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ABSTRACT

Some general numerical methods for antenna pattern synthesis, with
and without constraints, are developed in this report. Particular cases
considered are (1) field pattern specified in amplitude and phase, (2) field
pattern specified in amplitude only, (3) these two cases with a constraint
on the source norm, and (4) the first two cases with a constraint on the
source quality factor. Both the source and the field are discretized at
the beginning, and the methods of finite dimensional vector spaces are used
for the computations. The theory is general, but is applied only to point
sources arbitrarily distributed in a plane, and to pattern synthesis in this
plane. Some numerical examples are given for ten sources approximately
equispaced on one-half of an ellipse, with the desired field pattern chosen

to be the cosecant ¢ pattern in the first quadrant.
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I. INTRODUCTION

The purpose of this report is to develop somec general numerical methods
for the problem of antenna pattern synthesis, with and without constraints.
The principles of pattern synthesis are well known, and many specific problems
have been considered [1]. A good discussion of the general theory and of the
difficulties encountered has been given by Deschamps and Cabayan [2]. To over-
come problems concerning the stability and sensitivity of the solution, they
propose to use regularization methods [3]. In Hilbert space, this method is
equivalent to obtaining a least-cquares solution with a constraint on the
source norm [4,5). It is closely related to obtaining a least-squares solution
with a constraint on the quality factor, as considered in Section VI of this

report.

Most of the methods developed for pattern synthesis assume that the
radiation field is specified in both magnitude and phase. In many cases only
the magnitude is of interest, and the phase 1s left unspecified. This is a
special case of the so-called mixed problems of antenna synthesis, considered
by Bakhrakh and Troytskiy [6]). An application of field magnitude pattern

{1] Por example, see R. E. Collin and F. J. Zucker, "Antenna Theory," Part 1,
McGraw-Hill Book Co., New York, 1969, Chap. 7.

[2) G. A. Deschamps and H. S. Cabayan, "Antenna Synthesis and Solution of
Inverse Problems by Regularization Methods,'" IEEE Trans., vol. AP-20,
No. 3, May 1972, pp. 268-274.

[3] A. N. Tihonov, "Solution of Incorrectly Formulated Problems and the
Regularization Method," Soviet Mathematics, vol. 4, July-December
1963, pp. 1035-1038.

[4) V. I. Popovkin and V. I. Yelumeyev, "Optimization and Systematization
of Solutions to Antenna Synthesis Problems,’" Radio Engineering and
Electronic Physics, vol, 13, No. 5, 1968, pp. 682-686.

{S] V. I. Popovkin, G. I. Shcherbakov, V. I. Yelumeyev, "Optimum Solutions
of Problems in Antenna Synthesis Theory," Radio Engineering and Electronic
Physics, vol. 14, No. 7, 1969, pp. 1025-1030.

(6] L. D, Bakhrakh and V. I. Troytskiy, ""Mixed Problems of Antenna Synthesis,"
Radio Engineering and Electronic Physics, vol. 12, No. 3, March 1967,
pp. 404-414,




synthesis to a specific problem has been published by Choni [7]. In Section IV
we give a discussion of field magnitude pattern synthesis in terms of numerical
methods.

The procedures developed in this report are general, being applicable to
any antenna system which can be accurately analyzed. However, to keep the
examples and computer programs simple, the theory is applied explicitly only
to point sources arbitrarily distributed in a plane, and to pattern synthesis
in this plane. The extension to arbitrary N-port systems in three-dimensional
space, and to pattern synthesis over rhe entire radiation sphere, is straight-
forward but tedious in detail. A special case of three-dimensional field magni-

tude pattern synthesis applied to wire scatterers is given in reference [8].

II. ANTENNA SYSTEMS AND VECTOR SPACES

The general relationship between the source f of a radiating system and

the field g it produces on the radiation sphere can be symbolized by

=g 1

where T is a linear operator. In general, both f and g may be infinite
dimensional and T—1 may not be bounded. The pattern synthesis problem can be
summarized as follows: Given a desired field g, (specified completely or
partially), we wish to determine a source f (constrained or unconstrained)
whose field g approximates g, in some acceptable manner. The approach taken
by Deschamps and Cabayan [2] is to treat the problem in general in function
spaces, and then numerically evaluate the final formulas for specific appli-
cations, Our approach is to discretize the problem at the beginning, and then

treat the problem in finite-dimensional vector spaces.

[7] Y. I. Choni, "Synthesis of an Antenna According to a Given Amplitude
Radiation Pattern,' Radio Engineering and Electronic Physics, vol. 16,
No. 5, May 1971, pp. 770-778.

[8] R. F. Harrington and J. R, Mautz, "Synthesis of Loaded N-port Scatterers,"
AFCRL~72-0665, Scientific Report No. 17 on Contract No. F19628-68-C-0180
between Syracuse University and Air Force Cambridge Research Laboratories,
October 1972.




To render the source discrete, we assume that

N
£f= nzl £fe (2)
where fn are constants and e are basis elements. If the source is
continuous, the e are functions and (2) 1s usually an approximation to'
the true source. If the source is discrete, the e are finite-dimensional
vectors, and (2) is an exact relationship. We define the vector t to be the

vector of the components fn’ that is

f- (3)

[fn]le
For example, if the source is an array of dipoles, the fn may be the input
port currents, or the input port voltages, or their components in some

arbitrary basis. We substitute (2) into (1) and evaluate the equation at
M points (Gm,¢m), m=1,2,...,M on the radiation sphere. The result can be

written as the matrix equation

(Tif - g (4)
where § is the vector

> -+

g = g )y (5)

and [T] is the matrix

[T] = [(Te ) ] )

m- MxN

Here 8 denotes the value of g at the point (em,¢m), and (Ten)m denotes
the pattern of fn evaluated at the point (em,¢m). If these quantities are
spatial vectors, then the above procedure applies to the © and ¢ components
of the vector field. More generally, one could define a set of testing

functions and reduce (1) to a matrix équation by the method of moments (9].

