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COMPUTER NETWORK RESEARCH 

Advanced Research Projects Agency 
Semiannual Technical Report 

June 30, 1973 

1.  INTRODUCTION 

This Semiannual Technical Report covers the period from January 1 
through June 30, 1973. Our efforts have been in four major areas: advanced 
packet-switching systems, including multiaccess satellite and packet radio 
systems; computer communication network design; multiple resource multiple 
access computer systems models; and measurements on the ARPANET itself. In 
addition, we have been involved with some network protocol studies and some 
controlled access and security questions. The results of that research 
have been documented and are listed in Section 2 following. 

In this report we have attached three of our publications which have 
appeared in the professional literature; we do not include material from 
other areas of activity, mentioned above,in this document, and the reader 
is referred to the referenced publications themselves. 

The first paper we include in Section 3 below has to do with "Packet 
Switching in a Slotted Satellite Channel," by L. Kleinrock and S. S. Lam 
(AFIPS Conference Proceedings, 1973 National Computer Conference and Exposi- 
tion, June 4-8, 1973, New York, N V., pp. 703-710).  In this paper the basic 
behavior of throughput and delay were studied for some multiaccess schemes 
for satellite communications in a packet switching network. These schemes 
permit a number of earth stations to simultaneously access the capacity of 
a shared satellite channel, thereby extending the multiplexing principles 
of packet switching to satellites. Two related papers presented by others 
at the NCC session on satellites were "Dynamic Allocation of Satellite 
Capacity through Packet Reservation," by L. G. Roberts, and "Packet Switching 
with Satellites," by N. Abramson. 

A second paper included below and entitled "The Flow Deviation Method: 
An Approach to Store-and-Forward Communication Network Design," by L. Fratta, 
M. Gerla, and L. Kleinrock (Networks, 3:97-133, 1973), summarizes some of 
the major concepts of the flow deviation method for computer network design; 
this method was discussed in the previous Semiannual Technical Report 
(December 31, 1972), but the current paper delves into the foundations more 
deeply. The flow deviation method leads to an efficient design procedure 
for networks. This paper is included as Section 4. 

The fifth section contains the paper "On Non-Blocking Switching Net- 
works," by D. G. Cantor (Networks, 1:367-377, 1972). The problem discussed 
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is that, of finding switching networks which are guaranteed to be non- 
blockingjjn that any idle input terminal may always be connected to any idle 
output terminal.    This is a basic problem in circuit switching and is the 
starting point for some of our studies comparing circuit switching to message 
switching. 
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Packet-switching in a slotted satellite channel* 

by LEONARD KLEINROCK and SIMON S. LAM 

Unisxnity of California 
Lou Angeles, California 

• 

INTRODUCTION 

Imagine- that two users require the use of a communication 
channel. The classical approach to satisfying this require- 
ment in to provide a channel for their use so long as ti at need 
continues (and to charge them for the full cost of '.his chan- 
nel). It has long been recognized that such allocation of 
searce communication resources is extremely wasteful as 
witnessed by their low utilization (see for example the meas- 
urements of Jacks«..] A Stubbs).1 Rather than provide chan- 
nels on a user-pair basis, '.,-c much prefer to provide a single 
high-speed channel to a large number of users which can be 
shared in some fashion; this then allows us to take advantage 
of the powerful "large number laws" which state that with 
very high probability, the demand at any instant will be ap- 
proximately equal to the sum of the average demands of that 
population. In this way the required channel capacity to sup- 
port the user traffic may be considerably less than la the 
unshared case of dedicated channels. This approach has been 
used to great effect for many years now in a numb<?r of differ- 
ent contexts: for example, the use of graded channels in the 
telephone industry,' the introduction of asynchronous time 
division multiplexing,' and the packet-switching concepts 
introduced by Baran et al.,* Da vies,* and finally implemented 
in the ARPA network.' The essential observation is that the 
full-time allocation of a fraction of the channel to each user 
is highly inefficient compared to the part-time use of t'.e full 
capacity of the channel (this ü precisely the notion of time- 
sharing). We gain this efficient sharing when the traffic con- 
sists of rapid, but short bursts of data. The classical schemes 
of synchronous time division multiplexing and frequency 
division multiplexing are examples of the inefficient parti- 
tioning of channels. 

As soon as we introduce the notion of a shared channel in a 
packet-switching mode then we must be prepared to resolve 
conflicts which arise when more tha.<i on." demand is simul- 
taneously placed upon the channel. There are two obvious 
solutions to this problem: the first is to "throw out" or "lose" 
any demands which are made while the channel is in use; 
and the second is to form a queue of conflicting demands and 
serve them in some order as the channel becomes free. The 

* Thin research was supported by the Advanced Research Projects 
Agency of the Department of Defer«« under Contract No. DAHC-15-69- 
C-0285 

latter approach is that taken in the ARPA network since 
storage may be provided economically at the point of con- 
flict. The former approach is taken in the ALOHA system' 
which uses packet-switching with radio channels; in this sys- 
tem, in fact, all simultaneous demands made on the channel 
are lost. 

Of interest to this paper is the consideration of satellite 
channels for packet-switching. The definition of a packet is 
merely a package of data which has been prepared by a user 
for transmission to some other user in the system. The satel- 
lite is characterized as a high capacity channel with a fixed 
propagation delay which is large compared to the packet 
transmission time (see the next section). The (stationary) 
satellite acts as a pure transponder repeating whatever it re- 
ceives and befc/ning this transmission back down to earth; 
this broadcasted transmission can be heard by every user of 
the system and in particular a user can listen to his own 
transmission on its way buk down. Since the satellite is 
merely transponding, then whenever a portion of one user's 
transmission reaches the satellite while another user's trans- 
mission is being transponded, the two collide and "destroy" 
each other, The problem we are then faced with is how to 
control the allocation of time at the satellite in a fashion 
which produces an acceptable level of performance. 

The ideal situation would be for »he users to agree collec- 
tively when each could transmit. The difficulty U that the 
means for communication available to these f-ographicaJly 
distributed users is the satellite channel itself and we are 
faced with attempting to control a channel which must carry 
its own control information. There are essentially three ap- 
proaches to the solution of this problem. The first has come 
to be known as a pure "ALOHA" system' in which users 
transmit any time they desire. If, after one propagation de- 
lay, they hear their successful transmission then they assume 
that no conflict occurred at the satellite; otherwise they know 
a collision occurred and they must retransmit. If users re- 
transmit immediately upon hearing a conflict, then they are 
likely to conflict again, and so some scheme must be devised 
for introducing a random retransmission delay to spread 
these conflicting packets over time. 

The second method for using the satellite channel is to 
"slot" time into segments whose duration is exactly equal to 
the transmission time of a single packet (we assume con- 
stant length packets). If we now require all packets to begin 
their transmission only at the beginning of a slot, then we 



2F* 

o 

u 

u 

0 

I 5 

704     National Computer Conference. 197.1 8 

t'lijoy a gain in efficiency »in«' coUiskwi* arc now rnttrirtrd to 
a single »lot duration; such a scheme in referred to a» a 
"slotted ALOHA" system and is the principal subject of this 
paper. We consider two models: the first in that «f a large 
population of user«, each of which makes a »mall demand on 
the ehannel; the second model consist* of this background of 
use** with the addition of one large urner acting in a special 
way to provide an increased utilisation of the channel. We 
concern ourselves w'!h retransmission strategies, delays, and 
throughput. Al>ram*c;n* also considers slotted system» and is 
concerned mainly with the ultimate capacity u those chan- 
nels with various user mixes. Our results and his have a com- 
mon meeting point at some limits which will be described 
below. 

The third method for using these channels is to attempt to 
.schedule their use in some direct fashion; this introduces the 
notion of a reservation system in which time slots are re- 
served for specific users' transmissions and the manner in 
which these reservations are made is discussed in the paper 
by Roberts • He gives an analysis for the delay and th.ough- 
put, comparing the performance of slotted and reservation 
systems. 

Thus we are faced with a finite-capacity communication 
channel subject to unpredictable and conflicting demands. 
When these demands collide, we "lose" some of the effective 
capacity of the channel and in this paper we characterise the 
effect of thai conflict. Note that it is possible i<> use the chan- 
nel up to its full rated capacity when only a single user is 
demanding service, this is (rue since a user win lever con- 
flict with himself (he has the capability to schedule his own 
use). This effect is important in studying the non-uniform 
traffic case as we show below. 

SLOTTED ALOHA CHANNEL MODELS 

Model I. Traffic from many »mall wert 

In this model we assume: 

(Al) an infinite numU. :f users* who collectively form an 
independent source 

This source generates M packets per slot from the distribu- 
tion v, = Prob[A/ = **] with a mean of St packets/slot. 

We assume that each packet is of constant length requiring 
T seconds for transmission; in the numerical studies pre- 
sented below we assume that the capacity of the channel is 
50 kilobits per second and that the packets are each 1)25 bits 
in length yielding 7* = 22.5 msec. Note that S»'=So/l is the 
average number of packets arriving per second from the 
source. Let d be the maximum round trip propagation delay 
which we assume each user experiences and let R = d/T be 
the number of slots which can fit into one roundtrip propaga- 
tion time; for our numerical results we assume d = 270 msec, 
and so R - 12 slots. R slots after a transmission, a user will 

either hear that it was succcmful or know that i! was de- 
stroyed. In the latter raw- if he now retransmits during 
the next slot interval and if all other users Ix-havc like- 
wise, then for sure they will collide again; consequently 
we shall assume that each user transmits a previously col- 
lided packet at random during one of the next K slots, 
(each such slot being chiwn with probability 1/A'). Thus, 
retransmission will take place either R+l, R+2, ... or 
Ä-J-/C slots after the initial transmission. As a result traffic 
introduced to the channel from our collection of users will 
now consist of new packet« and previously blocked packets, 
the total aumber adding up to .V packets transmitted per 
slot where pl = Prob'.V = t] with a mean traffic of 0 packets 
per slot. Wc assume that each user in the infinite popu- 
lation will have at most one packet requiring transmission 
at any time (including any previously blocked packets). 
Of interest to us is a description of the maximum through- 
put* rate .S' as a function of the channel traffic G. It is clear 
that S/'G is merely the probability of a successful trans- 
mission and G/S is the average number of times a packet 
must be transmitted until success; assuming 

(A2) the traffic entering the channel is an independent 
process 

We then have, 
8-0* (1) 

If in addition we assume, 

(A") the channel traffic is Pokson 

thenpo = cd, and so, 
S = Ge-° (2) 

Eq. (2) was first obtained by Roberts" who extended a simi- 
lar result due to Abramson7 in studying the radio ALOHA 
system. It represents the ultimate throughput in a MMICI I 
slott«i ALOHA channel without regard to the delay packets 
experience; we deal extensively with the delay in the next 
section. 

For Model I we adopt assumption Al. We shall also accept 
a less restrictive form of assumption A2 (namely assumption 
A4 below) which, as we show, lends validity to assumption 
A3 which we also require in this model. Assume, 

(A4) the channel traffic is independent over any K con- 
secutive slots 

We have conducted simulation experiments which show that 
this is an excellent assumption so long as K<R. 

Let, 

P(*)~ !>.*• 

F(«)- EM' 

(3) 

(4) 

' These will be referred to a» the "small" users. 
* Note that S~S,, under stable system operation which we assume 
unless stated otherwise (see below). 
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Using only atwumptiot: A4 mid the assumption thai M is in- 
dependent atN-M, we find [10] I hat P{i) may he expressed 

change a* lime prognoses hut insist thai there !»<• only one 
such at any given time. We introduce the new variables 

• 

• 

as 

[S'-'+K-^)]" K(«) 

If, further, the source is an independent process (i.e., as- 
sumption Al) and Is Poisson distributed then V(z) ~trS{i~'\ 
and then we see immediately that, 

This shows that assumption A3 follows from assumptions 
Al and A4 in the limit of large K, under the reasonable con- 
dition that the source is Poisson distributed. 

We have so far defined the following critical system param- 
eters: St, S, 0, K and R. In the ensuing analysis we shall 
distinguish packet» transmitting in a given slot as being 
either newly generated or ones which have in the past col- 
lided with other packets. This leads to an approximation 
since we do not distinguish how many times a packet has 
met with a collision. We have examined the validity of this 
approximation by simulation, and have found that the cor- 
relation of traffic in different slots is negligible, except at 
shifts of Ä+J, R+2, ..., It+K; this exactly supports our 
approximation wince we concern ourselves with the most re- 
e«-nt collision. We require ihe following two additional 
definitions: 

7= Prob[newly generated packet is successfully 
transmitted] 

q, = Prob[previously blocked packet is successfully 
transmitted] 

We also introduce the expected packet delay D: 

/> = average time (in slots) until a packet is 
successfully received 

Our principal concern in this paper is to investigate the 
trade-off between the average delay D and the throughput S. 

