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1.0 INTRODUCTION

This report is the final report on Contract No. DAHC
19-69-C-0032 with the Advanced Rescarch Projects Agency entitled
"Stress-'ave Propagation Throuyh Earth-water Systems." The fun-
damental objective of this study is to develop numerical tech-
niques to treat the general two~dimensional stress wave propaga-
tion problem through nonlinear earth materials including the ef-
fects of water flow through the earth materials.

Prior to the beginning of this study, a numerical tech-
nique was developed to treat the dynamic wave problem through
arbitrary nonlinear media (Ref. 5, 6 and 7) without including the
effects of water on the propagation process. This numerical ap-
proach is based upon thé finite eiement method of analysis and
led to the development‘of’a large computer program (termed the
SLAM Code for identification, the acronym standing for Stress
Waves in Layered Arbitrary Media) to treat either the general
axisymmetric or plane (stress or strain) geometric configuration.
The finite element approach has been taken in this development to
allow the user a general flexibility in treating two dimensional

Problems of rather complex geometry (inclusions, material layer-

ing, complex boundaries, etc.).
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The majority of computer codes that ﬁ;ve been developed
to treat these problems are based upon finite difference formula-
tions and thus would have difficulty in treating complex geometries
of interest. 1In the finite difference formulations, relatively
uniform meshes are distributed over the half-space of interest and
equations of motions applicable at each node are developed by suit-
ably differencing the system partial differential equations of mo-
tion. By contrast, in the finite element formulation, the two di-
mensional half-space is divided into small, arbitrarily located,
small elements, these elements being connected to each other at
their vertices or node points. From the element type and geometry,
equations of motion are_developed‘for each node. The primary ad—l
vantage of this method‘over its counterpart difference formulation
thus lies in its flexibility in specifying node distributions for
a particular problem. It can the; be used to treat problems of as
complex a geometry as desired with no change in computer code
formulation.

However, this added flexibility is obtained at a cost,
this cost being the increased amount of information that must be
maintained in the computer (or its auxiliary storage units). Thus
to perform a calculation for a simp}e problem, with, say, a uni-
form mesh, the finite element formulation will be inefficient as
compared to finite differences. For problems where simple mesh
formations can be used, the finite element solution will in gen-
eral take more machine time to achizve the same results as the

difference solution. Thus the very flexibility which is its

1-2
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advantage can be considered a disadvantage for ‘these cases.

Afi:er the development of SLAM Code, various problems of
interest were investigated to determine the effects of material
nonlinearities on the wave propagation proce:s (Ref. 5). In gen=-
eral, three types of problems are of interest wnen studying dy-
namic processes through earth media. In the first type, the half
space is subjected to high intensity pressure loadings caused by
high energy explosions. The resulting ground shock effects are
highly transient and are characterized by relatively short dura-
tion shock waves of high strength. Of particular interest for
this proolem is the rate of decay of the shock front as it moves
through the ground. Clearly, nonlinear properties of the mate-
rial significantly influence the 'decay of the shock strength
since large non-recoverable volume changes can decrease the peak
pressures of the shock front. In the second problem type, the
half-space is subjected Lo 'ong duration low intensity vibratory
type loadings associated with earthquake motions. Again nonlin-
ear properties and volume changes of the earth material signifi-
cantly alter the characteristics of the motion histories sustained
at the surface of the ground.

A third hype, not often considered with the first two
problems, is concerned with the response of near shore structures
and soils subjected to ocean storm waves. In these problems non-
linear soil properties as well as induced seepage and pore pres-
sure effects tend to riuce the strengtn of the soil leading to
potential massive failures of the soil systems. It is well known

(Ref. 11) that storm waves can induce slide failures on even flat

1.3
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slopes due to the excess seepage conditions developed within the
ocean sediments. In these problems, the stress and motion histo-
ries sustained at any point in the ground are significantly influ-
enced by the nonlinear characteristics of the materials, asso-
ciated volume changes and any induced seepage conditions that may
occur. Thus, to seriously treat the time dependent response of
earth media, the effects of pore water must be suitably taken

into account.

In the following section of this report, a brief review
of the analytic approach and numerical techniques used to obtain -
solutions is presented. After this review, the results obtained
for four different problem types are presented, these problems
being chosen primarily to indicate the areas for which tHis anal-
ysis is applicable. In'the first results presented(Section 3.0),
quasi-static problems are considered; that is, inertial effects
are neglected. The problems are limited to the (time-dependent)
two dimensional consolidation situations. This is followed (Sec-
tion 4.0) by the analysis of stress wave propagation through sat-
urated soil columns to determine the influence of pore fluid on
stress wave speed. Sections 5.0 and 6.0 present results obtained
for the effects of soil ligquefaction generated by ocean storm
waves, the firet concerning liquefaction of foundation soils and

the second concerning embankment stability to the storm waves.

