COMPUTER NETWORK RESEARCH

Leonard Kleinrock, et al

California University

Prepared for:
Advanced Research Projects Agency

30 June 1973

DISTRIBUTED BY:

National Technical Infoniuadion Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

DOCUMENT CONTROL DATA.R\&D

1 OIAIGINATING ACTIVITY (Corpirato outhor)

Computer Science Department
School of Engineering and Applied Science
90024
405 Hilgard, University of California, Los Angeles
a ribont title
Computer Network Research

4 Iit sC AIITIVE NOTES (Type ut seport and inclusive dater)

Leonard Kleinrock

$\begin{array}{r} \text { atpont Darte } \\ \text { June } 30,1973 \end{array}$	10. TOTAL NO. Of PAGES 67 64 $72^{\text {Tb. NO. OF REFS }}$
on. Contract ongrant mo	-0. ORIGINATOR'S AEport numberisi
DAHC15-73-C-0368 b. prosectio.	
2496	
	On. Oimis repatiport nois) (Any other numbers that may be arsimed
${ }^{\text {d }}$	

Distribution of this document is unlimited.

| 11 SUPDLEMENTARY NOTES | 12. SPONSORINGMILITARYACTIVITY |
| :--- | :--- | :--- |
| 17 AHSTRACT | |

ARPA Semiannual Technical Report January 1, 1973 through June 30, 1973.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE
is S Department of Commercs
Springfield VA 22151

19

Sponsored by
advanced research projects agency

COMPUTER NETWORK RESEARCH
SEMIANNUAL TECHNICAL REPORT
June 30, 1973
ARPA Contract DAHC-15-73-C-0368*
ARPA Order No. 2496*
Program Code No. 3P10*
(*Note: Until 15 June 1973, Contract DAHC-15-69-C-0285 ARPA Order No. 1380, Program Code No. 9D30)

Principal Investigator:
Co-Principal Investigators:

Leonard Kleinrock
Gerald Estrin Michel Melkanoff Richard R. Muntz Gerald Popek

Computer Science Department School of Engineering and Applied Science University of California, Los Angeles

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the United States Govern hent.
ib

COMPIJTER NETWORK RESEARCH

Advanced Research Projects fgency Semiannual Technical Report

June 30, 1973

1. INTRODUCTION

This Semiannual Technical Report covers the period from January 1 through June 30, 1973. Our efforts have been in four major areas: advanced packet-switching systems, ir:luding multiaccess satellite and packet radio systems; computer commication network design; multiple resource multiple access computer systems models; and measurements on the ARPANET itself. In addition, we have been involved with some network protocol studies and some controlled access and security questions. The results of that research have been documented and are listed in Section 2 following.

In this report we have attached three of our publications which have appeared in the professional literature; we do not include material from other areas of activity, mentioned above, in this document, and the reader is referred to the referenced publications themselves.

The first paper we include in Section 3 below has to do with "Packet Switching in a Slotted Satellite Channel," by L. Kleinrock and S. S. Lam (AFIPS Conference Proceedings, 1973 National Computer Conference and Exposition, June 4-8, 1973, New York, $\mathrm{N} \because ., \mathrm{pp}$. 703-710). In this paper the basic behavior of throughput and delay were studied for some multiaccess schemes for satellite communjcations in a packet switching network. These schemes permit a number of earth stations to simultaneously access the capacity of a shared satellite channel, thereby extending the multiplexing principles of packet switching to satellites. Two related papers presented by others at the NCC session on satellites were "Dynamic Allocation of Satellite Capacity through Packet Reservation," by L. G. Roberts, and "Packet Switching with Satellites," by N. Abranson.

A second paper included below and entitled "The Flow Deviation Method: An Approach to Store-and-Forward Communication Network Design," by L. Fratta, M. Gerla, and L. Kleinrock (Networks, 3:97-133, 1973), summarizes some of the major concepts of the flow deviation method for computer network design; this reethod was discussed in the previcus Semiannual Technical Report (December 31, 1972), but the current paper delves into the fcundations more deeply. The flow deviation method leads to an efficient design procedure for networks. This paper is included as Section 4.

The fifth section contains the paper "On Non-Blocking Switching Networks," by D. G. Cantor (Networks, $1: 367-377,1972$). The problem discussed
is that: of finding switching networks which are guararteed to be nonblocking in that any idle input terminal may always be connected to any idle output terminal. This is a basic problem in circuit switching and is the starting point for some of our studies comparing circuit switching to message switching.

2. LIST OF PUBLICATIONS

1. Baskett, F., and R. R. Muntz, "Networks of Queues," Proc. Seventh Annual Princeton Conference on Information Sciences and Systems, Princeton University, March 22-23, 1973.
2. Cantor, D. G., "On Non-Blocking Switcl.ing Networks," Networks, 1:367-377, 1972.
3. Cerf, V. G., "The Current Flow-Control Scheme for IMPSYS," ARPA Network Request for Comments \#442, January 1973.
4. Crocker, D. C., "TELNET Extended Options List Option," ARPA Network Information Center Catalog "16239, May 1973.
5. Crocker, D. C. "TELNET Status Option," ARPA Network Information Center Catalog \#16237, May 1973.
6. Fratta, L., M. Gerla, and L. Kleinrock, "The Flow Deviation Method: An Approach to Store-and-Forward Communication Network jesign," Networks, 3:97-133, 1973.
7. Iseli, J., and D. C. Crocker, "Responding to User Needs," ARPA Network Request for Comments \#462, February 1973.
8. Kleinrtck, L., "Computer Networks," in Computer Science, A. F. Cárdenas, L. Presser, and M. A. Marin (eds.), Wiley Interscience, New York, 1972, pp. 241-284.
9. Kleinrock, L., "Survey of Analytical Methods in Queueing Networks," in Computer Networks, R. Rustin (ed.), Courant Inst:.tute Computer Science Symposium III, Prentice-Hall, Englewood Cliffs, N.J., 1972.
10. Kleinrock, L., "A Selected Menu of Analytical Results for TimeShared Computer Systems," Proc. of Computer Science Seminar conducted by IBM Germany in September 1970, in Systemprogramierung, Oldenbourg-Verlag, Munich, Germany, 1972.
11. Kleinrock, L., "Computer Network Design Principles Derived from Experience and Measuremerts on the ARPA Network," Summary in Proc. of the International Telenetering Conference, Oct. 11, 1972, Los Angeles, Calif., p. 440.
12. Kleinrock, L., and S. S, Lam, "Analytic Results with the Addition of One Large User," ARPANET Satellite System Note No. 27, UCLA ARPA Network Measurement Center, Computer Science Dept., Oct. 30, 1972.
13. Kleinrock, L., and F. Tobagi, "Routing in Packet Radio Systems Controlled Flooding Using Hanover Numbers," Packet Radio Temporary Note No. 11, UCLA ARPA Network Measurement Center, Computcr Science Dept., Jan. 15, 1973.
14. Kleinrock, L., and F. Toba̧i, "Throughput in Carrier-Sense (Autoslot) Packet Radio Systems," Packet Radio Temporary Note No. 24, UCLA ARPA Network Measurement Center, Computer Science Dept., Feb. 12, 1973.
15. Kleinrock, L., and F. Tobagi, "Carrier-Sense with Initial Random Transmission Delay." Packet Radio Temporary Note No. 37, UCLA ARPA Network Measurement Center, Computer Science Dept., Mar., 1973.
16. Kleinrock, L., and F. Tobagi, "Effect of Acknowledgment Traffic on Channel Throughput in Packet Radio Systems," Packet Radio Temporary Note No. 57, UCLA ARPA Network Measurement Center, Computer Science Dept., May 1973.
17. Kleinrock, L., and S. S. Lam, "Packet-Switching in a Slotted Satellite Channel, AFIPS Conference Proc., 1973 National Computer Conference and Exposition, June 4-8, 1973, New York, N.Y. pp. 703-710.
18. Kleinrock, L., and J. Hsu, "A Continuum of Computer ProcessorSharing Queueing Models," Proc. of the Seventh International Teletraffic Congress, June 13-20, 1973, Stockholm, Sweden, pp. 341/1-3e1/6.
19. Kleinrock, L., and F. Tobagi, "Simulation of Various Channel Access Schemes," Packet Radio Temporary Note No. 67, UCLA ARPA Network Measurement Center, Computer Science Dept., June 29, 1973.
20. Kleinrock, L., and S. S. Lam, "Packet-Switching in a Slotted Satellite Channel," ARPANET Satellite System Note No. 39, UCLA ARPA Network Measurement Center, Computer Science Dept., July 1973.
21. Kleinrock, L., and F. Tobagi, "Throughput-Delay Tradeoffs for Reservation Access Modes in Packet-Radio Systems," Packet Radio Temporary Note No. 68, UCLA ARPA Network Measurement Center, Computer Science Dept., July 2, 1973.
22. Kleinrock, L., "Challenging Problems in the Design of ComputerCommunication Networks," Proc. of the XX International Meeting of The Institute of Management Sciences (TIMS XX), June 23-July 8, 1973, Tel Aviv, Isragl.
23. Kleinrock, L., and S. S. Lam, "Dynamics of the ALOHA Channel," AF:PA Satellite System Note No. 50, UCLA ARPA Network Measurement Center, Computer Science Dept., Aug. 22, 1973.
24. Kline, C. S., "NCP Survey," ARPA Network Request for Comments \#460, February 1973.
25. Muntz, R. R., and J. Wong," Efficient Computational Procedures for Closed Queueing Networks with the Product Form Solution," Modeling and Measurement Note \#17, Computer Science Dept., UCLA, June 1973.
26. Neigus, N. J., and J. B. Postel, "Socket Number List," ARPA Network Request for Coments \#503, Afril 1973.
27. Postel, J. B., "Lost Message Detection, ARPA Network Request for Comments 1516, May 1973.
28. PACKET-SWITCHING IN A S:OTTED SATELLITE CHANNEL by Leonard Kleinrock and Simon S. Lam

Packet-switching in a slotted satellite channel*

by LEONARD KLEINROCK and SIMON S. LAM
Unieveraty of Califormia
Lom Aneden, Catifornia

INTRODUCTION

Imagine that two uners require the use of a communieation channel. The elassical approach to satisfying this requirement is to provide a channel for their uee molong as tiat need continues (and to eharge them for the full eost of iais channel). It has long been ricognized that such sillocation of scarce communication ressurces is extremely wasteful as witnessed by their low utilization (ree for example the measurements of Jacker. I \& Stubbs). ${ }^{\text {R Rather than provide chan- }}$ nols on a user-pair basis, :ie much prefer to provide a single high-speed channel to a large number of users which can be shared in some fashion; this then allows us to take advantage of the powerful "large number lawn" which state that with vury high probability, the demand at any instant will be approximately equal to the sum of the average demands of that population. In this way the required channel eapacity to support the user traffie may be considerably less than in the unshared case of dedieated shannels. This approach nas been used to great efficet for many years now in a number of different eontexts: for example, the use of graded chennels in the tell phone industry,' the introduction of asynelironous time division multiplexing,' and the packet-switehing coneepts introduced by Baran et al., ${ }^{4}$ Davies,' and finally implemented in the ARPA net work.' The eseential observation is that the full-time alloration of a fraction of the chantel to each user is highly inefficient compared to the part-time use of t'.e full capacity of the channd (this is precisely the notion of timesharing). We gain this efficient sharing when the traffic consists of rapid, hut short burets of data. The clawieal sehemose of synehronous time division multiplexing and frequency division multiplexing are examples of the inefficient partitioning of channels.
As soon as we introduce the notion of a shared channel in a packet-switching mode then we must be prepared to resolve confliets which arime when mofe that on- diemand is simultanrously placed upon the channel. There are two obvious solutions to this problem: the first is to "throw out" or "lese" any demands which are made while the channel is in use; and the second is to form a queue of conflieting demands and serve them in some order as the channel beeomes free. The

[^0]latter approach is that taken in the APPA network sinee storage may be provided ceoncmieally at the point of condiet. The former approach is taken in the ALOHA system? which uses packet-switching with radio channels; in this system, in fact, all simultaneous demands made on the channel are lost.

Of interest to this paper is the consideration of satellite channels for paeket-switching. The definition of a packet is merely a package of data which has been prepared by a user for transmission to some other user in the system. The satellite is characterized as a high capacity channel with a fixed propagation delay which is large compared to the packet transmission time (sec the next section). The (stationary) satellite acts as a pure transponder repeating whstever it reefives and ber ming this transmission back down to earth; this broadeasted transmission can be heard by every user of the system and in particular a user can listen to his own transmission on its worj oinck down. Since the satellite is merely transponding, then whenever a portion of one user's transmission reaches the satellite while another user's transmission is being transponded, the two eollide and "destroy" each other. The problem we are then faced with is how to control the allocation of time at the satellite in a fashion which produers an acecptable level of performanee.
The ideal situation would be for the users to agree collectively when each could transmit. The difficulty is that the means for communication available to these frographicaliy distributed users is the satellite channel itseli and we are faced with attempting to control a channel which must carry ite own control information. There ane esecatially threc approaches to the solution of this problem. The first has come to be known as a pure "ALOHA" system" in which users transmit any time they desire. If, after one propagation dolay, they hear their successful transmission then they assume that no conflict occurred at the satellite; otherwise they know a collision vecurred and they must retranami. I tusen tetransmit immediately upon hearing a conflict, then they are likely to confliet again, and so some seheme must be devised for introducing a random retransmission delay to spread these conflicting packets over time.

The second method for using the satellite ehannel is to "slot" time into segments shose duration is exactly equal to the transmission tine of a single packet iwe assurne constant length packets). If we now require all packets to begin their transmission only at the beginning of a slot, then we

- Djoy a gain in cfficiency nince colliaionn arr now rowtricted to a single stot duration; surh a sebeme in reforroll to an a "slontted A1OHA" sysicm und in the principal nubject of this paper. Wr consuilar iwo modele: the first in that of a large propulation of uners, esch of which makes a nmall demand on the cluannel; the wecond model consints of this background of uspres with the addition of onc large umer acting in a apecial way to provide an incroased utilization of the channel. We roncren ourwerves with ritransmission strateries, delays, and throughput. Alramson' also considers slotted systems and is concernid mainly with the ultimate capacity wi these channels with varioun user mixes. Our results and his neve a common merting point at some limite which will be described below.

The third method for using theme channels is to attempt io schedule their use in some direct fashion; this introdures the notion of a reareation system in which time slot.d are reserved for spreific usprs' transmisaions and the manner in which these rewryations are made is discussed in the paper by Roberts.' He gives an analysis for the delay and th. oughput, comparing the periormance of slotted and reservation syatems.

Thus wr are faced with a finiterapacity communicstion channel subject to unpredictable and conflicting demands. When these demands collide, we "loee" mome of the effective capseity of the channel and in this paper we characterize the effect of that conflict. Note that it is prosible w use the channel up to its full rated capacity when only a single user is domanding sorvice, this is true since a user will lever confict with himself (he has the capability to schedule his own usn). This cffret is important in studying the non-uniform traffic case an we show below.

SlotTED ALOHA CHANNEL MODELS

Model 1. Traffic from muny small users

In this model we assume:
(A1) an infinite numin.: :f users* who collectively furm an itrdepordent sures.

This ssurce genorates M packete per slot from the distribution $r_{1}=\operatorname{Prob}[M=i]$ with ε mean of S_{0} packets/slot.

We assume that esch packet is of constant length requiring T secends for transmission; in the numerical studies premented below we assume that the capacity of the channel is 50 kilobits persecond and that the packets are each 1125 bits in lergth yidelding $T=22.5$ maec. Note that $S_{0}{ }^{\prime}=S_{0} / T$ is the average number of packets arriving per second from the source. Let d be the maximum roundtrip propagation delay which we assume rach ueer experiences and let $R=d / T$ be the number of slosts which can fit into one roundtrip propagation time; for our numerical results we assume $d=270$ msec. and so $R=12$ slots. R slots aiter a transmiskion, a user will

[^1]either herre that it wan wuecrevelul or know that i: was distroyed. In the latter case if he now rotramanits during the next slot interval and if all other users Inchave likn wise, then for sure they will coilide again; conasquently wr shall assume that cach u*re transmits a proviously collided packet at random during one of the next K shets, (tach such what being chen with probability $1 / K$). Thus, retransmission will take place either $k+1, k+2, \ldots$ or $R-K$ slots after the mitual transmisgion. As a risult traffic introduced to tlee ehanned from our collertion of users will now consist of acw packets and previously blockred pechets, the total sumber adding up to N packets tranamittod per slot where $\left.p=\operatorname{Proh}_{2}^{-} \mathcal{V}=i\right]$ with a mean traffic of G packets per slot. We assume that rach user in the infinite popuIntion will have at most one packet requiring transmission at any time (including any previously blocked packets). Of inerest to us is a description of the maximum throughput* rate S as a function of the channel traffic G. It is clear that S / G is merely the probability of a successful transmisaion and G / S is the average number of times a packet must be tranemitted until success; axsuming
(A2) the traffic entering the channel is an independent process

We then have,

$$
\begin{equation*}
S=\left(; p_{0}\right. \tag{1}
\end{equation*}
$$

If in addition we assume,
(A)) the channel traffic is Doisson
then $p_{0}=e^{-a}$, and so,

$$
\begin{equation*}
S=F e^{-\sigma} \tag{2}
\end{equation*}
$$

Eq. (2) was first obtained by Roberts ${ }^{11}$ who extended a simiLar result dur to Atranson ${ }^{7}$ in studyiug the rudiu ALOHA system. It represents the ultimate throughput in a Mcdel I slotted ALOHA channel without regard to the delay pachets experience; we deal extersively with the delay in the next section.