[9] R. F. Harrington, "Field Computation by Moment Methods,'" Macmillan Co.,
New York, 1968.




The synthesis problem can now be represented by

(T1E =3, )

where Eo is the specified pattern vector. Equation (7) is a matrix equa-
tion, and the well-known methods of matrix algebra can now be brought to
bear on the problem, If (T] is square and nonsingular, the solution is
given by the inverse to (7). This solution will give the correct value of
field at the M points (Om,¢m) on the radiation sphere, but no control of

the field is obtained between these points, If [T] is of rank less than N,
the problem is underdetermined and more than one solution to (7) exists. In
this case additional constraints can be applied to either the source or the
field to obtain the most desirable solution. If [T) is of rank greater than
N, then usually no exact solution to (7) exists, but there will be a unique
least-squares solution. Again additional constraints can bL:> applied to ob-

tain more desirable solutions.

Let us next define the Euclidean spaces involved more precisely. For
source quantities, the inner product is defined as
* ~k
<t £ - fi[vlfj (8)
where the tilde denotes transpose, the asterisk denotes complex conjugate,
and [V] is a weight matrix. [V] must be positive definite, and for this

report we consider it to be the diagonal matrix
V] = [diag v I v (9)

with all a > 0. In the source space the norm induced by the inner pro-

duct 1is

N
NE = <€, 6527 = (] v |£ |2)1/2 (10)
=1 n' n

where f are the components of f. The metric induced by the norm is
d(fi’?j) = “f; - ?j” . For fileld quantities we define the inner pro-

duct as




8y18y> ™ 'E;[w}ij 1n)

where {W] is a weight matrix. It must be positive definite and for this
report we take it to be the diagonal matrix

(W] = (diag w ], (12)

with all L 0. In the field space the .orm induced by the inner pro-
dust is

M
*  1/2 1/2
lell = g™ 22 = (1 w s |BY (13)
m=1
where g_ 2re the components of E. The metric induced by the norm is
d(-b -);‘-H-D --P ”

To compare various pattern synthesis procedures, we define two
figures of merit. The first is the normalized synthesis error

M
- 2
133,012 2, “al%on!

ﬂl-]. m ™ m om
TR ) e
O mzl "m |gom|

where E is the synthesized pattern and Eo is the desired pattern. The
second is the quality factor [10]

N
2
[E2 . et e
BRFTEN -
2
Lowle,l

The multiplier M is introduced into (15) to make the Q relatively in-

sensitive to the number of field points chosen.

[10] Y. T. Lo, S. W. Lee, and Q. H. Lee, "Optimization of Directivity and
Signal-to-Noise Ratio of an Arbitrary Antenna Array, " Proc. IEEE,
vol. 54, Aurust 1966, pp. 1033-1045.




III. PATTERN SYNTHESIS WITH PHASE SPECIFIED

The most commonly used method of pattern synthesis involves specifying
the field pattern in both magnitude and phasé. For our method, this involves
specifying the magnitude and phase of 8, at M points on the radiation sphere.
Hence, the starting point is (7) with Eo known., We normally take more inde-
pendent equations than unknowns, in which case the least-squares solution to
(7) is

- [ e, (16)

This 1is obtained in the usual way by minimizing the quantity ”[T]¥-30"2.
The derivation of (16) follows (31) to (34) of Section IV with a=0,
Tf unweighted inner products are used, then [W] is the identity matrix.

For examples, the equations are specialized to point sources arbitrertily
distribuied in a plane and to radiation patterns in this same plane. Figure
1 illustrates the general problem. The point sources are located at positions
(xn,yn) and have excitations fn. The radiation pattern at the angle ¢ is then
given by

N Jk(x cos ¢ + y sin ¢)
T£= ) fe " "
n=1 "

(17)

where k = 21/} is the wavenumber. Choosing a desired pattern go(o), and
setting Tf =~ g, at*M points ¢m, we obtain [T]? a:Eo. Here I3 is the column
vector of the fn’ g, is the column vector of the go(¢m), and [T] ie ihe
matrix with elements

jk(xncos ¢m + ynsin ¢m)

Tmn = e (18)

For simplicity we take the unweighted inner product, in which case [W] is
the identity matrix, The solution for the sources fn is then given by (16),
and the synthesized pattern by (17). This solution is valid so long as M
is sufficiently large to give at least N independent equations in the N un-

knowns f .
n



N
L = to field
o, point
'3
(x2 oy2)
a
} X
(xl o)’l)

Fig. 1. An arbitrary array of point sources in the x-y plane.




For some numerical results, consider 10 sources approximately
equispaced on one-half of a 2:1 ellipse, as shown in Fig. 2a. For the
radiation pattern, take a rectangle in the first quadrant of the polar
pattern. (This is the so-called cosecant ¢ pattern.) 36 field points
¢ are chosen every 10° in ¢, starting at ¢ = 5°, These are shown by
c:ossea on Fig. 2b. For the synthesis we take four cases: (a) origip
at the center of the ellipse and the field real, (b) origin one-half
the distance from the center to the end point of the semimajor axis and
the field real, (c) origin at the end point of the semimajor axis and the
field real, and (d) origin at the center of the ellipse and the field phase
alternating from O to 180° between adjacent field points. (This last case
represents the worst choice that can be made.) Figure 3 shows the results
when the sources are separated d = A\/4, Fig. 4 when d = A/2, and Fig. 5 when
d = A, The corresponding normalized synthesis errors E and quality factors O
associated with each synthesis result ar: given below each pattern. The
source excitations are listed by magnitude and phase (in degrees) in Tables 1

to 3, normalized so that the maximum excitation is unity.

