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COMPUTER NETWORK RESEARCH

Advanced Research Projects Agency
Semiannual Technical Report

June 30, 1973

1. INTRODUCTION

This Semiannual Technical Report covers the period from January 1
through June 30, 1973. Qur efforts have been in four major areas: advanced
packet-switching systems, ir-luding multiaccess satellite and packet radio
systems; computer communication network design; multiple resource multiple
access computer systems models; and measurements on the ARPANET itself. In
addition, we have been involved with some network protocol studies and some
controlled access and security questions. The results of that research
have been documented and are listed in Section 2 following.

In this report we have attached three of our publications which have
appeared in the professional literature; we do not include material from
other areas of activity,mentioned above,in this document, and the reader
is referred to the referenced publications themselves.

The first paper we include in Section 3 below has to do with "Packet
Switching in a Slotted Satellite Channel," by L. Kleinrock and S. S. Lam
(AFIPS Conference Proceedings, 1973 Naticnal Computer Conference and Exposi-
tion, June 4-8, 1973, New York, N V., pp. 703-710). In this paper the basic
behavior of throughput and delay were studied for some multiaccess schemes
for satellite communications in a packet switching network. These schemes
permit a number of earth stations to simultaneously access the capacity of
a shared satellite channel, thereby extending the multiplexing principles
of packet switching to satellites. Two related papers presented by others
at the NCC session on satellites were '"Dynamic Allocation of Satellite
Capacity through Packet Reservation,'" by L. G. Roberts, and '"Packet Switching
with Satellites," by N, Abramson.

A second paper included below and entitled "The Flow Deviation Method:
An Approach to Store-and-Forward Communication Network Design,' by L. Frartta,
M. Gerla, and L. Kleinrock (Networks, 3:97-133, 1973), summarizes scme of
the major concepts of the flow deviation method for computer network design;
this method was discussed in the previcus Semiannual Technical Report
(December 31, 1972), but the current paper delves into the fcundations more
deeply. The flow deviation method leads to an efficient design procedure
for networks. This paper is included as Section 4.

The fifth section contains the paper "On Non-Blocking Switching Net-
works," by D. G. Cantor {Networks, 1:367-377, 1972). The problem discussed
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is that of finding switching networks which are guaranteed to be non-
blocking,in that any idle input terminal may aiways be connected to any idle
output terminal. This i5 a basic problem in circuit switching and is the
starting point for some of our studies comparing circuit switching to message
switching.
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3. PACKET-SWITCHING IN A SLOTTED SATELLITE CHANNEL

by Leonard Kleinrock and Simon S. Lam
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Packet-switching in a slotted satellite channel®

by LEONARD KLEINROCK and SIMON S. LAM

Uriverity of California
Los Angsles, Catifornia

INTRODUCTION

Imagine that two users require the use of a communieation
channel. The classical approach to satisfying this require-
ment is to provide a channel for their use so long as ti at need
continues (and to charge them for the full cost of ‘ais chan-
nel). It has long been recognized that such rllocation of
acarce communication resources is extremely wasteful as
witnessed by their low utilization (eee for example the meas-
urements of Jacks:.1 & Stubbs).! Rather than provide chan-
nels on a user-pair basis, ".;e much prefer to provide & single
high-speed channel to a large number of users which can be
shared in some fashion; this then allows us to take advantage
of the powerful “large number laws” which state that with
very high probability, the demand at any instant will be ap-
proximately equal to the sum of the average demands of i hat
populstion. In this way the required channel eapacity to sup-
port the user traffic may be considerably less than i the
unshared case of dedieated channels. This approack nas been
used to great cficet for many years now in a number of differ-
ent contexts: for example, the use of graded chennels in the
telephone industry,? the introduction of asynchronous time
division multiplexing,® and the packet-switehing concepts
introduced by Baran et al.,* Davies,* and finally implemented
in the ARPA network.® The essential observation is that the
full-time sllocation of a fraction of the chanr.el to each user
is highly incfficient compared to the part-time use of t'.e full
capacity of the channel (this is precisely the notion of time-
sharing). We gain this efficient sharing when the traffic con-
gists of rapid, but short bursts of data. The classical schemes
of synehronous time division multiplexing and frequency
division multiplexing arc examples of the inefficient parti-
tioning of channels,

An soon a8 we introduce the notion of & shared channel in a
packet-switching mode then we must be prepsred to resolve
confliets which arive when more thaa on- demand is simul
tancously placed upon the channel. There are two obvious
solutions to this problem: the first is to “throw out” or “lcse”
any demands which are made while the channel is in use;
and the second is to form a queue of conflieting demands and
serve them in some order as the channel becomes free. The

* This research was supported by ths Advanced Research Projects

Agency of the Department of Defense under Cuatract No. DAHC-15-69-
C-0285
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latter approach is that taken in the ARPA nctwork sinee
storage may be provided econ.mieally at the point of con-
fliet. The former approach is taken in the ALOHA system?
which uses packet-switching with radio channels; in this sys-
tem, in fact, all simultaneous demands made on the channel
are lost.

Of interest to this paper is the consideration of satellite
channels for packet-switching. The definition of a packet is
merely a package of data which has been prepared by a user
for transmission to some other user in the system. The satel-
lite is characterized as 8 high capacity channel with a fixed
propagation delay which is large compared to the packet
transmission time (sec the next section). The (stationary)
satellite acts as a pure transponder repeating whatever it re-
eeives and bes ming this transmission back down to earth;
this broadecasted transmission can be heard by every user of
the system and in particular a user can listen to his own
transmission on its way oick down. Since the satellite is
merely transponding, then whenever a portion of one user’s
transmission reaches the satellite while another user’s trans-
mission is being transponded, the two eollide and *‘destroy”
each other, The problem we are then faced with is how to
contrcl the allocation of time at the satellite in a fashion
which produces an acecptable level of performanee.

The ideal situation would he for the users to agree collee-
tively when each could transmit. The difficulty is that the
means for communication available to these g -ographically
distributed users is the safellite channel itsell and we are
faced with atiempting to control a channel which must carry
its vwn eonfrol information. There are esseatially three ap-
proaches to the solution of this problem. The first has come
to be known a8 a pure “ALOHA" system’ in which users
transmit any time they desire. If, after one propagetion de-
lay, they hear their successful transmission then they assume
that no conflict occurred at the satellite; otherwise they know
& collision veeurred and they must retransmil. 1 users ree
transmit immediately upon hearing a eonflict, then they are
likely to confliet again, and so some scheme must be devised
for introducing a random retransmission delay to spread
these conflicting packets over time.

The second method for using the satellite ehannel is to
“slot” time into segments whose duration is exactly equal to
the transmission tizne of a single packet {we assurae con-
stant length packets). If we now require all packets to begin
their transmission only at the beginning of a slot, then we
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rnjoy a guin in efficieney since collisions are now restricted to
a single slot duration; such a scheme in referrad to an »
“wntted ALOHA" system and is the principal subject of this
paper. We consider two models: the first is thst «of a large
population of users, each of which makes a small demand on
the channel; the second model consists of this background of
users with the addition of one large user acting in a special
way to provide an increased utilisation of the channel. We
concern ourselves with retransmission strategies, delays, and
throughput. Abramsen® also considers slotted systems and is
concerned mainly with the ultimate eapacity of thrse chan-
nels with various user mixes. Our results and his have a com-
mon mecting point at some limite which will be described
below.

The third method for using these channels is to attempt to
schedule their use in some direct fashion; this introdue:s the
notion of a reservation system in which time slots are re-
served for speeific users’ transmissions and the manner in
which these reservations are made is discussed in the paper
by Roberts? He gives an analysis for the delay and th.ough-
put, comparing the peiformance of slotied and reservation
aystema.

Thus we are fuced with a finite-capacity communication
channel subjeet to unpsedictable and conflicting demands.
When these demands collide, we “lose’” some of the effective
capseity of the channel and in this paper we characterize the
effect of thai conflict. Note that it is possible to use the chan-
nel up to its full rated capacity when only a singie user is
demanding service, this is {rue since a user win iever con-
flict with himself (he has the capshility to schedule his own
use). This effect is important in studying the non-uniform
traffic case as we show below,

SLOTTED ALOHA CHANNEL MODELS

Model I. Traffic from muny emall users
In this model we assume:

(A1) aninfinite numb. - =€ users® who collectively form an
itdependent saree

This source generates M packets per slot from the distribu-
tion v,= Prob[M = 1] with & mean of S, packets/slot.

We assume that cach packet is of constant length requiring
T seconds for transmission; in the numerical studies pre-
sented below we assume that the capacity of the channel is
50 kilobits per sccond snd that the packets sre each 1125 bits
in length yielding T =22.5 maec. Note that Sy’ = S,/7T is the
average number of packets arriving per second frem the
source. Let d be the maximum roundtrip propagation delay
which we assume cach user experiences and let R=d/T be
the number of slots which ean fit into one roundtrip propaga-
tion time; for our numerical results we assume d =270 msec
and so R=12 slots. R slots after & transmission, 8 user will

* These will be referred to as the “small” usem.

cither hear that it wax succemdul or know that if was de-
stroyed. In the latter case if he now retransmita during
the next slot interval and if all other users hehave like-
wise, then for sure they will collide again; consequently
we shall assume that cach user trensmits a previously col-
lided packet at random during one of the next K slots,
(each such slot being chsen with probability 1/K). Thus,
retransmission  will take place zither R41, K+2, ... or
K-K slots aiter the mitial transmission. As a rosult teaffie
introduced to tl:e channel from our collection of users will
now eonsist of acw packets and previously blocked pachets,
the total aumber adding up to N packets transmitted per
slot where pl = Prob” ¥V =] viith a mean traffic of ¢ packets
per slot. We assume that each user in the infinite popu-
lation will heve at most one packet requiring transmission
at any time ‘including any previously blocked packets).
Of interest to us is & description of the maximum through-
put® rete S as a function of the channel traffic G. It is clear
that S/G is merely the probability of s successful trans-
mission and G/S is the average number of times & packet
must be tranemitted until success; assuming

(A2) the traffic cntering the channel is ar independent
process

We then have,
If in addition we assume,

(A2) the channel traffic is Poisson

then po=¢"¢, and so,
S=0Ge? (2)

Eq. (2) was first obtained by Roberts who extended a simi-
lar resuli due 1o Abramson? in studving the redio ALOHA
system. It represents the wltimate throughput in a Model |
slotted ALOHA channel without regard to the delay packers
experience; we deal extensively with the delay in the neat
section,

For Mode! I we adopt assumption A1. We shall also aceopt
a Iess restrictive form of assumption A2 (namely sssumption
A4 below) which, as we show, lends validity to sssumption
A3 which we also require in this model. Assume,

(A4) the channel traffic is independent over any K con-
seeutive slots

We have conducted simulation experiments which show 1hat
this is an excellent assumption so long as K < K.

Let,

P(z)= ), pa2 (3)
ol

Viz)= EL'.I' (1)
=0

* Note that S=38,, under stahle system operation which we assume
unless stated otherwise (see below).
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Using only asumption: A4 and the assumption that M is in-
dependent of N— M, we find [ 107 that P{z) may be expresacd

aa
) 1-3 &
[R(l-l)-i-f'(l-—K*)] V(z)

If, further, the source is an independent proceas (ic., as-
sumption A1) and is Poisson distributed then V(z) =e-3¢-2,
and then we ace immediately that,

Lim P(z) =e00-9,

Xle

This slows that assuniption A3 follows from assumptions
Al and A4 in the limit of large K, under the reasonable con-
dition that the source is Poisson distributed.

We have no far defined the following critical system param-
eters: Sy, S, G, K and R. In the ensuing analysis we shall
distinguish packets transmitting in a given slot &8 being
cither newly generated or ones which have in the past col-
lided with other packets. This leads to an approximation
since we do not distinguish how many times a packet has
met with a collision. We have examined the validity of this
spproximation by simulation, und have found thet the cor-
relation of traffic in different slots is negligible, except at
shifts of R+1, R+2, ..., R+K; this exactly supports our
appioximation since we concern ourselves with the most re-
cent collision. We require ihe following two additional
definitions:

¢=Prob[newly generated packet is successfully
transmitted )

4= Prob[previcusy blocked packet is succosstully
transmitted ]

We also introducee the expected pactet delay D:

D = average time (in slots) until a packet is
sueresefully reeeived

Our prinzipal concein in this paper is to investigate the
trade-off botwoen the average delay D and the throughput S,

Model I1. Background traffic with one large user

In this gecond model, we refer to the source described
above as the “background”” source but we also assume that
there 1s an additional sigle user who constitutes a iecond
independent souree and we refer to this source as the ‘large”
user. The background souree is the same as that in Model [
and for the second source, we assume that the packet arrivals
to the large user transmitier are Poisson and independent of
other packets over K+ K consecutive slots. In order to dis-
tinguish variables for these two sources, we ket S and Gy refer
to the S and ¢ parametors for the background source and let
8; and €y refer to the & and & parameters for the single large
us.r. We point out that the identity of this large user may

change s time progresses but. msist ihat there be only one
such at any given dme. We introduce the new varinables

S 5 S|+ S’ (--))
(1=l +0 (6)

S represents ihe tatal throughput of the system and G repro-
sents the traffic which the channel must support (including
retrans. nissions). We have assumed that the small users may
have at most one packet outstanding for transmission in the
channel; however the single large user may have many pack-
ets awaiting transmission. We assume that this large user has
storage for queueing his requests and of course it is his re-
sponsibility to see that he does not attempt the simultaneous
transmissicn of {wo packets. We may interrret (y as the
probability that the single large user is transmitting a packet
in a channel slot and so we require G; <1; no such restriction
18 placed on G, (or on G in Model I).