For Model I we adopt assumption A1. We shall also accrpt a loss restrictive form of assumption $\mathbf{A} 2$ (namely assumption A4 below) which, as we show, lends validity to assumption A3 which we also require in this model. Assume,
(A4) the channel traffic is independent over any K consrecutive slots

We have conducted simulation experiments which show that this is an exeellert assumption wo long as $K<R$.
Let,

$$
\begin{align*}
& P(z)=\sum_{i=0}^{\infty} p_{1} z^{2} \tag{3}\\
& V(z)=\sum_{i=0}^{\infty} z_{i} z^{2} \tag{i}
\end{align*}
$$

[^2]Using only amumptic: $\boldsymbol{\Lambda} 4$ nud the assumption that M is indepondent of $N-M$, we find [10] that $P^{\prime}(z)$ may lxe expreserd as

$$
\left[\frac{p_{1}}{K}(1-8)+P\left(1-\frac{1-8}{K}\right)\right]^{K} V(z)
$$

If, further, the souree is an independent process (i.c., assumption A1) and is Poisoon distributed then $\bar{V}(z)=e^{-s(1)-s)}$, and then we sec immediately that,

$$
\operatorname{Lim}_{z i=} P(z)=e^{-0(1-s)}
$$

This sleows that assuniption A3 follows from assumptions A1 and A4 in the limit of large K, under the reasonable condition that the source is Puisson distributed.

We have so far defined the following critical system parameters: $S_{00} S, G, K$ and R. In the ensuing analysis we shal! distinguish packete transmitting in a given slot as being rither newly generated or ones which have in the past collided with other packets. This leads to an approximation since we do not distinguigh how many times a packet has met with a collision. We have examined the validity of this appoximation by simulation, snd have found that the earrelation of traffic in different slots is negligible, except at shifts of $R+1, R+2, \ldots, R+K$; this exactly supports our appaximation since we conerm ourachers with the most refont collision. We require the following two additional definitions:
$q=$ Prob[newiy generated packet is successfully transmitted]
$4_{1}=$ Prot[previously blocked packet in surcessiflly transmitted]

Wr also introduce the "xpected paclet delisy D :
D) = average time (in slots) until a packet is sucersefully rexeived

Our prinsipal concern in this paper is to investigate the trade-nf betwern the uwrage delay D and the throughput S.

Motel II. Background traffic with one large user

In this second model, we refer to the source described abrive as the "background" source but we also assume that there is an additional single user who constitutes a second independent source and we refer to this source as the "large" usir. The lackground soures is the same as that in Model I and for the second source, we assume that the: packet arrivals to the large user transmitter are poisson and independent of other packets over $\boldsymbol{K}+\boldsymbol{K}$ consecutive slots. In order to distinguish varial) fey for these two soures, we let S_{1} and f_{1} refer to the S and (i narameters for the background souree and let S_{3} and i_{2} refor to the $\hat{5}$ and σ parameterv for the single large us.r. We point out that the identity of this large user may
clange an time progrewew lout. minist that there be ouly one such at any given ines. We introduee the new variablese

$$
\begin{align*}
& S=S_{1}+S_{3} \tag{.}\\
& i_{i}=c_{1}+i_{2} \tag{6}
\end{align*}
$$

S represents the total throughput of the system and G reprosents the traffic which the channel must support (including retrans nissions). We have assumed that the small users nnay have at most one packet outstanding for transmission in the channel; however the single large user may have many packets awaiting transmission. We assume that this large user has storage for queueing his requests and of course it is his responsibility to see that he does not attempt the simultaneous transmission of two packets. We may interrret G as the probability that the single large user is transmitting a packet in a channel slot and so we reçuire $G_{2} \leq 1 ;$ no cuch restriction is placed on G_{1} (or on G in Model I).

We now introduce a means by which the large user can control his channel ussge enabling him to absorb sorme of the slack channel capacity; this permits an increasc in the total throughput S. The set of packets awaiting tranamission by the large user compete among each other for the attention of his local transmitter sa iollowe. Eich waiting packer will he scheduled for transmission in some future slot. When a newly gencrated packet arrives, it immediately aitempts transmission in the eurfent stot and will sueceed in eapturing the transmitter unles. some cther packet has also been seheduled for this slot; in the case of such a scheduling confliet, the new packet is randomly rescheduled in one of the next L slots, each such slot being chosen equally likely with probability $1 / L$. Due to the background traffic, a large user parket may meet with a transmiscion conflict at the sutelite (which is discovered R slots after transmission) in which case, as in Model I, it invurs a random delay (uniformly distributed over K slots) plus the fixed delay of R slots. Morc than one packet may be scheduled for a future siot and we ussume that these scheduling conflicts are resolved by admitting that packet with the longest delay since its previous blocking (due) to corflict in transmission as cusfict in scheduling) and uniformly rescheduling the others over the next \dot{L} slots; ties ar broken hy ranc...m selection. We see, therefore, that n.w packets have the lowest priority in case of a scheduling cortflict; however, thay seize the channel if it is free upon their arrival. The variable L permits us a certain control of channel t.e by the large user but does not limit his throughput. We also assume $K, L<R$. Corresponding to q and q, in Model I, we introduce the success probabilities q_{1} and $q_{i t}(i=1,2)$ for new and previously blecked packets raspectively and where $i=1$ denutes the bockground source and $i=2$ denotex the single large source. Finally, we choose to distinguish between D_{1} and D_{2} which are the average aumber of slots until a packet is successfally transmitted from the background and large user sources respectively.

RESULTS OF ANALYSIS

In this section we present the results of our analysis without proof. The details of proof may be found in Reference 10 .

Model I. Traffic from many small users
Wa vish to refine Eq. (2; by accounting for the effect $-i$ the random retranamission aelay , arameter K. Our principal re ult in this rase is

$$
\begin{equation*}
S=G_{1} \frac{q_{1}}{q_{1}+\cdot 1-q} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
g=\left[e^{-a / K}+\frac{G}{K} e^{-a}\right]^{x} e^{-\theta} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
7_{1}=\left[\frac{1}{1-e^{-\theta}}\right]\left[e^{-\theta / K}-e^{-0}\right]\left[e^{-\theta / K}+\frac{G}{K} e^{-\sigma}\right]^{K-1} e^{-3} \tag{G}
\end{equation*}
$$

The considerations which led to Eq. (7) were inspired by Ruberts" in which he developed an approximation for Eq. (9) of the form

$$
\begin{equation*}
q, \cong \frac{K-1}{K} e^{-a} \tag{10}
\end{equation*}
$$

We shall see below that this is a reasonably good a ppit simation. Equations ($7-9$) form a set of non-linear simultaneous equations for S, q and q, which must be solved to obtain an explicit expression for S in terms of the system parameters G and K. In general, this cannot be accomplished. However, we note that as K approaches infinity these three equations reduce simply to

$$
\begin{equation*}
\operatorname{Lim}_{k \rightarrow \infty} \frac{S}{G}=\operatorname{Lim}_{k+\infty} q=\operatorname{Lim}_{\kappa \rightarrow+\infty} q_{q}=e^{-0} \tag{11}
\end{equation*}
$$

Thus, we ses that Eq. (2) is the correct expression for the throughput. S only when K approaches infinity which corresponds $t \in$ the case of infinite average delay; Abramson ${ }^{2}$ gives this result and numerous others all of which correspond to this limiting casc. Note that the large K case aroids
the large delay problem if T is small (very high speed channels).

The numerical solution to Eqs. (7-9) is given in Figure 1 where we plot the throughput S as a function of the channel traffic G for various values of K. We note that the maximum throughput at a given K oceurs when $G=1$. The throughput improves as K increases, finally yielding a maximum value of $S=1 / \varepsilon=.368$ for $G=1, K=$ infinity. Thus we have the unfortunate situation that the ultimate capacity of this channel supporting a large number of small users is leas than 37 percent of its theoretical maximum (of 1). We note that the efficiency rapidly approacies this limiting value (of $1 / e$) as K increases and that for $K=15$ we are almost there. The figure also shows some delay contours which we discuss below. In Figure 2, we show the variation of 4 and q, with K for various values of G. We note how rapidly these functions approach their limiting values as given in Ef (11). Also on this curve, we have shown Roberts' approximation in Eq. (10) which converges to the exact value very rapidly as K increases and also as G decreases.

Our next significant result is fcr packet delay as given by

$$
\begin{equation*}
D=R+1+\frac{1-q}{q_{1}}\left[R+1+\frac{K-1}{2}\right] \tag{12}
\end{equation*}
$$

We note from this equation that for larga K, the average delay grows linearly with K at a slope

$$
\operatorname{Lim}_{K \rightarrow \infty} \frac{\partial D}{\partial K}=\frac{1-e^{-a}}{2 e^{-c}}
$$

Using Eq. (11), w see that this slope may be expressed as $G-S / 2 S$ which is merely the ratio of that portion of transmitted traffic which meets with a conflict io twiee the throughput ot the channel; since $G-S / 2 S=36(G / S-1)$, we see that the limiting slope is eriual to $1 / 2$ times the average number of times a packet is retransmitied. Little's wellknown result ${ }^{12}$ expresses the average number (\bar{n}) of units (packets in our case) in a queueing system as the product of the avcrage arrival ratc ($S_{0}=\boldsymbol{f}$ in our case) and the average time in syster (D). If we use this along with Eqs. (7) and (12), we get

$$
\begin{equation*}
\tilde{n}=S D=G\left[R+1+\frac{K-1}{2}\right]-S\left[\frac{K-1}{2}\right] \tag{13}
\end{equation*}
$$

Figure 2 -. Uuccest probabilities as a function of retransmission delay

In Figure 1 we plot the loci of constant delay in the S, G plane. Note the way these loci bend over sharply as K increasw defiring a maximuis throughpu. $S_{\text {max }}(D)$ for any given value of D; we note the rese in throughput if we wish to limit the average delay. This effect is cerarly seen in Figure 3 which is the fundamental display of the tradeoff betwern dilay and throughput tor Model I; this figure shows the dela.--throughput contcurs for constant values of K. We alse, give the minimum envelope of these contours which defines the optimum performance curve for this system (a similar optimum curve is also shown in Figure 1). Note how sharply the delay increases near the maximum throughput $S=0.368$; it is clear that an extreme priee in delay muset be paid if one wishes to push the channe! throughput much above 0.30 and the incrumental gain in throurhput here is infinitesimal. On the other hand, as S approscius sero, D approaches $R+1$. Also shown here are the constant G contours. Thus this figure and Figure 1 are two alternate ways of displaying the relationship among the four critical system quantities S, G, K, and D.

From Figure 3 we observe the following effect. Consider any given value of S (say at $S=0.20$), and somic given value of K (say $K=2$). We note that there are two possible values of D which satisfy these conditions ($D=21.8, D=161$). How do we explain this?" It is clear that the lower value is a stabie

Figure 4-Optimum K
operating point since the system has sufficient capacity to absorb any fluctuation in the rate S_{0}. Su pose that we now siowly increase S_{5} (the source rate); sc long as we do not exceed the maximum value of the system throughput rate for this K (say, $S_{\text {max }}(K)$), then we gee that $S=S_{0}$ and the system will follow the input. Note that $S_{\text {max }}(K)$ always ocecurs at the intersection of the $G=1$ curve as noted earlier. However, if we attempt to set $S_{0}>S_{\text {maxa }}(K)$, then the system will go unstable! In fact, the throughput S will drop from $S_{\text {max }}(K)$ toward zero as the system accelerates up the constant K contour toward infinite delay! The system will remain in that unfortunate circumstance so long as $S_{0}>S$ (where now S is approaching zero). All during its demise, the rate at which new packets are being trapped by the system is $S_{0}-S$. To recover from this situation, one can set $S_{0}=0$; then the delay will procred down the K contour, round the bend at $S_{\text {max }}(K)$ and race down to $S=0$. A! this while, the backlogged packets are being flushed out of the system. The warning is clear: one must avoid the knee of the K contour. Fortunateij, the optimun performance curve does avoid the knee everywhere except when one attempts to squeeze out the last frw pereent of throughput. In Figure 4, we show the optimum values of K as a function of S. Thus, we have characterized the tradeof between throughput and delay for Model I.

Model II. Background traffic with one lar le user

In this model the throughput equation is similar to that given in Eq. (7), namely,

$$
\begin{equation*}
S_{i}=G_{i} \frac{q_{i t}}{q_{i t}+1-q_{i}} \quad i=1,2 \tag{14}
\end{equation*}
$$

the quantities $q_{i 1}$ and q_{i} are given in the appendix. Similarly the average delays for the two classes of user are given by
$D_{1}=R+1+\frac{1-q_{1}}{q_{11}}\left[R+1+\frac{K-1}{2}\right]$
$D_{2}=R+1+\frac{1-q_{2}}{q_{21}}\left[R+1+\frac{K-1}{2}\right]+\frac{L+1}{2}\left[E_{n}+\frac{1-q_{2}}{q_{21}} E_{1}\right]$

Figure 5 Throughput surface
where E_{n} and E_{1} are given in the appendix. It is easy to show that as K, L approark infinity,

$$
\begin{equation*}
\frac{\partial S}{\partial G_{1}}=-e^{-a_{1}\left(G-G_{1}\left(G_{2}-1+G_{2}\right)\right.} \tag{24}
\end{equation*}
$$

Figure (; Throukhput tradeoff

In Figure 5 we give a qualitative diagram of the 3-dimernsional contsur fur $i f$ an a function of i_{1} and i_{2}. We remind the reader that this function is shown for the limiting ense K, I. approaching infinity only. Prum our rexulte we mue that far constart ($i_{1}<1$, is incrumes linearly with (i_{2} ($i_{2}<1$). Fior
 dition, for constart $G_{2}<1_{2}, S$ has a maximum valur nt $G_{1}=1-2 i_{2} / 1-i_{2}$. Furthermore, for constant $i_{2}>1 / 2, S d$. crisas as G_{1} incruses and therefore the maximum throughput S must occur ai $S=G_{2}$ in the $G_{i}=0$ plane.

The optimum curve given in Eq. (22) is shown in the S_{1}, S_{2} plane in Figure 6 aiong with the performance loci at constint G_{1}. We nnte in these last two figures that a ciannel throu ghput squal to 1 is achievable whenever the background traffic drope to zero thereby enabling $S=S_{2}=G_{2}=1$; this corresponds to the case of a single user utilixing the satellite channel at its maximum throughput of 1. Abramson [8] dis-

Figure 7-Delay-thmughput Iradeoff at $S_{1}=\mathbf{C . 1}$
cusses a varicty of curves such as those in Figure 6; he cansiders the gencralization where there may be an arbitrary number of barkgroand and large users.

In the next three fighats, we zive numerical results for the finite K case; in all of these computations, we ronsider only the simplified situation in which $K=L$ theroby climinating one parameter. In Figure 7 we show the tradeof between delay and throughput similar to ligure 3. (Note that ligure it is similar to Figure 1.) Here we show the optimum purformunere of the average delay $D=S_{1} D_{1}+S_{2} D_{2} / S$ along with the Iehavior of D at constant values of K and $S_{1}=0.1$ (note the instability oner again for overlarded conditions). Also whown are minimum purves for D_{1} and I_{2}, which are obtained by using the optionum K as a function of S. If we are willing to redure the harkground throughput from its maximum at $S_{1}=0.36 \mathrm{x}$, then we ran Irive the total throughput up ta approximately $S=0.52$ by introducing additiona! trathe from the large user. Note that the ninimum D_{1} curve is murlt higher than the mi:simum D_{2} curve. Thus our net gain in
channel throughput is also at the expense of longer packet delaya for the enall users. Once agair, we see the sharp rise near saturation.
In Figure 8, we display a family of oytimum D curves for various rhoices of S_{1} as a funetion of the total throughput S. We almos show the behavior of Model I as given in Figure 8 . Note ay we reduen the lackground traffic, the syatem capacity increases slowly; huwever, when S_{1} falls below 0.1, we lwgin to piek up significant gains for S_{1}. Also observe that cach of the constant rurves "peels off" from the Model I curve at a value of $S=S_{1}$. At $S_{1}=0$, we have only the large: user operating with ne collisions and at this point, the optimal valuc of L is 1 . This reduces to the classical queucing system with Poisson input and constant service time (denoted $M / D / 1)$ and represents the absolute optimum performanco contour for any method of using the satellite channel when the input is Poiseon; for other input distributions we may use the $G / D / 1$ queuring results to calculate this abi slute optimum performance contour.
In Figure 9, we finaliy show the throughput tradeoffs betwirw the bsekground and large users. The upper curve shows the abeolutc maximum S at each value of S_{i}; this is a clear display of 'xe significant gain in S_{2} which we can achieve if we are willing to reduce the background throughput. The middle eurve (also shown in Figure 6 and in Refercnce 8) shows the absolute maximum value for S_{2} at each value of S_{1}. The lowest curve shows the net gain in system capscity as S_{1} is reduced from its maximum possible value of $1 / e$.

CONCLUSIONS

In this paper we have analyzed the performance of a sloted satellite system for packet-switching. In our first model, we have disolaycd the trade-off between average delay and average throughput and have shown that in the case of traffic consisting of a large number of small users, the limiting

Figam R Optimum delay-Ihroughpul Iradeeffs

Figure 9-Throughput countours
throughput of the channel ($1 / e$) can be approached fairly closely without an excessive delay. This performance can br achicved at relatively small values of K which is the random retransmission delay parameter. However, if one attempts to approach this limiting eapacity, not only does one encounter large delays, but one also flirts with the havards of unstable behavior.