Model It. Backgnrund traflic with one large user 

In this second model, we refer to the source described 
above as the "background" source but we also assume that 
there i.s an additional single user who constitutes a lecond 
independent source and we refer to thin source as the 'large" 
user. The background source is the same as that »n Model I 
and for the second source, we assume that the packet arrivals 
to the large user transmitter are Poisson and independent of 
other packets over W+A" consecutive slots. In order to dis- 
tinguish variables for these two sources, we let St and (h refer 
to the <S' and (I parameters for the background source and let 
S, and Gt refer to the .S" and (I parameter? for the single larger 
U8.'r. We point out that the identity of this large user may 

,S--* A'i-f-.S'j 

(!'(i,+Ct 

S represents the total throughput of the system and G repre- 
sents the traffic which the channel must support (including 
retrans, nissions). We have assumed that the small users may 
have at most one packet outstanding for transmission in the 
channel; however the single large user may have many pack- 
ets awaiting transmission. We assume that this large user has 
storage for queueing his requests and of course it is his re- 
sponsibility to see that he does not attempt the simultaneous 
transmission of two packets. We may interpret G% as the 
probability that ths single large user is transmitting a packet 
in a channel slot and so we require Gi < 1; no ouch restriction 
is placed on G, (or on G in Model I). 

We now introduce a means by which the large aser can 
control his channel usage enabling bim to absorb some of the 
slack channel capacity; this permits an increase in the total 
throughput <S. The set of packets awaiting transmission by 
the large user compete among each other for the attention of 
his local transmitter as t'ollows. Each waiting packet will be 
scheduled for transmission in some future slot. When a newly 
generated packet arrives, it immediately attempts trans- 
mission in the current slot and will succeed in capturing the 
transmitter unless some other packet has also been scheduled 
for this slot; in the case of such a scheduling conflict, the new 
packet is randomly rescheduled in one of the next L slots, 
each such slot being chosen equally likely with probability 
l/L. Due to the background traffic, a large user packet may 
meet with a transmission conflict at the satellite (which is 
discovered R slots after transmission) in which case, as in 
Model I, it incurs a random delay (uniformly distributed 
over K slots) plus the fixed delay of R slots. More than one 
packet may be scheduled for a future slot and we assume 
that tht3o scheduling conflicts are resolved by admitting that 
packet with the longest delay since its previous blocking (due 
to conflict in transmission or conflict in scheduling) and uni- 
formly rescheduling the others over the next L slots; ties arr 
broken by rancLm selection. We set;, therefore, that now 
packets have the lowest priority in case of a scheduling con- 
flict; however, thay seize the channel if it is free upon their 
arrival. The variable L permits us a eertain control of chan- 
nel i^e by the large user but does not limit his throughput. 
We also assume K, L<R. Corresponding to q and q, in Model 
I, we introduce the success probabilities q, and qit (i- 1, 2) 
for new and previously blocked packets respectively and 
where i= 1 denotes the background source and i-2 denotes 
the single large source. Finally, we choose to distinguish be- 
tween Di and Ds which are the average number of slots until 
a packet is successfully transmitted from the background 
and large user sources respectively. 

RESULTS OF ANALYSIS 

In 'his section we present the results of our analysis with- 
out proof. The details of proof may be found in Reference 10. 
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Model I. Traffic from many »mall users 

W<* v/ish to refine Kq. (?) by accounting for rhe effect of 
the random retransmission oelay parameter K. Our principal 
re ult in this rase ia 

S~G- «< 
q,+ l~q 

where 

&nd 

(7) 

(8) 

(&) 

Tho considerations which led to Eq. (7) were inspired by 
Roberts" in which he developed an approximation for Eq. 
(9) of the form 

q> 
K-l    . 

(10) 

We shall see below that this is a reasonably good app;■< .lima- 
tion. Equation» (7-9) form a set of non-linear simultaneous 
equations for S, q an<* q, which must be solved to obtain an 
explicit expression for S in terms of the system parameters 
G and K. In general, this cannot be accomplished. However, 
we note that as K approaches infinity these three equations 
reduce simply to 

Lim - - Lim q - Lim q, = e~° 
«it. «     jet«       j:t» I (ID 

Thus, we see that Eq. (2) is the correct expression for the 
throughput S only when K approaches infinity which cor- 
responds to the case of infinite average delay; Abramson* 
gives this result and numerous others all of which corre- 
spond to this limiting case. Note that the large K case avoids 

the large delay problem if T is small (very high speed chan- 
nels). 

The numerical solution to Eqs. (7-9) is given in Figure 1 
where we plot the throughput S as a function of the channel 
traffic G for various values of A'. We note that the maximum 
throughput -\t a given K occurs when G-1. The throughput 
improves at K increases, finally yielding a maximum value 
of S= l/e = .368 for G= 1, X»infinity. Thus we have the un- 
fortunate situation that the ultimate capacity of this channel 
supporting u large number of small users is loss than 37 per- 
cent of its theoretical maximum (of 1). We note that the 
efficiency rapidly approaches this limiting value (of l/e) as 
K increases and that for K = 15 we are almoi.t there. The 
figure also shows some delay contours which we discuss 
below. In Figure 2, we show the variatio» jf q and q, with K 
for various values of G. We note how rapidly these functions 
approach their limiting values as given sn Eq (11). Also on 
this curve, we have shown Roberts' approximation in Eq. 
(10) which converges to the exact value very rapidly as K 
increases and also as G decreases. 

Our next significant resul* is for packet delay as given by 

D=tf+1+i^rÄ+1+KzIJ (i2) 

We note from this equation that for larp3 K, the average 
delay grows linearly with K ai .* slope 

,.    3D     l-er^ 
Lim ■— =*   -   . 
*f. *K      2r° 

Using Eq. (11), w* see that this slope may be expressed as 
G—S/2S which is merely the ratio of that portion of trans- 
mitted traffic which meets with a conflict to twice t he through- 
put ot the channel; since G— S/2S=mG/S— I), we see 
that the limiting slope is "qual to J$ times the average 
number of times a packet is retransmitted. Little's well- 
known result" expresses the average number (A) of units 
(packets in our case) in a queueing system as the product of 
the average arrival rate (Sj= 1 in our case) and the average 
time in system (D). If we use this along with Eqs. (7) and 
(12), we get 

*-SD-O[ä+1+^]-S[^J (13) 

10       IS    to 90 100 

Figure 2 -Success probabilities as a function of ret rawmission delay 
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In Figure 1 we plot the- loci of constant delay in the S, G 
plane. Note the way them' loci bend ov«r sharply as K in- 
crease« defi-'ing a maximuir. throughput Smtx(D) for any 
given value of D; we note the coat in throughput if we wish 
to limit the average delay. This effect is clearly seen in 
Figure 3 vhich is the fundamental display of the tradeoff 
between delay and throughput lor Model I; this figure shows 
the delay-throughput contours for constant values of K. We 
also give the minimum envelope of these contours which de- 
fines the optimum performance curve for this system (a 
similar optimum curve is also shown in Figure 1). Note how 
sharply the delay increases near the maximum throughput 
£«0.368; it is clear that an extreme price in delay must be 
paid if one wishes to push the channel throughput much 
above 0.3' 0 and the incremental gain in throughput here is» 
infinitesimal. On the other hand, as 5 approach.* zero, D 
approaches K+l. Also .shown here are the constant G con- 
tours. Thus this figure and Figure 1 arc two alternate ways of 
displaying the relationship among the four critical system 
quantities S,G,K, and D. 

From Figure 3 we observe the following effect. Consider 
any given value of S (say at £ = 0.20), and some given value 
of K (say K = 2). We note that there are two possible values 
of I) which satisfy these conditions (D=21.8, D= 161). How 
do we explain this?* It. is clear that the lower value is a stable 

too 

0-3.0 

e-j.o 

o-i.s 

THROUGHPUT (POCKETS/SLOT) 

Figure 3   Delay-throughput tradeoff 

* This question was raised in a private conversation with Martin Gra- 
ham (University of dlifomia, Berkeley) A simulation of this situation 
is reported upon in Reference 13. 
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Figure 4 -Optimum K 

operating point since the system has sufficient capacity to 
absorb any fluctuation in the rate &. Su .pose that we now 
slowly increase & (the source rate); se long as we do not 
exceed the maximum value of the system throughput rate 
for this K (say, SmtM(K)), then wt see that S-Se and the 
system will follow the input. Note fiat 5m« (/0 always oc- 
curs at the intersection of the (7*1 'urve as noted earlier. 
However, if we attempt to set St>SM,x(K), then the sys- 
tem will go unstable! In fact, the throughput S will drop 
from S„„(K) toward zero as the system accelerates up the 
constant K contour toward infinite delay! The system will 
remain in that unfortunate circumstance so long as S*>S 
(where now 5 is approaching zero). All during its demise, the 
rate at which new packets are being trapped by the system is 
So-5. To recover from this situation, one can set & = 0; 
then the delay will proceed down the K contour, round the 
bend at S„,X(K) and race down to 5=0. All this while, the 
backlogged packets are being flushed out of the systcrv The 
warning is clear: one must avoid the knee of the A* contour. 
Fortunately, the optimum performance curve does avoid the 
knee everywhere except when one attempts to squeeze out 
the last few percent of throughput. In Figure 4, we show the 
optimum values of K as a function of S. Thus, we have char- 
acterized the tradeoff between throughput and delay for 
Model I. 

Model II. Background traße with one lar ie user 

In this model the throughput equation is similar to that 
given in Eq. (7), namely, 

S, = G\ °i< 
qn+l-Qi 

(14) 

the quantities q<t and ?, are given in the appendix. Similarly 
the average delays for the two classes of user are given by 

A-Ä-M+ l-g. 

9ii 
ß+1-r- ¥\ (1.5) 

Dt=R+l+ !=s [«+,+ £=»]+ ktl \Sm+ \=*s] 
qu   L 2   J      2   L ?j«      J 

(16) 

raw* fättfutafsf"1-"-■*■' ■ -• ■•■■-•-■-^^-^•'■■^^-^■■--■^^■■'•■■>-^-*'°~^-'^-J»-^-^' 
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Figure 5   Throughput «urface 

whore A', and E, are given in the appendix. It is easy to show 
that as K, L approach infinity, 

?t-9t<-e-«'(l-6',) (17) 

.SW;,«°'(1-G,) (18) 

5, = ^-°' 
(19) 

(20) 

S=((!-GlG,)e-^ (21) 

«here we recall (; = (!,+(!- and S «=&+&. From these last 
equations or its given by direct arguments in an unpublished 
note by Rolx-rtH, one may easily show that at a constant 
background user throughput Si, the large user throughput 
.S'2 will be maximized when 

G-ai+ck-i (22) 

This last is a special case of results obtained by Abramson in 
Reference X and he discusses these limiting cases at length for 
various mixes of user». We .iote that, 

dGt 

3G\ 

*<r*>(l-fn 

-e-°'((7-ö,6'»-l-»-«,) 

(23) 

(24) 

In Figure ■> we give a qualitative diagram of the 3-dimcn- 
sional contour for S as a function of 6\ and <!%. We remind the 
reader that (his function is shown for the limiting case A', A. 
approaching infinity only. From our results we see that for 
const art fr'i<l, S increase* linearly with (it ('»'«<!). For 
congtan G'i> I, S decreases linearly as (!, increases. In ad- 
dition, for constant G,<}.$, »S' lias a maximum value at 
6'i = l —2f?i/l—f/i Furthermore, for constant (!t>y/i, S de- 
creases as 6\ increases and therefore the maximum through- 
put 5 must occur ai »S«=Gj in the <7: = 0 plane. 

The optimum curve given in Eq. (22) is shown in the Si, S, 
plane in Figure 6 along with the performance loci at const» nt 
Ci. We note in these last two figures that a channel throu jh- 
put "qua! to 1 is achievable whenever the background traffic 
drops to gero thereby enabling S = St=Gt=l; this corre- 
sponds to the case of a single user utilising the satellite 
channel at its maximum throughput of 1. Abramson [8] dis- 

3 4 
THftOUOHMT 

i S 

Figure 7- Delay-throughput tradeoff at S, -0.1 

1 t J        •''  s, 
MCK3R0UN0 TSSOUSHPUT 

Figure <i   Throughput tradeoff 

cusses a variety of curves such as those in Figure 6; he con- 
siders the generalization where there may be an arbitrary 
number of background and large users. 

In the next three figu.es, we give numerical results for the 
finite Ä case; in ail of these computations, we consider only 
the simplified situation in which K = L thereby eliminating 
one parameter. In Figure 7 wo show the tradeoff bei ween de- 
lay und throughput similar to Figure 3, (Note that Figure ."1 
is similar to Figure 1.) Hero we show the optimum perform- 
ance of the average delay l>~ StD, + StDi/S along with the 
behavior of D at constant values of A' and >S| = 0.1 (note the 
instability once again for overloaded conditions). Also shown 
are minimum curves for I)t and Ih, which are obtained by 
using the optimum A' as a function of .S'. If we are willing to 
reduce the background throughput from its maximum at 
•S'I --0.368, then we can drive the total throughput up to ap- 
proximately ,S' = 0..")2 by introducing additional traffic from 
the large user. Note that the minimum D\ curve is much 
higher than the mir-imurr />? curve. Thus our net gain in 

jyi^^Milglftfiiiili«^^lT-friWhlM;fi"J-'---^'^J-<;"'li*^'^1fcfc^ja 
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channel throughput is also at the expense of longer packet 
delay« for the small users. Once again, we sec the sharp rise 
near saturation. 

