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ABSTRACT 

Some general numerical methods for antenna pattern synthesis, with 

and without constraints, are developed In this report.    Particular cases 

considered are  (1)  field pattern specified In amplitude and phase,   (2) field 

pattern specified In amplitude only,   (3)  these two cases with a constraint 

on the sourc«! norm, and (4) the first two cases with a constraint on the 

source quality factor.    Both the source and the field are discretlzed at 

the beginning,  and the methods of finite dimensional vector spaces are used 

for the computations.    The theory is general, but is applied only to point 

sources arbitrarily distributed in a plane, and to pattern synthesis in this 

plane.    Some numerical examples are given for ten sources approximately 

equispaced on one-half of an ellipse, with the desired field pattern chosen 

to be the cosecant ^ pattern in the first quadrant. 
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I.    IMTRODUCTION 

The purpose of this report Is to develop some general numerical methods 

for the problem of antenna pattern synthesis, with and without constraints. 

The principles of pattern synthesis are well known,  and many specific problems 

have been considered   [1].    A good discussion of the general theory and of the 

difficulties encountered has been given by Deschamps and Cabayan  [2].    To over- 

come problems concerning the stability and sensitivity of the solution,  they 

propose to use regularlzation methods  [3],     In Hilbert space, this method Is 

equivalent to obtaining a least-equares solution with a constraint on the 

source norm [4,5].    It Is closely related to obtaining a least-squares solution 

with a constraint on the quality factor, as considered in Section VI of this 

report. 

Most of the methods developed for pattern synthesis assume that the 

radiation field is specified in both magnitude and phase.    In many cases only 

the magnitude is of interest, and the phase is left unspecified.    This is a 

special case of the so-called mixed problems of antenna synthesis, considered 

by Bakhrakh and Troytskiy  [6].    An application of field magnitude pattern 

[1]    For example,  see R.  E. Collin and F. J.  Zucker, "Antenna Theory," Part  1, 
McGraw-Hill Book Co., New York,  1969, Chap.   7. 

[2] G. A. Deschamps and H. S. Cabayan, "Antenna Synthesis and Solution of 
Inverse Problems by Regularlzation Methods," IEEE Trans., vol. AP-20, 
No.   3, May 1972,  pp.  268-274. 

[3]    A.  N.  Tihonov,  "Solution of Incorrectly Formulated Problems and the 
Regularlzation Method," Soviet Mathematics, vol.   4, July-December 
1963, pp.   1035-1038. 

[4]    V.  I.  Popovkln and V.  I. Yelumeyev, "Optimization and Systematization 
of Solutions to Antenna Synthesis Problems," Radio Engineering and 
Electronic Physics,  vol.  13, No.   5,  1968, pp.   682-686. 

[5]    V.  I. Popovkln, G.   I.  Shcherbakov, V.   I. Yelumeyev,  "Optimum Solutions 
of Problems in Antenna Synthesis Theory," Radio Engineering and Electronic 
Physics, vol.  14, No.  7,  1969, pp.  1025-1030. 

[6]    L. D.  Bakhrakh and V.  I. Troytskiy,  "Mixed Problems of Antenna Synthesis," 
Radio Engineering and Electronic Physics, vol.   12, No.  3, Karch 1967, 
pp.  404-414. 



synthesis to s specific problem hss been published by Chonl [7]. In Section IV 

we give a discussion of field magnitude pattern synthesis In terms of numerical 

methods. 

The procedures developed In this report are general, being applicable to 

any antenna system which can be accurately analyzed.    However, to keep the 

examples and computer programs simple, the theory Is applied explicitly only 

to point sources arbitrarily distributed In a plane,  and to pattern synthesis 

in this plane.    The extension to arbitrary N-port systems In three-dimensional 

space, and to pattern synthesis over r.he entire radiation sphere, is straight- 

forward but tedious In detail.     A special case of three-dimensional field magni- 

tude pattern synthesis applied to wire scatterers is given in reference  [8]. 

II.    ANTENNA SYSTEMS AND VECTOR SPACES 

The general relationship between the source f of a radiating system and 

the field g it produces on the radiation sphere can be symbolized by 

Tf ■ g (1) 

where T is a linear operator.     In general, both f and g may be infinite 

dimensional and T      may not be bounded.    The pattern synthesis problem can be 

summarized as follows:     Given a desired field g    (specified completely or 

partially), we wish to determine a source f  (constrained or unconstrained) 

whose field g approximates g    in some acceptable manner.    The approach taken 

by Deschamps and Cabayan  [2]  is to treat the problem In general in function 

spaces, and then numerically evaluate the final formulas for specific appli- 

cations.    Our approach is to discretize the problem at the beginning, and then 

treat the problem in finite-dimensional vector spaces. 

[7]    Y.  I.  Chonl,  "Synthesis of an Antenna According to a Given Amplitude 
Radiation Pattern," Radio Engineering and Electronic Physics, vol.  16, 
No.  5, May 1971, pp.   770-778. 

[8]    R,  F. Harrington and J.  R.  Mautz, "Synthesis of Loaded N-port Scatterers," 
AFCRL-72-0665,  Scientific Report No.  17 on Contract No.  F19628-68-C-0180 
between Syracuse University and Air Force Cambridge Research Laboratories, 
October 1972. 



To render the source discrete, we assume that 

N 
f  "     I     fnen (2) 

n-1    nn 

where f are constants and e are basis elements.  If the source Is 
n n 

continuous, the e are functions and (2) Is usually an approximation to' 
n 

the true source.  If the source Is discrete, the e are flnlte-dlmenslonal 
n ^ 

vectors, and (2) Is an exact relationship. We define the vector f to be the 

vector of the components f , that Is 

? " IfnW <3> 

For example, If the source Is an array of dlpoles, the f may be the Input 

port currents, or the Input port voltages, or their components In some 

arbitrary basis. We substitute (2) Into (1) and evaluate the equation at 

M points (6 ,$ ), m>l,2,...,M on the radiation sphere. The result can be 

written as the matrix equation 

[T]l - g (4) 

where g Is the vector 

and [T] Is the matrix 

* ■ I*mW (5) 

™  •  f(Ten)m]MxN (6) 

Here g   denotes the value of  g at the point   (6  ,6 ),  and   (Te )    denotes m m   m n m 
the pattern of f    evaluated at  the point  (6  ,$ ).    If these quantities are n mm 
spatial vectors, then the above procedure applies to the 6 and $ components 

of the vector field. More generally, one could define a set of testing 

functions and reduce (1) to a matrix equation by the method of moments [9]. 