We now introduce 8 means by which the large user can
control his channel ussge enabling bim to absorb sorae of the
slack channel capacity; this permits an increasc in the total
throughput S. The set of packets awaiting traremission by
the large user compete among each other for the attention of
his local transmitter sa iollows. Each waiting packet will be
scheduled for transmission in some future slot. When a newly
gencrated packet arrives, it immediately aitempts trans-
mission in the eurrent slot and will suceeed in eapturing the
transmitter unles. some other packet has also been scheduled
for this slot; in the case of such a scheduling conflict, the new
packet is randomly rescheduled in one of the next L slots,
each such slot being chosen equally likely with probability
1/L. Due to the background traffic, a large user packet may
et with & trunsmustion conflict at the sutellite (which is
discovered R slots after transmissicn) in which case, as in
Model I, it incurs a random delay (uniformly distributed
over K slots) plus the fixed delay of R slots. Morc than one
packet muy be scheduled for a futyre siot and we ussume
that these scheduling conflicts are resolved by admitiing that
packet with the longest delay since its previous blocking (due
to eonfliet in transmission or eosfliet in seheduling) and uni-
formly rescheduling the othiers over the next L slots; ties arr
broken hy ranc.m selection. We see, thercfore, that new
puckets have the lowest priority in case of a scheduling cor-
flict; however, thay seize the channel if it is free upon their
arrival. The variable L permits us & eertain control of chan-
nel 1.oe by the large user but does not limit his throughput.
We also assume X, L <R. Corresponding to g and ¢, in Model
1, we introduce the success probabilities ¢, and ¢, (1=1,2)
for new and previously blccked packets respectively and
where @ =1 deotes the backgrownd souree and ¢=2 diniotex
the single large source. Finally, we choose to distinguish be-
tween D; and D; which are the average rumber of slots until
a packet is successfully transmitted from the background
and large uscr sources respectivcely.

RESULTS OF ANALYSIS

In *his section we present the results of our analysis with-
out proof. The details of proof may he found in Reference 10,
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Figure 1 —Throughput as & function of channel traffie

Model 1. Traﬁic Jrom many small users

Wa vish to refine Kq. (2! by accounting for the effect of
the random retransmission aelay jarameter K. Gur principal
rc ult in this ~ase is

S=G

ad1-g %

where
x

q=[e—a/x+ ge-a] e—-a (8)
K

snd
T= L ][e—GIK_C—GJ['—OIK.}. e C—G]K e 8 9)

The considerations which led to Eq. (7) were inspired by
1toberts' in which he developed an approximation for Eq.
(9) of the form

T £=d e’ (10)

We shall see below that this is a reasonably good a p:+« sima-
tion. Equations {7-9) form a set of non-linear simulianeous
cquations for S, ¢ and g, which must be solved to obtain an
explicit expression for 8 in terms of the system parameters
(7 and K. In general, this cannot be accomplished. However,
we note that a8 K approaches infinity these three equations
reduce simply to

Limé =Lim ¢=Lim ¢q,=¢° (11)

Ktw G Kt F4X) )
Thus, we see that Eq. (2) is the correet cxpression for the
throughput. S only when K approaches infinity which cor-
responds te the case of infinite average delay; Abramsont
gives this result and numcrous others all of which corra-
spond to this limiting case. Note that the large K case avoids

the lerge delay problem if T is smail (very high cpeed chan-
nels).

The numerical solution to Eqs. (7-9) is given in Figure 1
where we plot the throughput S as a function of the channel
traffic G for various values of XK. We note that the maximum
throughput 2t a given K oceurs when G = 1. The throughput
improves as K increases, finally yielding & maximum value
of §=1/e=.368 for G=1, K=infinity. Thus we have the un-
fortunate situation that the ultimate capacity of this channel
supporting & large number of small users is less than 27 per-
cent of its theoretical maximum (of 1). We note that the
efficiency rapidly approaciies this limiting value (of 1/¢) as
K increases and that for K=15 we are almout there. The
figure also shows some delay contours which we discuss
below. In Figure 2, we show the variation »f ¢ and ¢, with K
for various values of G. We note how rapidly these functions
approach their limiting values as given in Eq (11). Also on
this curve, we have shown Roberts’ approximatien in Eq.
(10) which converges to the exact value very rapidly as K
increases and also as G decreases.

Qur next significant result is for packet delay as given by

D= R+l+ [R+l+——] (12)

We note from this equation that for largz K, the avcrage
delay grows linearly with K ai 2 slope
aD l-—r"

Li
xoT K" 2

Using Eq. (11), w see that this slope may be expressed as
G—8/28 which is merely the ratio of that portion of trans-
mitted traffic which meets with a conflict to twiee the through-
put ot the channel; since G—8/28=14(G/S—1), we see
that the limiting slope i3 ~jual to }{ times thc average
number of times a packet is retransmitied. Little’s well-
known result'? expresses the average numver (i) of units
(packets in our case) in a queueing system as the produet of
the average arrival rate (Se= S in our case) and the average
time in systere (D). If we use this along with Egs. (7) and

(12), we get
K .
#=SD= G[R+l —~—J l J (13)

2
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Figure 2—uccess nrobabilities as a function of retransmission delay
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In Figure 1 we plot the lozi of constant delay in the S, G
planc. Note the way these loci bend over sharply as K in-
creascs defiring & maximuiz throughpu. See(D) for any
given value of D; we note the ~ost in throughput if we wish
to limit the average delay. This effect in clearly scen in
Figure 3 vhich is the fundamental display of the tradeoff
between delay and throughput tor Model I; this figure shows
the dela:-throughput contours for constant values of K. We
also give the minimur envelope of these econtours which de-
fines the optimum performance curve for this system (a
gimilor optimum curve is also shown in Figure 1). Note how
sharply the delay increases near the maximum throughput
S=0.368; it is clear that an extreme price in delay must be
paid if one wishes to push the channe! throughput much
above 0.3 0 and the incremental gain in throughput here is
infinitesimal. On the other hand, as S approsaci..s sero, D
approaches R+1. Also shown here are the constant G con-
tours. Thus this figure and Figure 1 are two alternate ways of
displaying the relationship among the four entical aystem
quantities S,G,K, and D.

From Figure 3 we observe the following effect. Consider
any given value of S (say at S =0.20), and sonie given value
of K (say K=2). We note that there are two possible values
of D which satisfy these conditions (D =21.8, D=181). How
do we explain this?® It is clear that the lower value is a stabie

100

1000

613

L]
o
o

100

AVERAGE PACKET DELAY (SLOTS)
8

ENVELOPE OF OPTIMUM PERFBIH!”CE\

1 " 1 " i el i

/¢ 4

2 3
THROUGHPUT (PACKETS/SLOT)
Figure 3 Delay-throughput tradecff

* This question was raised in a private conversation with Martin Gra-
ham (1!niversity of California, Berkeley}. A simulation of this situation
is reported upon in Reference 13,

N
i e T

) » 3
T

A - 2 A

at

A 2 3 £
THROUGNPUT {PACKETS/SLOT) s
Figure 4 —Optimum X

operating point since the system has sufficient capacity to
absorb any fluctuation in the rate S,. Supose that we now
sfowly increase S, (the source rate); sc long as we do not
exceed the maximum value of the system throughput rate
for this K (say, Smas(K)), then we see that $=S; and the
system will follow the input. Note that Smu(K) always oc-
curs a¢ the intersection of the G=1 curve as noted earlier.
However, if we attempt to set So> S.uc(K), then the sys-
tem will go unstable! In fact, the throughput S will drop
from Swmax(K) toward gero as the system accelerates up the
constant K contour toward infinite delay! The system will
remain in that unfortunate circumstance so long as S;> S
(where now § is approaching sero). All duning its demise, the
rate at which new packets are beirg trapped by the svstem is
So— 8. To recover from this situation, one can set S,=0;
then the delay will proered down the K contour, round the
bend at S (K) and race down to S=0. Al this while, the
backlogged packets are bcing flushed out of the systers. The
warning is clear: one must avoid the knee of the X contour.
Fortunately, the optimum performance curve does avoid the
knee everywhere except when one attempts to squeeze out
the Jast fow pereent of throughput. In Figure 4, we show the
optimum values of K as a funetion of 8. Thus, we have char-
acterized the tradeoff between throughput and delay for
Model 1.

Model 11. Background traffic urih one lar je user

In this model the throughput equation is similar to that
given in Eq. (7), namely,

8.=G, it

{14)
qirt1—q;

i=j,2

the guantities ¢, and g; are given in the appendix. Similarly
the average delays for the two classes of user are given by

Di=R414+ 122 [R+l+ ’_‘_‘_‘] e
te 2
= (1], L+1 1
Dy=R+414 1—~"~‘[i<:+1+ 5——1]+ B [E.+ - ]
Qas 2 2 Qac

B~ Lok dafins o

i1
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where E, and E, are given in the appendix. It is casy to show
that as K, L approach infinity,

a=q=c%(1-Gy) (17)
Si=0Gye (1 ~-Gy) (18)
n=gu=eca (19)
Sy= e~ (20)
8= ((—0G\Gy)e N (21)

where we recall G =1+ and S=8,+8;. From these last
eijuations or a8 given by direet argumente in an unpublished
note by Roberts, one may casily show that at a constant
huckground user throughput S, the large user throughput
Sz will be maximized when

0=G4Gy=1 (22)

This last is a special case of results obtained by Abramsan in
Reference 8 and he discusses these limiting cases at length for
variaus mixes of users. We .ote that,

S
ZT':=C-01(1_G\ (23)
aS
— = =G -G\Gy—1--Gy) (24)
3G,
5
1op
[
PR
/,ﬁlou,u

/ /o,-oz

=

LARGE USER THROUGHPUT
L
al

0 . b o - - nm - eed
2 3 o s,

«
BACKGROUND TMROUGHPUY

Figure 6 Throughput tradeoff

In Figure 5 we give a qualitative disgram of the 3-dimen-
sional contour fur 8 as a funetion of ¢, and (/5. We remind the
reader that this funetion is shown for the limiting ense K, 1L
approaching infinity only. Frum our results we seo that foar
constart (<1, N increnses linearly with Gy (/a<1). For
constan. (/1> 1, S drerenses lincarly as (; increases. In ad-
dition, for comstant G3<'4, § has a maximum value nt
Gy =1-2Gy/1—~4;. Furthermore, for constant 63> Y4, S de-
errases a8 () ingrewses ard therefore the maximum through-
put S must occur ai S=G; in the G, =0 plane.

The optimum curve given in Eq. (22) is shown in the 8y, §;
plane in Figure 6 along with the performance loci at consti nt
G;. We note in these last two figures that a coannel throu th-
put ~qual tc 1 is achievable whenever the background traffic
drope to zero thereby enabling S=8,=G;=1; this corre-
sponds to the case of a singie user utilizing the sateilite
channel at itsa maximum throughput of 1. Abramson [8] dis-

300
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g

©0r
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20} D EWVELOPE
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10 " % A
2 s s
THROUGHPUT

Figure 7— Delay-throughput 1radeoff at S, =01

cusses a variety of curves such as those in Figure 6; he can-
siders the generalization where there may be an arbitrary
number of background and large users,

In the next three figuoes, we give numericeal results for the
finite K case; in all of these camputations, we consider only
the simplified situation in which K =L thercby climinating
one parameter. In Figuro 7 we show the tradeoff between de-
tay &nd throughput similar to Figure 3. (Note that Figure 5
is stmilar to Figure 1.) Here we show the optimnm perform-
nnee of the average delay D= S;D,+ 8,0,/ 8 along with the
hehavior of D at constant values of K and S;=0.1 (note the
instability onee again for overlaaded conditions). Also shown
are minimum eurves for Dy and Dy, which are obtained by
using the optimum K as a funetian of 8. If we are willing te
reduce the hackground throughput from its maximum at
S =0.368, then we ean odrive the total throughput up ta ap-
proximately 8=0.52 by introducing additiona! trathe from
the large user. Note that the ninimum Dy curve 15 muel
higher than the mizimume 1 curve. Thus our net gain in
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channel throughput is also at the expense of longer packet
delays for the small users. Onee again, we see the sharp rise
near saturstion.