In Figure 8, wc display a family of optimum D curves for 
various choice* of >S| as a function of the total throughput S. 
We also show the behavior of Model I as given in Figure 8. 
Not« as wc reduce the background traffic, the system capac- 
ity increases slowly; however, when Si falls below 0.1, wc 
liegin to pick up significant gains for St. Also observe that 
each of the constant curves "peels off" from the Model I 
curve at a value of 8—8* At tfi^O, we have only the large 
user operating with no collisions and at this point, the optimal 
value of L is 1. This reduces to the classical queueing system 
with Poisson input and constant service time (denoted 
M/D/l) and represents the absolute optimum yerfornvmcr 
contour for any method of using the satellite channel when 
the input is Poisson; for other input distributions we may 
use the (1/D/l queueing results to calculate this abulutc 
optimum performance contour. 

In Figure 9, we finally show the throughput tradeoffs be- 
tween tin- background and large users. The upper curve shows 
the absolute maximum S at each value of .St; this is a clear 
display of ' ae significant gain in & which we can achieve if 
we are wining to reduce the background throughput. The 
middle curve (also shown in Figure 6 and in Reference 8) 
shows the absolute maximum value for St at each value of 
.S'i. The lowest curve shows the net gain in system capacity as 
»S'i is reduced from its maximum possible value of 1/«. 

CONCLUSIONS 

In this paper we have analyzed the performance of a slotted 
satellite system for packet-switching. In our first model, we 
have disolaycd the trade-off between average delay and 
average throughput and have shown that in the case of 
traffic consisting of a large number of small users, the limiting 

wood, n 
V0 09- 

3 100 

«•SOLUTE OPTIMUM KürOMMNCE - 
~j— _ -l_-     —: I j 

2 « « • 10   S 
THROUGHPUT 

Figur? s   Optimum delay-throughput tradeoffs 

MCKGNOUNO THMUSNPUT 

Figure 9— Throughput countoura 

throughput of the channel (1/e) can be approached fairly 
closely without an excessive delay. This performance can be 
achieved at relatively small values of K which is the random 
retransmission delay parameter. However, if one attempts to 
approach this limiting capacity, not only does one encounter 
large delays, but one also flirts with the hazards of unstable 
behavior. 

In the case of a .«ingle large user mixed with the background 
traffic, we have shown that, it if possible to increase the 
throughput rather significantly. The qualitative behavior for 
this multidimensional trade-off was shown and the numerical 
calculations for a given set of parameters were also dis- 
played. The optimum mix of channel traffic was given in 
Eq. (22) and is commented on at length in Abramson's 
paper.' We have been able to show in this paper the relation- 
ship between delay and throughout which is an essential 
trade-off in these slotted pack. ..-switching systems. 

In Roberts' paper' he discusses an effective way to reserve 
slots in a satellite system so as to predict and prevent con- 
flicts. It is worthwhile noting that another scheme is cur- 
rently being investigated for packet-switching systems in 
which the propagation delay is small compared to the slot 
time, that is, i? = d/T«l. In such systems it may be ad- 
vantageous for a user to "listen before transmitting" in order 
to determine if the channel is in use by some oth»>r user; 
such systems are referred to as "carrier sense" systems and 
seem to offer some interesting possibilities regarding their 
control. For satellite communications this case may be 
found when the capacity of the channel is rather small (for 
example, with a stationary satellite, the capacity should be 
in the range of 1200 bps for the packet sizes w« have dis- 
cussed in this paper). On the other hand, a .r>0 k'iobit channel 
operating in a ground radio environment with packets on the 
order of 100 or 1000 bits lend themselves nicely to carrier 
sense techniques. 

In all of these schemes one must trade off complexity of 
implementation with suitable performance. This performance 
must be effective at all ranges of traffic intensity in that no 
unnecessary delays or loss of throughput should occur due to 
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complicated operational procedure«. We feel thi.t I ho »lotted 
Hatellite packet-Mwitrhing methods descriU'd in this paper 
and the rranrvntion Hystrnw for the.*) chuniH-ls diwcribed in 
tho paper by Roberts do in fact meet tfamn criteria. 
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APPENDIX 

Define C?g £ Poisson arrival rate of packet* to the transmitter 
of the large user 

-*[l+Ä.+ft(l+«,)] (A.1) 

The variables qif qtl (»=1, 2) in Eqs. (14-16) are then 
given as follows (see Reference 10 for details of the deriva- 
tions) : 

«i-Wfa»)1*-« (A.2) 

(A.3) 9i.-(?.)*-1?i.(9»)t«"s 

where 

,,=„-«./*+ _ [(i _«-«.) («-I?.-«-«./*) +(71<r«c-1«».)]   (A.4) 
A 

?» = 

(ff.+n«-«. L-t 
(A.5) 

L-l 
(£«-»■"—«--«•)       L>2 

^TTäH1- i^5)-r*H-.]       (A .6) 

Let us introduce the following notation for events at th. 
large user: 

SS=scheduling success (capture of the transmitter) 
SC=scheduling conflict (failure to capture transmitter) 
7\S= transmission success (capture of a satellite slot) 
TC= transmission conflict (conflict at the satellite) 
NP=newly generated packet 

Then, 

?« = 

?!« = 

r.+r.E. 
l+E. 

r,+rJE, 

1+B, 

where 

En £ average number of SC events before . _ 
an SS event conditioning on NP 

a. 

E, £ average number of SC events before    . __ 
an SS event conditioning on TC ■=  

a. 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

The variables a„ r, (t = n, t, s) are defined and given below: 

a,AProb £SS/NPl-(^J(qk)^~~)   (All) 

r.AProb ITS/SS, NP]~q*e-*> 

I 1-(*/?)* 

where 

o1ÄProb[5S/7V]- ,,,    ,.       / 
K    l-qn/q 

r«£Prob ITS/SS, rC]-^-'^-"' 

a^ProblSS/ScU^f1—^- 

r.^Prob [TS/SS, ,S'C] = ^e-*' 

qu- 
e-o,/ir_e-o, 

1 _e-o~ 

(A. 12) 

(A.13) 

(A.14) 

(A.l">) 

(A. 16) 

(A.17) 

(A.18) 

<-s=h*(£-M~Z, \e-a.it._e-G.ii.+e 

(A. 19) 
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ABSTRACT 

0 

Two problems relevant to the design of a store-and-forward 
communication network (the message routing problem and the chan- 
nel capacity assignment problem) are formulated and are recog- 
nized to be essentially non-linear, uncomtAcUmd multicommodity 
(m.c.) flow problems.    A "Flow Deviation" (FD) method for the 
solution of these non-linear, unconstrained m.c. flow problems 
is described which is quite similar to the gradient method for 
functions of continuous variables; here the concept of gradient 
is replaced by the concept of "shortest route" flow.    As in the 
gradient method,  the application of successive flow deviations 
leads to local minima.    Finally,  two interesting applications 
of the FD method to the design of the ARPA Computer Network are 
discussed. 

O INTRODUCTION 

0 

In this paper we consider a procedure (the "flow deviation" 
method) for assigning flow within store-and-forward communica- 
tion networks so ^s to minimize cost and/or delay for a given 
topology and for given external flow requirements.  We begin by 
defining the basic model below and follow that with some examples. 
We then discuss various approaches to the problem and then in- 
troduce and describe the "flow deviation" method. This method 
is evaluated under some further restrictions and is then applied 
to various problem formulations for the ARIA network [6], [7]. 

Suppose we have a collection of nodes N., (i=l,...,n), and 

are required to route a quantity r.. of type (i,j) commodity 

from N. to N. through a given network (Fi'ure i). 

Networks, 3: 97-133 
!c) 1973 by John Wiley & Sons, Inc. 97 
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Fig. 1 Example of routing of the (i,j) commodity. 

The multicommodity (m.c.) flow problem consists of finding 
the routes for all such commodities, which minimize (or maxi- 
mize) a well-defined performance function (e.g., cost or delay), 
such that a set of constraints (e.g., channel capacity con- 
straints) are satisfied. 

The most general multicomnodity problem  can be expressed 
formally in the following way: 

0 

o 

o 

Given: A network of n nodes and b arcs 
An n x n matrix R = [r. .], called the require- 

ment matrix, whose entries are non-negative 
Minimize: (or maximize)* P(*) 
over ♦     where * is the flow configuration and P is a 

well-defined performance funct.on 

Furthermore, * must satisfy the following constraints: 

Constraints: 

1. '.■  must be a multicommodity flow satisfying requirement 
R. For \^iis, the following conditions must be verified: 

Conservation of the flow at nodes, commodity by commodity: 

y 

It 

k=l 
F(ij) 
JcÄ. 

I- r. . if £ = i 
in 

+r. if l- j 
n       J 

0 otherwise 

Vi,j (1.1) 

* Without loss of generality t only tho, minimum pfioblam is aon- 
side^ea in the following. 

mmaMmmmmamm 
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Non-negativity of flow in directed arcs: 

fkJJ) L °      VM»k,fc (1.2) 

:(ij) where f J is the portion of commodity (i,j) flowing on arc 

(k,t). 
2. ♦ must satisfy some additional  constraints,* different 

from problem to problem (e.g., capacity constraints on each 
channel and/or cost constraints). 

Let us define the (i,o) commodity flow  f 1] as: 

?(ij) Uf(ii\ f(ij)       f( 
r2  ' '•" b 

«,) 

,(ij) where f    is the portion of (i,j) commodity flowing in arc m m 
and define the global flow £  as: 

n  n  .... 

i-    I      I    fUD) 

i=l j=l 

In the sequel, we restrict: our analysis to m.c. problems in 
which the performance depends solely on the global flow: 

P(*) = P(f) (1.3) 

However, most of the arguments and techniques presented in the 
paper can be extended to the general case of P($) explicitly 
depending upon various types of commodities. 

So far, we represented the flow configuration $ in terms 

of f(xj),¥i,j. 
An equivalent representation is obtained by providing for 

each commodity (i,j) a set of routes TT. .,   k = 1, ...,   k. .,   from 

k   k 
node i to node j, associated with some weights a.. (a.. > 0, 

K. . 

)  a. . = 1): 
k-1 13 

by this we mean that commodity (i,j) is trans- 

ferred from i to j along K. . routes, and route TT . . carries an 

amount a.. • r.. of commodity (i,j). 13   13 

18 

*If an m.a.  flow problem has no additional constraints, we de- 
fine it to be an uncon&trained m.a.  flow problem; such a defi- 
nition will be motivated in one of the following sections. 

^HHMffll KM äüiiünüM mtrntiidaamum 
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As a third representation, we can consider the global flow 
f. It can very t^sily be seen that f does not completely char- 
acterize *: for instance, two different sets of routes might 
yield the same f. However, from Equation (i.3), it tu.-ns out 
that such a representation is sufficient for many considerations, 
and is certainly more compact than the previous two.  In the fol- 
lowing we use whichever of these representations is most con- 
venient. 

It can be seen that the set of m.c. flows satisfying con- 
straints (1.1) and (1.2) is convex.  In particular, if we let 

F = {f|f is an m.c. flow satisfying constraints (1.1) and (1.2)}, 
we have that F Is a convex polyhedron. The global flows cor- 
responding to the "corners" (extreme poJiics) of F have an inter- 
esting property: they are shortest route* flows [9]. 

2.  MULTICOMHODITY PROBLEMS IN THE DESIGN OF S/F NETWORKS 

Let us now consider a store-and-forward (S/F) communication 
network [1]. In such a network, messages traveling from N. to 

N. are "stored" in queue at any intermediate node N , while 

awaiting transmission, and are sent "forward" to N ,   the next 

node in the route from N. to N., when channel (k,H) permits. 

Thus, at each node there are different queues, one for each out- 
put channel. The message flow requ   »nts between nodes arise 
at random times and the messages are ^f random lengths; therefore 
the flows in the channels and the queue lengths in the nodes are 
random variables. Under appropriate assumptions,''" an analysis 
of the system can be carried out [1]; in particular, it is pos- 
sible to relate the average delay T suffered by a message travel- 
ing from source to destination (the average is over time and over 
all pairs of nodes) to the average flows in the channels. 

The result of the analysis is: 

f *i T = > -=■ T. (2.1) 
i=i y   x 

*A shortest route flow is an m.c. flow whose routes can be de- 
cribed by a shortest route matrix, computed for an arbitrary 
assignment of lengths to the arcs. 

*Assumptions:    Poissm arrivals at nodes, exponential distribu- 
tion of message length, independence of arrival processes at 
different nodee, independence assumption of service times at 
su6ces8ive nodes [1]. 

min tiiMmWi Bam 
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where 

U 

T ■ total ave .ye delay per message [sec/messg] 
b ■ nusdber ol ~cs in the network 

A » message r»»e on channel i [messg/sec] 

n  n 

V- I     I    r 
i=l j=l  -1 

total message arrival rate from 
external sources [messg/sec] 

T. = average delay suffered by a message waiting for 
channel i [sec/messg] 

T. is the sum of two components: 

U 

T. 
1 

T; + mil 

i 

where 

T: 
i 

= l 
yCi- X. 

1 

fpii 

i = pi = proj 

= transmission and queueing delay 

propagation delay 

and 

C. «= capacity of channel i [bits/sec] 

1/w = average message length [bits/messg] 

We can rewrite Equation (2.1) as follows: 

*-j! 
A../U 

u.°) 

Letting A./p = f.}  Equation (2.2) becomes: 

*-ii 
f. 
i 

c. 
i 

7- + f.p! 

where 

(2.3) 

f. » average bit rate on channel i [bits/sec] 

*i yPi 

The average delay T is the most common performance measure 
for S/F networks, and the multicommodity problem consists of 
finding that routing, or flow pattern F, which minimizes T. 
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*Je may now pose two problems: 

Problem A:    "Routing assignment" 

Given: 

Minimize: 
over f 

Constraints: 

Topology, channel capacities and a require- 
ment matrix R 

1 £    1 
lc. - f. 