In the case of a single large user mixed with the background traffic, we have shown that it ir possible to increase the throughput rather significantly. Thee qualitative behavior for this multidimensional trade-off was shown and the numerical caleulations for a given set of parsmeters were also displayed. The optimum mix of channel traffie was given in Eq. (22) and is commented on at length in Abramson's paper.' We lave been able to show in this paper the relationship between delay and througb sut which is an essential trade-off in these slotted pack.،.-switching systems.
In Roberts' paper' he discusses an effective way to reserve slots in a satcilite system so as to predict and prevent confliets. It is worthwhile noting that another scheme is currently being investigated for packet-switching systems in which the propagation delay is small compared to the slot time, that is, $R=d / T \lll 1$. In such systems it may be advantageous for a user to "listen before transmit ting" in order to determine if the channel is in use by some other user; such syatems are referred to as "carrier sense" systems and seem to offer some inieresting possibilities regarding their control. For satellite communications this case may be found when the capacity of the channel is rather small (for example, with a stationary satellite, the capacity should be in ihe range of 1200 bps for the packet sizes we have discussed in this paperi. On the other hand, a .10 k'iobit channel operating in a ground radio environment with parkets on the order of 100 or 1000 bits lend themselves nicely to carrier sense tochniques.

In all of these schemes one must trade off eomplexity of implementation with suitable performance. This performance must be effective at all ranges of traffie intensity in that no unnecessary delays or loss of throughput should occur dur to
complicated operalionat procedures. Wi ferd that the slotud matellite packet-switehing methods deserilsel in this papnre and the reservaion nystems for these chanmels deseribed in the paper by Robsets do in fact meet thess: eritoria.

REFERENCES

APPENDI $\%$

Define $G_{B} \Delta$ Poisson arrival rate of packets to the tranemitter of the large user

$$
\begin{equation*}
=S_{2}\left[1+E_{\mathrm{n}}+E_{2}\left(1+E_{1}\right)\right] \tag{A.1}
\end{equation*}
$$

The variahles $q_{i}, q_{11}(i=1,2)$ in Eqs. (14-16) are then given as follows (sce Keference 10 for details of the derivations) :

$$
\begin{align*}
& q_{1}==\left(q_{0}\right)^{K}\left(q_{k}\right)^{L} e^{-s} \tag{A.2}\\
& q_{11}=\left(q_{3}\right)^{K-1} q_{10}\left(q_{s}\right)^{L_{e}-s} \tag{A.3}
\end{align*}
$$

where

$$
\begin{equation*}
q_{0}=e^{-a_{1} / K}+\frac{1}{K}\left[\left(1-e^{-a_{0}}\right)\left(e^{-a_{1}}-e^{-a_{1} / K}\right)+G_{1} e^{-\left(a_{1}+a_{0}\right)}\right] \tag{A.4}
\end{equation*}
$$

$q_{A}= \begin{cases}i\left(G_{0}+1\right) e^{-\sigma_{0}} & L=1 \\ \frac{1}{L-1}\left(L e^{-\sigma_{0} / L}-e^{-\sigma_{0}}\right) & L \geq 2\end{cases}$
$q_{10}=\frac{1}{1-e^{-\left(\sigma_{1}+\sigma_{0}\right)}}\left[e^{-\sigma_{1} / K}\left(1-\frac{1-e^{-a_{0}}}{K}\right)-e^{-\left(\sigma_{1}+a_{0}\right)}\right]$
Let us introduce the following notation for events at th. large user:
$S S=$ scheduling success (capture of the transmitter)
$S C=$ scheduling conflict (failure to capture transmitter)
$T S=$ transmission success (capture of a satcllite s!ot)
$T C=$ transmission conflict (conflict at the satellite)
$N P=$ newly gencrated packet

Then,

$$
\begin{align*}
& q_{2}=\frac{r_{n}+r_{4} E_{n}}{1+E_{n}} \tag{A.7}\\
& q_{11}=\frac{r_{1}+r_{t} E_{1}}{1+E_{1}} \tag{A.8}
\end{align*}
$$

where

$$
\begin{align*}
& E_{n} \triangle \text { average number of } S C \text { events before } \tag{A.9}\\
& \text { an } S S \text { event conditioning on } N P=\frac{1-a_{n}}{a_{1}} \tag{A.10}\\
& E_{1} \Delta \text { average number of } S C \text { events before } \\
& \text { an } S S \text { event conditioning on } T C \quad=\frac{1-a_{1}}{a_{4}}
\end{align*}
$$

The variables $a_{i}, r_{i}(i=n, t, s)$ are defined and given below:

$$
\begin{align*}
& a_{n} \triangle \operatorname{Prob}[S S / N P]=\left(\frac{q_{8}}{q}\right)^{\kappa}\left(q_{n}\right) 2\left(\frac{1-e^{-S_{1}}}{S_{2}}\right) \tag{A.11}\\
& r_{n} \triangle \operatorname{Prob}[T S / S S, N P]=q^{K_{e}} \boldsymbol{g}_{1} \tag{A.12}\\
& a_{1} \triangle \operatorname{Prob}[S S / T C]=\frac{1}{K} \frac{1-\left(q_{n} / q\right)^{K}}{1-q_{0} / q} \tag{A.13}\\
& r_{1} \triangle \operatorname{Prob}[T S / S S, T C]=q^{K-1} q_{2 e^{-}} e^{-s_{1}} \tag{A.14}\\
& \text { a. } \Delta \operatorname{Prob}[S S / S C]=\left(\frac{q_{r}}{G}\right)^{K} \frac{q_{c e}}{L} \frac{1-\left(g_{b}\right)^{L}}{1-q_{k}} \\
& \text { T. } \triangle \text { Prob }[T S / S S, S C]=q^{K_{e}-S_{1}} \tag{A.16}
\end{align*}
$$

where

$$
\begin{align*}
& q=e^{-\sigma_{1} / \kappa}+\frac{G_{1}}{K} e^{-\left(\sigma_{1}+\sigma_{3}\right)} \tag{A.17}\\
& q_{20}=\frac{e^{-\sigma_{1} / K}-e^{-\sigma_{1}}}{1-e^{-\sigma_{1}}} \tag{A.18}\\
& q_{10}=\frac{1}{G_{0}-1+e^{-G_{4}}}\left(\frac{L}{L-1}\right)^{2}\left[G_{0}\left(1-\frac{1}{L}\right) e^{-\sigma_{8} / L}-e^{-G_{2} / 4}+e^{-G_{6}}\right] \tag{A.19}
\end{align*}
$$

4. THE FLOW DEVIATION METHOD: AN APPROACH TO STORE-AND-FORWARD COMMUNICATION NETWORK DESIGN by L. Fratta, M. Gerla, and L. Kleinrock

The Flow Deviation Metrod: An Approach to Store-and-Forward Communication Network Design

C. Fracta
instituto al Elettrotecnia ed Elatironica
Politecnico di Milano, Italy
M. Gerla
Network Analysis Corporation
Glen Cove, New Yoik
L. Kleinroct
University of California
Los Angeles, California

Abstract

Two problems relevant to the design of a store-and-forward comminication network (the message routing problem and the channel capacity assignment problem) are formulated and are recognized to be essentially non-linear, unconstrained malticommodity (m.c.) flow problems. A "Flow Deviation" (FD) method for the solution of these non-linear, unconstrained m.c. flow problems is described which is quite similar to the gradient method for functions of continuous variablea; here the concept of gradient is replaced by the concept of "shortest route" flow. As in the gradient method, the application of successive flow deviations leads to local minima. Finally, two interesting applications of the FD method to the design of the ARPA Computer Network are discussed.

\section*{1. INTRODUCTION}

In this paper we consider a procedure (the "flow deviation" method) for assigning flow within store-and-forward communication networks so as to minimize cost and/or delay for a given topology and for given external flow requirements. We jegin by defining the basic model below and follow that with some examples. We then discuss various approaches to the problem and then introduce and describe the "flow deviation" method. This method is evaluated under some further restrictions and is ther applied to various problem formulations for the ARF'A network [6], [7].

Suppose we have a collection of nodes $N_{i},(i=1, \ldots, n)$, and are required to route a quantity $r_{i j}$ of type (i, j) commodity from N_{i} to N_{j} through a given network (Firiare i).

Networks, 3: 97-133
(c) 1973 by John Wiley \& Sons, Inc.

Fig. 1 Example of routing of the (i,j) comodity.
The muiticommodity (m.c.) flow problem consists of finding the routes for all such comodities, which minimize (or maximize) a well-defined performance function (e.g., cost or delay), such that a set of constraints (e.g., channel capacity constraints) are satisfied.

The most general muiticommodity problem can be expressed formally in the following way: An $n \times n$ matrix $R=\left[r_{i j}\right]$, called the requirement matrix, whose entries are non-negative

Minimize: over Φ (or maximize)* $P(\Phi)$ where Φ is the flow configuration and P is a well-defined performance funct. on

Furthermore, Φ must satisfy the following constraints:
Constraints:

1. ? must be a muiticommodity flow satisfying requirement
R. For his, the following conditions must be verified:

Conservation of the flcw at nodes, commodity by commodity:

$$
\sum_{k=1}^{n} f_{k \ell}^{(i j)}-\sum_{m=1}^{n} f_{\ell i n}^{(i j)}=\left\{\begin{array}{cl}
-r_{i j} & \text { if } \ell=i \tag{1.1}\\
+r_{i j} & \text { if } \ell=j \\
0 & \text { otherwise }
\end{array}\right] \nleftarrow i_{\ell j}
$$

[^3]Non-negativity of flow in directed arcs:

$$
\begin{equation*}
f_{k l}^{(i j)} \geq 0 \quad \forall i, j, k, l \tag{1.2}
\end{equation*}
$$

where $f_{k \ell}^{(i j)}$ is the portion of commodity (i, j) flowing on arc (k, ℓ).
2. must satisfy some additional constraints,* different from problen to problem (e.g., capacity constraints on each channel and/or cost constraints).

Let us define the (i, j) commodity flow $\underset{\sim}{(i j)}$ as:

$$
{\underset{\underline{f}}{ }}_{(i j)} \triangleq\left(f_{1}^{(i j)}, f_{2}^{(i j)}, \ldots, f_{b}^{(i j)}\right)
$$

where $f_{m}^{(i j)}$ is the portion of (i, j; comodity flowing in arc m : and define the global flow $\underset{\sim}{f}$ as:

$$
\underset{\sim}{f}=\sum_{i=1}^{n} \sum_{j=1}^{n}{\underset{f}{ }}^{(i j)}
$$

In the sequel, we restrici, our analysis to m.c. problems in which the performance depends solely on the global flow:

$$
\begin{equation*}
P(\phi) \equiv P(\underset{\sim}{f}) \tag{1.3}
\end{equation*}
$$

However, most of the arguments and techniques presented in the paper can be extended to the general case of $P(\Phi)$ explicitly depending upon various types of commodities.

So far, we represented the flow configuration ϕ in terms of $\underset{\sim}{(i j)}, \forall i, j$.

An equivalent representation is obtained by providing for each commodity (i, j) a set of routes $\pi_{i j}^{k}, k=1, \ldots, k_{i j}$, from node i to node j, associated with some weights $\alpha_{i j}^{k}\left(\alpha_{i j}^{k}>0\right.$, $K_{i j}$ $\sum_{k=1}^{i j} \alpha_{i j}^{k}=1$): by this we mean that commodity (i, j) is transferred from i to j along $K_{i j}$ routes, and route $\pi_{i j}^{k}$ carries an amount $\alpha_{i j}^{k} \cdot r_{i j}$ of commodity (i, j).

[^4]As a third representation, we can consider the global flow f. It can very tasily be seen that f does not completely characterize Φ : for isatance, two different sets of routes might yield the same f. However, from Equation (i.3), it tuans out that such a representation is sufficient for many consicierations, and is certainly more compact than the previous two. In the following we use whichever of these representations is most convenient.

It can be seen that the set of m.c. flows satisfying constraints (1.1) and (1.2) is convex. In particular, if we let $F \triangleq\{f \mid f$ is an m.c. flow satisfying constraints (1.1) and (1.2)\}, we have that F is a convex polyhedron. The global flows corresponding to the "corners" (extreme poi:cts) of F have an interesting property: they are shortest ruute* flows [9].

2. MULTICOMPODITY PROBLEMS IN THE DESIGN OF S/F NETWORKS

Let us now consider a store-and-forward (S / F) commuication network [1]. In such a network, messages traveling from N_{i} to N_{j} are "stored" in queue at any intermediate node N_{k}, while awaiting transmission, and are sent "forward" to N_{ℓ}, the next node in the route from N_{i} to N_{j}, when channel (k, l) permits. Thus, at each node there are different queues, one for each output channel. The message flow requ ints between nodes arise at random times and the messages are $-f$ random lengths; therefore the flows in the channels and the queue lengths in the nodes are random variables. Under appropriate assumptions, ${ }^{+}$an analysis of the system can be carried out [1]; in particular, it is possible to relate the average delay T sutfered by a message traveling from source to destination (the average is over time and over all pairs of nodes) to the average flows in the channels.

The result of the analysis is:

$$
\begin{equation*}
T=\sum_{i=1}^{b} \frac{\lambda_{i}}{\gamma} \gamma_{i} \tag{2.1}
\end{equation*}
$$

*A shortest route flow is an m.c. flow whose routes can be decribed by a shortest route matrix, computed for an arbitrary assigrment of lengths to the arcs.
${ }^{\dagger}$ Assumptions: Doissnn arrivals at nodes, exponential distribution of message length, independence of arrival processes at different nodes, independence assumption of service times at successive nodes [1].
where
$T=$ total ave ye delay per message [sec/messg]
$\mathrm{b}=$ number of :cs in the retwork
$\lambda_{i}=$ message raie on channel i [messg/sec]
$\gamma=\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i j}=\begin{aligned} & \text { total nessage arrival rate from } \\ & \text { external sources [messg/sec] }\end{aligned}$
$T_{i}=$ average delay suffered by a message walting for channel i [sec/messg]
T_{i} is the sum of two components:

$$
\mathbf{T}_{\mathbf{i}}=\mathrm{T}_{\mathbf{i}}+\mathrm{T}_{\mathbf{i}}^{\prime \prime}
$$

where
$T_{i}^{\prime}=\frac{1}{\mu C_{i}-\lambda_{i}}=$ transmission and queueing delay
$T_{i}^{\prime \prime}=p_{i}=$ propagation delay
and
$C_{i}=$ capacity of channel $i[b i t s / s e c]$
$1 / \mu=$ average message length [bits/messg]
We can rewrite Equacion (2.1) as follows:

$$
\begin{equation*}
T=\frac{1}{\gamma} \sum_{1}^{b}\left\{\frac{\lambda_{i} / \mu}{C_{i}-\lambda_{i} / \mu}+\left(\lambda_{i} / \mu\right) \mu p_{i}\right\} \tag{2,?}
\end{equation*}
$$

Letting $\lambda_{i} / \mu=f_{i}$, Equation (2.2) becomes:

$$
\begin{equation*}
T=\frac{1}{\gamma} \sum_{l}^{b}\left\{\frac{f_{i}}{C_{i}-f_{i}}+f_{i} p_{i}^{\prime}\right\} \tag{2.3}
\end{equation*}
$$

where
$f_{i}=$ average bit rate on channel $i[b i t s / s e c]$
$p_{i}^{\prime}=\mu p_{i}$
The average delay T is the most comon performance measure for S / F networks, and the multicommodity problem consists of finding that routing, or flow pattern F, which minimizes T.

We may now pose two problems:
Problem A: "Routing assignment"
Given: Topology, channel capacities and a requirement matrix R

Minimize:
over $\underset{\sim}{f}$
$T(f)=\frac{1}{r} \sum_{i=1}^{b}\left(\frac{1}{c_{i}-f_{i}}+p_{i}^{\prime}\right) f_{i}$
(i)
(ii) $\tilde{\mathbf{f}}_{i} \equiv C_{i}, i=1, \ldots, b$

The problem is in the stansard multicomadicy form* and the $u d d i t i o n a i$ constraints are capacity constraints. Let F_{A} be the set of feasible flows for Problem A: $F_{A}=F \cap\{\underset{\sim}{f} \underset{\sim}{f} \leq \underline{c}\}$. Clearly F_{A} is a convex set (intersection of convex sets).

A second interesting problem in S, F networks is formulated below. Assume that we !ave a given network topology in which the channel capacities have to be assigned. A cost is associated with the values of the capacities, and the total cost of the network is given. In addition, the flow routes must be determined. The problem statement is:
Problem B^{\prime} : "Routing and capacities assignment, general cost-capacity function"
Given: Topology, requirement matrix R, number of dollars available D

Minimize:
over $\underset{\sim}{c}, f$

Constraints:
(i)
fis an m.c. flow $f_{i} \leq C_{i}, i=1, \ldots, b$
(iii)

where

$$
\begin{aligned}
& \underset{\sim}{C}=\left(C_{1}, C_{2}, \ldots, C_{b}\right) \\
& d_{i}\left(C_{i}\right)=\underset{\text { function for arc } i}{\text { arbitrary cost-capacity }}
\end{aligned}
$$

The minimization can be carried out first on \mathbf{C}. keeping $\underset{\sim}{f}$ fixed, and then on f.

The possibility of formulating the routing problem as a multicomodity flow problem was already recognized by Frank and Chou in [24]. An interesting linear programing approach is nresented there.

If the cost-capacity functions are linear (i.e., $\left.d_{i}\left(C_{i}\right)=d_{i} C_{i}\right)$, then the minimization over $\underset{\sim}{C}$ can easily be performed by the method of Lagrange multipliers and wis get the following optimu capacities as fanctions of the flows [1]:

$$
\begin{equation*}
c_{i}=f_{i}+\frac{D_{e}}{d_{i}} \frac{\sqrt{f_{i} d_{i}}}{\sum_{j=?}^{b} \sqrt{f_{j} d_{j}}} \tag{2.4}
\end{equation*}
$$

where

$$
D_{e}=D-\sum_{i=1}^{b} f_{i} d_{i}
$$

 have:

$$
\begin{equation*}
T(\underset{\sim}{C}, \underset{\sim}{f})=T(\underset{\sim}{f})=\frac{\left(\sum_{i=1}^{b} \sqrt{f_{i} d_{i}}\right)^{2}}{\gamma D_{e}}+\frac{1}{\gamma} \sum_{i=1}^{b} f_{i} p_{i}^{\prime} \tag{2.5}
\end{equation*}
$$

Since

$$
D \geq \sum_{i=1}^{b} d_{i} c_{i}
$$

for (iii)
and

$$
\sum_{i=1}^{b} d_{i} c_{i} \geq \sum_{i=1}^{b} d_{i} f_{i} \quad \text { for }(i i)
$$

then

$$
D \geq \sum_{i=1}^{b} d_{i} f_{i}
$$

and

$$
\begin{equation*}
D_{e}=D-\sum_{i=1}^{b} s_{i} f_{i} \geq 0 \tag{iv}
\end{equation*}
$$

It i easy to see from Equation (2,4) that (iv) implies also (ii) and (iii); hence both (ii) and (iii) can be replaced by (iv).