[9] R. F. Harrington, "Field Computation by Moment Methods," Macmlllan Co., 
New York, 1968. 



The synthesis problem can now be represented by 

ml«g0 (7) 

where g is the specified pattern vector. Equation (7) Is a matrix equa- 

tion, and the well-known methods of matrix algebra can now be brought to 

bear on the problem. If [T] is square and nonslngular, the solution is 

given by the inverse to (7). This solution will give the correct value of 

field at the M points (6 ,$ ) on the radiation sphere, but no control of m   m 
the field is obtained between these points. If [T] is of rank less than N, 

the problem is underdetermlned and more than one solution to (7) exists. In 

this case additional constraints can be applied to either the source or the 

field to obtain the most desirable solution. If [T] is of rank greater than 

N, then usually no exact solution to (7) exists, but there will be a uniaue 

least-squares solution. Again additional constraints can hz applied to ob- 

tain more desirable solutions. 

Let us next define the Euclidean spaces involved more precisely.    For 

source quantities,  the inner product is defined as 

<f*,  fj* - f^Vjlj (8) 

where the tilde denotes transpose, the asterisk denotes complex conjugate, 

and [V] is a weight matrix.  [V] must be positive definite, and for this 

report we consider it to be the diagonal matrix 

W •  fdla* Vn]NxN 
(9) 

with all v > 0. In the source space the norm induced by the Inner pro- 

duct is 

||?|| - <f*.f>1/2 - ( f vn|fn|2)1/2 (10) 
n"l 

where f are the components of f. The metric induced by the norm is 

d(t. ,t ) ■ llfj - ?. || • For field quantities we define the inner pro- 

duct as 



<g1.gj> - ^[Wlgj (11) 

where [W] Is a weight matrix. It must be positive definite and for this 

report we take it to be the diagonal matrix 

[W] - [diag wj^ (12) 

with all w   > 0.    In the field space the  torm Induced by the inner pro- m 
duct is 

||g|| - <g*.g>1/2 - (f   wjgj2)1/2 (13) 
m"l 

whftre g,  -re the components of g.    The metric Induced by the norm is 

dCg^g.) - llgj-gj. 

To compare various pattern synthesis procedures, we define two 

figures of merit.    The first is the normalized synthesis error 

M 

\t.t    II 2 ^   Wn.l8ra-8„m|2 

E ^--^  (14) 
l|g0ll I    w    |g     |2 

'',    m '  om1 
m-l 

where g is the synthesized pattern and g    is the desired pattern.    The 

second is the quality factor  [10] 

N 
I    v |f   |2 

Q.MJJL2.M4L_UL_ (15) 
llgll2      fw|g|2 

m-l 

The multiplier M is introduced Into (15) to make the Q relatively in- 

sensitive to the number of field points chosen. 

[10]    Y. T. Lo,  S. W.  Lee,  and Q.  H. Lee, "Optimization of Directivity and 
Signal-to-Noise Ratio of an Arbitrary Antenna Array,  " Proc.   IEEE, 
vol.  54. AuRuat 1966, pp.   1033-1045. 



III.     PATTERN SYNTHESIS WITH PHASE SPECIFIED 

The most commonly used method of pattern synthesis Involves specifying 

the field pattern In both magnitude and phase.    For our method, this Involves 

specifying the magnitude and phase of g   at N points on the radiation sphere. 

Hence,  the starting point is   (7) with g   known.    We normally take more inde- 

pendent equations than unknowns, in which case the least-squares solution to 

(7)  is 

I -   [TVT]"
1
^]^ (16) 

This is obtained in the usual way by minimizing the quantity || [T]f-g  |P. 

The derivation of (16) follows      (31)    to (34)    of Section IV     with o-O. 

Tf unweighted inner products are used,  then [W] is the Identity matrix. 

For examples, the equations are specialized to point  sources arbitrarily 

distributed In a plane and to radiation patterns in this same plane.    Figure 

1 Illustrates the general problem.    The point sources are located at positions 

(x  ,y )  and have excitations f   .    The radiation pattern at  the angle $ is then 

given by 

N Jk(x cos ♦ + y sin $) 
Tf -    I    f e        n n (17) 

n-1    n 

where k » 2ir/X is the wavenumber.    Choosing a desired pattern g ($), and 

setting Tf % g   at M points <j>   , we obtain [T]f *« g .    Here f is the column 

vector of the f  , g    is the column vector of the g (^  ), and  [T]  is  the no o   m 
matrix with elements 

Jk(x  cos $    + y sin $ ) 
T     - e       n "'       n m (18) mn 

For simplicity we take the unweighted inner product, in which case [W] Is 

the identity matrix. The solution for the sources f is then given by (16), 

and the synthesized pattern by (17).  This solution Is valid so long as M 

is sufficiently large to give at least N Independent equations in the N un- 

knowns t   . 



(Xj»^ 

to field 
point 

Cxj^yp 

Fig. 1. An arbitrary array of point sources In the x-y plane. 



For some numerical results, consider 10 sources approximately 

equispaced on one-half of a 2:1 ellipse, as shown in Fig. 2a. For the 

radiation pattern, take a rectangle in the first quadrant of the polar 

pattern.  (This is the so-called cosecant ^ pattern.) 36 field points 

i    are chosen every 10s in ^, starting at $ •• 5s. These are shown by 
m 
crosses on Fig. 2b.  For the synthesis we take four cases:  (a) origit) 

at the center of the ellipse and the field real, (b) origin one-half 

the distance from the center to the end point of the semlmajor axis and 

the field real, (c) origin at the end point of the semlmajor axis and the 

field real, and (d) origin at the center of the ellipse and the field phase 

alternating from 0 to 180s between adjacent field points.  (This last case 

represents the worst choice that can be made.) Figure 3 shows the results 

when the sources are separated d - X/A, Fig. 4 when d • X/2, and Fig. 5 when 

d =» A,  The corresponding normalized synthesis errors E and quality factors 0 

associated with each synthesis result are given below each pattern.  The 

source excitations are listed by magnitude and phase (in degrees) in Tables 1 

to 3, normalized so that the maximum excitation is unity. 