Some general cbservations are as follows: When the field is chosen to
have alternat.ng phase between adjacent points (cases d), the pattern syn-
thesis is poor in each case. When the field is chosen to be in phase at all
points, with respect to a coordinate origin in the vicinity of the sources,
the synthesis 1is good when the sources are separated by d = A/4 and 1/2, and
poor when separated by d = A. The Q is low when the sources are separated by
d = A/2 and A, but relatively high when d = A/4. These properties are in agree-
ment with what we would expect based on past experience with antenna synthesis

problems.



=

(a) Source distribution

(b) Desired pattern

Fig. 2. Source distribution and desired pattern for numerical
example.




X
% | i 4 C f
(a) E = 0.312, Q = 12.6 (b) E =0.307, Q = 16.0
1
X X RO X X X
X
: 1 ; % %= -

(¢) E = 0.223, Q = 11.1 (d) E = 0.957, Q = 20.5

Fig. 3.

Antenna pattern synthesis, phase specified, d = 1/4.
Specified pattern shown by crosses, synthesized
pattern shown solid.
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X X X X X
X
'LQ/[ + - = %
(a) E = 0,494, Q = 1.86 (b) E =0.495, Q = 1.70
X X X RO X X X
X Sk

(¢) E=0.438, Q = 1.06

Fig. 4.

(d) E =0.956, Q = 1.40

Antenna pattern synthesis, phase specified, d = 1/2.
Specified pattern shown by crosses, synthesized
pattern shown solid.
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X X X
"— ‘ﬁ #

(a) E = 0.748, Q = 1.49 E = 0.691, Q = 1.58

-

(¢) E=0.681, Q = 1.27 E = 0.872, Q = 0.889

Fig. 5. Antenna pattern synthesis, phase specified, d = A.
Specified pattern shown by crosses, synthesized
pattern zhown solid.
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Table 1.

Element excitations for the synthesized patterns of Fig. 3.

Element Figure 3a Figure 3b Figure 3c Figure 3d
mag. phase mag. phage | mag. phase mag. phase

fl 0.312 -38.3°| 0.164 84.,2° | 0.254 --29.,2° | 0.441 -26.7°
£2 0.762 173.9°| 0.627 -73.0°| 0.657 159.,2° | 0.858 167.0°
f3 1.000 0 0.810 126.4° | 1.000 0 1,000 0

fA 0.903 -147.4°| 0,761 -27.8°} 0.955 -147.1°| 0.680 178.1°
fs 0.502 32.6° | 0.482 155.4° | 0.462 55.8° | 0.394 -10.3°
f6 0.605 -122.3°{ 0.707 -5.4°] 0.529 -137.2° | 0.203 103.0°
f7 0.507 37.1° | 0.663 178.9°| 0.580 43.1° 1 0,363 -138.6°
f8 0.717 -126.8°| 1.000 0 0.868 -147.8° | 0.669 25.6°
f9 0.647 16,4° ) 0.664 164.1°) 0.678 17.3° | 0.612 179.8°
f10 0.300 149.8° | 0.300 -34.3°| 0.331 164.9°| 0.292 -17.6°

13




Table 2. Element excitations for the synthesized patterns of Fig. 4.
Element Pigure 4a Figure 4b Figure 4c Figure 4d
mag. phase mag, phase mag. phase mag. phase
fl 0.341 60.9° | 0.525 -115.4°| 0.383 -90.6' | 0.713 -133.0°
f2 0.315 -66.7° | 0.162 -11.6°| 0.340 77.5° 1 0.502 46.8°
f3 0.378 22.5° | 0.231 64.0° | 0.297 -18.6°] 0.207 167.3°
fé 0.488 48.8° | 0.248 132.9° | 0.392 167.4° | 0.623 65.6°
fs 0.767 161.2° | 0.661 -45,6° | 1.000 0 1.000 0
f6 0.989 -179.0° | 0.939 -42.1° | 0.847 -37.3°| 0.783 8.6°
f7 0.960 -112.7° | 1.000 0 0.427 36.8° | 0.510 57.1°
f8 1.000 0 0.427 66.5° | 0.365 136.7°| 0.039 -74.5°
f9 0.630 94.6° | 0.305 -25.9° | 0.341 13.8° | 0.547 35,2°
flO 0.057 -75.7° |0.102 130.5° | 0.240 175.7° | 0.734 -123.9°
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Table 3. Element excitations for the synthesized patterns of Fig. 5.
Element Figure 5a Figure 5b ! Figure 5Sc Figure 5d
mag. phase mag. phese mag. phase mag. phase
fl 0.062 -173.5° | 0.252 50,6° | 0.448 -134.0° | 0.619 17.3°
£, 0.063 18.6° | 0.384 -129,6° | 0.284 -108.1° | 0.663 21.1°
f3 0.510 102.9° | 0.467 -4,4° | 0.508 -125.1° | 0.134 10.1°
f“ 0.377 130.3° | 0.458 -22.2° | 0.379 -82.6° | 1.000 0
fs 0.497 -94.5° | 0.551 120.4° | 1.000 0 0.284 1.2¢%
f6 0.939 153.6° | 1.000 0 0.815 -150.1° | 0.700 86.1°
£, 1.000 0 0.802 168.8° | 0.366 $8.3° | 0.150 -98.5°
f8 0.848 -107.3° ]| 0.442 148.5° | 0.481 32.7° | 0.247 26.1°
f9 0.285 34.9° | 0.129 28,5° | 0.151 -64.4° | 0.781 4.3°
flO 0.120 -168.5° | 0.068 118.9° | 0.126 147.4° | 0,499 232