1.4




2.0 GOVERNING SYSTEM EQUATIONS

In Ref. 1, the derivation of the system of equations

governing both the equilibrium of the nodcs as well as pore water I
migration (seepage) was presented in detaii. The basic assump-
tions made are: l
(a) the so0il can behave as a nonhomogeneous, aniso-
tropic and inelastic solid; |
(b) the pore water is considered as incompressible
with respect to the soil component;
(¢) the deformation of the soil) depends upon inter-
granular strisses only;
(d) the water flows throuyh the soil according to
D'arcy‘g law. ‘
For completeness of th;s report, the derivation of the system

equations has been summarizecd and presented in Appendix A. The

system equations can be written symbolically as

{ru\ : ‘.huu]{“\ *\.hw“d - ‘.T’-u]{'“‘\
(Fo) 0 Leu (el TRowlled - L
Py (RTEY s TRLTEE o Lu N

(1)

In equations 1, the vectors f?u} and {wa are the horizontal (u-

’

direction) ana vertical (w-direction) forces generated at the

P Y T e L

k. .k, .,

nodes of the finite element mesh. The matrlceslcuu. aw -

kkmn are the usual elastic stiffness matrices and are used to com-
pute the elastic components of the forces developed at the node
points due to the relative displaccments of the element nodes.

The vectovws {u} and &wk are the " r.izontal and vertical

| | | i
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displacements of the nodes of the mesh, while tpe vector {T\'\ rep~-

resents the excess pore vressures developed at the node points.
The matrices Eu and Ew then convert thcsc excess pore pres-
sure into equivalent node point loadings.
The forces at the node points, {Fu} and {le, can have
three components. nameolw,
(a) applied node point loads due to applied pressure
loads;
(b) fictitious correction forces to account for noni
linear stress-strain behavior of the soil skeleton;

(¢) 1inertia loadinge for dynamic problems.

The forces can then be written as
AR o W T I T
VR (RM + (R3Y - s

The terms with the superscript A in equation 2 are the horizontal

(2)

and vertical components of any forces applied to the nodes (from
concentrated loads or pressures applied to specific surfaces in
the problem). The terms with the superscript N refer to the fic-
titious correction forces that are applied to cne nodes to ac-
count for any nonlinearity in material Atress-strain behavior (or
deviations from the elastic case).+ The final terms of equation 2
refer to inertia forces if dynamic effects a-~~ included.

1hie first two of equation 1 then represent the equilib-
rium of total strr-ses at a point in the half-space. The third
equation of equat un 1 represents the seepage flow relationship
generzted from D'arcy's law. The matrix [H] is dependent upon

he coefficients of permeability of the material (as well as




properties of the finite element configuration) and the vectors

{G} and {Q} represent the nodal velccities.

The vector {P} represents the rate of volume change of
the fluid component associatcd with each noce point. For incom-
pressible fluid, these components are 7ero for interior node
points (all fluid that flows into an element must flow out),
while for some boundary node points (for which ths excess pore

pressure is specified), these components indicate the volume of

water flowing out of the nodes.

2.1 $Solution Procedures

At each node point (except at toundary nodes where ei-
ther displacements and/or excess .pore pressures are specified),
.three unknowns must be: determined at any instant of time, namelr
the two node displacements (u and w) and the excess pore pressure
() . The solution procedure then depends upon the particular
conditions of the problem.

For example, for steady state flow conditions where the
coefficients of permeability are assumed to be independent of tha
intergranular stress (or strain) state, the time variation of the
parameters is zero. Referring to equation 1, this allows for a
direct solution of the third equation (by elimination procedures,
say) for the excess pore pressure distribution. With these as
knowns, the first two of equation 1 can then be solved for the
node displacement components. If the material is elastic, the
nonlinear correction forccs of equation 2 are zero so that a
single solution is all that is needed. If the material stress-
strain relation is nonlinear, the displacement soiution must be

2.3
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iterated upon since the nonlinear correction forces are functions

of the node displacements.