Some general observations are as follows: When the field Is chosen to 

have alternating phase between adjacent points (cases d), the pattern syn- 

thesis is poor In each case. When the field Is chosen to he in phase at all 

points, with respect to a coordinate origin in the vicinity of the sources, 

the synthesis is good when the sources are separated by d » X/4 and A/2, and 

poor when separated by d - A. The Q is low when the sources are separated by 

d - A/2 and A, but relatively high when d - A/4. These properties are in agree- 

ment with what we would expect based on past experience with antenna synthesis 

problems. 



(a)    Source distribution 

0<VX)< K—*- 

(b) Dealred pattern 

Fig.  2.    Source distribution and desired pattern for numerical 
example. 



X 

c^ 

(a)     E - 0.312,  Q -  12.6 

X 

(b)     E - 0.307,  Q -  16.0 

% 
■^r- 

X 

(c)     E » 0.223,  Q = 11.1 

X 
«XXXX   X 

\%=}—h- 

(d)    E - 0,957, Q - 20.5 

Fig.   3.    Antenna pattern synthesis, phase specified, d » \lk. 
Specified pattern shown by crosses, synthesized 
pattern shown solid. 

10 



«00O< X X 

(a) E - 0.494, Q - 1.86 

X X X 

^fr3 

(b) E - 0.495, Q - 1.70 

:s§^<xx 

^3^-^ 

(c) E - 0.438, Q - 1.06 

X 
;«oo<x x x 

(d) E - 0.956, Q - 1.40 

Fig. 4.  Antenna pattern synthesis, phase specified, d - X/2. 
Specified pattern shown by crosses, synthesized 
pattern shown solid. 
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X   X 

H  f 

(a)    E - 0.748,  Q - 1.49 (b)    E - 0.691, Q - 1.58 

«XXXX   X 

(c)    E • 0.681, Q - 1.27 

X 
«CXXX   X X 

(d)    E - 0.872, Q - 0.889 

Flg. S. Antenna pattern synthesis, phase specified, d - X. 
Specified pattern shown by crosses, synthesized 
pattern „shown solid. 

12 



Table 1. Element excitations for the synthesized patterns of Fig. 3. 

Element mag. 
re 3a 

phase 
Flgu 

«u.g. 
re 3b 

phase 
Figure 3c 

mag.        phase 
Figure 3d       1 

mag.        phase 

fl 
0.312 -38.3, 0.164 84.2° 0.254 -29.2° 0.441 -26.7° | 

f2 
0.762 173.9° 0.627 -73.0° 0.657 159.2° 0.858 167.0° 

f3 
1.000 0 0.810 126.4° 1.000 0 1.000 0 

fA 
0.903 -U7.A0 0.761 -27.8° 0.955 -147.1° 0.680 178.1° 

1    f5 0.502 32.6° 0.482 155.4° 0.462 55.0° 0.394 -10.3° 

1    f6 0.605 -122.3° 0.707 -5.4° 0.529 -137.2° 0.203 103.0° 

f7 
0.507 37.1° 0.663 178.9° 0.580 43.1° 0.363 -138.6° 

1    f8 
0.717 -126.8° 1.000 0 0.868 -147.8° 0.669 25.6° 

f9 
0.647 16.4° 0.664 164.1° 0.678 17.3' 0.612 179.8° 

1   fio      1 0.300 149.8° 0.300 -34.3° 0.331 164.9° 0.292 -17.6" 

13 



Table 2.    Element excitations for the synthesized patterns of Pig. 4. 

Element Figure 4a 
mag.   phase 

l10 

0,341 60.9° 

0.315 -66.7° 

0.378 22.5* 

0.488 48.8° 

0.767 161.2° 

0.989 -179.0° 

0.960 -112.7° 

1.000 0 

0.630 94.6° 

0.057 -75.7° 

Figure 4b 
mag.   phase 

0.525 -115.4° 

0.162 -11.6° 

0.231 64.0° 

0.248 132.9° 

0.66.1 -45.6° 

0.939 -42.1° 

1.000 0 

0.427 66.5° 

0.305 -25.9° 

0.102 130.5° 

Figure 4c 
mag.        phase 

0.383 -90.6' 

0.340 77.5° 

0.297 -18.6° 

0.392 167.4° 

1.000 0 

0.847 -37.3° 

0.427 36.8° 

0.365 136.7° 

0.341 13.8° 

0.240 175.7° 

Figure 4(1 
mag.        phase 

0.713 -133.0° 

0.502 46.8° 

0.207 167.3° 

0.623 65.6° 

1.000 0 

0.783 8.6° 

0.510 57.1° 

0.039 -74.5° 

0.547 35.2° 

0.734 -123.9° 

14 



Table 3.    Element excitations for the synthesized patterns of Fig. 5. 

Element 
Figure 5a 

mag.   phase 
Figure 5b 

mag.   phese 
Figure 5c 

mag.   phase 
Figure 5d   1 

mag.   phase 
1 

0.062 -173.5° 0.252 50.6° 0.448 -134.0° 0.619 17.3° 

0.063 18.6, 0.384 -129.6° 0.284 -108.1° 0.663 21.1° 

0.510 102.9° 0.467 -4.4° 0.508 -125.1° 0.134 10.1° 

0.377 130.3° 0.458 -22.2° 0.379 -82.6° 1.000 0   | 

0.497 -94.5° 0.551 120.4° 1.000 0 0.284 1.2° 

0.939 153.6° 1.000 o 0.815 -150.1° 0.700 86.1° 

1,000 0 0.802 168.8° 0.366 58.3° 0.150 -98.5° 

0.848 -107.3° 0.442 148.5° 0.481 32.7° 0.247 26.1° 

0.285 34.9° 0.129 28.5° 0.151 -64.4° 0.781 4.3° 

f10 
0.120 -168.5° 0.068 118.9° 0.126 147.4° 0.499 2.3° 

15 



IV.  FIELD MAGNITUDE PATTERN SYNTHESIS 

We next consider the problem of synthesizing a pattern in magnitude 

only. Let h <■ |g | be a desired field magnitude, and form the vector h by 

specifying its value h at M points on the radiation sphere. Again we con- 
m * 

aider the source to be discretized and represented by the vector f. It is 

desired to find the source f for which the pattern error 

e - || |[T]I| -S|P (19) 

is minimum. In terms of components, (19) becomes 

M   ,  N ,2 
E "I will f T J -hi (20) 