15




IV. FIELD MAGNITUDE PATTERN SYNTHESIS

We next consider the problem of synthesizing a pattern in magnitude
only. Let h = |8°| be a desired field magnitude, and form the vector.a by
specifying its value hm at M points on the radiation sphere. Again we con-
sider the source to be discretized and represented by the vector f. 1t is

desired to find the source ¥ for which the pattern error

e = || [ITIE] - B2 (13)

is minimum. In terms of components, (19) becomes

M N 2
€= "ml |1 1 |- hm| (20)
m=1 n=1

where the W are weight factors. To circumvent the troublesome 1inner

magnitude operation in (20), we first consider the more general function

M N B 2
cEBH= ] w |l et -ne ™ (21)

m=1 n=]1
This 18 the error function used when the pattern is specified in both magnitude
hm and in phase Bm' Hence, for Bm fixed, the fn for minimum € are given by
(16). For fn fixed, the minimum € is obtained when both terms within the mag-

nitude signs of (21) are in phase, that is, when

)

fT

j8 2y n'mn

e m - —P—y-l—_—- (22)
In§1 fnTmnI

Because (21) is more general that (20), its minimum is less than or equal to
that of (20). But under condition (22), the € of (21) is equal to that of
(20). Therefore (20) and (21) have the same minimum,

16




An iterative procedure for minimizing (21) proceeds as follows:

1. Assume starting values for Bl’ 82...., BM'

2. Keep the Bm fixed and calculate the fn vhich minimize € using (16).
3. Keep the fn fixed and calculate the Bm which minimize ¢ using (22).
4., Go to step 2,

This procedure eventually converges because steps 2 and 3 cannot increase €.
While the procedure obtains absolute minima in the ¥ space and in the E space,
it does not necessarily obtain the absolute minimum in the catenated space
(?.E). Hence, the procedure converges to a stationary point, usually a local
minimum, which may or may not be the global minimum. An alternative procedure

for minimizing (21) is given in the Appendix.

For numerical results, we consider the same example as used in the pre-
ceding section. Hence, the array is {llustrated by Fig. 2a, and the radiation
pattern by Fig. 2b. The same three cases of element separation, d = A/4, A/2,
and A, are used. Two starting points were chosen for the iterative procedure:
(a) origin at the end point of the semimajor axis and the field real, and (b)
origin at the center of the ellipse and the field phase alternating between 0
and 180° between adjacent field points. These starting points correspond to
cases (c¢) and (d) of the previous section. The final results of the magnitude
synthesis procedure are shown in Fig. 6 for d = A\/4, Fig. 7 for d = )/2, and
Fig, 8 for d = A, The normalized synthesis errors E and quality factors Q for
each result are given below each pattern. The source excitations are listed
by magnitude and phase in Table 4, normalized so that the maximum excitation

is unity.

17
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(a) E = 0,172, Q = 21.5

4
=

(b) E = 0.172, Q@ = 21.5

Fig. 6. Field magnitude pattern synthesis, d = A/4.
(a) Starting field taken real. (b) Starting
field alternating O to 180° in phase between
adjacent field points.

18




—4=
Q.
-

(a) E = 0.416, Q = 1.63

(b) E = 0.425, Q = 1.09

Fig. 7. Field magnitude pattern synthesis, d = \/2,
(a) Starting field taken real. (b) Starting
field alternating O to 180° in phase between
adjacent field points.

19




X
; -
(a) E= 0.517, Q = 0.943
X X
X
} }
L ¥

(b) E = 0.517, Q = 0.943

Fig. 8. Field magnitude pattern synthesis, d = A.
(a) Sterting field taken real. (b) Starting
field alternating O to 180° in phase between
adjacent field points.

20




Table 4. Element excitations for the synthesized patterns of Figs. 6, 7, 8.

Ele-{ Figure 6a Figure 6b Figure Ta Figure 7b Figure 8a Figure 8b
ment| mag. phase | mag. phase |mag. phase | mag. phase | mag. phase {mag. phase
fl 0.264 125.010.264 125.0{0.299 -89.5|0.178 -62.010.461 -118.7 [0.462 -118.8
£, 0.626 -40.5]0G.626 -40.5 [0.362 75.4}0.337 71.2]0.552 =-113.2(0.552 -~113.1
f3 0.985 153.2]0.985 153.2 {0.334 -22.9|0.473 -76.9}0.680 -92.7 10.680 -92.8
£, 1.000 0.0 11,000 0.0 |0.285 -177,4 |0.440 -78.5(0.970 -66.3 |0.969 -66.2
£ 0.636 -159.1 }0.636 -159.2 |1.000 0.0 |1.000 0.0 | 1.000 0.0 |1.000 0.0
fe 0.553 24.7]0.553 24.7 {0.827 -34.7 |0.621 8.,0}0.370 -66.4 10.366 -66.4
f7 0.570 -160.3 |0.570 -160.3 |0.365 5i.2 [0.832 113,8 10.208 152.2 }]0.204 152.3
fg 0.664 10.3 ]0.664 10.3 |0.364 151.9 [0.698 -154.1 [ 0.371 75.3 | 0.368 75.3
f9 0.527 172.9 |0.528 172.9 |0.378 12,0 {0.639 =-15.2 (0.334 -74.7 10.334 -75.2
£.0 0.234 -42.8 }0.235 -42.8 J:0.360 161.5 J30.643 136.4 [0.406 150.0 |0.407 150.3

21




The following are some observations concerning the improvement of
magnitude pattern synthesis over ordinary pattern synthesis. For the cases
d = )/4 and d = /2, when the starting field is taken rea) (equiphase), the
improvement is relatively small. (Compare Figs. 3c to 6a, and 4c to 7a.)
For the cases d = 1/4 and d = 1/2, when the starting field alternates 0 to
180° between adjacent field points, the improvement is large. (Compare
Figs. 3d to 6b and 4d to 7b.) For the case d = A/4 the two final patterns
are the same (Figs. 6a and 6b), but for the case d = A/2 the two final
patterns are different (Figs. 7a and 7b). For the case d = A, the improve-
ment over the starting pattern is larger in both cases. (Compare Figs. 5c
to 8a and 5d to 8b.) However, in no case is the final pattern very good
when d = A, Apparently the source separation is too great for good pattern
synthesis. Finally, note that for the case d = A the two final patterns are

the same (Figs. 8a and 8b).

