lus one of the following configurations 

a) g • u_ 

b) g =    ~ße + u 

0 - u. 

The random variables u , u , u , and na have the a pfiioKi statistics 
x      z      g 0 

E{ut) - 0 ,    EiuJt) uJ-x)) = qJt) 6(t-T) 

where 7 z{xs n, g, P).    For each of these above configurations the correspond- 

ing state vectors to be estimated are 
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respectively. 

In the ensuinq discussions the particular models   uul state vectors 

will be referred to oftpn by their model  number and  letter confiquration. 

Thus model  ?b  is   that doscrib(?d by model   2, equation ,.'■..■.'. ami uMifinnri 

tion b), equation i.'-.h.W). 

Note that each of the above model  forms seeks to approximate    i   '   in 

its own way.    Model 0, of course, has a null  structure as do fined in section 

3.3.    Model  la approximates m(t)  by a sequence of constants  (Fiqure 5.5a); 

model  lb uses a sequence of exponentials (Fiqure 5,5b).    Model 2a employs 

straiqht line senments (Fiqure 5.5c), and 2b approximates m(t) by a sequence 

of arcs corresoondinq to the output of the simple harmonic oscillator. 

For any of the assumed models, the state vector differential equation 

can be written in the qeneral form 

X(t) - F(x,   t) ir.S. :." 

In view of (6,2,2) t F(x, t) is a nonlinear vector function; hence a suitable 

estimation procedure is extended form of Alqorithm I. This is basically the 

same as Alqorithm II, except that here the inteqral  form for F   is replaced 
A 

with the discrete form given by (1,2,17). 

In forming P, given by (2.2.17), the term rvr7 is required.    Two 

methods for determining this are given by equations  (1,2,SO)* (l,2,SSa)i and 

(l.Z.SSa).    The latter form. 

r^r 
-/ 

$ n u BT Q? ,/T (1, C. SCJ: 

k-l 
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a) Model 2a d) hie del 2b 

Figure 5.5   Approximation        ^Is 
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is the more correct form, and is used exclusively when dealiiui with constant 

input values for u f>(t-T) = E{u(t) u(i)}.    In this case the elements of ,   arc 

the terms q. where I is taken from one of the index sets associated with 

Model 0, 1, or 2.    Numerical computation of r rr is performed as a simple 

quadrature based on the mean value theorem of integral calculus: 

iV - (B. u B.T + *. . t B.. u B. J ♦, .  .T) & ......5. ;• k k k,k-l    k-1 k-1       k,k-l I 

For the cases where the sequential   ' estimation algoritim! is employed, 

eouation f 1.2.33a)  is used with r given by (/..-. .V): 

k-1 

This form is required because the V matrix itself is used.    In this case wo 

let u ■ Q, and the elements are again the terms q. with ,' taken from the 

appropriate index set.    The numerical computation of I   is carried in a manner 

similar to the above, again using the mean value theorem: 

The elements of B for all models are given in Appendix B. 

/ 

5.6   Simulation Process 

Figure 5.6 is a functional flow diagram of the simulation process. 

It represents the logic followed by the simulation computer program.    Input 

data is read from an appropriate input file, and various problem parameters 

and logic switches are initialized.    Both the simulated and nominal trajec- 

tories are numerically integrated simultaneously through one observation 

interval.    The simulated thrust acceleration is computed according to Figure 

5.3, and the nominal thrust acceleration computed from one of the appropriate 

error models of equations (5.6.1) through (6.S.20).    In addition, the 
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Figure 5.6   Simulation Logic Flow 
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differential equation for the state transition matrix, 

l(tt   t .)  = A(t)   <Mt,   t.) f 1.2.29) 
J j 

is simultaneously integrated.    As discussed in section 1.2, the matrix. A, is 

the partial derivative of F with respect to the state, x-    The elements of A 

for each model are given in Appendix B. 

Next the first simulated observation is computed with a random noise 

component being added.    (Observations are processed one at a time; hence, we 

have the computational advantage of scalar observation.)    The corresponding 

nominal observation value is determined, and the observation mapping matrix. 

//, evaluated.    The elements of H for each observation are given in Appendix C. 

The estimation equations are employed to obtain the state estimate, \. 

If any further observations are to be processed at this time point, the appro- 

priate logic is repeated as shown in the figure. 

A test is made to determine if print output is required, and if so, 

the appropriate information is written.    A test is also made to determine if 

the final simulation time has been reached.    If it has not, the process of 

integration, observation, and estimation is repeated for the next and succeed- 

ing observation intervals until the final time is reached.    Finally, data 

plotting is accomplished as determined from input data and the simulation run 

terminates. 

5.7   Numerical Results 

In performing the various numerical simulations, a common set of basic 

problem data is consistently used.    This approach provides a common basis for 

evaluating the estimation performance of each of the approximatinri models. 

This set of data is given in Table 5.1.    The initial  conditions, position and 

velocity, are the same for both the simulated and nominal  trajectories.    The 
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observation Interval  is a constant 50 minutes for each observation type; 

hence the corresponding variances are scaled to agree with this sampling 

rate.    The initial geometry is such that the Greenwich Meridian intersects 

the X-axis at midnight, GMT*, formidq the spacecraft initial subpoint 

location. 

In order to gain an idea of the acceleration error components, the 

plots shown in Figures 5,7 and 5.8 were obtained.    Figure 5.7 shows the error 

components along each of the orbital frame axes as functions of time.    Note 

the periodicity of the y-component and the irregularity of the x- and z- 

components.    Further, the y-component. is approximately three times as great 

as the others.    Figure 5.8 shows the trace of the thrust acceleration vector 

projected on the orbital frame x-z plane.    Note the approximately circular 

bound of radius ~ ,0066 tm/eeo1.    The errors are also seen to be somewhat 

concentrated in the first quadrant, and rather less dense in the fourth 

quadrant.    As the simulation time continues beyond the 35 days shown here, 

one can expect that these errors would be more uniformly distributed within 

the full region. 

In the following paragraphs numerical  results are presented showing 

estimation performance for the various models and approaches.    In presenting 

the data, two quantities are plotted which represent a figure of merit of 

performance.    These are the Euclidean norms of the error components of posi- 

tion and velocity, and the square root oi the trace of the appropriate 

covariance submatrix elements.    The ensuing discussions will  refer to these 

quantities as RSS (root-sum-square) and RTC (root-trace-covariance), 

respectively. 