, ml, n mn    ml 
m-1     n-1 

where the w    are weight  factors.     To circumvent the troublesome inner m 
magnitude operation In  (20), we first consider the more general function 

M .  N jß  ,2 

'$& "    ^ wm I  I    Vmn " V    1 <21) m"l n-1 

This Is the error function used when the pattern is specified in both magnitude 

h and In phase 0 . Hence, for 6 fixed, the f for minimum e are given by m      r    M      '     m n o    / 
(16).  For f fixed, the minimum c Is obtained when both terms within the mag- 

nitude signs of (21) are in phase, that is, when 

N 

Jßn,    n-1 fnTlnn 

e »--JL-i  (22) 

I I f T  | 
n-l nmn 

Because (21) is more general that (20), Its minimum is less than or equal to 

that of (20). But under condition (22), the e of (21) is equal to that of 

(20). Therefore (20) and (21) have the same minimum. 

16 



An iterative procedure for minimizing (21) proceeds as follows: 

1. Assume starting values for $.,  &.,...,  ß... 

2. Keep the 8    fixed and calculate the f   which minimize e using (16). 
m n 

3. Keep the f fixed and calculate the 8 which minimize e using (22). 
n m 

4. Go to step 2. 

This procedure eventually converges because steps 2 and 3 cannot increase e. 

While the procedure obtains absolute minima in the f space and in the ß space, 

it does not necessarily obtain the absolute minimum in the catenated space 

(r,ß). Hence, the procedure converges to a stationary point, usually a local 

minimum, which may or may not be the global minimum. An alternative procedure 

for minimizing (21) is given in the Appendix. 

For numerical results, we consider the same example as used in the pre- 

ceding section. Hence, the array is illustrated by Fig. 2a, and the radiation 

pattern by Fig. 2b. The same three cases of element separation, d - X/4, X/2, 

and A, are used. Two starting points were chosen for the iterative procedure: 

(a) origin at the end point of the semimajor axis and the field real, and (b) 

origin at the center of the ellipse and the field phase alternating between 0 

and 180° between adjacent field points. These starting points correspond to 

cases (c) and (d) of the previous section. The final results of the magnitude 

synthesis procedure are shown in Fig. 6 for d « X/4, Fig. 7 for d » X/2, and 

Fig. 8 for d « X, The normalized synthesis errors E and quality factors Q for 

each result are given below each pattern. The source excitations are listed 

by magnitude and phase in Table 4, normalized so that the maximum excitation 

is unity. 

17 



.^OQCX^X     "NX 

(a)    E - 0.172, Q - 21.5 

(b)    E - 0.172, Q - 21.5 

Fig.  6.    Field magnitude pattern synthesis, d - X/4. 
(a)    Starting field taken real,     (b)    Starting 
field alternating 0 to 180° in phase between 
adjacent field points. 

18 



^ 

ö^X^X X 
X 

(a)     E » 0.416,  Q « 1.63 

EX   X           X 

—4^ 1 

(b)     E - 0.425,  Q = 1.09 

Fig.   7,     #leld magnitude pattern synthesis, d -  A/2. 
(a)     Starting field  taken real,     (b)  Starting 
field alternating 0 to 180° in phase between 
adjacent field points. 

19 



0.517, Q - 0.943 

J^ X X 

^r" X 

(b) E - 0.517, Q - 0.943 

Fig. 8. Field magnitude pattern synthesis, d - X. 
(a) Starting field taken real,  (b) Starting 
field alternating 0 to ISO" in phase between 
adjacent field points. 
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Table 4.     Element excitations for the synthesized patterns of Figs.   6, 7,  8. 

1  Ele- 
ment 

Figure 6a 
mag.      phase 

Figure 6b 
mag.     phase 

Figure 7a 
mag.      phase 

Figure 7b 
mag.      phase 

Figure 8a 
mag.       phase 

Figure 8b       j 
mag.      phase 

fl 0.264 125.0 0.264 125.0 0.299 -89.5 0.178 -62.0 0.461 -118.7 0.462 -118.8 

r 0.626 -40.5 0.626 -40.5 0.362 75.4 0.337 71.2 0.552 -313.2 0.552 -113.1 

e 0.985 153.2 0.985 153.2 0.334 -22.9 0.473 -76.9 0.680 -92.7 0.680 -92.8 

£4 1.000 0.0 1.000 0.0 0.285 -177,4 0.440 -78.5 0.970 -66.3 0.969 -66.2 

f5 0.636 -159.1 0.636 -159.2 1.000 0.0 1.000 0.0 1.000 0.0 1.000 0.0 

£6 0.553 24.7 0.553 24.7 0.827 -34.7 0.621 8.0 0.370 -66.4 0.366 -66.4 

f7 0.570 -160.3 0.570 -160.3 0.365 51.2 0.832 113.8 0.208 152.2 0.204 152.3 

f8 0.664 10.3 0.664 10.3 0.364 151.9 0.698 -154.1 0.371 75.3 0.368 75.3 

f9 0.527 172.9 0.528 172.9 0.378 12.0 0.639 -15.2 0.334 -74.7 0.334 -75.2 

f10 0.234 -42.8 0.235 -42.8 0.360 161.5 0.643 136.4 0.406 150.0 0.407 150.3 
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The following are some observations concerning the improvement of 

magnitude pcttern synthesis over ordinary pattern synthesis. For the cases 

d - A/4 and d ■ X/2, when the starting field is taken real (equiphase), the 

Improvement is relatively small.  (Compare Figs. 3c to 6a, and Ac to 7a.) 