For future reference, the source norm squared, the normalized syn-
thesis error, and the Q for each result are tabulated in Table 5 for the
case d = A/4. The five rows correspond to the synthesized patterns of
Figs. 3a, b, ¢, d, and Fig. 6. When the source separation is large the
various quantities of Table 5 are less sensitive to the type of synthesis

used, and hence we do not tabulate them for d = A\/2 and d = ). e

Table 5. Source norm squared, normalized synthesis error, and quaiity

factor for unconstrained pattern synthesis, d = /4,

(Hl5 E Q
coordinate origin a 13,37 0.312 12.6
coordinate origin b 17.14 0.307 16.0
coordinate origi: c 13.35 0.223 11.1
field phase alternating 1.38 C.957 20.5
magnitude synthesis 27.50 0.172 21.5
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V. PATTERN SYNTHESIS WITH CONSTRAINED SOURCE NORM

The source norm is closely related to near-field quantities,
such as power losses in an antenna structure or energy storage. For this
reason it 18 often desirable to limit the source norm, especially when the
sources are close together or continuously distributed. Hence, we consider

the problem of minimizing
>
e= [l (mE - g 2 (23)
subject to the constraint

I£12 < c (24)

where C 1s a positive constant to be chosen. This constrained minimi-

zation can be accomplished by forming the Lagrangian
3= |IiE - B I + o [IE]2 (25)

where o is a Lagrange multiplier. If we can obtain the source function f

which minimizes .J vith respect to f and are able to find & > 0 such that

| Eff2= ¢ (26)

then any other source function which satisfies the constraint (24) gives
at least as large a J and thus at least as large an € as that provided

by %. Hence f minimizes € subjec. to the constraint (24).

However, it is not always possible to find o > 0 such that the
f which minimizes J satisfies (26). This warrants an investigation into

I

the behavior of I|¥”2 and € attained by the minimizing function ¥ versus 1

a, If ?1 is the minimizing function when a = a, and ?2 is the minimizing

1
function when a = Y then
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€+ o ||'f||2<e +a ”-f II2 27)

€, + 0, ”-fznzi € + a, ||-f1||2 (28)

where €, OT €, is the ¢ of (23) with f replaced by .El or ?2. Adding the
inequalities (27) and (28), we have

(@, = 0 ) CllE,li2= £l 2 <0 (29)

which shows that ||-f||2 is a monotone decreasing function of a. If both
ay and a, are positive, (27) and (28) can be multiplied by a, and a,, respec-
tively, without changing the sense of the inequalities. The resulting

inequalities can now be added to obtain

(3, = 8 (e, =€) > 0 (30)

which shows that € 1s a monotone increasing function of o for positive a.
The smallest possible € is obtained when a = 0, corresponding to the uncon-
strained optimization. The smallest possible ||f|? 1s obtained when a = =,
because when a is very large the Lagrangian is esser11:iallym|l¥||2 and thus

minimization of the Lagrangian is the same as minimization of H-f”2

Now if it is impossible to find @ > 0 such that the minimizing b3
satisfies (26), then C is either larger than ||-f||2 when a = 0, or C is
less than |||]2 when a = ». If C is larger than ||f|]? when « = 0, then
the desired ¥ 1s the one which minimizes J when o = 0, because this ¥
gives the minimum possible € and does not violate the constraint (24).
Actually, the constraint (24) is ineffective whenever C 1s larger than
I -f”"’ when « = 0. If C is smaller than ”'f”Z when a = =, then since Hf”2 at
a = » ig the smallest possible H-f”z , the constrained minimization problem
(23), (24) has no solution because it is impossible to satisfy the con-
straint (24).
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Consider the minimization of (25) for a > 0 such that (26) is
satisfied. For a fixed a > 0, (25) has an absolute minimum because
J > 0. The Lagrangian J, being a quadratic form in ?, has one station-
ary point, The absolute minimum of J nu3t occur at this stationary
point which can be obtained by setting to zero the variations of J with
respect to both the real and imaginary parts of f, or equivalently as

*
on page 192 of reference [9; with respect to T oand f 8

To minimize (25), expand it in terms of inner products as

3 e mE- g mant - ) + o¥F it (31)

where {V] and [W] are the weight matrices of (8) and (11), respectively.

Further expanding (31), we have
AR AR Ak
J=F [Tm]’f’-“g’;[wr]?- £ [Tw]§o
R k.
+g g +of (vIE (32)

~rk
Taking the variation of this with respect to £ and setting it equal to

zero, we obtain
53 = £ (FwmiE - [T + alv1E) = 0 (33)
Since &?* is arbitrary, the vector in the parentheses must be zero, or
('t + av)? = [“T'*W]EO (34)

Taking the variation of (32) with respect to t and setting it equal to
zero we obtain the conjugate equation to (33). Note that o = 0 in (34)

[9] R. F. Harrington, "Field Computation by Moment Methods," Macmillan Co.,

New York, 1968,

25




gives the usual least-squares solution (equation (16) of Section
111).