For problems in which transient cffects are included
but for which inertia effects can be ncglected (slow transients
as in consolidatiop problems), the following procedure can be
used. The velocity interération procedure is based upon a simple

linear velocity approximation during a small time step, or

N :
£s ers (i, v &) "

where Xi represents a displacement at time i, Xi-, the displace-
ment at the preceding time step, %¢(., and ¥L represent the corre-

sporiding velocities and at is the time increment hatween (-1

and i. Substituting equation 3 into equation 1 leads to the

equations
Fu hw huur ‘TZ; - { W
GJ; |-k -R®I "?ft\‘ SR

where the subscripts i refer to the current times. The "forcing"

'vector {G‘ can be written as

(h=-F | B BT fo s R
UR TR PRy

and is defined in terms of the previous displacement ard velocity

(5)

history. The "stiffness" matrix of equation 4 is symmetric and
usual solution procedures can be used.

Considering an elastic porous material, at a particular
ingtant of time, the effective force vector of ejuation 4 is

2.4
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known, since the applied loads are specified and the G-vectox can
be computed from the previous time step. Obviously, the solution

rust start from some time when the initial conditions are speci-

.fied. The unknowns (u, w,1r) at the cuvi.cu. +ime can then ke ob=

tained by, say, a simple elimination technique. The solution at
the following time step can then be obtained using the current
solution as input, ete. In this fashion, the solution is marched
out in time.

For nonlinear material behavior, this procedure has to
be modified since the nonlinsar correction forces of equation 2
are also functions of the current displacements. To overcome
this situation, an iteration procedure is used at each time step
to ensure that the nonlinear correction forces are properly in-
cluded in the znalysis. At each time step, an initial trial so-
lution is obtained by using appraoximate values for these correc-
tion forces (usually the forces from the previous time step), and
these are modified by the iteration process.

For problems in which inertia effects are no longer
negligible (say, stress wave probleris), a similar procedure can
be used, except employing a linear acceleration erirapolation

procedure, or

& - o
xi' 1L‘ <4 -zt (1“.. “ 1;) .

: . '
it Xiy + %0t & ‘% (%ia2%,) i

Substituting equation ¢ into equations 1 and 2 leads to another

implicit integrati n scheme which can be written as

2.5
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=T T _at .
R ‘hw- 5“1 LR
The "stiffness" matrix of equation 7 is again symmetric and may

be solved by s’ mple elimination methods. The forcing functions

of equations 7 are defined by

R G Y () R R (PR PP AT
(raY e (RSY o (R0 o I odin # £ hen s 2001]
16r) - S0k - (R Loy« B aden s 5 (01

» Gl ke + 25 60Y, + L)

Again the solution can'be marched out in time as before.

A draw back of cquation 8 occurs for cases where the
time incremgpt required is very small or the mass vector very
large. For these situations, the inertia terms of the “stiffness"
matrix may become extremely large, masking out the stiffness
terms. This in turr. may lead to instability in the implicit in-
tegration procedures used. For these cases, a modified approach
can be used. The third of equation 1 can be solved for the pore
pressure vector (requiring an inversion of the H matrix) and this
substituted into the remaining two force equations. For this

casa, the force equations become

R ER2Y s (TRu Y o Tl + (TR M) eLRuudied)+ D ()
(9)

RAM RS + ([ Ruedte] » Lo ob) ¢ (lruwolid ¢ ln)(ed) + M)
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With this approach, either implicit or explicit integration

L schemes can be used.
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3.0 SOIL TEST CONFIGURATIONS

With the developed computer program, numerical results
were generated for several soil configurations similar to the usual
soil tests, consolidation and triaxial compression. The first set
of data assumed elastic soil behavior, since for these problems
analytic solutions are available or can be easily developed for com-
parison purp;ses. The first nonlinear soil model investigated made
use of a Coulomb-Mohr elastic plastic model based or. the concepts
of the theory of plasticity.

Although this model is often used, it is not adequate for
modeling stress-strain behavior (except in a crude sense) and would
be of questionable value when studying pore pressure dependent prob-
lems. A more detailed‘loil model‘was then investigated which ade-
quately predicts stress strain behavior of a pérticular sand sample
and was developed by fitting the.barametere of this model to avail-

able experimental data.

3.1 One-Dimensional Elastic Consolidation

The first problem investigated was, naturally, that of
the classical one-dimensional consolidation of elastic material.
The analytic solution available fO{ comparison is the standard
Terzaghi solution (Ref. 2). The problem parameters chosen for the
investigation are shown in Figure 1. The computed settlement-time
history at the top of the soil surface is shown in Fig. 2 and com-
parisons made with the exact analytic solution. The excess pore

+ pressures developed at the bottom of the layer are shown in Figure 3

3.1
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while those at a point nearer the surface are shown in Figure 4.