For the cases d - X/4 and d • A/2, when the starting field alternates 0 to 

180° between adjacent field points, the Improvement is large.  (Compare 

Figs. 3d to 6b and 4d to 7b.) For the case d - A/4 the two final patterns 

are the same (Figs. 6a and 6b), but for the case d - A/2 the two final 

patterns are different (Figs. 7a and 7b). For the case d - A, the improve- 

ment over the starting pattern is larger in both cases.  (Compare Figs. 5c 

to 8a and 5d to 8b.) However, in no case is the final pattern very good 

when d = A, Apparently the source separation Is too great for good pattern 

synthesis.  Finally, note that for the case d = A the two final patterns are 

the same (Figs, 8a and 8b). 

For future reference, the source norm squared, the normalized syn- 

thesis error, and the Q for each result are tabulated In Table 5 for the 

case d ■ A/4. The five rows correspond to the synthesized patterns of 

Figs. 3a, b, c, d, and Fig, 6. When the source separation is large the 

various quantities of Table 5 are less sensitive to the type of synthesis 

used, and hence we do not tabulate them for d = A/2 and d «= A.       ;. 

Tablo 5.  Source norm squared, normalized synthesis error, and quslity 

factor for unconstrained pattern synthesis, d = A/4. 

llfll2 E Q 

coordinate origin a 13.37 0.312 12.6 

coordinate origin b 17.14 0.307 16.0 

coordinate origi : c 13.35 0.223 11.1 

field phase alternating 1.38 0.957 20.5 

magnitude synthesis 27.50 0.172 21.5 
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V.  PATTERN SYNTHESIS WITH CONSTRAINED SOURCE NORM 

The source norm is closely related to near-field quantities, 

such as power losses in an antenna structure or energy storage.  For this 

reason It Is often desirable to limit the source norm, especially when the 

sources are close together or continuously distributed. Hence, we consider 

the problem of minimizing 

llm?-gj2 (23) o 

subject to the constraint 

< C (24) 

where C Is a positive constant to be chosen. This constrained minimi- 

zation can be accomplished by forming the Lagrangian 

J - II [T]l -ijl2 + a ||l||2 (25) 

where a is a Lagrange multiplier.  If we can obtain the source function f 

which minimizes .1 vilh  respect to f and are able to find a > 0 such t'iat 

l|fi|2=C (26) 

then any other source function which satisfies the constraint (2A) gives 

at least as large a J and thus at least as large an e as that provided 

by f.  Hence r minimizes e subjec to the constraint (24). 

However, it is not always possible to find a > 0 such that the 

f which minimizes J satisfies (26).  This warrants an investigation into 

the behavior of ||f||2and e attained by the minimizing function f versus 

a.  If f is the minimizing function when a = a. and f„ is the minimizing 

function when a = a., then 
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e, + \  ll^ll2ie2 + a1   ||12r (27) 1 ' "l " 'I11   - '2 

e2 + a2   ||t2P<e1 + a2    H^P (28) 

where e.  or e„ is the e of (23) with f replaced by f. or t..    Adding the 

inequalities  (27)  and (28), we have 

(a2-al)(||£2li2-   HfJI 2)   < 0 (29) 

which shows that ||f IP is a monotone decreasing function of a.  If both 

a^  and o. are positive, (27) and (28) can be multiplied by a« and a , respec- 

tively, without changing the sense of the inequalities. The resulting 

inequalities can now be added to obtain 

(a2 " al)(E2 - £l) -0 <30) 

which shows that e is a monotone Increasing function of a for positive a. 

The smallest possible e is obtained when a = 0, corresponding to the uncon- 

strained optimization. The smallest possible ||f|[2 Is obtained when a = «>, 

because when u Is very large the Lagranglan is essentially a {{f{|2 and thus 

minimization of the Lagranglan is the same as minimization of ||f ||2. 

Now if it is Impossible to find a > 0 such that the minimizing f 

satisfies (26), then C Is either larger than ||f ||2 when a = 0, or C is 

less than ||f ||2 when o » ">. If C is larger than ||f||2 when 0 = 0, then 

the desired f is the one which minimizes J when a • 0, because this f 

gives the minimum possible c and does not violate the constraint (24). 

Actually, the constraint (2A) is ineffective whenever C is larger than 

|| f ||2 when a = 0.  If C is smaller than ||?||2 when a ■ °», then since ||1||2 at 

a ° <» is the smallest possible ||r||2 , the constrained minimization problem 

(23), (24) has no solution because it is impossible to satisfy the con- 

straint (24). 
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Consider Che minimization of (25) for a > 0 such that (26) is 

satisfied.  For a fixed a > 0, (25) has an absolute minimum because 

J ^ 0. The Lagrangian J, being a qr.adratic form in t,  has one station- 

ary point. The absolute minimum of J tkiist occur at this stationary 

point which can be obtained by setting to zero the variations of J with 

respect to both the real and imaginary parts of f, or equivalently as 

on page 192 of reference [9j with respect to f and f , 

To minimize (25), expand It in terms of inner products as 

J - ("Sr-'g „MWluTll - g ) + at ml (31) 

where [V] and [W] are the weight matrices of (8) and (11), respectively. 

Further expanding (31), we have 

J = f [T WT]f - g fWT]f - f [T W]g 

+ g*IW]go +af*[V]f (32) 

»V* 
Taking the variation of this with respect to f and setting it equal to 

zero, we obtain 

6J - 6f*([T*WT]l - [T*W]g + a[V]f) - 0 (33) 

Since 6f Is arbitrary, the vector in the parentheses muse be zero, or 

[T WT + aV]f - [T W]g (34) 

Taking the variation of (32) with respect to f and setting it equal to 

zero we obtain the conjugate equation to (33). Note that a " 0 in (34)  

[9]  R. F. Harrington, "Field Computation by Moment Methods," Macmlllan Co., 
New York, 1968. 
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gives the usual least-squares solution  (equation  (16) of Section 

III). 