1   1 ' i«l 
(i)  £ is an m.c. flow 
(ii) f. - C., i ■ 3, . 

l—i 

+ p!) f. 
i  i 

The problem is in the standard multicomnaodvty form* and the 
additional  constraints are capacity constraints 

set of feasible flows for Problem A: 

Let F be the 
A 

F =Fn {fif < c}. 
A       - ~ — - 

Clearly F is a convex set (intersection of convex sets). 
A 

A second interesting problem in S/F networks is formulated 
below  Assume that we lave a given network topology in which 
the channel capacities have to be assigned. A cost is associated 
with the values of the capacities, and the total cost of the net- 
work is given. In addition, the flow routes must be determined. 
The problem statement is: 

Problem B': 

Given: 

Minimize: 

"Routing and capacities assignment, general 
cost-capacity function" 

Topology, requirement matrix R, number of 
dollars available D 

b 

over £,f 
Constraints: 

1=1  1   1 

(i) 
(ii) 

(iii) 

f is an m.c, flow 
f. < C.j i =1, .. 
l—i 

b 

I 
i=l 

d.(C.) < D 
11 — 

where 
C = (C.jC,, ..>JC, ) 

d.(C.) 
l i 

arbitrary cast-capacity 
function for arc i 

The minimization can be carried out first on C, keeping f fixed, 
and then on f. 

*The possibility of formulating the routing problem as a nulti- 
aorrrnodity flow problem was already recognized by Frank and Chou 
in  [24].    An interesting linear programming approach is pre- 
sented there. 

mam mm 



u 

u 

u 

Q 

tfHWWMr? mWqiWW^WLllWWI^iFP1^^^^ 

THE FLOW DEVIATION METHOD  103 

If the coat-capacity functions are linear (i.e., 
d.(C.) ■ d,C), then the minimization over C can eariiy be per- 

formed by the method of Lagrange multipliers and vj get thp 
following optimum capacities as functions of the flows [1]: 

D  /f.d. 

l   i  d. b 
(2.4) 

1 I vTdT 
4.1  3 J 

where 

D =■ D - T f.d. 
i=l l X 

By introducing Equation (2.4) into the expression of T(C,f) we 
have: 

b 

T(C,f) * T(f) 
(I ^J   , 

YD 

Since 

and 

then 

D> I dC 
i=l 

Yi:i 

for (iii) 

1    f.p! L,    i .i 
(2.5) 

b       b 
I d.C. > y d.f.  for (ii) L,     x i — .L,    i i i=l i=l 

zz 

o and 

D > y d.f. 
— **  xi 

i=l 

= D - y d.f. > 
. , ix — 

(iv) 

It i easy to see from Equation (2.4) that (iv) implies also 
(ii) and (iii); hence both (ii) and (iii) can be replaced by 
(iv). 

By introducing Equation (2.5) into Problem. B" and using 
result (iv), we obtain» 
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Problem 3: 

Given: 

"Routing and capacities assignment, linear 
cost-capacity function" 

Topology, requirement matrix R, number of 
dollars D 

b 

Minimise: 
over f 

Constraintsi 

T(f) 
m 

(i) 
(ii) 

Again the problem is reduced to an optimal flow problem of the 
standard mv.lticommodity form. The additional  constraint is now 
a cost constraint. Let F be the set of feasible flows for 
Problem B: 

U 

F - F n{f |D - y d,f. > 
B      ~ ■   ,L,    i i — 

i=l 
0} 

Clearly F is convex. 

The inspection of Problems A and B motivates the following 
important observation: 

Observation: 

In both Problems A and B, the performance T(£) goes to » 
whenever f approaches the boundaries defined by the ad- 
ditional constraints (i.e., when any channel becomes 
saturated in A, or when the excess dollars D reduce to 

„i e 

zero in B). 

Using mathematical programing terminology, the performance 
T(f) incorporates the additional constraints as penalty functions. 
From a practical point of view, such a property is very important: 
it guarantees the feasibility of the solution (with respect to 
the additional constraints) during the application of usui.1 non- 
linear minimization techniques, provided a feasible starting flow 
is found. 

The property is quite general for S/F networks: when the 
additional constraints are satisfied with equality, usually some 
saturation occurs, the queues at nodes grow large and the delay 
T increases rapidly. 

As a consequence of the above observation, if we assume 
that a feasible starting solution can be found,* we can disregard 

''Techniques for finding feasible starting solutions are shown in 
the applications section. 

mm» 
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the additional constraints and approach Problems A and B as 
unconstrained sue. flow problems. Problems A and B will be 
investigated further in later sections. 

3.  THE FD METHOD AS AN APPROACH TO THE SOLUTION OF 
NON-LINEAR M.C. FLOW PROBLEMS 

In order to place the Flow Deviation (FD) method in the 
proper perspective in relation to the existing methods, it is 
convenient to classify the various SLC. flow problems into 
categories; for each category,- the solution techniques avail- 
able in the literature are reviewed and the contribution of 
the FD method is discussed. 

a) Unconstrained M.C.  Flow Problems 

a.1)    Linear performance.    The linear min cost flow problem with 
no constraints on capacity has the well known shortest route 
solution (where the arc length is equivalent to the linear cost 
of the arc) [9,12]. Very efficient techniques are available for 
the evaluation of all shortest routes on a graph and for the 
routing of the commodities along such routes f9,16]; therefore 
it appears convenient to reduce complicated flow problems (i.e., 
non-linear, or constrained) to the linear, unconstrained form, 
which can be solved efficiently. 

a.2)    hon-lineav performance.    The most natural thing to do is 
to linearize the problem. Problems which are separable* and 
convex can be linearized by approximating the convex functions 
with piecewise linear functions and by introducing one supple- 
mentary variable and one constraint equation for each linearized 
segment [11,15,24]. This method has two serious drawbacks: 
first, it can be applied only to separable and convex problems; 
secondly, the number of variables and constraints becomes pro- 
hibitively large for large networks. 

Another method, which applies to differentiate problem«:, 
consists of approximating the performance function wit'i The 
tangent hyperplane, which is expressed in terms of the partial 
derivatives {3P/3f.}. The min cost solution of the linearized 

problem is the shortsst route flow, where the length of arc i 
is defined as 3P/9f. As it will be shown later, such shortest 

route flow represents the direction of the steepest descent  flow 
deviation. 

*A separable m.c.  flow problem has the form: 
b 

P(f)   -     I     Pjf;) 
*• •     *        u        u 

&fe<äL&Mäi£i 
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U 

u 

u 

The above idea is the essence of the FD method,  which con- 
sists of repeated evaluations of steepest descent directions and 
of one variable minimizations along such directions; the method 
(describe* in Section 5) is conceptually very similar to the 
gradient method applied to non-linear minimization problems. If 
the problem is differentiable, the FD method is clearly superior 
to the supplementary variables method mentioned before: it does 
not add new variables and constraints, and can be applied to non- 
convex, non-separable cases. 

In fact, the idea of using shortest routes (computed with 
partial derivatives) for the solution of non-linear problems is 
not new: using such techniques, Dafermos [17] solved various 
traffic problems, formulated as unconstrained, convex m.c. flow 
problems, and Yaged [18] solved a min cost capacity assignment 
for a communications network, which was formulated as an uncon- 
strained, concave m.c. flow problem. 

Dafermos stated the conditions for the optimality of the 
solution and proposed an algorithm for finding the optimal rout- 
ing in the convex case; the algorithm, however, is impractical 
for large nets, as it requires the bookkeeping of all paths for 
all commodities [17]. Yaged's results, on the other hand, are 
very restricted: they apply only to a separable, concave prob- 
lem [18]. 

In this paper, we attempt a more general, systematic in- 
vestigation of the method; we introduce the main results in a 
more straightforward way and in a simpler formulation than in 
[17]. We indicate an algorithm which is applicable to non- 
separable problems and which has been efficiently applied to 
large nets. 

b) Cone trained M.C. Flow Problems 

0 

b.l)    Linear performance,  linear constraints.    The classical, 
and most efficient, approach is the Dantzig-Wolfe decomposition 
[13,14], which reduces the solution of the main problem to the 
repeated solution of a Master Problem and a Subproblem. The 
Master is a linear program containing the additional constraints, 
and the Subproblem, which generates new columns to introduce 
into the Master, is an unconstrained  linear min cos I. flow prob- 
lem. 

b.Z;    Non-linear performance, non-linear constraints.    The 
general theory of non-linear problems with non-linear constraints 
is very hard. The special case of convex performance and concave 
non-negativity constraints, however, can be attacked efficiently 
with the Dantzig-Wolfe decomposition for convex programs [11]; 
the Master Problem is a linear program, and the column generating 
Subproblem is an unconstrained  convex min cost flow problem. 
Here is another important area of application for the FD method. 
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C 
He shoved that the two design problems considered in the 

paper can be regarded as unconstrained m.c. flow problems; 
therefore, in the sequel, unless otherwise specified, we refer 
to unconstrained problems. 

O 4.  STATIONARITY CONDITIONS 

Let us assume that P(f) is continuous with its first par- 
tial derivatives. He want to establish necessary and sufficient 
conditions for f to be stationary.* 

The most general perturbation (which we define as flow 
<j derivation)   »round f can be obtained as a convex combination of 

f with any m.c. flow v. The result of such flow deviation, f, 
is expressed as: 

£• = (1 - A)f + Av = f + A(v - f) 
where 

© v E F, 0 < A < 1 

If A -*■ 0, the flow deviation is infinitesimal.    For A = 6A « 1, 
we have: 

. b 
5P(f) = P(f') - P(f) * 6A l    Äk(vk - fk)    (4.1) 

k=l 
where 

*k  3fu k 

From Equation (4.1) and f.-om the definition of stationarity, f 
is stationary if: 

b 
I    £k(vk - £k) > 0, v e F (4.2) 

k=l 

O 

o 

We can also produce infinitesimal perturbations that involve 
only one of the commodities; f must be stationary with respect 

0 to any one of them separately.  It follows that f is stationary 
if, for all (i,j) commodities: 

I    Mv,!ij)   -f^ij))   >  O.vvc  F(i^ (4.3) 
k=l    K    K K 

C? 
*£ is defined as stationary if. for any infinitesimal perturba- 
tion 6f (such that f + 6f is also m.c. flow) we have 

P(f + 6f) > P(f) 
A local minimum is always stationary; the opposite, however, 
is not true. 

26 
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Hi) 
where F J    is the set of the feasible (i,j) commodity flows. 
In fact, Equations (4.2) and (4.3) a,:e equivalent, as will be 
seen front the subsequent derivations. Condition (4.2) can be 
rewritten as: 

b        b 

■*» I    Vk - ^ Vk 
VEF k»l      k=l * K 

(4.4) 

But, as f e F, Equation (4.4) becomes: 

L        b 
min. I Vk ■ I    *k

fk 
veF Jp-1      k=l * * 

(4.5) 

Similarly, Equation (4.3) becomes: 

min    I    lkvW  = I    V<«> 
v(ij)eF(ij) k=l 

K K k=l 
(4.6) 

Condition (4.5)* is easy to check: the right hand side can be 
directly evaluated, and the left hand side requires the compu- 
tation of the shortest route flow under the metric {I, }. 

k 
If we represent the m.c. flow as a collection of weighted 

routes (see Section 1), Equation (4.6) becomes: 

NP 
min J"  fc. r. . = V  J  L  (o r. .) 
Tl'   kKV* m=l kETT J 

m 

(4.7) 

where 

it'     is any (i,j) route 
i j ■ « 1, ..., NP, are the (i,j) routes used by commodity (i,j) 

o j m « 1, ..., NP, are the associated weights 
m 

NP is the total number of routes used by commodity (i,j) 

A r 
Let fc(ir) = I    l^s  Equation (4.7) becomes: 

kctt 

27 

NP 
min i(it')  = I    a Kit ) , '".mm 
ir'        m=l 

(4.8) 

*A different derivation of Equation (4.5) is given in 119]. 
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NP 
O Recalling that a > 0,ym, and £ a ■ 1, we obtein, for all 

m mil    m 
111=1 

contnodities  (i, j) : 

t(n1)  - £(ir2)  -  ...  Ui^p)  <.£(**) (4.9) 

where ff* is any (i,j) route. 
Condition (4.9) is stated also in {17]; a similar equi- 

librium condition was mentioned by Wardrop [20]. In fact, the 
condition is very intuitive: it states that all non-zero weight 
routes must have the same marginal "gain," whereas the zero- 
weight routes must be less (or, at most, equally) convenient 
than the weighted ones. For an immediate interpretation of 
Equation (4.9), suppose there are two paths, v    and ir . both 

p    q 
with non-zero weight, which do not satisfy Equation (4.9), i.e., 
I (it )  >  £ (IT ) , say. An infinitesimal deviation of commodity 

p    q 
(i,j) from ir to TT produces a variation 5P < 0; therefore, the 

P   q 
initial flow configuration was not stationary. 

Notice that test (4.5) is computationally more convenient 
than test (4.9), as (4.5) only requires the knowledge of the 
global flow, while (4.9) requires the knowledge of all the paths 
[19]. 

