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The exceptional utility and performance of the sequential, linear,
unbiased, minimum variance estimator suffers severely in the presence of
dynamic model errors. This problem -- perhaps the greatest detriment to the
so-called Kalman filter algorithm -- is discussed in 1ight of its divergent
effect upon the estimation process.

A number of optimal and suboptimal modifying techniques are described
which attempt to prevent this divergence. Extensions are developed resulting
in adaptive forms and a new algorithm is derived for sequentially estimating
the state noise covariance matrix. Performance of the techniques is
illustrated by their application to, [1) the terminal phase of an Earth
orbit rendezvous mission, and (2) the heliocentric trajectory determination
of a solar electric propulsion space vehicle. Numerical results indicate
that the model error difficulties can be sufficiently countered, with
particularly effective performance being supplemented by the sequential

state noise covariance estimator.
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Chapter 1

INTRODUCTION

1.1 Background and Scope

The first solution to the problem of optimally estimating the values
of a set of quantities from a large set of data is generally attributed to
Karl F. Gauss' method of least squares (1).* Although A. M. Legendre offered
an early published version (2) in 1806, Gauss provided the basic mathematical
derivation. Interestingly, the method was developed and applied to classical
problems of orbit determination. Nearly 170 years later, it is now used as a
fundamental technique in space vehicle tracking and modern orbit determination.
In fact, the wide applicability and use of least squares in all fields of
engineering is testimony to the genius and insight of Gauss.

Although intermittent developments of some importance occurred,
particularly the ideas of probabilistic approaches, it was not until after
the first decade of the twentieth century that the foundations of estimation
theory were extended at a level of significance parallel to Gauss'. R. A.
Fisher (3) introduced many of the terms used to characterize the performance
of estimators; his concepts and efforts provided fertile ground for further
developments and new approaches to estimation theory. In 1942, Norbert
Wiener, considered today as one of the world's leading mathematical analysts,

produced the so-called Wiener-Hopf integral equation. The solution to this

* Parenthesized numbers indicate references as enumerated in the
Reference section. When specific pages are referenced, they are separated
from the reference number by a comma. Thus (5, 10-12) indicates reference
5, pages 10 through 12.
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equation is a weighting function which, when combined with a linear measure-
ment, results in an estimate of the de§1red quantity which minimizes the
error in a mean-square sense (more exactly the Wiener-Hopf intearal offers
a method for producing linear, minimum variance unbiased estimates).

Although Wiener's work is truly significant, the integral equation
is 1imited in its practical application. With the arowth of statistical
coomunication theory, Wiener's technique received wide attention. Several
attempts were made to improve and generalize the theory; however, none of
these increased its basic utility and applicability.

The development of the digital computur provided a practical alterna-
tive approach to extending the applicability of estimation theory. Rather
than attempt analytic extensions and solutions to the Wiener-Hopf intearal
equation, R. E. Kalman and R. S. Bucy (4) derived a differential equation
from the Wiener-Hopf integral. The computational efficiency of the digital
computer made the numerical solution of the differential equation practical
and resulted in a widely applicable algorithm for providing 1inear, unbiased,
minimum-variance estimates. Today, particularly in naviacation and guidance
applications, "Kalman Filtering" as it has come to be called, ranks next to
least squares in popularity.

In spite of the utility of the Kalman filtering algorithm, the tech-
nique suffers from a particularly severe problem known as divergence of the
estimate. It usually arises from the fact that for the state vector to be
estimated, the system dynamic model is incorrect. Operation of the Kalman
filtering algorithm in the presence of modeling errors produces estimates
which are essentially worthless: the estimated state is grossly in error.

Divergence of the estimate, perhaps the greatest detriment to the

Kalman filtering algorithm, has received considerable attention. As a result,
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various techniques have been devised to compensate for modeling error. Such
techniques may be thought of as falling loosely into two major categories:
adaptive and non-adaptive methods. Non-adaptive methods generally attempt

to improve the estimation process by altering the filter structure in an a
prioni and thus suboptimal manner. They also include a prictr( approximations

to the actual modeling errors. Adaptive methods attempt to improve knowledge

of the dynamic model or to improve operation of the filter dutring the estimation
process.

The basic objective of this study is to investigate the utility of a
variety of model error compensation techniques, both adaptive and non-adaptive,
and to compare the effectiveness of these methods. In the remainder of Chapter
1, the Kalman filter is introduced and its properties discussed. The model
error problem is illustrated by a simple example. A brief 1jterature survey
of model error compensation techniques is also presented. In Chapter 2,
selected non-adaptive error compensation methods are presented and compared
analytically. In Chapter 3, various new and previously developed adaptive
methods are discussed. Chapters 4 and 5 illustrate the application of the

various techniques to selected problems, and Chapter 6 concludes the study.

1.2 The Kalman Estimator and Some of Its Properties

Many expositions of the Kalman filtering algorithm exist in the
literature, offering a number of unique, yet unifying approaches to the
theory (5, 195-209). Thus our purpose here is not to give a rigorous
derivation of the Kalman estimator. However, as a point of departure and
for the sake of consistency, a somewhat heuristic development will be
presented. Following this, some of the notable characteristics of the

algorithm will be discussed.



4

Before proceeding, an important preliminary must be treated. For a
given dynamic system, the problem is generally one of observing or measuring,
in a stochastic environment, some aspect of operation of the system, and
then treating the meagurement output in a judicious manner in order to extract
specific knowledge of the system's performance. However, an important
distinction must be made concerning the measurement process. On the one
hand is the case where the measurement process is carried out continuously
in time; this is often found in analog computing applications. On the other
hand is the case where measurements are made at discrete points in time in
correspondence with digital computing applications. While formulations of
the linear, unbiased, minimum variance estimator are known for both cases,
widespread application of the digital computer focuses attention upon the
discrete formulation. In the subsequent developments we will be concerned
with this approach only.

Within this scope the problem may be stated as follows: (1) Given

a dynamical system modeled by the linear difference equation

xk ..?k,k-l Qk-l + Pk'k_l wk_l, (1.2.1)
where -
z, =a(t) s an n-vector of random state variables, and z_ .'x(to)

is given;

= * = d
¢k’k_1 @(tk, tk_l) is the nxn state transition matrix*, with ¢j'j I;

* The properties of the state transition matrix are well known. Some
of these are mentioned later.



v, = w(tk) is an m-vector of random input disturbances with the

statistics
Efw } =0, E{w v} =Q 6 ., Bz _,w, | =0
X s Blog ugh = Q §p By ) W)y 2

(6. . is the Kronecker delta; ( )T denotes transpose);

kj

Ty k-1 = Tt 2y ) is the nxm disturbance transition matrix: and

(2) Given the linear observation-state relationship

&
9
~

where

Yy = y(tk) is a p-vector of observations;
Hk = H(tk) is a pxn mapping matrix;

v

= Vit is a random p-vector of observation noise with statistics

Efv d =0, E{v, vi} =& E{z,_. v} =0,

ij,
E{v, w;'} =0, for all k and j *;

(3) Find an unbiased estimate, &k, based on the set, Vk, of k observation

vectors through time ts

Vk z | Yo Yps voes yk} ,

[§1]

e, find2 = £{art |V )} with B{2} ==z ;

k

(4) Such that ﬁk is formed as a linear combination of the k observation vectors:

x, =L ek—l + K Yo (1.2,3)

* If Qk and Rk are constant for all k, the corresponding noise processes
are wide-sense stationary.



and such that the state error covariance

o= P(t|Y,) 2 E {(z, - 8)(z, - )7} (1.2.4)
at time, ¢, based on ¥,, is minimized. Note in (1.2.3) that 2, is the
estimate of z,_,basedon ¥ ., and in this sense 2 1is based on all of the
elements of ¥,. In other words, given (1.2.1) and (1.2.2), the probiem is
to find L, and X, such that (1.2.3) is an unbiased, minimum variance estimate
of z,.

In order to aid the discussion, some notational simplifications are

made. In general, the notation

Fxlk = Flt Yy
means the function, f, evaluated at ty based on the knowledge of Y For

brevity we will simply equivalence this with the notation, fk. When no

confusion exists, the subscript k will be eliminated altogether. Hence,

0= 0 =W, t, )
r= rk,k =Tty t,_))

z=z = x(tk)

Bty =8y =0t Y

Esi-' ;Ik e 1

=z xklkex-é

T=Z =3 =z-z
k  “k|k-1

R=Q = Q(tk)
R=R, = R(tk)
P=Pp, = Pklk = P(tkIVk)
P=P =

T T
k|k-1 = P(tk|Vk_1) =¢p 4 +1Q T (1.2.5)




L = llk = L(tk)

K= Kk = K(tk)

Proceeding, the requirement which must be satisfied if 2 1s unbiased can be
obtained by using (1.2.1), (1.2.2), and (1.2.3) to form the state estimate
error, &, and then taking the expected value. Thus,

Tz, -8 =0 +tTv,  -L %  -Ky

k k
- oa:k_l + I‘wk_l - Lk .%k_l - Kk (Hk Oa:k_l + Iik I‘wk_l + vk)
E’{xk} -a - E{&k} =0

= Mk-l - Lk E{Ek_l} - Kk Hk wk-l

= [(I - KH) & - L} 0 (1.2,

Byi =~

6)

where use is made of the facts that £{w, _,} = 0 and E{v,} = 0. Satisfaction

of equation (1.2.6) leads to the requirement that
L = (I -KH) ¢ (1.2,
and thus (1.2.3) becomes

&‘k- (I - KH) Qek-l + Ky,

=02

ot Ky, -HOR ) (1.2.

?)

8)

By using (1.2.1), (1.2.2), and (1.2.8) the state error and the state estimate

error covariance matrix can be obtained as follows:

Z =0% +Tw ,-KHOZE ,+HTw ,+v)
=(I-Ki)(0E _,+Tw _,-Kv (1.2.9)
P, = F(Z %) =E((I - KH)(O % _ +Tw_,) -
(G _, OT +wr  TT - BT KT) - (1 - KO E,_ + T w, oy KT -

Ko (% . o7

T r T .,T T T
M +mk_1F)(I-IIA)+Kvkvkl\}




Conbining terms, and recalling that E{z,_, v} = 0, Elz,_, w}} = 0,

T T
Ew, v,} =0 and E{v,_ v, _,} = 0, (see page 4) one obtains

T T r o T
P=(I-Ki) (0P, _ & +TQ ,T')I-H K)+KRK (1.2.10)

In view of the definition of P in equation (1.2.5),
P=(I-Ki)FB(I-H K)+KRK (1,2.11)

.ne first variation is now taken with respect to x.

6P = (I -KA) P (-H® 6K') + KRSK + (I - 6KH) B (I - HT K*) + KR K

(1.2,12)

Necessary and sufficient conditions that P be a minimum are that (1) 6P = 0
and (2) that the second varfation of P be positive definite. Solving (1.2.12)
for XK with 6P = 0 leads to

K=FRHPH +pL (1.2, 13)
For an arbitrary n-vector, s, the corresponding quadratic form for the second
variation of P is required to be

T 2 T i oF T
8 8°Peg=g SK(HPH +R)SK 8>0 (1.2.14)

Thus if P is positive definite, then the bracketed term in (1.2.14) must be
positive definite, and fulfiliment of (1.2.14) guarantees the existence of

the inverse in (1.2.13).
With x given by (1.2.13) the updated state estimate error covariance

may be obtained by substituting for x in equation (1.2.11).
P=(I-KH)P(r-n k%) + kR KT
aP - KHP-PH KT + k(H P HT + B) KT
=B e KHE-PH K + PR T BT + )™ (B HT + R) KT

or

P= (I ~KH P (1.2.15)



which is the required covariance update equation.
The system dynamics are given exactly by equation (1.2.1). The
random input, w, is unknown; however, being probabilistic in nature, the

expected value of the equation may be taken conditioned upon the observations

up through time, t, Thus

E{zkIVk_l} - °k,k-1 E{xk_llyk_l} + rk'k_l E'{wk_llvk_l} P

with

E{wkIVk} = Ew,} =0

or

z o= 0V, )= " 1k & (1.2.186)

Equation (1.2.16) provides the estimate of x at time ty based upon observations

through time ¢, .. It is also an unbiased, minimum variance estimate (5, 201).

I
and

T T o 9n
P =Pt |Y, J)=¢P _, ¢ +TQT (1.2.17)

is the predicted value of the error covariance at ty given observations
through time ¢, _, (5, 201). Equation (1.2.17) follows directly by forming
“the state estimate error covariance using equations (1.2.1) and (1.2.16).
Equations (1.2.16), (1.2.17), (1.2.13), (1.2.8) and (1.2.15) are the
equations of the classical linear, unbiased, minimum variance estimate. The
algorithm, denoted as Algorithm I, is summarized below.

Given: the a prioai information 2,, Py Yp and k = 1. Compute:

10 z = L 3 = z,
z =0 ek-l 4. Qk x, * Kk(yk H xk)
= T r
2. P, =0pP _ ¢ +T Qg T 5. P =(I-K H)P

% $ aT -1 :
8. K =P, Hk(ﬂk P H +R) 6. k =~k + 1, repeat




x, = ¢ &k-l

.

= T T
B,=¢P _, 0 +T7Qq T

j!

k=BT BaT + Rt

5

2=T+Kly-HT)

’

P=(I-XH) P

k=k+1 I« No Yes

Figure 1.1 Kalman Filter, Algorithm I

10
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The Kalman estimator above is based on linear system dynamics. It
has been applied successfully to many nonlinear problems in the following
manner.
Consider the n-element state vector, X(t), whose values at discrete
times are given by the nonlinear difference equation,

X(t) = FIX(t,_ ), t, ) + Ty, wlt, ), (1.2.18)

where v is a random input with properties as specified by (1.2.1), and T is
the corresponding disturbance transition matrix. Define a reference state,

x*(t). If Flxce, ), t,] is continuous for ¢ > ¢ » then a linear

12 ey
approximation to F may be obtained by expanding in a Taylor series about
x*(tk_l) to obtain

oF *

; k
o # e -
F(Xk-l" tk) F(Xk-l "tk) + axk-l (xk-l Xk-l‘)
az?k*
3 * -
CI (Xpe1™ Xx-2")s (1.2.19)

where the subscripts denote values at the corresponding times. Substituting
into (1.2.18) we have, to first order in X,

oF *

k
=X -
R I g1 = Fxaa™ * Th ket Pka
= & * = * | ¢
Defining TR SRR and O k-1 = F At then obtain (1.2.1).
x =6 +T (1.8.1)

k= “k,k-1 Tk-17 k,k-1Yk-1
A similar linearization is performed if the observation-state relation
is also nonlinear, but with additive noise, v(tk).

Y(tk) - G[X(tk), tk] + v(tk) (1.8.£0)

t Note that this is the definition of ¢ for the linear case as well.



12

where Y(tk) is a p-vector of observations. Defining a nominal or reference

observation,

YA =Gt )t (1.2.21)

where the subscripts again denote values at the corresponding time, and
expanding in a Taylor series we have
aak*

k
or to first order in Xk,

= *
Yk Yk +

- ‘ S N
(Xk Xk )+ ... + vk, (1.:8.82)

= 2,08
yk Hk xk"' vk (Jouc(- )

where

= - *
Y = T = Iy's

H = 3 */,
Thus the optimal linear estimator previously presented may be applied to the
cases of nonlinear dynamics and observation processes. However, accurate
estimates of the deviation, fk, from the reference or nominal solution require
that the linearity assumption be valid. It is possible that large deviations
can violate the linearity assumption resulting in divergence of the estimate.
One method of reducing this possibility is to employ the so-called extended
Kalman filter in which a new reference is chosen at each observation. In
particular, after each observation is processed, the reference solution is
updated by setting the nominal equal to the new estimate:

* F ) = #* [
X *=X =F(X _ % t)+8 (1.2.24)

After forming x. *, £k is set to zero so that g = E;+1 = 0. Then the next

updated estimate, at L {s found as

Bre1 = Knvl Vel

or, in terms of x,



X *
X = MX., £ . .J) (1.0, 85)

k¢l k ket Kku Ty
The notation x; is no longer necessary since it is identical to i(k. The
extended Kalman algorithm, Algorithm II, is summarized in Figure 1.2 for the
nonlinear problem.
Usually the difference equation (1.2.17) is obtained from the solution

to the linear vector differential equation

z(t) = A(t) x(t) + B(t) u(t) (1.2.27)
where u(t) is some input. For the nonlinear problem, A(t) = af(x*, t)/aX"(t);
where ){'t satisfies the nonlinear differential equation, )?*(t) = f(x*, t).

The solution to (1.2.27) is well known (39, 41-43) (15, 31-43) in the form
t

k
o(t,) = ot , t, ) alt, ) +"; o(t,, v Blt) ulv) d 1 (1,2.28)
k-1 |
The state transition matrix, ¢, satisfies the homogeneous differential equation
: » = s ’ Lo - 1:2.89)
ot tj) A(t) ot tj) ¢(J tj) I (

¢ also has the following properties:
°(t1’ tk) = o(ti, tj) q»(tj, tk)

-1 P
) (ti’ tj) <b(tj, ti)

When u(t) is replaced by white noise, with Equ(t) uT(7)} =
uct) §rt-v) T, difficulties occur in attempting to evaluate the resulting
stochastic integral in (1.2.268). The problem arises from the fact that the
elements of white noise are uncorrelated in time, and hence are nowhere
continuous. A common approach to remedy this (44, 326-327) (39, 115-117)

is to select At = tk - tk_ small compared to the system characteristic

1

+6( t - 1) is the Dirac delta.
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Figure 1.2 Extended Kalman Filter:

o + B(t)Q(t)B (8)] dt
by = Xy - OlK 2]
™ k k [Hk 3 H + R ]

Algorithm II
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response time, and approximate u(1) as a constant w(t, ,) over At.*

In this case we define

t
J

T(t,, t,_,) sjt' ot,, v B(v) dr | (178.30)
k=1

This is the approach taken to obtain equation (1.2.1). An alternative method

is to define, formally,

dw’= u(t) dt
and employ the definition of the It6 stochastic integral (5, 98) to obtain
tx
J vt vBmaw =0, B w-w ) (1.2.81)
tk-1
In this case one cannot write the form I k;l w,_;+ Another alternative, the

Stratonovich stochastic integral, yields the same result for this case

(5, 116-120). The most general consideration is simply to define

t
k
w(t, ) = f ¢, v B(D ulv) dt (1.2.32)
Cx-1
In this case, T , _, = I. The differences in these definitions are mani-

fested in the estimation process through the corresponding covar.ance terms.

Thus for (1.2.30) one finds

r £ wl} 7
by
T T P
j; ot,, T) B(T) dt Elu,_, u,_ 1}f B (1) & (t,, 1) dT (1.2.35
k-1
For the It§ integral,
T, T ,
TrEww } I = ¢k - Bk F{(w k-l)(wk )} Bk k e

Carrying out the multiplication, this becomes

* A white Gaussian process may be shown to be the limit of a white
Gaussian sequence, e.g., (5, 83-85).
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T T s a7 . T T ..r
MEw v} T° = ¢ B B{w_ we™ +w,_,we” ) B ¢ (1,2.34)
sin e P ‘T -~ o
IR s dp B —_—
Finally, for (1.2,32)
IE(w w') IT = E{w v’} =
t
k T T T
f f o(t,, 1) B(T) E{u(t) u (p)}B (p) & (t,, o) dudp
tk-l
But E{u(t) u’(p)} = U(T) 6(1 - p), and since (44, 332)
b 1 B, < T <ty
f §(t-p) dp = {
®k-1 Oty > T2 %
then
t
T k T
Ewo™t=f e, v BV v BV et v dr (1.2.55)
ty-1 2

Noting ¢ = Efw, w;'} = Efw w'}, one finds for (1.2.33), (1.2.54), and (1.0.95),

respectively,
rorf=ruvr? (1.2, 3%a)
rorf=20¢8¢° BT ¢ (1.0, 8
t, '
rqr"=q=f o B v BT ¢ dr (1,0.35a)
-1

Thus, depending upon how one defines the stochastic integral in (1.2.28)
various forms may be obtained for T @ I

With the extended Kaiman form, the state transition matrix is used
only in the prediction of the state error covariance matrix. It is possible
to eliminate the state transition matrix altogether by use of a differential

equation for the error covariance, obtained by a straightforward limiting
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process. First we write (1.2.17) such that the forcing term QI is in the

form (1.2.35). Letting T = tot=t and defining At = t - t, we have

] .
Y 6/ [ P 7 €M A PO VY N E VN[ V[V 7 X G
t

(1.2.38)
Using the Taylor series expansion,

Br1) = [0(t,t) + S(t,t) At + ...) P(t)[0(t,t) + b(t,t) Bt + ...1"
Taet
J‘ T T
[ ¢(t,8) B(s) U(s) B (8) & (1,8) ds +
t
T=t
g? S otr,8) Ble) vte) B¥te) 6¥(1,8) ds Ot + ] (1.2.37)
t

where 5(t,t) = dd(1,t)/dt evaluated at Tt = t. The first integral in (1.2.37)
is zero. Applying Leibnitz' rule to the second integral we have

1=t
L [ orr,0) Bra) Us) B7(s) ¥7(1,0) ds bt =
t

=t

-

B(t) U(t) BT(t) At + %T- [8(,8) B(s) Us) BY(s) ¢(1,8)] ds At

H-%

Noting that the integral here is also zero, and that &(t,t) = A(t), one

finds on substituting into (1.2.37) that

B(1) = P(t) + A(t) P(t) At + P(t) AT(t) At + B(t) U(t) BT (t) At + ...
Now, by definition P(t, _,) = P(t,_ |V, ), and P(t,) = P(t |V, ). Since no

new information is being added, then at ¢t = ¢ we may make the substitution

k-1
P(t) for P(t). Then substracting P(t) from both sides, dividing by At and

takina the limit as At + 0, one obtains the differential equation

Bet) = A(t) B(t) + B(t) AT(t) + B(t) Q(t) B (t) (1.5, 30
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Since P is a symmetric nxn matrix, only n(n+1)/2 equations need to be

integrated. ¢ is n>n and, in general, not symmetric, so a reduction in

e @ B B BBy P W B AE BP0 b S & - e - {

e e pumerteat-effort 15 OBYITHES by Trtegrating the appropriate n(n+1)/2

equations for P. On the other hand, depending upon the specific problem at
-hand, it is often possible to reduce the number of equations in & = A¢ by
obtaining closed form solutions for some of the elements. Also, it has been

found that (1.2.39) can be a difficult equation to integrate numerically.

1.3 Properties of the State Error Covariance

This section deals with some characteristics of the state error
covariance matrix. We will not elaborate at length -- a number of investi-
gators have done extensive work in this area, notably Kalman. However, some
of the key properties are presented.

We first show that any covariance matrix is non-negative definite.
For a vector random variable, 2, with mean, u, and covariance, Z, consider

the quadratic form
q=aza (1.3.1)

where a is an arbitrary vector of constants. Since the expected value is a
linear operator,

q= aTE{(z-u)(z-u)T} a = E{a” (z-u) (z-) Ta) (1.8.8)

Defining the scalar

8 = a(z-p)
we have

q = Els 8"} = E{s?) (1.3.3)
which is never negative. Thus Z is non-negative definite.

Next, positive definite bounds may be established for the error

covariance associated with the Kalman filter. In particular, Sorenson (7)
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takes a rather unique approach by decomposing the system, equatibns (1.2.1)

and (1.2.2) into two separate parts. One, denoted as p, has input noise,

o me —DUL- POFFQGL- MOASUREMONLS 1—the-other —denoted-os-m;-has-no-input-notse; amd -~~~ -

imperfect measurements. Thus,

z =z +

k k k
m k
yk’yk+yi‘: .(].3.4,’

.where the systems m and p are

m ‘ m
z = x
e D k-1
m m ,
ypwak v, (1.3.5)
o = b+ Tw
p:
vy = Hr: (1,3.6)

Sorensen then discusses the covariance properties for these two systems

separately. For the noise-free plant, m, the observability matrix, defined

as

X T T =1 |
= )
Moy = Y g By RDOH e (1,
i=3

is used to establish the positive definite property of the state error

covariance matrix. Specifically, a matrix inversion lemma, the so-called

Schur identity given in Appendix A allows (1.2.15) to be written as

P} = 11-k, )P = [?k"l’" + Hy R;l akl'l (1.3.8)

where now ?l’:'- °P:-1 o7, since m is the noise free plant. Then,

=im _ -1 ~lm , =T T ~1 22
Pk ‘bk,k-.l k-1 q’k,k-l * Hk Rk Hk (1,29,

AR
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The system is said to be observable on the interval [tj, tk] if the

: observatility matrix M, 3 is positive definite. If this condition holds,
IR | | AR;'Js-alsoA positive definite,--then (1.-3.9)-can-be-writtemwas~ -~ "~~~ T
-lm -1 T ' ’ - 4
P;‘"s PR al A R g (1.8.10)

where use is made of the fact that

k'k-l

- =1m T -1
pk [¢k 'k'l P:‘.l ok 'k‘l ]
-1 -lm .-T
=& k-1 Fr-1 %, k-1
-lm . T
- Peo1 %, k-1

By arguments similar to the previous discussion, Pz is therefore positive

definite for all kx, since the bracketed term in (1.3.10) is also. Additionally,
Sorenson shows that M may be described in a recursive fashion by
T T -1 )
M i = Meen,s * %, -1 B B Bi %%, ge1 (1.3.11)

and since the second term on the right is non-negative definite,

m
M ™ Mi-1,5 is also, thus allowing the conclusion, by (1.3.10), that F

is positive definite for all x > 4.
Building on these facts, Sorenson also states the well known
characteristic that P: generally tends to vanish for well-defined systems

with no input noise. First, the concept of g-stage observability is defined.

Given 7 < q < N such that ¢ <¢ and t < t . the system m is said to

k=-q+1
be g-stage observable on an interval [to, ¢y if and only if Mk,k-q+1 is

positive definite for every tyr That this implies M g=" - is positive

k-
definite may be readily seen by modifying (1.3.11) to obtain
T

(

Meo1 = Meeq,1 * %%-q,0 Yk, k-q+1 %k-q,0

[ 2%
“n
.

[ Y




21

This follows by substituting My using (1.3.7). Under g-stage

observability, (1.3.12) suggests that in some sense M, 5 increases without -

~ bound.” Consider the spectral norm of M and M™%

PRSP S sadec g

k -1 k
“Mk,l” = Amx’ IIMk'lll - J/Amin (1.3.13)

= ok k
where A“x and A min 2T€ the maximum and minimum eigenvalues of M Now

17
LA 1 is g-stage observable,

k
max

k

A min

k-q k-q
>Am.nx'A >Amin'

with similar inequalities for the other eigenvalues. Then

Lim “

o Lim .k o

N ”.k-'@)‘max "

k,1
and

Lim -1 Lim 1
koo IIMk,l || = ks K
min

=0 (1.5.14)

Using this result together with (1.3.10), Sorenson realizes the
following conclusion: For a g-stage observable system, if ||M;f1|| converges
to zero more rapidly than “°k,o| |2 increases, then the error covariance F';:
vanishes as k + =, To verify this we merely need to show that the norm of

the elements of (1.3.10) vanish. First, for no a prioni information,

P;m = 0. Thus*,
-1 T -lm -1 .7 :
°k,0 Mk,l 0"'0 > q’k,O [PO + Mk,ll °k,0 (1.8.18)
and
'1 T 2 -1 2
PR < 1oy oMy o ol < 1o o112 1,11 (1.3.1¢)

/
which vanish as k + « if the original hypotheses are met. Further, as k + =,

(1.3.15) tends to equality with increasing accuracy. The implication is that

- orr G e - =D

* A >B > ( means that A - 5 is non-negative definite and # - .’ is
positive definite.

T e
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for large k, P: is essentially independent of Pg for g-stage observable
systems.