In Figure 8, we display a family of optimum D curves for
various choices of S; as a funetion of the total throughput S.
We also show the behavior of Model I as given in Figure &.
Note as we reduec the background traffic, the system capac-
ity increases slowly; however, when 8; falls below 0.1, we
hegin to piek up significant gains for S;. Also observe that
cach of the constant curves “peels off” from the Model 1
curve at a value of S=8,. At 85;=0, we have only the large
uscr operating with no collisions and at this point, the optimal
valuc of L is 1. This reduces to the classical queucing system
with Poisson input and constant service time (denoted
M/D/1) and represents the absolute oplimum performancs
contour for any method of using the satellite channel when
the mput is Poisson; for other input distributions we may
use the G/D/1 queueing results to calculate this abrolute
optimum performance contour.

In Figure 9, we finaliy show the throughput tradeoffs be-
tween the background and large ugers. The upper curve shows
the absolute maximum S st cach value of Sy; tais is a clear
display of ‘ ac significant gain in Sy which we can achieve if
we are wiling 1o reduce the background throughput. The
middle eurve (also shown in Figure 6 and in Refercnce 8)
shows the absolute maximum value for S; at each value of
S1. The lowest curve shows the net gain in system capacity as
Sy 18 reduced from its maximum possible value of 1/e.

CONCLUSIONS

In this paper we have analyzed the performance of a slotted
satellite system for packet-switching. In our first modcl, we
have disolaycd the trade-off between average delay and
average throughptt and have shown that in the case of
traffic consisting of a large number of small users, the limiting

s00
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LY G [ ]
[] 4 4 ] (] 0 3
THROUGHPYT

Fizura B Optimum delay-throughpul 1rsdecffs

o ) 3
BACKGROUND THAOUGHPUT

i s,
Figure 9— Throughput countours

throughput of the channel (1/e) can be approached fairly
closely without an excessive delay. This performance can be
achicved at relatively small values of K which is the random
retransmission delay parameter. However, if one attempts to
approach this limiting eapecity, not only does one cncounter
large delays, but one also flirts with the haszards of unstable
behavior.

In the case of a single large user mixed with the background
traffic, we have shown that it is possible to increase the
throughput rather significantly. The qualitative behavior for
this multidimensional trade-off was shown and the numerical
caleulations for a given set of paramcters were also dis-
played. The optimum mix of channel traffie was given in
Eq. (22) and is commented on at length in Abramson’s
paper.! We liave been able to show in this paper the relation-
ship between delay and througb,ut which is an essential
trade-off in these slotted pack...-switching systems.

In Roberts’ paper® he discusses an effective way to reserve
slots in a satellite system so as to predict and prevent con-
fliets. It is worthwhile noting that another scheme is cur-
rently being investigated for packet-switching systems in
which the propagation delay is small compared to the slot
time, that 8, R=d/T«1l. In such systems i¢ may be ad-
vantageous for a user to “listen before transmitting” in order
to determine if the channel is in use by some other user;
such systems are referred to as “carrier scnse” systems and
scem to offer some inicresting possibilities regarding their
control. For satcllite communications this case may be
found when the capacity of the channel is rather small (for
example, with a stationary satellite, the capacity should be
in ike range of 1200 bps for the packet sizes we: have dis-
cussed in this paperi. On the nther hand, a 50 kiobit channel
operating in a ground radie environment with packets on the
order of 100 or 1000 bits lend themselves nicely to eurrier
scnse technigues.

In all of these schemes one must trade off complexity of
implementation with suitable performance. This performance
must be effective at all ranges of traflie intensity in that no
unnecessary delays or loss of throughput should occur due to

i et
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complicated operationnt procodures. We feel that the slotted
satellite packet-switching methods deseribed in this paper
and the reservalion systems for theae channels deseribed in
the paper by Roberts do in faet meet these eritoria.
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APPENDIZ
Define Ga & Poisson errival rate of packets to the tranemitter
of the large user

= S{1+E.+E(1+E)) ] (A1)

The variahles ¢,, q,, (=1, 2) in Eqgs. (14-16) are then
given a8 follows (sce Keference 10 for detoils of the deriva-

tions) :
== (g0)%(gs) b8 (A.2)

= (28) ¥ 'qia{gy) be=? (A.3)

where

Qo= e OVK 4 I_le[(l_e-a.) (601 —¢OVK) G1e=@+00] (A.4)

(A.5)

I[ﬂnll-_e--au) Lzz

J {10 L=1
1
[L

1—¢d
Ge= 1—m [e-‘"”‘(l - —T) c—(anw.x] (A.6)

Let us introduce the following notation for events at th.

large user:

SS =scheduling success (capture of the transmitter)
SC =scheduling conflict (failure to capture transmitter)
TS = transmission success (capture of a satellite slot)
TT = transmission conflict (conflict at the satellite)

NP =newly gencrated packet
Then,
ratrE,
ga= 1+ E. (A7)
- ’;i’;f' (A.8)
. ]
where
E. & average number of SC events before o
an SS event conditioning on NP = ©(A9)
E, & average number of SC events before l—a
an SS event conditioning on TC =——— (A.10)

a,

The variables a,, r; (i=n, ¢, 8) are defined and given below:

as\* -5
a, & Prob [SS/NP]=(;I-) H’A)"( ) {A.11)
a2
.4 Prob [TS/SS, NP]=q"e"“" (A.12)
Yy K
a,4 Prob [SS/T(,]— 2 4 i (A13)
1 —q/¢
ri@Prob [TS/88, TC) =g -ge~ (A.14)
K
20\ gee 1= (g2)® R
7S A'/AC =t - ST A
a,4 Prob [8S/8C) (q) b (A.13)
r.&Prob {T'8/88, SC]=gRe-% (A.16)
where
oK G
g=e Ok 4 — =140 (A.17)
K
—iK . o~
Q1= : ""e"‘_‘ (AIS)

| E

1 L\ 1
= =l - = )Gl — g=Gull . p-C0
i G,—1+¢Cs ([ 1) [Gn(l )e e +e ]

(A.19)
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Approach to Store-and-Forward
Communication Network Design

L. Fratta
instituto Gi Elettrotecnia ed Exxttronica
Palitecnico di Mitano, Italy

M. Gerla
Network Analysis Corporation
Glen Cove, New York

L. Kieinrock
University of California
Los Angeles, Czlifornla

ABSTRACT

Two problems relevant to the design of a store-and-forward
comrunication network (the megsage routing problem and the chan-
nel capacity assignment problem) are formulated and are recog-
nized to be essentially non-linear, uncondtrained multicommodity
(m.c.) flow problemg., A "Flow Deviation" (FD) method for the
solution of these non-linear, unconstrained m.c. flow problems
is described which i8 quite similar to the gradient method for
functions of continuous variablea; here the concept of gradient
18 replaced by the concept of "shortest route” flow. As in the
gradient method, the application of successive flow deviations
leads to local minima. Finally, two interesting applications
of the FD method to the design of the ARPA Computer Network are
discussed.

1. INTRODUCTION

In this paper we consider a procedure (the "flow deviation”
method) for assigning flow within store~and-forward communica=-
tion networks so as to minimize cost and/or delay for a given
topology and for given external flow requirements. We begin by
defining the basic model below and follow that with some examples.
We then discuss various approaches to the problem and then in-
troduce and describe the "flow deviation" method. This method
is evaluated under some further restrictions and is thern applied
toc various problem formulations for “he ARPA network {6], (7].

Suppose we have a collection of nodes Ni’ (i=1,...,n), and

are required to route a guantity rij of type (i,j) commodity

from Ni to Nj through a given network (Fir.re 1).

Networks, 3: 97-133
«& 1973 by John Wiley & Sons, Inc. 97

16

AR




98 FRATTA, GERLA AND KLEINROCK

™~ NETWORK
" BounpaRY
\

Fig. 1 Example of routing of the (i,j) commodity.

The muliticommedity (m.c.) flow problem consists of finding
the routes for all such commodities, which minimize (or maxi-
mize) a well-defined performance function (e.g., cost or delay),
such that a set of constraints (e.g., channel capacity con-
straints) are satisfied.

The most general multicommodity problem can be expressed
formally in the following way:

Given: A network of n nodes and b arcs
An n X n matrix R = [rij], called the require-

ment matrix, whose entries are non-negative
Minimize: (or maximize)* P (%)
over ¢ where ¢ is the flow configuration and P is a
well-defined performance funct.on

Furthermore, ¢ must satisfy the following constraints:
Constraints:

1. % must be a multicommodity flow satisfying requirement
R. For :his, the following conditions must be verified:
Conservation of the flcw at nodes, commodity by commodity:

i

i {vi,j (1.1)

- r.j if 2
(i) _ ’
qan = {+ riﬁ if ¢

s 0 i otherwise

n (ij) n
kzl fen i

T thout loss of generality, only the minimum probfem is con-
stdevea in the following.

- O A A T T T
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THE FLOW DEVIATION METHOD 929

Non-negativity of flow in directed arcs:

(1 T .
fklj) >0 vi,j,k,2 (1.2)
where f(lj) is the portion of commodity (i,j) flowing on arc

3]
(k,2).

2. ¢ must satisfy some additional constraints,* different
from problem to problem (e.g., capacity constraints on each
channel and/or cost constraints).

Let us define the {%,J) commodity flow g(lj) as:

(i) & [ i) (i) (i3)
£ (fl D £ e £y

where f(ij)
m

and define the global flow f as:

is the portion of (i,j} commodity flowing in arc m.

n n (i4)
£=] 1 £
i=l j=1
In the sequel, we restrici. our analysis to m.c. problems in
which the performance depends sclely on the global flow:

P(8) = P(f) (1.3)

However, most of the arguments and techniques presented in the
paper can be extended tc the general case of P(¢) explicitly
depending upon variocus types of commodities.

So far, we represented the flow configuration ¢ in terms
of £149) yi,3.

An equivalent representation is obtained by providing for

each commodity (i,j) a set of routes “?j’ = NIYReRNer kij’ from
node i to node j, associated with some weights aij (atj > 0,

ij
X u?j = 1): by this we mean that commodity (i,j) is trans-
k=1
ferred from i to j along Kij routes, and route ﬂ?j carries an

amount u*. » r,. of commodity (i,3).
ij ij

*If an m.c. flow problem has no additional constraints, we de-

fine it to be an unconstrained m.c. flow problem; such a defi-
nition will be motivated in one of the following sectioms.

18
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As a third representation, we can consider the globxl flow
f. It can very easily be seen that f does not completely char-
acterize ¢: for iunstance, two different sets of routes might
yield the same f. However, from Equation (i.3), it turns out
that such a representation is sufficient for many consicerations,
and is certainly more compact than the previous two. In the fol-
lowing we use whichever of these representations is most con-
venient.

It can be seen that the set of m.c. flows satisfying con-
straints (1.1) and (1.2) is convex. In particular, if we let

F 4 {£]f is an m.c. flow satisfying constraints (1.1) and (1.2)},
we have that F is a convex polyhedron. The global flows cor-
responding to the "corners" (extreme poiuts) of F have an inter-
esting property: they are shortest ruute* flows [9].

2. MULTICOMMODITY PROBLEMS IN THE DESIGN OF S/F NETWORKS

Let us now considex a store-and-forward (S/F) communication
network [1l]. 1In such a network, messages traveling from Ni to

Nj are "stored" in queue at any intermediate node Nk’ while

awaiting transmission, and are sent "forward" to N_, the next

2)
node in the route from Ni to Nj, when channel (k,%) permits.
Thus, at each node there are different queues, one for each out=-
put channel. The message flow requ : .nts between nodes arise
at random times and the messages are .f random lengths; therefore
the flows in the channels and the queue lengths in the nodes are
random variables. Under appropriate assumptions,? an analysis
of the system can be carried out [1l]; in particular, it is pos-
sible to relate the average delay T sutfered by a message travel-
ing from source to destination (the average is over time and over
all pairs of nodes) to the average flows in the channels.