The question remains, whether the stationary point is a 
local (or global) minimum.  If P(f) is strictly convex, the 
stationary point, if it exists, is unique and is a global min. 
If P(f) is not convex, further considerations are required. 

5.  DESCRIPTION OF THE FD METHOD 

y The results of the previous section indicate that, if f is 
not a stationary flow, then the shortest route flow (evaluated 
under the metric I = 3P/3f ) represents the flow deviation of 

K A. 

steepest decrease  for P. This fact suggests a method, which we 
call Fiji) Deviation method,   for the determination of stationary 
solutions of unconstrained, non-linear, differentiate flow prob- 
lems P(f) . 

The FD can be regarded as an operator (denoted by FD(y,X) ©) 
vhich maps an m.c. flow f into another m.c. flow f' and is de- 
fined as follows: 

where 
FD(v,A) 3> f = (1 - X)f + Xv = f (5.1) 

y is a properly chosen m.c„ flow c F 
X is the step size (0 < X <^ 1) 

iSiääWäitfMi^^^ü^i^toÄiil^iA^waHjbi^ 
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Clearly FD is a map of F onto itself: 

FD(v,A) : F -*■ F 

Now, for each f e F, we want to determine a pair (v,A) in such 
a way that the repeated application of FD(v,A) (starting from 

any flow f ), produces a sequence {f } which converges to a 
stationary flow.  If we can define such a FD(v,A), then we have 
an algorithm for the determination of stationary flows. 

It can be shown [31] that, for a function P(f) which is 
continous, nondegenerate* and lower bounded, the following con- 
ditions''' are sufficient for the convergence of an FD-mapping 
to a stationary flow: 

(i)  AP(f) > 0 V f E F 
(ii) AP(f) = 0 => f stationary 

where AP(f) = P(f) - P(FD 0 f) 

Conditions (i) and (ii) require that the FD method be a true 
steepest descent method. 

Again in [21] it was shown that under reasonable assump- 
tions'" on P(fJ, the following definition of FD(y,A) satisfies 
conditions (i) and (ii): 

v = shortest route flow under metric £, ' 
"" A 
A = minimizer of P[(l - A)f + Av], 0 < A < 1 (5.2) 

*P(f) is defined to be nondegenerate if, for any two distinct 

stationary flows, say f   and j, we have: 

Pff1) /P(f). 

^Similar, but more restrictive conditions were stated by Dafermos 
in [17]. 

§The assumptions are: P(f) continuous and lower bounded; first 
partial derivatives continuous and nonnegative; second partial 
derivatives < + <*>; P(f) nondegenerate.    The nonnegativity of 
the first partial derivatives is a reasonable assumption, as, 
in general,  the performance that we want to minimize is an in- 
creasing function of the flow in each arc. 

^Notice that,, by assumption,  I,  - ZP/df,   >_ 0; this fact excludes 

the presence of negative cycles, which would tuxve caused the 
failure of the shortest route computation (and therefore of the 
FD algorithm). 
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Another valid definition of FD is the following. 

Let: 
it.. = shortest (i,j) path (under metric L ) 
lj k 

IT?, s longest (i,j) path, with cu. > 0 

Define (i,j) - deviation as the deviation of commodity (i,j) 

from IT?, to in ., which minimizes P(f). Define the FD operator 

as the composition of all (i,j) deviations: such a definition 
satisfies (i) and (ii).* 

A general algorithm, based on the first definition of the 
FD operator, is outlined as follows: 

1. Find a feasible starting flow f 
2. Let n = 0 

3. fn+1 = FD(vn,Xn) © fn 

4. If (P(fn) - P(fn+1)} < e, (or if l    yf£ - v£) < e'V, 

where e and e are acceptable positive tolerances, stop. 

Otherwise, let n = n + 1 and go to 3. 
The algorithm converges to stationary points; however, the 

only stationary points of stable equilibrium are the local minima, 
so we can assume that the algorithm converges to local minima. 

In the case of P(f) strictly convex, the algorithm converges 
to the global min (see Appendix I for a proof of convergence and 
an upper bound on the error). 

For P(f) non-convex, one should explore all local minima, 
in order to find the global minimum. However, a systematic 
search is impossible, for large-size networks, so heuristic ap- 
proaches (like the repeated application of the FD algorithm to 
various initial flow configurations) have to be devised.  In the 
case of P(|) concave (or quasi-concave [23]), the local minima 
correspond to extreme points of F, i.e., to shortest route flows 
[23]: this property, as shown later, greatly simplifies the FD 
algorithm and speeds up its convergence. 

In the following sections, the FD method is applied to the 
solution of Problems A and B. 

*Suah an FD operator is essentially the "equilibration operator" 
defined by Dafermos  117). 

^Such a tett is obtained directly from the stationarity condi- 
tion (2.5). 

^^k^ituäMiu^^ ,;..'.Ur.,.i-..^:.^.:.v,-.j, 
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THE ROUTING ASSIGNMENT 

31 

o 

Let us consider Problem A in Sect5on 2. The performance 
T(f) (see Equatioi, (2.3)) is strictly convex (separable sum of 
strictly convex fun .ions), and the feasible set F. is a convex 

A 
polyhedron. Therefore, if the problem is feasible, there is a 
unique stationary point, which is the global minimum. The ad- 
ditional constraints are included in T(f) as penalties; there- 

fore, if we can find a feasible starting flow f e F, Problem 

A can be regarded as an unconstrained m.c. flow problem and 
solved with the FD method. 

Let us check if T(f) satisfies the conditions fcr the con- 
vergence (see Section 5). The first and second partial deriva- 
tives are: 

at- i r   cj   , ■] 3fi~Y U.-v2 M 
(6.1) 

o 

c* 

0 for if j 

2C. 
l 

(6.2) 

Y (C± - f.) 
for i = j 

From Equation (2.3), the optimal solution f , if it exists (i.e., 
if the problem is feasible), satisfies the capacity constraints 
as strict inequalities (f* < C. ¥i). Therefore, we can find an 
e > 0 s.t.: 

f* e 
• A ^^(flf^C.-e) (6.3) 

The application of the FD method can be restricted to F C F ; 

for £ c F,, the sufficient conditions on the first two deriva- 
A 

tives of P(f) (as from Section 5) are satisfied; therefore the 
FD algorithm converges to the global minimum. 

In order to find a flow f e F.. several methods are avail- 
*    A 

able. One of them was described in [19]. Another method (ap- 
plied below) consists of picking any f e F, and then reducing 
the flows in all arcs by a scaling factor RE, until a feasible 

flow f = RE«f e F. is obtained; f satisfies a reduced require- 
A - 0 

ment matrix R = RE«R. The FD method is applied using f as 

ilimii iiiiiMiiir »jBltrMia^J^»M^-^^t^«Jnmlw,^t.^^.a^^«^<iJ«B 
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starting flow and R as starting requirement; after each FD 

iteration, the value of RE is increased up to a level very close 
to saturation. The search for a feasible flow terminates when 
one of the two following cases occurs: either RE > 1, and a 
feasible flow is found; or the network is saturated, T(f) is 
minimized and RE < 1. In the latter case the problem is in- 
feasible and we are finished. 

The FD algorithm for the solution of the routing problem 
consists of two phases, Phase 1 and Phase 2. In Phase 1 a 

feasible flow f is found (if it exists), or the problem is de- 
clared infeasible. In Phase 2 the optimal routing is obtained. 
The algorithm is outlined as follows: 

Phase 1 

0 With REQ = 1, let f be the shortest route flow computed at 

f - 0, i.e. with metric A « [3T/3f ]    = 1/Y(1/C + p').* 

Let n * 0. 

Let a    « max I — 

v° 

If a /RE <1, let f° * fn/RE and go to Phase 2. 
n  n n 

Otherwise, 

let RE = RE (1 - e (1 - a ))/a .  where e is a proper 
" n   n 

2. 

3. 

n+1    n 
tolerance, 0 < e < 1. 

Let gn+1 = f"(RE ,,/RE ).+ Go to 2. 
-        n+1  n 

Let f   = FD © cj 
where FD is defined as in Equation (5.2). 
If n * 0, go to 5. 

Q 

*The shortest route  ?r.. is therefore the route for which 

,  *•      (Pi + 1/C,) is minimum.    Notice that 1/C.  is the trans- 
kt-n..   rk k k 

mission delay per bit on channel k and p, is the propagation 

delay.    No queueing delay is considered as the traffic is zero 
(f,  st o).    So, as we expect, for /, ■+ 0,  the shortest route 

■n.. minimises the sum of transmission + propagation delay, 

^g is a feasible m.c. flow with requirement RE    ?. 

«^iBi j^^aagMaafeggüjgajafcs 
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4. 

U 

If \l   Vvk '9^)1 <eand |REn+1 - « | < 5. 
k«l 

where 8 and 6 are proper positive tolerances, and v is the 

shortest rou.:e flow computed at g  , stop: the problem is 
infeaiible within tolerances 8 and {. Otherwise, go to 5. 

5. Let n =» n + 1 and go to 1. 

Phase 2: 

0. Let n ■ 0. 

1. f   = FD © f 

2. If j£ *«Jvk " OI *  8r where 8 is a proper positive tol- 

erance, stop: J is optimal within a tolerance 8. 
Otherwise, let n = n + 1 and go to 1. 

The algorithm, in the form described above, provides only 
the optimum global flow f. If complete information about the 
routes take-i by each commodity is required, a simple updating 
of routing tables at each FD iteration allows one to recover it 
at the end of the algorithm (see [19]). 

7. NON-BIFUR2ATED ROUTING FOR LARGE AND BALANCED NETS 

An m-c. flow is defined to be non-bifurcated if each com- 
modity flo:*s along one route only- Some applications require 
a non-bifurcated routing assignment; in some other applications 
the non-bifurcated solution is a very good approximation to the 
optimum bifurcated one, and is obtained with considerable saving 
in the amount of computation (see below). The above reasons 
motivate an investigation of the non-H furcated routing assign- 
ment. 

The introduction of the "non-bifurcation" constraint re- 
duces the set of  feasible m.c. flows to a discrete set; the 
number of elements in the set is equal to the number of all 
possible combinations of TT„. paths, Vi,j. Continuous tech- 

niques, like the FD method, cannot in general be used; discrete 
techniques, on the other hand, are very involved and computa- 
tionally prohibitive already for networks of medium size (on 
the order of ten nodes). It is of interest to devise, therefore, 
efficient sub-optimum techniques. We will show that, in the 
important case of "large and balanced networks," a modification 
of the FD method can be successfully applied. 

f-ifftfüfaü^-- 6ajMaajBataaäiftBiüttto*Mrt 
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A network is said to be large  if it has a large number of 
nodes; it is said to be balanced if the elements r.. of the re- 

quirement matrix R are not highly diversified one from the other. 
For a more precise definition of "balanced," let r: 

A   1    I 
(n - l)n ,. ij 

be the average requirement per pair of nodes and let m: 

A 
m = max 

(ij) 
[r../r] 

be the ratio between the max and the average requirement.* No- 
tice that m >^ 1 and that m = 1 corresponds to a uniform require- 
ment matrix. A network is said to be balanced if m is close to 
x. 

We now combine these ideas into the notion of "large and 
balanced net." Let: 

A 
n = 

Km 

(n - Dp' 
(7.1) 

where: K = b/n, the average arc to node density of the graph. 

;,4(ÄV«)/' I ir 
where p.. is the length of the 

shortest (i,j) path (length of a path = number of 
arcs in the path); p' is therefore the average 
path length, when all commodities are routed along 
the shortest paths. 

A network is defined large and balanced  if n « 1. In order to 
motivate such a definition, let us consider, for an arbitrary 
m.c. flow f, the ratio of the total flow f in arc k, versus the 

(ii) 
contribution f    given by any commodity (i,j). Let us evalu- 

ate the average of this ratio, taken over all arcs: 

average (7.2) 

*Many other appropriate definitions of m are possible, for ex- 
:SßV/2 

s in which case m' - 0 corresponds ample m 

to the uni, 
' - jj(3 - '■¥■ 
mifbrm traffi 

-¥■) 

'ia requirement. 
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It was shown by Kleinrock [1] that: 

» r(n - l)n 
L 

I 
k»l 

where: 
- a 
P " (l '«*)4 r... and p.. is the number of arcs in Lj ~J  ^J//ij 

(i,j) route, relative to the routing assignment under consider» 
tion; p is therefore tiie average path lerjth.* 

Equation (7.2) oecomes: 

average 
(n - l)n«p 

bm 

(n J±E! 
Km 

l/n (7.3) 

From (7.3) the following property holds: 

Property (7.1):    In a large and balanced net, on the average, 
the contribution of one single commodity in any arc can be con- 
sidered infinitesimal, as compared to the total flow in that 
arc. 