For system p, where the measurements are perfect, one is able to
conclude that the error covariance matrix is never positive definite. Using

(1.2,15) and (1.2.13),

P o p P
Hk Plp! Hk[I Kk Hk] Pk

={# -0 BPua BP AT 1) PP

=0 (1,8.17)
Thus if Pf were positive definite, H would have to assume the contradictory
state of having to be identically zero. Utilizing the gains, Kﬁ and Ki
which are optimal for each system, Sorenson then shows that a lower bound

on the total error covariance is given by

Pe2 P+ Py
or
-1m -1 '
P28 P +H 10 4 B (1.3.18)

Utilizing the gain Ki, which is suboptimal for the total system but may be
optimal for either (but not both) of the systems m and p, an upper bound is

established as

P, <P + PP

k k k

where P™ and PP® are the corresponding covariances. If K: is chosen to be

K: (the optimal gain for system m), and used for both systems, then
-1m -1
Py < & ol " + M, 170 0+ P (1.3.19)

But Pﬁm will generally increase without bound since noise is continually

being input to the system, and therefore, as Sorenson points out, (1.3.19)
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is an unsatisfactory bound. Note that in this case (1,.3.17) generally will
not hold, since the gain is not the optimal for system p. If in fact,
qurr is positive definite, then

PP = (1 - B P KT + )7 H) B BT

T T
=(I-KHW[OPT ¢ +Tq )
= - - m —p T
(I-K"WIP"+4PPsrq I
T, 5P T
2rQ " +aFP>rq T (1.3.20)

This last is true since P: and hence X" eventually vanish. Tnus (1.3.18)

and (1.3.19) represent positive definite bounds upon the total system error

covariance, Pk'

An alternate definition of observability requires that the information

matrix, Tk 3 be positive definite:

>0, k>3 (1.3.21)

k
T T -1

Tm:i,j ok 1T

If this condition holds, the system (1.2.1, 1.2.2) is said to be completely

observable with respect to {yj, Yy }. Note that Tk'j is related

JERERR) _l/k
to the observability matrix by

T )
- , 8,50
M5 ™%, 9-1 T, Y%, 4-1 ° (1 )
and related to the error covariance by
-1m T -1m 3 oz
Pk = °o'k Po ¢0;k +Tk,1 (1-0-Lt

This latter follows from (1.3.10). A recursion for T may also be obtained

using (1.3.11) and (1.3.22):
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7 T r -1
T3 = Y1,k .5 %-17 Y50,k Mk-1,7 ®5-1,0 * B B ik
T T T -1
= Otk Y-1,k-1 Mk-1,5 ®5-1,k-1 Bk-1,6 * Bk B Hy
or
T =T i EY (1.3.24)

%3 " Y1,k 1,3 Y20t P B Hp
A concept dual to that of observability is controllability. The
controllability matrix is defined as

k
= T T
= .
Ak'o ) £§; ok'i ri'i'l Qi-l Ii,i-l ¢k,i (1.3.25)

The corresponding dynamic system is said to be completely controllable if,
and only if, Ak,o >0 for k > 0.

Jazwinski (5, 234-243), drawing upon the work of Kalman, Sorenson,
and others, gives a comprehensive discussion of bounds and stability of
the filter equations. Extending the concepts of observability and control-
lability, Jazwinski defines the system (1.2.1, 1.2.2) as being uniformly
completely observable if there exist a positive integer, ¥, and positive
constants, a and B, such that

oealis Temni®

for all k > ¥. Similarly the system is uniformly completely controllable if

0 <vyI < Ak,k-N < I

where y and § are positive constants. Using these definitions, Jazwinski's
results are summarized in the following:

Lemma. If the dynamical system (1.2.1, 1.2.2) is uniformly com-
pletely observable and uniformly completely controllable, and if Py 2 0,
then



a) P, 1s uniformly bounded from above,
b) P, is uniformly bounded from below,

c) P> 0,

for all k > N. Further, the filter of Algorithm I is asymptotically stable;
that is, '

||0(tk, ty) || < e1 expl-calt, - t )]

for all ¢, > ¢, (1 and o, are constants).
In (5, 244-251) Jazwinski also discusses error sensitivity. In this
latter regard, he proved the following:
(o c c
Theorem. If Py <Py, @ <@ » and R, <R, for all k, then
P

k
The superscript, c, refers to the numerical values employed or computed in

C — 5 C
<P and P, <P -~ forall k.

the filtering algorithm. The non-superscripted quantities refer to the
actual or true values of the covariances. Note that the true values are
seldom known in practice. Hence, in 1ight of this theorem we can enjoy the
confidence that if conservative values are selected for the covariances, then
the true error covariance is bounded at any time by the computed error

covariance.

1.4 The Problem of Modeling Errors

Up to this point in the discussion of Kalman filtering it has been
assumed that the system dynamics are known to within a degree of uncertainty
represented by the statistics associated with the state noise, w. If the
uncertainties in the model dynamics are purely random with accurately known
finite, bounded statistics, and more realistically if the uncertainties
are small with respect to the state values, then generally the assumed

dynamic modeling will yield good results. On the other hand, if there are
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modeling errors which contain unbounded time correlated components, or |
dynamic biases as they are usually called, the estimation results based
on such erroneous models become worthless. In such cases, the system is
not uniformly completely controllable. In particular, the model errors
manifest themselves in the ¢-matrix which affects the predicted values of
the state, =, and error covariance, P. If the filter employs no process
noise covariance, ¢, or only a constant @, then as the estimation process
proceeds, the state error covariance usually* decreases and so, therefore,
does the gain, k. As the gain becomes smaller, the effects of the measure-
ments in contributing information become less and less. The effects of
modeling errors continue to grow, essentially no new information is added,
and the state estimate diverges from its correct value. A simple example
will be developed which will serve to illustrate these points. It is
derived from information given in reference (9).

Consider two spacecraft in orbit about the earth. Assume their
orbits are approximately circular and coplanar, and that the vehicles are
undergoing a rendezvous maneuver, and hence are separated by a distance of
only a few kilometers. Referring to Figure 1.3, let r be the geocentric
position vector of the target vehicle and r, be the geocentric position
vector of the homing vehicle. Neglecting n-body and aspherical gravitational

effects, the equations of motion can be written as

P, = g(rt) = - T;ETT r,
r, = glry) = - EAK Th (1.4.1)

* Recall that ||¢* oll2 in (1.3.16) must not increase faster than
’

||M;11|| decreases. A similar characteristic is required in the system
’

with process noise.



2/
where (') - d( )/dt, v = gravitational parameter of the earth, and |r| is

the magnitude of r.

Figure 1.3 Vehicle Position Vectors

Defining the range vector,

= - 4.\,
p=r,-r (1.%:3.

and noting that |p| << Irhl or Irtl. one can expand about the target vehicle
position vector in a Taylor series to obtain
ag(r )

art

Neglecting €, which represents terms of second and higher order in p, and

(rh

g(rh) = g(rt) + -r)te (1.4.8)

using (1.4.1) and (1.4.2) leads to the followina relation:

. dglr,)
p = p 00,
?)1"t

Note that nealecting €, as well as the higher order gravitational effects
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has introduced errors in the dynamic model. However, for the time being
assume that (1.4.4) represents the true model, that the orbits are coplanar,
and that the target veliicle orbit is circular with the homing vehicle orbit
nearly so. Further, for purposes of developing a simple navigation scheme
the possibly questionable assumption will be made that the homina vehicle

is closirg at a constant rate, p, with respect to the target vehicle. Note
that o is the magnitude of the time rate of change of the range vector, p,

i.e.,

L] - 2 L 2.
°=3
where p = dp/dt. Throughout the rendezvous maneuver, it is necessary to have

knowledge of p and p; however, for simplicity in the illustration, only o will
be considered.

To obtain information about p a Doppler radar system is used to measure
the closure rate. Associated with this range-rate radar are uncertainties
assumed to manifest themselves as bounded, purely random errors, Dy s in the
range-rate measurements. Assume the v have the statistics

T
E{vk} =0, E'{vk vj} =R ij, R = constant

Making the following identifications with equations (1.2.1) and (1.2.2),
P, = P(0), xksék, H 21, 4, =0, + v,
and assuming no state noise (Q = 0), then the Kalman estimation equations for

Algorithm I are

P = Px-1

Py =Py

Ky = BylBy + r1~? _

gk =0, + Ky, - 6,)

P, =[1-K]1P . (1.4.6)
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k k" Fx
Explicit expressions may be obtained for the above quantities in terms of

A~

60. 0 and Yy In particular, the recurrence for P, leads to

Recall that Yy is the measured range-rate at ¢ , and that Oy =i

POR
P SW (1.4.7)
and
X o0
m (mpo + R) (1.4.8)
for m observations. Then for Sm,
g ¢ f& Uk
p.=p_ + e (1.4.9)
m 0 = (k + R/Po)

From equations (1.4.7)-(1.4.9), it follows that as m gets larger, the estimate
for Sm becomes insensitive to the observation residual since the variance and
hence the gain are becoming smaller. The implication is that eventually a
point is reached where k is so small that taking further observations adds
essentially no new information about p. This is an acceptable (and desirable)
situation if no modeling errors are present, that is if the assumption about
a constant closure rate is valid.

To investigate this assumption further, consider equation (1.4.4) in

terms of the relative derivatives of p.

p= ; +2WXD+WXD+UX(WXp) (1.4.10)
where w is the angular velocity of the line-of-sight, p, and (.) is the time
derivative relative to the target vehicle. Using equation (1.4.4) one can

find
w 9g(r,) e,
t

From the first of (1.4.1),
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- - M (.3 T o
3": |rt|’ (1 |rt|3 r, rt) (1.4.12)
So,
o7
p= -—t—(r-s-£Lt)P e
EA N |r, |2
and
r, rl
;--—-L(I-S tt)p-2wx5-(:)>(p-'wx(w>tp) (1.4.1¢)
|z, | |». |

If the rendezvous maneuver is restricted such that p maintains a constant
angle with respect to ros then w is constant. Further, because the target

vehicle is in circular orbit,

m-/u/lrtl’ k (1.4.18)

where 1: is a unit vector perpendicular to the orbit plane. In view of this

restriction,
E r, ry .
p= -—+— (r-3 )p=-2wXp-wx(wxp) (1.4, 1€)
e |, |?

Now, take the scalar product of (1.4,16) with a unit vector in the p-direction

to get
@ /i rtr: T o T
u=5=-—-E—-L(I-s——-)p-szXp-E—wX(pr)
P Irtla o] Irtlz P o
T 2
= -—Lp+M—' + w? o] (1.4.17)
I, 1° " olnl®

sincep"(wXE:) =p e (wxi;)aw-(;;xp)=o, ande[mx(wxp)]=

(we*p)?-wp?= -w? p2 Butw?= u/lrt|’ ; hence,
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B == pT )2 [t
plr |
t
Next,
8tn (Wt + €) cos wt
p=p|-cos (wt +e€) , r = Irtl 8in wt
0 0

where € is a small, constant angle representing the deviation of » from
the lopal horizontal at the target vehicle (if € = 0, p and r, are perpen-

dicular). Then, since pT 1 is the scalar product of p and T,

T [ i
p r,=plr| lein (wt + e) cos wt - cos (ut + €) sin ut]
= plrtl [ein wt cos wt cos € + cos? wt sin € -

cos wt 8in wt cos € + ain? wt sin €)

=p|r,| sin e (1.4.19)
Finally, through first order terms, and for closure along the 1ine of sight
at a constant angle, €, from the local horizontal,
B-—s-Lsp’ |1»t|2 8in? ¢ =—'m—s- p ain® ¢
plr,| | 5
or

p-y2p=0, vy = -I—SIL’ sin? €, a constant (1.4.20)
r
t

Thus, only in the special case where € = 0 is the assumption of a constant

closure rate valid (p = 0 to first order). The solution to (I.4.20) 1s

found to be
Po
P =0, cosh Yyt + -Y— ainh vyt (1.4.21)
So,

p = P, Y 8inh Yt + 60 cosh Yyt (1.4.55)
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and it is seen that there is an unbounded growth in p. A non-dimensional
form of (1.4.22) is plotted in Figure 1.4.
Returning to the estimation probiem, using the original model
(constant p), the observation-state relation becomes
Yy = Bk tU =P, Y ainh Yt * 50 cosh Y, * U
and

-l' N . -o 1‘193!
p G 8inh Ytk *+ P, cosh Ytk p, +V (1.4.83

Y = Px kT Yk

So the estimate becomes

: . 1 . .
Pe = P * T R/Po) (po Y 8inh Ytk *+ 0, cosh Ytk - Pt vk)

(k=1) + R/Po = v

k
T Tx+ERP, Py * X+ R/P,) ¥

1

Eﬁ;jiﬁ;'(oo Y 8inh Ytk + 60 cosh Ytk) (1.4.54)
0 .

Forming the error, 5k, by subtracting (1.4.2¢) from (1.4.22) gives

a o . .
k + R/P, ] (py Y sinh Yt + p, cosh Yt, - 0,) - %7 RJE,)

(1.4.25)

s [tx-1) + rsP
Py =

From (1.4.24) one can see that as k increases, the additive effects of the
last term become less (since y << 1), and 5k tends to a relatively constant

value. In (1.4.25), the term in square brackets tends to 1, and since ék
is approximately constant for large k, the hyperbolic trigonometric terms
eventually dominate, driving the error to intolerably large values. As
before, the computed variance qiven by (7..1.7) decreases to zero.
Consideration of state noise to represent dynamic model uncertainties

has been shown to have the effect of keeping the error covariance from
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vanishing, and likewise, the gain.
equation (1.2.1) be the identity matrix.

W, be stationary so that the variance, Qp

B By +@

For k = 1,

Po + @Q

Ky =Py/[P1 + R] = RN
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For the rendezvous example, let I' in

Further, let the process qenerating

=, is a positive constant. Then,

] TR
¢1.-z..:"

Assuming the initial estimate error is zero, the actual a pacead variance,

Po, is simply k. Then the simplification

may be made that

__R+q _1+f =4
K"2R+Q’2+f’f"1f
and
Pl=é—1-§n
For k = 2,
— E t: 2
p’=R[éif}'Q=R[;:f+f]=ﬁ[1;ff+ ]
P, 2 s 4 2
Ky i {1+ 3f+ f)f2+ f) _1+3f+}
Pa+ R (1+3f+f)/(2+ f)+1 3+ 4f+ 2
p2=[1+_3Li_ﬁ] e
3+ 4f + f?
For k = 3,
= |1+ 3+ %)
P"[(3+4j‘+f2)+f]ﬁ
_P1+6f‘+5f2+f‘3 =
L 3+ 4f + f2
o o[l 267+ 572 + 2 _ 1+ 6f+ 52+ £
STLT+E6f+5f2 + f3+ 3+ 4f + f2| 4+ 10F + 672 + f°
P_[.1+6f‘+.€>'f2+_1“3 -
YT 4+ 10f + 6f2 + f3




N Tl e u:-i

ity FRE

For k = 4,

5 _[1+10f+ 15F2 + 723 + £ o
“TLT g+ 10f+ 6f2 + £

P -[1+10f+ 15f% + 773 +f“]
“ T L5 20f + 21f7 + 87 + fu

Py = Ky R

Finally, for k = 5,
- [1 + 15F + 352 + 28fF3 + 9fF" +J‘5]

Ps = \ TS5+ 207+ 21/2 + 870 + f°

P 1+15f+35f=+28f’+9f“'+f5]
3 6 + 35f + 56f% + 36f% + 10f* + f°
Ps = Ks R

Examining these values leads, by induction, to the relationship
=0 m=k

£ ()

a\ . al
where (b) Ta-bJT b1

K =
m
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(1.4,27)

the binomial coefficients, and f = Q/R. P and ?; are given as before.

It is important to investigate the limit of Kk as k + =, Returning

to the recursive relations

Pra1 =Bt @

then
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= +Q (1.4.28)
Pk +R

Now, as k + =,

PR

+Q (1.4.29)

K, =

P +R

Y lim o
where the notation P_ means , 7, .

Solving for 1—5& ,
Q *+ / Q2 + 4R

P“' 2 (1.4.

€
)

where the + sign is taken since it is required that P > 0. However,

fo g+ /T T IR
B_+R (Q+ YV QZ + 4QR J/2 + R

K =

(-]

S EXAKX /S (1.4.51)
1+Y1+4/f+2/f

and therefore,

- 1 + VT LT E
1+ VT +a/ + 5/f

(1.4.3%)
Notinq that X < 1, and P_ < R, one may write
Ky < K <1

Poo S Pk <R (Zo‘.;.c:l:.’
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The fact that P and X do not vanish due to the presence of ¢ does
not in general prevent divergence of the estimate, when unbounded model
errors are present, but simply delays it. Forming the estimate for very

large k , one obtains approximately,

Ry = (1-K.1] L K [poY sinh Ytk + po coah y!k + nk],
3 2/f 5k 4
1+ V1+4/f+ 3/fJ
L* 1444 (poY 8inh Ytk + po cosh ytk + uk) (1.4.34)
|1+ YT+ 4/f+ 2/f]

The corresponding error is approximately

6]: > 2(f (poY 8inh Ytk + 50 cosh Ytk - E)k)
1+ V1+4/f+2/f

[ 1+ V1+4/f ]vk (1.4.35)

1+ V1+4/Ff+2/f

Thus the non-zero steady-state gain, K_, continues to provide information to
improve the estimate of 0. Note that as @, and hence f, becomes very large,
the error asymptotically approaches the error due to the observation noise.
However, after a sufficient amount of time, the estimate still diverqges owing
to the unboundedness of the model error.

The question remains: "How does one compensate for modelina errors so
as to allow a workable estimation algorithm which provides accurate and useful

estimates?"

1.5 Literature Survey

The effects of dynamic model errors have been examined by a number of

investigators, among them Heffes (10), Schlee, ¢t af. (11), Price (12),
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Huddle and Wismer (13), and Neal (14). Most of these investigations are
concerned primarily with performance degradation of the estimation process
(which is the Kalman sequential estimator in all cases), and offer equations
which provide a measure of the degradation. These equations are generally
based upon the error covariance and are structured in such a way that model
errors may be seen through their effects on the error covariance.

As mentioned in Section 1.1, model error compensation techniques may
be classed loosely as adaptive or non-adaptive. Techniques from both camps
may be further classed according to their basic approach to the problem. On
the one hand are techniques which simply alter the actual estimation or filter-
ing equations. These approaches generally attempt to maintain the error
covariance, and hence the gain, at a level which will continue to provide
corrective information for the state estimate. On the other hand are found
methods which attempt to improve knowledge of the dynamic model. The former
approaches usually aim at computational simplicity, but pay the price by
compromising optimality. The latter methods are usually more in keeping with
the optimality properties but generally are computationally more demanding.

The technique of representing modeling errors as white noise is an
easily implemented approach which is perhaps the most conservative. Numeri- .
cally, it amounts to merely increasing 5; by adding the Q1 matrix to ¢Pk_1 @T,
As pointed out in the last section, thfs merely delays divergence if the
errors are unbounded, but can be effective for small, bounded errors, i.e.,
if the system is uniformly completely controllable. The consideration of
state noise is employed so often that it has become part of the standard
linear, unbiased, minimum variance estimator (5. 194-209), (15). However, in

the face of incomplete knowledge of the dynamic model, @ must be guessed.

k-1
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Rather than arbitrarily select a complete matrix of values to be
added to the error covarianée, an effective and simple method is simply to
scale the error covariance by a scalar. This has been done recently by Tarn

and Zaborszky (16). A scalar, = > 1, is selected and used to scale I, after

each covariance update. In the application to an inertially navigated qlide
vehicle, it was concluded that / - a < 7.5, and that satisfactory results
were obtained for & = 7.2,

Fagin (17) introduced the concept of exponential age-weighting of the
observations. The effect is to downgrade the value of old observations so
that the most current information dominates the estimate. Fagin's development

is based upon a recursive least squares derivation, where

~T T -1 o
J, = 4IE, 070, k) P21 0lo, k) ] +
S T = -1

P iZ_:J y, - 1, o6, k) w )T T 1y, - 0 o0, k) 2 e

is minimized with respect to L In the standard least squares approach,
71 =r"1. However, Fagin modifies h; as

Ry =exp [(t, =t )/TI R,y &2k (1.8.0)

where T is an arbitrarily chosen time constant. The resulting estimation
equations have a form different from those of Tarn and Zaborszky; however,
they are equivalent (this will be shown in Chapter 2 along with certain
requirements on the scaling factor).

Miller (18) examines the behavior of the Kalman filter for continuous
and discrete time invariant systems with exponentially age-weighted observa-
tions. He derives equations for the filter eigenvalues to provide useful

guides for choosing the aging time constant, t.

= e
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Schmidt (19), (20) offers two uniquie methods for overcoming model
errors. One utilizes a scalar parameter i to scale the optimum gain, i, with
an attendant increase in the updated covariance matrix. A second technique
adds a judiciously selected term to the Kalman gain with the corresponding
effect of an additive term to the updated covariance. In both methods the
values of the parameters involved are related to certain configurations of the
Kalman estimation equations. Both techniques effectively over-weight the more
recent data.

Limited memory filtering is a useful technique for counteracting model
errors. Here, only a limited batch of observations are employed. However,
the "batch" is updated in the sense that old observations are effectively
discarded as new observations are added. Hence the dynamic model is required
to be commensurate with the data only over a short time interval. While a
number of limited memory filters have been developed, one of the most efficient
and easiest to implement is due to Jazwinski (21).

Adaptive techniques form the majority of model error compensation
methods. Here attempts are made to estimate a parameter vector, a, whose
elements are unknowns in the model. These may include elements in ¢, #, @,
or R. Mehra (22) places adaptive methods into four categories.

1. Bayesian

2. Maximum likelihood

3. Correlation

4. Covariance matching

Bayesian methods involve determining the a posterioni probability

density function, p(xk, aIVk). Employing Bayes' Theorem,
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p(Vkla) p(a) _
plz,, aIVk) = P(xkla, Vk) P(alyk) = P(xkla, Vk) -Tvk)—— (1.5,&

Since
pty,) = .!;p(VkIa) pla) da,

then

Py, la) pla)

plz,, ale) = p(xqu, v,/ (1.5.4)

f ptY,la) pla) da
A
where 4 is the set of all a. Usually a recursive formulation is desirable.
Noting that

p(Vk) = p(ykIVk_l) p(Vk_l) (Fabt?
substitution of (1.5.5) into (1.5.4) yields
p(yklvk_l, ) p(ule_l)

)
3 _{p(yklvk_l, a) p(aIVk_l) o

P(xk, ale) = p(xk|a_. y (1.6,¢)

where p(Y, _,) has been divided out of the numerator and denominator. Now the

optimal estimate of x, is the conditional mean (22, XIV.1.1)
&= ez |V} = j;( z, plz V) dr,
k
and for the problem at hand,
B = j}k f, =, plz,la, V) dx ptal¥,) da
or

8 = {é}k(a) plal¥,) da (s

Using the quotient in (1.5.4) substituted for p(alvk) completes the formu-
lation of the algorithm.
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The obvious difficulties in (1.5.4) are the evaluation of the p(a]Vk)

integrals over A. Magill (25) develops the above algorithm approximating
the integrals by summations of discrete probability distribution functions.
Thus,

n

& = 2 2 (a)) P(aiIVk)
t=1

and
Py Vyagp 3 PlaglVy ) (1.6,

Z p(ykIVk_l, aj) P(ajlyk—l)
J=1

P(al. |Vk) =

where (1.5.5) has been employed. This alaorithm can be effective if the
dimension of a is not too large. To implement the procedure, the values of
the a; must be precomputed: therefore, large n increases the computational
load. Further, the appropriate probability density and distribution functions
must be assumed.

Maximum likelihood estimation is based upon maximizing a likelihood
function, L, formed as

L=4n plx,, aIVk]

with respect to the state, x, and the parameter vector, a. Taking partial
derivatives with respect to the appropriate elements produces a set of
usually nonlinear algebraic equations. Thus the disadvantage rere is that
an iterative method is required to solve for the estimates, or else some
approximation must be made which yields suboptimal estimates. Further, the
density function must be known, a prioni. Alternately, using the marginal

density function, p(aIVk). it is sometimes easier to derive an estimator for =.
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The basic approach of correlation methods is to relate the auto-
correlation function of the observations to the unknown parameters. These
methods are normally applicable only to constant coefficient systems and
therefore will not be discussed further. The interested reader should see
(29) and (30).

Covariance matching techniques attempt to make the observed residuals
match their theoretical covariances through the appropriate choice of the
unknown parameters. Approximating the theoretical covariance of the residuals

by the sample covariance, one has
V=‘7 3'1' 2 \Y VT : {ob,
m m i1 '

where v is the theoretical covariance, VV is the sample variance, and v is the
vector of observation residuals. The limit, n, is chosen to provide a sem-

blance of smoothing. Equating v and V,

_ T T = e
v=u_ [P 0 +I‘le"]ll7]l+h-vk Pl

k-1
Care must be taken to insure rank is consistent with the number of unknowns.
For example, if ¢ is being estimated, 4’ must be of equal or greater rank
than @ in order to obtain a unique solution for the elements of .. Alter-
natively, additional equations may be obtained for different times. For
elements of, say, ¢, (1.5.10) is nonlinear, hence an iterative method is
generally required. In passing, it is mentioned that covariance matching
techniques appear to give fair results (24), and seem to be easiest to
implement.

The adaptive techniques discussed above have been used extensively to
estimate the state noise covariance matrix, as well as other parameters. We

nave already mentioned Magill's use of the Bayesian approach to develop an
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adaptive algorithm for estimating parameters which are allowed to take on
only a finite number of values.

Maximum likelihood estimates of the state noise covariance are
obtained by Abramson (26), Sage and Husa (27), and Levy (28) to name a few.
Abramson provides a complete and detailed development of optimal and sub-
optimal methods for simultaneous estimation of the state and of the noise
statistics. While his approach offers estimates of the diagonal elements of
@, Sage and Husa (27) have extended the approach to yield estimates of all
elements of @, although proof of convergence is not established. Usina the
Sage-Husa algorithm, Levy has constructed a reprocessing filter which period-
ically reprocesses the accumulated data to obtain increasingly improved
estimates of @ (and R). In the same work, Levy points out some shortcomings
of the Sage-Husa approach, and subsequently produces a corrected iterative
algorithm for simultaneous estimation of @ and ~.

Mehra (29) uses the innovations correlation approach to provide
estimates of @ and 7 for time invariant systems. The method is limited to
cases for which the number of unknown elements of @ is less than » x »,
where n is the state vector dimension, and p is the observation vector
dimension. In cases where this restriction is violated, the Kalman gain
may be estimated directly, although this alternative utilizes an iterative
approach. In (30) Mehra applies the observations correlation approach to the
identification of time invariant system parameters.

Jazwinski (31) uses a maximum likelihood approach to develop a state
noise covariance estimator. The joint probability density function of »
residuals is maximized with respect to Q. For the case of one residual,
normally distributed, the result is identical with that for covariance match-

ing. One residual is not a meaningful statistical sample; however, using the
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sample variance of a larger residual sample, Jazwinski has obtained
satisfactory results (24).

An effective approach to adaptively compensating for modeling errors
is to consider the state noise as being correlated in time, and modeled by
the first order Langevin differential equation,

Wit) = Q(t) + ult) . (15,11
where C is a diagonal matrix of constants, and u(¢) is a white noise process
with statistics,

E[u(t)) = 0, E{u(t) ul(s)] = U(t) 6(t - 8)

By extending the state vector; x, to include the elements of :.», the problem
resumes its original form with the only difference being a larger state
vector. The specification of ¢ is generally not an easy matter; however, by
also including its elements in the state vector, the value of . may be
adaptively estimated. This approach has been used successfully by Inaram (32)
in representing the effects of time correlated random accelerations acting
on the Apollo spacecraft. Schutz (33) has used the same approach to account
for the effect of mascons in the lunar gravitational field. Tapley and
Hagar (34) have successfully utilized equation (1.5,11) as well as the second
order equation,

wit) = Qult) + ult) (@A
to represent time correlated uncertainties in the thrust acceleration vector
of a continuous low thrust, solar-electric spacecraft. The possibility of
utilizing higher order models to represent time correlated noise is also
indicated in (34).