Again comparisons are made with the exact solution and in all cases
they show excellent agreement. The porc ;ressure distribution at
various times through the laycr 1s shown in i'igure 5. Since the
pore pressure 18 assumed to vary linearly wathin a gaven element
the distribution curves are piecewise linear. If in the actual
problem the pore pressure variation 1s sho n, smaller element sizes

must be used to suitably approximate the solution.

3.2 Triaxial Elastic Soil Configuration

The second model considered was the triaxial soil con-
figuration shown in Fig. 6a. The soil model was considered to be
elastic and a 50 psi vertical pressure applied at the initial or
zero time. The finite element model used is shown in Fig. 6b and
consists of 28 rectangular elcmeﬁks to represent the upper quartér
of the triaxial sample. The elements are thus axisymmetric or ring
elements.

To obtain the analytic solution, it was assumed that
strain conditions in the sample are uniform. The initial pore pres-
sure developed in the sample (prior to drainage occurring) is found
from the following analysis. The volume change per unit soil volume

for the elastic soil 1s

129 [ = o
avV: — [0+ Ty +T, ) (10)

where the barred stresses represent the intergranular stresses, and

=@
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E and ¥ are the elastic modulus and Poisson's ratio, respective.y.

Since no seepage occurs during the initial conditions, the volume

change is zero or

E}: -(Gr +Tg) (ll_)
In addition,

G, s 6@‘ —]°

&3 ""P : Q. (12)

where p is the excess pore pressure and Q. is the vertical applied

\

stress. Combining eqguations 11 and 12 leads to the solution

T = Qv )
o /> (13)
P =03
The initial compression of the soil sample is simply
2 QL
Az —
(*3 O +v) (14)

*

The final stresses in the soil system are obtained when
p is zero (no pore pressure) and
G.r‘d:;’O
0'}‘0',0.

3.3
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'while the final compression of the soil sample ia

Tl
E

(16)

A4 ’

where 1, 18 half the origanal dample height (height of thre finite
element model) . The settlement from the initial condition to the
final condition is governed by the one-dimensional consolidation
model (since one-dimensional seepage occurs through the top surface
only, with the modification that the definition of tha coefficient

of consolidation is

R
. - — 1
Cur Yr 301-22) )
The solution to the particular problem of Fig. 6 was ob-
tained numerically using a time fhcremcnt of 0.1 seconds. The pore
pressure distribution along the centerline elements is shown in
Fig. 7 together with comparisons with the analytic solution. As
can be seen, the comparisons are excellent, except during the carly
part of the solution. In an attempt to uncover the cause of the
discrepancies, the came problem was investigated with diffcering
time increments, and the results are shown in Fig. 8. As may be
noted by comparing !igs. 7 and B, the early time oscillations found
for the top element (Flement 1' are related to the time step. As
the time step 1s dcecrovased, the oscillations disappear. A compar-

ison with the exact solution shows Lhat Lhe computed solution 1s

alightly lower and thiw can be atteibuted to the fact that the pore

3.4




pressure profile 1s assumed to be }incar across “the 2lement while
the actual pressure profile 1s curved, particularly at the early
times.

The comparison with the middle clLencnt (Element 4) is not
as clear cut, however. As may be noted from F1g. 8, this pore pres-
sure shows an 1nitial ;ncrease in pore pressure before the antici-
pated decay occurs, and this increase 1s 1ndepencdent of time incre-
ment of the integration. Since this phenomenon did not occur 1n
the elastic plane problem discussed previously, it must be conziuded
that this variation is concerned with the coarseness of the finite
element mesh in the radial direction for this axisymmetric problem.

No further numerical studies have been conducted on this problem

as yet, however.

3.3 Triaxial Coulomb=-Mohr Model

The first triaxial problem including nonlinear material

" properties that was investigated was the same model shown in Fig. 6

but with nonlinear prop-rties described by tlie Coulomb-Mohr yield
condition (Ref. 3). For stresses within the yield surface, the

soil is assumed to behave elastically, where the Yield surlace ais

defined by

o« J v [5) =k (18)

For the axisymmeiric stress condition of interest for this problem,

Al P b ;. A
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where the bar again indicates interqranular stresses. The coefii-
cients (&, k) are rclated to the usual strength parameters obtained
from a triaxial test seriea, ¢, the angle of internal friction, and
¢, the cohesion, by -
ol » 2 3nd
'E) (3-simd)

(20)
oS¢

(3-s1m¢)

(.o
N

X
(1)
vl

For stresses on the yield surface, plastic strain components are
determined fron the usual normality princinal.