In order ;o show how the FD method applies to the non- 
bifurcated solution of large and balanced nets, let us consider 
a new version of flow deviation, defined as the composition of 
deviations involving only one commodity at a time. Suppose 
that the flow f is non-bifurcated; that commodity (i,j) flows 
on 7T.,; and that it'.,  is the shortest (i,j) route, vnder the 

usual metric {£,}• The FD method dr.iates a proper amount 

\'X. (0 ■'        f, X <. 1) f of (i»j) commodity from n. . to IT.., 

that the performance T(X): 

such 

0 

U 

T(X) = T(f(l - X) + vX) 

where: f contains ■n. . 
ID 

v contains TT , 

is minimized. Ws can rewrite Equation (7.4) as follows: 

T(X)  = T(0)  + X 
b 

I 
k=l V

vk " fk) + 0IX<~ " ~)] 

(7.4) 

(7.5) 

*Notice that P depends on the particular routing assignment, 
while p' depends on requirement matrix and topology only; also 
notice that p ^p'> 

ÜJBÜllBÜrfiiüiiv .■.*.«.** 
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where 0( ) contains the terms of order higher than 1. Due t<- 
Property (7.1), the terms (v - f ) can be considered as in- 

finitesimal, and the term 0( ) is infinitesimal of order higher 
than 1. Therefore, as long as 8, defined as: 

b 

I 
k=l v\ - V 

o 

u 

o 

that A .  < 1; however, 6 
min 

is sufficiently negative, the term 0( ) can be disregarded and 
the minimizer of T(X) in Equation (7.5) is at the boundary 
(A . « 1); hence the PD method preserves the non-bifurcated 

rain 
characteristic of the flow. On the other hand, if 9 vanishes, 
the higher order terms become important and it mi~ht happen 

0 implies that f is very clo&e U> 

optimum (see Appendix for bounds on the error). Therefore, the 
FD method provides non-bif" "sated solutions which are very good 
approximations to the optimum bifurcated solution, and, as a 
consequence, very good approximations also to the optimum non- 
bifurcated solution. 

The non-bifurcated FD algorithm is next introduced: 

Non-Bifurcated FD Algorithm 

Let f be a starting feasible non-bifurcated flow.* 
Let n = 0. 

1. Compute SR(f ), defined as the set of shortest routes under 
metric (JO- 

2. Let g = fn. 

For each commodity (i,j): 

2.a Let y be the flow configuration obtained from g by 
deviating commodity (i,j) to the shortest route IT' 

n 1] 

given by SR(| ). 
2.b If [y feasible and T(y) < T(cj)], go to 2.c. Other- 

wise, go to 2.d. 
2.c g = v 
2.d If all commodities (i,j) have been processed, go to 3. 

Otherwise, go to 2.a. 

3. If g -  fn, stop. The FD method cannot improve the non- 

bifurcated solution any further, 
n =» n + 1 and go to 1. 

Otherwise, let f 
n+j. 

= g. 

*Suah a starting flow can be found with a Phase 1 procedure, 
similar to that described in Section 6, 

jjfjgMMii^—--^"'-'^^*»^^^^ 



•J 

u 

Ü 

118  FRATTA, GERLA AND KLEINROCK 

The algorithm converges in a finite number of steps, as there 
are only a finite number of non-bifurcated flows, and repeti- 
tions of the same flow are excluded by the stopping condition. 

An application of the algorithm to a large and balanced 
net is presented in the application section. 

8.  THE ROUTING AND CAPACITIES ASSIGNMENT 

It was shown in Section 2, that F. the feasible set for 

Problem B, is a convex polyhedron; it was also shown that the 
additional constraint is included in the performance T(f) as 
penalty function, so that Problem B can be regarded as an un- 
constrained m.c. flow problem. 

Let us now investigate the properties of T(f).  Recall 
(see Equation 2.5): 

T(f) = 

Au  - I    f.d. ) 
A  i=i x V 

f.p: (8.1) 

Kleinrock, in [1], considered this case and also dealt exten- 
sively with a simplified version of Equation (8.1)* He showed 

with the same num- 
1     2 

that, whenever two routes, say ir. . and ir. ., 
13     13 

ber of intermediate arcs, are available for commodity (i,j), 
then T(f) is minimized when the entire commodity is routed on 
one of the two routes only. Such a result, obtained under re- 
strictive assumptions, suggests the conjecture that the optimal 
flow be, in general, non-bifurcated.  In fact, further research 
has been done [21], [22], and it can be shown that T(f) in 
in Equation (8.1) is quasi-concave  on F , i.e., given any two 

1     2 
feasible flows f and ?  [23]: 

Tff1) < T(f2) =>  T(f ) < T[(l 

BJ 

\)tl  + Xf2] 

where: X < 1. 

More gene.ally, T(f) can be shown to be quasi-concave for all 
"routing and capacities assignment" problems with concave cost- 
capacity functions [211; the linear case is therefore a special 
case. 

37 

^Essentially, d. - 1 and pi = 0,   vi. 
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As a consequence of such a property, the local minima are 
at extreme points of F , i.e., they correspond to shortest 

0 

route flows (see Section 3), which are a subclass of the class 
of non-bifurcated flows. 

The FD method, when applied to Problem B, nan be greatly 
simplified: the step size X is always equal to 1 (if we find 
a downhill direction, we go all the way down, due to the quasi- 
concavity of T(A)), an<. the flow patterns generated are com- 
pletely defined by just one (n * n) matrix, the shortest route 
matrix. 

A schematic description of the ?D algorithm, as applied 
to Problem 3, is as follows: 

0   r- 0. Suppose* f er; let n * 0. 
**     3 

1. Let f"+1 = FD © ff™. 

2. If (T(f/ ) >_T(f  )), stop; j local minimum. Otherwise 
let n = n + 1 and go to 1. 

O 

The convergence of the algorithm is guaranteed by the fact that 
there are only a finite number of shortest route flows, ai J repe- 

titions of the same flow are not possible, as T(j ) is strictly 
decreasing. 

The partial derivatives, used for the shortest route compu- 
tation, have the following expression: 

3T 
8f. i 

Notice that 

that: 

iF^ 
e  /' i  Y\ "e  /  *  Y 

> 0; negative loops cannot exist. *.l«a notice 

3T 
lim  = oo 

f.-0 3fi 
x 

which means that, whenever the flow (and therefore the capacity, 
from Equation (2.4)) of an arc is reduced to zero at the end of 

*The problem of finding a feasible starting flow is discussed 
later in the section. 
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V 

an PD iteration, then in such an arc, the flow and capacity are 
zero for all subsequent iterations, as the incremental cost of 
restoring the flow (= 3T/3f.) is infinity.* 

k « 0 

V 

o 

0 

Lengths I. 

assigned at random 

SR mtx 

and flow assignment 

^  yes 

Apply FD method 

1       Find local nan. 

i 

k = k ♦ 1 

Fig. 2 Block diagram of the FD algorithm for Problem B, 

*This property suggests a method for the design of the topology: 
we can start from a topology which is highly connected, and 
eliminate arcs with the FD method, until a suboptimal configura- 
tion is obtained 121).    A similar approach is used by Yaged in 
1181. 
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The FD method leads to a local minimum, which depends on 
the choice of the feasible starting flow. In order to find 
several local minima, a mechanism that produces a large variety 
of feasible flows is required. We propose the following ran- 
domized procedure for the generation of feasible flows:* 

1. Assign initial equivalent lengths {£.} to the arcs at random. 

2. Compute the shortest route flow f° according to the metric 

ill). 

3.  If D /  f.d. > 0, f 
iia  a x is feasible and can be used to start 

the FD algorithm. Otherwise f is rejected. 

The initial random choice of the lengths guarantees a cer- 
tain randomness in the starting feasible flow, thus providing a 
method for finding several local minima. After a convenient 
number of iterations, the global minimum is chosen as the mini- 
mum of the local minima. This provides a "suboptimal" solution. 

A block diagram of the method is given in Figure 2. 

UCLA     M,0   AFM.    B8N   BURROUGHS 

Fig. 3 A 2i-node ARPA topology. 

9.  APPLICATIONS 

As an application of the FD method, Problems A and B are 
solved for the ARPA Computer Network. The ARPA Computer Network 
is a S/F communication network connecting several computer 

40 

*Another procedure was proposed by Yaged  [18], 
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facilities in the United States. A detailed description of the 
network is given in [3] - [8], [25] - [29]. Due to the fact 
that new computer centers are continually joining the network, 
its topology has been changing quite rapidly; in these applica- 
tions we refer to one of the earlier proposed topologies, with 
21 nodes connected by 26 full duplex channels (see Figure 3). 
We also assume that the traffic requirement is uniform between 
all pairs of nodes. 

9.1   ARPA network:    The Routing Assignment 

The traffic requirement R = {r..} is assumed unifonr: 

La 
r = 1.187 [kbits./sec. 3* for i  j* j 

for i 

First, we show that, for the 21 node ARPA net with uniform 
requirement, the "large and balanced net" condition holds. From 
Equation (7.1), n is given by: 

n = 
mb 

n(n - Dp 

In the present case: 

n » 21 

p'> 1 

b = 52 (each full duplex channel represents a pair 
of directed arcs: hence 26 x 2 = 52). 

Hence: n < 0.12 « 1 

The condition is satisfied. We can therefore apply both optimal 
and non-bifurcated FD algorithms and compare the results. 

The result of the optimal FD algorithm is: T nun 0.2406 

sec, obtained after 80 shortest route computations, with an 

accuracy of 10 
algorithm is: T 

on T. The result of the non-bifurcated FD 
= 0.2438 sec, obtained after 12 shortest 

nun 
path computations. The algorithms were programmed in Fortran 
and run on an IBM 360/91; the execution time was 30 sec. for 

*The traffic requirement at saturation is r    . = 1.250 

[kbits./'sec. ]  (see Figure 4).    vie chose r = 0.95 r    ,= 1.187 

in order to have a feasible, but difficulty requirement. 

41 
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the optimal algorithm and 4 sec. for the non-bifurcated one.* 
The error of the suboptimal non-bifurcated solution, with re- 
spect to the optimum, is less than 2 percent; the fact shows 
how powerful the non-bifurcated algorithm is for large and 
balanced nets, and suggests that a convenient modification of 
it could be useful for the solution of very large nets f21J. 

U 

0 

o 

400 

300 

r    C0 •OPTIMAL ROUTING FOR 
RE«0 

C, •OPTIMAL ROUTING FOR 
RE>0.8 

C. 'OPTIMAL ROUTING FOR 
*- RE« 1.0 

I 200 

RESA70 RESAT, 

Fig. 4 Average delay T versus normalized traffic RE, 
using various routing Schecks. 

10 

o 

u 

Figure 4 illustrates the application of the non-bifurcated 
algorithm. Recall that RE is the traffic level normalized to 
r = 1.187 kbits./sec. The traffic is first routed along the 
shortest routes computed for RE = 0; curve C plots the delay 

T versus RE, using such a routing scheme (which we refer to as 
RS ). With RS , the saturation level for the traffic is 

RESAT = .85 < RE = 1 is infeasible, and therefore we are 

still in Phase 1. Let f be the flow obtained by routing traf- 
fic level RE, .95 RESAT, .8, according to RS , and apply to 

f the FD algorithm; a new routing scheme RS is obtained, which 

improves T(RE1) Curve C.., corresponding to RS , saturates at 

*We expect to be able to reduce considerably the computation 
time by optimizing the code and by improving some hard working 
subroutines,  like the shortest route and flow assignment rou- 
tines  [16]. 

wmämat 
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RESAT = 1.05 > 1; RE = 1 is feasible and Phase 2 is initiated, 

with RE_ =»1. At the end of Phase 2, the sub-optimal, non- 

bifurcated routing scheme RS is found; curve C  corresponding 

to RS  practically coincides with curve C., in Figure 4, as the 

scale of T is not detailed enough to show differences in values. 
Notice that, as expected, the routing RS gives the best results 

at low traffic levels; in fact, RS is almost optimal up to 
RE = 0.5. 

9.2   ARPA Network:   Routing and Capacities Assignment 

The set of channel capacities available for the ARPA Net- 
work is discrete: Table 1 contains the list of capacity options 
and corresponding costs considered in the present application 
16].  In order to be able to apply the FD method, the discrete 
cost-capacity curves have been approximated with continuous, 
piece-wise linear curves (see Figure 5). We do not discuss the 
details of the approximation, but merely mention that they must 
be concave.* The concavity of the cost-capacity curves implies 
that the local minima are shortest route flows (see Section 8). 
The FD method can, therefore, be applied in a form similar to 
the one presented in Section 8; a few modifications are required 
due to the non-linearity of the cost-capacity curves. 

CHANNEL CAPACITIES AND CORRESPONDING 
COSTS USED IN THE OPTIMIZATION 

(J 

U 

Capacity Termination Cost Line Cost 
[kbits/sec] [$/month] [$/month/mile] 

7.2 810 .35 
19.2 850 2.10 
50 850 4.20 

.108 2400 4.20 
230.4 1300 

Table 1 

21.00 

Note: The total cost per month of a channel is given by: 
total cost = termination cost + (line cost) x (length 
in miles). 

*0ther concave approximations can be considered:    see  [6],   [18]. 
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d': staircase corresponding to discrete capacity levels, 
d": piece-wise linear approximation 

Fig. 5 Cost-capacity curves for arc i. 

A schematic description of the algorithm follows here: 

Let DQ be the total dollar investment. 

Let f° e FB 

0 0 * 
Let C be the optimal capacities assignment for fixed f . 
Let T (f) be as from Equation (8.1), using linear approxi- 

0 
mations of the cost-capacity curves around C . 
Let n = 0. 

1. 

2. 