A particular disadvantage of each of these techniques is that unless

the constant matrix, ¢, has some state noise variance associated with it,

it will settle to some constant value since its associated gain will vanish,
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As a result, unless the correlated noise represents the model errors eractly,
divergence of the estimate will eventually occur (35).

It is obvious that there is great latitude in selecting functional
forms to represent auto-correlated model errors, and these range from the
use of simple constants by Russell and Curkendall (36) to higher order
differential equations (37). An obvious problem is that of selecting the
correct functional form or structure. This problem has been touched on

briefly by Lainiotis (38), and will be considered further in Chapter 3.

1.6 Outline of the Investigation

As stated in Section 1.1, this study investigates the utility of a
variety of model error compensation techniques and provides a comparison of

the effectiveness of these methods. The particular techniques investigated

are selected from those mentioned in the previous section, along with several
extensions and new approaches. The study is limited to implementation using
the Kalman sequential estimators (Algorithms I and II) presented in section
1.2, and the error compensation methods studied are general enough to be
applicable to time varying as well as time invariant systems.

In Chapter 2 the suboptimal non-adaptive methods of the Schmidt
modifications and of age-weighting devices are presented. Also presented
in this chapter is Jazwinski's limited memory filter algorithm.

Chapter 3 is concerned with adaptive methods, both optimal and sub-
optimal. Jazwinski's adaptive technique for estimating the state noise
covariance is presented. Several extensions are given, and the covariance
matching technique applied to yield adaptive forms for the Schmidt and age-
weighting algorithms presented in Chapter 2. The briefly mentioned problem

of structurally adaptive filtering is considered, and results are obtained
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for certain restricted forms. A new method is developed for estimating the
state noise covariance matrix. The resulting alqgorithm employs the linear
minimum variance sequential estimator to adaptively estimate the state noise
covariance elements for the case of linear observations. The same approach
is shown to be capable of modifying the error covariance elements directly.

Chapters 4 and 5 apply the previously presented algorithms to two
dynamic systems. The scalar rendezvous problem presented in section 1.4 is
used to provide tractable, closed-form solutions and to offer insight into
the nature of many of the methods. In Chapter 5 a second problem of a more
complex but realistic nature is investigated using the most promising
approaches indicated in Chapter 4. This concerns estimating the heliocentric
trajectory of a continuous Tow thrust, solar-electric spacecraft, subject to
errors in the thrust acceleration vector. A complete description of this
problem is given in Chapter 5.

Chapter 6 is a concise summary of the investigation and presents the

general conclusions and recommendations for further study.



Chapter 2

NON-ADAPTIVE METHODS

2.1 Aqge-Weighting of Data

The rationale for age-weighting the observation data to compensate
for model errors is this: The Kalman filter uses all the data as information
for obtaining an estimate. However, the dynamic hode] assumed in the process
is in error and therefore yields a reasonable anproximation to the true
motion over only a finite interval of time. Therefore, attemptinag to make
the data consistent with an erroneous model over the total estimation period is
unreasonable over a long period. A logical alternative is to downgrade the impor
tance of the older data. Fagin (17) does precisely this by minimizing ) In
equation (1.5.1) where E} = eaqq(tk - ti)/T] Ri, with 1 arbitrarily chosen.

The results are equations (2.7.%) with s = nuT[(tk - ti)ﬁll.

For the derivation here, a slightly different and more direct approach
due to Tarn and Zaborszky (16) is aiven. Here, a qeneral function, ., is used
as the weighting factor instead of the special case of an exponential. Pro-
ceeding heuristically, it is noted that aqing the old data (decreasing its
importance) will yield the same results as increasina the importance of the
more current data. This may bhe accomplished simply by scalina the error
covariance by s, with ; > 7. Thus the error covariance and hence the aqain
is increased so that more importance is attached to the more recent observa-
tions. The subo timal covariance, denoted as 7°, is s with the Kalman

equations modified by simply substituting ° for . Thus,

48
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x, = ¢ Z

= T = T -1
Kk = Pk H [H Pk H + R]
zZ, =x + Kk[yk - H xk]

™
]

- D '.).."'l
(I - K H) Pk (.

These are the results arrived at by Tarn and Zaborszky. We note in passing
that since their results contain both the additive state noise covariance and
the s-factor, there is some redundancy. The presence of the s-factor simply
slows the decrease in the error covariance, and the algorithm is therefore
suboptimal. Setting @ = 0 in (2.1.1) and using the definition of r° one
easily obtains Fagin's form,

5 , S T
Po=0r>, @

¢

2]
]

k k-1
= T s T, By-1
Kk—PkH (" PkH +3]
ﬁk =z + Kk[yk - H xk]
p% =e8(l - K§) P OB
k k foiwdon

where ¢ = exp [(tk- tk_l)/rl.

The effects on the age-weighting algorithm for various values of .
are now investigated. First, if s = 1, equations (°.1.1) and (. :!."! are
just the Kalman equations of Algorithm I. If & is very large. the gain

approaches a value such that #X = 1, in which case only the most recent
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observation is considered in forming the estimate. This latter fact is seen

by premultiplying (1.2.8) by H.

To gain further insight into the algorithm, (2.7.2) is used to form

the variance between a perfect measurement and a computed measurement (for
a single observation), #P°HT. For a perfect observation, y = Hx; for the
computed observation, § = #2. Differencina these and taking the expected
value gives

Yy=y-§=Hz-2)=H1=x

E 57 =H1° HT

which represents a measure of the estimation performance for comparison with

the Kalman filter. For the case of scalar observations (to which the vector

case can always be reduced), (2.1.2) is used to obtain

- 7 ouTy2
nesH = [H Pyt - LI ] =,
(n T u¥ + R/

Introducing the definition

¢ -~ kB HT > 0, (2.1,

equation (2.1.3) becomes

T sk

nreu o= (e, 1.8

s + o
For the optimal Kalman filter, s = 1, and

R P
1+e¢ '

(Y

npeut =

Forming the ration of (2.1.5) and (2.1.6),

8k l+c¢c 8+ 8c
L = > > 202-
8 +e R 8+c—1’s-1 (

Thus, the measure of performance, given by HP°HT for age-weighting, is
bounded below by that for the optimal filter. To obtain an upper bound,

consider (2.1.5) in the 1imit as s » ». Employ L'Hospital's rule to find
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R =R (2.1.8)

" T g
1im H P° B = lim S

800 f: g

The values of HPkHT are then bounded according to

R s ,T ,
— 3] Q)
T e < H Pk H <R, 8 >1 (D.1.8,

0 <
for k > 1 (after the first observation).

The variance of perfect measurements, HPHT, forms a useful common
denominator for comparison among various algorithms. Letting this quantity
be denoted by ¢, the corresponding relationship with :+ may be found. Again

considering the case of scalar ouservations, equation (. /.. is manipulated

to give the following sequence:
HpH =c=al PR -0 FH T A + 507 0 F A"

1 1

et PH)  =al1 -0 BuTu P HT + g =4

e+e(11$ﬂ7)'1§-=s(11?11"+-§-) -sHFHT
ec+etHPH T rR=ps

or

€ [ 1 ] " o0
8 = (.‘4.].1\'
i P HT 1 -¢/R

This result is consistent with (2.1.9) as can be seen by solving (2, 71.10)
for € and noting the results as & - 7 and & - =, Note that as ¢ » 7, & + «,
and the estimate depends more and more upon the latest observations.
Implementation of the standard age-weighting algorithm is straight-
forward (Figure 2.1), and may be done using either equations (2.1.:/) or

(2.1.2).
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Figure 2.1 Age-Weighted Data Algorithm
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2.2 Schmidt Suboptimal Filter: Scaling the Gain

Schmidt (19) considers modifying the gain term directly using a

scaling constant, b. The state estimate is then given by

A ="' o = o 0
ro=x + b Kk[yk H xk] (2.2.1)
and the corresponding error covariance can be found from
r = -2 = T - - = - N )
E =% =L =z b Kk[yk H xk] x, b Kk[H x + vk] (B.3.5
) = - _; - ) 7 T ’2 ’ \ ’ T
lk-[l I)Kkﬂllk[I IAkH] + 1 Ahl\k
=FP-bKHP-bPH K  +b2 KHP U + 1) KT
or
- - b2y % glews T ~1 = SR
Pk— {r-—r2 b)PkH (H th' + R] © H} Pk (S 30

Proceeding in a manner similar to that in section 2.1, Schmidt forms

ne = Ut o - b)) TR HT T ) T (%, %,
Considering scalar measurements as before, Schmidt specifies Hlku7'at some

acceptable value, e, and subsequently solves for 0, yielding

Z)=]+JE(HFHT+R)-HH?"HT ey
(HPu)?

for which real solutions exist when

(=T
e > |[—LEE— P,.” =RHK ERAET
HPH +R

and the positive sign in (2.2.5) is taken to insure b > ;.
The effects of various values of » may be seen readily by examining

equation (2.2.3).
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b=1 Standard (optimum) Kalman gain and error covariance update
equation
1<b <2 A smaller than optimum term is subtracted from ?; in forming

the updated covariance,

b=2 P =P

b>2

A positive term is added to ?;

Extending Schmidt's analysis, corresponding values of ¢ are easily found to

be

A ]
HBH + &

e >HDPH

for b

for 1

for b

for b

Further, values for b and € may be found

]
~

<bhb<?

(]
[\U]

> 2

which yield Hx =~ i, thereby

forcing the estimate to depend only upon the more recent observations. In

this case,

bHK =bHPEEPH + A7 <

or
= T

HP H +R

b < k

s T
HPkH

Using (2.2.5) and (2.2.7),

HPHT + R

e(HBH +R) -RHP K

> 1+

HP AT
one may solve for € to obtain

€ <R

(# T BY)?



In view of (¢ .0.0), (2.2.8) requires that

H P, n’
Rj=s=——mr—ss<s < & (2.2.9)
R+HDP H
k
or
RHK<e<R (2.2.10)

For estimates based upon only the current observation, equality must hold in
(2.2.8). 1t may be recalled that this agrees with result obtained for the
age-weighting algorithm.

Implementation of this algorithm is straightforward. A slightly
different approach involves using the fcllowing modified form of (o.».:):
BHP H + R
T

o
-~

(82, 01)

n
R

H H

a_'UI

where HK < o < 1. The lower limit for o follows from the requirement that

b > 1. When applied to the Kalman gain, the following result is obtained:

= T = 7 -
K*=bK=ao [” it R] L =L, 12,5..13)
HPH (i PH + R) HFPH
and the covariance update equation (:.:.3) becomes
. = a8 g
P=T - [2a- (14 —to) o) L (o,

nei

Suppose a = ¢/f. From the limits on o, the corresponding limits on . are
seen to be those in (2.2.9). Thus, € = / results in estimates based upon
only the current observation.

The gain scaling technique using a constant value of ! can lead to
some problems, and this will be shown specifically in Chapter 4. Another

alternative method is to determine » as
R
HPHT

b=1+8 s 0<B<1
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The limits on ¢ correspond to the expected limits for /o discussed earlier.
In particular, £ = 0 gives b = [ resulting in the optimal Kalman filter:

B = 1 gives the value of b indicated by equality holding in (2.2.7), i.e.,
all information is obtained from the most recent observation. Employing
(2.2.14) in the gain and the error covariance update equation (2.2.3) gives

the following:

K =b K
=1+ LE FuTwu Fat e m7
InrH
=BH + 3Pt TuTy T ut + it (2.0 )
9 - bZ =24+ ° B—/f r - 7.0 B-h‘ = - Bi ,’\':‘ £ | - ﬁ"—.’\"‘lp =
iHPrH HPH (HPH)? (H T H)?
(2.0.1¢8)
g2 g2 - T, = P -1 - .
P={I-[1-T]PH(HPH +R)CHYP (s 3. 15)
(HPH)?
Forming HPHT yields
v (HPHY +82R)
HPH = - R (5.2 i
HPH +R

It has been indicated by Schmidt (20) that this method of determining :
yields estimation results identical with his zdditive gain term algorithm
discussed in the next section.

The gain scaling technique for constant b or (2.2,14) to determine *
is diagrammed in Figure 2.2. Figure 2.3 gives the logic flow for the modi-
fied gain scaling algorithm using equations (2.2.12) - (2.2.13). For this
modified approach, it is pussible that a value of € might be chosen which is
initially less than the lower bound given by (2.2.9). This is not generally
desirable. The philosophy here is to operate with the ordinary Kalman filter
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k = k+l Compute g
b 7 ¢
Jay
NOSEL
kK, =P HY(H T oY + »)7)

g

P = [I- (2%b-b%) K H) P

v

.i'k=5+bK[yk-H3:]

Figure 2.2 Schmidt Suboptimal Filter: Gain Scaling
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k

K =T H[HFH + 8™}

v

P =

(I -X

) P

Figure 2.3 Modified Gain Sc.iing Algorithm
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equations, and when HPHT = €, sSwitch to the suboptimal modified gain scaling

equations.

2.3 Schmidt Suboptimal Filter: Additive Gain Term

A second approach taken by Schmidt (19) is to add a judiciously chosen
term, L, to the optimal gain, X. This approach is possible only for scalar

observations. The suboptimal term is given as

T
BL =B— £e T (2.3, 1)
(H) [H P, H +R]

so that the actual suboptimal gain is found as

M =K +81L,
BHT

(2.3.2)
(H HY) [H P, 0T + R)

= P = T -1
=P H P H +RI"" +8

If B is chosen as

[11? nt o+ K
g =R" k
2

then
it

Bl =8"
N

If one considers the estimate of x with no a paiord information, one obtains

~ = # =
o=z + 1 [yk - I xk]

where H” is the pseudo inverse (45, 82-89) of .

T
gt = A

nuT
Then (2.3.2) is simply a linear combination of two gains: the optimal gain
for all the observations, and the gain for no a paion( information, given by

the pseudo inverse, H#.
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The updated covariance equation is also modified. Using (.:.%) to

form the state estimate,
x, =z + Mk[yk - H xk] (2.3.3)

and subsequently the estimate error,

~ - o

the error covariance is determined as

~ ~T - T :
EWZ, %"} =P = (I-MH P(I-MH +MRM

=(I-MHP-PH M +MHPH +R) M
But since

T T

T
¥ ¥ 28 (2.3.5)
Thus the updated covariance matrix is of the same form as the optimal equation
with the exception that the suboptimal gain, ¥, is used, and an additional
term is added. An alternative form of (2.3.5) may be found as

P =(I-KH) P_+8 RLE/H HY) (2.3.6)

This is the form derived by Schmidt.
Reasonable 1imits for 8 are readily established by considering &M,

formed using (2.3.2).

HM=HBPHEPH +R) 1 +8REFH + p)71
=(HPH +BRIHPH +R! (2.3.7)
As before, for HM = 1, the most recent observation drives the estimate.
Heﬁce using (2.3.7)
HM<1=>B8<1 '
The lower limit on g8 is established heufistically by considéring the fact

that B < 0 decreases the optimal gain, an effect which counters the idea of
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depending more on the recent observations. Thus limits on R are
0-8<1 | I )
For £ = 0, M = K; for B = 7 only the current observation is used to determine
the estimate.
It is interesting to extend Schmidt's analysis, and find the relation-
ship between » and 8. Forming HPHT from equation (2.3.6),

HPH =HPH - (BN 2m BT + ™t v 82 w2 Tl + w1

Denoting ¢ = HPHT, as in section 2.2, an expression for g may be found.

eHP U  #1) = (HPUS)(HPHY +R) - (1T HT)2 + g2 52

or

= T = T
e=4_‘/8(’”'” +R) - HPH B .
RZ

where the positive sign is taken in light of (2.3.8). Now comparing this

with the expression for » in section 2.2, b may be rewritten as

R (o )

2 )
- S.8.10)

HPH

b=1+8

Equation (2.3.10) is identical with (2.2.14), and therefore provides the
link between the gain scaling and additive gain term algorithms. It should
be noted that this relationship is derived by forming HPHT, and then developing
the equation based on this. By examining equations (2.2.15), (2.3.2),
(2.2.17), and (2.3.6) one will see that these gains and covariances differ
by the presence or absence of the error covafiance matrix in the suboptimal
term. The case where it is present, i.e., the suboptimal gain term is given
as
BREH
(1 ERT)(BPHT + R)




0l
is in fact more general. This is true because when the suboptimal gain term
is

BRH
(H B )(n P oY + R

any zero terms in # prevent contribution to the corresponding optimal Kalman
gain term. Usually this does not occur for the former case.

Note that in deriving (2.3.10), when #PHT is formed for each instance,
the differences in the suboptimal covariance terms disappear. Hence these

differences do not occur in (2.3.10).

Conditions for g may be established similar to those for o in section

2.2. In particular,

B=0 Standard (optimum) Kalman gain and error covariance update

equation

T A smaller than optimum term is subtracted from ﬁk in forming

0 << HEH
the updated covariance, P,
= T
HPH =
b= =p Ey = 5
g < PHT A positive term is added to Fk
R

Employing (2.3.8) and (2.3.9), limits may be found for ¢.

B=~IS(H'I5'HT+1;)2 -HPH R <1
or, using the inequality,

EZR (2.3.11)
which is just the condition established in section 2.2.

As in the previous section, real solutions require the radicand to

be positive; i.e.,
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which is just the inequality (2.2.¢6).

The implementation of this algorithm is given in Figure 2.4.

2.4 Limited Memory Filter

The philosophy behind the limited memory filter is similar to that
of the suboptimal techniques presented in the previous sections. However,
rather than weight the data in some arbitrary sense, 1imited memory filters
"discard" old observations.

Jazwinski (21) develops a limited memory which is suboptimal only in
the sense that it does not take into account the information from all observa-
tions in forming the state estimate. However, the filter equations
developed are, in fact, optimal over the set of observations considered.

In other words, for some subset of the total observations, the 1imited memory
filter provides a linear, minimum variance, unbiased estimate of the state.

Jazwinski's derivation applies to the general, nonlinear case. However,
it requires assumption of the probability density function. He also shows
that the linear limited memory filter may be derived from least squares con-
siderations. Since concern here is with the linear problem, this approach
is sufficient for our purposes. The derivation is duplicated here.

Consider the estimate of the state at time ty based on observations

through time t o As defined in Chapter 1, this is denoted as ik The

|m’

least squares estimate of x at ty based on observations through time B! is

derived (5, 206) as follows: Form the performance index, Jk. as

J, = ¥lx -2 )T 1-’-1 (& - 1

k m mlm mlm m m[m) *

“a

k
T -1
¥ 2 (y,-H,xz) R (y, -H, x) oA
1: 1 1 1 1 1 1 1 1
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2ys Py,
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k = k+1 C:L

P =0¢pP _, ¢

M =[P HT + 8 RHY/(H HT))(H P KT + R)™}

g

Bo=x + My -HE] J

1]

Pk=(I-MH) Pk+B
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Figure 2.4 Schmidt Suboptimal Filter:
Additive Gain Term
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Recalling that £, = ¢k,m 2o

o - T T
v/k = #(mk ﬁklm) ¢ P

k,m mlm (bk,m *

k
T -1 o
4 i-;w gy - Hy O %) By 4y - Hy & ) (9.4.2)
Further, define
r - - -
Yme1 R s (bm-l-l,k
- Yme2 _ Hovo ¢m+2,k
y=| . g o _
-yk - -Hk ‘J
and _ ‘ ]
-1 ]
R ]
m+1!
R R
] =1 1
e 2 |
Fol= )
et
-1 P I
=f_}_(___i (et ﬁ)
‘ - -

Then,

— - A T"l - A __— T—‘l-’--_'
Iy = Hlx, xkln/ pklm(xk xklm)+ ¥y -Hax) R “(y-H x,) e

Next take the gradient of I with respect to Ty and set it equal to zero.

8, = P;;llm(xk - By - AR My -Ha) =0 (£.4.8)
Solving for z = £k|k we obtain,
%M=[§h+ﬁTﬁﬂﬁr1mfﬁdg+amxﬂﬂ
or
Belx = klk[FTE "1y I_’k-l;:: Zy |l (2.4.6)
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-1

The fact that '}Ik = [Iiim + 1" % L I17T follows from equation 77.2.4,.

Notice that if there is no a prioni information about 2N then P;fm =

and (2.4.6) reduces to the standard weighted least squares algorithm. In
this case, letting ¥ = k - m, equation (2.4.6) is used to obtain *

R =P — =] = =] =T = =] —
Zelwy = B THTE Ry

or

1

Ol

Trly e

Telew) = Prlow)

Now combining equations (2.4.6) and (2.4.7) one obtains the following

sequence:

A "'1 A -1 A
Telk = P |xPx [y Fx|wy * Tk|m T |m)

-1 ~ -.1 A -1
Pelx Zxle = Px)ow Zxk|m * Pilm Zk|m

~ - -1 _1 A .
Zelem = Px)ewy Pl Zx|x = Pi|m Zk|m] (20d. &)
with
= p-d -1 ,-1 .
Petemy = k| = Pk|m! (4.0

The limited memory filter equations described above are obviously
more complex to implement than the previously presented filtering algorithms.
Essentially two Kalman sequences are required to be run for each "batch" of
N observations, and three matrix inverses are required every V observations.

Further, the limited memory filter estimate is obtained only every .

is the state estimate at tk based on observations to ¢t less

*/\
k| (v
those to tm' i.e., on the batch of the last ¥ = k - m observations. The

k’

same meaning applies to the error covariance, Pk|(N)'

L)
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observations. This number may be increased, but only at the expense of a

larger number of inverses of Pklk’ Pklnf and Pk|(N)'

It is possible to modify Jazwinski's algorithm in order to eliminate
one of the matrix inversions. By factoring out Pk|k’ equation (2.4.3) may

be written as

-1

P (2.4.:0)

T -1
Prlewmy = [z Prtk Pxlmd ~ Px|x

Also, solving (2.4.9) for p;fk and substituting into (2.4.8) yields

&

klm] (5.4, 1

£ = 5 ) -1 3 -
el = Zk|k * T Tk [Pk

Thus the inversion of Pklk has been eliminated, and (2.4, 10) and (... 1) are
the equations to be employed. It is, of course, necessary to obtain ﬁklk and

hence is required.

Pk|k
The 1imited memory filter is implemented as a sequential estimator.
Figure 2.5 diagrams the modified procedure which uses (2.4,10) and (2.4.11'.
The Kalman filter equations are run from ¥k = 0 to k = m = ¥, processing obser-
vations and obtaining estimates in the usual manner. This represents an
initialization phase. The values of Palm and ﬁm'm are stored. The Kalman .

equations are then run from k = m to x = m + N, a'so in the usual manner, and

the state transition matrix ¢m+~'m is obtained using ¢k+2,k = ¢k+2’k+1 ¢k+1’k.
The predicted values, pm+N|m and xm+N|m are found using ¢m+~’m and equations

and p The process

m+N | (N) m+N | (N)
is then repeated (except for the initialization phase) using the limited

(2.4.10) and (2.4.11) applied to obtain 2
memory filter outputs as the inputs for the next cycle (from = = 2x to m = 3).
It appears from examination of the equations for finding — .

(2.4.9) or (2.4.11), that numerical problems could be encounte e cicularly

where short word length computers must be used. Equations (2.4.9) and
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k

£k|k k

Pklkz(I-KH)

= T = T -1
K —PkH (HPkH + R)

=z, + Ky, -H Ek)

Py

k=0m=Vn
k = k+l1
T = Bk = Feg ks
B, =P =0p o7
k= “k|k-1 k=1|k-1

A

q)k,m xmlm

d)k,m Pmlm

= (I

Tk|(n) 2

¢

z r

T
k,m

- Pklk Pklm

= Zxlk * Pl Pi|m

K|k

1,-1

Pklk
-IA

(mklk

)

Pkl(N)

4>

Figure 2.5 Modified Limited Memory Filter
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(2.4.10) require computation of the inverse of the difference of the inverses
of two matrices of similar values.

It is possible to offset this state of affairs. An alternative due
to Jazwinski (5, 258), reduces the number of P-matrix inversions to one by
working directly with the inverses only. Equation (1.3.9) from section 1.3
provides the necessary recursion relation. Dropping the m-subscripts from
(1.3.9) one obtains at time ¢ , based on measurements to ¢, .,

¢;T p-l ol +uTgrply (8.4, 1)

ord
+k-1 "k-1]k-1 "k, k-1 " "k "k “k

k|k-1 %
For prediction only, the information term, §* g~ H, for time tk is ignored.

Thus at tk, based on measurements to tm,

B = Xl el 0 2
Pklm - ¢k,m Pmlm q’k,m (D.4.18)

This, of course, requires taking the inverse of ¢. If ¢ is symplectic*, its
inverse is readily obtained. Alternatively, instead of integrating & = 4 ¢,
the inverse may be found by direct integration. 82 is found as follows:

ol o=1

It should be apparent that all the previously presented algorithms

may be implemented such that z and P are obtained by integrating their

* An even-dimensioned matrix, ¢, is said to be symplectic if

T 7 o=, whereJx[OI]
-I0

Post-multiplying by ¢ . and pre-multiplying by J gives

vla gty
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appropriate differential equations. Similarly, differential equations may
be obtained for the prediction and update of | First,

Plp=1
Plpseplian
Pl prippt

and using equation (1.2.39) with ¢ = 0, one obtains for the prediction,

Bty = -1t act) - 2%ty p70t) (2.4.14)
The differential equation for updating e may be found by applying a limiting
process to (2.4..2) similar to that used in obtaining equation (1.2.39). '
First,

=T

Plr) =0 Ta, t) P ) o7 n, &)+ 6w BT HCO

(07 Tce, ¢) + 8Tty t) ot + ...1 P er)

(07 e, )+ T, t) bt + ...) + BT B0 B

Carrying out the indicated multiplication,

P Lty = P ee) - aTcw) p7le) at - PTI) ace) + Lo+ 0T 00 B0 Hen)
Performing the 1imiting process requires subtracting P 2(t) from both sides,
and dividing by At. However, when taking the limit as At + ¢ the information
term becomes infinite implying that the observations are perfect (no observa-
tion noise). This is inconsistent with the postulated observation process.
hence we replace* 7(t) with R(1)/At. With this change, the 1imiting process
is applied to obtain

P ey = -aTce) plce) - P oace) + WTct) RTAct) H(t) (2.4, 18)

* Further rationale and a discussion of a white noise process as the

limit of a white noise sequence is given in (5, 83-84).
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with

-1 -1
P (0) = PO

When the information term, #T Rl H, is added at discrete times, the approach
used is to predict to t = t using (2.4.14) and then add the information

terms at tk. f.e.,

t
k
~1 -1, T -1
Pileer - -Ef 1720e) act) + aTce) PR e
k-1
-1 -1 T -1 ;
= 92 . D.,
Pklk Pklk'l +Hk Rk Hk ("ed e

Reverting to the notation associated with the filter, there results

t
k
S -] T -k .
AP jt' (Plee|e ) act) + aTce) PTIce|e )Y dt (8.4.17)
m
t
k-1 Jj+1
-1 _1 V T -1
Pelew = E {-j; [p (t|tj_m) A(t) + A"(t) P (tltj_m)] dt
T [ -1 M o
+ H (j+1) R ~(j+1) H(J+1)}
with
e, l0) = 0 (2.4.18)

As before, it is not necessary to compute P;fk (although P is required)

k|k
since equation (2.4.11) provides the limited memory estimate. Thus only one

p-matrix inversion is required: that of P, However,

1
k| v NN
the inverse of the state transition matrix is required, or else (2.4.17) and

to obtain Pk

(2.4.18) must be used. If o1 cannot be easily obtained, the advantage of
this approach is somewhat decreased. The implementation of the alternate

limited memory filter is diagramed in Figure 2.6.
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No I = meN ‘Pkl(k-m) = °k,k-1 Pk—ll(k-nu
-1 T -1
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Mgure 2.6 Alternate Limited Memory Hilter
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2.5 Summary
In this chapter the non-adaptive error compensation algorithms of

age-weighting, gain-scaling, additive gain term, and limited memory filter-
ing have been presented. Some of the original algorithms have been extended
to provide alternate forms, and relationships derived showing certain
equivalences among the first three.