* GMT ■ Greenwich Mean Time;   see,  for example,   (9). 
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Figure 5.7 Acceleration Error Components 

(t = 35 days) 
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Figure 5.8   Acceleration Errors in a>a Plane (mm/sec2) 
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Nominal Cases With and Without Model Error.    Figures 5.9 throwili 5.1? 

show the position and velocity error norm, RSS, for the nominal data of Table 

5.1, both with and without thrust acceleration modeling error, respectively. 

Clearly the estimation performance in Figures 5.9 and 5.10 i«; erratic and 

unacceptable, producing estimation errors as high as 20,000 km and 18 m/sec. 

The rapid decrease in the error covariances is illustrated hv the short dashed 

line, the RTC, near the origin.    Figures 5.11 and 5.12 Illustrate  the case of 

perfect modeling.    Mere both  tho actual and assuniod thrust accelerations are 

of constant magnitude, always directed along the orbital  friime v .ms.     Iwo 

RSS curves are shown In each figure, corresponding to two different values 

of the observation error variance for the star-Earth angle, ,",.    In both cases 

the RSS values become substantially less than ? km in position and  .004 m/sec 

in velocity as the estimation process proceeds. 

Perhaps more interesting is the sensitivity, shown by these curves, 

of the estimation process to differences in the observation er-or variance. 

The solid line in Figures 5.11 and 5.1? represents the RSS for the nominal 

(Table 5.1) value of h'   ■ (? aroeeo)*.   The dashed line corresponds to an 

increase of 3 arcsec resulting in A    » (10 ar^cc)2.   In both cases, of course, 

each value is used for both the true (simulated) and assumed (nominal) value. 

This change in the value of R. illustrates a somewhat surprising sensitivity 

of the estimation accuracy to this particular measurement type.    For the 

increased /?- the position RSS is more than twice that for the nominal value. 

Clearly similar behavior is seen for the corresponding velocity RSS. 

The sensitivity of the estimation process to Ay, and the problems of 

actually developing eguipment capable of such high accuracies prompts the 

question of necessity.    Are C measurements indeed necessary?    To answer this, 

consider the information obtained from a sinale range-rate observation.    From 
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equation (1.3.21), letting j ■ k-l, we first make the approximation that 

♦.   ,     = J for small At, so that 

Dropping the subscripts and employing the p elements of // defined In Appendix 

C, we have for the i - j elements corresponding to position (i, j ■ 1, 2,  S), 

[HT R'1 H].. = [(x. - k .) - (x. - x .)(P/P)] • 

[(X. - X   .)  -  (X. - X   .)({)/p)]/(p2 R) (5.7.1) 
J        sj J        sj 

where p Is the range from the tracking station to the vehicle,    x. and x . 

are elements of r and r   respectively.    For the velocity elements (it j « 
S 

4>  5,   6), 

[HT n'1 H]. . = (X. - X ^(X. - X   .)/(p2 R) (5.7.2) 
ij i        si      j        sj 

and for the mixed terms (t = 1,   2, 3;    J = 4, 5, 6) 

[HT R'1 U]. . = [(X. - X   .)  -   (X.  - X   .)(p/p)]  •  (X. - X   .)/(p2  H) 
ij i        si i        si ' j        sj 

(5.7. S) 

Now consider the situation where the vehicle and tracking station are in the 

ecliptic (heliocentric X-Y) plane, with no velocity components directed out 

of the plane.    Clearly the Information derivable from the range-rate measure- 

ment for the Z-component {i = 3) of position and velocity is zero.   Now while 

this configuration is not usually the case, the values of the position and 

velocity Z-components of both the vehicle and the station are small enough to 

make the information quite small.    Thus the range-rate measurement contributes 

only little Information for the estimation of the out-of-plane components of 

the state.    (Note that the Information would be even less If station motion 

were not considered; this further substantiates the claim set forth In 

(51, 34).) 
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To see how the angle measurement. C> alleviates this problem, consider 

the corresponding elements of the Information matrix, again for one measure- 

ment and with the approximation, «t = /.    For the position elements (i, j * 

I,   2,   S)M 

[nT if1 //].. = 8   . - aos  C 
(X , - X.) 

ei        x 

A   - I» i e        i 

(x  . - IJ 
3   . - aos  f. —■■ ^— 
*J \R    - I» 

/ f|A   - ^|2 f ein* V 

(6.7.4) 

Here, even when the Z-component of position is zero, the correr.pondinq infor- 

mation term is, in qeneral, non-zero.    Only when 

5 = aos 8 

\K-r\l 
■    oott 2846 ( —^ 1 

is the Information term zero.    Now 2    Is zero, since the Earth remains in the 
e 

ecliptic, and z ft very small compared to \E   - r\.   Hence the approximate 
e 

value of C = 90° results in a corresponding value of zero for the information 

term.    This value can, of course, be encountered in practice.   However, for 

the periods investigated in the simulation, this particular geometrical con- 

figuration was not encountered.    (In passing we note that the values, 5 = 0,  m, 

could lead to some numerical problems due to the division by sin £.    However, 

for the navigation star selected these values of 5 cannot occur.) 

For the velocity elements, the information term, HTP~ H, is zero since 

the corresponding elements of H are zero.    Thus estimates of the Z-component 

of velocity must rely almost solely upon the information derived from the 

range rate.    This dependence is manifested by errors in the out-of-plane 

velocity which are sometimes as much as an order of magnitude greater than 

those of the other components.    However, this particular problem is partially 
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alleviated by accurate estimation of the position.    This is true becMM the 

acceleration Is, in part, a function of position, i.e., equation (6,Z,I), 

Thus accurate estimates of r keep the nominal velocity values fairly accurate. 

More directly, the elements of the state transition matrix, previously assumed 

to be diagonal. In fact contribute a coupling of Information elements to aid 

accurate estimates of the velocity. 

While the previous discussion has been directed toward the information 

obtainable for the Z-components of the state, very similar conditions and 

explanations apply for cases where the vehicle Is on or very near the X- or 

Y-axes.    For example, initially the vehicle is on the heliocentric X-axis. 

Only one station, Madrid (JPL-61), Is initially tracking.    The vehicle Is 

almost directly overhead, hence, p ~ o, and (1 - r ) « 0.    Thus, only a small 

amount of Information about Y Is available since Dp/Dy ■ 0,    Similarly, for 

these conditions, I - X   - 0, and hence dp/dx ■ 0 yielding little Information 

about X.    However, information is available from the star-vehlcle-Earth angle, 

C, which does aid the estimation of these otherwise locally* unobservable or 

nearly unobservable elements.    In fact, it has been found that conditions such 

as these occur quite often at various times throughout the mission.    The result 

is that without the angle measurement, f'i extremely larqe estimate error 

values often occur. 