Let: 

f   = shortest rout-* flow computed at f 
(using metric I.   = [3T (f)/3f, ] ~ n). k     n -   k t=r" 

n+1 
be the optimal capacities assignment for fixed 

and let T ,(f) be as from Equation (8.1), using 
n+1 - 

linear approximations of the cost-capacity curves around 
„n+1 

Let C 
.n+1 

if IT ,,(fn+1) > T_(fn)), 
n+1 "-  " — n 

Otherwise, let n = n + 1 and go to 1 

stop; f is a local minimum. 

*The optimal assignment of capacities, given the flows and the 
total dollar investment, for concave cost-capacity functions, 
has been discussed by Y.l^invoak  [6). 
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The result of the above described algorithm is a local 
minimum for the continuous cost-capacity problem. In order to 
get a solution for the discrete problem, the capacities and 
flows given by the algorithm are "adjusted" in the following 
manner: in all arcs, the capacity is increased to the upper 
value of discrete capacity available (thus increasing the total 
investment to D > D ); then, the routing is optimized once again 

with the FD routing algorithm. 
The above described technique is clearly suboptimal. We 

cannot guarantee that the solutions so found are local minima; 
in fact, it is not even possible to define  a local minimum in 
a discrete problem. Other suboptimal techniques have been pro- 
posed {7,10,21]; however, the optinuzation of a network with 
discrete capacities still remains a formidable (and basically 
unsolved) problem.* 

140 

120 
\ 

N 

O r «1005 (BITS/SEC i NO0E PAIR) 
• r -923 (BITS/SEC i NODE PAIR) 
A r-846 (BITS/SEC x N00E PAIR) 
D r«77l (BITS/SEC x NODE PAIR) 

D0«C0ST OF ALL 50 K BITS MET 

- x i 

o 60 

40 

\> 

_l I i 1 '—I—u 
73 80 
0(K$/MONTH) 

Fig. 6 Delay T versus cost D of various undominated capacity 
assignments for different traffic levels. 

*The optimum solution can be obtained, with dynamic programming 
techniques, in the special case of a centralized network  [SO]. 
In fact, for such a case,  the problem reduces to  the. optimal 
assignment of capacities only,  as the flows are already deter- 
m->'*>ed by the tree-structure topology. 
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The technique has been applied to the design of the ARPA 
Network. Four cases have been run, each with a different value 
of uniform requirement r {see Figure 5). The initial cost D 

was made equal to the cost of the proposed network with all 50 
kbit channels (D * 71,000 $/month).  In order to be able to 

compare the 50 kbit capacities assignment to the assignments 
found with the FD method, the minimum » j.ay T, with all 50 kbit 
capacities (i.e., with total cost D = D ), was reported on the 

graph for each value of r (T was obtained from the curves in 
Figure 4). The delay T and the total cost D of the undominated* 
solutions are plotted in the graph of Figure 6. 

10.  CONCLUSION 

U 

o 

The FD method can be applied to ~^\y unconstrained m.c. 
flow problem when some reasonable assumptions on P(f) are satis- 
fied. It also can be applied to constrained  flow problems: in 
particular to problems that include the constraints as penalties 
in P(f), or that have been decomposed with the Dantzig-Wolfe 
method. Local minima are in general attained; for convex prob- 
lems, the global minimum is found. 

The FD method seems to be an efficient tool for the design 
of S/F networks: for example, if we consider the optimal rout- 
ing problem, it can be shown [19] that the amount of computation 
per iteration required by the FD method is comparable to that 
of the heuristic techniques so far proposed [16,24],+ A general 
statement, however, about the effectiveness of the FD method as 
compared to other methods would not be appropriate: many fac- 
tors, which depend on the specific application (like trade-off 
between precision and computational speed) should be considered 
in order to select the proper approach. 

APPENDIX: CASE OF P(f) STRICTLY CONVEX 

If P(f) is strictly convex, a direct proof of convergence 
of the FD algorithm, defined in Section 5, is available and a 
lower bound can be established. 

*A solution (T.,D.) is said to be dominated by (T .,D,) if: 

(D. < D.) and (T. < T.) 

A solution is undominated if it is not dominated by any other 
solution. 

fThe two bottlenecks, common to both approaches, are the short- 
est route computation and the flow assignment  [16]. 
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Convergence 

We want to show that: 

lim fn - f* (A.l) 

where f* is the global minimum of P(f) on F, and {f} is the 
sequence generated by recursive application of the PD operator 

on a given starting flow f . The associated sequence {P(r )} 

is monotonically non-increasing and lower bounded by P* ■ P(f*), 
therefore it must converge: 

lim Pff") - P' > P* (A. 2) 

Also, recalling that: 

where 

P(fn) - P' - l    AP(fÄ) 
*=n 

AP(f*) - P(fS - P(FD© f£) = P(f*) - P(fÄ+1) 

and recalling that: 

AP(f£)  > 0V£ 

we have,  from Equation  (A.2): 

lim AP(f")  = 0 (A. 3) 

Suppose (A.l) is false; this implies, since P(f) is strictly 
convex, that p' > P*. However, in such a case 7 we are able to 
establish a relation which contradicts Equation (A.3) as fol- 
lows. 

Let us first establish a lower bound on AP(f). Let: 

47 

P(X) S P[(l - X)f + Ay],  0 <_ A < 1 

where: y is thd .-hortest route flow computed at f. 
Taylor's expansion: 

Using 

P(X, -P(O) +xfÄl      +ixf4l 
UUX=0      2      LdA JX=£ 

(A.4) 
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where i,  is a proper value in the interval (0,X) as usual. By 
assumption, the second partial derivatives of P(f) are upper 
bounded; therefore, the second directional derivative is i'.lso 
upper bounded, and Equation (A.4) becomes: 

where 

P(X) - P(0) < X 8 + ~ X2M 
2 

e=   I   Mvv- V 1° 
k=l Je k 

(A. 5) 

(A. 5)' 

M:  upperbound on d P/dX • 

Arter minimizing both sides of Equation (A.5) over X, and re- 

calling that min [P(X) - P(0)] = -AP(f), wz  get: 

6/2M if -6/M < 1 
AP(f) > (A.6) 

M/2  if -0/M >_ 1 

Equation (A.6) can be rewritten as follows: 

,2  ) M 
AP(f) > - min 

- - 2 
(A 6)' 

Inequality (A.6)' represents a useful lower bound on AP(f). 
Consider now: 

P(X) = P[(l - x)fn + X-f*] 

where:  0 <_  X <_  1 

P(X) is strictly convex, therefore it lies above its tangent 
line at X = 0: 

P(X) > P(f ) + X 

where:  £, = 
k 

[I hK ~ 0 (A.7) 

Letting X = 1 in (A.7) and recalling from (A.2) that P(fn) > P* 

48 

P(f*) = P* > P1 + l     £ (f* - f") 
k=l 

(A.8) 

*Notice that M > 0 as P(\) is strictly convex. 

*m*-;'  ,..:^..-,>-.*.^.»>,-: ütla"-"^- ' -'"^-«'»»ma» 



130   FRATTA, GERLA AND KLEINROCK 

Let v be the shortest route flow computed at f ; we have, from 
Equation (A.8): 

b 
P" > P + i vv

k-# 
k=l 

From (A.9), using definition (A.5)', we have: 

p' - p* < |eI 
Introducing (A.10) into (A.6)' we get: 

<P' - P*)2 

AP (f ) > — mm 
— o 3    1   >  0 

(A.9) 

(A.10) 

(A.11) 

The r.h.s. of Equation (A.11) is independent of n and strictly 
positive, therefore: 

lim AP(fn) > 0 (A.12) 

Equation (A.12) contradicts Equation (A3). Therefore (A.l) is 
true. 

Lower Bound 

By replacing f with a generic f c F in (A.7), and letting 
\  = 1, we get, after a few steps: 

49 

o 

P(f*) ^P(f)   +     l     £k(vk - fk) (A.13) 
k=l 

where: f is the global minimum 

y is the shortest route 
flow computed at f 

From (A.13), lower and upper bounds on P(f*) are readily avail- 
able: 

b 
P(f) > P(f*) > P(f) + I    ik(\~  fR) 

Notice that the test for optimality based on I   M 
k=l 

,v - f ) 
k* k   k' 

(see Section 5) is very powerful in the case of P(f) strictly 
convex, as it provides an upper bound on the optimal value 
error. 

mmmmm liMliflil I'li'ifiTiaiMiltmimiiii 
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ABSTRACT 

A twitching nztwolk may be informally described as a col- 
lection of single-pole, single-throw switches arranged so as 
to connect a set of terminals called -input!» to another set of 
terminals called outputs.    It is non-blocking if, given any set 
of connections from some of the inputs to some of the outputs, 
and an idle input terminal x and idle output terminal y, then 
it is possible to connect x to y without disturbing any of the 
existing connections.    Denote by o(a,b) the minimal number of 
switches necessary to connect a inputs to b outputs using a 
non-blocking network.    We are interested in studying the growth 
of o(a,a) as a ■*■ °°. Res'ilts of C.  Clos show that a (a,a) <_ 

C ae       &    '    *   '.    We show that a(a,a) < 8a(log9a)  . 

INTRODUCTION 

A network  N consists of a graph G; two sets of vertices of 
G, denoted A and B and called, respectively, the (sets of) in- 
puts  and outputs;  and a set P of paths of G. Each path in P 
connects an input to an output &nd meets no other inputs or 
outputs. We write N = (G,A,B,P). A state  of N is a subset S 
of P such that no two paths in S have a common vertex. A state 
S defines a bijection f from a subset of A to a subset of B as 

follows: Suppose p e S and p connects x z  A to y e B; put 
f„(x) - y,  and repeat this for each path in S. We shall say 

that a path p of G is admissible  if p e P.  If x is a vertex of 
G we shall say +:hat x is busy   (in the state S) if x lies on a 
path p e S; otherwise we shall say that x is idle   (in the state 
S). If x is an input of G and y is an output of G, we shall 

Networks, 1: 367-377 
© 1972 by John Wiley £ Sons, Inc. 367 



368  CAMTOR 

say that x has access  to y (in the state S) if there exists a 
path p e P connecting x to ■ ind such that SU(p) is a state. 

A network N = (G,A,B,P. may be interpreted as a switching 
device; under this interpretation, the elements of A are con- 
sidered as input terminals, the elements of B are considered as 
output terminals, and the edges of G are considered as single- 
pole, single-throw switches which are normally open. Then a 
path p, which connects x e A to y e B may be thought of as a 
sequence of switches which, when closed, connect x to y. The 
state S yields a collection of switches (all edges on any path 
in S) which, when closed, connect inputs to outputs in the man- 
ner described by the function f . 

The network N = (G,A,B,P) is said to be non-blocking  if 
given any state S of N and idle vertices x e A, y e B, then x 
has access to y in the state S. In terms of the switching net- 
work interpretation mentioned above, this means that if x and y 
are idle input and output terminals, respectively, then it is 
possible to establish a connection between them without dis- 
turbing the existing connections. 

From now on, all the networks we study will have disjoint 
inputs and outputs (i.e. A 0 B = 0). 

Given positive integers a and b we are interested in find- 
ing those ncn-blocking networks N = (G,A,B,P) with |A| = a, 
|B| - b for which the number of edges of G is minimal. We shall 
denote this number by o(a,b). In terms of switching networks, 
this amount to finding non-blocking networks using a minimal 
number of switches. An obvious non-blocking network with a in- 
puts and b outputs is the network whose graph is the complete 
bipartite graph on vertex sets A and B with |A| = a and |s| = b. 
In this graph the set of vertices is A U B and there is an edge 
connecting each vertex in A to each vertex in B. The set P con- 
sists of all paths consisting of exactly one edge. Thus P has 
ab elements. In the switching network interpretation, this 
amounts to an a by b crossbar switch. When the names of the 
sets A and B are unimportant, we shall denote this network by 

"ab" 
The network C . shows that o(a,b) 

ab 
< ab. 

It was Glos [2] who showed that a(N,N) < N for all large 
His methods, which will be described later, show that o(N,N) 

< C Ne 
2/(log N)«(log 2) 

We will show that a(N,N) < 8N(log2 N) 

We do not attempt to obtain the smallest possible constant mul- 
tiplier, for it is not clear that the exponent 2 can not be re- 
duced. In the opposite direction, an elementary argument shows 
that a(N,N) > C N log. N, and nothing stronger is known. 

55 
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2.  CONSTRUCTIONS 

56 

We shall say that networks N = (G,A,B,P) and N = (G ,A , 

B ,P.) <re ieomorphtc  (or equivalent)  if there exists a graph 

isomorphism |i of G onto G1 such that JJ (A) - A , \i (B) = B , and 

y(P) = P . It is clear that the property of being non-blocking 

is preserved under isomorphism. 
If N = (G,A,B,P) is a network, we define its transpose N' 

to be the network N' = (G,B,A,P); clearly N" = N. 
If G is a graph and C is a set, we define the graph G x C 

to be the graph whose vertices are the ordered pairs (x,c) with 
x a vertex of G and c e C; ((x ,c ), (x ,c )) is an edge of 

G x C if c = c and (x ,x ) is an edge of G. 

in G whose vertices, in order, are x , x , .. 

If p is a path 

, x then by 

p x c we mean the path in G x c whose vertices are (x ,c), 

(XjC), (x ,c) 
n 

The product C x G is defined similarly. 