Equations (2.1.1) give the basic age-weighting algorithm as conceived
by Tarn and Zaborsky, with Fagin's form given by (2.1/.1).

Schmidt's gain-scaling algorithm is given by equations (.2, /' and
(2.2.3). The relationship between the scaling factor, b, and ¢ (=HFET) s
given by (2.2.5). Modifications of the algorithm are given by the alternate
equations for determining b, equations (2.2.11) and (2.2.14).

The second filter design of Schmidt's adds a judiciously selected
term to the optimal gain, X. The resulting gain and covariance are given by
equations (2.3.2) and (2.3.5) or (2.3.6). The weighting factor, B, associated
with the additional gain term is shown to be related to € by equation (=.&.0!,
and related to b by (2.3.7).

Jazwinski's limited memory filter is given by equations (2.4.3) and
(2.4.9) together with the Kalman filtering algorithm. A modification to the
basic limited memory filter eliminates one of the three matrix inverses, and
is given by (2.4.10) and (2.4.11). An alternate form employs the inverse of
the error covariance directly, thereby reducing the number of matrix inverses
to one, and is particularly advantageous if the state transition matrix is
symplectic.

In the next chapter we turn our attention to adaptive techniques,

both optimal and suboptimal.



Chapter 3

ADAPTIVE METHODS

3.1 Estimating the State Noise Covariance

When modeling errors are assumed to be represented as purely random.
uncorrelated noise, it is often a problem to determine the appropriate value
of @, the state noise covariance. As indicated in section 1.5, there is a
preponderance of adaptive techniques which may be used to estimate the
appropriate noise covariances. Most of these, particularly Bayesian and
maximum likelihood approaches, have been thoroughly investigated (25), (26),
(27), (28). In this section an adaptive method due to Jazwinski is presented
which offers a reasonably simple and easily implemented scheme for adaptively
estimating the state noise covariance matrix. While the algorithm is derived
using a maximum likelihood approach, an interesting property is that in a
simplified form it becomes just the covariance matching technique.

Consider the following predicted residuals, called the innovations (23)

re =y =iy k

For simplicity, }k is assumed to be restricted to the scalar case. Forming

z =H, X, + v 3 = , Tyl E (4.1.1)

the covariance of r. one obtains

k
) e ey T " 3 ol
E{rk} = Hk P Hk NN (e
since M{Ek va} =0. P is given by equation (17.2.77). It can be shown (23)

that the innovations given by (35.1.1) are uncorrelated, i.e.,

M{?; ?3} =0, J >k,

74
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and that ?' is a Gaussian white noise sequence. Thus the joint probability

density function of the innovations sequence k+1, Priat o0 Ty is

PPy ys Prygs voes Prp) = (0, 0) 2 p(r, ) » oo plr, ) (3.1.3)
where

(v )=-L[H 7 o.uT +n |7Y
Py sy’ = om Tkt ke “kei T Tkej
r
exp 3 - % [ e kt] ]s
Hk+j Pk+j Hk+j+Rk+j (c’.lo"

Suppose during operation of the filter equations (say, Algorithm 1) that

t=t., and the predicted values 5;+1 and §k+1 are to be computed. For .\

predicted residuals the object is to find @ (the state noise covariance at

k|n
tk based on ¥ innovations) such that (3.1.3) is maximized. In other words,

QkIN is that value of @ which yields the most likely innovations sequence

Pt Trezt o ;;+N . Thus very large values of @ imply less likely
sequences of the innovations.

Consider the maximization of (3.1.3) for the case of one residual.
First, the Tikelihood function is chosen as the joint density (3.1.4), and
its logarithm is taken to facilitate the maximization (since p and its

logarithm are monotonic, extremizing In p extremizes p).

Jo=np(r,) = in(z)" - in (W, B He, +F§,)
- ( Tetl )
Tos Pers Moy * Fapy S
Taking the variation with respect to @ gives
6J=g-% _; +k _;:, 2$H6-P'HT
(H B HY + R) (& B 4T + R) (3.1.8)

and assuming HSPHT > 0, the necessary condition &/ = 0 yields the equation
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—a i
rc=-HPH -1=20 (3.1.7)

The sufficient condition for a maximum is 8% < o; hence,

=2
¥ -i‘ z- —rT <0
(HPH +R) ("t ?PH +R)?
or
-2 - T
r®> % [HPH +R) (5

which is met if (3.1.7) holds. Next, using (1.2.17),

T T
Hye1 Ten,k Qk]l Pyet,k M1 =

P - T T 3 74)
rk” Hk+1 ¢k+1,k Pk ¢k+1,k Hk+1 Rk+1 (&0 1.8

This equation is simply the equation for the covariance matching approach to

estimating @ based on one residual, » In evaluating (3.1.9) the actual

k+1°
residual given by equation (3.1.1) is used. Further, for ¢ to be non-negative

definite, the right hand side must be positive. Otherwise is set to

lel

zero. Unfortunately, #T is usually not invertable, hence, resort must be

made to a pseudo-inverse or some other technique. Defining, for convenience,
AzHT

the pseudo inverse of A (45, 82-89)

T

A AT
yields

T
Q =__.[r -HoéP & H - R} ——
k|1 ATkt k T

Equation (3.1.10) does not provide a unique solution for Q. However, in the

(3.1.10)

special case where @ is a scalar, say q, one does obtain a unique solution:

r-HoeP ¢ H - R (3.1.11)

q =
k|1 A AT
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Here again we require the right hand side to be non-negative. A disadvantage
is that one residual is hardly a sound statistical sample upon which to base
an estimate of ¢. A post hoc modification found to be effective is to employ
the sample mean of the square of N predicted residuals,

- Z r2,m=k+1 (3, 1. 184
]
J=0

in place of r This reguires storing ¥ observations, whfch would not be

k 1°
so bad in itself, but the state estimate then either periodically lags the
observations by ¥ points, or else the last ¥ estimates must be reprocessed.
Either way the result is the same, but the former is computationally more
efficient since the state estimate is obtained only once for each time point.
Another modification which is computationally easier to employ and
which does not severly degrade the accuracy of the algorithm is to use the

sample mean of the history of the last v predicted residuals squared. In

this case,

=~

2: r?. (3.1,13)

In this approach the filter equations are operated for the first » observa-

tions, storing the predicted residual at each time point, trer® For each

m < N, the sample mean,

I~

m —
}:, P2,am=1, 8, oy N (3.1.1¢)

is formed and used in the estimation of (. For each m > ¥ a new squared
residual is added, and the oldest one is discarded. In this way a "moving
window" viewing the most recent v squared residuals is maintained. This

modified approach is diagrammed in Figure 3.1.
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Given:
£°,P°,
kmax’ N
k=1, yi=0
R AL
P ™Yy " H z,
NO k,(ﬂ! YEB
Y =Y, +0p2/N=-72%/N \/Y =Y(k'—])+r_’2‘«'
N N k k-N/ k k' k k

: |

0 =maz (M [y -neretuT o AT, 0 l

e

. T
Po=0r _, ¥ +q

No . k=Bt BT + g1
xk = xk + K rk
Yea _
- Pk = (I - KH) Pk

Figure 3.1 Adaptive Estimation of ¢
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Note that both of the approaches reduce to the optimal case of one
predicted residual when ¥ = 7. In this case (5.1.12) and (3.7.13) are
identical.

Further modifications are possible to improve the single residual
estimator (5, 314); however, these tend to become rather complex. Also,
when more than one residual is used in (3.1.3), the resulting set of equations
to be solved is nonlinear. In fact, they are basically the types of equations

found in other adaptive filtering methods (26), (28).

3.2 Adaptive Estimation of Suboptimal Filter Parameters

Since the suboptimal methods of Chapter 2 effectively alter the
state error covariance, it is reasonable to assume that the adaptive algorithm
of section 3.1 can be applied to estimate the various suboptimal filter para-
meters. In each case, relating the parameters to the state noise covariance
provides the necessary link to allow the adaptive estimation of the
parameters.

For the data age-weighting technique, we can equate the standard
error covariance prediction equation (1.2.17) to the age-weighted error

covariance prediction equation (with ¢ = 0):

= T T _ T SR
Pk+1 =¢ Pk $° + T Qk =¢8P (3. 5% 4

Using this relation in (3.1.7) gives

-2 T =
Prel ~ ey Q9B YV H - Ry =0
or solving for the scalar, s,
o FZ—'T’* (5.0
HoP o H

Again the post hoc modification is miade 1! Yo given by (3.1..:8) or (& I8

is utilized.
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YN

it '-IT-—TF L it
e ot
Since s is required to be greater than or equal to 1, (3.2.3) may not be

employed until
Y, 21 0P oT BT + R - i !
To adaptively estimate the gain scaling parameter, !/», in section 2.2,

the optimal and suboptimal gain expressions are equated.

A R A RN AN A N R R AR A LY I M L R
where P* = ¢ P ¢" and ¢ = T @ Y. Solving for # @ H® one obtains, after
premultiplying by #,

bHP H(HP H +HQ HT + R) = H(P” + Q°) H'(H P HY + R)

(b-1) H P” H (H P’ H + R)

HQ T =H ra, rf 4T - = (3.2.6)
[R - (b-1) HP®H)
Substituting into equation (3.1.9),
+ 5T . T
(b-1) HP" H'(H P HT+1f)=YN_HP,HT_R
R - (b-1) HP " H
which, solved for b, yields
(Y, - B) H &P 0" H' + R
b = > 1 (3.2.7)

HopP o oY

where the inequality on the right is a condition on b established in section
2.2. Also it is noted that equation (3.2.7) requires Yy > 7 @ condition on
its use.

The modification (2.2.171) to the gain scaling technique may be formu-
lated similarly to adaptively estimate its associated parameter, a. Equating

(2.2.12) with the gain equation gives



p- T
Hp-HT
which, when premultiplied by # and solved for # ¢~ HT yields

» 4T
oy ol - (1-0)HP H
HQ H = (1 - o . (&t

Substituting into (3.1.9) and solving for o yields the simple equation,

a=1‘l\)/YN ) (l"-:-‘

Conditions on o require that (5.2.10) produce an o« > H K.
For the modification given by (2.2.14) the appropriate adaptive

is similarly found. Equating the gains,
(P* +Q°) H(H P H +H Q" HY + ™1 =

- HT + 8 R P HY/H P HY) (0 P° BT + 1)1 (

L3
o

premultiplying by # and solving for # ¢~ HT gives

n e uTarpuT + ) +H @ uStn e BT 40 =
HP B P HY + RV +HP B  HQ  H + BRIEP HT + 1) + 8 5 1
o o 2 WP
HQ*H R(1-8) =8 RHP UL +R)

-
P T,T _B(HPTH +R)
HQim =0T QT H == =r—p

(As before, P = ¢ P ¢ and Q" =T @ 58 Substituting into (3.1.9) and

solving for 3 one obtains

(n e it e w) [ o P o KT+ k]
YN YN

B=1-

with the conditions on 3 that 0<B <1 and hence

Yy 2 H 0P oT HT + R

81

a =P +Q) B P H  + B @ BT + )71 (3.2.8)

form

|80

-
\r

3 10

H

T
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Finally we note that for the additive gain term technique, a similar
procedure to determine the adaptive form yields results identical with
equation (3.2.12). This is true because equating gains and premultiplying
by # gives H B R i /n BT = B K, and from then on the equations are identical.
The previously discussed suboptimal adaptive algorithms are easily
implemented in accordance with Figures 3.2, 3.3, and 3.4. Either of the
predicted residual sample means discussed in section 3.1 may be used; hence

their computation is not shown in these figures.

3.3 Estimation of Auto-Correlated Model Errors

One of the most effective and useful ways to compensate for dynamic
modeling errors is to estimate such biases directly, including.them as part
of the state vector. In general, model errors are not purely random, but have
time correlated components as well. Thus, by assuming some'functional form
for these components, their values may be estimated from observation point
to observation point.

There are several advantages in this approach. First, of course, is
that the estimation accuracy is improved since model errors are compensated.
Second, insight into the nature of the modeling errors is obtained as an
additional benefit, and through off-line data analysis., the form of the
dynamic model can be refined for future use. Third, since the state vector
is simply augmented, the estimation equations remain essentially unchanged
from the classical Kalman sequential form. Of course, lengthening the state
vector increases the computational load; however, this is not often a
detriment considering the state of present computer technology.

A further motivation for the adaptive estimation of model errors

should be noted. It is true that small bounded errors may be effectively
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Given:
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Figure 3.2 Adaptive Age-Weighting Filter
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&= 1- RN,
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Figure 3.3 Adaptive Scaled Gain Filter
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compensated (as long as filter operation is within the range of linearity

of the system dynamics) by using a "state noise" approach, i.e., simply
determining the @-matrix. However, for large or unbounded errors such

an approach is usually 1hpractica1 if not impossible. Thus extracting as
much of the auto-correlated error as possible from the model uncertainties
results in a smaller, purely random component. Consequently, the associated
~ state noise covariance matrix, @, is less, and since this establishes a
minimum upon the.state error covariance matrix, a smaller ( offers greater
confidence in the state estimate.

The question concerning the type of functions to be used in modeling
the correlated errors is really an open one. The answer depends upon the
application where two important considerations are the filter operating time
and the sampling interval (more will be said of this later). Approaches have
included the use of simple power series in time, Tchebycheff polynomials, and
Fourier series. For our purposes, the term structure is introduced to mean
the functional form of the correlated model errors.* Thus the structure may
be line:r or nonlinear according to the form of the model error approximating
functions. Incidentally, the case of purely random errors is denoted here
as a null structure -- no time correlated components. Usually, the assumed
error form is some linear combination of a linear or nonlinear structure and
a null structure, i.e., of a time correlated component and a purely random
component.

The incorporation of model error structures into the estimation process

can occur in basically one of two explicit ways. Denoting the vector of

* Lainiotis (38) uses structure to mean the dimensionality of the state
vector. Our definition may be seen to include this aspect.
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error components by e, one can write a differential form,

e(t) = gle, a, t) + h(t) u (t)

alt) =0 " (2.3.1)
or an algebraic form, e(t) = G(eo’ a, t) + H(t) me(t) with the accompanying
differential form

éo(t) =0

alt) =0 (3

I

LS

where a is a parameter vector of constants, and ¢ is the initial condition
vector, e(to). and v, is state noise with covariance Qrt). ue(t) is zero
mean, uncorrelated noise with covariance* E{ue(t) ueT(s)} = Q,(t) 6(t - 8).
Which form is used is of no particular importance in the subsequent discussion.
If a closed form solution, or even an approximate solution, is available for
the expected value of (3.3.2), an easier implementation may be possible since
the corresponding components of the state transition matrix are simply the
identity matrix of appropriate dimension. If no explicit solution of E{e}
is available, clearly (3.3.1) is to be used. Further, if gre, a, t) is
nonlinear in e and a, an appropriate linearization must be made in order to
use the estimation equations described in section 1.2.

Since the model errors are estimated as part of the state vector, each
time the estimate, é(¢), is obtained the model is updated. Thus if

2 = f(z, e, t) is the subvector of the complete state vector time derivative,

* §(t - 8) 1s che Dirac delta. Although W, is not differentiable in
the classical sense, u, can be thought of as the '"derivative" of W and
hence as an uncorrelated random variable with infinite covariance. A

discussion of stochastic calculus is given in (5).



88

z(t), for which the errors are to be included, then 3'- f(£, &, t) represents
the updated portion of the model.

Note that in (3.3.1) or (3.3.2) the adaptive nature of the algorithm
lies in the fact that the constant parameter vector, a, is estimated as well.
Hence, if a reasonably accurate structure is assumed, subsequent estimation
provides accurate values of «. There is a danger in using the forms as
presented in (3.3.1) and (3.3.2). As the estimation process is carried out,
the a-vector converges to a constant value with the corresponding error co-
variance and hence gain terms approaching zero. Thus if the assumed structure
is not an accurate approximation over the filter operating period, the eventual
"hardening" of the structure as g takes on its constant value may, and usually
will, produce divergence of the estimate. Since one either does not really
know the error structure or else it is computationally too complex, it is
usually a good idea to model the a-vector with a null structure, i.e., as a
random parameter:

a(t) = u,, Elu} =0, Elu_(t) u (1)} = Q (t) 6(t - 1) (8.5.5)

This keeps the error covariance from vanishing, and the gain will remain at
some significant non-zero level such that the value of «(¢t) is changed to
allow the assumed structure to conform more accurately to the actual model
errors.

Before discussing some specific examples of the structures used in
the investigation, it will be advantageous to specifically define the error
vector, ¢ (dimensioned r), and parameter vector, a (dimensioned 8), with
regard to the previously mentioned forms. The differential approach is
selected so that

eft) = gle, a, t) + h(t) ut)

&(t) = ua(t) Se e
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We define the random variable

uT(t) = [ue(t)fu (t))

with statistics

E{ult)} = 0, E{u(t) uT(s)} = QL) Nt - )

For the cases where the algebraic form is to be employed, . of ) is simply
The form (5.38.4) will be used as a

included in the parameter vector, a.
general reference in the sequel, with the appropriate modifications for

eo(t) being understood. Finally, the implementation is shown in Fiqgures

1.1 and 1.2 with the modification that the state vector includes the compon-

ents ¢ and q; i.e.;

x(t)
el(t)
alt)

x(t) its redefined to be (3.3.8)

where the x(t) on the right is the original state vector.

A Simple Linear Structure. One of the simplest model error structures

is a linear function of time,
(3.3.0)

el(t) = ¢y + e, t

!
1 where

art) = |0 =ut) = uct) (3.3.7)
Uu

a= sec e E ]

g and
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e
elt) = [I:¢t lll:... (8.3.8)

%

Note that without the presence of state noise, »_and u_ , the coefficient

0 1

terms, ~_and o, will take on nonvarying values, and the resulting "hardened"

0 1
linear structure will probably not represent the model errors very well
(unless, of course, the error actually s linear). The presence of the
state noise keeps the gain from vanishing, and on the average (&7.s.¢) should
approximate the model errors fairly well over a short interval.

Further discussion and applications of this model are given in
Chapters 4 and 5.

The Ornstein-Uhlenbeck Stochastic Process. Another simple structure

is that introduced by Ornstein and Uhlenbeck as a model to describe the
velocity of a particle undergoing a Brownian motion (40, 516). This model
has been used successfully by Ingram (32), Tapley and Ingram (41), and
Tapley and Hagar (34), (35), in orbit determination studies. The Ornstein-
Uhlenbeck process obeys a simple linear, first order differential equation
(Langevin's equation) of the following type:

e(t) + Mad e(t) = u(t) (3.8,

where* a is a vector of constant parameters and uf’c) is Gaussian white noise.
The process is stationary, unbiased, and, by solution of (3.3.9), is expo-
nentially correlated in time. Further discussions of the properties of this
process are given in (5, 70-74) and (40, 516-524). For our purposes

application to adaptive model error compensation gives

* The notation [Fa.] implies a diagonal matrix whose elements are the

components of the vector, a.
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elt) = e(t) = -[~ad elt) + u_(t)

a(t) = al(t) = ua(t)
uE

ult) = |..° (3.3.10)
ua .

Further discussion and applications of this model are given in Chapters 4
and 5.

Harmonically Bound Motion. If a particle undergoing Brownian motion

is suddenly subjected to a displacement-proportional force, the equation of
motion is simply that of a randomly forced harmonic oscillator (40, 524-525):

B(t) + FaJelt) + B elt) = u (t) (3.3.11)

where a and B are constant parameter vectors, and ue(t) is Gaussian white

noise. This process is stationary, unbiased, and has autocorrelation properties

dependent upon the signs of [Fa J and 8 J. This equation has been employed
successfully as a model error compensation structure in low thrust space
vehicle navigation by Tapley and Hagar, (34) and (35). Application of this
structure to adaptive error compensation gives

Feiees n(t)

elt) =

[
t
7
(=3
[
3
—
o
~
]
-
Lo o)
l
™
-~
-+
~
+
.
-
[ Y
~

r.l(t)J

. f&(tﬂ [4y(t)
a(t) = :. . e = ] " = u (t)
Bt) =

ult) = | °°5%:)
o

uB(t) . (3.3.12)

Further discussion and applications of this model are given in Chapters 4

and 5.
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3.4 Linear Transformation of the Ornstein-Uhlenbeck Process

The model error forms presented in the last section were chosen in
an apparently arbitrary fashion. In this section, a unifying derivation is
presented from which each of the previous models can be obtained under appro-
priate assumptions. The general result is a fepresentation shown to be
equivalent to an exponential multiplying a Fourier series.

Consider the Ornstein-Uhlenbeck process of equation (3.3.9). Let
e(t) be a (21 + 1)-vector related to the r-vector, e(t), by a constant

r x (21 + 1) matrix, C”°, whose values may be complex.

e(t) = C° e(t) (3.4.1)
Further, let e(t) satisfy the differential equation (3.3.2). For the j-th
component of e(t),

2l+1

ej(t) = ”E cjm € (t)
2l+1 'o*t
= Ez CinlEn(t ) el -a t) + J; cap( =c_ &) u () @8]
0
21+1
= EJ cjm[em(to) exp( - t) + 0] (3.4.2)

where the a are also allowed to be complex. Taking the expected value, the

second term in brackets vanishes. By absorbing the e(to) into the % m’ one

then obtains

ol+1
Ele (t)} = e*(t) = ap( - t) 3.4.3
{ej()} ej(t) Ez 0 €300 =0t t) (3.4.3)

with ™ c;m em(0). This is the general form of the transformation. With

L and a complex, the only restriction is that cj*(t) is usually required

J
to be real in order to represent real model errors. If o is further

restricted to be of the form
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-, mw (4.1.1)
m

i )
where i = V-1, and if the 1imits on the summation are changed to run from

-1 to +1, (3.4.3) becomes

l
e *(t) = exp( -p, t) m?::-z Cyp eaP( = L mu, t) (3.4.5)
With Cim of the form

8
T
jo 2

6, -1r
cjmg—Lz——ln-' 3 m>0

8, +1r1r
cjmg—lm_g—_ﬂ 3 m<0

then equation (3.4.5) can be written as

l

*(t) = exp( - pjt) Ea {ajm coe(m wy t) + im ain(m wy t)} (3.4.6)

%1
where use has been made of the definitions

coe ¢ = [exp(i ¢) + exp(- 1 ¢)1/2, 8in ¢ = [eaxp(i ¢) - exp(- 1 ¢)])/2i
Thus under the foregoing restrictions, the process reduces to an exponential
multiplying a truncated Fourier series. Some special cases are now considered
which yield the models of section 3.3.

Case 1. Llet 1 =1, pj = (0, and using the series expansion for ::in and

coa through the first order, (3.4.6) becomes

ejﬁ(l;) = Gjl + rjl W, t (s8.4.8)
which becomes the linear form (3.3.6) upon making the identifications

°10 °11
o % % 7|: s g ™ T4y @y 5 dp =i
(] c
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Case 2. Let I = 0, but retain the exponential form. Then r2.4.¢,
~gives

ej*(t) =8, exp( -y t) (3.4.8)

which is the solution to the differential equation

e t(t) = *(t)

j 5 €5
This is obviously of the form of the mean of (s.3.9) with

By
Case 3. Let 7 = !/, and set “jo = (0. Then (3.4.6) becomes
ej‘(t) = exp( -pj L)[sjl oo wj t+ pjl ain u3 t] (d.4.8)

which is the solution to the harmonic oscillator

(1) * L
ej (t) + 2pj ej

Making the identifications

* 2 ey, A(4) =
(t) + (pj UG ) ej (t) =0

— - 2_ 2
Oy =20y, By=py - uy

the result is of the form of the mean of (3.3.11).

It should be apparent that more complex structures can be obtained
easily from (3.4.6). For example, without restricting 50 to be zero, the
resulting form of (3.4.6) with 7 = 1 satisfies the nonhomogeneous differential

equation,

S.Mt) + 0, e . t) +w?ert) +uwles

3 IRe, 5 j 850 2P( =Py t) =0

3.5 Structural Adaptation

With the general form (3.4.6) established as being capable of repre-
senting a number of different functions, it is possible, at least in theory,
to adant structurally to a close approximation of the dynamic model errors.

By defining the vector of model errors and parameters,
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cl(t)
e }t)
m

pl(t)
z(t) = 5
pm(t)
wl(t)

me}t) |
and selecting m to be large enough (based on the deqree of sophistication of
the a prioni dynamic model), the filtering equations (Algorithms I or II,
Chapter 1) will produce values for the p, and w, which will result in an
approximation, T to the true structure of the model errors. The obvious
disadvantage is in the implementation: a large m produces a very significant
computational load. Thus the flexibility for structural adaptation, as
offered by a form such as (3.4.6), is partially offset by the need to exercise

parexic judgment in selecting a value of m.

3.6 A Sequential State Noise Covariance Estimator

In this section we return to the problem of estimating the state noise
covariance matrix. A new approach is taken, although the technique is simply
the formulation of a Kalman filter algorithm applied to a vector whose
elements are those of the state noise covariance matrix, ¢. With this ob-
jective in mind, once we have obtained the analogous state-observation and
state dynamics linear relationships, the appropriate estimation equations can
be written down immediately. The resulting method will be shown to yield a
minimum variance estimate of the state noise covariance matrix elements,

subject to the additional restriction that @ be non-negative definite.



We begin by establishing the square of the kth predicted residual as
the required observation. From section 3.1, the predicted residual is
defined as

P =¥y - B =
* ¥y~ By ¥ ka1 T2

= Hk Qk’k-l xk-l + Hk I‘k,k-l wk-l + l’k (006.1)

Continuing with the previous assumption that we are dealing with scalar

observations, we then form

e - T i ‘A ) G = T ’ - P
E'{rk r, } E‘{rk } H P H' +R (3.6.2)

and define the error, 6, as

0, =p

2 » 2 3
R - E{rk } (3.6.3)

where E{6} = 0. Then

2 5 T
r Hk Pk Hk + Rk + ek (3.6.4)

Further, assume that R, is exactly known and define

D ’—2 -
D, =7 - R (3.6.5)
v. e P w7t (3.6.6)
k™ % Tk "k

so that
D, =V, +8 (3.6.7)

Now v, 1s a function of @, _,, since

= T T
Pe= & k-1 k-1 Y, k-2* k-1 %1 Tk, k-2 (3.6.8)

and it is Qs that we are trying to estimate. If a Kalman filtering algo-

rithm is to be developed, then a linear equation relating to T must

Q
k-1
be obtained. To this end, the elements of ¢ are first placed in a vector, g,
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such that the elements are stored row-wise. Further, use is made of the
fact that @ is symmetric so that only the upper triangular portion is stored.
Thus ,

T
q = (qll,"' Um 922 *** 92m 933 *** In-1,m - (3.6.9)

where m x m is the dimension of @, and = Q(tk_l) is therefore the

-1
m(m+1) /2 x 1 state vector to be estimated. Proceeding formally, consider a

Taylor series expansion for Y expanded about the value, Qg = O and

truncated to the linear term:

v,
Vellx-r) = Yy t %, -1

U 10 Upe—1™?