Thus  In view of the foregoing discussions. It is desirable to have 

an additional or supplemental measurement type.    The onboard angle. .■,, appears 

to be a viable candidate producing useful information to aid the orbit 

determination process.    One of its chief disadvantaqes Is the high resolution 

*    The  term local observability might be suggested for those state 
elements which are observable for only a subset of the  total observation set. 
Thus a system could be described as locally observable if (J.S,£2)  holds where 
the observations {(/,,   ...., y } form a proper subset of ¥., 
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demanded to produce accurate estimates.    Another disadvantage 1s discussed 

later. 

Model 0 - State Noise Covarlance.    A number of simulations were per- 

formed using various values of the diagonal state noise covarlance matrix, 

u% (see sections 1.2 and 5.6).    Typical results for three linearly related 

values of u over a 60-day period are shown In Figure 5.13.    Here the estima- 

tion performance is reflected by the position error RSS for the following 

values of U\ 

IJ1 = K.ie x io'6   .lee x IO'*   .16 x jtr
6;r   tmi/9*et)1 

U2  = r(.16 x iö'10     .166 x 10'9     .16 x  lü'l0)T    (nr.'pr^'2 

», = U.16 x io'11     .166 x jo'11     .16 x  to"1*)1    ('T;..W:]2 

Examining the figure, as the state noise cova/iance is decreased, we begin to 

see divergence of the state estimate.    In fact, for all cases, including that 

corresponding to the largest value, I/,, divergence is at least starting near 

the end of the simulation period. 

A particularly interesting feature is the apparent trade-off in (he 

values of U and the maximum estimation accuracy obtained.    This is shown by 

the large dips in the RSS curves at about 10 days.    For the smallest value, 

//3, the RSS curve has the greatest dip; for IL the dip is smallest.    An 

intuitive explanation of this phenomenon is based on the following reasoning. 

Initial  filter operation produces estimates of greater and greater accuracy 

as more observations are taken.    If the value of /' is small, the error co- 

variance decreases rapidly, producing more nearly optimal estimates and thus, 

for a short time, more accurate estimates.    However, eventually the covarlance 

becomes so small that it is unable to cope with the error buildup, and di- 

vergence occurs.    On the other hand, for a larger V the error covariance does 

not decrease as rapidly.    Hence, the filter is not operating near the optimum. 
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and estimate accuracy is therefore not as good — at least durinq the short 

period around 10 days.    However, the presence of a larger " keeps the filter 

operating longer before divergence occurs. 

Next note the dotted curve which corresponds to the niaximum RTC, i.e.. 

that for 6',.    Its average value is approximately 70-80 km, a value which does 

not reflect the error RSS of 300-400 km.    (Although they are not shown, the 

RTC's corresponding to u2 and y3 all lie below that for i\.)   This suggests 

that the valu** of V be increased. 

Such an increase produces the estimation results shown in Figures 

5.14 and 5.15.    The increased elements of u have the values, 

a   m a    = .16 * JO'**  (mm/sco2)2 

a    = .166 *  10~3   (mm/sea)2 

y 

These figures show position and velocity RSS and RTC curves for both the 

nominal acceleration error and an increased error, to be discussed later. 

In Figure 5.14 the position error RSS is seen to be greater than that obtained 

in Figure 5.13.    However, the RTC curve is a better measure of the accuracy, 

even though it does not bound the RSS curve.    Further, the estimate remains 

fairly stable throughout the simulation period of 60 days.    This is further 

supported by examining Figure 5.15.    Here the solid curve represents the 

velocity error RSS over the 60-day simulation period.    Although there are 

some fairly large error peaks during the latter 30 days, overall  the velocity 

error RSS appears generally to be free of divergence during this period. 

figures 5.14 and 5.15 also show the estimation performance for the 

case where the thrust acceleration error is increased by a certain amount at 

30 days into the mission.    This increase is produced by changing to the 

following acceleration error simulation values: 
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Y ■ .026175 vad 

dap ■ .0027 m/sca1 

This corresponds to a 50% increase in the nominal values. A plot of the 

corresponding y-component of thrust acceleration error is shown in Fiqure 

5.16. Figures 5.14 and 5.15 thus reflect the ability of the algorithm to 

handle changes in the thrust acceleration error. For the correspoiidinq position 

error RSS, the differences between the nominal and increased thrust accelera- 

tion error are essentially nonexistent, and are therefore shown together as 

the solid curve. The dotted curve is the RTC for both also. In Figure 5.1b, 

however, the velocity error RSS curves are slightly different, with the RSS 

for the increased acceleration being given by the dashed curve. As expected, 

the error is slightly larger than that for the nominal acceleration error 

simulation. As in Figure 5.14, the dotted curve represents the velocity error 

RTC for both cases. However, a curious aspect is the behavior of the RTC 

curve. This is seen as a generally increasing trend from about 10 days. The 

data also reflect a similar, but considerably less detectable, behavior for 

the position RTC. One possible explanation for this is the fact that as the 

vehicle moves farther from the Earth, the angle measurement, '., becomes less 

sensitive to changes in position. For example, initially the spacecraft is 

approximately 9.25 * 10s km from the Earth. The standard deviation of 7 

arcsec for the onboard angle measurement corresponds to an arc length at this 

distance of approximately 31.4 km. By 60 days into the mission, the spacecraft 

is approximately 1.53 x 107 km from the Earth; the corresponding arc length 

Is approximately 519 km. While this behavior could be seen more rigorously 

in terms of the information matrix, the effect is clear: less information 

is available from the onboard measurement angle as the distance from the 

Earth is Increased. 
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Models 1 and <f.    Ii(|urt". b.l/, b.Vl, .md b.19 '..how Ihr; est.ination 

performance for each of the other four approximating models.    For these 

cases, the thrust acceleration error parameters are increased to the same 

values as for Model 0, above.    Further, each case employed values of ?- as 

Indicated below. 