Next we have to determine a given the cor.straint ll.f”2 = C. For this,

we first consider the eigenvalue equation
~ R -+ >
[TWTI8, = A VI3, (35)

Let the eigenfunctions be normalized with weight [V], so the orthogonality

relationships become

~k v + 8
AU (36)
ak k +

FITVIIR, =y 6 (37)

sk
The matrix [T WT] is Hermitian and (V] is positive definite, therefore the

> ;
¢i form o complete set in the f space and we can write

N
te Vad (38)
{=1 i'i
where the @, are constants. Substituting (38) into (34), we have
N ~k AR
Y a, [T WL + av]e, = [T wig (39)
{=1 i i o

~k
Premultiplying (39) by ¢j, and using the orthogonality relationships
(36) and (37), we obtain

rRoak
ai(k1 +q) = ¢1[T w]go (40)
which determines the ai. Substituting these ai into (38), we have
N C -+
- ) L5 (41)
{=1 Ai +a "1
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where the constants C1 are

Ak B

¢ (T wlg, (42)
Next, substitute (41) into (23), again use orthogonality of the $1, and
obtain

N
€= ”80“2 + 12 (— +m)lc |2 (43)

Also, from (41) and orthogonality, we obtain

|2
IR - Z oy _,,a*z (44)

Now (V] is positive definite and ff*WT] is at least positive indefinite,
therefore all A, > 0. Hence, as expected, the error (43) 1is a monotone
increasing function of o for ¢ > 0 and source norm squared (44) is a muno-

tone decreasing function of a for a > 0.

Because of the monotone decreasing nature of (44), there is pre-

cisely one a > 0, say s which satisfies

N e f?
c-zm-p(a)=o (45)

This ar can be computed using Newton's method.

The solution t which minimizes (25) for a > 0 such that (26) is
satisfied 1s unique and is given by (41) with a = a . If C is neither
too large nor too small, this  minimizes ¢ subject to the constraint (24).
As mentioned before, if C is larger than the norm squared of the t which
minimizes ¢ when there is no constraint, then this ? minimizes € subject to
the ineffective constraint (24). If C is smaller than H?Hz at a = o, then
it is impossible to satisfy the constraint (24).

For examples, the previously synthesized patterns for the case d = A/4

were rerun with a constraint on the source norm. The resulting synthesized
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(a) E= 0.324, Q= 4.05 (b) E=0.326, @ = 4.09
X X
X
L L [l 1 i
L L T
.u'-. -
(c) E = 0.235, Q = 3.55 (d) E = 0.191, Q = 6.82
Fig. 9. Pattern synthesis with constrained source norm, d = A/4,

Field phase is specified in (a), (b), and (c). Field is
specified only in magnitude in (d).
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patterns are shown in Fig. 9. The first three cases are for the field real
with coordinate origin at the points (a), (b), and (c) of Fig. 2a. In each
case the constraint was ||'f|l2 = 4. The corresponding patterns for uncon-
strained synthesis are those of Figs. 3(a), (b), and (c). Note that the final
synthesized patterns are not greatly different from the unconstrained results,
yet ||T]|2 has been reduced from the order of 15 to 4 (see Table 5). The choice
of coordinate origin (a) and the field phase alternating between adjacent field
points was also run with the constraint ”?”2 = 1, and the resulting pattern
war essentially the same as Fig. 3(d). Finally, field magnitude pattern syn-
thesis with the constraint H-EHZ = 8 was run using each of the above mentioned
four starting points. The final synthesized pattern was the same regardless
of the starting point, and the result is shown in Fig. 9(d). Again the syn-
thesized pattern is not greatly different from the unconstrained result, Fig.
3, even though ||-E|I2 has been reduced from 27.5 to 8.

Table 6 lists ||-E||2 E, and Q for the constrained synthesis results. It
should be compared to Table 5 for the corresponding unconstrained results.
Note that the errors for the constrained patterns are always as high or higher
than those for the unconstrained patterns, as they must be. Note also that
the Q's of the constrained patterns are always as low or lower than those for
the unconstrained patterns. We show in the next section that this is generally

true,

Table 6. Source norm squared, normalized pattern error, and quality factor

for pattern synthesis with constrained source norm.

I E Q
coordinate origin a 4.00 0.324 4.05
coordinate origin b 4.00 0.326 4.09
coordinate origin ¢ 4.00 0.235 3.55
field phase alternating 1.00 0.957 16.15
magnitude synthesis 8.00 0.191 6.82 ‘
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V1. PATTERN SYNTHESIS WITH CONSTRAINED QUALITY FACTOR

It is sometimes desirable to constrain the quality factor Q defined
by (15). According to the genaral Lagrange multiplier theory in section V,

the pattern synthesis error € can be minimized subject to the constraint

Q<Q (46)

o]

by minimizing a Lagrangian

J= ¢+ aQ (47)

with respect to the source function t and choosing a > 0 such that

Q= Q (48)

)

at least if Qo is neither too large nor too small.

With (23) and (15), the Lagrangian (47) is given in terms of ¥ by

s .o lIEP
J =||(T)E - gOII + aM ——— (49)
I (TIE 1R
Similar to (32), we have
sk
£ vit
rk vk -> i > ~k vk oS> ~R -
J=f [T WIlf - gO[WT]f-f [T w]g°+ 8O[W]go + oM m (50)

~%
Taking the variation of (50) with respect to f and setting it equal to

zero, we have

63 = SET((L - —28 Pyt - )t - [’r“*w]Eo)=o (51)
Il 2|2 Il T)E |2

~k
Since 8f 1s arbitrary, the vector in the parenthesis must be zero, or
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ImiEe (g
of ] Il o )

WT +
Il (T3E|? - aq IITE? - oQ

-
Substituting (38) with 01 defined by (35) into (52), we obtain

N ~R <> ~R
) a [T WT + 8v]e, = v([T Wg, (53)
i=1
where
g = —_— (54)
lItTIER - oo
iTIE |12
O e (55)
-
lItTiElf - oQ
Premultiplying (53) by ¢; and using the orthogonality relationships (36) and
(37) we obtain .
ui()‘i +8) = vCy (56)
where C1 is defined by (42). Substituting these oy into (38), we have
N C
{1 >
¥-Y121Ai+6¢1 Q2

Next, using (57) and the orthogonality relationships (36) and (37), we can
write the Q defined by (15) in terms B as

N e, l?
lIE]2 L B+ B2 -~
= = M 5
et §
jo1 Oy +8)

With (57), the pattern synthesis error ¢ extracted from (50) is given by
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2 2 '
. N Icil A N |01|

t"il + 12
cm | [ L ) A1+B'Yizlxi+e+”3o” (%9)

i=1 i=1

Manipulation with (54), (55), and (58) results in

N c,l?