Next we have to determine a given the constraint ||t||2 - C.    For this, 

we first consider the eigenvalue equation 

[T OTjIj - ^[V]^ (35) 

Let the eigenfunctions be normalized with weight [V], so the orthogonality 

relationships become 

♦JlVllj - 6 (36) 

^lT*WTl|    - X1 6^ (37) 

AM 
The matrix  [T WT]  is Hermitian and   [V] is positive definite,  therefore the 

4    form <->  complete  set  in the f space and we  can write 

I ■    I CLI (38) 
1-1 

where the a    are constants.    Substituting  (38)   into   (34), we have 

N        ~* *    + 
I a [1 WI + aVh    -  [T W]g (39) 

i-1 x 1 

Premultiplying (39) by $ , and using the orthogonality relationships 

(36) and (37), we obtain 

ai(\i  + a) - T*[T*W]|o (40) 

which determines the a  .    Substituting these a    into (38), we have 

ilh^ ** (A1) 
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where the constants C    are 

♦jfT W]go (42) 

Next, substitute (41) Into (23), again use orthogonality of the $ , and 

obtain 

e ■ rg
0

||2\L<^W^F)|ci|2 (43) 

Also, from (41) and orthogonality, we obtain 

N |C.|2 
111112" ii K^7 (4A) 

Now  [V]  Is positive definite and  f¥ WT]  Is at least positive Indefinite, 

therefore all X    >^ 0.    Hence, as expected,  the error (43) Is a monotone 

increasing function of a for a >_ 0 and source norm squared (44)  Is a mono- 

tone decreasing function of a for a ^ 0. 

Because of the monotone decreasing nature of   (44), there Is pre- 

cisely one a > 0,  say a , which satisfies 

N |CP 
C " ill K^2  '  ^^   = 0 (A5) 

This a    can be computed using Newton's method. 

The solution f which minimizes  (25)  for a >  0 such that   (26)  is 

satisfied Is unique and is given by  (41) with a = a  .    If C is neither 

too large nor too small, this I minimizes e subject to the constraint  (24). 

As mentioned before,  if C is larger than the norm squared of the t which 

minimizes  c when there is no constraint,  then this f minimizes  e subject  to 

the ineffective constraint  (24).     If C is smaller than ||f ||2 at a « ",  then 

it  is Impossible  to satisfy the  constraint   (24) . 

For examples,  the previously synthesized patterns for the case d = X/4 

were rerun with a constraint on thp source norm.    The resulting synthesized 
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•»opoc-x-x     X 

(c)    E - 0.235, Q - 3.55 (d)    E = 0.191, Q - 6.82 

Fig. 9. Pattern synthesis with constrained source norm, d • X/4. 
Field phase is specified In (a), (b), and (c). Field is 
specified only in magnitude in  (d). 
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patterns are shown in Fig.  9.    The first three cases are for the field real 

with coordinate origin at the points  (a),   (b), and  (c) of Fig. 2a.    In each 

case the constraint was ||t||2 ■ 4.    The corresponding patterns for uncon- 

strained synthesis are those of Figs.  3(a),   (b), and  (c).    Note that the final 

synthesized patterns are not greatly different from the unconstrained results, 

yet ||t||z has been reduced from the order of 15 to 4   (see Taöle 5).    The choice 

of coordinate origin   (a) and the field phase alternating between adjacent  field 

points was also run with the constraint ||?||2 - 1,  and the resulting pattern 

war essentially the same as Fig.  3(d).    Finally,  field magnitude pattern syn- 

thesis with the constraint ||f|{2 - 8 was run using each of the above mentioned 

four starting points.     The final synthesized pattern was the same regardless 

of the starting point,  and the result is shown in Fig.   9(d).    Again the syn- 

thesized pattern is not greatly different from the unconstrained result,  Fig. 

3, even though ||f{|2 has been reduced from 27.5 to 8. 

Table 6 lists ||f||2 E, and Q for the constrained synthesis results.     It 

should be compared to Table 5 for the corresponding unconstrained results. 

Note that the errors for the constrained patterns are always as high or higher 

than those for the unconstrained patterns,  as they must be.    Note also that 

the Q's of the constrained patterns are always as low or lower than those for 

the unconstrained patterns.    We show in the next section that this is generally 

true. 

Table 6.     Source norm squared, normalized pattern error, and quality factor 

for pattern synthesis with constrained source norm. 

llfll2 E Q   | 

coordinate origin a 4.00 0.324 4.05 

coordinate origin b 4.00 0.326 4.09 

coordinate origin c 4.00 0.235 3.55 

field phase alternating 1.00 0.957 16.15 

magnitude synthesis 8.00 0.191 6.82 
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VI.    PATTERN SYNTHESIS WITH CONSTRAINED QUALITY FACTOR 

It Is sometimes desirable to constrain the quality factor Q defined 

by (IS).    According to the genaral Lagrange multiplier theory In section V, 

the pattern synthesis error e can be minimized subject to the constraint 

Q < Qo (46) 

by minimizing a Lagranglan 

J - e + oQ (47) 

with respect to the source function t and choosing a > 0 such that 

Q -   Q0 (48) 

at least If Q    Is neither too large nor too small. 

With (23)  and  (15),  the Lagranglan  (47)  Is given In terms of I by 

J -||[T]f - gJP + aM—— (49) 
II mill2 

Similar to (32), we have 

J - f  IT WT]f - g   [WT]?-f   [T W]g   +g   fWk    + aM^n3 Z    ^50) 

Taking the variation of   (50) with respect to f    and setting It equal to 

zero, we have 

6J - <Sf*((l 22 )[T*wr]l + -^  [V]? - [T*W]|>0    (51) 
||[T]I||2 ||[T]f   ||2 

Jo 

Since 6f Is arbitrary, the vector In the parenthesis must be zero, or 
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[T VfT + SSi jl .   £ (52) 
18, 

l|[T]1|I2-aQ'"        ||[T]I||2 - aq" 

Substituting (38) with $    defined by  (35) Into  (52), we obtain 

N * * 

where 

I    a   [T WT + ßVl|.  - Y[T Wlgn (53) 
1-1 0 

aM (54) 
UtTlUP - aQ 

l|[T]f||2 

l|[T]f ||2 - aQ 

(55) 

Premultlplylng  (53)  by $    and using the orthogonality relationships  (36) and 