(3.6.10)

Vk(O) is simply (3.6.6) with -, = 0. In analogy with the linearized observa-

tion state equation (1.2.23), we use (3.6.10) and write (3.6.7) as

Z; =J, q_,* 6, (3.6.11)
where
= i 3_2- ) T F
K; 2D, Vk(0) r, g P R
U g=0

o W,

k 3qk-1 (3.6.1°)

Ue-1=0

The final task in developing the components of the observation equation is to
determine the elements of J,. Since ?;, and hence v, , is linear in q _,
equation (3.6.10) is ¢xact; we write (3.6.10)

Vlay_y) = V, (0) + 68V, (0) (3.6.13)

The expansion of Yy with respect to Qpy yields
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T

rT n

T
Hk rk,k-l Qk-l k,k-1 'k

(3.6.14)

where 60, , =Q,_, -9, =9,

Q;_I = 0 Now the key factor in the development hinges on the ability to

since the expansion {s about the nominal value

express the elements of # @ HT in the form

Jq (3.6, 18

where J is composed of the elements of # and I'. To this end we digress for
a moment and prove the following:

Theorem I. Given the matrices 4, B, ¢ and X of dimensions 7 x m,

2

m xn, nl x m*, and m x m respectively, then the I x n matrix, AXB, can be

T
written in the vector form, Cx, where x° = (xll By gees Xy Top Lygeeey ...th),

an m*-vector, and ¢ = {ckp} with the ., being given by

ij
cij = al(i-l)/h+1|,l(j-1)/m+1| b[mod(j-l,m) + 1)1, [mod(i-1,n) + 1]
where

lel = integer part of &

and
mod(s, t) = 8 - I%l t
Proof. Writing AxB in expanded form results in the following
sequence:
@11 %n 11 Tim STERRT
AXB = | . : " M . :
azp eee @ m | Top o0t Tom bml . bmn
i 7 rm m 1
ay, -oeap lej ’jl"grlj o
| m m
_all ' almd ;xmj "1 2 mj  jn
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AXB = 3 .
Tagle )
a by, o s o WG, | #u b (3.6.16)
L 314 L%y j1 . 11 & Vi n
W ARG AL
The general element of 4XB is further expanded as
mm
g;aki bjp xij=ak1 blp ® +ak1 b2p .z°12+ vee Ay o Ok
a ) x 3 hh .
P b Tt Yo Pay ap t et i P Yo
Fooee dim ‘mp “mm ko= lym o po= Lym
In vector form this becomes
r.l,‘ b
mm Ll
- 1 ﬁ.\ '
Zgakl ip T = [er ap r Pap ot km Pap ) (Fa2 (3.6, 1
oS
_mm_‘

Arranging the elements of (3.6.1¢) into a column vector and using (& ¢.17)

results in
'm m by - 1T 71 "
ggau bjl ‘rjj aq, 1)“ SRR bm} *q
mm
g 3: %4 bjn xij 211 bln ot m bmn Tim
L) = . x21

i '

@, . vb, s W g b XL @ *
g li “41 “ij 11 11 im ml % o
mm z
ZZau bjn xijJ a;, bln' v ag b (3.6.18)
-L (7 b - - -l
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Defining the elements in the ni x m*> matrix on the right as the elements of
(' completes the proof.

In view of this theorem we also have the following:

Corollary. Given the conditions of the Theorem I above, let x and
AXB be symmetric. Then AXB may be placed in the vector form Cx where

& = (xl T AL “hm3 is a vector of m(m+1)/2 elements and

1... a:lmxzz... m
C is an In(ln+1)/2 x m(m+1)/2 matrix with elements

aqurs s forq=1r ,
e, =
ij
apq brs + apr bqs », forg#¥ r (3.6.19)

and where

p = (i+t=1)/n + 1]

]

q = Wi+u-2)/m + 1]

r = [mod(j+u-1, m) + 1]

[mod(i+t-1, n) + 1}
IZ/n]l and u = |j/m]

The equations for the indeces of the terms in Theorem I and the corollary

3

t

follow by induction.
Since X is symmetric, Tyg= Typs 2 # j. Then the redundant elements

of x may be eliminated so that * = (x o5, .xmm)

11" ..‘l‘lm .‘822...3.‘2", 1‘33... m
is m(m+1)/2. In Cx the elements of C corresponding to xij, for 7 > i, are

s for i < ;. Further, the symmetry

v

simply added to those corresponding to 45

of AXb yields

mm mm
Eg %y 13 Vyp = E 5 s 15 i

hence the duplicated rows of ¢ need not be included. As a result, the

elements of C are given by (3.6.19).
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In light of this corollary, the validity of (3.6.15) is established.
A simple example will serve to illustrate the application. Consider a 2 x 2
Q-matrix, with #7 as a 3-vector. Then
91912
921 922
H = [hl h2 h3]
Y11 V12
F=1Y21 Y22
Y31 Y32

and

Y11 Y12 5 7
HD = [h) By had [, Y,,] = [§ hy Yy § hy yiz] (3.6.20)
Y31 V32
Making the identifications
A=BT «HT, X=@
then application of the corollary to Theorem I yields

Y N
© 2q =(q;,9,,4,)

& i b [(ghi y“)zz(ghi yu)(g h Yiz) (gh‘ m)z]

Note that in cases where J has only cne row (as in this example), then we can

write the equality
HTQriaT =ugq (3.6.21)

and

This example corresponds to the case of scalar observations. In line with
our previous developments we continue with this assumption, although it is

not a restriction.
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With the validity of (3.6.11) established and its elements determined, it
is important to consider the variance of Z;. This is necessary as the inverse

of this variance and some of its elements appear in the filter gain.

Defining

Bo=7, apy* 0 =7, 0q,, - 9. * 0, (806,20
and

6, =E{8, 8,7} = E(R ?)
then

G = Iy B @y, 1) 9T+, B, 6]

+E{o, 4,7} 9,7 + {62 (5.6.03)

Letting

T = #lay 3kf1}

7= E{f?k_l 0}
and

T, = E{6*} (3.6.04)

then (3.6.23) becomes

G=d SJ  +2JC+7T (3.6.25)

In the ordinary Kalman filter the observation error is assumed to be uncor-
related with the a priond state estimate. Here this case is not generally
true; both 6 and 7 are functions of u, and this correlation is reflected in
C. However, it is difficult at best to determine appropriate values for the
elements of ¢. Thus, in view of this lack of knowledge, a viable alternative
is simple to assume ¢ = 0 so that (3.6.24) becomes

G=dSJT + 7T
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This expression is directly analogous to the observation residual variance of
the ordinary Kalman filter.

We now lack only a "dynamics" relationship governing the prediction of
q. Assume that Uy is linearly related to Ao by an appropriate state

transition matrix, y(t )3

k-1° tk-2

=Y (2,6.26)

-1 “k-1,k-2 Uk-2
If the process generating the elements of state noise vector, 1, is wide-sense
stationary, then the state noise covariance matrix is constant. Making this

assumption we have

U-1 = k-2
and hence V¥ is the identity matrix, 7. Such an assumption may not be overly
restrictive since usually the dynamic model governing x can be determined such

that u is at least bounded over the interval of interest, ¢ <t<t

0 £
We are now in a position to write down the estimation equations.
Making use of the definitions (3.6.2¢) and employing the assumption ¢ = 0, the

appropriate relationships may be written directly as

Sk = Sx-1® 9x-1 = -2 (3.6.27a)

M =35 J5/00.5 7T+ (3.6.07k)
k k “k k °k “k k $Deer

C?k-l = Ek-l + Mk(Ak - Jk Ek-l) (3.6.57c)
= < ®oralr Tk - T 2

Sk = (I Mk Jk) Sk(f Jk Mk ) + Mk e Mk (& 6,020

where M is the filter gain, and

~ A T - o

S, = FlUq_; - 8 4y - Gy} (3.6.26)

There are additional restrictions which must be set forth before the algorithm

may be used. Recall that @ must be non-negative definite. However, it is
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not unlikely that (s.6.27¢) may produce an estimate G which does not conform
to this requirement, particularly during initial (transient) operation of
the filter. In order to accommodate the non-negative definite constraint
we call upon the properties of the covariance, @. First, recall that for
the diagonal elements, 940

Q420 (3.6.28)

Also, the 933 i1 # j, may be written in terms of the correlation coefficient,

qij'pij /qu qjj (3.6.3C)
where
-1 ipij <1

Now since (3.6.29) and (3.6.30) are inherent properties of a covariance
matrix, and since any covariance matrix must be non-negative definite,
(3.6.29) and (3.6.30) may be used to insure the restriction on @ is met.
Thus if any diagonal element is estimated to be negative, it is then set
to zero. Correspondingly the appropriate gain element is recomputed to agree
with this modification:

0-3“+m(3'-J3)
or

m = /(B - J q) (3.6.31)

'Eu
where m is the corresponding element of Mk. After performinag this test, if

|au| >/§" (5 6, 38,

A
i1 935
then set

9y = maz -/ , minl /3, Gyq 0 qij’"]} (3.6.33)

11 335
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where the superscript, m, means the value computed by (3.6.25), and where

the max and min functions mean take the respective maximum or minimum values
of the arquments. Further, the corresponding gain term is modified
as

m= (4, - &'ij)/(K -Jq) (3.6.34)
The foregoing restrictions do not destroy the unbiased property of the
estimate, i.e., £{G} = q. Further, since the Kalman filter normally produces
a minimum variance estimate, the restrictions on g result in a constrained
minimum variance estimate. Of course, this is true only within the validity
of the assumption F£{y6} = 0.

No mention has yet been made as to the choice of the residual error
variance, T. Since it is somewhat difficult to select this value, it may be
estimated also. One way is to use a method proposed by Tapley and Born (43).
The technique is simple and straightforward, and is the average of the a

posternioni residuals given by the following recursive equation:

e Lz oy a o T

An initial value which may be used is 7, = Kb’, since if v 3 =0,

A? = 0% =T
Since (3.6.35) is the average of all the residuals up through t,s @S I3
becomes larger, each new residual has less effect in determining T This is
acceptable if @ is wide-sense stationary, in which case 7 is constant. If
this is not the case, then a modification which offsets this effect is to
use only the last v residuals. Thus for x < v, equation (3.6.35) is employed.

At each tk the kth residual is saved. Then for % > N use

Y )2 (3.6, 3¢

2. < -7 ¢
/ N “k-N k=N ?k-N-I

] e A
= - - o
T = Tper * 0 B = Iy 4oy

instead of (3.6.35), and continue to save the most current ¥ residuals.
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The implementation of the sequential state noise covariance estimation
algorithm is diagrammed in Figure 3.5.

Although we have been concerned here with estimating only the elements
of @, it should be obvious that the algorithm may be extended to include the
simultaneous estimation of the observation error variance 5. In this case,
an augmented state vector, s, is defined as

z (g R)T
Then A and ./ are redefined as

R=r2 =0Tl =d 5 +0
and

J = (G 1) (dod, )
The corresponding estimation equations are of the same form, although T is
replaced by »?, and z replaces .

It was indicated earlier that the assumption of scalar observations
is not a restriction. Consider the case where /T is 7 x m. Then AT T7HT
is 7 x 7. Correspondingly,

rer=Hor ot T st orT T s w0 e

is also Z x Z. Since the terms of (3.6.38) are symmetric, the corollary to
Theorem I applies, and we can write

2= A O P T HT) +J g+ R+ % (F.6.53)

where each of the terms is Z (7 + 1)/2 x 1. For instance, if . = ¢,

r? = (7\2 i1y 722)T with similar arrangements for #(HoroT#T), *=, and *g.
Thus,

11

12
22

<. <

*H o P O HT) = *y(0) =

3
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Figure 3.5 State Noise Covariance Sequential Estimator
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and

*R=|R

and

*0=1]0 (3.6.40)

The rest of the algorithm is obtained in a straightforward manner, similar to
that for Algorithm I (Chapter 1), subject to the non-negative definite
restrictions for §.

Finally we note that the estimator developed above suffers certain
disadvantages. One of the more serious is the assumption of a specific model
for . This may be reasonable for a portion of the filter operating range.
However, if the state noise process, u, changes its behavior drastically after
steady state conditions have been essentially reached, the filter has no
power to adapt to the corresponding new value of . Recall that this is due
to the fact that the associated error covariance practically vanishes, and,
similarly, so does the correspondina gain. This situation is exactly analogous
to the original dynamic model error problem, and is the most serious disadvan-
tage of this Q-estimator. However, this being the case, we can apply any of
the previously developed compensation algorithms, including another state
noise covariance sequential estimator.

For example, an obvious method is to include a state noise fourth

moment matrix*, ¥. In this way the prediction of sk given by (3.6.27a) is

* By using another filter to estimate ¥, this approach could be continued
ad inginitum, becoming computationally very burdensome very quickly. The
author's opinion i{s that anything much more complex than (3.6.41) is seldom
practical.
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modified to
S =Sy * Wy (3.6.41)

3.7 Summary

This chaoter has presented a selection of adaptive optimal and sub-
optimal algorithms to compensate for model errors. In all cases the emphasis
has been on simplicity and generality. Jazwinski's algorithm for estimating
the state noise covariance matrix has been shown to be optimal based on a
single predicted residual. By using the mean of a sample of squared predicted
residuals, an element of smoothing is introduced, but also at the expense of
introducing suboptimality.

The basis of Jazwinski's algorithm has also been shown to be applicable
to a number of the algorithms of Chapter 2, allowing the suboptimal parameters
to be adaptively determined.

In section 3.3 the approach (different from all the previous ones) of
attempting to estimate the actual model errors has been taken. This adaptive
method has been shown to require the assumption of a particular functional
form to represent the structure of the model error. Several examples have
been presented, and a general functional form developed to allow a measure
of structural adaptation. This has been in the form of a generalized
Ornstein-Uhlenbeck process, capable of structurally approximating (having
the approximate functional form of) a number of different functions.

A Kalman filtering algorithm for sequentially estimating the state
noise covariance matrix, «#, has been developed in section 3.6. The algorithm
is somewhat more complex than those previously presented, but has been shown
to provide a minimum variance estimate of ), subject to the constraint that

Q be non-negative definite.
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Chapter 4

APPLICATIONS: RENDEZVOUS MISSION

4.1 Introduction

In this chapter the algorithms presented in the foregoing chapters
are applied to the rendezvous problem formulated in Section 1.4.' The interest
here is to gain familiarity with the operation of the various estimation
algorithms. Through the development of explicit equations, and plots of their
behavior, qualitative insight may be gained into the performance of the

algorithms.

4.2 Age-Weighting of Data

The standard age-weighting algorithm is easily Spplied to the rendez-
vous problem discussed in Section 1.4. Modifying the estimation equations
(1.4.6) to conform to the age-weighting algorithm, equations (2.1.1), result

in the following sequence:

5 5 -1
Kk = pk[Pk + R/8)

P =P+ Kly - o]
P, =8[1 - K] P (4.2,1)

where it is tacitly assumed that » is constant. Starting with P(to) =F,,

the gain and covariance recursions above may be applied to arrive at the

110
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steady state gain and covariance values*. Thus,

k=1

Pl = Po

KI = P1[P1 + R/8)

I, o= 7-—l0—-—— L
1 (Po + k/s) |0

)
Rla

= “’__7—0 + R/8)

PR
F,=P, = 7o
27517 T8+ )

e
]

7P ;171
12[P2 + R/s]

:PU /1'/(]’0 + I/e)
P
(R, + k/s) + k/n
P
0 . R
Po/[Po e s_f]

[ Po/s + R/e? ] P, R

Po(l + 1/8) + R/82 (Po + R/s)

2:

=P, R/[P,(1 + 1/8) + R/8%)

* The gain and covariance update equations could be used to solve
directly for the steady state conditions. However, using the recursion
equations to compute values recursively and then inductively determining the
steady state conditions provide insight into the operation of the algorithm,
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k = 3:
PR
? =P = 0
3 2 PO(J + 1/8) + R/s?
K, =P.[P. + B/a) "}
3 353
P R/[PO(J + 1/8) + R/8?]
2 P, B/TP (T + 1/8) + R/e™] + Rz
_ I’O _ 1‘0
B l'o + 1’0(?1/:: + 1/82) + K/s3 ~ /‘(,(I + 1o+ D et 4 Rl
Py=P, R/IPy(1 + 1/a + 1/8%) + B/’

Continuing the recursion, one obtains for k = m:

Po

LY

m m=

Po 1/sj + R/s

S

<

Py R
P, = — (4.2.2)
Py 3. 1/a + R/a"
J=0

The summation in Km and P is simply a geometric series with sum, as m + «~,

o0 j’-l— .
J§o 1/8 1 = 1/8 (4.0.3)

Thus, as m + =, X and P_ become
m m

Po

8 - 1
KQ-P 5 = . (4.2.4)
Ols - 1

where 1im R/s" = 0, since ¢ > 1, and
meco

8 - 1 n
P = % R (4.2.8)
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For very large k, the estimate of ;, including the first order model error

effects, is found to be approximately

cosh Ytk -0t vk)

8 - 1
8

P ™ Pp * (poy ainh Ytk + 0,

or

)

S
k o

o - . K]
o e L4 Yoot / ! ¢ o “:/ S S )
+ = (uoy THbL m p“ A )!k ¢ z‘k) (! t

AY

-—

k
Using (1.4.25), the corresponding error is given approximately by the

following expression

¢}

s : 5 anel _l:_“'l g oo o~
- (poy sinh yf.k *+ 0, cosh Ytk) el = Op (4.8, 3

For large s, the effect of the unbounded error term (first term on the right)
is small. Correspondingly, the random effects are more predominant, and in
the 1imit as & + » the error is due strictly to measurement noise. Because
the time correlated term completely dominates the noise term when % is large,
continued filter operation is possible only when s is very large. In fact,
best performance results here when s is very large since then all the
information is derived from the most current observations. As expected

(section 2.1) the error covariance in this case becomes, by (4.2.5), &.

4.3 Schmidt Suboptimal Filter: Gain Scaling

In section 2.2 it was indicated that the use of a constant value of
b can lead to certain difficulties. This is exemplified here when one
attempts to find the steady state gain and error variance. The error co-

variance recursion is used to solve for the steady state variance directly:

m 3

e - - B
P (1 - (2 - b%) P+ R -
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In steady state, P =F, =P,

2 P
PS[J-(Zb-b)——(P+R)]P
2 P
0= -(2b-b)P+R (4.3.8)

This implies either P_ =0 or b = 2. Thus for 1 <b < 2, it simply takes
longer for the steady state condition of P = ¢ (and hence X = 0) to be reached.
For b =2, P = Py In this case, the estimate eventually diverges.

For the method where (2.2.12) and (£.2.15) are employed, the steady
state variance, P_, is found not to vanish, since in this case I is found to
be

o R .
= ! 5.9
2-a oHy

Pco

The corresponding gain is simply

K =o (4.3.1¢C)

Lo

As o > 1, only the most recent observations contribute information. Con-

sequently, X_ - 1 and P_ ~+ R.

The corresponding estimate and error for large k¥ are determined as

”~

[ ) [ ] e 5 L] -:
P =Pt (poY ainh Yt, + Po cosh Yt, - P * vk)
~(1- %) g + S (py sinh Yt, + 0, cosh YU, + v,) (el 11
R k I 0 k 0 74 k k e dyils
and
B (TRER S o e tnn e ke lcoshin A e S o e =
k K 0 k 0 k R k Rk

(4.3.12)
When b is determined by equation (2.2.14), the steady state gain and variance
are also seen not to disappear. Using the covariance recursion, one finds

for the steady state,
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2 p2?
- btz BB, 2R_BR

P P " P
ot SR
= 11- (1- 8% B/1?) tms] P
= W= l= B;?Hz d (Ppi 7))
Fow (PP++B; R)

Solving for P, one finds that
P=g@8R (4.3.13)

For the steady state gain,

_P

=bK = (1+8B - ) v R

which yields, on substituting for 2 from (4, 3.13),

. 28 g
K =bK=B+1 (4.3.14)

When 8 = 0, one has the optimal Kalman filter, and the steady state values
of gain and variance are zero. For B = 1, P =R and X* = 1, as expected.
For very large k, the estimate of p, including the first order model

error effects, is found to be approximately

’.‘~7 28
P = Py B 77 [poy ainh Y, + 0 coeh Yt, pk + vk]
or
¢ 1-B> . 28 : .
P =T+ 8Pkt B+ [Py sinh vt + 0, cosh vt +v] (4, 3. 15)

The corresponding error is found to be approximately
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r 1-8 . . 1-8" 28
Py = 758 PoY 8inh Yt + 0, cosh Y, 1~ T F 0 - T 7T %
. — (4.3.18)

Again the'results are as expected. For 8 = 0, the error consists of only the
! time varyirg term. For B = 1, the error is due solely to the measurement

noise.

4.4 Schmidt Suboptimal Filter: Additive Gain Term

Using the same procedures as in section 4.3 for h = 1 + R 2/,
identical results are obtained for the steady gain and variance. Using

equation (2.3.6),

p
P=(1-357%

BZ R!

)P+ ETR

_(r+B R R
P+R

or

P=BR (4.4.1)

g For the gain,

.2 _,BR
P+R'P+R

M

or using P = 8 R,

M= 2B

B+ 1 (¥, 82
It is noted that the difference between the two algorithms, discussed in
section 2.3, does not appear here. In other words, for the gain scaling

suboptimal term, the variance term divides out, yielding the identical

results in gain and variance.
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4.5 Limited Memory Filter

To apply the limited memony—filter to ihe rendezvous problem, assume
we have available Smlm and Pmlm’ and it is desired to obtain the limited
memory estimate over the set of (k - m) observations. The necessary quanti-

ties required by equations (2.4.8) and (2.4.9) are given below.

Tklk = Prlk = Px|k-1 * Kk Tk|k-1
. k
= + K, ]
n|m j=§+1 3 "33

where the predicted residual is

= poY oinh Yt + 0 - 0,14 $oib 1
513-1 oY inh Y it P cosh Ytj P5l5-1 + o, ( )
and the gain at tj is
j- ’ - - T AES
J (j-m) Pmlm + R
Similarly,
PoimF
Plk = Them) 2+ F (4.5.3)
m|m
and
Pl ™ Dmln (4.5.4)
Pkl(k-m)’ the error covariance based on observations from to to ts May be

found directly from equations (2.4.9) or (2.4.10) or may be computed recur-
sively by (2.4.12). The computation using equation (2.4.2) yields

=[P -Il =1 3=l

’}l(k-uu k|lk = I}Im ]

= P, R -
m|m

[(k-m) Pmlm + R 7 ]_1

P
m|m
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or

Pl (komy = B/ (k=) (4.5.5)

It is noted in passing that for k-m = 1 , i.e., one observation, the cor-

responding error covariance is as expected, Pk|k-m = R.
Using equation (2.4.8) the limited memory estimate is found.
g = ’ (k-m) Pmlm o S " }13 b lm "ilg-1 - L‘m[m (
k| (k=m) (k=-m) Pm|m R mlm J=med (j=-m) ['mlm + I Imlm y
) 3(k-m) AT TR Pilj-1 |
(k—m) Pm|m R iamey (=) Palm * R\
or
A A k
: R ili-1
Pl gy =0 |+ [P + 7o) -
k| (k-m) m|m mlm * (k=m) j-—-§+1 (j-m) Pmlm +R (4.5.6)

Thus, the outputs of (4.5.5) and (4.5.6) are the limited memory error co-
variance and estimate. Note that when k-m = I, the estimate depends only

upon the most recent observation. In this case (4.5.6) gives
Pkl (1) = Pr-1|k-1 * Tk|k-1
= PyY sinh Ytk + P, cosh ytk + o (e

4.6 Numerical Results

The foregoing sections have considered the application of some of the
error compensation methods to the rendezvous problem. In particular, various
closed form expressions for the range-rate estimate, error, and steady-state
gain and covariance equations were derived. Such expressions help provide
analytical insight into the filter structures. However, the performance of

the algorithms can be seen best, perhaps, through numerical simulations.
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Thus, in this section numerical results are obtained for each of the
compensation algorithms previously presented.
To carry out the simulations, nominal parameter values defining the
dynamic model were selected as shown in Table 4.1. The model error parameter,

Y, is defined by equation (1.4.20) as

3 .
Y2 = TY‘JJ-]_’ atn? €
t

and reflects the gravitational parameter, u, the target vehicle radial distance,
Ty and the line-of-sight angle (above the local horizontal). For Earth orbit,
u = 398603.2 km3/sec?. Thus, using the value of y given in the table, values

of ¢ are determined for various values of |rt|. For example, an orbital
altitude of 160 km (lrtl = 6538.165 km) corresponds to € = 4.96°; at 240 km,

€ =5.1°

Parameter Value
Inittial range, p, 10 km
Initial range rate, 50 -1 m/sec
Initial range rate error, 60 0m
A prioni variance, P, 10 (m/sec)?

Obgervation error variance, R .01 (m/sec)?
Observation interval, At 10 gec

Model error parameter, Y .18 x 1073 (sec)”?

Table 4.1 Nominal Simulation Parameters
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In performing the simulations, the nominal or assumed model, as
before, is o, = o, _,. The true dynamics are computed according to the
linearized model, equation (1.4.22). The true range rate observations are
computed by adding a random number, distributed* n(0, R), to the true range
rate from (1.4.22). The observation deviation is then found by (1.4.23),
and the filtering equations of the various alaqorithms are applied to obtain
the gain, estimate and updated state error variance. In all cases investi-
gated, the true initial error is zero, as seen from Table 4.1. Also, to
provide a common basis for evaluation, the error sequence is identical in all

cases.

Standard Minimum Variance Estimates. To provide some standards of

reference, Figure 4.1 shows the behavior of the ordinary minimum variance
algorithm in the presence of model error with no model error compensation
techniques employed. Also shown is the case with perfect modelling. The
ordinate axis represents the estimate error in meters, with the abscissa
measuring time in seconds. Three curves are shown. The solid line represents
the actual estimate error, Sk, where the model error (1.4.25) is present. The
dotted line gives the estimate error for no modelling error. The dashed 1ine
represents the computed error standard deviation (s.d.), o, E ZEZ . Note

that this curve is the same for both cases, regardless of the presence or
absence of model errors, since the estimation algorithms are identical.

For the incorrect model, the rapid rate at which the estimate of the

range rate diverges is rather astonishing. Thus at typical Earth orbit

* The notation N(0, R) means that a random number is sampled from a
normal distribution of zero mean and variance, R. In the simulations,
normally distributed random numbers were calculated using the Central Limit
Theorem (46, 98-99). Further, the same sequence of random numbers was
repeated from run to run.
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altitudes, relatively small line-of-sight angles -- on the order of 5° --
produce a dramatic divergence of the range rate estimate. On the other hand,
for the exact model (1.4.22) the power of the Kalman filter is reflected by .
the dotted curve: after 1500 seconds the error has practically disappeared.
Thus these two curves can be seen to bound the performance of any of the

compensation algorithms investigated for this problem.

Commonality of the Algorithms. Because of the fact we are dealing

with a single state variable, it is possible to relate most of the suboptimal
filter parameters to obtain equivalent steady stage filter performance. In
other words, through appropriate expressions relating the filter parameters
to each other, it is possible to obtain a value for each parameter which will
produce equivalent steady state performance for each algorithm. (Exceptions,
which are treated separately, are the ordinary [/ = constant] gain scaling
algorithm and the limited memory filter.)

Consider the steady state relations for the age-weighting, modified
gain scaling, and additive gain term algorithms. These are given by (4.2.5),

(4.3.13), and (4.3.17), or (4.4.1) respectively as

P = R

L &

P =8 R

(Recall that this last equation is the same for the modified gain scaling of
equation (2.2.14) and for the additive gain term.) For equivalent steady
state performance each of the above expressions must be equal to any other,
thus providing the necessary relationships relating the filter parameters.