Model la 
q    = q    = .16 * 10      (rm/seol) 2,2 

q    = .16 ■*■ 10 10 (rm/eeo ) 3)2 

2|2 q    = q    = .16 * 10      (rm/sea2) 

Model  lb q    = .5 * lO'11*  (rm/sec3)2 

qa= .q * 10 -35  Mfl-" 

Model 2a 
q    = q    = .16 * 10      (rm/eea2) 
^ x     nz 

2)2 

q    = .3 * 10 '2<» (mn/seo ) '♦12 

Model 2b 

lq    mq    = .16 * 10      (rm/eeo2) 

q    = 10'22  (rm/oea")2 

<7ß = .5 x 10'™ aecT* 

2,2 

Figure 5.17 shows the position error RSS for each of the model con- 

figurations. As expected, the estimation accuracy generally is improved over 

that for Model 0. Most remarkable is the accuracy with which Model 2b yields 

performance estimates. This is represented by the solid curve, and corresponds 

to an average position RSS of about 60 km (time N 10 days). This approaches 

a factor of 5 reduction in the RSS values for the other models. It is 

important to remember, however, that Model 2b corresponds to the correct 

structure of the actual thrust acceleration error magnitude, and thus one 

would expect superior performance. We remark that Model 2b is not quite 
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the exact structure for the y-component of acceleration error, however. 

This is due, of course, to the fact that the thrust acceleration error vector 

deviates from its nominal orientation so that Model 2b is attempting to 

approximate the y-axis projection of the thrust acceleration.    Further, we 

have employed a differential form, and consequently truncation errors in the 

numerical integration algorithm contribute what appears to the estimation 

equations to be a form of model error.    It is these aspects which require the 

use of a small state noise covariance matrix (also see (11) ). 

The next most accurate performance is that provided by Model 2a, 

simple linear form.   As shown by the alternately dot-dashed curve, the average 

position RSS is approximately 300 km (for time > 10 days). 

The two first order models, la and lb, produced acceptable estimation 

accuracy, but not as good as expected.    In fact. Model lb produced a position 

RSS curve of about 450 km, some 80 km greater than that for Model  la.    One 

possible reason for this is that too small a value for one or a number of 

the state noise covariance elements was used.    This suggestion is supported 

by the fact that the associated error RTC data indicated an approximate steady 

state value of 280 km, a value somewhat below the actual RSS curve.    In all 

cases a considerable number of runs were made for each model to obtain appro- 

priate values for the state noise covariance matrix elements.    This process is 

tedious, time-consuming, and expensive, and for this reason, it was decided, 

following some effort, not to pursue this "tuning" process further.    Clearly, 

one would expect that more accurate results could be obtained by varying the 

<7Z values until the position error RTC and RSS become approximately the same. 

For each of the other models, the indicated values of .;. resulted in 

RTC's which coincided with or exceeded their respective RSS data. The model 

producing an error RTC greater than its RSS data was Model 2b.    In particular 



the RTC data indicated an average value of approximately 295 km. Presumably 

further tuning of the filter would result in even greater accuracy for Model 

2b.    For the reasons cited above, this was not done. 

Figure 5.18 shows the velocity error RSS curves for each of the models. 

Here the performance appears to be nearly the same for each.    However, these 

curves are in general more erratic than in Figure 5.19.    In particular, toward 

the end of the simulation interval the effects of the increased thrust accel- 

eration error are rather pronounced.    In spite of this, there does not seem 

to be any indication of a tendency toward divergence; hence, for all these 

models, the estimates are stable over the entire interval.    Further, in all 

cases the corresponding RTC data bounded or coincided with the RSS data. 

Figure 5.19 showj the estimates of the thrust acceleration y-component 

for each model.    These estimates are those which resulted in the estimation 

performances of Figures 5.17 and 5.18.    Each estimated acceleration curve 

represented by the heavy, solid line is identified with the corresponding 

model number.    The estimated curves are superimposed over a lighter curve, 

the true y-component of thrust acceleration error.    As seen from the figure, 

all four models perform admirably in representing this component of accel- 

eration error.    Particularly notable is the fact that all methods adapt to 

the increase in the acceleration error at 30 days.    Now, the plots for Models 

la and 2b do not appear to be very different (although the position and 

velocity RSS's in Figures 5.17 and 5.18 indicate otherwise).    On the other 

hand consider the respective curves for Models lb and 2a.    Close examination 

of the Model  lb curve reveals that a number of the actual error peaks are not 

matched by the approximating curve.    This is possibly due to a smaller than 

necessary state noise covariance matrix and presumably the estimates would 

be improved if this matrix were increased in value.    This further supports 



the suqqe'.ted explanation why Model  lb yield', the largest pcUion error KS^». 

Next, examining the Model 2a curve reveals that the estimated values near 

the error peaks are larger than the actual error (the breaks in the approxi- 

mating curve Indicate where the values extend outside the limits of the 

graph).    In view of the previous suggestion concerning Model  lb that the 

state noise covariance is too small,  the implication hero is that the cor- 

responding covariance is  too Inrqe,     In this case, however,  iL has been  found 

that the position error RTC data coincides very closely with the I'SS curve. 

Further, the fact that the Model 2b simulation yielded RTC values which were 

well above its RSS values, tends to discount this explanation for over- 

estimating the peaks.    The actual reason for this behavior is not clear.    Two 

possible explanations are offered.    First, it is possible that generally over- 

estimating the acceleration error simply results in orbit determination 

performance which is more accurate than that resulting from under-estimating 

the error.    Second, the plots shown are generated using approximately every 

fourteenth or fifteenth point.   Thus many values occur which are not shown, 

and on (he cLveiage, it is possible that considerably better estimates of the 

error are obtained for Model 2a than for Model  lb. 

In view of the foregoing discussions, it appears that generally the 

second order models, 2a and 2b, are superior in representing thrust accel- 

eration errors of the type encountered in the simulations.    Further, the 

importance of exact modeling to the maximum extent practical is clearly 

illustrated by the exceptional performance of Model 2b. 

Seguential Estimation of the State Noise Covariance.    We have seen 

rather accurate performance using an a pxioii constant state noise covariance 

matrix associated with each of the models.    However, in view of the many 

numerical simulations which invariably must be performed in order to "tune" 
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the state (vector) filter, a natural alternative is to employ the sequential 

state noise covariance or ^-filter to aid in this process.   This has been 

quite successful as we now proceed to show. 

First, some comments dealing with general performance are in order. 