The result of the analysis is:

)‘
T= 'yi"""i (2.1)
i=1

*A ghortest route flow is an m.c. flow whose routes can be de-
cribed by a shortest route matrix, computed for an arbitrary
assignment of lengths to the arcs.

tAssumptions: Poisesr arrivals at nodes, exponential distribu-
tion of message length, independence of arrival processes at
different nodee, independence assumption of service times at
succeasive nodes [1}.
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THE FLOW DEVIATION METHOD 101

T = total ave .gye delay per message [sec/messg)
b = number of ::-¢s in the retwork
A, = message rz.e on channel i [messg/sec]

i
n n

Y = z z ri. = total message arrival rate from
i=1 j=1 external sources [messg/sec]

T, = average delay suffered by a message waiting for

* channel i [sec/messg]

Ti is the sum of two components:
T: =T, ¥ 1%
i i i
where

T: = = transmission and queueing delay
i uCi - Ai

T; =p; = propagation delay

and

Ci = capacity of channel i [bits/sec]

1/u = average message length [bits/messg]

We can rewrite Equation (2.1) as follows:

b Ai/u

1
T = _.Z ———— & (A, /M) UP, (2:9)
Y3 Ci Ai/u i i

Letting Ai/p = fi’ Equation (2.2) becomes:

1§ £, ) |
T == ——— } f. p! (2.3) |
Y3 Ci fi i7i :
where E
fi = average bit rate on channel i [bits/sec] ;
' =
Pi UPi

The average delay T is the most common performance measure
for S/F networks, and the multicommodity problem consists of
finding that routing, or flow pattern F, which minimizes T.
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We may now pose two problems:
Problem A: "Routing assignment”

Given: Topology, channel capacities and a require-
ment matrix R
0 0 X 2 1
Minimize: T(f) = ~ z (F~—:—E— + p!) fi
over f Yim1 “i i >

Constraints: (i) f is an m.c. flow
(i) E o 21C, i=1, cue b

The problem is in the standard multicommodicy form* and the
udditionai constraints are capacity constraints. Let FA be the

set of feasible flows for Problem A: FA =F N {fif < c}.
Clearly FA is a convex set (intersection of convex sets).

A second interesting problem in S/F networks is formulated
below. Assume that we lave a given network topology in which
the channel capacities have to be assigned. A cost is associated
with the values of the capacities, and the total cost of the net-
work is given. 1In addition, the flow routes must be determined.
The problem statement is:

Problem B': "Routing and capacities assignment, general
cost-capacity function”
Given: Topology, requirement matrix R, number of
dollars available D
1 B 3
Minimize: T(C,E) == )| (=———+p!) f,
- Y . c. - f, i’ i
over §'§ i=1 i i
Congtraints: (i) f is an m.c. flow
(i) £, <€, i=1, ..., b
b
- <
(iii) ‘g q.,(c,) <b

i=1
where

C = (C}5Cpe00,Cp)
di(Ci)

arbitrary cost~capacity
function for arc i

The minimization can be carried out first on C, keeping f fixed,
and then on f.

*The possibility of formulating the rcuting problem as a multi-
commodity flow problem was already reccgnized by Frank and Chou
in [24). An interesting linear programming approach is pre-
sented there.
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If the cost~capacity functions are linear (i.e.,
di(ci) = dici)' then the minimization over C can easiliy be per-

formed by the method of Lagrange multipliers and v. get the
following optimum capacities as functions of the flows [1]}:

Dy vE;d;
c,=f, ¢+ a';mb = (2.4)
] /fa,
jup 33
where
b
p,=D- [ £a
i=1
By introducing Equation (2.4) into the expression of T(C,f) we
have:
b 2
] /Ea,
=1 Y 1B
T(C,f) = T(f) = += 7 £.p} (2.5)
YD Vi *F
e
Since
)
D> d.c for (iii)
j=1 1 i
and
b b
1l ac, > | af  for (ii)
i=1 i=1
then
b
D> J] 4.f
= . 11
i=1
and
b
p,=D- [ 4f >0 (iv)
i=l

It i easy to see from Equation (2.4) that (iv) implies also
(ii) and (iii); hence both (ii) and (iii) can be replaced by
(iv).

By introducing Equation (2.5) into Problew B' and using
result (iv), we obtain:

o e T i saail
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Problem B: "Routing and capacities assignment, linear
cost-capacity function”

Given: Topology, requirement matrix R, number of
dollars D

’f =y
£.d.
(i—-—l i")

Minimize: v(f) = + 17 5P
over f YDa Y
Congtraints: (i) m.c. flow

f
(ii) D >0
8=

Again the problem is reduced to an optimal flow problem of the
standard mvlticommodity form. The additional constraint is now
a cost constraint. Let FB be the set of feasible flows for
Problem B:

b
Fp=FNi{glp- | af >0
i=1

Clearly FB is convex.

The inspection of Problems A and B motivates the following
) impcrtant observation:

P

Observation:

In both Problems 2 and B, the performance T(f) goes to =

whenever f approaches the boundaries defined by the ad-

ditional constraints (i.e., when any channel becomes

-E_(] saturated in A, or when the excess dollars De reduce to
' zero in B).

Using mathematical prograwning terminology, the performance
T(f) incorporat~s the additional constraints as penalty functions.
From a practical point of view, such a property is very important:
it guarantees the feasibility of the solution (with respe=t to
the additional constraints) during the application of usucl non-
linear minimization techniques, provided a feasible starting flow
is found.

The property is quite general for S/F networks: when the
additional constraints are satisfied with equality, usually some
saturatlon occurs, the queues at nodes grow large and the delay
T increaces rapidly.

As a consequence of the above observation, if we assume
E that a feasible starting solution can be found,* we can disregard

TR RS A AP At

*Techntqugs f@r findinq feasible starting solutions are shown in
the applications section.
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o
the additional constraints and approach “roblems A and B as
uncongtrained m.c. flow probiems. Problems A and B will be
investigated further in latcx sections.
3. THE FD METHOD AS AN APPROACH TO THE SOLUTION OF
') NON-LINEAR M.C. FLOW PROBLEMS

In order to place the Flow Deviation (FD) method in the
proper perspective in relation to the existing methods, it is
convenient to classify the varicus wu.c. flow problems into
categories; for each categery, the solution techniques avail-

Y able in the literature are reviewed and the contribution of
the FD method is discussed.

a) Uncongtrained M.C. Flow Problems

a.1) Linear performance. The linear min cost flow problem with
no constraints on capacity has the well known shortest route
solution (where the arc length is equivalent to the linear cost
of the arc) [9,12). Very efficient techniques are available for
the evaluation of all shortest routes on a graph and for the
routing of the commodities along such routes [9,16]; therefore
it appears convenient to reduce complicated flow problems (i.e.,
non-liinear, or constrained) to the linear, unconstrained form,
which can be solved efficiently.

a.2) lon-linear performance. The most natural thing to do is
to linearize the problem. Problems which are separable* and
convex can be linearized by approximating the convex functions
with piecewise linear functions and by introducing one supple-
mentary variable and one constraint equation for each linearized
segment [11,15,24]. This method has two serious drawbacks:
first, it can be applied only to separable and convex problems;
secondly, the number of variables and constraints becomes pro-
hibitively large for large networks.

Another method, which applies to differentiable proklars,
consists of approximating the performance function with :le
tangent hyperplane, which is expressed in terms of th:z partial
derivatives {BP/afi}. The min cost solution of the linearized

¥ L 0 s e S o s T

problem is the shortzst route flow, where the length of arc i
is defined as BP/afi. As it will be shown later, such shortest

route flow represents the direction of the steepest descent flow
deviacion.

#A separable m.c. flow problem has the form:

b
P(f) = ] P.(f,)
T =1

PR T R

T
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The above idea is the essence of the FD method, which con-
sists of repeated evaluations of steepest descent directions and
of one variable minimizations along such directions; the method
{describad in Section 5) is conceptually very similar to the
gradient method applied to non-linear minimization problems. If
the problem is differentiable, the FD method is clearly superior
to the supplementary variables method mentioned before: it does
not add new variables and constraints, and can be applied tc non-
convex, non-separable cases.

In fact, the idea of using shortest routes (computed with
partial derivatives) for the solution of non-linear problems is
not new: using such techniques, Dafermos [17] solved various
traffic problems, formulated as unconstrained, convex m.c. flow
problems, and Yaged [18] solved a min cost capacity assignment
for a communications network, which was formulated as an uncon-
strained, concave m.c. flow problem.

Dafermos stated the conditions for the optimality of the
solution and proposed an algorithm for finding the optimal rout-
ing in the convex case; the algorithm, however, is impractical
for large nets, as it requires the bookkeeping of all paths for
all commodities [17). Yaged's results, on the other hand, are
very restricted: they apply only to a separable, concave prob-
lem [18].

In this paper, we attempt a more ageneral, systematic in-
vestigation of the method; we introduce the main results in a
more s.raightforward way and in a simpler formulation than in
[17). We indicate an algorithm which is applicable to non-
separable problems and which has been efficiently applied to
large nets.

b) Constrained M.C. Flow Problems

b.1) Linear performance, linear constraints. The classical,

and most efficient, approach is the Dantzig-Wolfe decomposition
{13,14]), which reduces the solution of the main problem to the
repeated solution of a Master Problem and a Subproblem. The
Master is a linear program containing the additional constraints,
and the Subproblem, which generates new columns to intrcduce
into the Master, is an unceonstrained linear min cos:. flow prob-
lem.

b.z; Non-linear performance, non-linear constraints. The
general theory of non-linear problems with non-linear constraints
is very hard. The special case of convex performance and concave
non-negativity constraints, however, can be attacked efficiently
with the Dantzig-Wolfe decomposition for convex programs [11];
the Master Problem is a linear program, and the column generating
Subproblem is an unconstrained convex min cost flow problem.

Here is another important area of application for the FD method.
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We 3howed that the two design problems considered in the
paper can be regarded as unconstrained m.c. flow problems;
therefore, in the sequel, unless otherwise specified, we refer
to uncongtrained problems.

4. STATIGNARITY CONDITIONS

Let us assume that P(f) is continuous with its first par-
tial derivatives. We want to establish necessary and sufficient
conditions for f to be stationary.*

The most general perturbation (which we define as flow
deviation) around f can be obtained as a convex combination of
f with any m.c. flow v. The result of such flow deviation, f°',
is expressed as: -

f'=Q-Nf+Av="f+ v~ f)
where

veF, 0<x<1

If A + 0, the flow deviation is infinitesimal. For )\ = §)\ << 1,
we have:

b
A 5
SP(£) S P(f') -P(f) =8) J g (v - £) (4.1)
k=1 k- k
where
3P
g, =
k afk

From Equation (4.1) and f.-om the definition of stationarity, f
is stationary if:

b
Y g lv, -£)>0, vefF (4.2)
kel k' Tk k ~
We can also produce infinitesimal perturbations that involve
only one of the commodities; f must be stationzry with respect

to any one of them separately. It follows that f is stationary
if, for all (i,j) commodities:

b .. o o e
z £, (v(lj) - f(u)) > 0,¢V € F(lj) (4.3)
kel x 'k k - ~

*f is defined as stationary if, for any infinitesimal perturba-
tion 8f (such that f + 6f is also m.c. flow) we have

P(f + 8f) > P(f)

A local mininum ie always stationary; the opposite, however,
18 not true.
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where p(id) is the set of the feasible (i,3) commodity flows.
In fact, Equations (4.2) and (4.3) aie equivalent, as will be
seen from the gubsequent derivations. Condition (4.2) can be
rewritten as:

j )
min v, > L £ (4.4)
veF ksl * K Tym KK
But, as f ¢ F, Equation (4.4) becomes:
1 )
min Lv = L £ (4.5)
veF k1 X% =y KK
Similarly, Equation (4.3) becomes:
b g b o
min 2 Ekvilj) = 2 lkfilJ) {4.6)
v(ij)eF(ij) k=1 k=1

Condition (4.5)* is easy to check: the right hand side can be
directly evaluated, and the left hand side requires the compu-
tation of the shortest route flow under the metric {Ek}.

If we represent the m.c. flow as a collection of weighted
routes (see Section 1), Equation (4.6) becomes:

NP
min ) r..= ) J 2larx,)) (4.7)
7' ker! A R | ksnn kw3

where

7' 1is any (i,j) route
L. m=1, ..., NP, are the (i,j) routes used by commodity (i,3)

“m’ m=1, ..., NP, are the associated weights

NP is the total number of routes used by commodity (i,3)

Let £(m) 2 Z Ek; Equation (4.7) becomes:

ken
NP
min £(n') = ] a 2(n) (4.8)
' m=1

¥4 different derivation of Equation (4.5) is given in [19].
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NP
Recalling that B 0, vm, and X 4= 1, we obtein, for all
m=1
commodities (i,j):
= = :
Lim)) = &(n,) = ... A(m) < A(n') (4.9)

where n' is any (i,j) route.

Cnndition (4.9) is stated also in [17]; a similar equi-
librium condition was mentioned by Wardrop [20]. In fact, the
condition is very intuitive: it states that all non-zero weight
routes must have the same marginal "gain,"” whereas the zero-
weight routes must be less (or, at most, equally) convenient
than the weighted ones. For an immediate interpretation of
Equation (4.9), suppose there are two paths, ﬂp and "q’ both

with non-zero weight, which do not satisfy Equation (4.9), i.e.,
z(np) > l(nq), say. An infinitesimal deviation of commodity

(i,j) from np to nq produces a variation §P < 0; therefore, the

initial flow configuration was not stationary.