Therefore ’
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o g - 1
882_a= -~ (4.6.1)

For the case where the state noise covariance is employed, the steady state
expression given by (1.4,32), may be equated to the corresponding expressions

containing the suboptimal filter parameters. Thus,

1+ 1+ 4/f R (1.4.32)
1+/T+ 4/f + 2/f

where f = Q/R, may be included in (4.6.1) so that

P ey e S 1+ /14 4/F (4.6.2)
E=aca 1+ /T+47F +2/f

B

Using these equations, a table of values may be constructed. Table 4.2 gives
such appropriate values which yield the equivalent filter performance. The
table was constructed by selecting various values of 8 and then solving for

the corresponding values of a, s, and q.

B o 8 o (2
0. 0. 800 0. 0
. 10 . 1818 1,111 - 011 T Wi
.20 . 3333 1,260 LOHOON 5 k)
.30 .4615 1.429 L oSN
A0 6714 1,667 R LI RREN
1 .6667 2.000 SOONON CON
.60 . 7500 2,500 LOR Y
.70 . 84836 3.338 Lo &s 7
.80 . 8889 5.000 RRRIVEN .88
.90 9474 10.00 8, 100k LY
.99 .9950 100.0 S84 18 LH00
1.00 1.000 © w )

Table 4.2 Filter Parameter Values for
Equivalent Steady State Performance
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liqures 4.2a through 4.2¢ illustrate the numerical equivalence in
terms of filter performance. The curves were actually generated using the
additive gain term algorithm for 8 = .1, .3, .6, .9, and 1.0, respectively.
However, steady state conditions, and hence equivalent performance, are
quickly reached. These curves therefore illustrate essentially the same
performance for each of the algorithms. As in Figure 4.1, the solid line

-~

represents the actual estimate error, o The dashed lines represent pius

r
and minus values of the computed standard deviation, O
In examining the figures one finds that the maximum and minimum error
values increase with increasing values of the filter parameters. In the
extreme (Figure 4.2e), the estimate follows the observations, and the errors
are greatest in absolute value. Based on the sample of 384 points, 71.61%
of the estimates are within the lo value* of .1 meter, determined from the
error covariance computed by the filter. In Fiqure 4.2a the absolute value
of the maximum and minimum errors are smallest. Here, 64.06% of the 384
points are within the lo value of .03163. However, the model error appears
to be showing itself in the form of a bias; the majority of the error values
1ie above the expected value of zero. In Fiqure 4.2b the error does not
exhibit such a bias, thus suggesting parameter values somewhere between those

for Figures 4.2a and 4.2b (e.g., .1 <B < .3) -- at least for the time inverval

of 3840 seconds. However, regardless of the value selected, as long as 8 < 1,

divergence can be expected to occur eventually. This follows from the
unboundedness of the error, equation (4.3.20).
Because the steady state variance associated with the ordinary gain

scaling (b = constant' is zero, the equivalence developed above cannot be

* A short discussion of an interpretation of 0 in light of normal
ergodic processes {s given in Appendix D.
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obtained. Thus this algorithm results in a completely different, and not
very effective, filter performance. This is seen in Figure 4.3, which shows
the estimate errors for the gain scaling algorithm using values of 5 = 1.3,
1.6, and 1.9, respectively. Clearly the performance is unacceptable; diver-
gence occurs soon in all cases. The values /» = 1.3 and » = 1.6 are seen to
have little effect on the estimation performance. Only when /» becomes close
to 2 does the algorithm have an effect in delaying the divergence. Even then,
the variance eventually becomes zero, although it simply takes longer. Recall
from equation (4.3.12) that b = 2 prevents any change in the variance, and
hence P = Po‘ For this problem the ordinary gain scaling is obviously not

acceptable.

Adaptive Estimation of State Noise Covariance and Suboptimal Parameters.

Numerical simulations were performed for each of the adaptive forms for esti-
mating the state noise covariance and suboptimal parameters, as presented in
sections 3.1 and 3.2. In these simulations, the values of y given by (3.1.13)
and (3.1.14) were used (the sample mean of the square of the previous ¥
predicted residuals. Initially, (3.1.14) was used to "build up" the set of

N residuals. Subsequently (3.1.13) was used to compute Yy Use of equation
(3.1.12) was not investigated due to the inherent disadvantage of either having
the estimate lag the observations, or having to reprocess or smooth the

estimates.

In computing the various parameters, the following equations were

employed:
Qk = max [0., Yol I’K - ] (4.6.80)
8, = max [I., (YN - R/P ) (4.6.30)
bk = max [1., (y, - R)(P, + R)/f}] (4.6.80)
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o, = max [(YN - R)/YN, Pk/(Pk + R)) (4.6.3d)
Bk =1, - (Pk + R)/max [(Pk + R), YN] (4.6.3e)

These equations yield appropriate values for the parameters according to the
values bf Yy They also automatically incorporate.the attendant limits on the
parameter values, which is the reason for the presence of the max function.

In carrying out the simulation, some particularly interesting, if not
surprising, results were obtained. Three different values of ¥ were used in.
computing Yy namely ¥ = 1, 10, and 20. In each case, the algorithms exhibited
very similar behavior, with the exception of the ordinary gain scaling algo-
rithm. In fact, it was found that the performances of Jazwinski's adaptive
Q-estimator yielded results identical with the adaptive age-weighting algo-
rithm. Further, identical results were also obtained with the adaptive forms
of the two modified gain scaling algorithms and the additive gain term approach .
of Schmidt. However, some small differences were noted between these two sets
of performances. The simulation results are shown for each » in Figures 4.4,
4.5, and 4.6, respectively.

Figure 4.4a shows the estimate error and tlc curves for Jazwinski's
@-estimator and adaptive age-weighting with ¥ = 1. Here, 64.84% of the 384
estimates are within the computed 1o of the true value. Very similar estimate
error behavior is shown in Figure 4.4b for the modified gain scaling algo-
rithms and additive gain term technique. Although the performances are nearly
the same for the two sets of plots, in this latter case only 59.35% of the
384 estimates are within 10 of the true value. On this basis the adaptive
forms of the state noise covariance and age-weighting algorithms appear to
offer greater confidence in their associated estimates. This suggestion
seems to be further substantiated by Figures 4.5a and 4.5b. Here the same

type of information is plotted as in Figures 4.4, but now ¥ = 10. The
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percentages of the 384 points lying within +70 of the mean are 55.99% and
50.78% respectively for Figures 4.5a and 4.5b. The same trend is present

for the case where ¥ = 20, Figures 4.6a and b. Here the respective percentaqes
are 59.9% and 51.30%. Thus the implication is that the former algorithms

offer greater confidence, as measured by the computed covariance.

Another notable characteristic is present in each of Figures 4.5a and
4.5b. Close examination suggests the appearance of the model error bias,
since the majority of the error values appear above the expected zero value
on both sets of piots. This implies that when more residuals are used in
forming Yy the bias errors have more opportunity to affect the estimate.
Increasing the residual sample size to ¥ = 20 yields the plots shown in
Figures 4.6 which confirm this suspicion. In retrospect this should not be
surprising; as ¥ » = the adaptive algorithms cease to operate, and the bias
errors dominate producing divergence of the estimate.

For each of the values of ¥ = 1, 10, 20, the adaptive form of the
ordinary gain scaling algorithm yields the results plotted in Figures 4.4c,
4.5c, and 4.6c. Clearly these results are unacceptable. Initially the error
variance is large; hence the adaptive algorithm obtains no information from
the residuals since Yy is generally small and hence (4.6.3c) produces bk = 1.
As the process continues, i tends to increase, but the sensitivity of the
algorithm is simply not sufficient to control the divergence of the estimate.
There appears to be a simple explanation for this. For the adaptive form of
each algorithm consider the sensitivity of the gain to changes in the residual
sample, Yy This is determined by using the appropriate member of equations
(1.6.3) in forming the corresponding gain, and then taking the partial deriva-
tive with respect to T In all but the case of the ordinary gain scaling

algorithm, the partial derivative is
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From these equations the reason for the very different behavior should be
apparent. First, note that when the residuals are very small the sensitivity
given by (4.6.4) is very high. This is desirable since the gain values then
respond quickly to changes in e However, for gain scaling, a similar
sensitivity requires that P be very small. This is exactly the type of
behavior displayed in Figure 4.6c. Only when the error variance has decreased
significantly does the adaptive feature begin to operate. Thus based upon
the indicated performance, the ordinary gain scaling algorithm will be dis-
missed from further consideration as a viable filtering algorithm.

No discussion has been given yet concerning the computed values of
the state noise variance or suboptimal filter parameters. An obvious approach
is simply to "shotgun" the reader with a set of some 21 graphs of estimation
curves and then pick through the data a "pellet" at a time. A preferred
approach, and the one followed here, is. to offer a representative sample and
then to note certain trends determined from examination of this and previous
data. In this manner we hope to avoid "blowing the reader's mind" * and
still provide a further measure of insight into the behavior and relationships
of the algorithms.

We proceed by offering, as the representative sample, plots of the
state noise standard deviation, x = /@, given in Figures 4.7a through c.

Figure 4.7a gives the values of k determined from Jazwinski's /-estimator

* This obvious pun could not be resisted.



134

STenprsay oz o24°p
(svas) aury

000 oot a

0008
-
s T"
.wﬂm:vwmmm OoT qr°p
(8028) awig
ooog 0008 6601 g
o |
/ - Ird

(7S

(o9s/u) A

(03s/u) X

voce

renprsay 1 ®L°p

(s

[\Y)

S, Tl

L
(PR
i

S3Zig a|dweS |enpiS3ay SnotJep 40y
‘* “u013RLA3Q paepURIS 3SLON B383S /°p Bunbyy

goor

L]

(o9s/ut)



(R
based upon single residuals (¥ = / for yN). During the initial phase of
operation, while the state error covariance is reasonably large, few non-
zero values of @ are computed. After 800 seconds, the error covariance has
decreased, and there is a high frequency of non-zero estimates. In Figure
4.7b, the values of x are shown based upon a 10-residual sample size (~ = ..
for Yy ). Here both the frequency and magnitude of computed values of x are
less than for the single residual case. Figure 4.7c continues the trend.

In all cases the estimated values of @ clearly result in the desired increases
of the 10 curves of Fiqures 4.4a, 4.5a, and 4.6a. Note, however, that as

the residual sample size, N, increases, the state estimate bias error becomes
more prominent. As pointed out earlier, as ¥ » =, we eventually have no
Q-estimates being produced, and thus the state estimate diverges.

For the suboptimal parameters, excluding ordinary gain scaling as
stated earlier, similar results have been consistently obtained. Of course,
the limiting values are different; hov:ver, the parameter estimates show the
same random "spike" behavior as those for «. Similarly, the frequency and
magnitude of the values decrease with increasing ¥, resulting in eventual
dominance of the bias error in the state estimate. ?urther evidence of
similar performance for thc sutoptimal parameter adapfive estimation is
given by the similarities of the error curves in Fiqures 4.4-4.6. If signifi-
cant differences existed in the adaptive computation, these would also be
manifested as significant differences in the various error and lv curves. On
this basis one may conclude -- and the estimated parameter data bear this
out -- that no fundamental differences exist in the performance of
Jazwinski's adaptive state noise covariance estimator and the remaining
adaptive suboptimal parameter algorithms for this scalar example. (This

last qualification is important and will be discussed in section 4.7.)
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Limited Memory Filter. Figures 4.8a through 4.8c show the estimate

error for Jazwinski's limited memory filter. The fi.ures correspond to the
values of the "memory length," i.e., phe number of observations processed
between applications of the limited memory updates. Thus memory lengths of
1, 10, and 20 observations are reflected in the performance given by Figures
4.8a, b, and c, respectively.

In Figure 4.8a the filter follows the observations. Comparison with
Figure 4.2e clearly indicates identical behavior, as expected, with the
corresponding steady state covariance, I = A.

For ¥ = 10 the estimate error is plotted in Fiqure 4.8b. In this case
the bias error appears as an excess of points above the time axis. However,
toward the end of the interval, the central tendency is back toward zero mean.
To investigate this further, the case of a 20-observation memory was run. The
results appear in Figure 4.8c. As expected, the bias effects are even more
pronounced. Indeed, if the memory size is made as long as the complete ob-
servation period, the performance is simply that obtained for no error
compensation; i.e., the estimate error grows without bound.

In both 4.8b and ¢ the typical behavior of the covariance may be
noted. This is expressed as the saw-tooth form of the +10 curves. Each
peak corresponds to an increase in the variance produced by the limited
memory updated. After each update, the variance begins decreasing in accord-
ance with the operation of the ordinary Kalman filter equations. The width
of each of the saw-tooth pulses is therefore directly proportional to the
memory length.

The accuracies obtained with the limited memory filter are generally

on the order of those obtained by the adaptive forms of the suboptimal
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algorithms. However, based on the numerical results, the memory length must
be smaller than the residual sample size used in the adaptive algorithms.

For this scalar problem the 11mi§ed memory filter requires no more
computational effort than the other adaptive forms. In vector problems
involving many state elements, the computational load becomes quite severe
due to the required matrix inverses. For this reason the limited memory

filter loses its attractiveness for use in more complex problems.

Sequential Estimation of the State Noise Covariance. We turn now to

the performance of the sequential estimator for @. Initial runs of 3840
seconds were made using a prioni values for the error variance, 5 = E{J?},
the residual error variance, T = E{62}, and the initial value of Q as follows:

Se = 1.0 (m/sec)"
Ty = B2 = (y, - 61)2
Q, = 0. (m/sec)?

The performance was slightly better than for Jazwinski's adaptive J-estimator,
although the bias error was apparent. The estimated values of & took some
time to "settle." This appeared to occur near the end of the interval. To
investigate this further, the interval was doubled to 7680 seconds; the
results are shown in Figures 4.9a and b, which show the estimate errors for

o and estimates of @ respectively. Also shown are the corresponding p-error
10 curves. The 1o value for the p error appears to have a mean of approxi-
mately .04 m/sec, with 70.05% of the error being within 1c. The corresponding
value of « = /@ is around .015 m/sec. At the final time, the confidence in
the estimate of  is reflected by a o value of V5 = .027 (m/sec)?. The

data indicated that all the (-estimates lie under the /S curve, suggesting a

decrease in the a priend S. Though not immediately obvious, close examination
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of the /o-curve and the »-curve reveals a slight trend to increasing values.
This is not surprising since we know the actual error is increasing, (the
bias error is obvious here in Figure 4.9a), and hence the (-filter is simply
trying to adapt to this. Further, one can expect that divergence of S owill
eventually occur as the «(-filter saturates, and no new information is added.
Recall that this is due to the assumption tha. the error is a stationary
random process, i.e., constant <. An obvious remedy is to include a process
(state) noise variance term in the «-estimator, as sugaested by equation
(3.6.11), Another alternative is to impfove the assumed model so that the
assumption of constant « is more accurate. This approach is considered in
the discussion on estimating model errors.

A notable aspect of the sequential @-filter performance is the fact
that the Jo curve has been found not to decrease as rapidly as for the ordinary

Al

Kaiman filter. Consideration of the constraint on the estimate. i.e., . > .,
reminds one that the filter is minimum variance only in the a pestercead sense.
Thus the variance cannot decrease any more rapidly due to this constraint on
. Turther, large values of " result in slow decrease in ::. This behavior
happens to hold an advantage. Since the attendant filter does not decrease

as rapidly, the filter operates for a longer period of time before saturatinag.
On the other hand, the estimates take longer to "settle down." Some idea of
the effect of different a priond values of the error variance, =, may be
gained from Figures 4,10 and 4.11. Figures 4.10a and b show the > error
performance and estimates of @ for 5, = 5(t,) = .01(m/sec)". The performance
of the range rite and ¢ estimates appears to be about the same as those in
Figures 4.9a and b, although now 64.2% of the error is within ;0. Similarly.

at the final time the computed standard deviation in the estimate of ., is

VS = .026(m/sec)?.
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Fiqures 4.11a and b show the o error and { estimates for S, =
10" *(m/sec)" . Here the range rate estimate is not very good. A large bias
appears early, although this decreases as larger Q-estimates are obtained
(Figure 4.11b). Still, only 30.08% of the estimates lie under the 1o curve.
At the end of the simulation V7 = 943 x 1077 (m see!”,

A number of runs were made to investigate the effects of different
a priond values of . The results indicated that the a p1ivtc value has little
effect upon both the estimates of " and . Using the algorithm of equation
(5.0 44), the estimated values of ' decreased monotonically from 21.94 (m/sec)”
to .2571 (m/sec)". Presumably if more points were taken, this would decrease
even further. The modification, given by equation (3.6.3¢) of using a limited
batch of A-residuals was not investigated for this problem, but is treated in

the next chapter.

Estimation of Model Errors. Suppose the assumption of a constant

closure rate is modified so as to be a linear function of time. We thus assume '
the model error may be approximated by equation (3.3.6). If we further assume

co =0 and ¢ = ¢,, then the range rate model becomes

e, =c + W (£.6.F)

where C is unknown, and is to be estimated along with Bk. The term «~ is a
process noise term added to ¢ and represents fundamental uncertainties in
knowledge of c. Its statistics are E{w”"} = 0 and E{w"?} = q. There are now
two state variables, and the problem may be cast in the canonical form as

el _ |1 at]le 0 _ .
s = [c] s [0 1] L] i [w,] = O k-1 Tk-11 k-1
k k-1 k-1

(4.6. 7’
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In this recast form, the approach is to use the standard minimum variance
filter with the corresponding #-matrix being
H=1(1 0] (4.6.8)
In light of this extended form, it is important to raise the question of

~ observability. Consider the information matrix given by equation (i...21)

with j = 1.
ko o p o -1
= :
T 1 :4:'1 Sy g By Hy %y G

Substituting for ¢, #, and R,

k 1 071T[1] (100 tz 01 [12 (ti-t:k)]
T, , =2
k.1 (bt 1] |0 0 1

1=]

f [ 1 (t,~t,) ]
100k - (4.6.10)

Forming the quadratic form using an arbitrary 2-vector, z, yields

k
T 2 ’
2 T, 8= 100k 2 [z + 3,0t - t)] (4.6.11)

i i=1

which is clearly positive for all non-zero values of z and ¥ > 7. Thus our
assumed dynamics represent a completely observable system. Note that this
would not be true were we interested only in e, since the observations do
not relate directly to o. Rather, information about ¢ is obtained only
through its correlation with p. Thus in estimating ¢ it is the cross-
correlation, Osc (normalized by the variances ob2 and R) which comprises the
gain, Kc, for ¢,

K, = oéc/(obz + R) (4.6.15)

We note in passing that the system is also completely controllable

since
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-4 )2 -
Ak.o -4 ié [:k-:ij | (tklti)] "0
k d
which follows from (1.3.25).
In carrying out the simulations for this formulation, the a pricad
values of ¢ = 0 and E{3?} = 1.0(m/sec?)? are used. Initial results with
Q = E{fww"} = 0 are shown in Figure 4.12a. The performance is such that as
the error covariance decreases, so does the gain, and hence the constant ¢
tends to a particular value. However, the true error actﬁally changes in a
non-linear manner so the bias error begins to dominate after about 800 seconds.
(Only 26.82% of the 384 points are within 70 of the expected value.) This,
of course, is due to the fact that ¢ = 0. Now examining the /v-curve suqgests
that a reasonable /o steady-state value of .02 m/sec for p might be acceptable.
The value of ¢ which yields this 1o-value may be found using the covariance
prediction and update equations. For the prediction,

P=0opr o7 +¢

[l_;ll 512] [7 At][pn plz][l 0] [0 U]
- — - + . { ."',
p21 P22 0 1dlp2y p22dlLAt o q gl

Carrying out the multiplication yields

or

P11 = P11 + 2p1z2 At + paa At? N ENY.
512 =p12 + p22 At (3.6, 1500
P22 =Pp22 + 4q el o B

where the symmetry of P is recognized as p2 = p2:.

For the update equation,
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P=(1-KH P

o

[Pn plz] [(1-7<1) P11 (1-ky) P12 ]
Lp2r  Dp22 -k2 P11 + p21 k2 P12 + P22 (4.6.

Employing the definition of X, and again recognizing the symmetry of 7,

Pi1 \._ Rpn
pn = (1 -:'—) Py ==

or

s
<
[
n
N

p1i1 + R pir + R (4.6.16a)
P11 _ R p12
pn1 + R pnr + R : (4.6.16F)
5122 _
P22 & = —— + p22 (4.6,1¢¢c)
Pn + R

Solving (4.6.16a) for p,, gives

P11 = p1y R/(R - pa1) (4.6.17)

For steady state conditions, the Pyij in (4.6.14) equal the Pij in (4.6.16).

Substituting (4.6.14¢) into (4.6.16c) and solving for p;, yields

Pi2a = Yq( pn1 + R) (4.6.18)

Substituting this into (4.6.16b) gives the equation for p,, as

pre o N vq([-'n + ) /(;’]1 + ) Lo, 10!

Next equate (1.¢./1h) and (1.6.14), and substitute (-/.6.1/9) for ;. to obtain

I

e

Pay =52 Yalbry + B (1 - ) RN

[-'n + R
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Finally, use (4.6.17), (4.6.19), and (4.6.20) to solve (4.6.14a) for a. The
result is

pi1*
qg = (4.6.21)

P - 2
At (R - })”)((- = pll)

Using the suggested steady state value of o = .02 m/sec, then p, = RERE
4 » 10" "(m/sec)? and, approximately,
q = ol 2 10" mfee?)?

The values of A/ and /v are taken from Table 4.1.

Using this value of ¢ along with the other initial and « p1cetc values
(¢ =0 and 1{-?Y = 1.0 w’'/eco") produces the results shown in Figure 4.12b.
Here definite improvement is achieved as expected. 74.74% of the 384 points
are within the steady state 1o value of .0209 m/sec as opposed to the 26.82"
associated with Figure 4.12a. Notable characteristics are the apparent
oscillations of the error, and the fact that the majority of points lie above
the time axis. Oscillatory error behavior is known to be characteristic of
optimal approximations, e.g., (48, 75), and here optimality is clearly an
objective. The latter characteristic implies, as in earlier runs, that the
bias error is becoming apparent. An obvious suggestion is to increase .
The results for q = ./ x 10" $(m/ecc?)? are shown in Figure 4.12c. This
arbitrary increase in g produces a steady state Ioc value of .053 m/sec, and
bounds 83.33% of the error points. In light of these results, it appears that
the optimum ¢ is probably between .1 x 107%(m/sec?)? and .1 x " 8(m aca?'=,

To pursue the question of optimum 2, and also to investigate the
sequential ¢ estimation algorithm further, the idea of estimating . arises.
However, in applying the sequential algorithm strictly to the formulation
given by (4.6.7) the observability problem is brought out again, this time

with regard to estimating @. In writing the information matrix, 19,
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corresponding to the estimation of ¢ one finds that ™ = 0. Because of the
way the problem is formulated, the equation for »? does not contain . expli-
citly. Thus in forming TQ. the measurement mapping term is zero for all time,
and hence so is T9. In other words, the term corresponding to :© in equation
(1.3.21) is zero. Hence, the @ corresponding to ¢ is not observable.

Consider the formulation of the original problem as a differential
equation. In vector form

:;:=A:r:+liu

A

where the identifications are obvious. The term, u, is a process noise term

or

with the statistics #{u} = 0 and E{u®} = q 8(t-1). Now the solution to this

differential form is clearly not (4.6.7), but rather

. O t
p 1 (t-t, Il ]e k 1 (¢, -v)}]o
= ipkced +f k udrt
o 0 1 ale. 0 1 1 ‘2 oz}
k k-1 Jt, (4.68.2

Taking the approach of equation (/.2.30), where i« is assumed constant over
[tk, tk-ll, ,Yle]ds

x =¢ r

kT %%,k=-1 Tkt Tk,k-1 k-1
where
2
at AL 0
Te,k-1 = 0 Vg-1 T |
0 At uk-l \‘:.e--f‘)

It is important to note that one form, (<.6.7) or (4.¢,°4), is not necessarily
more correct than the other. In both cases uncertainty has been introduced

arbifranity; hence the measure of correctness rests in the chcdee of the
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model, and ultimately in the performance of the estimation process. For our
purposes here (4.6.24) is indeed necessary since this appears to be the only

way in which we can "get a handle" on @.

To bring this approach to fruition, use (4.6.5¢4) to form the error

covariance prediction equation as

epoT +T QT

Py
>
]

At

MZ Af" _A_t:’
T 2 b

v 9 At 0

-3
D
-3
]
[
S

o At Jlo qlL= At

Now in forming the measurement equation to be used in the ¢ estimation we

obtain
(P2 - e T gl i, = (0 F T u’ + o
or
- Mt
o = ( B NS
Ak Ty * ‘)k et
Correspondingly, the information, ™, is no longer zero,
Q  _ koAt P
Tk,l——-l(? >0 l.e,"8)

and we have complete observability with respect to the Kk.
While (4.6.27) is certainly a viable approach, it involves an approxi-

mation, namely that i is constant over the interval [tk, :k_ll. This

assumption can be dispensed with by forming r.1T in accordance with equation

(1.2.35a). Thus,

L

rar’ = !/' o(t,, o) Bla) q 8(o-r) B'(r) @"(1 o P e
t

k-1
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Carrying out the first integration,
t
7 k 1 At o 0 1 0
rer' = / ds
A 0 1]lo qJlae 1
or
ae  Ae?
3 2
I‘QI‘T =q \ (en 6, 500
At
TR

The difference between (4.6.29) and (4.6.26) is approximately the factor, At.

Forming the measurement equation we have

= _ At? :
k = 3 ({k + Ok ('r. .

1

.

>
e

and similarly the information

, [3
'I‘Qk )= "qf—’“— s 0 (4. 31

insures complete observability. Owing simply to the more rigorous approach,
(4.6.30) will be used for the estimation of .

Using this alternate formulation, Figures 4.13 through 4.15 siiow the
estimation performance for the three a priond values, s, = 1078, 17}'?, and
10" 2 (m/sec?)", respectively. The results indicate increasing estimation
accuracy of the range rate with decreasing a prcon¢ values of &. In particu-
lar, for 5 = 10" ®(m/vec?®)", 74.22% of the range rote error values are less
than the 7o curve (Figures4.13a). From Figure 4.13b the final value of ; is
approximately 4.5 x 10" ®(m/sec?)?. In Figure 4.14a, &, = 10710 = oo022%,
78.78% of the range rate error points are less than 1o, and the maximum value
of ¢ (Figure 4.14b) is approximately 2. x 10" %(m/sec?)?. For &, = 10717,
80.1% of the range rate errors ame within 1o of the expected zero mean (Figure

4.15a). The maximum g-value is approximately 1.7 x 107 '%(m/scc?)? (Figure
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4.15a). While the actual magnitudes of the @-estimates become smaller as
the a priond s is decreased, within each case the sequence of J values
increases. This, of course, results in increasing the error variance of 0.
As before, this may be attributed to the error growth, for while the error
has been reduced, it has not been eliminated.

Note that for 5, = 10" °%(m/sec?)*, comparatively large values of ¢
are obtained. This is due to the fact that initially large values of the
gain are computed thus tending to make the values of - "follow" the observa-
tions. The result is that the erratic behavi.r of ¢ from one observation to
the next appears to be quite random. The sequential (-estimator sees this
and produces correspondingly large values of ¢. As smaller values of .7,
are employed, this effect becomes less, thus allowing the values of .» to
become more stable. Figures 4.14a and 4.15a show this to some extent. The
estimates of @ do not increase quite as rapidly; their magnitudes are less,
and the values tend to reach their maximums sooner.

From these results it is apparent that various a ptricrn( values of &
have definite effects upon the values of the @-estimates. However, through

reasonably careful selection of Sy practical filter operation can be realized.

4.7 Summary and Conclusions

In this chapter the salient aspects of the estimation techniques
found in Chapters 2 and 3 have been investigated, and the algorithms appliied
to the rendezvous problem formulated in Chapter 1. Explicit closed form
expressions have been obtained, in whole or in part, for the age-weighting,
ordinary and modified gain scaling, additive gain term, and limited memory
filter algorithms. For these as well as all the other algorithms, numerical

results have been obtained.
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Certain equivalences were shown to existl in both the adaptive and
non-adaptive forms of the age-weighting, modified gain scaling, addilive gain
term, and state noise covariance algorithms. While these, as well as the
limited memory algorithm, were found to be acceptable estimators, the ordinary
gain scaling technique (b = constant) was shown to be unacceptable, in both
its adaptive and non-adaptive form.