Initially, numerous runs were made to investigate the effectiveness of the 

sequential ^-filter     In these cases operation of both the ordinary state 

filter and the (V-filter was simultaneously initiated.    Results were obtained 

for all models and were less than satisfactory.    In all of these cases, the 

performance was worse than that obtained by simple tuninq of the state filter 

using a ptu&U constant values of Q,    Attempts were made tc improve the 

performance of the (^-filter by employing different a pfUoti values of both 

Q and the Q-error covariance, S; usimi different constant values of the 

observation residual error variance, Ti and using the "sliding window" modi- 

fication to the '/-estimator, equation (3.6.36).    These attempts met with little 

success.    After exhausting such approaches, a re-examination of the strategy 

for employing both the state and (V-filters was made.    This revealed that 

possibly the initial transient operation of the state filter was having a 

detrimental effect upon the ^-filter performance.    To investigate this, runs 

were made in which in which initiation of the ^'-filter operation was post- 

poned for the transient period of state filter operation, approximately 5 

days.    The results were highly encouraging. 

To illustrate this strategy, cases for Models lb and 2b were run. 

Recall from previous discussion that the results obtained in Figures 5.17 - 

5.19 suggested that the state noise covariance values appeared to be too small 

and too large, respectively, for these models.    For this reason, it was felt 

that the ö-filter could improve the values of Q, and hence the estimation 

performance.    For both models, simulations were run for 30 days using the 
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Initial data given In Table 5.1.    In addition, a piioni values of Q were 

taken to be those of u corresponding to the results obtained In Figures 5.17 - 

5.13* (see page 198).    The initial values of the Q error covariance matrix, 

/>', were selected to make S% diagonal.    The ^0 elements correspondinc) to 

diagonal elements of Q were chosen approximately as the square of these a 

pUaHi Q values.    The 50 elements corresponding to off-diagonal or correlation 

terms of Q were taken (approximately) as the product of the a yKioii diagonal 

Q elements corresponding to the row and column of the correlation term.    Thus, 

•t t • 0j 

s. ,  - q. }  ,    8,.   = c7      q (5.7.1'> ii      ^JJ kk       'nun 'nn 

Taking this approach was an arbitrary choice.    However, it was found that 

relatively accurate values for 5, are necessary, and the rule-of-thumb given 

by (5.6.5) was found to be a viable approach.    In view of this, the a pticti 

S values are given in Table 5.2 for each of the two b models. 

Because of the extremely small values of many of the e.., different 

units are used in carrying out these simulations, namely, millions of meters 

and millions of seconds.    This is done in order to avoid numerical difficulties 

In order to test the adaptability of the Q filter. Increased acceleration 

errors were simulated at 15 days.    This was done by again increasing 7 and 

6a0 by 50% to 

7= .026175 pad 

6a0 = .0027 m/sea2 

In determining the observation residual error variance, T, the sliding window 

modification, equation (3.6.36) was used with the small a pfiicii value of 

*    Recall the discussion in section 5.5 associated with the computation 
of F.    Because T itself is required, equation (1.2.30)  is used, and hence 
we assume,  approximately, Q = U. 
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Diagonal Corresponding Variance Values for 

s Element Q Element Model 1b Model 2b 

411 'qx 10'l0 (m/se^)1* 10'l0  (miAwc2)" 

q\2 10'10 (m/a^'2)1* J0'lt {tm/*t'jz>k 

<J\i 10'l9 (m2/aeas}z lü~27 (m Böa*)* 

qi* 10'k0  (mi/sec')7 ;t-.--,s (m/er?*)7 

'722 = qz 10'10  (m/^.r)1' h~10 (rm/Bea*)" 

(?23 10'l* (mt/aeo*)* ]}"?7 (m/8e<s%>k 

qzn 10'^  {rm/p,eok)2 20'**  (rm/se?*)7 

<7si ~ qe> qg 
10~™ (rm/aea3)'4 10""'  (t-n/seS)1* 

qi>* 10~^  (mn/ima*)2 10~S2 (m/Beo7)* 

810    13 q*» = qa> ?3 10'70 sro'* IC''0 erc'17 

Table 5.2   A P>Uo>U S Values 
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ft m IO'1" (nin/aea)".    Twenty residuals were used as the residual batch size, 

l.o., /v     f.o. In (X.O.Mt),    Finally, in carryinq out the simulations, the 

U filter was not oporated until the fifth day of '"Ission time in order to 

avoid the transient effects of state filter operation. 

Figure 5.20 shows the position RSS and RTC for both h models:    b.'iO* 

for Model  lb, and 5.20b for Model 2b.    In both cases the performance is quite 

good.    Figure 5.20a shows a particularly significant Increase In performance 

over that shown in Figure 5.17.    The RSS curve has been lowered to an approxi- 

mate mean of 125 km, a considerable Improvement over the previous 450 km of 

Figure 5.17.    Further, the RTC curve is more representative of the actual 

RSS error, although it appears to be slightly low.    For Model 2b there does 

not seem to be any noticeable improvement In the estimate as reflected in the 

RSS curve.    Both here and in Figure 5.17 the RSS has a mean of around 60 km. 

However, the corresponding position error RTC Is now an accurate representa- 

tion of the position error, and adequately bounds the actual error RSS.    Note 

that for both models the filters easily handle the 50% acceleration error 

increase at 15 days. 

Results obtained for the velocities are shown in Figures 5.21a and 

5.21b.    The performance Is comparable to that shown In Figure 5.18.    However, 

for Model lb the velocity error RSS curve has some peaks which are larger 

than those of Figure 5.18b.   These peaks seem to be decreasing in amplitude 

after the largest one at 21 days, and therefore do not suggest divergence. 

However, the RTC Is somewhat lower than the RSS curve, and it is possible that 

divergence may appear at some later time.   As before, the results for Model 

2b are particularly good, although here also there is a large error peak at 

about 21 days.   Again the RSS decreases, and, except for the peak, the RTC 

mean of about .2 m/sec adequately reflects the true error. 
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Q Estimation 
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5.21a    Velocity Error RSS and RTC for Model  lb 
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5.21b    Velocity Error RSS and RTC for Model  2b 

Figure 5.21    Velocity Error RSS and RTC 
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It Is entirely possible that the peaks In the error RSS curves may 

be due to operation of the filters as they attempt to adapt to the accel- 

eration error.    Figures 5.22a and 5.22b suggest this possibility as they show 

the true and approximated thrust error accelerations.    In particular. Figure 

5.22a shows that the Model lb error approximation is slightly out of phase 

with the true error.    Further, it is smoother and does not reflect the more 

erratic behavior of the actual thrust acceleration error.    On the other hand, 

Model 2b does a reasonably good job of approximating the true error.    In 

either case there are rapid alternations at the true error maxima and minima 

which are difficult to approximate and which are therefore quite capable of 

resulting In the peaks In the position and velocity error RSS'. 