(37) we obtain 

a1(A1 + B) - YC1 (56) 

where C    Is defined by  (42).     Substituting these a    Into  (38), we have 

N        C 

^ " Y 1=1 V^ ^ ^^ 

Next, using (57) and the orthogonality relationships (36) and (37), we can 

write the q defined by (15) In terms B as 

?   |Ci|2 , 
ll?ll2 ^ ÖTTTF 

0 - M M       L   rfjr- (58) 
||[T]?||2 ?     ^l1   Xl 

With (57),   the pattern synthesis error e extracted  from  (50)   is given by 
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Ä    N     \C\\ N    |C  P S  IcJ2 

12 (59) 

Manipulation with (54),   (55), and (58) results In 

! |c'12 

ill <xi + ß)' 

Equation (60) is more easily obtained by setting to zero the partial 

derivative of (59) with respect to Y . SubstitutlnR (60) Into (59), 

we finally have 

Li (*4+ ß)) 

r  ' 1  1 

It is desired to find a > 0 such that (48) is satisfied. Since (58) 

expresses Q not in terms of a but in terms of ß, a relation between u and 

S must be found.  Solving (54) for a, replacing Q by expression (58), and 

recalling that ||Tf|{ is proportional to Y given by (60), we obtain 

0  M /, XTTB 
I j    ' i1 (62) 

1-1 Xl 

The derivative of  (62) given by 

j 1   N    |C.|2X. 

d8      M1i1(X1 + S)^ (63) 

indicates that the right hand side of (62)  Is a monotone increasing func- 

tion of ß except at ß - - X.   for 1-1,2,,..N where it Jumps suddenly from 
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+" to -«. If the eigenvalues X are arranged In decreasing order, then 

for a fixed a > 0, (62) has one root 8 outside the interval (-X., 0). 

There Is also a root In each of the intervals (-X , -X. ,) for 1-1,2,...N-l. 

Each of these N roots represents a stationary point of the Lagranglan J. 

Substituting (58), (61), and (62) Into (47), we obtain 

J-|li0ll2-y (64) 

This shows that the .latter N-l roots in the intervals  (-X   ,  -X..,) are 

extraneous because t ley all render J larger than its value at the first 

root outside the interval  (-X  , 0). 

We seek ß outside the Interval (-X  ,0)  such that expression (58)  is 

equal to Q .    Since Q is a monotone decreasing function of a and a is a 

monotone increasing function of 6 outside the Interval  (-X., 0),  it follows 

that Q is a monotone decreasing function of ß outside the interval  (-X  ,  0). 

Hence there is only one ß outside the interval  (-*•■» 0)  for which expression 

(58)   is equal to Q  . 

That Q is a monotone decreasing function of  ß outside the interval 

(-X.,  0) can be shown from  (58) as follows: 

N  IcJ* N    IcJ^        N    |C1|
2X1    N    \C±\* 

f. .m kMi i-i y^; k v^ ii ^vg! (65) 

Replacing the product of sums in the numerator of (65) by a double sum, 

we can write (65) as 

?   v  |ci|2lci|2(xi~ V 
HO      i-i ill ^i+ t^K+ &y i--2"11^1!^—j  ™ 

Combining the (l,j) and (J,l) terms, we have 
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d<? - .tIw  ill   (xl + 0)'(*1 + a)' 
dB (67) 

Expression  (67)  Is negative when ß Is outside the Interval  (-X, ,  -X„), 
1 N 

hence Q Is a monotone decreasing function of ß outside the Interval 

("Ai' "V- 
If Q    Is larger than the Q of the source function which minimizes e 

when there  Is no constraint, namely if 

I    -T2— 

% > M ir-ic7F (68) 

i-i Ai 

then the optimum source function is the unconstrained optimum f obtained 

by setting  ß » 0 in  (57)   and   (60).     However,  If Q    Is  less  than  expression 

(58)  at a - <» corresponding to ß - - X.,  namely if 

Qo < £■ (69) 
o      X1 

then it is impossible to satisfy the constraint (46).  If 

L   -T2- 
flQolMij^V (70) 

I   - 
1-1    Ai 

1     - y  ^i; 
L     x. 

then the optimum f is given by (57) and (60) where ß is the unique number 

outside the interval (-X., 0) for which expression (58) is equal to Q .  This 

ß is easily computed using Newton's method with the understanding that the 

iterations are not allowed to proceed into the forbidden interval (-X.., 0). If 
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H 

(71) 

then 8 Is negative, but  if 

N 

.. 1-1 
N 
I   \c±\\ 

1-1 

<  Q    < M 
o 

?lCi 
1-1 Al 

N 

I 
1-1 

fc^F (72) 

then  S  Is positive. 

The sane examples used  to illustrate the constrained ||f|p solution 

were run to illustrate the constrained Q solution.    To check on the accuracy 

of the computer program,  the constraint on Q was chosen to be    the    Q ob- 

tained for each case in Table 6.    Hence, the constraint was Q - 4.05 for 

case  (a), Q - 4.09 for case   (b), Q - 3.55 for case (c), and Q « 16.15 for 

case   (d) .    The final synthesized patterns were indistinguishable from those 

of Fig.  9.    The final values of ||f ||2 and E are given in Table 7.    Note that 

the error E of Table 7  Is always less  than or equal to that  of Table 6. 

Table  7.     Source norm squared,  normalized pattern error,  and  quality 

factor for pattern synthesis with constrained quality factor. 

llfll2 E Q  | 

coordinate origin a 4.23 0.324 4.05 

coordinate origin b 4.26 0.325 4.09 

coordinate origin c 4.19 0,234 3.55 

field phase alternating 1.08 0.957 16.15 

magnitude synthesis 8.51 0.190 6.82 
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VII. DISCUSSION 

Only a few examples are given In this report, hence It la difficult to 

draw general conclusions on the synthesis procedures. However, for the 

examples chosen, the normalized pattern synthesis error was greater than 0.4 

when the sources were Ml  or \  apart. This indicates that they cannot radiate 

a pattern very close to the chosen cosecant pattern. Even when this sources were 

X/A apart, the normalized pattern error was of the order of 0.3 when the phase 

of the radiated field was specified.  The field magnitude pattern synthesis 

procedure reduced this error to 0.172.  Constraining the source norm squared or 

the quality factor to about 1/3 of its unconstrained value increased this error 

to only 0.191. Hence, it is possible to reduce {|f |{2 or Q by factors greater 

than 3 with little change in the synthesized pattern. 