The adaptive techniques, based on Jazwinski's maximum 1ikelihood method
as well as the sequential ¢-estimator, are seen to be a step closer to accurate
estimation. The techniques based on Jazwinski's approach have the particular
advantages of being both simple and completely adaptive. The primary dis-
advantage is the fact that usually smoothing must be introduced in the form
of a residual sample, thus destroying the optimality of the method.

The Kalman filter for sequentially estimating the state noise co-
variance appears to give slightly better performance than Jazwinski's adaptive
estimator. Within the stated assumptions, the method is a constrained minimum
variance estimator. However, the technique is more complex to implement.
Further, the assumption of £{q6} = 0 destroys the optimality. If, in fact,
¢ does not represent a stationary process, then the assumption of constant .
introduces modeling error, thus requiring more accurate modeling or some
technique to prevent saturation of the (-filter.

The estimation of modeling errors has been shown to be particularly
useful in that this approach attempts, in some way, to improve the dynamic
model. Invariably the chosen structure is not sufficiently exact to allow
the filter to operate to saturation. Thus, some model error compensation
technique must still be employed, e.g., state noise covariance. In this
regard, the sequential state noise covariance estimator has been shown to be

effective.
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The rendezvous problem investigated here involves a single state
variable, and as such, the information and comparisons presented must be
accepted in this light. When the algorithms are extended to state vectors
of more than one variable, some of the alqgorithms lose their similarities.

In particular, the modified gain scaling, additive gain term, and state noise

covariance algorithms in both their adaptive and non-adaptive torms produce
results which are generally different from one another. lurther, Ja-winski's
adaptive ¢-estimator requires a pseudo-inverse in computing a ‘-matrix. lthis
disadvantage is not suffered by the sequential . -estimator. 1he timited memory

filter is, in an a postendond sense, an optimal estimator. However. applied
to the vector case, it requires considerable numerical computation. To in-
vestigate these algorithms as applied to the vector case of more than one
variable is an undertaking of considerably qreater scope. Further, the
insight provided by the closed-form expressions for many of the algorithms
would be difficult, if not impractical, to obtain because of the greater
problem complexity.

Based in general upon the results obtained in this chapter, the model
error estimation technique and the sequential state noise covariance estimator
have been selected for application to a multi-element state vector problem.
The choice of this approach is due to the inherent potential for effective
application to more complex problems. As indicated in Chapter 1, the problem
is the orbit determination of a low thrust space vehicle which is subject to

thrusting errors. This investigation is carried out in the next chapter.



Chapter 5

APPLICATIONS: LOW THRUST VEHICLE
ORBIT DETERMINATION

5.1 Introduction

This chapter is concerned with the problem of estimating the state
of a continuously thrusting, solar electric propulsion (SEP) space vehicle.
The problem is compounded by the fact that the pfopulsion system is subject
to certain mechanization and control errors. While errors arise from various
other sources (49), for the SEP vehicle, the primary errors are due to
anomalies in the propulsion system. Our aim here is to investigate the
practicality of estimating not only the vehicle state, but the corresponding
thrust acceleration errors as well.

A number of investigators have considered low thrust SEP missions.
In (50), Rourke and Jordan investigated guidance and navigation approaches
for two SEP interplanetary missions, although model errors were not estimated.
Russell and Curkendall (36) obtained effective results by using piecewise
constant functions to model acceleration errors; Tapley and Hagar investi-
gated the estimation of acceleration errors (34) as well as inertial measuring
unit errors (35) for an SEP vehicle. These approaches employed Kalman filter-
ing utilizing the differential equation for /. Errors were successfully
modeled as first and second order Gauss-Markov processes. although Earth
rotational dynamics were not considered. Carpenter and Pitkin (37) investi-
gated orbit determination for an SEP vehicle. Here the total thrust

acceleration was assumed to be unknown, but approximated as the solution
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to a set of uncoupled linear differential equations. However, the approach
followed a least squares linearized simultaneous solution with no statistical

measures being employed.

As indicated in the previous chapter, our approach here is to assume
a structure for the acceleration errors. Then, employing the selected filter-
ing equations, the parameters associated with the assumed model error structure,
as well as the position and velocity of the vehicle are to be estimated.

In the following sections, the specific dynamics and estimation
equations are developed. Five different model structures are investigated
as to their ability to represent the acceleration errors. Each is developed
separately, and numerical simuilations are carried out to obtain comparative
estimation performance. Corresponding to each of these structures, purely
random errors are also assumed to be present. Associated covariances are

either input, or estimated using the sequential (-estimator.

5.2 Problem Description

In the problem considered, the motion of the solar electric spacecraft
is assumed to be influenced by random errors in the thrust acceleration vector.
The nominal SEP mission simulation is initiated at escape from the Earth's
sphere of influence and terminates with a flyby of the asteroid Eros. En-
counter with Eros occurs at a distance of 1.45 astronomical units (a.u.),

152 days after heliocentric injection.

If the only central force attraction considered is the sun, the

equations of motion for the SEP spacecraft are

r=0

L ) -
p= - ps RIS

]
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where, as shown in Figure 5.1, r is a 3-vector of heliocentric position com-
ponents, X, Y, Z; v is a 3-vector of heliocentric velocity componentc ., ¥,

Z; |r| is the magnitude of »; and y is the gravitational parameter of the sun.
T is the heliocentric thrust acceleration vector composed of the design thrust
acceleration, 7+, as well as thrust acceleration errors, »(:', from a number
of sources (beam voltage and current, grid warpage, deadband control errors,
etc.). The heliocentric components of T, [Tx TY Tz]T’ may be expressed in

a vehicle centered, orbit frame as [T T T ]T, where the two vectors are

X'y z
related by

=3

Tx cos Yy =-giny 0 Tx X

T = TY= sin Y cos Y O Ty=M v

’Z’Z 0 0 1 z "z

3

=3
3

where ¢ is the heliocentric orientation angle (see Figure 5.1). The two
reference frames are oriented such that the 2 and =z axes are parallel; the
X and x axes form the angle, ¢, as do the Y and y axes, with

1. 1.
cos Y = X/(X* + Y¥)2, siny=Y/(X? + ¥?)?

5.3 Acceleration Error Simulation

The SEP spacecraft is driven by an electric engine which in turn
obtains its power from solar energy conversion devices, i.e., solar cells.
While the actual solar flux density follows the inverse-square law, for
outbound missions the actual available thruster power varies as »’. This
is due to improved efficiency of the solar cells at lower temperatures (50. 2).
In addition to the thruster power variations, the propellant mass flow rate,
I, affects the magnitude of the thrust acceleration. In particular the

magnitude, a, of the thrust acceleration, -, is given (50, 3) as
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b [s
a(t) =_—2M 7o (5. &2

where I;p is the engine specific impulse, g, is sea level Earth aravitational
acceleration, and M is the instantaneous spacecraft mass. These quantities in
turn are functions of ﬁumerous propulsion system parameters. all with various
uncertainties. Some of these have been mentioned -- beam voltage and current.
qgrid warpage, and deadband control errors.

Regardless of the sources of error, their effect is to produce un-
certainties in the thrust acceleration proqgram. For the orbit determination
function, we are interested in the errors at this total level, and it is at
this level we propose to account for them. Now since we are not concerned
here with the guidance problem, the design thrust program is arbitrary. Hence,
for simulation purposes, a constant design thrust acceleration magnitude is
selected. Further, the program is such that the nominal thrust acceleration
vector, 4, is oriented colinear with the y-axis of the orbital frame. The
true thrust acceleration vector, ', can be resolved into its orbit frame
coinponents, Tys Ty, and (o in terms of its magnitude, .:, and the clock and

cone angles, 6 and y, respectively (see Fiqure 5.1). Thus,

Tx siny cos O
7; =q cos Y | GeG e
Tz stny @ain 6
and
a = a* + da S0 B0 G

where g* is the nominal constant thrust acceleration magnitude and d.: is
associated error. With zero error, the thrust acceleration is nominal. .

this case,
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0
In the presence of thrusting errors, vy, 6, and Sa are non-zero thus producing
an off-nominal thrust acceleration vector.
The acceleration error magnitude is simulated using

Sa = Gao sin Wt + u (5.3.5)
a

where 8, and w are constants and where »_ is a random variable with the
statistics

&

= 2} =0 ? 5.8.¢
E{ua} 0, E‘{ua} o, ( ¢

In the error simulation the instantaneous values of the pointina angles. )
and 0, are assumed to be related as shown in Figure 5.2. This figure shows
the x-z plane of the orbital frame. Assuming the cone angle, y, is small,
the radius of the circle is the maximum deviation, siny ~ Y, of the normal-
ized thrust vector* from its nominal position co-aligned with the y-axis.
Next, the quantity

= - 18 e )
d=galt tb) (

is the distance that the tip of the normalized thrust vector has moved since
it last touched the boundary given by the circle of radius y. The rate, =,
is simulated as a constant plus an additive noise component obtained from a
normal distribution, (0, osz); t is the current mission time, and O is the
time the boundary circle was last touched by the normalized thrust vector.
The angle, ¢, is obtained by sampling from a uniform distribution, ., :éz’.
With this information the instantaneous values of y and 0 can be obtained at

each point in time. To clarify the process, the simulation loaic is given

* That is, a unit vector in the direction of the thrust vector.
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in Fiqure 5.3. Assume the initial values of y, ¢, i, e d, and o, and o¢:
are qgiven. To determine the values of y and 0 at /k. the distance, Jk. is
first computed. Using the law of cosines, the anules ¥, and L, are deter-
mined. Then ek is computed by adding or subtracting % according to the sign
of ¢. Next a test is made to determine if the computed A lies within the
boundary circle. If it does, then sample values from the normal distributions,
N(O, oYz) and N(0, 062) are added to Y and ek respectively. If the test is
not passed, then new values of 6, ¢, s, and t, are found. Normally distributed
noise is then added to Yy and Gk as before. For each point in mission simu-

lation time, the sequence is repeated to obtain appropriate simulation values

for the pointing angles.

5.4 Observation Geometry and Equations
Two observation types are employed for estimating the state vector.
These are the radar-measured range rate, 0, of the vehicle, and the angle,
£, formed by the lines-of-sight to the Earth and to a specified navigation
star (see Figure 5.4). In computing range-rate, the motion of the tracking
station, due to Earth rotation* as well as orbital revolution, is taken into

account.

Consider Fiqure 5.4. The range vector can be expressed as

1

P=p-p =p=-0 -4 ot
o S s g

where r is the heliocentric position vector of the vehicle; . is the helio-
centric position vector of the tracking station; Ay is the geocentric position
vector of the station; and R, is the heliocentric position vector of the

Earth. In the figure, the reference frame Xx“Y“z” is a geocentric frame

® The diurnal effects of station motion have been shown to provide a
significant contribution in obtaining accurate orbit determination (51, 34).
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aligned with xyz. The X and X' axes are assumed to be aligned, pointing to
the First Point of Aires, T. Xx"Y"z" is a geocentric frame whose \"-Y" plane
contains the equator. Thus, X"Y"z" is rotated about Y’ through the angle,
€, the obliquity of the ecliptic (e = 23%°). The heliocentric components of

R, are simply

Xe cos (

R = |Y |= IR ||&in ¢ (ho, 0
Z 0
e e

where Ihél is the magnitude of »_, and ¢ is the Earth's heliocentric orienta-

tion angle. The heliocentric components of K are X, ¥, and s thev are

given by
ln’s =y ln’s" . P
where
7 0 0
K= 10 rcose =pince it
0 oinr con €
and
0a qms 08 >‘s
In‘s" = |/\'S| cois etn AS (e’

s (bs
The anqgle, ¢ , is the qeographic latitude of the tracking station, and N

the right ascension of the station.

Now takina the derivative of (5.4.1) with respect to time qives

o1
]
it
'
L O
]
3
'
)
[}

(6.4.¢)
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where (.) is the relative derivative. 2 is the angular velocity of the
station, and W, is the orbital velocity of the Earth. To simplify the com-
putational process, the assumption is made that the Earth's orbit is circular
and hence W, and R, are constant. The anaqular velocity, Qs, is composed of
the sidereal rotation rate, W and W,

Q. =w +w
S S e

E ws" + we (6.4.7)

ws" is aligned with 2" and w,, is aligned with Zz. Thus

- -
P S

with

r =(Fw"+w)XR +w XK (€. 88
s S e S e e

Multiplying out = ws" gives

[ 0
w, = -wq" ain € A
w'" o8 €
S

e

Using (5.4.2) - (5.4.5), (5.4.7) and (5.4.9), equation (5.4.8) becomes

(W - w"cos €)X ~w"ainel
e S S S S

r = fw + w" cos el X + R
s e s s e
w " aine X
| s s
or
(0 ot v =™ o ¢ gin N\ = w afnealn ¢
o s s s e s
L]
r.o= || (w 4+ w " coe o) cop ¢ oo )
& s «© S S )
W " aln e con b ocos A
s s s
-w aln o
@
4 I/\' | w oo T, A -.r'. '.“
e (&)
L 0
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with A_ = stl t and ¢ = Iwel t. Thus the desired range rate may be found
as the magnitude, p, of (5.4.1).
The star-vehicle-Earth anale is measured on board the spacecraft. It

is found simply as

For each simulated observation, random noise, Op is added to the
deterministic value by sampling from a normal distribution. If the discrete
observations at time t, are specified generically as \, the associated statis-

tics for v., are
93

! = ! = I J =, "ol
/i%u} oo, /i%ﬁ %U} /@istj =

5.5 Error Compensation Models

As indicated in section 5.2, the simulated thrust acceleration is
composed of a nominal or proqgrammed thrust acceleration, 'Y, plus an error
component, m(/). The nominal dynamic model assumed for the estimation process
is essentially the same as equation (5.2.7). Of course, the accelerating
error vector, m(t), is unknown. We assume an approximation, ‘), to ».¢',
where ¢(t) is modeled as a stochastic process with (. (:'}! satisfying one of
several possible first or second order differential equations. The elements
of e(t) are the three orthogonal components of the acceleration error, and
are expressed in the orbital frame.

While the general form given by equation (Z.4.c’ might be employed to
obtain a single representation for the error, the selection and use of
specific models offers the opportunity to investigate the effects of different

structures, i.e., structural sensitivity. For this reason five different
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models are employed: three basic forms, two of which have two separate
confiqurations. These are described in the following paragraphs.

Model 0. In this model the acceleration error components are assumed
to be represented as purely random process noise. Thus uonly a selected state
noise covariance matrix is employed to maintain a positive detinite ervor
covariance, and hence filter operation, and to prevent diveraence. In this
7

case we define the estimated state vector to be x = [rT nT]. and the

corresponding differential equations are

.

r=2v

u
||

S e

r+ 7T+ My (ehats s 1

M is qiven by (5.2.2), and « is random state noise representina the accelera-
tion errors. The a privn( statistics for « are

r{u} = 0, H{u/(t) u/(l)] st -0

where / «{x, y, =l

Model 1. The thrust acceleration error component alonqg the orbit
frame y-axis (in the direction of the nominal thrust) is approximated by a
first order Markov process: the .- and - components, in the orbit frame. are
assumed to be purely random processes. Here the nominal differential equations

are

i
X

M

|r|?

r+ TA+ M e JoFjac

u
z

with the addition of one of the following two confiqurations:

~r,
.

a) e = ue

b) e

L]
Qe + U & = Uu
e
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The random variables u , u_, u , and u have the statistics

Elug) = 0, Blug(t) u(0)} = q,(1) §(t-1)

where ! ¢{x, z, e, a}. For each of the configurations a) or b) above, the

corresponding state vectors to be estimated are

[7‘ r

x=lt) or X =]v TN

(K '

43

respectively.

Model 2. The thrust acceleration error component alona the orbit
frame y-axis is approximated by a second order Markov process. The .- and ‘.-
components are again assumed to be purely random elements. The correspondina

nominal differential equations are then

r =20

I
L] ‘ x
D= - — s ptany

|r|’
i
Z

L]
e =g

plus one of the following configurations:

a) qg = I(g Ceto
b) g = -Be + Uy o
é = UB [Osee s

The random variables Hr Ups g and g have the a »aien( statistics
Elu} =0, E{u, (t) MZ(T)} =q,(t) 8(t-1)

where 7 e{x, 2, g, R}. For each of these above configurations the correspond-

ing state vectors to be estimated are
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r rl’T
v )
X=]e or X ={|e
g ¢
bB.
respectively.

In the ensuing discussions the particular models and <tate vectors
will be referred to often by their model nunber and letter confiauration.
Thus model 2b is that described by model 2, equation .i....2' . and confiqura
tion b), equation (/. 5. 0).

Note that each of the above model forms seeks to approvimate (' in
its own way. Model O, of course, has a null structure as defined in section
3.3. Model la approximates r(t) by a sequence of constants (Fiqure 5.5a):
model 1b uses a sequence of exponentials (Figure 5.5b). Model 2a emplovs
straight line seaments (Fiqure 5.5c), and 2b approximates (‘) by a sequence
of arcs corresponding to the output of the simple harmonic oscillator,

For any of the assumed models, the state vector differential equation
can be written in the general form

X(t) = F(x, t) 28N
In view of (5.2.1), F(y, t) is a nonlinear vector function: hence a suitable
estimation procedure is extended form of Algorithm I. This is basically the
same as Alqorithm II, except that here the integral form for f; is replaced
with the discrete form given by (1.2.17).

In forming 7, given by (1.2.17), the term rort is required. Two
methods for determining this are given by equations (1.7.30), (1.2.33a), and

(1.2.35a). The latter form,

t

k
ror’ =f o R U BT o7 du 19,0, &6

tk-l
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is the more correct form, and is used exclusively when dealina with constant
input values for U 8(t-t) = E{u(t) u(t)}. In this case the elements of . are
the terms q where I is taken from one of the index sets associated with
Model 0, 1, or 2. Numerical computation of ror’ s performed as a simple

quadrature based on the mean value theorem of inteqral calculus:

T T T, At r
TRESw (B Uy "1k % it By U Pked Yia=n ! =% o

For the cases where the sequential ’ estimation algorithm is employed,

equation (/.%.33a) is used with I given by (7.:..:0):

”k
[ f b n R R
L

k-1
This form is required because the I' matrix itself is used. In this case we
let U =@, and the elements are again the terms gy with [ taken from the
aporopriate index set. The numerical computation of I' is carried in a manner
similar to the above, again using the mean value theorem:
At

P= (B, + 0 B} =5 ERE)

&
N

The elements of B for all models are given in Appendix B.
;

i

5.6 Simulation Process

Fiqure 5.6 is a functional flow diagram of the simulation process.
It represents the logic followed by the simulation computer program. Input
data is read from an appropriate input file, and various problem parameters
and logic switches are initialized. Both the simulated and nominal trajec-
tories are numerically integrated simultaneously through one observation
interval. The simulated thrust acceleration is computed according to Figure
5.3, and the nominal thrust acceleration computed from one of the appropriate

error models of equations (5.5.1) through (5.5.10). In addition, the
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differential equation for the state transition matrix,

j) = A(t) (¢, tj) (1.2.28)

is simultaneously integrated. As discussed in section 1.2, the matrix, 4, is

ort, ¢

the partial derivative of F with respect to the state, x. The elements of A
for each model are given in Appendix B.

Next the first simulated observation is computed with a random noise
component being added. (Observations are processed one at a time; hence, we
have the computational advantage of scalar observation.) The corresponding
nominal observation value is determined, and the observation mappina matrix.
H, evaluated. The elements of # for each observation are given in Appendix C.

The estimation equations are employed to obtain the state estimate, x.
If any further observations are to be processed at this time point, the appro-
priate logic is repeated as shown in the figure.

A test is made to determine if print output is required, and if so,
the appropriate information is written. A test is also made to determine if
the final simulation time has been reached. If it has not, the process of
integration, observation, and estimation is repeated for the next and succeed-
ing observation intervals until the final time is reached. Finally, data
plotting is accomplished as determined from input data and the simulation run

terminates.

5.7 Numerical Results

In performing the various numerical simulations, a common set of basic
problem data is consistently used. This approach provides a common basis for
evaluating the estimation performance of each of the approximating models.
This set of data is qiven in Table 5.1. The initial conditions, position and

velocity, are the same for both the simulated and nominal trajectories. The
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observation interval is a constant 50 minutes for each observation type;
hence the corresponding variances are scaled to agree with this sampling
rate. The initial geometry is such that the Greenwich Meridian intersects
the X-axis at midnight, GMT*, forming the spacecraft initial subpoint
location.

In order to gain an idea of the acceleration error components, the
plots shown in Fiqures 5.7 and 5.8 were obtained. Figure 5.7 shows the error
components along each of the orbital frame axes as functions of time. Note
the periodicity of the y-component and the irreqularity of the x- and z-
components. Further, the y-component is approximately three times as great
as the others. Fiqure 5.8 shows the trace of the thrust acceleration vector
projected on the orbital frame x-z plane. Note the approximately circular
bound of radius ~ .0055 mm/sce®. The errors are also seen to be somewhat
concentrated in the first quadrant, and rather less dense in the fourth
quadrant. As the simulation time continues beyond the 35 days shown here,
one can expect that these errors would be more uniformly distributed within
the full reqion.

In the following paragraphs numerical results are presented showing
estimation performance for the various models and approaches. In presenting
the data, two quantities are plotted which represent a fiqure of merit of
performance. These are the Euclidean norms of the error components of posi-
tion and velocity, and the square root of the trace of the appropriate
covariance submatrix elements. The ensuing discussions will refer to these
quantities as RSS (root-sum-square) and RTC (root-trace-covariance),

respectively.

* GMT = Greenwich Mean Time; see, for example, (9).
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Nominal Cases With and Without Model Error. Figures 5.9 through 5.12

show the position and velocity error norm, RSS, for the nominal data of Table
5.1, both with and without thrust acceleration modeling error, respectively.
Clearly the estimation performance in Figures 5.9 and 5.10 is erratic and
unacceptable, producing estimation errors as high as 20,000 km and 18 m/sec.
The rapid decrease in the error covariances is illustrated bv the short dashed
line, the RTC, near the oriqin. Figures 5.11 and 5.12 illustrate the case of
perfect modeling. tere both the actual and assumed thrust accelerations are
of constant magnitude, always directed alonqg the orbital frame v-axis. Iwo
RSS curves are shown in each fiqure, corresponding to two different values

of the observation error variance for the star-Earth anale, 7. 1In both cases
the RSS values become substantially less than 2 km in position and .004 w/sec
in velocity as the estimation process proceeds.

Perhaps more interesting is the sensitivity. shown by these curves,
of the estimation process to differences in the observation error variance.
The solid line in Figures 5.11 and 5.12 represents the RSS for the nominal
(Table 5.1) value of HE = (7 arcsec)?®. The dashed line corresponds to an
increase of 3 arcsec resulting in HE = (10 arcsec)®. In both cases, of course,
each value is used for both the true (simulated) and assumed (nominal) value.
This change in the value of Re fllustrates a somewhat surprising sensitivity
of the estimation accuracy to this particular measurement type. For the
increased RE the position RSS is more than twice that for the nominal value.
Clearly similar behavior is seen for the corresponding velocity RSS.

The sensitivity of the estimation process to HE’ and the problems of
actually developing equipment capable of such high accuracies prompts the

question of necessity. Are £ measurements indeed necessary? To answer this,

consider the information obtained from a sinale range-rate observation. Fron
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equation (1.3.21), letting j = k-1, we first make the approximation that
O k-2 = I for small At, so that

vy T -1 .
k. k-1 & k i k ”k °k,k-1 L k G, k Hk

¢
Dropping the subscripts and employing the p elements of # defined in Appendix

C, we have for the ¢ - j elements corresponding to position (Z, j = 1, 2, &),
T -1 D . .
(" R H]ij = [(xi - xsi) - (Xi - xsi)(p/p)]

. ) ) )
[(x3 xgj) (Xj ij)(é/p)]/(p R) (5.7.1)

where p is the range from the tracking station to the vehicle. X and X g

are elements of r and r respectively. For the velocity elements (7, j =

4, 5, 6),
T L H), = (X, - X )(X, - X .)/(p% R) (5.7.%)
1j i si j sj tree
and for the mixed terms (7 =1, 2, 3; Jj =4, 5, 6)

)/(p% R)
(5.7.3)

T _1 = e A ° : =
[H R u]ij = [(Xi - xsi) - (Xi - Xsi)(o/p)] (xj ij

Now consider the situation where the vehicle and tracking station are in the
ecliptic (heliocentric X-Y) plane, with no velocity components directed out
of the plane. Clearly the information derivable from the range-rate measure-
ment for the Z-component (¢ = 3) of position and velocity is zero. Now while
this confiquration is not usually the case, the values of the position and
velocity Z-components of both the vehicle and the station are small enough to
make the information quite small. Thus the range-rate measurement contributes
only little information for the estimation of the out-of-plane components of
the state. (Note that the information would be even less if station motion
were not considered; this further substantiates the claim set forth in

(51, 34).)
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To see how the angle measurement, £, alleviates this problem, consider
the corresponding elements of the information matrix, again for one measure-

ment and with the approximation, ¢ =~ . For the position elements (7, j =

1, 2, 3),
[ (x . -2)]
[IITRIH]..= 8 . = cos CL—L .
17 X1 B - 1"|
e 4
r b
(- = %.)
a - Q08 F —EJ——-J-— / (|" — "'2 440 "l:’lz r)
xj > Yo v N
7, - 7l | (5.7.4)

Here, even when the Z-component of position is zero, the corresponding infor-

mation term is, in general, non-zero. Only when

2 =12 4 -7
£=cog '|s [———])|= cos”}]|.3816 | ——r
z
IR - rI |R - r|
e e

is the information term zero. Now Z, is zero, since the Earth remains in the
ecliptic, and z is very small compared to |Re - r|. Hence the approximate
value of £ = 90° results in a corresponding value of zero for the infcrmation
term. This value can, of course, be encountered in practice. However, for

the periods invastigated in the simulation, this particular geometrical con-
figuration was not encountered. (In passing we note that the values, £ = 0, m,
could lead to some numerical problems &ue to the division by sin £. However,
for the navigation star selected these values of £ cannot occur.)

For the velocity elements, the information term, HTR-IH. is zero since
the corresponding elements of # are zero. Thus estimates of the Z-component
of velocity must rely almost solely upon the information derived from the
range rate. This dependence is manifested by errors in the out-of-plane
velocity which are sometimes as much as an order of magnitude greater than

those of the other components. However, this particular problem is partially
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alleviated by accurate estimation of the position. This is true because the
acceleration is, in part, a function of position, i.e., equation (&.:. 7).

Thus accurate estimates of r keep the nominal velocity values fairly accurate.
More directly, the elements of the state transition matrix, previously assumed
to be diagonal, in fact contribute a coupling of information elements to aid
accurate estimates of the velocity.

While the previous discussion has been directed toward the information
obtainable for the Z-components of the state, very similar conditions and
explanations apply for cases where the vehicle is on or very near the X- or
Y-axes. For example, initially the vehicle is on the heliocentric X-axis.
Only one station, Madrid (JPL-61), is initially tracking. The vehicle is
almost directly overhead, hence, p ~ 0, and (Y - Yy =o. Thus, only a small
amount of information about ¥ is available since 3p/3Y = ¢. Similarly, for
these conditions, Y - is ~ 0, and hence 3p/3x = 0 yielding little information
about x. However, information is available from the star-vehicle-Earth anale,
£, which does aid the estimation of these otherwise locally* unobservable or
nearly unobservable elements. In fact, it has been found that conditions such
as these occur quite often at various times throughout the mission. The result
is that without the anqle measurement, ¢, extremely large estimate error
values often occur.