Figures 5.23 and 5.24 are plots of appropriate RTC values for the 

state noise covariances.    These figures illustrate quite well the expected 

changes in the state noise covariance values.    Figures 5.23a and 5.23b show 

the respective Model lb and 2a state noise covariance RTC curves for the 

orbital frame x-z components of error.    Note that both curves reflect the 

constant a. ptdotu values.    At 5 days there is a rapid incAaoAc in the RTC 

value for Model lb and a decicoie in the RTC for Model 2b.    This behavior is 

exactly that expected to improve the position and velocity RSS'.   Also notable 

Is the Increase in these Q estimates at about 15 days, corresponding to the 

increased thrust acceleration error.    Thus the Q filter is actually adapting 

Its estimates to account for these error increases.    This behavior can also 

be seen in Figures 5.24.    Figure 5.24a shows the state noise covariance RTC. 

i/f-, corresponding to the noise term in the approximating differential 

equation (5.5.5).    Likewise, Figure 5.24b shows the covariance RTC, v^~, 

corresponding to the noise term in (5.6.10).   We again see the constant a 

pKloni Q values for both cases during the first 5 days of the mission.    At 
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this point changes occur with J§     increasing and y^""   decreasing as expected. 

Again at 15 days both estimates begin growing as the Q filter attempts to 

account for the increased model error. 

For the model parameters, a and ß, the corresponding state noise 

covariance estimates retained their a piioni values with no discernible 

changes as the estimation proceeded.    This is attributed to the very small 

a pfUofU values of 8i0  10 corresponding to these parameters (Table b.Z). 

Recall from Chapter 4 that too large a value of Q for the model parameter, ,♦. 

resulted in ox% following the observations, thus destroying the correlation 

effects.    In view of this, the suggestion is made that It is better, within 

parexic bounds, to let such parameters tend more to their constant values. 

This strategy is further motivated by the initial results obtained when both 

the state and Q estimations were initiated simultaneously.    Thus initial values 

of S normally should be chosen as nearly representative of the true uncertain- 

ties in Q as possible.    An Interesting aspect of the <,' filter performance was 

noted in using constant values of the residual variance, /', as opposed to 

estimating them via (3.6.36).    Results indicated that variations in .  by as 

much as three orders of magnitude produced essentially no overall change in 

estimation accuracy from that obtained in the foregoing cases.    Generally, 

however, it is recomnended that T be estimated, thus eliminating additional 

a pfUufU guesswork. 

The main disadvantage of the Q filter appears to be the increased 

demand upon computation time.    This can be severe, particularly for more 

complex models.    For example, the two models treated here required nearly 

50% more execution time than that without the sequential Q estimator.    This 

aspect is substantial motivation for keeping the approximation structures 

relatively simple. 
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As a result of the application of the sequential Q estimator, we 

have shown that it is possible to improve the knowledge and confidence in 

the state estimates.    It is most important, however, that the Q filter opera- 

tion be initiated after the transient period of the state filter is passed. 

5.7   Summary and Conclusions 

In this chapter we have investigated the performance of model error 

and state noise covariance estimation algorithms as applied to the orbit 

determination problem of an SEP spacecraft subject to anomalies in the thrust 

program.    We have established that some supplementary measurement type is 

useful in addition to the normal radar range rate observations.    The use of 

the onboard star-vehicle-Earth angle, while providing such information, suffers 

two main disadvantages.    First, high measurement accuracies are necessary to 

make the technique useful.    Second, as the distance of the vehicle to the 

Earth increases, the measurement angle uncertainties translate into larger 

position uncertainties.    This latter problem suggests some alternative approach, 

such as switching to the target body (in this case, the asteroid) as the 

approach phase is entered.    This would provide the reverse effect with greater 

accuracy being obtained as the vehicle approaches the target.    Another alter- 

native is to employ a different measurement type.   A potential candidate is 

quasi, very long baseline interferometry (QVLBI).    This has been shown to 

offer greatly improved observation accuracies over that obtained with con- 

ventional range rate tracking (52), although additional development is 

required to make it practical. 

The use of a state noise covariance matrix (Model 0) to maintain 

filter operation has been shown to be effective in preventing divergence of 

the estimates, and can yield accuracies of less than 500 km position error 

RSS.    In general, the performance can be improved using any of the other 
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models investigated, although the second order models {?a and ?b) appear to 

offer greater accuracy and stability of the estimates.    In particular, the 

superior performance (RSS ■ 70 km) of Model 2b, being the closest in structure 

to the actual error, confirms the importance of accurate modelinq to the 

maximum extent practical. 

In all cases, a state noise covariance matrix is required in order 

to prevent filter saturation and subsequent divergence.    However, with the 

estimation of the model errors, the state noise, and therefore the error 

covariances, are smaller than without model error estimation. 

Application of the sequential Q estimator has been found to be a 

workable approach for estimating unknown state noise covariances.    For the 

error approximation Model lb, the Q filter greatly improved the RSS error, 

decreasing it from 450 km to about 120 km.    The state RTC in both cases has 

been shown to be an adequate reflection of the confidence in the estimates, 

particularly in the case of Model 2b, where the RTC practically bounds the 

RSS.    Of paramount importance in employing the state and Q filters is to 

insure that Q filter operation is not initiated until after the transient 

period of state filter operation.    A potential problem is that of the choice 

of units for the dual state and Q filter computations.   As reflected in 

Table 5.2, very small numerical values can be encountered for the .,? error 

covariance matrix, 5, and these must be compatible with the computational 

capabilities of the particular computer to be employed.    Further, making the 

a pfUo*U s too large can result in estimates following the observation 

residuals, thus at least delaying accurate convergence of the estimates. 

Finally, the sequential Q estimator suffers the disadvantages of requiring 

up to 50% more computation time over that for just the state filter with a 

puioni constant Q values. 
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In sum, we have shown that the thrust acceleration errors which, 

unchecked, produce extreme divergence of the state estimates, can be very 

adequately controlled.    The techniques employed not only increase the 

navigation accuracy, but also knowledge of the actual dynamic model. 