The unconstrained least-squares pattern synthesis procedure gives the 

source vector (16). When this is substituted into (23), we obtain for the 

pattern synthesis error 

e-||g0ll
2-||[T)?||2 (73) 

If the pattern error is large, the synthesized pattern [T]f must have a small 

norm compared to that of g . The worst possible case would be that for which 

the space of [Tjf is orthogonal to g .  In this case the minimum synthesis 

error would be ||g ||2 and the source vector would be f ■ 0. 

o 
mal to L, 

. ,l2 and the source 

The constrained norm pattern synthesis gives 

N  IcJ2^ 

which is certainly less than the norm squared of the pattern obtained from 

unconstrained pattern synthesis.  If the constrained Q source vector is 

written as Yr, then y  must be chosen to minimize 

e - II Y IT]I - go||2 (75) 
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Setting to sero -j—j- we obtain 
•NM/V* 
f  [T W] 

Y - 1W- 0 (76) 

E(Y) -llgjl2 -    ||Y[T]I||2 >  0 (77) 

so that the norm squared of the constrained Q synthesized pattern Is less 

than or equal to ||g ||2. 

The field magnitude synthesis procedure of section IV can be looked 

at from a different point of view.    Expression (16) Implicitly defines an 

operator,  say P, which gives the phases of the elements of f in terms of 

the phases 3    of the elements of g   when the magnitudes h   of the elements m o m 
of g    are fixed.    The iterative procedure of section IV successively oper- 

ates with F on an initial vector 0    of phases. 
o        r 

1  - P(1 ) i o 

12 - P^) (78) 

\+l " P(V 
Convergence is obtained when ß  .-  approaches 8  .    Evidently, 

lim I (79) 
n~   n 

is a fixed point of the operator P. The successive operations with P 

could have been replaced by Newton's method In which the previous Iterate 

ß is Improved by adding AS 
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P(l + AS) -I + Aß 
n        n 

P(8 ) +i£- Aß - I + Aß (80) 
n   3ß       n 

n 

(~- -  DAß - I - P(ß ) 
3ß n     n 
n 

Presumably, Newton's method requires fewer iterations, but each Iteration 
3P 

Is complicated by the expression (— 1) which Is actually a square matrix 
3ß to be computed and inverted.      n 

The eigenvectors $ of (35) will be real If the elements of [TT] are 

real. The following development reveals the circumstances under which the 

elements of fr T] are real, or nearly real. Using (18), 

(T T)  -    I    e      ** 1 0 (81) 
m      1-1 

where 
P, = /(xm - *)'  + (y - y )^ (82) 
mn      m   n      m   n 

^ - tan 1 -2 E (83) 
o       x - X 

n   m 

Using the wave transformation [11] 

ä  
mn    i 0 -  E   Jq J (kp^)«   1 0 (84) q  mn q—-a»     ^ 

one obtains 

(TV - I     J^JOcP^r   0 I e"1 . (85) mn q  mn       . ^ n 

[11] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," McGraw-Hill 
1961, p. 231, Eq. (5-101). 
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Since the $. are equally spaced and because 4. can be absorbed Into $ , 

we are at liberty to take 

*1 " (1'1) T (86) 

in which case 

M  Jq*. r. 

i-1 

M  q - an integer multiple of M 
I e  1 -• (87) 

0  otherwise 

whence 

or 

«*        r  Ma        ";,Mq*o 
(T T)  - M  [  jMq JM (kp )e    0 (88) 

/v* 
(TT)  - M[J (kp  ) + 2  I JMqJM (kpnm)cos(Mq4 )]  (89) mn     o  mn      ,    nq  mn      o 

q-1 

Hence (T T)  is real whenever M is even.  If M is odd, then (T T)  is 
mn mn 

nearly real whenever M >> kp  because from the table on page 407 of [12] 

J (x) is very small when n >> x. 
n 

Newton's method was used to find the root a of (45) and the root 6 of 

(48) where Q is given by (58). However, if the starting value is far from 

the root, the first few Iterates of Newton's method are probably not very 

well directed because the change In the variable a or ß from one iteration 

to the next is not a good indicator. In the beginning, an Interval halving 

procedure would probably give as much improvement per iteration and take a 

lot less time per iteration because the derivative need not be calculated. 

However, the interval halving procedure requires a negative and a positive 

value of the function in order to start. Also, it would be difficult to 

decide when to change from interval halving to Newton's method. Newton's 

[12] M. Abramowltz and I. A. Stegun, "Handbook of Mathematical Functions with 
Formulas, Graphs, and Mafbematlcal Tables," National Bureau of Standards, 
1964, pp. 355-433. 
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method may be modified by replacing Che derivative by a finite difference 

approximation, but then It Is feared that the time saved per Iteration may 

be offset by slower convergence. 

The computer programs, with operating Instructions and sample input- 

output data, for all the examples of this report will be given in Scientific 

Report No. 3 of this contract. It is hoped that further examples wlyll be run 

in the future to better assess the capabilities of these synthesis programs. 
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APPENDIX 

ALTERNATIVE METHOD FOR FIELD MAGNITUDE PATTERN SYNTHESIS 

An alternativ« method for field magnitude synthesis Is as follows. 

Expression (21) can be rewritten as 

e(f,S) - - 2 Real(e   w^ £ fj ) 
n"l 

w h + w. 
N 

'", n In 
n"l 

2   M 
+ y w 
mil * 
mfll 

I f T  - h e m 

''. n mn  m 
n-1 

(A-l) 

The minimum of expression (A-l) with respect to ß. occurs when 6. Is the 

tigle of l    fnT 
n*l n In 

Thus It Is possible to minimize (21) with respect 

to 0. for 1 ■ 1,2,...M. The proposed alternative method for field magnitude 

synthesis consists of minimizing (21) successively with respect to 

B,, B.I...BU> 6,t Bol.<.Bul etc. Hence, one angle Is changed at a time In 
i      z n     L      i n 

this method, compared to all angles being changed at once In the method used 

In the text. It Is not known which method converges faster, since tests were 

not made. 
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