By introducing Equation (2.5) into Problenim' and using result (iv), we obtain:

Problem 3: "Routing and capacities assignment, linear.

 cost-capacity function"
Again the problem is reduced to an optimal flow problen of the standard milticomodity form. The additional constraint is now a cost constraint. Let F_{B} be the set of feasible flows for Problem B:

$$
F_{B}=F \cap\left\{\underset{\sim}{f} \mid D-\sum_{i=1}^{b} d_{i} f_{i} \geq 0\right\}
$$

Clearly F_{B} is convex.
The inspection of Problems A and B motivates the following important obsexvation:

Observation:

In both Problems F. and B, the performance $T(f)$ goes to ∞ whenever f approaches the boundaries defined by the additional constraints (i.e., when any channel becomes saturated in A, or when the excess dollars D_{e} reduce to zero in B).

Using mathematical programing terminology, the performance $T(f)$ incorporat s the additional constraints as penalifu functions. From a practical point of view, such a property is very important: it guarantees the feasibility of the solution (with respert to the additional constraints) during the application of usual nonlinear minimization techniques, provided a feasible starting flow is found.

The property is quite general for S / F networks: when the additional constraints are satisfied with equality, usually some saturation occurs, the queues at nodes grow large and the delay T increases rapióly.

As a consequence of the above observation, if we assume that a feasible starting solution can be found,* we can disregard

[^5]the additional constraints and approach Problems A and B as unconstrained n.c. flow probiems. Problems A and B will be investigated further in lates sections.
3. the fo method as an approach to the solution of non-linear m.c. flow problems

In order to place the Flow Deviation (FD) method in the proper perspective in relation to the existing methods, it is convenient to classify the various a.c. flow problems into categories; for each categcry, the solution techniques available in the literature are reviewed and the contribution of the FD method is discussed.

a) Unconstrained M.C. Flow Problems

a.1) Linear performance. The linear min cost flow problem with no constraints on capacity has the well known shortest route solution (where the arc length is equivalent to the linear cost of the arc) [9,12]. Very efficient techniques are available for the evaluation of all shortest routes on a graph and for the routing of the commodities along such routes [9,16]; therefore it appears convenient to reduce complicated flow problems (i.e., non-linear, or constrained) to the linear, unconstrained form, which can be solved efficiently.
a. 8) lion-linear performance. The most natural thing to do is to linearize the problem. Problems which are separable* and convex can be linearized by approximating the convex functions with piecewise linear functions and by introducing one supplementary variable and one constraint equation for each linearized segment [11,15,24]. This method has two serious drawbacks: first, i.t can be applied only to separable and convex problems; secondly, the number of variables and constraints becomes prohibitively large for large networks.

Another method, which applies to differentiable problers, consists of approximating the performance function with the tangent hyperplane, which is expressed in terms of the partial derivatives $\left\{\partial \mathrm{P} / \partial \mathrm{f}_{\mathrm{i}}\right\}$. The min cost solution of the linearized problem is the shortast route flow, where the length of arc i is defined as $\partial P / \partial f_{i}$. As it will be shown later, such shortest route flow represents the direction of the steepest descent flow deviation.

$$
\begin{aligned}
& \text { A separable m.c. flow problem has the form: } \\
& \qquad P(f)=\sum_{i=1}^{b} P_{i}\left(f_{i}\right)
\end{aligned}
$$

The above idea is the essence of the FD method, which consists of repeated evaluations of steepest descent directions and of one variable minimizations along such directions; the method (describer in Section 5) is conceptually very similar to the gradient method applied to non-linear minimization problems. If the problem is differentiable, the FD method is clearly superior to the supplementary variables method mentioned before: it does not add new variables and constraints, and can be applied to nonconvex, non-separable cases.

In fact, the idea of using shortest routes (computed with partial derivatives) for the solution of non-linear problems is not new: using such techniques, Dafermos [17] solved various traffic problems, formulated as unconstrained, convex m.c. flow problems, and Yaged [18] solved a min cost capacity assignment for a communications network, which was formulated as an unconstrained, concave m.c. flow problem.

Dafermos stated the conditions for the optimality of the solution and proposed an algorithen for finding the optimal routing in the convex case; the algorithm, however, is impractical for large nets, as it requires the bookkeeping of all paths for all commodities [17]. Yaged's results, on the other hand, are very restricted: they apply only to a separable, concave problem [18].

In this paper, we attempt a more general, systematic investigation of the method; we introduce the main results in a more s.raightforward way and in a simpler formulation than in [17]. We indicate an algorithm which is applicable to nonseparable problems and which has been efficiently applied to large nets.

b) Constrained M.C. Flow Problems

b.1) Linear performance, linear constraints. The classical, and most efficient, approach is the Dantzig-Wolfe decomposition [13,14], which reduces the solution of the main problem to the repeated solution of a Master Problem and a Subproblem. The Master is a linear program containing the additional constraints, and the subproblem, which generates new columns to introduce into the Master, is an unconstroined linear min cosi flow problem.
b. i; Non-lincar performance, non-linear constraints. The general theory of non-linear problems with non-linear constraints is very hard. The special case of convex performance and concave non-negativity constraints, however, can be attacked efficiently with the Dantzig-Wolfe decomposition for convex programs [11]; the Master Problem is a linear program, and the column generating Subproblem is an unconstrained convex min cost flow problem. Here is another important area of application for the FD method.

We showed that the two design problems considered in the paper can be regarded as unconstrained m.c. flow problems; therefore, in the sequel, unless otherwise specified, we refer to unconstrained problems.

4. Staticnarity conditions

Let us assume that $P(\underset{\sim}{f})$ is continuous with its first partial derivatives. We want to establish necessary and sufficient conditions for $\underset{\sim}{f}$ to be stationary.*

The most general perturbation (which we define as flow deviation) mound $\underset{\sim}{f}$ can be obtained as a convex combination of $\underset{\sim}{f}$ with any m.c. flow v. The result of such flow deviation, ${\underset{\sim}{r}}^{\prime}$. is expressed as:

$$
{\underset{\sim}{f}}^{\prime}=(1-\lambda) \underset{\sim}{f}+\lambda \underset{\sim}{v}=\underset{\sim}{f}+\lambda(\underset{\sim}{\mathbf{f}})
$$

where

$$
\underset{\sim}{v} \in F, 0 \leq \lambda \leq 1
$$

If $\lambda \rightarrow 0$, the flow deviation is infinitesimal. For $\lambda=\delta \lambda \ll 1$, we have:

$$
\begin{equation*}
\delta P(\underset{\sim}{f}) \triangleq P(\underset{\sim}{f})-P(\underset{\sim}{f}) \doteq \delta \lambda \sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\ell_{k}=\frac{\partial P}{\partial f_{k}}
$$

From Equation (4.1) and f.om the definition of stationarity, $\underset{\sim}{f}$ is stationary if:

$$
\begin{equation*}
\sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right) \geq 0, \quad \underset{\varepsilon}{ } \varepsilon F \tag{4.2}
\end{equation*}
$$

We can also produce infinitesimal perturbations that involve only one of the commodities; frest be stationary with respect to any one of them separately. It follows that $\underset{\sim}{f}$ is stationary if, for all (i, j) commodities:

$$
\begin{equation*}
\sum_{k=1}^{b} \ell_{k}\left(v_{k}^{(i j)}-f_{k}^{(i j)}\right) \geq 0, \forall \underset{\sim}{v} \varepsilon F^{(i j)} \tag{4.3}
\end{equation*}
$$

${ }^{\text {ff }}$ is defined as stationary if, for any infinitesimal perturbation $\delta \underset{f}{f}$ (such that $\underset{\sim}{f}+\delta \underset{\sim}{f}$ is also m.c. flow) we have

$$
P(\underline{f}+\delta \underset{f}{ }) \geq P(\underline{f})
$$

A local mininnu is always stationary; the opposite, however, is not true.
where $F^{(i j)}$ is the set of the feasible (i, j) comodity flows. In fact, Equations (4.2) and (4.3) aie equivalent, as will be seen from the subsequent derivations. Condition (4.2) can be rewritten as:

$$
\begin{equation*}
\min _{v \varepsilon F} \sum_{k=1}^{b} \ell_{k} v_{k} \geq \sum_{k=1}^{b} \ell_{k} f_{k} \tag{4.4}
\end{equation*}
$$

But, $a s \underset{\sim}{f} \in F$, Equation (4.4) becomes:

$$
\begin{equation*}
\min _{\underline{v} \mathcal{F}} \sum_{k=1}^{l} \ell_{k} v_{k}=\sum_{k=1}^{b} \ell_{k} f_{k} \tag{4.5}
\end{equation*}
$$

Similarly, Equation (4.3) becomes:

$$
\begin{equation*}
\min _{\mathbf{y}^{(i j)}}^{\operatorname{mif}} \sum_{k=1}^{\text {(ij) }} \ell_{k} v_{k}^{(i j)}=\sum_{k=1}^{b} \ell_{k} f_{k}^{(i j)} \tag{4.6}
\end{equation*}
$$

Condition (4.5)* is easy to check: the right hand side can be directly evaluated, and the left hand side requires the computation of the shortest route flow under the metric $\left\{\ell_{k}\right\}$.

If we represent the m.c. flow as a collection of weighted routes (see Section 1), Equation (4.6) becomes:

$$
\begin{equation*}
\min _{\pi^{\prime}} \sum_{k \in \pi} \ell_{k} x_{i j}=\sum_{m=1}^{N P} \sum_{k \in \pi_{m}} \ell_{k}\left(\alpha_{m} r_{i j}\right) \tag{4.7}
\end{equation*}
$$

where
ir is any (i, j) route
π_{m}, $m=1, \ldots, N P$, are the ($\left.i, j\right)$ routes used by commodity (i, j)
$\alpha_{m}, m=1, \ldots, N$, are the associated weights
NP is the total number of routes used by comodity (i, j)
Let $\ell(\pi) \triangleq \sum_{k \varepsilon \pi} \ell_{k}$; Equation (4.7) becomes:

$$
\begin{equation*}
\min _{\pi^{\prime}} \ell\left(\pi^{\prime}\right)=\sum_{m=1}^{N P} a_{m} \ell\left(\pi_{m}\right) \tag{4.8}
\end{equation*}
$$

*A different derivation of Equation (4.5) is given in [19].

Recalling that $\alpha_{m}>0, \forall m$, and $\sum_{m=1}^{N P} \alpha_{m}=1$, we obtain, for all commodities (i,j):

$$
\begin{equation*}
\ell\left(\pi_{1}\right)=\ell\left(\pi_{2}\right)=\ldots \ell\left(\pi_{N P}\right) \leq \ell\left(\pi^{\prime}\right) \tag{4.9}
\end{equation*}
$$

where π^{\prime} is any (i, j) route.
Condition (4.9) is stated also in [17]: a sımilar equilibrium condition was mentioned by Wardrop [20]. In fact, the condition is very intuitive: it states that all non-zero weight routes must have the same marginal "gain," whereas the zeroweight routes must be less (or, at most, equally) convenient than the weighted ones. For an immediate interpretation of Equation (4.9), suppose there are two paths, π_{p} and π_{q}, both with non-zero weight, which do not satisfy Equation (4.9), i.e., $\ell\left(\pi_{p}\right)>\ell\left(\pi_{q}\right)$, say. An infinitesimal deviation of commodity (i, j) from π_{p} to π_{q} produces a variation $\delta P<0$; therefore, the initial flow configuration was not stationary.

Notice that test (4.5) is computationally more convenient than test (4.9), as (4.5) only requires the knowledge of the global flow, while (4.9) requires the knowledge of all the paths [19].

The question remains, whether the stationary point is a local (or global) minimum. If $P(\underset{\sim}{f})$ is strictly convex, the stationary point, if it exists, is unique and is a global min. If $P(f)$ is not convex, further considerations are required.

5. DESCRIPTION OF THE FD METHOD

The results of the previous section indicate that, if $\underset{f}{f}$ not a stationary flow, then the shortest route flow (evaluated under the metric $\ell_{k}=\partial P / \partial f_{k}$) represents the flow deviation of steepest desrease for P. This fact suggests a method, which we call F^{1}, ω Deviation method, for the determination of stationary solutions of unconstrained, non-linear, differentiable flow probleins $P(f)$.

The $F D$ can be regarded as an operator (denoted by $F D(\underset{\sim}{v}, \lambda)$ ©) 'hich maps an m.c. flow $\underset{\sim}{f}$ into another m.c. flow $\underset{\sim}{f}$ and is defined as follows:

$$
\begin{equation*}
F D(\underline{v}, \lambda) \bigcirc \underset{\underline{f}}{\underline{\Delta}}(1-\lambda) \underset{\sim}{f}+\lambda \underline{v}=\underline{f}^{\prime} \tag{5.1}
\end{equation*}
$$

where

Clearly $F D$ is a map of F onto itself:

$$
F D(\underline{v}, \lambda): \quad F \rightarrow F
$$

Now, for each $\underset{f}{f} F$, we want to determine a pair (v, λ) in such a way that the repeated application of $\mathrm{FD}(\underline{v}, \lambda)$ (starting from any flow ${\underset{\sim}{f}}^{0}$), produces a sequence $\left\{f^{n}\right\}$ which converges to a stationary flow. If we can define such a $\operatorname{FD}(\underset{\sim}{v}, \lambda)$, then we have an algorithm for the determination of stationary flows.

It can be shown [21] that, for a function $P(\underset{\sim}{f})$ which is continous, nondegenerate* and lcwer buunded, the following conditions ${ }^{\dagger}$ are sufficient for the convergence of an FD•mapping to a stationary flow:

$$
\begin{aligned}
& \text { (i) } \Delta P(\underset{\sim}{f}) \geq 0 \Rightarrow \underset{\sim}{f}) \geq 0 \Rightarrow \underset{\sim}{f} \text { stationary } \\
& \text { (ii) } \Delta P(\underset{\sim}{f})
\end{aligned}
$$

where

$$
\Delta P(\underline{f})=P(\underset{\sim}{f})-P(F D O \underset{\sim}{f})
$$

Conditions (i) and (ii) require that the $F D$ method be a true steepest descent method.

Again in [21] it was shown that under reasonable assumptions ${ }^{5}$ on $P(\underline{f})$, the following definition of $F D(\underline{v}, \lambda)$ satisfies conditions (i) and (ii):

$$
\begin{align*}
& \underline{\mathbf{v}} \triangleq \text { shortest route flow under metric } \ell_{k} \pi \\
& \lambda \triangleq \text { minimizer of } P[(1-\lambda) \underset{\sim}{f}+\lambda \underline{v}], 0 \leq \lambda \leq 1 \tag{5.2}
\end{align*}
$$

$\overline{{ }^{P}(f)}$ is defined to be nondegenerate if, for any two distinct stationary flows, say ${\underset{\sim}{f}}^{1}$ and ${\underset{\sim}{f}}^{2}$, we have:

$$
P\left(f_{\sim}^{1}\right) \neq P\left({\underset{\sim}{f}}^{2}\right)
$$

tSimilar, but more restrictive conditions were stated by Dafermos in [17].
§The assumptions are: $P(f)$ continuous and lower bourded; first partial derivatives continuous and nonnegative; second partial derivatives $<+\infty ; P(f)$ nondegenerate. The nonnegativity of the first partial derivatives is a reasonable assumption, as, in general, the perfomance that we want to minimize is an increasing function of the flow in each arc.
${ }^{I}$ Notice that, by assumption, $\ell_{k}=\partial P / \partial f_{k} \geq 0$; this fact excludes the presence of negative cycles, which would nave caused the failure of the shortest route computation (and therefore of the FD algorithmi.

Another valid definition of FD is the following.
Let:
$\pi_{i j}^{p} \triangleq$ shortes (i, j) path (under metric ℓ_{k})
$\pi_{i j}^{q} \triangleq$ longest (i, j) path, with $\alpha_{i j}^{q}>0$
Define (i, j) - deviation as the deviation of commodity (i, j) from $\pi_{i j}^{q}$ to $\pi_{i j}^{p}$, which minimizes $P(f)$. Define the $F D$ operator as the composition of all (i, j) deviations: such a definition satisfies (i) and (ii).*

A general algorithm, based on the first definition of the FD operator, is outlined as follows:

1. Find a feasible starting flow ${\underset{\sim}{f}}^{\mathbf{0}}$
2. Let $n=0$
3. ${\underset{\sim}{f}}^{\mathbf{n + 1}}=\operatorname{FD}\left(\underline{\underline{v}}^{\mathbf{n}}, \lambda^{\mathrm{n}}\right) \odot{\underset{\sim}{n}}^{\mathbf{n}}$
4. If $\left\{P\left({\underset{\sim}{f}}^{n}\right)-P\left({\underset{\sim}{f}}^{n+1}\right)\right\}<\varepsilon$, (or if $\left.\sum_{k=1}^{b} \ell_{k}\left(f_{k}^{n}-v_{k}^{n}\right)<\varepsilon^{\prime}\right){ }^{\dagger}$, where ε and ε^{\prime} are acceptable positive tolerances, stop. Otherwise, let $n=n+1$ and go to 3 .

The algorithm converges to stationary points; however, the only stationary points of stable equilibrium are the local minima, so we can assume that the algorithm converges to local minima.