Now suppose L. = (G.,A.,B.,P.) (i = 1 or 2) are networks; trtr x x  1  1  1 

we are going to define the network product L x L . We shall 

denote this product by N = (H,C,D,Q). Put C = A x A and D = 

Bi * V The graph H is obtained from the two graphs G x A 

and B x G by identifying the vertices in B x A , which appear 

in both graphs. All admissible paths q e Q  of N are obtained as 
follows: Let p. e P. be an admissible path connecting x. e A. 

li li 

to y. E B. (i = 1 or 2). Then p x x ends in the vertex (y ,x ) 

which is the first vertex of y x P9- The path q = (p,,P2) is 

defined to be the path obtained from the paths p x x and 

y x Pj  by concatenating them and identifying the common vertex 

(yT,x ). Note that this maps P x P onto Q, 

In the switching network interpretation this construction 
amounts to taking |A | copies of L and IB I copies of L , and 

connecting the outputs of each of the copies of L to the inputs 
of all of the copies of L 'see Figure 1). 
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v. 

I I 

The lines do not  represent edges; they connect 
output vertices of L to the input vertices of 

L with which they are identified. 

Fig. 1 L x L 
1 * 2 

V 

Let a.,b.,c,d denote, respectively, the cardinalities of 

A.,B.,C,D, and let g.,h denote, respectively the number of 

edges of G. and H The following relationship between two by 

two matrices is easily verified 

/ai ° \/a2 ° \/C °\ 
(i) 

If L is isomorphic to M and L_ is isomorphic to^ M it is 

Further- 

Finally, we have associativity: 

easy to verify that L x L is isomorphic to M x M 
12 1    2 

more (L x L_) ' = L' x L' 

(L x L ) x 

L x L_ x L_. 

L = L x (L x L ); we will usually write simply 

We will abbreviate the k-fold product L x L x 

• • • x L by L . 
We also define a triple product of the three networks L. = 

(G. ,A. ,B. ,P.)   (i = 1,2,3)   when   Iß, I   =   IAJ.     Let T be a bi- 
liii 13 

jection from A onto B ; the triple product of L ,L ,L depends 

upon the choice of T and will be denoted by [L ,L ,1 ] .  (In 

..„'-^^,>.;^i.,W3.M'-•,_!..-,«si. ~«:ILS-.. 
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many cases L_ will be L* and in such cases we will choose T to 

bo the identity map. In any case those properties of the triple 
pioduct which we will use will be independent of the choice of T 
and we will frequently write [L ,L L ] instead of [L ,L_,L ? .) 

Suppose then that. N * (H,C,D,g) is [L ,L ,L ] . 

We put C = A x A and D = B x B ; H is defined as the 

graph obtained from the three graphs G x A , B x G , and 

G. x B , by identifying B x A in G x A with B x A in 

B x G , and by identifying A x B in G. x B with x(A ) x B = 

B x B in B x G . The admissible paths q e Q  are obtained in 

the following way: Let p. be an admissible path of L. connecting 

Then x. e A . to y. e B. (i = 1,2,3) and suppose T(x ) = y . 

p^ x x_ ends at (y.,x ); y x p begins at (y,,x ) and ends at 

*yi'y2''' and P3 x y2 be9ins at I**'Y2*   = *yi'y2)#  The V***1  q iS 

obtained by concatenating p. x x , y * p , p x y and identi- 

fying the vertices common to two segments of q. 
Note that [L ,L ,Lj is, in general, different from 

L x L x L. (see Figure 2). 

U 

The lines do not  represent edges; instead they 
connect vertices which are to be identified. 

Fig. 2  [L1,L2,L3] 
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Theorem 2.1:    Suppose L. = (G.,A.,B.,P.)   (i  = 1,2,2,4,5) ape 

nctwovke.    Suppose  T is a bisection of Ar onto  /',. Then 

'V^Wt/Vij = iLl  * L2'L3>L4  * fVt' 

where  x, is the bisection from A    x A. to B1  x B„ given by 

x(a4,as) = (x2(a5),r2(a4)). 

3.  THE CLOS METHOD AND SOME VARIATIONS 

The basic method, due to Clos [2] and quoted by Bei es [1] 
may be stated as the 

Theorem (Cloe):    Suppose L = (G,A,B,P) is non-blocking and 
8 >_ 2r - 1.    Then N = [C   ,L,C    ]  is non-blocking. 

This is a special case of the following more general 

Theorem 3.1:    Suppose L. = (G.,A ,,B.,?.)   (i = 1,2,3) are non- 

blocking,  that  |flj >_ \A  \  +  JB^j - 1, and that \B \ = \A \. 

Then N   = [L.,L9,L7]    is non-blocking for any bisection  T of A- 

onto  S?. 

Proof:    Suppose NT = (H,C,D,Q) is in state S, and that x e C, 
y e D are idle. We must show there exists a path q e Q con- 
necting x to y and having no common vertices with any path in S. 
Suppose x = (u ,u ) e A x A and y = (v3«

v
2) e B3 

x B2* 
Tnere 

are |A | vertices of the form (u,u ) e A x A and at most 

|A | - 1 of th^n are busy. Hence at most jA | - 1 of the JB | 

vertices of the form (y,u ) e B x A are busy and hence at 

least JB | - JA | + 1 of them are idle.  Denote these vertices 

by (y, ,u2),(y. ,u2), ..., (yi ,u2), so that r >_ |B1j - |Ax| +1. 
1      "2 r 

Similarly, there are vertices (z. ,v,),(z. ,V ), ..., (z. ,v ) 
1112 IS 

in A x B which are idle, and s >_ J A | - JB | +1.  The r + s 

vertices y. ,y. , ..., y. , T(Z. ),T(Z. ), ..., x(z. ) all lie 
xl    x2 Xz Xl X2 xs 
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in B    and 

r + s >    B _ --!«   -  l*iI   + 1 +  IBJ   -   lB3l   + 1 
> |B1| + 1 + C|B1| - |A1| - |B3| 1) 

1 |B1| + 1. 

So two of them must be the same. Now the y. are all distinct 
l. 
J 

and so are the T(Z. ). Thus there must be a y.  equal to a 

T(Z. ), say y. = T(Z. ). Since L.. is non-blocking there is a 
Xk      Xl     Dl 

path p connecting u to y.  and such that p x u has no common 

vertices with any vertex in S. Similarly there is a path p 

from u to v in P such that y. x P~ has no common vertices 

with any path in S, and there is a path p from z. to v in P 

such that p_ x  v has no vertex in common with any path in S. 

Let q be the concatenation of p x u , y. x p_, and p x v 

with the appropriate vertices identified. Then q connects x to 
y and S U {q} is a state of N . 

Remark 3.2:    Suppose a. = |A.|, b. = |B.| and g. is the number 

of edges of G. (i = 1,2,3). It is easy to verify using (1) that 

N = [L ,L ,L ] has a.a» inputs, bb outputs and that its graph 

has a2g + b g2 + b2g edges. 

Clos [2] suggests using networks which may be described as 

[L,[L,[I,, ...,   tL,MfL
,],L,],L'], ..., L'] 

where L = C _ , and M = C  -By Theorem 2.1, this is the 
n,2n-l        n,n 

same as [L ,M,(L') ], where L =LxLxLx«««xL(t times). 

He shows that this non-blocking network, which has n   inputs 
and outputs, has 

2 
n (2n - 1)  r/c   ,, ._   ,,t-1    tT  :—- [ (5n - 3) (2n - 1)   - 2n ] 

n - 1 

edges. This follows immediately from the above remark. It is 

rwfa.»«-—'- 
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■u 
easy to verify that a non-blocking network with N inputs and 
outputs, constructed by this method, will require at least 

2/log N'log 2 
C0Ne edges, where C > 0 is a constant. 

Suppose that L  denotes a network with a inputs, b out- 

puts, and whose graph contains a minimal number of edges, namely 
o(a,b). Using two copies of L  shows that o(a,2a) < 2c(a,a). 

act "~ 

By Theorem 3.1, [L   ,L  ,L_  J is non-blocking and by Remark 

3.2, it has <_ aa(a,2a) + 2aa(a,a) + ao(2a,a) <_ 6aa(a,a) edges. 
Thus 

2 2 
a(a ,a ) < 6ao(a,a) 

log26 
Iteration of (2) shows that a(N,N) <_ C N(log N) 
suit can be improved by considering [L   ,L   ,L_ 

(2) 

This re- 
]; this 

network has ab inputs, 2ab outputs and its graph has 3bo(a,2a) 
+ 2aa(b,2b) edges. This shows that 

a(ab,2ab) < 3ba(a,2a) + 2ao(b,2b) (3) 

Putting a *  b and iterating (3) shows that 

and since a(a,a) < o(a,2a) we find o(a,2a) <_ C a(log2 a) 

that 

log2 5 

o(N,N) <_ C N(log  N) 
log2 5 

The exponent log 5 can be decreased by choosing a and b dif- 

ferently. Let a > 1 and ß > 2 be the real solutions of the 
simultaneous equations 

e-i    , I     a   = 3 

(a - l)8"1 = 3/2 

(4) 

Numerical computation shows that a = 2.37638 and ß = 2.26922. 
Multiplying the second equation of (4) by a - 1 «nd substituting 

from the first yields 2(a ivß   ß 
1)  = a 3 or equivalently 

3(l/a)ß + 2(1 - l/a)ß ■= 1. 

ß 

(5) 

We now show that if p (x) = (log x) , then y(x) satisfies the 

ggftffH 
L'^>^^,-;;UU:'^AU^UUI. .■v.,*aü.»*..j,.--.i,'^t^iijKii»iKtt* i 
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functional equation 

u(z)  - 3uU)  + 2y(y) (6) 

where x » z   and y = z/x. Indeed, 

3y(x) + 2y(y) - 3((log zj/a)8 + 2(log z)8 {1 - 1/a)8 

= (log z)0 

* U(z) 

using (5) . 
Now o(x,2x)/x satisfies a functional inequality similar to 

(6) where x and y must be integers. It follows that for each 
e > 0, the exists C > 0 such that 

a(N,2N) <_ C  N(log N) 

For comparison, log. 5 - 2.32193. 

ß+e 

4. THE EXPONENT IS <_ 2 

Suppose L » (G,A,B,P) is a network (not necessarily non- 
blocking) . We shall say that L is of type T(m,n) if, given any 
state S of L and m idle inputs x,, x,., ..., x of L, then each 

I i m 
has access, in the state S, to at least n outputs of L. 

Lemma 4.1:    Suppose L = (GtA,B3P) iß of type T(m3m + n - 1) for 
1 <_m <_k, that M is a non-blocking network with a inputs and d 
outputs^ arid that nd >_ a(o - 1).    Then L x M is of type 
T(mtm + n' - 1) for 1 <_m <_k where n' = nd - a(o - 1) and a is 
the number cf inputs of L. 

Proof:    Take k <_ m idle inputs z , z , ..., z . Suppose, for 

example, that z , z , , z  , are of the form 

(x1,y1),(x2,y1) .   <%.*!>• 

and z, ,,,, z, , _, ..., z, are of the form (x,,y.) where i > 2; 
k'+l  k'+2      k hi        — 

here the x. are inputs of L and the y. are inputs of M. By 

hypothesis, (x ,y ) has access to at least n + k* - 1 vertices 

of the form (u.,y.) where the u. are outputs of L. Since M is 

non-blocking, these have access to all idle vertices of the 
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form (u.,v ) where v is an output of M. There are (n + k' - l)d 

such vertices. However, as many as (c - l)a - (k - k') of these 
could be busy; this would be the case if all inputs of the fonr. 
<xh,y.) where i >_ 2, other than \.+1> \>+2> z were busy. 

Thus z has access to at least 

(n + k* - l>d - (c - l)a + (k - k') >_ nd - (c 

= n' + k - 

Da + k 

output terminals of L x M. 
The following theorem provides the motivation for defining 

the notion T(m,n). 

Theorem 4.2:   Suppose M is a non-blocking network and L is a 
network with a inputs, b outputs, and of type T(ltn).    If 
2n > bt then [£,#,£'] is non-blocking. 

u 

The proof is similar to that of Theorem 3.1 and will be 
omitted. . , 

Now choose an integer k >_ 1 and put L. = C_   x C, _; 

if 1 <^ j; <_ k, then L. has "2? inputs, k*2 outputs, and induc- 
3 i-1 

tively by Lemma 4.1, L. is of type T(1,2J  (2k - j)) and 

T(2,2j-1(2k - j) +1). Thus 1^ is of type T(2,k2k_1 + D Let 
-k 

M be obtained from L, by omitting one input. Then K   has 2-1 
k k—'1 

inputs ka2 outputs, is of type T(l,k*2   + I), and its graph 
has no more edges than the graph of L. The associated matrix of 

\ is 

(2 0\/2    Ovk-1 / 1    0 \ 

)(     I    =2t 2   )• 4k    2k/\4    2/ \2k      k/ 

Thus M. has «^ 2 *2k edges and if N is any non-blocking network, 

then by Theorem 4.2, so is [M, ,N,M/]. Thus putting, for example, 
k+1 

N -  C „, we obtain a non-blocking network with (2   - 2) inputs 
' k+i  2 

and outputs whose graph has <_ 2       (4k + 2k) edges.  It is imme- 

diate that o(N,N) <_ 8N(log N)' for all N > 2.  It is not hard to 

see that the constant 8 could be considerably decreased, but the 
major open question is the value of the exponent. 

-.iirMiiftiliWiriihtiimil«itiii»i-v'»»t'-----" 
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