^ 



Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1   Summary and Conclusions 

This dissertation has been concerned with solving the fundamental 

problem of dynamic modeling errors in classical Kaiman filtering.    The very 

detrimental effects of such errors have been illustrated in both algebraic 

and numerical terms through the examples of the rendezvous and SEP vehicle 

estimation problems.    In approaching the model error problem, various aspects 

and properties of the filtering elements have been presented, e.g., infor- 

mation, observability, etc., thus providinq a fundamental base for the 

investigation.    A number of non-adaptive alqorithms have been presented 

which attempt to account for errors in the dynamic model.    These range from 

the optimal approaches of employing a state noise covariance matrix and the 

more complex limited memory filter, to the suboptimal techniques of age- 

weighting, additive gain term, and gain scaling modifications.    In all cases, 

these approaches compensate for the model error by simply keeping the gain 

at a high enough value to prevent saturation, and thus allow continued filter 

operation.    There is, however, a certain minimum estimation accuracy obtainable, 

reflected in part by the steady state value of the error covariance, and 

determined by the corresponding filter parameters. 

Except for the limited memory filter, adaptive forms of each of these 

error compensation techniques have been presented.    Using the adaptive state 

noise covariance estimation algorithm due to Jazwinski, adaptive forms were 

derived for each of the other methods. 
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The powerful technique of adaptively estimating modeling errors has 

been presented, along with discussions of the assumed functional form or 

mathematical structure of these errors.    A unifying derivation has boen 

presented resulting in a relatively flexible structure suggested as a can- 

didate function for use in model error compensation.    Additionally, a new 

algorithm for sequentially estimating state noise covariances has Leen 

developed, based upon the ordinary Kaiman filtering algorithm.    In view of 

the non-negative definite property of the state noise covariance, and certain 

other assumptions, the algorithm produces constrained minimum variance 

estimates. 

In applying the techniques to the rendezvous and SEP estimation 

problems, numerical results have offered some interesting conclusions.    From 

the rendezvous problem, the performance of the ordinary gain scaling algo- 

rithm {b = constant) clearly indicates that this method is unacceptable to 

counter the effect of unbounded model  errors.    This is true for both the 

adaptive and non-adaptive forms.    In their non-adaptive forms, the other 

algorithms have been shown to produce equivalent steady state performance 

when appropriate filter parameter values are employed.    This is further 

substantiated by the adaptive formulations for which the performances are 

nearly the same.    In fact, Jazwinski's state noise covariance estimation and 

the adaptive age-weighting algorithms produce identical performance.    Further, 

the modified gain scaling and additive gain term methods in their adaptive 

forms also yield identical performance.    Between the two sets, the former 

algorithms appear to offer slightly greater confidence in their estimates. 

The reason for this is not clear.   However, one clue is that the former has 

filter parameters {Q and e) which can take on infinitely large values; the 

latter algorithms have parameters (ex and 8) ranging between zero and one. 
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In view of this, the conclusion suggested is that the differences may be due 

to numerical sensitivities, a condition brought on by finite computer word 

length.   Thus, in the latter case, considerably more significant figures 

are required to achieve the same results as for Q and s. 

Results obtained for the estimation of model errors, as applied to 

the rendezvous problem, clearly indicate the superior performance of this 

method.   This is to be expected, since it is the only method which actually 

attempts to improve knowledge of the dynamic model.    Coupled with an appro- 

priately determined state noise covariance matrix, this technique is thus 

the best approach to the model error problem.    For this reason, this approach 

was taken for investigating the solar electric propulsion mission.   The 

accuracy of this approach in the SEP orbit determination study is demonstrated 

by the performance for the various assumed model structures.    In general, 

higher order models are to be preferred since their structure tends to make 

them more adaptable to complex, as well as simple, error forms.    This is 

substantiated by the more accurate estimation performance of the second order 

models.    In view of the structure of the SEP acceleration error, and the 

rather remarkable performance of Model 2b, the importance of accurate but 

parexic modeling cannot be under-emphasized. 

The sequential estimator for the state noise covariance matrix can 

be effective in maintaining operation of the Kaiman filter, both with and 

without the formulation for estimating model errors, although it is rather 

demanding of computation time.    For the rendezvous problem, the estimates 

of the state noise covariance were found to be somewhat erratic, indicatinq 

a rather acute sensitivity to the residuals.    In the SEP mission simulation, 

the strategy of avoiding Q filter operation during the state filter transient 

periods proved to be the key to success in this application.    Thus, performance 
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In the rendezvous problem could probably be improved using this philosophy. 

Further, in the rendezvous application, the T estimation utilized all a 

pottejUoiil residuals, thus including the effects of transient state filter 

operation.    For the SEP mission, the modification of the T estimator limiting 

It to a batch of 20 residuals appeared to be a more viable approach.    In this 

configuration the Q filter operating in the state filter, post-transient 

period was found to be quite effective in improving state noise covariance 

values for Models lb and 2b.    The success obtained with this itrateny suqqests 

that the dual state-ö filter algorithm can be a useful estimation tool. 

6.2   Recommendations for Further Investigation 

One of the most apparent questions which remains unanswered is that 

of performance of the suboptimal adaptive and non-adaptive algoritlms for the 

case of vector state variables.    Some reflection will reveal  that the algo- 

rithms could not be expected to be equivalenced in the same sense as for the 

scalar case, v-cz., the rendezvous problem.    For example, the age-wcuihting 

algorithm simply multiplies the error covariance by a scalar, thus scaling 

each element by the same amount.    The additive gain term, however, adds 

different terms of varying value to the error covariance. 

The additive gain term algorithm suffers a disadvantage in that the 

added term, 

3 R HT/H HT 

affects the gain and error covariance only for those state elements which 

appear explicitly in the observation state relationship.    As indicated in 

section 2.2, the gain scaling modification using 

H P H 
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produces the gain expression of (2.2.16)  which differs from that for the 

additive gain (2.S.2)  by the presence of the error covariance, T,   As long 

as ? is of full rank, the former gain, 

K = (P H7 + & RP HT/H P IJT) (H P HT + R)'} ( ". .V. /.'-> 

is altered for aU terms in the state vector, regardless of their explicit 

appearance or absence in the measurement equation.    Thus the original additive 

gain term cannot be successfully applied to, say, the model error estimation 

algorithm; the modified gain (2.2.16) can.    In light of the fact that for the 

scalar problem the P divides out, this aspect was not investigated in the 

rendezvous problem.    However, any vector problem (say, the rendezvous problem 

where range, p, is included with range rate, p, to form a 2 vector) could be 

used to investigate this aspect. 

Similar conditions occur for Jazwinski's Q estimation algorithm.    Here 

the pseudo inverse, 

A A7*     H V VT HT 

usually suffers the same malady as the additive gain term.    By employing a 

different pseudo inverse, say, 

h P AT 

state elements not in the measurement equation will still have corresponding 

non-zero state noise covariance elements. 