In the case of $P(f)$ strictly convex, the algorithm converges to the global min (see Appendix I for a proof of convergence and an upper bound on the error).

For $P(f)$ non-convex, one should explore all local minima, in order to find the global minimum. However, a systematic search is impossible, for large-size networks, so heuristic approaches (like the repeated application of the FD algorithm to various initial flow configurations) have to be devised. In the case of $P(f)$ concave (or quasi-concave [23j), the local minima correspond to extreme points of F, i.e., to shortest route flows [23]: this property, as shown later, greatly simplifies the FD algorithm and speeds up its convergence.

In the following sections, the FD method is applied to the solution of Problems A and B.
*Such an FD operator is essentially the "equilibration operator" defined by Dafermos [17].
${ }^{\dagger}$ Such a tect is obtained directiy from the stationarity condition (3.5).

6. Thie routing assignient

Let us consider Problem A in Section 2. The performance $T(f)$ (see Equatior. (2.3)) is strictly convex (separable sum of strictly convex fun -ions), and the feasible set F_{A} is a convex polyhedron. Therefore, if the problem is feasible, there is a unique stationary point, which is the global minimum. The additional constraints are included in $T(f)$ as penalties; therefore, if we can find a feasible starting flow $£^{0} \in F_{A}$, Problem A can be regarded as an unconstrained m.c. flow problem and solved with the FD method.

Let us check if $\mathrm{T}(\mathrm{f})$ satisfies the conditions fer the convergence (see Section 5). The first and second partial derivatives are:

$$
\begin{gather*}
\frac{\partial T}{\partial f_{i}}=\frac{1}{r}\left[\frac{c_{i}}{\left(c_{i}-f_{i}\right)^{2}}+p_{i}^{\prime}\right] \tag{6.1}\\
\frac{\partial^{2}{ }_{i}}{\partial f_{i} \partial f_{j}}=\left\{\begin{array}{l}
0 \text { for } i \neq j \\
\frac{1}{\frac{1}{2}} \frac{2 c_{i}}{\left(c_{i}-f_{i}\right)^{3}} \quad \text { for } i=j
\end{array}\right. \tag{6.2}
\end{gather*}
$$

From Equation (2.3), the optimal solution \mathfrak{f}^{*}, if it exists (i.e., if the problem is feasible), satisfies the capacity constraints as strict inequalities ($\left.f_{i}^{*}<c_{i} \forall i\right)$. Therefore, we can find an e > 0 s.t.:

$$
\begin{equation*}
\underline{f}^{*} \varepsilon F_{A}^{\prime} \triangleq F^{\prime} \cap\left\{\underline{f} \mid f_{i} \leq C_{i}-\varepsilon\right\} \tag{6.3}
\end{equation*}
$$

The application of the FD method can be restricted to $F_{A}^{\prime} \subset F_{A}$; for $£ \varepsilon F_{A^{\prime}}^{\prime}$, the sufficient conditions on the first two derivatives of $P(\underset{\sim}{f})$ (as from Section 5) are satisfied; therefore the FD algorithm converges to the global minimum.

In order to find a flow ${\underset{\sim}{f}}^{0} \varepsilon F_{A}$, several methods are available. One of them was described in [19]. Another method (applied below) consists of picking any $£ \in F$, and then reducing the flows in all arcs by a scaling factor RE, until a feasible flow ${\underset{\sim}{f}}^{0}=R E \cdot \underset{\sim}{f} \varepsilon F_{A}$ is obtained; ${\underset{f}{f}}^{0}$ satisfies a reduced requirement matrix $R_{0}=R E \cdot R$. The FD method is applied using f^{0} as
starting flow and R_{0} as starting requirement; after each $F D$ iteration, the value of $R E$ is increased up to a level very close to saturation. The search for a feasible fiow terminates when one of the two following cases occurs: either $R E \geq 1$, and a feasible flow is found; or the network is saturated, $T(\underset{\sim}{f})$ is minimized and $R E<1$. In the latter case the problem is infeasible and we are finished.

The FD algorithm for the solution of the routing problem consists of two phases, Phase 1 and Phase 2. In Phase 1 a feasible flow f_{\sim}^{0} is found (if it exists), or the problem is declared infeasible. In Phase 2 the optimal routing is obtained. The algorithm is outlined as follows:
Phase 1:
0. With $R E_{0}=1$, let ${\underset{\sim}{f}}^{0}$ be the shortest route flow computed at $\underset{\sim}{f}=0$, i.e. with metric $\ell_{k} \triangleq\left[\partial T / \partial f_{k}\right]_{f_{k}=0}=1 / \gamma\left(1 / C_{k}+p_{k}^{\prime}\right) . *$
Let $n=0$.

1. Let $\sigma_{n}=\max _{k}\left(\frac{f_{k}^{n}}{C_{k}}\right)$.

If $\sigma_{n} / R E_{n}<1$, let ${\underset{\sim}{f}}^{0}={\underset{\sim}{f}}^{n} / R E_{n}$ and go to Phase 2. Otherwise, let $R E_{n+1}=R E_{n}\left(1-\varepsilon\left(1-\sigma_{n}\right)\right) / \sigma_{n}$, where E is a proper tolerance, $0<\varepsilon<1$. Let ${\underset{\sim}{g}}^{n+1}={\underset{\sim}{f}}^{n}\left(R E_{n+1} / R E_{n}\right) \cdot t$ Go to 2 .
2. Let ${\underset{\sim}{f}}^{\mathrm{n}+1}=\mathrm{FD} \circ \mathrm{g}^{\mathrm{n+1}}$ where FD is defined as in Equation (5.2).
3. If $n=0$, go to 5 .

The shortest route $\pi_{i, j}$ is therefore the route for which $\sum_{k \in \pi_{i j}}\left(p_{k}^{\prime}+1 / c_{k}\right)$ is minimun. Notice that $1 / C_{k}$ is the transmission delay per bit on channel k and p_{k}^{\prime} is the propagation delay. No queueing delay is considered as the trafjic is zero $\left(f_{k}=0\right)$. So, as we expect, for $f_{k}+0$, the shor'test route
$\pi_{i j}$ minimizes the sum of transmission + propagation delay.
$+g^{n+1}$ is a feasible m.c. flow with requirement $R E_{n+1}$.
4. If $\left|\sum_{k=1}^{b} \ell_{k}\left(v_{k}-g_{k}^{n+1}\right)\right|<\theta$ and $\left|R E_{n+1}-R E_{n}\right|<\delta$. where θ and δ are proper posi"ive tolerances, and \underline{v} is the shortest rouise flow computed at g^{n+1}. stop: the problem is infearible within tolerances θ and δ. Otherwise, go to 5. 5. Let $n=n+1$ and go to 1 .

Fhase 2:
0. Let $n=0$.

1. $\underline{f}^{n+1}=F D O \underline{f}^{n}$
2. If $\left|\sum \ell_{k}\left(v_{k}-f_{k}^{n}\right)\right|<\theta$, where θ is a proper positive tol-
 Otherwise, let $n=n+1$ and go to 1 .

The algorithm, in the form iescribed above, provides only the optimum global flow f. If complete information about the routes take.، by each commodity is required, a simple updating of routing tables at each FD iteration allows one to recover it at the end of the algerithm (see [19]).

7. NON-BIFURこATED ROUTING FOR LARGE AND BALANCED NETS

An m.c. flow is defined to be non-bifurcated if each commodity flows along one route only. Soma applications require a non-bifurcated routing assignment; in some other applications the non-bifurcated solution is a very good approximation to the optimum bifurcated one, and is obtained with considerable saving in the amount of computation (see below). The above reasons motivate an investigation of the non-rifurcated routing assignment.

The introduction of the "non-bifurcation" constraint reduces the set o^{*} feasible m.c. flows to a discrete set: the number of elements in the set is equal to the number of all possible combinations of $\pi_{i j}$ paths, $\forall i, j$. Continuous techniques, like the FD method, cannot in general be used; discrete techniques, on the other hand, are very involved and computationally prohibitive already for networks of medium size (or the order of ten nodes). It is of interest to devise, therefore, efficient sub-optimum techniques. We will show that, in the important case of "large and balanced networks," a modification of the FD method can be successfully appiied.

A network is said to be large if it has a large number of nodes, it is said to be balanced in the elements $r_{i j}$ of the requirement matrix R are not highly diversified one from the other. For a more precise definition of "balanced," let r:

$$
r \stackrel{\Delta}{\approx} \frac{1}{(n-1) n} \sum_{i j} r_{i j}
$$

be the average requirement per pair of nodes and let m:

$$
m \triangleq \max _{(i j)}\left[r_{i j} / r\right]
$$

be the ratio between the max and the average requirement. * Notice that $m \geq 1$ and that $m=1$ corresponds to a uniform requirement matrix. A network is said to be balanced if m is close to 1.

We now combine these ideas into the notion of "large and balanced net." Let:

$$
\begin{equation*}
n \triangleq \frac{K m}{(n-1) p^{-1}} \tag{7.1}
\end{equation*}
$$

where: $k \triangleq \mathrm{~b} / \mathrm{n}$, the average arc to node density of the graph. $\vec{p}^{\prime} \triangleq\left(\sum_{i j} r_{i j} p_{i j}^{\prime}\right) / \sum_{i j} r_{i j}$, where $p_{i j}^{\prime}$ is the length of the shortest ($1, j$) pach (length of a path \triangleq number of arcs in the path); $\overline{\mathrm{p}}$ ' is therefore the average path length, when all commodities axe routed along the shortest paths.
A network is defined Zargo and balanced if $n \ll 1$. In order to motivate such a definition, let us consider, for an arbitrary m.c. flow $\underset{\sim}{f}$, the ratio of the total flow f_{k} in arc k, versus the contribution $f_{k}^{(i j)}$ given by any commodity (i, j). Let us evaluato the average of this ratio, taken over all arcs:

$$
\begin{equation*}
\text { average }\left(\frac{f_{k}}{f_{k}^{(i j)}}\right) \triangleq \frac{1}{b} \sum_{k=1}^{b}\left(\frac{f_{k}}{f_{k}^{(i j)}}\right) \geq \frac{1}{b m x} \sum_{k=1}^{b} f_{k} \tag{7.2}
\end{equation*}
$$

*Many other appropriate definitions of m are possible, for exanple $m^{\prime}=\left[\sum\left(1-\frac{r_{i j}}{r}\right)^{2}\right]^{1 / 2}$, in which case $m^{\prime}=0$ corresponds
to the uniform traffic requirement. to the uniform traffic requirement.

It was shown by Kleinrock [1] that:

$$
\sum_{k=1}^{\mathbf{L}} f_{k}=r(n-1) n \cdot \bar{p}
$$

where: $\bar{p} \triangleq\left(\sum_{i j} r_{i j} p_{i j}\right) / \sum_{i j} r_{i j}$, and $p_{i j}$ is the number of arcs in (i, j) route, relative to the routing ass: gnmenc under consideration; $\overline{\mathrm{p}}$ is therefcre tise average path len jth.*

Equation (7.2) inecomes:
average $\left(\frac{f_{k}}{f_{k}^{(i j)}}\right) \geq \frac{(n-i) n \cdot \bar{p}}{b m} \geq \frac{(n-1) \bar{p}^{\prime \prime}}{K m}=1 / n$
From (7.3) the following property holds:
Property (7.1): In a large and baianced net, on the average, the contribution of one single commodity in any arc can be considered infinitesimal, as compared to the total flow in that arc.

In order $: 0$ show how the FD method applies to the nonbifurcated solution of large and balanced nets, let us consider a new version of flow deviation, defined as the composition of deviations involving only one commodity at a time. Suppose that the flow f is non-bifurcated; that commodity (i,j) flows on $\pi_{i j}$; and that $\pi_{i j}$ is the shortest (i, j) route, inder the usual metric $\left\{\ell_{k}\right\}$. The FD method $d r$.iates a proper amount $\lambda \cdot r_{i j},(0 \leq \lambda \leq 1)$, of (i, j) commoäity from $\pi_{i j}$ to $\pi_{i j}^{\prime}$, such that the performance $T(\lambda)$:

$$
\begin{equation*}
T(\lambda) \triangleq T(\underset{\sim}{£}(1-\lambda)+\underset{\sim}{v} \lambda) \tag{7.4}
\end{equation*}
$$

where: $\underset{\sim}{f}$ contairs $\pi_{i j}$

$$
\underset{\sim}{\mathrm{v}} \text { contains } \pi_{i j}^{\prime}
$$

is minimized. We can rewrite Equation (7.4) as follows:

$$
\begin{equation*}
T(\lambda)=T(0)+\lambda \sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right)+O[\lambda(\underset{\sim}{v}-\underset{\sim}{f})] \tag{7.5}
\end{equation*}
$$

[^6]Where $O($) contains the terms of order higher than 1 . Due tr Property (7.1), the terms ($v_{k}-f_{k}$) can be considered as infinitesimal, and the term $0($) is infinitesimal of order higher than 1. Therefore, as long as θ, defined as:

$$
\theta \triangleq \sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right)
$$

is sufficiently negative, the tem $O($) can be disregarded and the minimizer of $T(\lambda)$ in Equation (7.5) is at the boundary $\left(\lambda_{\min }=1\right)$; hence the $F D$ method preserves the non-bifurcated characteristic of the flow. On the other hand, if θ vanishes, the higher order terms become important and it mirht rappei، that $\lambda_{\text {min }}<1$; however, $\theta \simeq 0$ implies that $\underset{\sim}{f}$ is very close optimum (see Appendix for kounds on the error). Therefore, the FD method provides non-bif, -ated solutions which are very good approximations to the optimu, bifurcated solution, and, as a consequence, very good approximations also to the optimum nonbifurcated solution.

The non-bifurcated FD algorithm is next introduced:
Non-Bifurcated FD Algorithm
Let ${\underset{\sim}{f}}^{0}$ be a starting feasible non-bifurcated flow.*
Let $\mathrm{n}=0$.

1. Compute $\operatorname{SR}\left({\underset{\sim}{f}}^{n}\right)$, defined as the set of shortest: routes under metric $\left\{\ell_{k}\right\}$.
2. Let $q={\underset{\sim}{f}}^{n}$.

For each commodity (i, j):
2.a Let y be the flow configuration obtained from g by deviating commodity (i, j) to the shortest route $\pi_{i j}$ given by $\operatorname{SR}\left(f^{n}\right)$.
2.b If [$\underset{\sim}{x}$ feasible and $T(\underset{\sim}{v})<T(g)]$, go to 2.c. Othrerwise, go to 2.d.
2.c $g=v$
2.d $\tilde{\text { If }}$ ill commodities (i, j) have been processed, go to 3 . Otherwise, go to 2.a.
3. If $\underset{\sim}{f}={\underset{f}{ }}^{n}$, stop. The $F D$ method cannot improve the nonbifurcated solution any further. Otherwise, let ${\underset{\sim}{f}}^{n+\underline{Z}}=\underline{q}$, $n=n+1$ and go to 1 .
*Such a starting flow can be found with a Phase 1 procedure, similar to that described in Section 6.

The algoritha converges in a finite number of steps, as there are only a finite number of non-bifurcated flows, and repetitions of the same flow axe excluded by the stopping condition.

An application of the algorithm to a large and balanced net is presented in the application section.

8. THE ROUTIMG AND CAPACITIES ASSIGNMEN:

It was shown in Section 2, that F_{B}, the feasible set for Problem B, is a convex polyhedron; it was also shown that the additional constraint is included in the performance $T(\underset{\sim}{f})$ as penalty function, so that Problem B can be regarded as an unconstrained m.c. flow problem.

Let us now investigate the properties of $T(\underset{\sim}{f})$. Recall (see Equation 2.5):

$$
\begin{equation*}
T(f)=\frac{\left(\sum_{i=1}^{b} \sqrt{f_{i} d_{i}}\right)^{2}}{\gamma\left(D-\sum_{i=1}^{b} f_{i} d_{i}\right)}+\sum f_{i} p_{i}^{\prime} \tag{8.1}
\end{equation*}
$$

Kleinrock, in [1], considered this case and also dealt extensively with a simplified version of Equation (8.1)* He showed that, whenever two routes, say $\pi_{i j}^{1}$ and $\pi_{i j}^{2}$, with the same number of intermediate arcs, are available for commodity (i,j), then $T(f)$ is minimized when the entire commodity is routed on one of the two routes only. Such a result, obtained under restrictive assumptions, suggests the conjecture that the optimal flow be, in general, non-bifurcated. In fact, further research has been done [21], [22], and it can be shown that $T(\underset{\sim}{f})$ in in Equation (8.1) is quasi-concave on F_{B}, i.e., given any two feasible flows f^{1} and ${\underset{\sim}{f}}^{2}$ [23]:

$$
T\left({\underset{\sim}{f}}^{1}\right) \leq T\left({\underset{\sim}{f}}^{2}\right) \Rightarrow T\left({\underset{\sim}{f}}^{1}\right) \leq T\left[(1-\lambda){\underset{\sim}{f}}^{1}+\lambda{\underset{\sim}{f}}^{2}\right]
$$

where: $0 \leq \lambda \leq 1$.
More gene:ally, $T(f)$ can be shown to be quasi-concave for all "routing and capacities assigrment" problems with concave costcapacity functions [21]; the linear case is therefore a special case.

As a consequence of such a property, the local minima are at extreme points of F_{B}, i.e., they correspond to shortest route flows (see Section 3), which are a subclass of the class of non-bifurcated flows.

The FD method, when applied to Problem B, ran be greatly simplified: the step size λ is always equal to 1 (if we find a downill direction, we go all the way down, due to the quasiconcavity of $T(\lambda)$), anc the flow patterns generated are completely defined by just one ($n \times n$) matrix, the shortest route matrix.

A schematic description of the $\overline{\mathrm{r}}$ algorithm, as applied to Problem 7, is as follows:

0 . Suppose* $\underline{f}^{0} \varepsilon F_{B} ;$ let $n=0$.