Thus in view of the foreqoing discussions, it is desirable to have
an additional or supplemental measurement type. The onboard anale. :, appears
to be a viable candidate producing useful information to aid the orbit

determination process. One of its chief disadvantages is the high resolution

* The term local observability might be suggested for those state
elements which are observable for only a subset of the total observation set.

Thus a system could be described as locally observable if (1.7.71) holds where
the observations {yj, AXE yk} form a proper subset of ¥, .
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demanded to produce accurate estimates. Another disadvantage is discussed

later.

Model 0 - State Noise Covariance. A number of simulations were per-

formed using various values of the diagonal state noise covariance matrix,
U, (see sections 1.2 and 5.6). Typical results for three linearly related
values of U over a 60-day period are shown in Fiqure 5.13. Here the estima-
tion performance is reflected by the position error RSS for the following

values of U:

<
0

1(.16 < 10°° .166 x 1075 .16 x 10°9)T (mm/sec?)?
U, = T(.16 x 101 166 x 10°° .16 x 1077 (mriece??

I€.16 % 1072 166 x 107" .16 x 10°')T  (pmaent?

<
]

Examining the fiqure, as the state noise covaiance is decreased. we begin to
see divergence of the state estimate. In fact, for all cases, including that
corresponding to the largest value, /,, divergence is at least startina near
the end of the simulation period.

A particularly interesting feature is the apparent trade-off in the
values of 1/ and the maximum estimation accuracy obtained. This is shown by
the larqge dips in the RSS curves at about 10 days. For the smallest value,
Uy, the RSS curve has the greatest dip; for U, the dip is smallest. An
intuitive explanation of this phenomenon is based on the followina reasoning.
Initial filter operation produces estimates of greater and areater accuracy
as more observations are taken. If the value of // is small, the error co-
variance decreases rapidly, producing more nearly optimal estimates and thus,
for a short time, more accurate estimates. tlowever, eventually the covariance
becomes so small that it is unable to cope with the error buildup. and di-
vergence occurs. -On the other hand, for a larger !’ the error covariance does

not decrease as rapidly. Hence, the filter is not cperating near the optimum,
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and estimate accuracy is therefore not as good -- at least during the short
period around 10 days. However, the presence of a larger U keeps the filter
operating longer before divergence occurs.

Next note the dotted curve which corresponds to the maximum RTC, i.e..
that for v,. Its average value is approxinately 70-80 km, a value which does
not reflect the error RSS of 300-400 km. (Although they are not shown, the
RTC's corresponding to U, and U, all lie below that for v,.) This suggests
that the value of U be increased.

Such an increase produces the estimation results shown in Figures
5.14 and 5.15. The increased elements of U have the values,

q,=4q, = .16 x 10°* (mn/scc?)?

q = .166 x 10" ° (mn/sec)?

y

These figures show position and velocity RSS and RTC curves for both the
nominal acceleration error and an increased error, to be discussed later.
In Fiqure 5.14 the position error RSS is seen to be greater than that obtained
in Figure 5.13. However, the RTC curve is a better measure of the accuracy,
even though it does not bound the RSS curve. Further, the estimate remains
fairly stable throughout the simulation period of 60 days. This is further
supported by examining Figure 5.15. Here the solid curve represents the
velocity error RSS over the 60-day simulation period. Although there are
some fairly large error peaks during the latter 30 days, overall the velocity
error RSS appears generally to be free of divergence during this period.
Fiqures 5.14 and 5.15 also show the estimation performance for the
case where the thrust acceleration error is increased by a certain amount at
30 days into the mission. This increase is produced by changing to the

following acceleration error simulation values:
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Fiqure 5.15 Velocity Error, Model 0, Nominal and Increased Acceleration Error at 30 Days
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Y = .026175 rad

Sa, = .0027 m/gec?

9
This corresponds to a 50% increase in the nominal values. A plot of the
corresponding y-component of thrust acceleration error is shown in Fiqure

5.16. Fiqures 5.14 and 5.15 thus reflect the ability of the algorithm to
handle changes in the thrust acceleration error. For the corresponding position
error RSS, the differences between the nominal and increased thrust accelera-
tion error are essentially nonexistent, and are therefore shown together as

the solid curve. The dotted curve is the RTC for both also. In Fiqure 5.15,
however, the velocity error RSS curves are slightly different, with the RSS

for the increased acceleration being given by the dashed curve. As expected,
the error is slightly larger than that for the nominal acceleration error
simulation. As in Figure 5.14, the dotted curve represents the velocity error
RTC for both cases. However, a curious aspect is the behavior of the RTC
curve. This is seen as a generally increasing trend from about 10 days. The
data also reflect a similar, but considerably less detectable, behavior for
the position RTC. One possible explanation for this is the fact that as the
vehicle moves farther from the Earth, the angle measurement, °, becomes less
sensitive to changes in position. For example, initially the spacecraft is
approximately 9.25 x 10° km from the Earth. The standard deviation of 7
arcsec for the onboard angle measurement corresponds to an arc length at this
distance of approximately 31.4 km. By 60 days into the mission, the spacecraft
is approximately 1.53 x 107 km from the Earth: the corresponding arc lenqth

is approximately 519 km. While this behavior could be seen more rigorously

in terms of the information matrix, the effect is clear: less information

is available from the onboard measurement angle as the distance from the

Earth is increased.
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Models 1 and 2. Fiqures .17, 5.18, and 5.19 show the estinatinn
performance for each of the other four approximating models. For these
cases, the thrust acceleration error parameters are increased to the same
values as for Model 0, above. Further, each case employed values of i, 8

indicated below.

q.=q. = .16 x 10°"* (mm/sec?)?
Model 1a | * 2 )

q, = .16 x 107 '° (m/sec®)?

q,=q,= .16 x 10°"* (mm/sec?)?
Model 1b {q_ = .5 x 107 (nm/sec?)?

q, = +q X 10735 gec™*

=q_=.16 x 10" (mn/sec?)?

Model 2a ) * 2

q =-3%10 2% (mm/gec")?

4, =q,= .16 x 107" (mm/sec?)?
Model 2b o 10"2?% (mm/sec")?

qg = .5 x 19739 goo®

Figure 5.17 shows the position error RSS for each of the model con-
figurations. As expected, the estimation accuracy generally is improved over
that for Model 0. Most remarkable is the accuracy with which Model 2b yields
performance estimates. This is represented by the solid curve, and corresponds
to an average position RSS of about 60 km (time ~ 10 days). This approaches
a factor of 5 reduction in the RSS values for the other models. It is
important to remember, however, that Model 2b corresponds to the correct
structure of the actual thrust acceleration error magnitude, and thus one

would expect superior performance. We remark that Model 2b is not quite
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the exact structure for the y-component of acceleration error, however.
This is due, of course, to the fact that the thrust acceleration error vector
deviates from its nominal orientation so that Model 2b is attempting to
approximate the y-axis projection of the thrust acceleration. Further, we
have employed a differential form, and consequently truncation errors in the
numerical integration algorithm contribute what appears to the estimation
equations to be a form. of model error. It is these aspects which require the
use of a small state noise covariance matrix (also see (11) ).

The next most accurate performance is that provided by Model 2a.
simple linear form. As shown by the alternately dot-dashed curve, the average
position RSS is approximately 300 km (for time > 10 days).

The two first order models, la and 1lb, produced acceptable estimation
accuracy, but not as good as expected. In fact, Model lb produced a position
RSS curve of about 450 km, some 80 km greater than that for Model la. One
possible reason for this is that too small a value for one or a number of
the state noise covariance elements was used. This suggestion is supported
by the fact that the associated error RTC data indicated an approximate steady
state value of 280 km, a value somewhat below the actual RSS curve. In all
cases a considerable number of runs were made for each model to obtain appro-
priate values for the state noise covariance matrix elements. This process is
tedious, time-consuming, and expensive, and for this reason, it was decided,.
following some effort, not to pursue this "tuning" process further. Clearly,
one would expect that more accurate results could be obtained by varying the
9z values until the position error RTC and RSS become approximately the same.

For each of the other models, the indicated values of ;. resulted in
RTC's which coincided with or exceeded their respective RSS data. The model

producing an error RTC greater than its RSS data was Model 2b. In particular
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the RTC data indicated an average value of approximately 295 km. Presumably
further tuning of the filter would result in even greater accuracy for Model
2b. For the reasons cited above, this was not done.

Figure 5.18 shows the velocity error RSS curves for each of the models.
Here the performance appears to be nearly the same for each. However, these
curves are in general more erratic than in Figure 5.19. In particular, toward
the end of the simulation interval the effects of the increased thrust accel-
eration error are rather pronounced. In spite of this, there does not seem
to be any indication of a tendency toward divergence; hence, for all these
models, the estimates are stable over the entire interval. Further, in all
cases the corresponding RTC data bounded or coincided with the RSS data.

Figure 5.19 show; the estimates of the thrust acceleration y-component
for each model. These estimates are those which resulted in the estimation
performances of Figures 5.17 and 5.18. Each estimated acceleration curve
represented by the heavy, solid line is identified with the corresponding
model number. The estimated curves are superimposed over a lighter curve,
the true y-component of thrust acceleration error. As seen from the figure,
all four models perform admirably in representing this component of accel-
eration error. Particularly notable is the fact that all methods adapt to
the increase in the acceleration error at 30 days. Now, the plots for Models
la and 2b do not appear to be very different (although the position and
velocity RSS's in Figures 5.17 and 5.18 indicate otherwise). On the other
hand consider the respective curves for Models 1b and 2a. Close examination
of the Model 1b curve reveals that a number of the actual error peaks are not
matched by the approximating curve. This is possibly due to a smaller than
necessary state noise covariance matrix and presumably the estimates would

be improved if this matrix were increased in value. This further supports
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the suqgested explanation why Model 1b yields the largest position crror K5,
Next, examining the Model 2a curve reveals that the estimated values near

the error peaks are larger than the actual error (the breaks in the anproxi-
mating curve indicate where the values extend outside the limits of the
grapﬁ). In view of the previous suagestion concerning Model 1b that the
state noise covariance is too small, the implication here is that the cor-
responding covariance is too larqe. In this case, however. it has been found
that the position error RTC data coincides very closely with the RSS curve.
Further, the fact that the Model 2b simulation yielded RTC values which were
well above its RSS values, tends to discount this explanation for over-
estimating the peaks. The actual reason for this behavior is not clear. Two
possible explanations are offered. First, it is possible that generally over-
estimating the acceleration error simply results in orbit determination
performance which is more accurate than that resulting from under-estimating
the error. Second, the plots shown are generated using approximately every
fourtecnth or fifteenth point. Thus many values occur which are not shown,
and on the average, it is possible that considerably better estimates of the
error are obtained for Model 2a than for Model 1b.

In view of the foregoing discussions, it appears that generally the
second order models, 2a and 2b, are superior in representing thrust accel-
eration errors of the type encountered in the simulations. Further, the
importance of exact modeling to the maximum extent practical is clearly
illustrated by the exceptional performance of Model 2b.

Sequential Estimation of the State Noise Covariance. We have seen

rather accurate performance using an a priorni constant state noise covariance
matrix associated with each of the models. However, in view of the many

numerical simulations which invariably must be performed in order to "tune"
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the state (vector) filter, a natural alternative is to employ the sequential
state noise covariance or @-filter to aid in this process. This has been
quite successful as we now proceed to show.

First, some comments dealing with general perfaormance are in order.
Initially, numerous runs were made to investigate the effectiveness of the
sequential @-filter. In these cases operation of both the ordinary state
filter and the ¢-filter was simultaneously initiated. Results were obtained
for all models and were less than satisfactory. In all of these cases, the
performance was worse than that obtained by simple tuning of the state filter
using a priond constant values of @. Attempts were made tc improve the
performance of the (-filter by employing different a pricn¢ values of both
Q and the (Q-error covariance, 5; using different constant values of the
observation residual error variance, 7T: and using the "sliding window" modi-
fication to the T-estimator, equation (3.6.36). These attempts met with little
success. After exhausting such approaches, a re-examination of the strateqy
for employing both the state and Q-filters was made. This revealed that
possibly the initial transient operation of the state filter was having a
detrimental effect upon the @-filter performance. To investigate this, runs
were made in which in which initiation of the (-filter operation was post-
poned for the transient period of state filter operation, approximately 5
days. The results were highly encouraging.

To illustrate this strategy, cases for Models 1b and 2b were run.
Recall from previous discussion that the results obtained in Figures 5.17 -
5.19 suggested that the state noise covariance values appeared to be too small
and too large, respectively, for these models. For this reason, it was felt
that the ¢-filter could improve the values of @, and hence the estimation

performance. For both models, simulations were run for 30 days using the
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initial data given in Table 5.1. In addition, a prionl values of @ were
taken to be those of U corresponding to the results obtained in Figures 5.17 -
5.19* (see page 198). The initial values of the @ error covariance matrix,
5, were selected to make &, diagonal. The 5, elements corresponding to
diagonal elements of ¢ were chosen approximately as the square of these «a
prioni () values. The S, elements corresponding to off-diagonal or correlation
terms of (; were taken (approximately) as the product of the a pacon( diagonal
@ elements corresponding to the row and column of the correlation term. Thus,
at t = 0,

8 (6.7.8)

- 2 -
%11 %5 * ®xk " 9 9pn
Taking this approach was an arbitrary choice. However, it was found that

relatively accurate values for S_ are necessary, and the rule-of-thumb given

0
by (5.6.5) was found to be a viable approach. In view of this, the a ptrioa
S values are given in Table 5.2 for each of the two » models.

Because of the extremely small values of many of the A different
units are used in carrying out these simulations, namely, millions of meters
and millions of seconds. This is done in order to avoid numerical difficulties.
In order to test the adaptability of the ¢ filter, increased acceleration
errors were simulated at 15 days. This was done by again increasing Y and
da, by 50% to

Y = .026175 rad

day = .0027 m/sec?

In determining the observation residual error variance, T, the sliding window

modification, equation (3.6.36) was used with the small a paicr( value of

®* Recall the discussion in section 5.5 associated with the computation
of . Because I' itself is required, equation (1.2.30) is used, and hence
we assume, approximately, Q@ = U,



Diagonal Corresponding Variance Values for

S Element Q Element Model 1b Model 2b
81 qu = q, 10°'° (mm/sec?)" 1071 (mm/pec?)®
822 q12 20710 (m/sec?)t | 10710 (mmjac ot
833 q13 10 (mm?/sec®)? 10727 (e gared) Y
S Q1 10°*° (mn/sec")? 707 fepriacnd)?
8ss q22 = q, 10710 (mm/sea?)t 10712 (rpi/gec?)
866 q23 107'% (1m? /gecS)? 10727 (mm/sec®)"
877 qa2u 1074 (mm/sec*)? 107 (mm/sec®)?
Se8 923 = 4 4, 10" %% (mm/sec®)® 107" (rm/sec® )"
899 qau 10™"*° (rm/gec®)? 10732 (rm/sec”)?
810 19 quu = q,s 4 1077° see”® 10780 geo 12

Table 5.2 A Prioni S Values
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T, = 10'* (mm/sec)*. Twenty residuals were used as the residual batch size,
ie., N = 20, in (45.¢.36). Finally, in carrying out the simulations, the
¢ filter was not operated until the fifth day of wission time in order to
avoid the transient effects of state filter operation.

Figure 5.20 shows the position RSS and RTC for both ! models: 5.20a
for Model 1b, and 5.20b for Model 2b. In both cases the performance is quite
good. Fiqure 5.20a shows a particularly significant increase in performance
over that shown in Figure 5.17. The RSS curve has been lowered to an approxi-
mate mean of 125 km, a considerable improvement over the previous 450 km of
Figure 5.17. Further, the RTC curve is more representative of the actual
RSS error, although it appears to be slightly low. For Model 2b there does
not seem to be any noticeable improvement in the estimate as reflected in the
RSS curve. Both here and in Fiqure 5.17 the RSS has a mean of around 60 km.
However, the corresponding position error RTC is now an accurate representa-
tion of the position error, and adequately bounds the actual error RSS. Note
that for both models the filters easily handle the 50% acceleration error
increase at 15 days.

Results obtained for the velocities are shown in Figures 5.21a and
5.21b. The performance is comparable to that shown in Figure 5.18. However,
for Model 1b the velocity error RSS curve has some peaks which are larger
than those of Figure 5.18b. These peaks seem to be decreasing in amplitude
after the largest one at 21 days, and therefore do not suggest divergence.
However, the RTC is somewhat lower than the RSS curve, and it is possible that
divergence may appear at some later time. As before, the results for Model
2b are particularly good, although here also there is a large error peak at
about 21 days. Again the RSS decreases, and, except for the peak, the RTC

mean of about .2 m/sec adequately reflects the true error.
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It is entirely possible that the peaks in the error RSS curves may
be due to operation of the filters as they at;empt to adapt to the accel-
eration error. Fiqures 5.22a and 5.22b suggest this possibility as they show
the true and approximated thrust error accelerations. In particular, Figure
5.22a shows that the Model 1b error approximation is slightly out of phase
with the true error. Further, it is smoother and does not reflect the more
erratic behavior of the actual thrust acceleration error. On the other hand,
Model 2b does a reasonably good job of approximating the true error. In
either case there are rapid alternations at the true error maxima and minima
which are difficult to approximate and which are therefore quite capable of
resulting in the peaks in the position and velocity error RSS'.

Figures 5.23 and 5.24 are plots of appropriate RTC values for the
state noise covariances. These figures illustrate quite well the expected
changes in the state noise covariance values. Figures 5.23a and 5.23b show
the respective Model 1b and 2a state noise covariance RTC curves for the
orbital frame x-z components of error. Note that both curves reflect the
constant a prioni values. At 5 days there is a rapid .(ncrcasc in the RTC
value for Model 1b and a decrcase in the RTC for Model 2b. This behavior is
exactly that expécted to improve the position and velocity RSS'. Also notable
is the increase in these @ estimates at about 15 days, corresponding to the
increased thrust acceleration error. Thus the ; filter is actually adapting
its estimates to account for these error increases. This behavior can also
be seen in Figures 5.24. Figure 5.24a shows the state noise covariance RTC,
/5;', corresponding to the noise term in the approximating differential
equation (5.5.5). Likewise, Figure 5.24b shows the covariance RTC, v§;—,
corresponding to the noise term in (5.5.10). We again see the constant a

priond @ values for both cases during the first 5 days of the mission. At
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}his point changes occur with ¢§: increasing and «5; decreasing as expected.
Again at 15 days both estimates begin growing as the @ filter attempts to
account for the increased model error.

For the model parameters, a and B, the corresponding state noise
covariance estimates retained their a padorni values with no discernible
changes as the estimation proceeded. This is attributed to the very small
a priond values of s,, ,, corresponding to these parameters (Table 5.2).
Recall from Chapter 4 that too large a value of ¢ for the model parameter, .-,
resulted in ¢'s following the observations, thus destroying the correlation
effects. In view of this, the suggestion is made that it is better, within
parexic bounds, to let such parameters tend more to their constant values.
This strategy is further motivated by the initial results obtained when both
the state and @ estimations were initiated simultaneously. Thus initial values
of 5 normally should be chosen as nearly representative of the true uncertain-
ties in @ as possible. An interestiné aspect of the ¢ filter performance was
noted in using constant values of the residual variance, 7, as opposed to
estimating them via (3.6.36). Results indicated that variations in 7 by as
much as three orders of magnitude produced essentially no overall change in
estimation accuracy from that obtained in the foregoing cases. Generally,
however, it is recommended that T be estimated, thus eliminating additional
a priond guesswork.

The main disadvantage of the @ filter appears to be the increased
demand upon computation time. This can be severe, particularly for more
complex models. For example, the two models treated here required nearly
50% more execution time than that without the sequential ¢ estimator. This
aspect is substantial motivation for keeping the approximation structures

relatively simple.
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As a result of the application of the sequential @ estimator, we

have shown that it is possible to improve the knowledge and confidence in
the state estimates. It is most important, however, that the @ filter opera-

tion be initiated after the transient period of the state filter is passed.

5.7 Summary and Conclusions

In this chapter we have investigated the performance of model error
and state noise covariance estimation algorithms as applied to the orbit
determination problem of an SEP spacecraft subject to anomalies in the thrust
program. We have established that some supplementary measurement type is
useful in addition to the normal radar range rate obserQations. The use of
the onboard star-vehicle-Earth angle, while providing such information, suffers
two main disadvantages. First, high measurement accuracies are necessary to
make the technique useful. Second, as the distance of the vehicle to the
Earth increases, the measurement angle uncertainties translate into larger
position uncertainties. This latter problem suggests some alternative approach,
such as switching to the target body (in this case, the asteroid) as the
approach phase is entered. This would provide the reverse effect with greater
accuracy being obtained as the vehicle approaches the target. Another alter-
native is to employ a different measurement type. A potential candidate is
quasi, very long baseline interferometry (QVLBI). This has been shown to
offer greatly improved observation accuracies over that obtained with con-
ventional range rate tracking (52), although additional development is
required to make it practical.

The use of a state noise covariance matrix (Model 0) to maintain
filter operation has been shown to be effective in preventing divergence of
the estimates, and can yield accuracies of less than 500 km position error

RSS. In general, the performance can be improved using any of the other
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models investigated, although the second order models (2a and 2b) appear to
offer greater accuracy and stability of the estimates. In particular, the
superior performance (RSS = 70 km) of Model 2b, being the closest in structure
to the actual error, confirms the importance of accurate modeling to the
maximum extent practical.

In all cases, a state noise covariance matrix is required in order
to prevent filter saturation and subsequent divergence. However, with the
estimation of the model errors, the state noise, and therefore the error
covariances, are smaller than without model error estimation.

Application of the sequential @ estimator has been found to be a
workable approach for estimating unknown state noise covariances. For the
error approximation Model 1b, the @ filter greatly improved the RSS error;
decreasing it from 450 km to about 120 km. The state RTC in both cases has
been shown to be an adequate reflection of the confidence in the estimates,
particularly in the case of Model 2b, where the RTC practically bounds the
RSS. Of paramount importance in employing the state and  filters is to
insure that @ filter operation is not initiated until after the transient
period of state filter operation. A potential problem is that of the choice
of units for the dual state and ¢ filter computations. As reflected in
Table 5.2, very small numerical values can be encountered for the .) error
covariance matrix, 5, and these must be compatible with the computational
capabilities of the particular computer to be employed. Further, making the
a priond S too large can result in estimates following the observation
residuals, thus at least delaying accurate convergence of the estimates.
Finally, the sequential @ estimator suffers the disadvantages of requiring
up to 50% more computation time over that for just the state filter with a

priond constant @ values.
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In sum, we have shown that the thrust acceleration errors which,
unchecked, produce extreme diverqgence of the state estimates, can be very
adequately controlled. The techniques employed not only increase the

navigation accuracy, but also knowledge of the actual dvnamic model.



Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

This dissertation has been concerned with solving the fundamental
problem of dynamic modeling errors in classical Kalman filtering. The very
detrimental effects of such errors have been illustrated in both algebraic
and numerical terms through the examples of the rendezvous and SEP vehicle
estimation problems. In approaching the model error problem, various aspects
and properties of the filtering elements have been presented, e.q., infor-
mation, observability, etc., thus providing a fundamental base for the
investigation. A number of non-adaptive algorithms have been presented
which attempt to account for errors in the dynamic model. These range from
the optimal approaches of employing a state noise covariance matrix and the
more complex limited memory filter, to the suboptimal techniques of age-
weighting, additive gain term, and gain scaling modifications. In all cases,
these approaches compensate for the model error by simply keeping the gain
at a high enough value to prevent saturation, and thus allow continued filter
operation. There is, however, a certain minimum estimation accuracy obtainable,
reflected in part by the steady state value of the error covariance, and
determined by the corresponding filter parameters.

Except for the limited memory filter, adaptive forms of each of these
error compensation techniques have been presented. Using the adaptive state
noise covariance estimation algorithm due to Jazwinski, adaptive forms were

derived for each of the other methods.
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The powerful technique of adaptively estimating modeling errors has
been presented, along with discussions of the assumed functional form or
mathematical structure nf these errors. A unifying derivation has baeen
presented resulting in a relatively flexible structure suggested as a can-
didate function for use in model error compensation. Additionally, a new
algorithm for sequentially estimating state noise covariances has leen
developed, based upon the ordinary Kalman filtering algorithm. In view of
the non-negative definite property of the state noise covariance, and certain
other assumptions, the algorithm produces constrained minimum variance
estimates.

In applying the techniques to the rendezvous and SEP estimation
problems, numerical results have offered some interesting conclusions. From
the rendezvous problem, the performance of the ordinary gain scaling algo-
rithm (5 = constant) clearly indicates that this method is unacceptable to
counter the effect of unbounded model errors. This is true for both the
adaptive and non-adaptive forms. In their non-adaptive forms, the other
algorithms have been shown to produce equivalent steady state performance
when appropriate filter parameter values are employed. This is further
substantiated by the adaptive formulations for which the performances are
nearly the same. In fact, Jazwinski's state noise covariance estimation and
the adaptive age-weighting algorithms produce identical performance. Further,
the modified gain scaling and additive gain term methods in their adaptive
forms also yield identical performance. Between the two sets, the former
algorithms appear to offer slightly greater confidence in their estimates.
The reason for this is not clear. However, one clue is that the former has
filter parameters (Q and s) which can take on infinitely large values; the

latter algorithms have parameters (a and B) ranging between zero and one.
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In view of this, the conclusion suggested is that the differences may be due
to numerical sensitivities, a condition brought on by finite computer word
length. Thus, in the latter case, considerably more significant figures
are required to achieve the same results as for @ and s.

Results obtained for the estimation of model errors, as applied to
the rendezvous problem, clearly indicate the superior performance of this
method. This is to be expected, since it is the only method which actually
attempts to improve knowledge of the dynamic model. Coupled with an appro-
priately determined state noise covariance matrix, this technique is thus
the best approach to the model error problem. For this reason, this approach
was taken for investigating the solar electric propulsion mission. The
accuracy of this approach in the SEP orbit determination study is demonstrated
by the performance for the various assumed model structures. In general,
higher order models are to be preferred since their structure tends to make
them more adaptable to complex, as well as simple, error forms. This is
substantiated by the more accurate estimation performance of the second order
models. In view of the structure of the SEP acceleration error, and the
rather remarkable performance of Model 2b, the importance of accurate but
parexic modeling cannot be under-emphasized.

The sequential estimator for the state noise covariance matrix can
be effective in maintaining operation of the Kalman filter, both with and
without the formulation for estimating model errors, although it is rather
demanding of computation time. For the rendezvous problem, the estimates
of the state noise covariance were found to be somewhat erratic, indicating
a rather acute sensitivity to the residuals. In the SEP mission simulation,
the strategy of avoiding @ filter operation during the state filter transient

periods proved to be the key to success in this application. Thus, performance
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in the rendezvous problem could probably be improved using this philosophy.
Further, in the rendezvous application, the T estimation utilized all a
postenioni B residuals, thus including the effects of transient state filter
operation. For the SEP mission, the modification of the I estimator limiting
it to a batch of 20 residuals appeared to be a more viable approach. In this
configuration the @ filter operating in the state filter, post-transient
period was found to be quite effective in improving state noise covariance
values for Models 1b and 2b. The success obtained with this strateay suggests

that the dual state-¢ filter algorithm can be a useful estimation tool.

6.2 Recommendations for Further Investigation

One of the most apparent questions which remains unanswered is that
of performance of the suboptimal adaptive and non-adaptive algorithns for the
case of vector state variables. Some reflection will reveal that the algo-
rithms could not be expected to be equivalenced in the same sense as for the
scalar case, viz., the rendezvous problem. For example, the age-weighting
algorithm simply multiplies the error covariance by a scalar, thus scaling
each element by the