Notice that test (4.5) is computationally imore convenient
than test (4.9), as (4.5) only requires the knowledge of the
global flow, while (4.9) requires the knowledge of all the paths
(19].

The question remains, whether the stationary point is a
local (or global) minimum. If P(f) is strictly convex, the
stationary point, if it exists, is unique and is a global min.
if ?(f) is not convex, further considerations are required.

5. DESCRIPTION OF THE FD METHOD

The results of the previous section indicate that, if f is
not a stationary flow, then the shortest route flow (evaluated
under the metric !k = BP/Bfk) represents the flow deviation of

steepest deorease for P. This fact suggests a method, which we
call FTw Deviation method, for the determination of stationary
solutions of unconstrained, non-linear, differentiable flow prob-
lens P(f).

The FD can be regarded as an operator (denoted by ID(v,\) @)
which maps an m.c. flow f into another m.c. flow f' and is de-
fined as follows:

FD(v,A) @ £ = (1 - \)f + Av = £! (5.1)

=4

where
is a properly chosen m.c. flow ¢ F

v
A is the step size (0 < X < 1)
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Clearly FD is a map of F onto itself:
FD(v,\): F~F

Now, for each £ € F, we want to determine a pair {v,A) in such
a way tha® the repeated application of FD{(v,)\) (starting from

any flow go), produces a sequence {f"} which converges to a
stationary flow. 1If we can define such a FD(v,)), then we have
an algorithm for the determination of stationary flows.

It can be shown [21] that, for z function P(f) which is
continous, nondegenerate* and lcwer bounded, the following con-
ditions? are sufficient for the convergence of an TD-mapping
to a stationary flow:

(i) AP(f) > 0 wf e F
(ii) AP(f) = 0 => f stationary
where AP(g) = P(g) - P(FD ® f)

Conditions (i) and (ii) require that the FD method be a true
steepest descent method.

Again in [21] it was shown that under reasonable assump-
tionsS on P{f}, the following definition of FD(v,X) satisfies
conditions (i) and (ii):

v

~

A

shortest route flow under metric lk“

minimizer of P[(1 ~ A)f + Ayl, 0 <A <1 (5.2)

e e

*P(f) is defined to be nondegenerate if, for any two distinet
statiorary flows, say fz and fz, we have:

P(fl) # P(FE).

tSimilar, but more restrictive conditions were stated by Dafermos
in [17].

8The assumptions are: P(f) continuous and lower bourded; first
partial derivatives continuous and nonnegative; second partial
dertvatives < + =; P(f) nondegenerate. The nonnegativity of
the first partial derivatives 18 a reasonable assumption, as,
in general, the performance that we want to minimize is an in-
ereasing function of the flow in each arc.

Notice that, by assumption, P = aP/afk > 0; this fuct excludes

the presence of negative cycles, which would nave coused the
failure of the shortest rcute computation (and therefore of the
FD algorithm).

<9
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Another valid definition of FD is the following.
Let:

"gj a shortest (i,j) path (under metric zk)
q 4 : TR |
"ij longest (i,3j) path, with aij >0

Define {i,j) - deviation as the deviation of commodity (i,3J)
from ng to ﬂgj, which minimizes P(f). Define the FD operator
as the composition of all (i,j) deviations: =such a defirnition
satisfies (i) and (ii).*

A general algorithm, based on the first definition of the
FD operator, is outlined as follows:

1. Find a feasible starting flow fo

2. Letn=20

3. gn+1 - FD(gn,ln) @ gn
b
4. 1£ 1p(e™ - (™) <€, for if T 2 (£ -V < ¢,
- : oy Kok K

where € and €' are acceptable positive tolerances, stop.

Otherwise, let n = n + 1 and go to 3,

The algorithm converges to stationary points; however, the
only stationary points of stable equilibrium are the local minima,
g0 we can assume that the algorithm converges to local minima.

In the case of P(f) strictly convex, the algorithm converges
to the global min (see Appendix I for a proof of convergence and
an upper bound on the error).

For P(f) non-convex, one should explore all local minima,
in order to find the global minimum., However, a systematic
search is impossible, for larae-size networks, so heuristic ap-
proaches (like the repeated application of the FD algorithm to
various initial flow configurations) have to be devised. In the
case of P(f) concave (or quasi-concave [23]), the local minima
correspond to extreme points of F, i.e., to shortest route flows
[23): this property, as shown later, greatly simplifies the FD
algorithm and speeds up its convergence.

In the following sections, the FD method is applied to the
solution of Problems A and B.

*Such an FD operator is essentially the "equilibration operator"
defined by Dafermos 117].

tSueh a tewt ie obtained divectly from the statiomarity condi-
tion (3.6).

PO -

S



31

112  FRATTA, GERLA AND KLEINROCK

6. THE ROUTING ASSIGNMENT

Let us consider Problem A in Section 2, The performance
T(f) (see Equatiorn (2.3)) is strictly convex (separable sum of
strictly cenvex fun-.ions), and the feasible set FA is a convex

polyhedron. Therefore. if the problem is feasible, there is a
unique stationary point, which is the global minimum. The ad-
ditional constraints are included in T(f) as penalties; there-

fore, if we can find a feasible starting flow go £ FA’ Problem

A can be regarded as an unconstrained m.c. flow problem and
solved with the FD method.

Let us check if T(f) satisfies the conditions fcr the con-
vergence (see Section 5). The first and second partial deriva~-
tives are:

c.
%'%-=l [——-—-—1————5+ Py (6.1)
i v (Ci - fi)
2 0 for iy j
o - 2, (6.2)
aE9F, |1 L fmie)
Y (Ci - £.)

From Equation (2.3), the optimal solution g*, if it exists (i.e.,
if the problem is feasible), satisfies the capacity constraints
as strict inequalities (f; < Cy % i), Therefore, we can find an
€ > 0 s.t.:

£ ¢ F 8Fn ity <k, =) (6.3)

The application of the FD method can be restricted to FA CIFA;
for £ ¢ F;, the sufficient conditions on the first two deriva-

tives of P(f) (as from Section 5) are satisfied; therefore the
FD algorithm converges to the global minimum.

In order to find a flow go € FA’ several methods are avail-

able. One of them was described in [19]. Another method (ap-
plied below) consists of picking any f ¢ F, and then reducing
the flows in all arcs by a scaling factor RE, until a feasible

flow fo = RE*f ¢ FA is obtained; fo satisfies a reduced require-

. : . 0
ment matrix Ro = RER. The FD method is applied using f as
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starting flow and Ro as starting requirement; after each FD

iteration, the value of RE i8 increased up to a level very close
to saturation. The search for a feasible flow terminates when
one of the two following cases occurs: either RE > 1, and a
feasible flow is found; or the network is saturated, T(f) is
minimized and RE < 1. 1In the latter case the problem is in-
feasible and we are finished.

The FD algorithm for the solution of the routing problem
consists of two phases, Phase 1 and Phase 2. In Phase 1l a

feasible flow g° is found (if it exists), or the problem is de-
clared infeasible. In Phase 2 the optimal routing is obtained.
The algorithm is outlined as follows:

Phasge 1:
C. With REO =1, et fo be the shortest route flow computed at
f =0, i.e. with metric ¢ 4 [aT/3f. ) = 1/y(1/C, + p)).*
< k k £ =0 k k
Let n = 0. k
n
fk
l. Let ¢ = maxf—
n K Ck

If on/REﬁ:l, let fo = gn/REn and go to Phase 2. Otherwise,
let RE ., = REn(l -e (1l ~- on))/cn, where ¢ is a proper
+olerance, 0 < e < 1.

+
Let g" oy g"(mn+l/asn).* Go to 2.
1 n+l

2. Let £7 " =FD @
where FD is defined as in Equation (5.2).
3. If n=0, go to 5.

[

*The shorteet route s it8 therefore the route for which

4 4 . ¢ v . . A _
ke"i' (Pk + J/Ck) ts mintmwn, Notice that I/Ck 18 the trans

migaion delay per bit on channel k and pi 18 the propagation

delay. No queueing delay ie considered as the traffic ts zero
(fk = 0). So, as we expect, for fk + 0, the shortest route

L2y minimizes the sum of tranemission + propagation delay.

nt1
tg

~

18 a feasible m.c. flow with requirement RE .-

P o A W S A
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] n+l
4. If 'kzl £, (v, -9, )| <0 and IREn+1 - REnl <§,
where 6 and § are prooer posiZive tolerances, and v is the
shortest rou.e flow computed at gn+1, stop: the problem is

infeasible within tolerances § and §. Otherwise, go to 5.
5. Letn=n+1 and go to 1.

Fhase 2:
0. Let n=0.
1. ™ amo "

2. If lz !.k(vk = f:)l < 8, vhere 8 is a proper pogitive tol-

erance, stop: g“ is optimal within a tolerance 8.
Otherwise, let n=n + 1 and go to 1.

The algorithm, in the form described above, provides only
the optimum global flow f. If complete information about the
routes take.a by each commodity is required, a simple updating
of routing tables at each FD iteration allows one to recover it
at the end of the algcrithm (see [19]).

7. NON-BIFURCATED ROUTING FOR LARGE AND BALANCED NETS

An m-c. flow is defined to be non-bifurcated if each com-
modity flows along one route only. Some applications require
a non-bifurcated routing assignment; in some other applications
the non-bifurcated solution is a very good approximation to the
optimum bifurcated one, and is obtained with considerable saving
in the amount of computation (see below). The above reasons
motivate an investigation of the non-t+ fuicated routing assign-
ment.

The introduction of the "non-bifurcation" constraint re-
duces the set of feasible m.c. flows to a discrete set: the
number of elements in the set is equal to the number of all
possible combinations of "ii paths, ¥ i,j. Continuous tech-

niques, like the FD method, cannot in general be used; discrete
techniques, on the other hand, are very involved and computa-
tionally prohibitive already for nztworks of medium size (on

the order of ten nodes). 1t is of interest to devise, therefore,
efficient sub-optimum techniques. We will show that, in the
important case of "large and balanced networks," a modification
of the FD method can be successfully applied.

.M&d
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A network is said to be large if it has a large number of

nodes; it is said to be balanced if the elements Ty of the re-
quirement matrix R are not highly diversified one from the other.
For a more precise definition of "balanced," let r:

ré—_—]L_-— r
(n=-1)n .. "ij

1]
be the average requirement per pair of nodes and let m:

m 4 max [r,./r]
(ij)
be the ratio between the max and the average requirement.* No-
tice that m > 1 and that m = 1 corresponds to a uniform require-
ment matrix. A network is said to he balanced if m is close to
Y
We now combine these ideas into the notion of "large and

balanced net." Let:

A__Km

n v (7.1)

(n - 1)p
where: K a b/n, the average arc to node density of the graph.

-t A ]

= r..p.. where is the length of the

P (ilj 1Jpl:!)z i3 Pi; g
shortest (i,j) path (length of a path 4 number of
arcs in the path); p' is therefore the average
path length, when all commodities are routed along
the shortest paths.

A network is defined large and balanced if n << 1. In order to
motivate such a definition, let us consider, for an arbitrary
m.c. flow £, the ratio of the total flow f in arc k, versus the

(i3)

contribution f given by any commodity (1,)). Let us evalu-

ato the average of this ratio, taken over all arcs:

f b b
average T]% 81 -—(i-li)— > g £ (7.2)
£ P b gy £ J bor 23

*Many other appropriate definitions of m are possible, for ex-
A\21/2
aplem’ =|¥(1 - , in which case m' = 0 corresponds

to the wuniform traffic requirement.
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It was shown by Kleinrock [l] that:
L -
Z fk =y(n-1)n - p
k=1

where: p 4 ( z rijpij> z rij’ and pij is the number of arcs in
ij ij

(i,j) route, relative to the routing ass:gnmeni under considera-
tion; p is therefcre tiie average path ler jth.*
Equation (7.2) becomes:
f sy -l
k (n - i)nep (n-1)p
)= z
fk bm Km

average = 1/n (7.3)

From (7.3) the following property holds:

Property (7.1}): In a large and balanced net, on the average,
the contribution of one single commodity in any are can be con-
gidered infinitesimal, as compared to the total flow in that
are.