1. Let ${\underset{\sim}{f}}^{n+1}=\operatorname{FD} O{\underset{\sim}{f}}^{n}$.
2. If $\left(T\left(E^{n+1}\right) \geq T\left(f^{n}\right)\right)$, stop; ${\underset{\sim}{f}}^{n}$ local minimum. Otherwise let $n=n+\overline{1}$ and go to 1 .

The convergence of the algorithm is guaranteed by the fact that there are only a finite number of shortest route flows, ad repetitions of the same flow are not possible, as $T\left({\underset{\sim}{f}}^{n}\right)$ is strictly decreasing.

The partial derivatives, used for che shortest route computation, have the following expression:

$$
\frac{\partial T}{\partial f_{i}}=\frac{1}{\gamma}\left(\frac{\sum \sqrt{f_{j} d_{j}}}{D_{e}}\right) \sqrt{\frac{d_{i}}{f_{i}}}+\frac{1}{\gamma}\left(\frac{\sum^{\sqrt{\kappa} d_{j}}}{D_{e}}\right)^{2} d_{i}+\frac{p_{i}^{\prime}}{\gamma}
$$

Notice that $\frac{\partial T}{\partial f_{i}} \geq 0$; negative loops cannot exist. $n ? \geqslant 0$ notice that:

$$
\lim _{f_{i}} \frac{\partial T}{\partial f_{i}}=\infty
$$

which means that, whenever the flow (and therefore the capacity, from Equation (2.4)) of an arc is reduced to zero at the end of

[^7]an FD iteration, then in such an arc, the flow and capacity are zero for all subsequent iterations, as the incremental cost of restoring ihe flow ($\equiv \partial T / \partial f_{i}$) is infinity.*

Fig. 2 Block diagrain of the FD algorithm fo: Problem R.

[^8]The FD method leads to a local minimum, which depends on the choice of the feasible starting flow. In order to find several local minima, a mechanism that produces a large variety of feasible flows is required. We propose the following randomized procedure for the generation of Eeasible flows:*

1. Assign initial equivalent lengths $\left\{l_{i}^{0}\right\}$ to the arcs at random.
2. Compute the shortest route flow ${\underset{\sim}{0}}^{0}$ according to the metric

$$
\left\{e_{i}^{0}\right\}
$$

 the FD algorithm. Otherwise ${\underset{\sim}{f}}^{0}$ is rejected.
The initial random choice of the lengths guarantees a certain randomness in the starting feasible flow, thus providing a method for finding several local minima. After a convenient number of iterations, the global minimum is chosen as the minimum of the local minima. This provides a "subcptimal" solution.

A block diagram of the method is given in Figure 2.

Fig. 3 A 2i-node ARPA topology.

9. APPLICATIONS

As an application of the FD method, problems A and B are solved for the ARPA Computer Network. The ARPA Computer Network is a $5 / F$ communication néwork connecting several computer

[^9]facilities in the United States. A detailed description of the network is given in [3] - [8], [25] - [29]. Due to the fact that new computer centers are continually joining the network, its topology has been changing quite rapidiy; in these applications we refer to one of the earlier proposed topologies, with 21 nodes connected by 26 full duplex channels (see Figure 3). We also assume that the traffic requirement is uniform between all pairs of nodes.

9.1 ARPA Network: The Routing Assignment

The traffic requirement $R=\left\{r_{i j}\right\}$ is assumed uniforn:

$$
r_{i j}= \begin{cases}r=1.187 \text { [kbits./sec. }]^{*} & \text { for } i \neq j \\ 0 & \text { for } i=j\end{cases}
$$

First, we show that, for the 21 node ARPA net with uniform requirement, the "large and balanced net" condition holds. From Equation (7.1), n is given by:

$$
n=\frac{m b}{n(n-1) p^{-1}}
$$

In the present case:

$$
\begin{aligned}
& \mathrm{n}=21 \\
& \overline{\mathrm{p}}^{\prime}>1 \\
& \mathrm{~b}=52 \quad \text { (each full duplex channel represents a pair } \\
& \quad \text { of directed arcs: hence } 26 \times 2=52 \text {). } \\
& \text { Hence: } n<0.12 \ll 1
\end{aligned}
$$

The condition is satisfied. We can therefore apply both optimal and non-bifurcated FD algorithms and compare the resuits.

$$
\text { The result of the optimal } \mathrm{FD} \text { algorithm is: } T_{\min }=0.2406
$$ sec., obtained after 80 shortest route computations, with an accuracy of 10^{-4} on T. The result of the non-bifurcated FD algorithm is: $T_{\min }=0.2438 \mathrm{sec} .$, obtained after 12 shortest path computations. The algorithms were programed in Fortran and run on an IBM 360/91; the execution time was 30 sec . for

[kbits./sec.] (see Figure 4). We chose $r=0.95 r_{\text {sat }}=1.187$ in order to have a feasible, but difficult, requirement.
the cricimal algorithm and 4 sec . for the non-bifurcated one.* The error of the suboptimal non-bifurcated solution, with respect to the optimum, is less than 2 percent; the fact shows how powerful the non-bifurcated algorithm is for large and balanced nets, and suggests that a convenient modification of it could be useful for the solution of very large nets [21].

Fig. 4 Average delay T versus normalized traffic RE, using various routing scherios.

Figure 4 illustrates the application of the non-bifurcated algorithm. Recall that RE is the traffic level normalized to $r=1.187 \mathrm{kbits} . / \mathrm{sec}$. The traffic is first routed along the shortest routes computed for $\mathrm{RE}_{0}=0$; curve C_{0} plots the delay T versus RE, using such a routing scheme (which we refer to as $R S_{0}$). With $R S_{0}$, the saturation level for the traffic is $\operatorname{RESAT}_{0}=.85<\mathrm{i}_{\mathrm{i}} \mathrm{RE}=1$ is infeasible, and therefore we are still in Phase 1. Let ${\underset{\sim}{f}}^{\mathbf{l}}$ be the flow obtained by routing traffic level $R E_{1}=.95 \operatorname{RESAT}_{0} \simeq .8$, according to RS_{0}, and apply to f^{1} the FD algorithm; a new routing scheme RS ${ }_{1}$ is obtained, which improves $T\left(R E_{1}\right)$. Curve C_{1}, corresponding to $R S_{I}$, saturates at

[^10]RESAT $_{1}=1.05>1 ; R E=1$ is feasible and Phase 2 is initiated, with $R E_{2}=1$. At the end of Phase 2 , the sub-optimal, nonbifuxcated routing schene RS_{2} is found; curve C_{2} correspniding to RS_{2} practically coincides with curve C_{1}, in Figure 4 , as the scale of T is not detailed enough to show differences in values. Notice that, as expected, the routing $R S_{0}$ gives the best results at low traffic levels; in fact, $R S_{0}$ is almost optimal up to $\mathrm{RE}=0.5$.

9.2 ARPA Network: Routing and Capacities Assignment

The set of channel capacities available for the ARPA Network is discrete: Table 1 contains the list of capacity options and corresponding costs considered in the present application i6]. In order to be able to apply the FD method, the discrete cost-capacity curves have been approximated with continuous, piece-wise linear curves (see Figure 5). We do not discuss the details of the approximation, but merely mention that they must be concave.* The concavity of the cost-capacity curves implies that the local minima are shortest route flows (see Section 8). The FD method can, thercfore, be applied in a form similar to the one presented in Section 8; a few modifications are required due to the nen-linearity of the cost-capacity curves.

CHANNEL CAPACITIES AND CORRESPONDING COSTS USED IN THE OPMIMIZATION

Capacity [kbits/sec]	Termination Cost \qquad	Line Cost [\$/month/mile]
7.2	810	. 35
19.2	850	2.10
50	850	4.20
i08	2400	4.20
230.4	1300	21.00

Table 1

[^11][^12]
d': staircase corresponding to discrete capacity levels.
d": piece-wise linear approximation
Fig. 5 Cost-capacity curves for arc i.
A schematic description of the algorithm follows here:
0 . Let D_{0} be the total dollar investment.
Let ${\underset{\sim}{f}}^{0} \varepsilon F_{B}$
Let ${\underset{\sim}{C}}^{0}$ be the optimal capacities assignment for fixed $\underset{\sim}{f}{ }^{0}$.
Let $T_{0}(f)$ be as from Equation (8.1), using linear approximations of the cost-capacity curves around ${\underset{\sim}{c}}^{0}$.
Let $\mathrm{n}=0$.

1. Let:
${\underset{\sim}{f}}^{n+1}=$ shortest rout? flow computed at ${\underset{\sim}{f}}^{n}$ (using metric $\left.\ell_{k}=\left\{\partial T_{n}(\underset{\sim}{f}) / \partial f_{k}\right]_{\underset{\sim}{f}=\underline{f}}\right)$.
2. Let ${\underset{\sim}{c}}^{n+1}$ be the optimal capacities assignment for fixed ${\underset{\sim}{f}}^{n+1}$, and let $T_{n+1}(\underset{\sim}{f})$ be as from Equation (8.1), using linear approximations of the cost-capacity curves around $\stackrel{c}{n+1}^{n}$.
3. If $\left(T_{n+1}\left({\underset{\sim}{f}}^{n+1}\right) \geq T_{n}\left({\underset{\sim}{f}}^{n}\right)\right)$, stop; ${\underset{\sim}{f}}^{n}$ is a local minimum. Otherwise, let $n=n+1$ and go to 1.
[^13]The result of the above described algorichm is a local minimum for the continujus cost-capacity problem. In order to get a solution for the discrete problem, the capacities and flows given by the algorithm are "adjusted" in the following manner: in all arcs, the capacity is increased to the upper value of discrete capacity available (thus increasing the total investment to $D>D_{0}$); then, the routing is optimized once again with the FD routing algorithm.

The above described techuique is clearly suboptimal. We cannot guarantee that the solutions so found are local minima; in fact, it is not even possible to define a local minimum in a discrete problem. Other suboptimal techniques have been proposed [7,10,21]; however, the optimszation of a network with discrete capacities still remains a formidable (and basically unsolved) problem.*

Fig. 6 Delay T versus cost D of various undominated capacity assignments for different traffic levels.

[^14]The technique has been applied to the design of the ARPA Network. Four cases have been run, each with a different value of uniform requirement r (see Figure 5). The initial cost D_{0} was made equal to the cost of the proposed network with all 50 kbit channels ($D_{0} \simeq 71,000 \$ /$ month). In order to be able to compare the 50 kbit capacities assignment to the assignments found with the FD method, the minimum say T, with all 50 kbit cepacities (i.e., with total $\operatorname{cost} D=D_{0}$), was reported on the graph for each value of r (T was obtained from the curves in Figure 4). The delay T and the total cost D of the undominated* solutions are plotted in the graph of Figure 6.

10. CONCLUSION

The FD method can be applied to :ny unconstrained m.c. flow problem when some reasonable assumytions on $P(\underset{\sim}{f})$ are satisfied. It also can be applied to constrained flow problems: in particular to problems that include the constraints as penalties in $P(\underset{\sim}{f})$, or that have been decomposed with the Dartzig-Wolfe method. Local minima are in general attained; for convex problems, the global minimum is found.

The FD method seems to be an efficient tool for the design of S / F neiworks: for example, if we consider the optimal routing problem, it can be shown [19] that the amount of computation per iteration required $D Y$ the $F D$ method is comparable to that of the heuristic techniques so far proposed [16,24].t A general statement, however, about the effectiveness of the FD method as compared to other methods would not be appropriate: many factors, which depend on the specific application (like trade-off between precision and computational speed) should be considered in order to select the proper approach.

APPENDIX: CASE OF P(f) STRICTLY CONVEX

If $P(\underline{f})$ is strictly convex, a direct proof of convergence of the FD algorithm, defined in Section 5, is available and a lower bound can be established.
${ }^{7} A$ sotution $\left(T_{i}, D_{i}\right)$ is said to be dominatod by $\left(T_{j}, D_{j}\right)$ if:

$$
\left(D_{j}<D_{i}\right) \text { and }\left(T_{j}<T_{i}\right)
$$

A solution is undominated if it is not dominated by any other solution.
the two bottlenecks, common to both approaches, are the shortest route computation and the flow assignment [16].

128 FRATTA, GERLA AND KLEINROCK

Convergence

We want to show that:

$$
\begin{equation*}
\lim _{n+\infty}{\underset{\sim}{f}}^{\mathbf{n}}={\underset{\sim}{f}}^{*} \tag{A.1}
\end{equation*}
$$

where $\underset{\sim}{f}{ }^{*}$ is the global. minimum of $P(\underset{\sim}{f})$ on F, and $\left\{{\underset{\sim}{f}}^{n}\right\}$ is the sequence generated by recursive application of the FD operator on a given starting flow ${\underset{\sim}{f}}^{0}$. The associated sequence $\left\{P\left(f^{n}\right)\right\}$ is monotonically non-increasing and lower bounded by $P^{*} P\left({\underset{\sim}{f}}^{*}\right)$, therefore it must converge:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left({\underset{\sim}{f}}^{n}\right)=P^{\prime} \geq P^{*} \tag{A.2}
\end{equation*}
$$

Also, recailing that:

$$
P\left({\underset{\sim}{f}}^{n}\right)-P^{\prime}=\sum_{\ell=n}^{\infty} \Delta P\left(\underline{f}^{\ell}\right)
$$

where

$$
\Delta P\left(\underline{f}^{\ell}\right) \triangleq P\left(\underline{f}^{\ell}\right)-P\left(F D \odot{\underset{\sim}{f}}^{\ell}\right)=P\left(\underline{f}^{\ell}\right)-P\left(\underline{f}^{\ell+1}\right)
$$

and recalling that:

$$
\Delta P\left({\underset{\sim}{f}}^{\ell}\right) \geq 0 \forall \ell
$$

we have, from Equation (A.2) :

$$
\begin{equation*}
\lim \Delta P\left({\underset{\sim}{f}}^{n}\right)=0 \tag{A.3}
\end{equation*}
$$

Suppose (A.1) is false; this implies, since $P(f)$ is strictly convex, that $P^{\prime}>P^{*}$. However, in such a case; we are able to establish a relation which contradicts Equation (A.3) as follows.

Let us first establish a lower bound on $\Delta P(\underset{\sim}{f})$. Let:

$$
P(\lambda) \stackrel{\doteq}{\leftrightarrows} P[(1-\lambda) \underset{\sim}{f}+\lambda \underset{\sim}{v}], \quad 0 \leq \lambda \leq 1
$$

where: $\underset{\sim}{x}$ is the -hortest route flow computed at $\underset{\sim}{f}$. Using Taylor's expansion:

$$
\begin{equation*}
P(\lambda)=P(0)+\lambda\left[\frac{d P}{d \lambda}\right]_{\lambda=0}+\frac{1}{2} \lambda^{2}\left[\frac{d^{2} p}{d \lambda^{2}}\right]_{\lambda=\xi} \tag{A.4}
\end{equation*}
$$

where i, is a proper value in the interval $(0, \lambda)$ as usual. By assumption, the second partial derivatives of $P(f)$ are upper bounded; therefore, the second directional derivative is illso upper bounded, and Equation (A.4) becomes:

$$
\begin{equation*}
P(\lambda)-P(0) \leq \lambda \theta+\frac{1}{2} \lambda^{2} M \tag{A.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta \triangleq \sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right) \leq 0 \tag{A.5}
\end{equation*}
$$

M: upperbound on $d^{2} P / d \lambda^{2}$.*
Aiter minimizing both sides of Equation (A.5) over λ, and recalling that min $[P(\lambda)-P(0)] \triangleq-\Delta P(£)$, we get:

$$
\Delta P(\underset{\sim}{f}) \geq\left\{\begin{array}{lll}
\theta^{2} / 2 M & \text { if } & -\theta / M<1 \tag{A.6}\\
M / 2 & \text { if } & -\theta / M \geq 1
\end{array}\right.
$$

Equation (A.6) can be rewritten as follows:

$$
\begin{equation*}
\Delta P(f) \geq \frac{M}{2} \min \left\{\frac{\theta^{2}}{M^{2}}, 1\right\} \tag{A6}
\end{equation*}
$$

Inequality (A.6)' represents a useful lower bound on $\Delta \mathrm{P}(\underset{\sim}{f})$.
Consider now:

$$
\begin{aligned}
& P(\lambda) \triangleq P\left[(1-\lambda){\underset{\sim}{f}}^{\mathbf{n}}+\lambda \cdot{\underset{\sim}{f}}^{\star}\right] \\
& \text { where: } 0 \leq \lambda \leq 1
\end{aligned}
$$

$\mathrm{P}(\lambda)$ is strictly convex, therefore it lies above its tangent line at $\lambda=0$:

$$
\begin{align*}
& P(\lambda) \geq P\left(f_{\sim}^{n}\right)+\lambda\left[\sum_{k=1}^{b} \ell_{k}\left(f_{k}^{*}-f_{k}^{n}\right)\right] \tag{A.7}\\
& \text { where: } \quad \ell_{k}=\left[\frac{\partial P}{\partial f_{k}}\right]{\underset{\sim}{f}}^{n}
\end{align*}
$$

Letting $\lambda=1$ in (A.7) and recalling from (A.2) that $P\left(\tilde{x}^{n}\right) \geq P^{\prime}$:

$$
\begin{equation*}
P\left({\underset{\sim}{f}}^{*}\right)=P^{*} \geq P^{\prime}+\sum_{k=1}^{b} \ell_{k}\left(f_{k}^{*}-f_{k}^{n}\right) \tag{A.8}
\end{equation*}
$$

Notice that $M>0$ as $P(\lambda)$ is strictiy convex.