A, + 8
Y'ili ! (60)

N C1 Ai

[ L

Equation (60) 1s more easily obtained by setting to zero the partial
*
derivative of (59) with respect to vy . Substituting (60) into (59),

N |c |2 2
(L, o)
€= IPJIZ -1:l—T5;qu—— (61)

i
(g + 8)?

we finally have

i=1

It is desired to find a > 0 such that (48) is satisfied. Since (58)
expresses Q not in terms of a but in terms of B, a relation between u« and
8 must be found. Solving (54) for o, replacing Q by expression (58), and
recalling that ||Tf|| is proportional to Y given by (60), we obtain

2
8 r{ ICI (62)
H -
The derivative of (62) given by
N |c,|%
da 12_1_1.-7 (63)
B ML,G +B)

indicates that the right hand side of (62) 1s a monotone increasing func~

tion of B except at B = - Ai for i=1,2,...N where it jumps suddenly from
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+» to -», If the eigenvalues A, are arranged in decreasing order, then

i
for a fixed a > 0, (62) has one root B outside the interval (-Al, 0).

1+1) for i{=1,2,...N-1,
Each of these N roots represents a stationary point of the Lagrangian J.
Substituting (58), (61), and (62) into (47), we obtain

There is also a root in each of the intervals (-li, =i

= ||z [ =2
J =g I? - 3 (64)
This shows that the )atter N-1 roots in the intervals (-Ai. -Ai+1) are
extraneous because tiey all render J larger than its value at the first
root outside the interval (-Xl. 0).

We seek B outside the interval (-XI,O) such that expression (58) is
equal to Qo' Since Q is a monotone decreasing function of a and a is a
monotone increasing function of B outside the interval (-Xl, 0), it follows
1 9
Hence there is only one B outside the interval (—)1, 0) for which expression
(58) 1is equal to Qo'

that Q 1s a monotone decreasirg function of B outside the interval (-A

That Q is a monotone decreasing function of B8 outside the interval

(-Al, 0) can be shown from (58) as follows:

2 2 2 2
? |ci| ? lcil A ) N |c1| MO Icil
3 V4 Y3 Y3
4y et OB 4oy O 4oy GFB)7 40y OB o)
a8 N ICT7,
(121(A1+a)2)

Replacing the product of sums in the numerator of (65) by a double sum,
we can write (65) as
2 2 -
N N lcil lgil (O xj)
va T
4q . _ - ja1 =1 (li + 8) (AJ + 8)
d8 N lciMi

(] —=—52?2
a1y * B

Combining the (1,j) and (j,1) terms, we have

(66)
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. 2 2 o 2
N -1 |°1| lcjl Oy =)

= S SO MO
a8 v TC 1 A
‘2 ('x"_‘+ Dr

(67)

Expression (67) is negative when B is outside the interval (-Al, -).N),
hence Q is a monotone decreasing function of B outside the interval
(-)\1, -J\N).

1f Qo 1s larger than the Q of the source function which minimizes €

when there is no constraint, namely if

N [c,]?
121 A
R A e’
I =
i=1 i

then the optimum source function is the unconstrained optimum ¥ obtained
by setting B = 0 in (57) and (60). However, if Qo is less than expression
(58) at a = = corresponding to B = - )\1, namely if

M
Qo < A—l. (69)

then it is impossible to satisfy the constraint (46). If
lc, 12

YA
M < i=] 4 (70)

z i
(=1 M

b
.o
A
O
[+
ia
=
Zine—z
@]

then the optimum tis given by (57) and (60) where B is the unique number
outside the interval (-Al, 0) for which expression (58) is equal to Qo' This
8 is easily computed using Newton's method with the understanding that the
iterations are not allowed to proceed into the forbidden interval (-Xl, 0). If




M i=]

-,qf.QoiHN——z G

121 el g

then B is negative, but if

, N |c,|?

L el %

I le [ ] =

TR 1=1 M

then B8 is positive.

The same examples used to illustrate the constrained||¥|P solution
were run to illustrate the constrained Q solution. To check on the accuracy
of the computer program, the constraint on Q was chosen to be the Q ob-
tained for each case in Table 6. Hence, the constraint was Q = 4.05 for
case (a), Q = 4,09 for case (b), Q = 3.55 for case (c¢), and Q = 16.15 for
case (d). The final synthesized patterns were indistinguishable from those
of Fi1g. 9. The final values ofl[?”z and E are given in Table 7. Note that
the error E of Table 7 is always less than or equal to that of Table 6.

Table 7. Source norm squared, normalized pattern error, and quality

factor for pattern synthesis with constrained quality factor.

[Hs E Q
coordinate origin a 4,23 0.324 4,05
coordinate origin b 4.26 0.325 4,09
coordinate originu c 4.19 0.234 3.55
field phase alternating 1,08 0.957 16.15
magnitude synthesis 8.51 0.190 6.82
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VII. DISCUSSION

Only a few examples are given in this report, hence it is difficult to
draw general conclusions on the synthesis procedures. However, for the
examples chosen, the normalized pattern synthesis error was greater than 0.4
when the sources were 3/2 or ) apart. This indicates that they cannot radiate
a pattern very close to the chosen cosecant pattern. Even when the sources were
A/4 apart, the normalized pattern error was of the order of 0.3 when the phase
of the radiated field was specified. The field magnitude pattern synthesis
procedure reduced this error to C.172. Constraining the source norm squared or
the quality factor to about 1/3 of its unconstrained value increased this error
to only 0.191., Hence, it is possible to teduceH?H2 or Q by factors greater
than 3 with little change in the synthesized pattern.