In order ;0 show how the FD method applies to the non-
bifurcated solution of large and balanced nets, let us consider
a new version of flow deviation, defined as the composition of
deviations involving only one commodity at a time. Suppose
that the flow f is non-bifurcated; that commodity (i,j) flows
on "ij; and that ";j is the shortest (i,j) route, vnder the

usual metric {lk}. The FD method 4dr.iates a proper amount
Aexigs (02X < 1), of (i,3) commodity from m;, to s, Such

that the performance T(}):

where:

SAL s i it Moy R e i R s i X

o) &g -0 + v (7.4)
b3

contains .. :
1)

]
v contains ..
b ij

- et Wi

is minimized. We can rewrite Equation (7.4) as follows:

3
1

b
TO) = T(0) + X ] (v, = £) + 0Dy - £)] (7.5)
k=1

*Notice that D depends on the particular routing assignment,
while p' depends on requirement matriz and topology only; aleo

notice that 5 > p'.
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where 0( ) contains thke terms of order higher than 1. Due tr
Property (7.1), the terms (vk = fk) can be considered as in-

finitesimal, and the term 0( )} is infinitesimal of crder higher
than 1. Therefore, as long as 8, defined as:

< ?
0= g (v - f£f)
kel k 'k 3
is sufficiently negative, the texrm O( ) can be disreqarded and

the minimizer of T(A) in Equation (7.5) is at the boundary
(Amin = 1); hence the FD method preserves the non-bifurcated

characteristic of the flow. On the other hand, if 8 vanishes,
the higher order terms become important and it mi~ht }appe.
that Amin < 1; however, 6 = 0 implies that f is very cloge .«

optimum (see Appendix for kounds on the error). Therefore, the
FD method provides non-bif' -zated solutions which are very good
approximations to the optimu-~ bifurcated solution, and, as a
consequence, very good approximations also to the optimum non-
bifurcated solution,

The non-bifurcated FD algorithm is next introduced:

Non-Bi furcated FD Algorithm

Let fo be a starting feasible non-bifurcated flow.*
Let n = O.

1. Compute SR(gn), defined as the set of shortest routes under
metric {lk}.

2. Let g-= fn.
For each commodity (i,3j):

2.a Let v be the flow configuration obtained from g by

deviating commodity (i,j) to the shortest route w' .
1]
given by SR(fn).

2.t If [y feasible and T(y) < T(g)], go to 2.c. Other-
wise, go to 2.d.
2.c g=v
2.d If 411 commodities (i,j) have been processed, go to 3.
Otherwise, go to 2.a.

3. 1f g = f®, stop. The FD method cannot improve the non-

+3
bifurcated solution any further. Otherwise, let fn =g,
n=n+1and go to 1.

*Such a starting flow can be found with a Phase 1 procedure,
similar to that described in Section 6,
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The algorithm converges in a finite number of steps, as there
are only a finite number of non-bifurcated flows, and repeti-
tions of the same flow are excluded by the stopping condition.

An applicaticn of the algorithm to a large and balanced
net is presented in the application section.

8. THE ROUTING AND CAPACITIES ASSIGNMENT

It was shown in Section 2, that FB’ the feasible set for

Problem B, is a convex polyhedron; it was also shown that the
additional constraint is included in the performance T(f) as
penalty function, so that Problem B can be regarded as an un-
constrained m.c. flow problem,

Let us now investigate the properties of T(f). Recall
(see Equation 2.5):

b 2
( ) ./f.d.)
=) 1%
= +7 £,0] (8.1)
Y(D = X fidi)

i=1

T(£) =

Kleinrock, in {1], considered this case and also dealt exten-
sively with a simplified version of Equation (8.1)* He showed

2 .
that, whenever two routes, say "ij and wi., with the same num-

ber of intermediate arcs, are available for commodity (i,j),
then T(f) is minimized when the entire commodity is routed on
one of the two routes only. Such a result, obtained under re-
strictive assumptions, suggests the conjecture that the optimal
flow be, in gereral, non-bifurcated. In fact, further research
has been done [21], [22], and it can be shown that T(f) in

in Equation (8.1) is quasi~concave on FB’ i.e., given any two
feasible flows f. and £ [23]:

> T(eh) < T = ME + AL

i 2
T(£) < T(f)
where: 0 E_X <1,
More gene:ally, T(f) can be shown to be quasi-concave for all
"routing and capacities assignment” problems with concave cost-

capacity functions [21}; the linear case is therefore a special
case.

*Essentially, di = 1 and pé =0, ¥ti.
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As a consequence of gsuch a property, the local minima are
at extreme points of FB' i.e., they correspond to shortest

route flows (Bee Section 3), which are a subclasg of the class
of non-bifurcated flows.

The FD method, when applied to Problem B, ~an be greatly
simplified: the step @ize A is always equal to 1 (if we find
a downhill direction, we go all the way down, due to the quasi-
concavity of T(A)), anc. the flow patterns generated are com-
pletely defined by just one (n x n) matrix, the shortest route
matrix.

A schematic description of the 7D algorithm, as applied
to Problem ?, is as follows:

0. Suppose* g° € FB: let n = G.

3
1. Let £ =m0 "

2. 1If (T(§n+1) Z_T(fn)), stop; gn local minimum. Otherwise
let n=n+ 1 2and go to 1.

The convergence of the algorithm is guaranteed by the fact that
there are only a finite number of shortest route flows, ard repe-

titions of the same flow are not possible, as T(gn) is strictly
decreasing.

The partial derivatives, used for the shortest route compu-
tation, have the following expression:

Notice that 2% =5 notice

that:
£.+0 i
1

which means *hat, whenever the flow (and therefore the capacity,
from Equation (2.4)) of an arc is reduced to zero at the end of

*The problem of finding a feasible starting flow is discussed
later in the gection.
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an FD iteration, then in such an arc, the flow and capacity are
zero for all subsequent iterations, as the incremental cost of
restoring the flow (= aw/afi) is infinity.*

k=20
= Lengths "i
assigned at random

SR mtx
and flow assignment

no
___——_

§ ves

Apply FD method

Find local min.

Choose glabal cptimum

Fig. 2 Block diagram of the FD algorithm fo: Problem R.

*This property euggests a method for the design of the topology:
we can start from a topology which is highly connected, and
eliminate arcs with the FD method, until a suboptimal configura-

tion i3 obtained [21]. A gimilar approach is used by Yaged in
[18].
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The FD method leads to a local minimum, which depends on
the choice of the feasible starting flow. In order to find
several local minima, a mechanism that produces a large variety
of feasible flows is required. We propose the following ran-
domized procedure for the generation of feasible flows:*

1. Assign initial equivalent lengths {zg} to the arcs at random.
2. Compute the shortest route flow f0 according to the metric
0 o
{zi}'

3. 1IfD -

o~ T

fidi > 0, gO is feasible and can be used to start
i=1

the FD algorithm. Otherwise go is rejected.

The initial random choice of the lengths guarantees a cer-
tain randomness in the starting feasible flow, thus providing a
method for finding several local minime. After a convenient
number of iterations, the global minimum is chosen as the mini-
mum of the local minima. This provides a "subcptimal" solution.
A block diagram of the method is given in Figure 2.

SR UTAM NCAR AWS CASE CMU MITRE
AMES
ILLINOIS
ucse LINCOLN ETAC
LAB
450C
N STANFORD MIT
HARVARD
r-s [’ S SN,
UCLA RAD  AFWL 88N BURROUGHS

Fig. 3 A 2l-node ARPA topology.
9. APPLICATIONS
As an application of the FD method, Problems A and B are
solved for the ARPA Computer Network. The ARPA Computer Network

is a 5/F communication network connecting several computer

*Another procedure was proposed by Yaged [18].
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facilities in the United States. A detailed description of the
network is given in [3] ~ [8], [25] - [29]. Due to the fact
that new computer centers are continually joining the network,
its topology has been changing quite rapidly; in these applica-
tions we refer to one of the earlier proposed topologies, with
21 nodes connected by 26 full duplex channels (see Figure 3).
We also assume that the traffic requirement is uniform between
all pairs of nodes.

9.1 ARPA Network: The Routing Agsignment

The traffic requirement R = {rij} is assumed uniform:
r = 1.187 [kbits./sec.}* for : # j

0 for i = j

Firgt, we show that, for the 21 node ARPA net with uniform
requirement, the "large and balanced net" condition hoids. From
Equation (7.1), n is given by:

mb
nj == =
n(n - 1)p
In the present case:
n=21
B'> 1

b = 52 (each full duplex channel represents a pair
of directed arcs: hence 26 x 2 = 52),

Hence: n < 0,12 << 1

The condition is satisfied. We can therefore apply both optimal
and non-bifurcated FD algorithms and compare the resulits.
The result of the optimal FD algorithm is: Tmin = 0.2406

sec.,, obtained after 80 shortest route computations, with an

accuracy of 10'_4 on T. The result of the non-bifurcated FD
algorithm is: Tmin = 0.2438 sec., obtained after 12 shortest

path computations. The algorithms were programmed in Fortran
and run on an IBM 360/91; the execution time was 30 sec. for

*The traffic requirement at saturation is roy = 1.250

{kbits./sec.] (see Figure 4). We chose r = 0.95 ot = 1.187

in order to have a feagsible, but difficult, requirement.
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THE FLOW DEVIATION METHOD 123

the cpcimal algorithm and 4 sec. for the non-bifurcated one.*
The error of the suboptimal non-bifurcated solution, with re-
spect to the optimum, is less than 2 percent; the fact shows
how powerful the non-bifurcated algorithm is for large and
balanced nets, and suggests that a convenient modification of
it could be useful for the solution of very large nets {21].

400 Co "OPTIMAL ROUTING FOR ' |
Cy *OPTIMAL ROUTING FOR
RE=0.8
IMAL ROUTING FOR
300 - C .ﬁnl,o oy
i
1
& |
Co, c,ac,
100 |- |
| i
| |
! i
0 A 1 gi——4- -y ==y W i 1 J
o 0.2 04 0s [T 1.0
RE ’ i
RE, RE,
RESAT, RESAT,

Fig. 4 Average delay T versus normalized traffic RE,
using various routing schern=s.

Figure 4 illustrates the application of the non-bifurcated
algorithm. Recall that RE is the traffic level normalized to
r = 1.187 kbits./sec. The traffic is first routed along the
shortest routes computed for REO = 0; curve C0 plots the delay

T versus RE, using such a routing scheme (which we refer to as
RSO). With RSO, the saturation level for the traffic is

RESATO = ,85 < 1; RE = 1 is infeasible, and therefore we are

still in Phase 1. Let gl be the flow obtained by routing traf-

fic level REl = .95 RESATO = ,8, according to RS and apply to

O,
gl the FD algorithm; a new routing scheme RSl is obtained, which

, corresnonding to RS

improves T(REl). Curve C saturates at

1 1’

*We expect to be able to reduce considerably the computation
time by optimiazing the code and by improving some hard working
subroutines, like the shortest route and flow assignment rou-
tines [16]).
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RESATl = 1.05> 1; RE = 1 is feasible and Phase 2 is initiated,
with R22 = 1. At the end of Phase 2, the sub-optimal, non-
bifuxcated routing scheme R52 is found; curve C2 corresprding
to R52 practically coincides with curve Cl’ in Figure 4, as the

scale of T is not detailed enough to show differences in values.
Notice that, as expected, the routing Rso gives the best results

at low traffic levels; in fact, RS
RE = 0.5.

0 is almost optimal up to

9.2 ARPA Network: Routing and Capacities Assignment

The set of channel capacities available for the ARPA Net-~
work is discrete: Table 1 contains the list of capacity options
and corresponding costs considered in the present application
t6]. In order tc be able to apply the FD method, the discrete
cost-capacity curves have been approximated with continuous,
piece-wise linear curves (see Figure 5). We do not discuss the
details of the approximation, but merely mention that they must
be concave.* The concavity of the cost-capacity curves implies
that the local minima are shortest route flows (see Section 8).
The FD method can, therefore, be applied in a form similar to
the one presented in Section 8; a few modifications are required
due to the ncn-linearity of the cost-capacity curves.

CHANNEY, CAPACITIES AND CORRESPONDING
COSTS USED IN THE OPTIMIZATION

Capacity Termination Cost Line Cost
[kbits/sec] {$/mcnth] [S/month/mile]
7.2 810 o
19.2 850 2.10
50 850 4.20
108 2400 4.20
230.4 130¢ 21.00

Table 1

Note: The total cost per month of a channel is given by:
total cost = termination cost + (line cost) x (length
in miles).

*0ther concave approximations can be congidered: see [6], [18].
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‘dn‘cii
d"\ j

/

T
q

d': staircase corresponding to discrete capacity levels.
d": plece-wise linear approximation

Fig. 5 Cost-capacity curves for arc i.

A schematic description of the algorithm follows here:
6. Let DO be the total dollar investment.

4]
Let £ € FB

0 : . ; ; L
Let C be the optimal capacities assignment for fixed fo.
Let To(g) be as from Equation (8.1), using linear approxi-

: 0]
mations of the cost-capacity curves around C .

Let n = 0.
1. Let:
§n+1 = shortest rout~ flow computed at £"

(using metric g, = laTn(f)/afk]f=§n)-

n+l

2. Let C be the optimal capacities assignment for fixed
+ . .
gn 1, and let Tn+1(f) be as from Equation (8.1), using
linear approximations of the cost-capacity curves around
Cn+1

3. If (-r £y 5 ¢ (f")), stop; " is a local minimum.
ntl '~ - 'n~ =

Otherwise, let n=n + 1 and go to J.