In this study, the common structure given by the function of equation 

(3.4.6) has only been suggested for use in estimating model errors.    It should 

be particularly interesting to investigate the ability of this common structure 

to adapt to different model error functions, both bounded and unbounded. 
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Considerable study of the sequential state noise estimator remains 

to be done, particularly with regard to sensitivity analyses. Some sensi- 

tivities have been examined with regard to various a piloKl  values of s and 

T.    However, additional study Is warranted. 

Finally, we reiterate that some of the algorithms may be combined to 

obtain hybrid techniques. The approaches here are many. One possibility 

Is to apply the suggested modified gain scaling technique (section 2.2, 

with the gain given by (2.2.15))  to the model error estimation technique. 

This approach, while suboptimal, would require only the selection of the 

filter parameter, S, rather than three or more state noise covariance elements. 

Further, the adaptive form for estimating 3 could be employed, thereby making 

the algorithm completely adaptive. 

Our concern In this study has been to investigate concepts and 

techniques for alleviating the dynamic model error problem in linear filtering. 

Many approaches have been discussed and analyzed, and advantages and dis- 

advantages presented. The filtering and estimation process -- even in its most 

sophisticated forms — can never be any better than the mathematical model 

representing the dynamic process. In the final analysis, then, there can be 

no substitute for accurate modeling, whether analytically determined or 

adaptlvely estimated. 



Appendix A 

MATRIX INVERSION LEMMA (SCHUR IDENTITY) 

Define the positive definite matrix, x,  as 

X = (AT B A + C)'1 (A.l) 

Taken the Inverse and pre-multlply by x to get 

or 

Post-multiply (A.3) by AT B to obtain the following sequence: 
-IT T -IT T 

= X AT B(A C'1 A* B + I) 

= X AT B(A C'1 AT + B'1) B 

Post-multiply by B'1: 

or 

— IT T -IT -7 
CT* AT * X A   B(A (T* AT + B *J 

X AT B = C'1 AT (A C'1 A7 + B'1)'1 

•■ ! r = XATBA+XC 

Post-multiply by c'1-. 

C'1 = X A7 B A C'1 + X (M.o1 

X = C'1 - X AT B A C'1 (A. 

Substitute (A.4)  Into (A.5)  and solve for x,  thus obtaining an expression 

equivalent to (A.l) 

X = C'1 - C'1 AT (A C'1 AT + B'1) A C'1 (A.6) 
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Appendix B 

A AND B MATRIX ELEMENTS 

A Matrix;    Partition the A matrix Into sub-matrices as follows 

0        I     0    " 
A = A21     0     Aas 

0        0     A33 

These elements are given as 

1=3x3 identity matrix 

A21 • laij] ;    i ~ 43 St  6;    J = 1,  2t  S 

/I23 - Ia.j] ;    t = 4, 5,  6;    J « 7,  8, 9 

A33 = laij] ;    i, j = ?>  8t 9 

where 

am ■ 

ai»2 = 

a* 3 • 

«5 1 

«52   ■ 

«53   ■ 

«H 

HJ LH2 
,      J     IPI I     IPI2   J 

ji rsxz 
IH1 Lw«. 

H3 LM2J    IPI I   '|p|»  e, 

H3 LH2      J ' IPI3  e 

H3 LH2. 
a  fsYz 
r\3   LlH2. 
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atz * JL- [EL.] 
H3 LlH2J 

^6 3   = 

M3 IM1   J 
a^7 • -y/\p\ ,    ati m X/\p\ »    'fjj = 0 for other i, J 

e Is the estimated thrust acceleration error, and |p| = (X2 * Y2) ' 

Model la:    ^ . = 0 ,   itj = ?, 8, 9 

Model  lb:    an » -ot ,    an - -e ,    a,, = 0 for other i,j 

Model 2a:    378 m 1 t    a., ^ 0 for other i3j 

Model 2b:    ars - 1 ,    as? * -ß *    as» - -e ,    a., = 0 for other iaJ 

For Model 0, * * 0 in An, to4 An * A33 ■ 0. 

B Matrix:    The B matrix is defined in partitioned form as 

I      0 0 

B = 0      M 0 

where 

0      0 1 

M = 

' X/ p 

y/p 

.0 

-Y/ 

X/ 

0 

'P\ 

'P 

0 

0 

1 

which is the transformation matrix from the orbital frame to the heliocentric 

frame. 



Appendix C 

OBSERVATION - STATE RELATION PARTIAL DERIVATIVES (H MATRIX) 

Range Rate Measurements, p: 

3£_ (Xi  -  Xs.)  /p     ,     im  1,   i,   3 

where x.  and X.  are the heliocentric position and velocity components of the 

vehicle; and X . and X .  are the heliocentric position and velocity components 
Si SI 

of the tracking station.    The derivatives with respect to the other state 

elements (depending upon the approximating model) are zero. 

Star-Vehicle-Earth Angle, C: 

a;?. 
8X.   -   C08   % 

(X   .  - X.) 
el i 

1  e ' 
Al* '|2 sin V»    !  = h  S,   S 

where the x . are the heliocentric position components of the Earth; the e ^ 

are the navigation star unit vector heliocentric components; R   and r are 

the Earth and vehicle heliocentric position vectors.   The rest of the partial 

derivatives are zero. 
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Appendix D 

THE ERGODIC PROCESS 

In a process which is ergodic in the mean, theory predicts 68.27^ 

for normally distributed errors (46, 98).    If the process is rnjo.lic in the 

mean, the time sample averages are representative of the ensemble sample 

averages, that is averaging more and more values along the time axis results 

in convergence to the ensemble mean.    A necessary and sufficient condition 

that a process, x(t)t 0 <t < «>* be ergodic in the mean is that it be wide- 

sense or weakly stationary, and that 

Cm | f E{[x(t) - p]2} d t = 0 lim 

***        0 

or In the discrete case, 

,    N-l 
lim   4   £  ffUar   - u]2} = 0 

See, for example, (46, 166-167).    The assumption of ergodicity in the mean for 

the range rate error process, p(t)t is reasonable as long as the process is 

stationary and the time average converges to ^{p} = <?, a condition guaranteed 

if the limit equations above are fulfilled.    In our investigation, this is not 

strictly the case; however, for short time periods it is approximately true. 

Further, for a given mean and covariance, the Gaussian distribution represents 

the maximum uncertainty, entropy, (47, 613).    Thus the comparison of the time 

sample with theoretical normal (Gaussian) distribution limits is reasonable 

as long as the ergodicity assumption is justifiable. 
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