Let v be the shortest route flow computed at f^{n}; we have, from Equation (A.8):

$$
\begin{equation*}
P^{*} \geq P^{\prime}+\sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}^{n}\right) \tag{A.9}
\end{equation*}
$$

From (A.9), using definition (A.5)', we have:

$$
\begin{equation*}
p^{\prime}-p^{*} \leq|\theta| \tag{A.10}
\end{equation*}
$$

Introducing (A.10) into (A.6)' we get:

$$
\begin{equation*}
\Delta P\left({\underset{\sim}{f}}^{n}\right) \geq \frac{M}{2} \min \left\{\frac{\left(P^{\prime}-P^{*}\right)^{2}}{M^{2}}, 1\right\}>0 \tag{A.11}
\end{equation*}
$$

The r.h.s. of Equation (A.11) is independent of n and stricとly positive, therefore:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Delta P\left({\underset{\sim}{f}}^{n}\right)>0 \tag{A.12}
\end{equation*}
$$

Equation (A.12) contradicts Equation (A.3). Therefore (A.1) is true.

Lower Bound
By replacing ${\underset{\sim}{f}}^{n}$ with a generic $\underset{\sim}{f} \subseteq F$ in (A.7), and letting $\lambda=1$, we get, after a few steps:

$$
\begin{equation*}
P\left({\underset{\sim}{f}}^{\star}\right) \geq P(\underset{\sim}{f})+\sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right) \tag{A,13}
\end{equation*}
$$

where: ${\underset{\sim}{f}}^{*}$ is the globai minimum
$\underset{\sim}{v}$ is the shortest route flow computed at $\underset{\sim}{f}$
From (A.13), lower and upper bcunds on $P\left({\underset{\sim}{f}}^{*}\right)$ are readily available:

$$
P(\underset{\sim}{f}) \geq P\left({\underset{\sim}{f}}^{*}\right) \geq P(\underset{\sim}{f})+\sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right)
$$

Nutice that the test for optimality based on $\left|\sum_{k=1}^{b} \ell_{k}\left(v_{k}-f_{k}\right)\right|$ (see Section 5) is very powerful in the case of $P(f)$ strictly convex, as it provides an upper bound on the optimal value error.

ACKNOWLEDGMENT

The authors arr. pleased to acknowledge Dr. D. G. Cantor for his valuable advice and his assistance in the development of the optimal routing algorithm.

REFERENCES

1. Kleinrock, L. Communication Nets: Stochastic Message Flow and Delay, McGraw-Hill Book Co., New York, 1964.
2. Steiglitz, K., P. Weiner and D. J. Kleitman, "The Design of Minimum Cost Survivable Networks," Irans. on Circuit Theory, November 1969, pp. 455-460.
3. Roberts, L., "Multiple Computer Networks and Intercomputer Communications," ACM Symposium on Operating Systenis Principles, Gatlinburg, Tennessee, October 1967.
4. Roberts, L. and B. Wessler, "Computer Network Development to Achieve Resource Sharing," AFIPS Conference Proc., SJCC, May 1970, pp. 543-549.
5. Heart, R., R. E. Kahn, S. M. Ornstein, W. R. Crowther and D. C. Walden, "The Interface Message Processor for the ARPA Computer Network," AFIPS Conference Proc., SJCC, May 1970, pp. 551-567.
6. Kleinrock, L., "Analytic and Simulation Methods in Computer Network Design," AFIPS Conference Proc., SJCC, May 1970, pp. 569-579.
7. Frank, H., I. T. Frisch and W. Chou, "Topological Considerations in the Design of the ARPA Computer Network," AFIPS Conference Proc., SJCC, May 1970, pp. 581-587.
8. Carr, S., S. Crocker and V. Cerf, "HOST-to-HOST Communication Protocol in the ARPA Network," AFIPS Conference Proc., SJCC, May 1970, pp. 5P3-597.
9. Hu, T. C., Integer Progromming and Network Flows, AddisonWesley, 1969.
10. Meister, B., H. R. Mueller, and H. R. Rudin, Jr., "Opt.imization of a New Model for Message-Switching Networks." ICC'71, pp. 39-16 to 39-21.
11. Dantzig, G. B., Linear Programing and Extensions, Princeton University Press, Princeton, New Jersey, 1962.
12. Ford, L. K. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New Jersey, 1962.
13. Ford, L. K. and D. R. Fulkerson, "A Suggested Computation for Maximal Multicomnodity Network Flows," Management Science, Vcl. 5, i358, pp. 97-101.
14. Tomlin, J. A., "Minimum こ.st Multi-Commodity Network Flows," Operations Reevrren, Vol. 14, No. ?, Jmuary 1966, pp. 4547.
15. Charnes, A. and W. W. Cooper, "Muiticopy Traffic Network Models," Proc. of the Symposium on the Theory of Traffic Fiow, (R. kerman, ed.), 1961.
16. Network Analysis Corporation, "Research in Store and Forward Computer Networks," Fourth Semiannual Techrical Report, December 1971, (Contract No. DAHC 15-70-C-0120).
17. Dafermos, S. C. and F. T. Sparrow, "The Traffic Assignment Problem for a General Network," Journail of Research of the National Bureau of Standards - B, Vol. 73B, No. 2, April 1969.
18. Yaged, B. Jr., "Minimum Cost Routing for Static Network Models," Netrorks, Nol. 1, No. 2, 1971, pp. 139-172.
19. Cantor, D. and M. Gerla, "The Optimal Routing of Messages in a Comruter Network via Mathematical Programming," IEEE Comp. Conference, San Francisco, September 1972.
20. Wardrop, J. G. "Some Theoretical Aspects of Road Traficic Research," Proc. Inst. Civ. Eng. Part II, I, 1952, pf. 325-378.
21. Gerla, M., "The Design of Store-and-Forward Networks for Computer Conmunications," Ph.D. Dissertation, Computer Science Department, School of Engineering and Applied Science, University of California, Los Angeles, California, January 1973.
22. Fratta, L. and M. Gerla, "The Synthesis of Computer Networks: Properties of the Optimum Solution," ACM-International Computirig Symposium, Venice, Italy, April 1972.
23. Mangasarian, O., Nonlinear Progrconming, McGraw-Hill Book Co., New York, 1969.
24. Frank, H. and w. Chou, "Routing in Computer Networks," Networks, Vol. 1, No. 2, 1071 nn 99-112.
25. Ornstein, S. M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. Russell and A. Michel, "The Terminal IMP for the ARPA Computer Networi." AFIPS Conference Proc., SüCC, 1972, pp. 243-254.
26. Frank H., R. E. Kahn and L. Kleinrock, "Computer Communication Network Design -- Experience with Theory and Practice," APIPS Conference Proc., SJCC, 1972, pp. 255-270.
27. Crocker, S. D., J. Heafner, J. Metcalfe and J. Postel, "Function-Oriented Protocols for the ARPA Computer Network," AFIPS Conference Proc., SJCC, 1972, pp. 271-279.
28. Thomas, R. H. and D. A. Henderson, Jr., "McROSS -- A MultiComputer Programing System," AFIPS Conference Proc., SJCC, 1972, pp. 281-293.
29. Koberts, L. G., "Extension of Packet. Communication Technology to a Hand-Held Personal Terminal:" AI'TPS Conference Proc., SJCC, 1972, pp. 295-298.
30. Frank, H., I. T. Frisch, W. Chou and R. Van Slyke, "Optimal Design of Centralized Computer Networks," Networks, Vol. 1, No. 1, pp. 43-57.

This work was supported in part by the Advanced Research Projects Agency of the Department of Defense, Contract No. DAHC-15-69-C0285, and in part by a 1971-72 John Simon Guggenheim Fellowship owarded to L. Kleinrock.

Paper received December 2, 1971.
5. ON NON-BLOCKING SWITCHING NETWORKS
by D. G. Cantor

On Non-Blocking Switching Networks

D. G. Cmilor

Depariment of Mathematics
University of California
Los Angeles, Callfomla

ABSTRACT

A switching network may be informally described as a collection of single-pole, single-throw switches arranged so as to connect a set of termincils called inputs to another set of terminals called outputs. It is non-blocking if, given any set of connections from some of the inputs to some of the outputs, and an idle input terminal x and idle output terminal y, then it is possible to connect x to y without disturbing any of the existing connections. Denote by $\sigma(a, b)$ the minimal number of switches nacessory to connect a inputs to b outputs using a non-blocking network. We are interested in studying the growth of $\sigma(a, a)$ as $a \rightarrow \infty$. Resitits of C. Clos show that $\sigma(a, a) \leq$ $c a e^{2 \sqrt{\log a \cdot \log 2}}$. We show that $\sigma(a, a) \leq 8 a\left(\log _{2} \sigma\right)^{2}$.

1. INTRODUCTION

A network N consists of a graph G ; two sets of vertices of G, denoted A and B and called, respectively, the (sets of) inputs and outputs; and a set P of paths of G . Each path in P connects an input to an output and meets no other inputs or outputs. We write $N=(G, A, B, P)$. A state of N is a subset S of P such that no two paths in S have a common vertex. A state S defines a bijection f_{S} from a subset of A to a subset of B as
follows: Suppose $p \in S$ and p connects $x \in A$ to $y \varepsilon B$; put $f_{S}(x)=y$, and repeat this for each path in S. We shall say that a path p of G is $u d m i s s i b l e$ if $\mathrm{p} \varepsilon \mathrm{P}$. If x is a vertex of Q we shall say that x is buby (in the state S) if x lies on a path $p \in S$; otherwise we shall say that x is idle (in the state S). If x is an input of G and y is an output of G, we shall

Networks, 1: 367-377
(c) 1972 by John Wiley \& Sons, Inc.
say that x has access to y (in the state s) if there exists a path $p \in P$ connecting x to and such that $S U\{p\}$ is a state.
A network $N=(G, A, R, P$. may be interpreted as a switching device; under this interpretation, the elements of A are considered as input terminals, the elements of B are considered as output terminals, and the edges of G are considered as singlepole, single-throw switches which are normally open. Then a path p, which connects $x \in A$ to $y \varepsilon B$ may be thought of as a sequence of switches which, when closed, connect x to y . The state S yields a collection of switches (all edges on any path in S) which, when closed, connect inputs to outputs in the manner described by the function f_{S}.

The network $N=(G, A, B, P)$ is said to be non-blocking if given any state S of N and ide vertices $x \varepsilon A, y \in B$, then x has access to y in the state S. In terms of the switching network interpretation mentioned akove, this means that if x and y are idle input and output terminals, respectively, then it is possible to establish a connection between them without disturbing the existing connections.

From now on, all the networks we study will have disjoint inputs and outputs (i.e. $A \cap B=\varnothing$).

Given positive integers a and b we are interested in finding those nen-blocking networks $N=(G, A, B, P)$ with $|A|=a$, $|B|=b$ for which the number of edges of G is minimal. We shall denote this number by $\sigma(\mathrm{a}, \mathrm{b})$. In terms of switching networks, this amount to finding non-blocking networks using a minimal number of switches. An obvious non-blocking network with a inputs and b outputs is the network whose graph is the complete bipartite graph on vertex sets A and B with $|A|=a$ and $|B|=b$. In this graph the set of vertices is $A U B$ and there is an edge connecting each vertex in A to each vertex in B. The set P consists of all paths consisting of exactly one edge. Thus P has ab elements. In the switching network interpretation, this amounts to an a by b crossbar switch. When the names of the sets A and B are unimportant, we shall denote this network by $C_{a b}$. The network $C_{a b}$ shows that $\sigma(a, b) \leq a b$.

It was Clos $[2]$ who showed that $\sigma(N, N)<N^{2}$ for all large N . His methods, which will be described later, show that $\sigma(\mathrm{N}, \mathrm{N})$

We do not attempt to obtain the smallest possible constant multiplier, for it is not clear that the exponent 2 can not be reduced. In the opposite direction, an elementary argument shows that $\sigma(\mathrm{N}, \mathrm{N})>\mathrm{CN} \log _{2} \mathrm{~N}$, and nothing stronger is known.

The author would like to acknowledge many stimulating discussions with Professors B. Gordon and C. B. Tompkins.

2. CONSTRUCTIONS

We shall say that networks $N=(G, A, B, P)$ and $N_{1}=\left(G_{1}, A_{1}\right.$, $\mathrm{B}_{1}, \mathrm{P}_{1}$) ire isomorphic (or equivalent) if there exists a graph isomorphism μ of G onto G_{1} such that $\mu(A)=A_{1}, \mu(B)=B_{1}$, and $\mu(P)=P_{1}$. It is clear that the property of being non-blocking is preserved under isomorphism.

If $N=(G, A, B, P)$ is a network, we define its transpose N^{\prime} to be the network $N^{\prime}=(G, B, A, P)$; clearly $N^{\prime \prime}=N$.

If G is a graph and C is a set, we define the graph $G \times C$ to be the graph whose vertices are the ordered pairs (x, c) with x a vertex of G and $c \varepsilon C$; $\left(\left(x_{1}, c_{1}\right),\left(x_{2}, c_{2}\right)\right)$ is an edge of $G \times C$ if $c_{1}=c_{2}$ and $\left(x_{1}, x_{2}\right)$ is an edge of G. If p is a path in G whose vertices, in order, are $x_{0}, x_{1}, \ldots, x_{n}$ then by $p \times c$ we mean the path in $G \times C$ whose vertices are (x_{0}, c), $\left(x_{1} c\right), \ldots,\left(x_{n}, c\right)$. The product $C \times G$ is defined similarly.

Now suppose $L_{i}=\left(G_{i}, A_{i}, B_{i}, P_{i}\right)(i=1$ or 2) are networks; we are going to define the network product $L_{1} \times L_{2}$. We shall denote this product by $N=(H, C, D, Q)$. Put $C=A_{1} \times A_{2}$ and $D=$ $B_{1} \times B_{2}$. The graph H is obtained from the two graphs $G_{1} \times A_{2}$ and $B_{1} \times G_{2}$ by identifying the vertices in $B_{1} \times A_{2}$, which appear in hoth graphs. All admissible paths $q \varepsilon Q$ of N are cbtained as follows: Let $p_{i} \in P_{i}$ be an admissible patin connecting $x_{i} \in A_{i}$ to $y_{i} \in B_{i}\left(i=1\right.$ or 2). Then $p_{1} \times x_{2}$ ends in the vertex (y_{1}, x_{2}) which is the first vertex of $y_{1} \times p_{2}$. The path $q=\left(p_{1}, p_{2}\right)$ is defined to be the path obtained from the paths $p_{1} \times x_{2}$ and $y_{1} \times p_{2}$ by concatenating them and identifying the common vertex $\left(Y_{1}, x_{2}\right)$. Note that this maps $P_{1} \times P_{2}$ onto Q.

In the switching network interpretation this construction amounts to taking $\left|A_{2}\right|$ copies of L_{1} and $\left|B_{1}\right|$ copies of L_{2}, and connecting the outputs of each of the copies of L_{1} to the inputs of all of the copies of L_{2} isee Figure 1).

The lines do not represent edges; they connect output vertices of L_{1} to the input vertices of L_{2} with which they are identified.

Fig. $1 \quad L_{1} \times L_{2}$
Let a_{i}, b_{i}, c, d denote, respectively, the cardinalities of A_{i}, B_{i}, C, D, and let g_{i}, h denote, respectively the number of edges of G_{i} and H. The following relationship between two by two matrices is easily verified

$$
\left(\begin{array}{ll}
a_{1} & 0 \tag{1}\\
g_{1} & b_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 0 \\
g_{2} & b_{2}
\end{array}\right)=\left(\begin{array}{ll}
c & 0 \\
h & d
\end{array}\right)
$$

If L_{1} is isomorphic to M_{1} and L_{2} is isomorphic to. M_{2} it is easy to verify that $L_{1} \times L_{2}$ is isomorphic to $M_{1} \times M_{2}$. Furthermore $\left(L_{1} \times L_{L_{2}}\right)^{\prime}=L_{2}^{\prime} \times L_{1}^{\prime}$. Finally, we have associativity: $\left(L_{1} \times L_{2}\right) \times L_{3}=L_{1} \times\left(L_{2} \times L_{3}\right)$; we :illl usually write simply $L_{1} \times L_{2} \times L_{3}$. We will abbreviate the k-fold product $L \times L \times$ $\cdots \times L$ by L^{k}.

We also define a triple product of the three networks $L_{i}=$ $\left(G_{i}, A_{i}, B_{i}, P_{i}\right)(i=1,2,3)$ when $\left|B_{1}\right|=\left|A_{3}\right|$. Let τ be a bijection from A_{3} onto B_{1}; the triple product of L_{1}, L_{2}, L_{3} depends upon the choice of τ and will be denoted by $\left[\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right]_{\tau}$. (In
many cases L_{3} will be L_{1}^{\prime} and in such cases we will choose τ to b: the identity map. In any case those properties of the trip?.e ploduct which we will use will be independent of the choice of τ and we will frequently write $\left[L_{1}, L_{2}, L_{3}\right]$ instead of $\left[L_{1}, L_{\tilde{\prime}}, L_{3^{2}} \tau^{\text {, }}\right.$) Suppose then that $N=(H, C, D, Q)$ is $\left[L_{1}, L_{2}, L_{3}\right]_{\tau}$.

We put $C=A_{1} \times A_{2}$ and $D=B_{3} \times B_{2} ; H$ is defined as the graph obtained from the three graphs $G_{1} \times A_{2}, B_{1} \times G_{2}$, and $G_{3} \times B_{2}$, by identifying $B_{1} \times A_{2}$ in $G_{1} \times A_{2}$ with $B_{1} \times A_{2}$ in $B_{1} \times G_{2}$, and by identifying $A_{3} \times B_{2}$ in $G_{3} \times B_{2}$ with $\tau\left(A_{3}\right) \times B_{2}=$ $B_{1} \times B_{2}$ in $B_{1} \times G_{2}$. The admissible paths $q \varepsilon Q$ are obtained in the followiny way: Let p_{i} be an admissible path of L_{i} connecting $x_{i} \in A_{i}$ to $y_{i} \in B_{i}(i=1,2,3)$ and suppose $\tau\left(x_{3}\right)=y_{1}$. Then $p_{1} \times x_{2}$ ends at $\left(y_{1}, x_{2}\right) ; y_{1} \times p_{2}$ begins at $\left(y_{1}, x_{2}\right)$ and ends at $\left(y_{1}, y_{2}\right)$; and $p_{3} \times y_{2}$ begins at $\left(x_{3}, y_{2}\right)=\left(y_{1}, y_{2}\right)$. The path q is obtained by concatenating $p_{1} \times x_{2}, y_{1} \times p_{2}, p_{3} \times y_{2}$ and identifying the vertices common to two segments of q.