*The optimal assignment of capactties, given the flows and the
total dollar investment, for concave cost-capacity functions,
has been discussed by ceinrock (6]).

14
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The result of the above described algorichm is a local
minimum for the continuous cost-capacity problem. In order to
get a solution for the discrete problem, the capacities and
flows given by the algorithm are "adjusted" in the following
manner: 1in all arcs, the capacity is increased to the upper
value of discrete capacity available (thus increasing the total
investment to D > Do); then, the routing is optimized once again

with the FD routing algorithm.

The above described technique is clearly suboptimal. We
cannot guarantee that the solutions so found are local minima;
in fact, it is not even possible to define a local minimum in
a discrete problem. Other suboptimal techniques have been pro-
pesed [7,10,21); however, the optimization of a network with
discrete capacities still remains a formidable (and basically
unsolved) problem.*

140 0 ¢ =i003 (BITS/SEC x NODE PAIR)
® r =925 (BITS/SEC 1 NODE PAIR)
4\ A r 1848 (BITS/SEC 1 NODE PAIR)
5 O r=TTI (BITS/SEC x NODE PAIR)
120F N\ Do= COST OF ALL 50 K BITS NET
N\
N\
\\ ‘i
100 N
o
B Y \ !
€ \ k
N o
* so S \ N
O\ 3
L SO ™
e \
“o Wy,
6o - \\
h Y
A
4D PR G U W G TR SN YONEY SR TUNOY S |
75 80
0, 0 (K$/MONTH)

Fig. 6 Delay T versus cos: D of various undominated capacity
assignments for different traffic levels.

*The optimum solution can be obtained, with dynamic programming
techniquesg, in the special case of a centralized network [30].
In fact, for such a case, the problem reduces to the optimal
assignment of capacities only, as the flows are already deter-
mined by the tree-structure topology.
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The technique has been applied to the design of the ARPA
Network. Four cases have been run, each with a different value

of uniform requirement r (see Figure 5). The initial cost D0

was made equal to the cost of the proposed network with all 50
kbit channels (DO = 71,000 $/month). 1In order to be able to

compare the 50 kbit capacities assignment to the assignments
found with the FD method, the minimum . .ay T, with all 50 kbit
cepacities (i.e., with total cost D = DO), was reported on the

graph for each value of r (T was obtained from the curves in
Figure 4). The delay T and the total cost D of the undominated*
solutions are plotted in the graph of Figure 6.

10. CONCLUSION

The FD method can be applied to =ny umconstrained m.c.
flow problem when some reasonable assumptions on P(f) are satis-
fied. 1t also can be applied to comstrained flow problems: in
particular to problems that include the constraints as penalties
in P(f), or that have been decomposed with the Dantzig-Wolfe
method. Local minima are in general attained; for convex prob-
lems, the global minimum is found.

The FD method seems to be an ¢fficient tool for the design
of S/F necworks: for example, if we consider the optimal rout-
ing problem, it can be shown [19] that the amount of computation
per iteration required by the FD method is comparable to that
of the heuristic techniques so far proposed {16,24].1 A general
statement, however, about the effectiveness of the FD method as
compared to other methods would not be approoriate: many fac-
tors, which depend on the specific application {(like trade-off
between precision and computational speed) should be considered
in order to select the proper approach.

APPENDIX: CASE OF P(f) STRICTLY CONVEX
1f P{f) is strictly convex, a direct proof of convergence

of the FD algorithm, defined in Section 5, is available and a
lower bound can be established.

*1 golution (Ti’Di) i8 said to be dominated by (Tj’Dj) %

)]
(Dj < Di) and (Tj < Ti'

A solution 18 undominated if it is not dominated by any other
solution.

tThe two bottlenecke, common to both approaches, are the short-
est route computation and the flow assignment [16].
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Convergence
We want to show that:

lim £
oo

= £* (A.1)

-~

where f* is the global minimum of P(f) on F, and {g“} is the
sequence generated by recursive application of the FD operator

on 2 given starting flow §o. The associated sequence {P(fn)}

is monotonically non-increasing and lower bounded by P* & P(£"),

therefore it must converge: N
lim P(£f) =pPp' > P* (A.2)
o :

Also, recailing that:

p(e") - p' = | ap(eh
g=n
where

se(ehy L piehy - pmo Y = pigh - et

and recalling that:

Ap(gz) > 0we

we have, from Equation (A.2):

lim AP(£") = 0 (A.3) 1
me

Suppose (A.l) is false; this implies, since P(f) is strictly
convex, that P' > P*. However, in such a case, we are able to
establish a relation which contradicts Equation (A.3) as fol-
lows.

Let us first establish a lower bound on AP(f). Let:

e~

P(M) =P[(1-Mf+2av]l, 0<Arc<l

where: v is the ~hortest route flow computed at f. Using
Taylor's expansion:

2 i
P(\) = P(0) + x[d—P] P xz[i—%] (A.4) ‘
djr=0 2 dr“Ja=t :
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where i, is a proper value in the interval (0,)) as usual. By
assumption, the second partial derivatives of P(f) are upper
bounded; therefore, the second directional derivative is «lso
upper bounded, and Equation (A.4) becomes:

P(M) - P(0) < A 6 +-§ %M (A.5)

where

b
} 4. (v, -~ £) <0 (r.5)"
k=1 k 'k k' —

>

M: upperbound on dzP/dAZ.'
After minimizing both sides of Equation (A.5) over ), and re-

calling that min [P(A) - P(0)] & -AR(£), w: get:

oM if -o/M < 1
AP(£) > (A.6)
M/2 if -e/M > 1

Equation (A.6) can be rewritten as follows:

2
op(£) > 2 min 950 (A 6)"
M

Inequality (A.6)' represents a useful lower bound on AP(f).
Consider now:

e

POM 2 PI(L - NE" + Ae£¥]
where: 0< ) <1

P()) is strictly convex, therefore it lies above its tangent
line at ) = O:

b
PO) > P(£) + A[E R (Er = £) (A.7)
k=l * °

_ [er
where: lk = [afk]fn

Letting A = 1 in (A.7) and recalling from (A.2) that P(fn) > P
b .
*y _ ¥ 4 .
P(fy =P > p +k£lzk(fk 3

n

k) (A.8)

*Notice that M > 0 as P()) is strictly convex.




(@

O

439

130 FRATTA, GERLA AND KLEINROCK

Let v be the shortest route flow computed at fn; we have, from
Equation (A.8): -
: b
]
2P+ ] gy
k=1

* n
P X fk) (a.9)

From (A.9), using definition (A.5)', we have:

' - P* < o (A.10)
Introducing (A.10) into (A.6)' we get:
] * 2
ap(e™) > Momin [ =F)  H{ .o (A.11)
~ __2 Mz

The r.h.s. of Equation (A.11) is independent of n and strictly
positive, therefore:

lim AP(£") > O (A.12)
n->o

Equation (A.12) contradicts Equation (A.3). Therefore (A.1l) is
true.

Lower Bound

By replacing g" with a generic f ¢ F in (A.7), and letting
A =1, we get, after a few steps:

b

P(E) > (D) + § g (v - £
== k=1 Kk k

) (A.13)
where: g* is the global minimum
v

is the shortest route
flow computed at £

From (A.13), lower and upper bounds on P(f*) are readily avail-
able:

b
9 * ~ -
B(L) > P(EY) > P(EY + ] g (v, = £))
k=1
b
Notice that the test for optimality based on Z L (v - £)
k=1 k 'k k

(see Section 5) is very powerful in the case of P(f) strictly
convex, as it provides an upper bound on the optimal value
error.
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ABSTRACT

A switching networnk may be informally described as a col-
lection of single-pole, single-throw switches arranged 8o as
to connect a set of termincls called inputs to another set of
terminals called outputs. It is non-blocking if, given any set
of conmnections from some of the inputs to some of the outputs,
and an idle input terminal x and idle output terminal y, then
it 18 possible to comnect x to y without disturbing any of the
exigting comnections. Denote by o(a,b) the minimal nwnber of
switches necessary to comnect a inputs to b outputs using a
non-blocking network. We are interested in studying the growth
of a(a,a) as a » =». Resu:lts of C. Clos show that ola,a) <

an/Zog a-log 2

c We gshow that ola,a) < 8a(log20)2.

1. INTRODUCTION

A network N consists of a graph G; two sets of vertices of
G, denoted A and B and called, respectively, the (sets of) in-
puts and outputs; and a set P of paths of G. Each path in P
connects an input to an output &nd meets no other inputs or
outputs. We write N = (G,A,B,P). A state of N is a subset S
- of P such that no two paths in S have a common vertex. A state

S defines a bijection fs from a subset of A to a subset of B as

. follows: Suppose p € S and p connects x € A toy € B; put
fs(x) = y, and repeat this for each path in S. We shall say

that a path p of G is udmissible if p ¢ P. If x is a vertex of
¢ we shall say “hat x is busy (in the state S) if x lies on a
path p € S; otherwise we shall say that x is Zdle (in the state
S). If x is an input of G and y is an output of G, we shall

- Networks, 1: 367-377
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say that it has access to y (in the state S) if there exists a
path p ¢ P connecting x to * ind such that S U {p} is a state.

A network N = (G,A,B,P. may be interpreted as a switching
device; under this intezpretation, the elements of A are con-
sidered as input terminals, the elements of B are considered as
output terminals, and the edges of G are considered as single-
oole, single-throw switches which are normally open. Then a
path p, which connects x €¢ A to y ¢ B may be thought of as a
sequence of switches which, when closed, connect x to y. The
state S yields a collection of switches (all edges on any path
in S) which, when closed, connect inputs to outputs in the man-
ner described by the function fs.

The network N = (G,A,B,P) is said to be nom-blocking if
given any state S of N and idle vertices x ¢ A, vy € B, then x
has access to y in the state S. In terms of the switching net-
work interpretation mentioned akove, this means that if x and y
are idle input and output terminals, respectively, then it is
possible to establish a connection hetween them witbout dis-
turbing the existing connections.

From now on, all the networks we study will have disjoint
inputs and outputs (i.e. AN B = @g).

Given positive integers a and b we are interested in find-
ing those ncn-blocking networks N = (G,A,B,P) with IAI = a,

IBT = b for which the number of edges of G is minimal. We shall
denote this number by o(a,b). In terms of switching networks,
this amount to finding non-blocking networks using a minimal
number of switches. An obvious non-blocking network with a in-
puts and b outputs is the network whose graph is the complete
bipartite graph on vertex sets A and B with IAI = a and IBI = b.
In this graph the set of vertices is A U B and there is an edge
connecting each vertex in A to each vertex in B. The set P con-
sists of all paths consisting of exactly one edge. Thus P has
ab elements. In the switching network interpretation, this
amounts to an a by b crossbar switch. When the names of the
sets A and B are unimportant, we shall denote this network by
Cab' The network Cab shows that o(a,b) < ab. .

It was Clos [2] who showed that ¢(N,N) < N for all large
N. His methods, which will be described later, show that o(N,N)

<cne10I M+ (109 2)  yo Uiy} show that olN,m < 8N(log, 2.

We do not attempt to obtain the smallest possible constant mul-
tiplier, for it is not clear that the exponent 2 can not be re-
duced. In the opposite direction, an elementary argument shows
that o(N,N) > C N log2 N, and nothing stronger is known.
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The author would like to acknowledge many stimulating dis-
cussions with Professors B. Gordon and C. B. Tompkins.

2. CONSTRUCTIONS

We shall say that networks N = (G,A,B,P) and N1 = (Gl,Al,

B,,P)) (re igomorphic (or equivalent) if there exists a graph

isomorphism 4 of G onto G, such that u(A) = A_, u(B) = Bl' and

1 1

u(pP) = Pl' It is clear that the property of being non-blocking

is preserved under isomorphism.

If N = (G,A,B,P) is a network, we define its transpose N'
to be the network N' = (G,B,A,P); clearly N" = N.

If G is a graph and C is a set, we define the graph G x C
to be the graph whose vertices are the ordered pairs (x,c) with
x a vertex of G and ¢ € C; ((xl,cl), (xz,cz)) is an edqge of
G X C if ¢, = ¢, and (xl,xz) is an edge of G. If p is a path

in G whose vertices, in order, are Xqe X Sear xn then by

’
P x ¢ we mean the path in G x C whose veitices are (xo,c),
(xlc), ¥ - g (xn,c). The product C x G is defined similarly.
Now suppose L. = (Gi,Ai,Bi,Pi) (i = 1 or 2) are networks;
we are going to define the network product le L2. We shall

denote this product by N = (H,C,D,Q). Put C = Al x A2 and D =

B1 x Bz. The graph H is obtained from the two graphs G1 x A2

and Bl x G2 by identifying the vertices in B1 x Az, which appear

in hoth graphs. All admissible paths q € Q of N are cbtained as
follows: Let P, € Pi be an admissible patn connecting x, € Ai

toy, ¢ B, (i =1o0r 2). Then p, x X, ends in the vertex (yl,xz)

2
which is the first vertex of Yy X Pye The path q = (pl,pz) is

2
Y, x p, by concatenating them and identifying the common vertex

defined to be the path obtained from the paths p1 x x_, and

(yl,xz). Note that this maps Pl x P2 onto Q.