The unconstrained least-squares pattern synthesis procedure gives the
source vector (16). When this is substituted into (23), we obtain for the

pattern synthesis error
e =g, I2 - Il T1E |2 (73)

If the pattern error is large, the synthesized pattern [T]? must have a small
norm compared to that of g . The worst possible case would be that for which
the space of [T]? is orthogonal to g . In this case the minimum synthesis

error would be Hg HZ and the source vector would be = 0.

The constrained norm pattern synthesis gives

3
Il (T1E |2 - Z ‘(r‘;‘i‘y! (74)

which is certainly less than the norm squared of the pattern obtained from
unconstrained pattern synthesis. If the constrained Q source vector is

written as Y?, then ¥ must be chosen to minimize

e=lly (11F - g 2 (75)
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Setting to zero de, we obtein

dy* i
(e
Y = e ° (76)
et) = I8 I - llvITIE|2 > 0 an

so that the norm squared of the constrained Q synthesized pattern is less

than or equal tollzoﬂz.

The field magnitude synthesis procedure of section IV can be looked
at from a different point of view. Expression (16) implicitly definee an
operator, say P, which gives the phases of the elements of ¥ in terms of
the phases Bm of the elements of Eo when the magnitudes hm of the elements
of Eo are fixed. The iterative procedure of section IV successively oper-
ates with P on an initial vector Eo of phases,

B =P@)

[ P(El) (78)

§n+1 = P(En)

Convergence is obtained when E approaches En. Evidently,

nt+l

1im En (79)
o

is a fixed point of the operator P. The successive operations with P
could have been replaced by Newton's method in which the previous iterate
En is improved by adding AB
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-»> - -
p(én +08) = B+ 08

PB) + L 48 -F + 08 (80)
n e n
)]
n
P % -+
(;*é— - 1)AR = §n - P@)
n

Presumably, Newton's method requires fewer iterations, but each iteration
is complicated by the expression (22— = 1) which is actually a square matrix
to be computed and inverted. 2 n

The eigenvectors zi of (35) will be real if the elements of [T*T] are
real. The following development reveals the circumstances under which the

*
elements of ff T) are real, or nearly real. Using (18),

M Jkomcos (¢i-¢o)

amn ) (81)
= e
L |
where
- - e 32z
P = T = X))+ (y - y) (82)
-1 ~ ym
bo = tan T 3T (83)
n m
Using the wave transformation [11]
Jke__cos($, =4 ) © Ja(e. -9 )
e ™ P 7 49k e 1° (84)
q mn
q-—m
one obtains
® -Ja¢_ M jq¢
Ak - q . o i
T, q_z_aj I ko Ve 1-z-1e (85)

[11] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," McGraw-Hill
1961, p. 231, Eq. (5-101).
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Since the 01 are equally spaced and because 01 can be absorbed into ¢°.

we are at liberty to take

21
01 = (1-1) 3 (86)

in which case

M jq¢i M q = an integer multiple of M

e 1. (87)
i=}1 0 otherwise
whence
o - Mq°
~R - Mq j o
Tn_ =M q_i_m 3 Sy (ko De (88)
or

@'T) =Ml (ko) + 2 020 My ko Jcos(Mqe )] (89)
mn o mn q=1 Mg "mn o

* Ak
Hence (% T)nm is real whenever M 1s even. If M is odd, then (T T)nm is
nearly real whenever M >> kpmn because from the table on page 407 of [12]

Jn(x) is very small when n >> x.

Newton's method was used to find the root o of (45) and the root B of
(48) where Q 1s given by (58). However, if the starting value is far from
the root, the first few iterates of Newton's method are probably not very
well directed because the change in the variable o or B from one iteration
to the next is not a good indicator. In the beginning, an interval halving
procedure would probably give as much improvement per iteration and take a
lot less time per iteration because the derivative need not be calculated.
However, the interval halving procedure requires a negative and a positive
value of the function in order to start. Also, it would be difficult to

decide when to change from interval halving to Newton's method. Newton's

[12] M. Abramowitz and I. A. Stegun, '"Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables," National Bureau of Standards,
1964, pp. 355-433,
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method may be modified by replacing the derivative by a firite difference
approximation, but then it is feared that the time saved per iteration may

be offset by slower convergence.

The computer programs, with operating instructions and sample input-
output data, for all the examples of this report will be given in Scientific
Report No. 3 of this contract. It is hoped that further examples will be run

in the future to better assess the capabilities of these synthesis programs.
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APPENDIX

ALTERNATIVE METHOD FOR FIELD MAGNITUDE PATTERN SYNTHESIS

An alternative method for field magnitude synthesis is as follows.

Expression (21) can be rewritten as

-38 N
4 i
e(£,8) = - 2 Real(e wih1 z fnTin)
n=1
2 N 2 M N 18_|2
whi +w | ] Em it I w | |} £T -he {(A-1)

=] m=l n=1

med

The minimum of expression (A-1) with respect to 81 occurs when Bi is the

N
angle of z fnT . Thus it is possible to minimize (21) with respect

n=1 L3

to Bi for { = 1,2,...M. The proposed alternative method for field magnitude
synthesis consists of minimizing (21) successively with respect to

81, 82....BH, 81, 82""8M' etc. Hence, one angle is changed at a time in
this method, compared to all angles being changed at once in the method used

in the text. It 1s not known which method converges faster, since tests were

not made.
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