Note that $\left[L_{1}, L_{2}, L_{3}\right]$ is, in general, diffasent from $L_{1} \times L_{2} \times L_{3}$ (see Figure 2).

The lines do not represent edges; instead they connect vertices which are to be identified.

Fig. $2\left[L_{1}, L_{2}, L_{3}\right]$

Theorem 2.1: Suppose $L_{i}=\left(G_{i}, A_{i}, B_{i}, P_{i}\right)(i=1,2,3,4,5)$ are networks. Suppose τ, is a bijection of A_{5} onto i_{1}. Then

$$
\left\{L_{1},\left[L_{2}, L_{3}, L_{4}\right\}_{\tau_{1}}, L_{5}\right\}_{\tau_{2}}=\left\{L_{1} \times I_{2}, L_{3}, L_{4} \times I_{6}\right\}_{\tau},
$$

where τ_{3} is the bijection from $A_{4} \times A_{5}$ to $B_{1} \times B_{2}$ given by $\tau\left(a_{4}, a_{5}\right)=\left(\tau a_{2}\left(a_{5}\right), \tau_{1}\left(a_{4}\right)\right)$.

3. THE CLOS METHOD AND SOME VARIATIONS

The basic method, due to Clos [2] and quoted by Bes ěs [1] may be stated as the

Theorem (Clos): Suppose $L=(G, A, B, P)$ is non-blocking and $s \geq 2 r-1$. Then $N=\left\{C_{r s}, L, C_{s r}\right\}$ is non-blocking.

This is a special case of the foilowing more general
Theorem 3.1: Suppose $L_{i}=\left(G_{i}, A_{i}, B_{i}, P_{i}\right)(i=1,2,3)$ are nonblocking, that $\left|B_{1}\right| \geq\left|A_{1}\right|+\left|B_{3}\right|-1$, and that $\left|B_{1}\right|=\left|A_{3}\right|$. Then $N_{\tau}=\left[L_{1}, L_{2}, L_{3}\right]_{\tau}$ is non-blocking for any bijection τ of A_{3} onto B_{1}.

Proof: Suppose $N_{\tau}=(H, C, D, Q)$ is in state S, and that $\times \in C$, y εD are idle. We must show there exists a path $q \varepsilon Q$ connecting x to y and having no common vertices with any path in S. Suppose $x=\left(u_{1}, u_{2}\right) \in A_{1} \times A_{2}$ and $y=\left(v_{3}, v_{2}\right) \varepsilon B_{3} \times B_{2}$. There are $\left|A_{1}\right|$ vertices of the form $\left(u, u_{2}\right) \in A_{1} \times A_{2}$ and at most $\left|A_{1}\right|-1$ of thum are busy. Hence at most $\left|A_{1}\right|-1$ of the $\left|B_{1}\right|$ vertices of the form $\left(y, u_{2}\right) \in B_{1} \times A_{2}$ are busy and hence at least $\left|B_{1}\right|-\left|A_{1}\right|+1$ of them are idle. Denote these rertices. by $\left(y_{i_{1}}, u_{2}\right),\left(y_{i_{2}}, u_{2}\right), \ldots,\left(y_{i_{r}}, u_{2}\right)$, so that $r \geq\left|B_{1}\right|-\left|A_{1}\right|+1$. Similarly, there are vertices $\left(z_{i_{1}}, v_{1}\right),\left(z_{i_{2}}, v_{2}\right), \ldots,\left(z_{i_{s}}, v_{s}\right)$ in $A_{3} \times B_{2}$ which are idle, and $s \geq\left|A_{3}\right|-\left|B_{3}\right|+1$. The $r+s$ vertices $y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{r}}, \tau\left(z_{i_{1}}\right), \tau\left(z_{i_{2}}\right), \ldots, \tau\left(z_{i_{s}}\right)$ all lie
in B_{1} and

$$
\begin{aligned}
r+s & \geq\left|B_{1}\right|-\left|A_{1}\right|+1+\left|B_{1}\right|-\left|B_{3}\right|+1 \\
& \geq\left|B_{1}\right|+1+\left(\left|B_{1}\right|-\left|A_{1}\right|-\left|B_{3}\right|+1\right) \\
& \geq\left|B_{1}\right|+1
\end{aligned}
$$

So two of them must be the same. Now the Y_{i} are all distinct and so are the $\tau\left(z_{i_{j}}\right)$. Thus there must be $a Y_{i_{j}}$ equal to a $\tau\left(z_{i_{k}}\right)$, say $Y_{i_{1}}=\tau\left(z_{j_{1}}\right)$. Since L_{1} is non-blocking there is a path p_{1} connecting u_{1} to $y_{i_{1}}$ and such that $p_{1} \times u_{2}$ has no common vertices with any vertex in S. Similarly there is a path p_{2} from u_{2} to v_{2} in P_{2} such that $Y_{i_{1}} \times p_{2}$ has no common vertices with any path in S, and there is a path p_{3} from z_{j} to v_{3} in p_{3} such that $p_{3} \times v_{2}$ has no vertex in common with any path in S. Let q be the concatenation of $p_{1} \times u_{2}, Y_{i_{1}} \times p_{2}$, and $p_{3} \times v_{2}$ with the appropriate vertices identified. Then q connects x to Y and $S U\{q\}$ is a state of N_{τ}.

Pemark 3.2: Suppose $\mathbf{a}_{i}=\left|A_{i}\right|, b_{i}=\left|\mathbf{E}_{i}\right|$ and g_{i} is the number of edges of $G_{i}(i=1,2,3)$. It is easy to verify using (1) that $N=\left[L_{1}, L_{2}, L_{3}\right]$ has $a_{1} a_{2}$ inputs, $b_{2} b_{3}$ cutputs and that its graph has $a_{2} g_{1}+b_{1} g_{2}+b_{2} g_{3}$ edges.

Clos [2] suggests using networks which may be described as

$$
\left[\mathrm{L},\left[\mathrm{~L},\left[\mathrm{~L}, \ldots,\left[\mathrm{C}, \mathrm{M}, L^{\prime}\right], L^{\prime}\right], L^{\prime}\right], \ldots, L^{\prime}\right]
$$

where $I=C_{n, 2 n-1}$ and $M=C_{n, n}$. By Theorem 2.1, this is the same as $\left[L^{t}, M,\left(L^{\prime}\right)^{t}\right]$, where $L^{t}=L \times L \times L \times \cdots \times L$ (t times). He shows that this non-blocking network, which has n^{t+1} inputs and outputs, has

$$
\frac{n^{2}(2 n-1)}{n-1}\left[(5 n-3)(2 n-1)^{t-1}-2 n^{t}\right]
$$

edges. This follows immediately from the above remark. It is
easy to verify that a non-blocking network with N inputs and outputs, constructed by this method, will require at least
$\mathrm{C}_{0} \mathrm{Ne}^{2 \sqrt{\log \mathrm{~N} \cdot \log 2}}$ edges, where $\mathrm{C}_{0}>0$ is a constant.
Suppose that $L_{a b}$ denotes a network with a inputs, b outputs, and whose graph contains a minimal number of edges, namely $\sigma(a, b)$. Using two copies of $L_{a a}$ shows that $\sigma(a, 2 a) \leq 2 \sigma(a, a)$. By Theorem 3.1, [$\left.L_{a, 2 a, ~} a, a, L_{2 a, a}\right]$ is non-blocking and by Remark 3.2, it has $\leq a \sigma(a, 2 a)+2 a \sigma(a, a)+a \sigma(2 a, a) \leq 6 a \sigma(a, a)$ edges. Thus

$$
\begin{equation*}
\sigma\left(a^{2}, a^{2}\right)<6 a \sigma(a, a) \tag{2}
\end{equation*}
$$

$\log _{2} 6$
Iteration of (2) shows that $\sigma(N, N) \leq C N(\log N) \quad$. This result can be irnproved by considering $\left[L_{a, 2 a}, L_{a, 2 b}, L_{2 a, a}\right]$; this network has $a b$ inputs, $2 a b$ outputs and its graph has $3 b(a, 2 a$) $+2 a \sigma(b, 2 b)$ edges. This shows that

$$
\begin{equation*}
\sigma(a b, 2 a b) \leq 3 b \sigma(a, 2 a)+2 a \sigma(b, 2 b) \tag{3}
\end{equation*}
$$

Putting $a=b$ and iterating (3) shows that
$\log _{2} 5$ $\sigma(a, 2 a) \leq C a\left(\log _{2} a\right)$ and since $\sigma(a, a) \leq \sigma(a, 2 a)$ we find that

$$
\sigma(N, N) \leq C N\left(\log _{2} N\right)^{\log _{2} 5}
$$

The exponent $\log _{2} 5$ can be decreased by choosing a and b differently, Let $\alpha>1$ and $\beta>2$ be the real solutions of the simultaneous equations

$$
\left\{\begin{align*}
\alpha^{\beta-1} & =3 \tag{4}\\
(\alpha-1)^{\beta-1} & =3,2
\end{align*}\right\}
$$

Numerical computation shows that $\alpha \simeq 2.37638$ and $\beta \simeq 2.26922$. Multiplying the second equation of (4) by $\alpha-1$ ind substituting from the first yiel:us $2(\alpha-1)^{\beta}=\alpha^{\beta}-3$ or equivàlently

$$
\begin{equation*}
3(1 / \alpha)^{\beta}+2(1-1 / \alpha)^{\beta}=1 . \tag{5}
\end{equation*}
$$

We now show that if $\mu(x)=(\log x)^{\beta}$, then $\mu(x)$ satisfies the
functional equation

$$
\begin{equation*}
\mu(z)=3 \mu(x)+2 \mu(y) \tag{6}
\end{equation*}
$$

where $x=z^{1 / \alpha}$ and $y=2 / x$. Indeed,

$$
\begin{aligned}
3 \mu(x)+2 \mu(y) & =3((\log z) / \alpha)^{\beta}+2(\log z)^{8}(1-1 / \alpha)^{8} \\
& =(\log z)^{8} \\
& =\mu(z)
\end{aligned}
$$

using (5).
Now $\sigma(x, 2 x) / x$ satisfies a functional inequality similar to (6) where x and y must be integers. It follows that for each $\varepsilon>0$, the exists $C_{\varepsilon}>0$ such that

$$
\sigma\left(N, 2 N i \leq C_{E} N(\log N)^{\beta+E}\right.
$$

For comparison, $\log _{2} 5=2.32193$.
4. THE EXPONENT IS ≤ 2

Suppose $L=(G, A, B, P)$ is a network (not necessarily nonblocking). We shall say that L is of type $T(m, n)$ if, given any state S of L and m idle inputs $x_{1}, x_{2}, \ldots, x_{m}$ of L, then each has access, in the state S, to at least n outputs of L.

Lenma 4.1: Suppose $L=\left(G, A, B_{2} P\right)$ is of type $T(m, m+n-1)$ for $1 \leq m \leq k$, that M is a non-blocking network with c inputs and d outputs, arme that $n d \geq a(c-1)$. Then $L \times M$ is of type $r^{\prime}\left(m, m+n^{\prime}-1\right)$ for $1 \leq m \leq k$ where $n^{\prime}=n d-a(c-1)$ and a is the number of inputs of L.

Proof: Take $k \leq m$ idle inputs $z_{1}, z_{2}, \ldots, z_{k}$. Suppose, for example, that $z_{1}, z_{2}, \ldots, z_{k}$, are of the form

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right), \cdots,\left(x_{k}, y_{1}\right),
$$

and $z_{k}{ }^{\prime}+1^{\prime} z_{k}{ }^{\prime}+2, \ldots, z_{k}$ are of the form $\left(x_{h}, y_{i}\right)$ where $i \geq 2$; here the x_{j} are inputs of L and the y_{j} are inputs of M. By hypothesis, $\left(x_{1}, y_{1}\right)$ has access to at least $n+k^{\prime}-1$ vertices of the form $\left(u_{j}, Y_{j}\right)$ where the u_{j} are outputs of L. Since M is non-blocking, these have access to all idle vertices of the
form (u_{j}, v_{k}) where v_{k} is an output of M. There are ($n+k^{\prime}-1$)d such vericices. However, as many as ($c-1$) a - ($k-k$ ') of these could be busy; this would be the case if all inputs of the forr. ($x_{h^{\prime}}, y_{i}$), where $i \geq 2$, other than $z_{k^{\prime}+1}, z_{k^{\prime}+2}, \ldots, z_{k}$ were busy. Thus z_{1} has access to at least

$$
\begin{aligned}
\left(n+k^{s}-1\right) d-(c-1) a+\left(k-k^{\prime}\right) & \geqslant n d-(c-1) a+k-1 \\
& =n^{\prime}+k-1
\end{aligned}
$$

output terminals of $L \times M$.
The following theorem provides the motivation for defining the notion $T(m, n)$.

Theorem 4.2: Suppose M is a non-blocking network and L is a network with a inputs, b outputs, and of type $T(1, n)$. If $2 n>b$, ther $\left[L, M, L^{\prime}\right]$ is non-blocking.

The proof is similar to that of Theorem 3.1 and will be omitted.

Now choose an integer $k \geq 1$ and put $L_{j}=C_{2,2 k} \times C_{2,2}^{j-1}$;
if $1 \leq j \leq k$, then L_{j} has 2^{j} inputs, $k \cdot 2^{j}$ outputs, and inductively by Lemma $4.1, L_{j}$ is of type $T\left(1,2^{j-1}(2 k-j)\right)$ and $T\left(2,2^{j-1}(2 k-j)+1\right)$. Thus L_{k} is of type $T\left(2, k 2^{k-1}+1\right)$. Let M_{k} be obtained from L_{k} by omitting one input. Then M_{k} has $2^{k}-1$ inputs $k \cdot 2^{k}$ outputs, is of type $T\left(1, k \cdot 2^{k-1}+i\right)$, and its graph has no more edges than the graph of L_{k}. The associated matrix of L_{k} is

$$
\left(\begin{array}{cc}
2 & 0 \\
4 k & 2 k
\end{array}\right)\left(\begin{array}{cc}
2 & 0, k-1 \\
4 & 2
\end{array}\right)=2^{k}\left(\begin{array}{cc}
1 & 0 \\
2 k & k
\end{array}\right)
$$

Thus M_{k} has $\leq 2^{k} \cdot 2 k^{2}$ edges and if N is any non-blocking network, . then by Theorem 4.2, so is [$\left.M_{k}, N, M_{k}^{\prime}\right]$. Thus putting, for example, $N=C_{2,2}$, we obtain a ron-blocking network with ($2^{k+1}-2$) inputs and outpuits whose graph has $\leq 2^{k+1}\left(4 k^{2}+2 k\right)$ edges. It is immediate that $\sigma(\mathrm{N}, \mathrm{N}) \leq 8 \mathrm{~N}\left(\log _{2} \mathrm{~N}\right)^{2}$ for all $\mathrm{N} \geq 2$. It is not hard to see that the constant 8 could be considerably decreased, but the major open question is the value of the exponent.

ACKNOWLETGMENT

The author would like to thank the National Science Foundation GF in 13164, the Sloan Foundation, and DoD Advanced Research Projects Agency Contract DAMC 15-69-C-0285 for support while writing this paper.

REFERENCES

1. V. E. Benès, Mathematical mheory of Connecting Networks and Teleplione Traffic, New York, Academic Press, 1965.
2. C. Clos, "A Study of Non-Blocking Switching Networks," Bell System Tech. J. 32 (1953), pp. 406-424.

Paper received May 13, 1970.

[^0]: - This research was supported by the Advanced Kesearch Projects Agency of the Depertment of Defence under Coatract No. DAHC-15-69. C. 0285

[^1]: - These will be referred to ax the "mall" unen

[^2]: - Note that $S=S_{0}$ under stahle system operation which we ascume unlens stated otherwise (see belows.

[^3]: Without loss of generality, only the minimum problem is considened in the following.

[^4]: \#If an m.c. flow problem has no additional constraints, we define it to be an unconstrained m.c. flow problem; such a definition will be motivated in one of the following sections.

[^5]: Techniques for firding feasible starting solutions are shown in the applications section.

[^6]: *Notice that \bar{p} depends on the particular routing assignment, while \bar{p} ' depends on requirement matrix and topology only; also notice that $\bar{p} \geq \bar{p}^{\prime}$.

[^7]: The problem of finding a feasible starting flow is discussed later in the section.

[^8]: FThis property suggests a method for the design of the topology: we con start from a topology which is highly connected, and eliminate arcs with the FD method, until a suboptimal configuration is obtained [21]. A similar approach is used by Yaged in [18].

[^9]: *Another procedure was proposed by Yaged [18].

[^10]: *We expect to be able to reduce considerably the computation time by optimizing the code and by improving some hard working subroutines, like the shortest route and flow assignment routines [16].

[^11]: Note: The total cost per month of a channel is given by: total cost $=$ termination cost + (line cost) \times (length in miles).

[^12]: *Other concave approximations can be considered: see [6], [18].

[^13]: *The optimal assignment of capacities, given the flows and the total dollar investment, for concave cost-capacity functions, has been discussed by :ieinrock [6].

[^14]: *The optimum solution can be obtained, with dynamic progromming techniques, in the special case of a centralized network [30]. In fact, for such a case, the problem reduces to the optimal assignment of copacities only, as the flows are already determined by the tree-structure topology.