In the switching network interpretation this construction
amounts to taking |A2| copies of L1 and IBll copies of L, and
connecting the outputs of each of the copies of L
of all of the copies of L, ‘see Figure 1).

1 to the inputs
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L l LZ

The lines do not represent edges; they connect
output vertices of L1 to the input vertices of

L2 with which they are identified.

Fig. 1 L1 x L2

Let ai,bi,c,d denote, respectively, the cardinalities of
Ai'Bi'C'D’ and let qi,h denote, respectively the number of
edges of Gi and H. The following relationship between two by

two matrices is easily verified

a0 a 0 c O
2
gl b1 g2 b2 h 4
If L. is isomorphic to M, and L, is isomorphic to_M2 it is

1 1 2

easy to verify that L1 x L2 is isomorphic to M1 x Mz. Further-

more (L. x L.)' = L! x L!. Finally, we have acsociativity:
1 2 2 1

(Ll X L2) x L3 = L1 x (L2 x L3); we %7111 usually write simply

Ll X L2 x L3. We will abbreviate the k-fold product L x L X

e+ x L by Lk.
We also define a triple product of the three networks Li =
(Gi,Ai,Bi,Pi) (i = 1,2,3) when lBll = |A3|. Let T be a bi-

jection from A3 onto Bl; the triple product of Ll'Lz'L3 depends

upon the choice of T and will be denoted by [L],LZ,LBIT. (In

A el ol it
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many cases L3 wiil be Li and in such cases we will choose T to

b the identity map. In any case those properties of the triple
pr1oduct which we will use will be independent of the choice of 1
and we will frequently write [Ll'Lz'L3] instead of [Ll,Lﬂ,L )
Suppose then that N = (H,C,D,Q) is [LI'LZ'L311'

We put C = Al x Az and D = B3 x Bz; H is defined as the

graph obtained from the three graphs Gl x AZ’ B1 x Gz, and

A
31

2 in G1 X Az with B1 x Az in

B1 X Gz, and by identifying A3 x B2 in G3 x B2 with T(AJ) X B2 =

B1 x B2 in B1 x Gz. The admissible paths q € Q are obtained in

63 x Bz, by identifying B1 x A

the followiny way: Let P, be an admissible path of Li connecting
x; € Ai to y; € Bi (i = 1,2,3) and suppose r(x3) =Y, Then

P x %, ends at (yl,xz); Y, x Py begins at (yl,xz) and ends at
(yl,yz); and Py x Y, begins at (x3,y2) = (yl,yz). The path q is
obtained by concatenating Py X X5 ¥y X Pys Py x Y, and identi-

fying the vertices common to two segments of q.
Note that [L_,L ,L3] is, in general, diffcrent from

1" 2
Ll x L2 x L3 (see Figure 2).
L: LZ L3
L| Fd L, L3
L] \ L L]
N
Ly L2 l L3

The lines do not represent edges; instead they
connect vertices which are to be identified.

Fig. 2 [Ll'LZ'L3]

LA m.ﬁﬂ
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Theorem 2.1: Suppose L; = (Gi’Ai’Bi’Pi) (i = 1,2,3,4,5) are

networks. Suppose T, i8 a bijection of A onto i,. I'hen

1
= : i
atip ialyll, 35ty SR latae g e
where T i8 the bijection from Agx Ag to B, x B, given by

r(a4,a5) = (rz(as),rl(a4)).

3. THE CLOS METHOD AND SOME VARIATIONS

The basic method, due to Clos [2] and quoted by Berés (1]
may be stated as the

Theorem (Clos): Suppose L = (G,A,B,P) is non~blocking and
8§>2r -1. Then N = [Crs’L’Car] i8 non-blocking.

This is a special case of the following more general

Theorem 3.1: Suppose Li = (Gi’Ai’Bi’Pi) (i = 1,2,3) are non-
blocking, that |B,| > |A,| + |By| - 1, and that |B,| = |A3].
Then NT = [LI,LZ,L3]T 18 non-blocking for any bijection t of A3

onto B]'

Proof: Suppose N = (H,C,D,Q) is in state S, and that x ¢ C,
y € D are idle. We must show there exists a path q € Q con-
necting x to y and having no common vertices with any path in S.

Suppose x = (ul,uz) € Al x A2 and y = (v3,v2) € B3 x Bz. There

are ]Al] vertices of the form (u,uz) € Al x A, and at most

|A1| - 1 of thun are busy. Hence at most ]Al] - 1 of the iBl|

1 x A2 are busy and hence at

least {Bl| - |Al] + 1 of them are idle. Denote these rertices

vertices of the form (y,uz) e B

by (yil,uz),(yiz,uz), cees (yir,uz), so that r 3_|Bl! - |Al] + 1.

Similarly, there are vertices (zil,vl),(ziz,vz), ey (zis,vs)

in A, x B, which are idle, and s 3_|A3] - ]B3] +1. Ther + s
O vertices Yy 0¥y 0 oeeen Voo r(zi ),'r(zi Y6 & G r(zi ) all lie

1 2 r 1 2 s
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in B, and
1
r+s 3_[81l - lAll +1+ lBll - |B3l +1
+ - -
> lBll 1+ (lBll lAll IB3| + 1)
> + 1.
> Is] +1
So two of them must be the same. Now the yi are all distinct
3
and so are the t(zi ). Thus there must be a ' equal to a
3 3
t(z., ), say vy, = 1(z, ). Since L, is non-blocking there is a
i 11 jl 1

path pl connecting u, to %y and such that pl x u, has no common
1

vertices with any vertex in S. Similarly there is a path P,

1

from u, to v, in P, such that y, x p, has no common vertices
2 2 2 11 2

with any path in S, and there is a path P, from zj to v, in P3
1 3
such that Py x Vv, has no vertex in common with any path in S.
Let g be the concatenation of p. xu,, v. x p,, and p_ x Vv
1 2 11 2 3
with the appropriate vertices identified. Then q connects ¥ to
y and S U {q} is a state of N_-

2

Pemark 3.2: Suppose a; = IAiI, b, = IBil and g, is the number
of edges of Gi (i=1,2,3). It is easy to verify using (1) that

inputs, b, b. cutputs and that its graph

N=[L,,L ,L3] has a b5

1’72 1%2
has a9, + blq2 + b2q3 edges.
Clos [2] suggests using networks which may be described as
(.,(L,fn, ..., [L,M,L'],L'],L'], ..., L"]
and M = Cn n' ﬁy Theorem 2.1, this is the

’

T, =
where L Cn,2n-1

same as [Lt,M,(L')t], where Lt = L xLXLX s x I (t times).
; : : t+l |
He shows that this non-blocking network, which has n a inputs

and outputs, has

n2(2n - 1)

[(5n - 3)(2n - L = 2n%
n-1

edges. This follows immediately from the above remark. It is
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easy to verify that a non-blocking network with N inputs and
outputs, constructed by this method, will require at least

“ .

2¢1og, :ilog| 2 edges, where Co > 0 is a constant.

Suppose that Lab denotes a network with a inputs, b out-

puts, and whose graph contains a minimal number of edges, namely
o{(a,b). Using two copies of L. shows that o(a,2a) < 2c(a,a).

CoNe

By Theorem 3.1, (L ] is non-blocking and by Remark

L L
a,2a a,a’ 2a,a
3.2, it has < ao(a,2a) + 2ac(a,a) + ao(2a,a) < 6ao(a,a) edges.
Thus

o(az.az) < 6ac(a,a). (2)
10926
Iteration of (2) shows that o(N,N) < C N(log N) . This re-
sult can be improved by considering [La,2a'La,2b'L2a,a]; this

network has ab inputs, 2ab outputs and its graph has 3bo(a,2a)
+ 2a0(b,2b) edges. This shows that

o(ab,2ab) < 3bo(a,2a) + 2ac(b,2b). (3)
Putting a = b and iterating (3) shows that
log, 5
og(a,2a) < C a(log2 a) and since o(a,a) < o(a,2a) we find

that
logz 5
o(N,N) < C N(log2 N)

The exponent log2 5 can be decreased by choosing a and b dif-

ferently. Let a > 1 and B > 2 be the real solutions of the
simultaneous equations

B-1
o

s (4)

@ - 1P1

3/2

Numerical computation shows that a = 2.37638 and B = 2.26922.
Multiplying the second equation of (4) by a - 1 ind substituting

from the first yielus 2(a - 1)8 = aB - 3 or equivalently

3(1/a)8 + 2(1 - l/a)B = 1. (5)

We now show that if u(x) = (log x)B, then u(x) satisfies the

61
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functional equation

#(z) = 3u(x) + 2uly) (6)
where x = zl/a and y = z/x. Indeed,
M(X) + 2u(y) = 3((log 2)/a)® + 2(109 208 (1 - 1/ B
- (log )P
= p(z)

using (5).

Now 0 (x,2x)/x satisfies a functional inequality similar to
(6) where x and y must be integers. It follows that for each
€ > 0, the exists C. > 0 spch that

o(N,2N) < C_ N(log mB*e,

For comparison, lcg2 5 = 2.32193.
4. THE EXPONENT IS < 2

Suppose L = (G,A,B,P) is a network (not necessarily non-
blocking) . We shall say that L is of type T(m,n) if, given any
state S of I, and m idle inputs Xyo Xor eeey X of L, then each

has access, in the state S, to at least n outputs of L.

Lemma 4.1: Suppose L = (G,A,B,P) ie of type Tim,m + n - 1) for
1<mc< k, that M is a non-blocking network with c¢ inputs and d
outputs, and that nd > ale - 1). Then L x M is of type
f(mym + n' - 1) for 1 <m < k where n’' = nd - ale - 1) and a is
the number cf inputs of L.

Proof: Take k < m idle inputs zl, 22‘ naocm & Suppose, for

ko

example, that 2y, 2 eeey 2z, are of the form

2’ k'

(xl,yl),(xz,yl), cen, (X ),

k' Y1
and Zyvgyt Zgrgpt oot %y are of the form (xh,yi) where i > 2;
here the xj are inputs of L and the yj are inputs of M. By

hypothesis, (xl.yl) has access to at least n + k' - 1 vertices
of the form (uj,yj) where the uj are outputs of L. Since M is

non-blocking, these have access to all idle vertices of the

3 i b _‘;.rxb}n\ﬂ
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form (uj,vk) where Vi is an output of M. There are (n + k' - 1)d

such vertices. However, as many as (¢ - 1l)a - (k - k') of these
could be busy; this would be the case if all inputs of the form
(xh,yi), where i > 2, other than zk,+1, zk,+2, .- Z, were busy.

Thus zl has access to at least

(n+k'—1)d-(c—l)a+(k--k'):‘_nd-(c-l)a+k-1
=n'+%k -1

output terminals of L x M.
The following theorem provides the motivation for defining
the notion T(m,n).

Theorem 4.2: Suppose M is a non-blocking network and L 18 a
network with a inputs, b outputs, and of type T(1,n). If
en > b, ther. [L,M,L'] is non-blocking.

The proof is similar to that of Theorem 3.1 and will be
omitted.

Now choose an integer k > 1 ard put LJ.=C (:‘:ll

X ©3,27

2,2k
if 1 < j < k, then Lj has 27 inputs, ke2J outputs, and induc-

tively by Lemma 4.1, Lj is of type '1‘(1,2]-1(2k - j)) and

(2,297 (2 - §) + 1.  Thus L is of type 2,x2 1 ¢+ 1), rLet
Hk be obtained from Lk by omitting one mput. Then Mk has 2k 1
inputs k- 2k outputs, is of type T(1,k* 2 & + 1), and its graph
has no more edges than the graph of Lk The associated matrix of

Lk is
(2 0)(2 Ovk-1 k( 1 0 )
{ =2 J
4k 2k 4 2/ 2k2 k

k .2 : ; ;
. -~ ’
Thus H’k has < 27°2k edges and if N is any non-blocking network

then by Theorem 4.2, so is [Hk,N,M]'(] . Thus putting, for example,
N = C2 2* we obtain a non—blocklnq network with (2k+:l - 2) inputs

and outputs whose graph has < 2 (4k + 2k) edges. It is imme-
diate that o(N,N) < BN(loq2 N) for all N > 2. It is not hard to

see that the constant 8 cculd be considerably decreased, but the
major open question is the value of the exponent.
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