Prior to investigating this problem numerically, the ana-
lytic solution for the initial stress condition was obtained (no
drainage allowed). As the vertical stress is slowly increased, the
soil behaves elastically and the previous solution apolies. Sub-

st. tuting equations 12 and 13 into equations 19 yields

I~o :
[ |
It g T

For plastic yielding to begin, the critical vertical stress must

raonch the valuo
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For applied stresses larger than this critical valun, plastic fl w
must be accounted for, making use of the normality relation

(Ref. 3), which for this problem becomes

éﬁ’ é: T e K = = (G-&r)

where (e‘:, ég ) are the radial and vertical components of the plas-

tic strain rate vector. The plastic volume change is

I P
- 69 (23)
(ﬁ-d) =

AV e -

whera ﬁ; is the total plastic vertical strain, while the elastic

'clume change is

a ~W /=
AN .(:__E_z_ )(¢é+zﬁ=\-> (24)

Knowing that the total volume crange 1s zero (no drainage out of

the sample 1is allowed), the solution can be readily obtained for

any applied stresses greater than the critical, or
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The results for a particular undrained case are shown in
Fig. 9. The vertical pressure is applied "slowly" with a rise time
of 50 seccnds until it reaches a peak pressure of 50 psi. The par-

ticular properties of the soil chosen were

E=z1000 PSC
v'.'. 0‘25‘
e = 208 PsJ
¢ =30°

For this condition the critical vertical stress is reached when A
is 43.4 psi and the corresponding pore pressure is 14.45 psi. As
the vertical stress is increased to 50 psi, plastic flow takes place
(along with plastic volume expansion) and the pore pressure reduces

to 11.1 psi. Five computer runs were made for this problem using

different time steps as seen in Fig. 9. In cach casc, the nonlincar

3.8




correction forces in the equilibrium equations were taken as the

value computed during the previous time step. As can be noted,

' the smaller the time step, the bettcr the approximation, as expected.

As an alternate to this procedure, the nonlincar correction forces
in a given time step can be recomputed by iteration (obtain a trial
solution, computed correction force, obtain new solution, etc.).
For this problem of proportional loading, this procedure is eguiva-
lent to using smaller time steps without iteration during each time
step.

After the final equilibrium condition is reached under no
drainage conditions, the dresined sitiation can e achieved by let-
ting the pore pressure decrease to zero by allowing drainage -through
the top and bottom surfaces of the soil sample. It can be shown
that for this soil model, the decay of the pcre pressure will occur
elastically; that is, the intergranular stress state will move off
the yield surface as the pore pressure decreases, so that the decay
rate will be as described in the previous elastic triaxial solution.

The solutions for these cases are shown in Fig. 10 where
the vertical intergranular stress is plotted as a function of the
total vertical strain for various values of the cohesion and for a
fixed value of the friction angle of 30‘. 1f t. cohesion is 24.0
psi or greater, the soil sample always remains elastic. The ini=-
tial stress state when a vertical stress of 50 psi is appli~A and
no drainage is allowed is 63 = 33,3 psi and p = 16.7 psi. When
drainage is then allowed, the pore pressure decreases to zero, and

the vertical intergranular stress increases to the applied stress

3.9
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of 50 psi. The final state is the same a: would occur if the sample
had been tested dry (no pore pressure). If, however, the cohesion
is lower, the initial undrained state causes plastic flow to ocedr
with the drained conditior occurring elastically, as shown. For a
value of cohesion equal t5 14.4 psi, the initial undrained state
occurs with no excess pore pressure, and the drained state is the
same as the undrained state. For values of cohesion iess than 14.4
psi, equilibrium under the applied loads cannot be maintained. It
should be pointed out that for values of cohesion between 14.4 and
24.0 pai, the dry test yill show‘no plastic flow, while the undrained-
drained sequence will yield plastic strains.

It is clear then that even for this relatively simple
80il model, the stress-strain beﬂavior between saturated and unsat-
urated soil samples will be different and will be influenced by
the rate of loading (as compared with the rate of pore pressure
decay). To investigate this analytic solution further, the pre=~
vious solution was nondimensionalized in the following fashion.
Non dimensional parameters are defined as

. L. cosd
(3‘ ® (3-snd) ’

Pat (—T—“:f: )

Ra® (-’5:;%1)

(26)

The upper and lower limits of cohesion for which a nonlinesr solue
tion (stable plastic strains will occur) can be obtained for ihe

undrained casc are
3.10
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For any value of cohesion between these limits, the solution

%)“(1) Ps (C)

(%‘) AR g-&u)
_ W G
eée ) -E &( \:22) (—G{MX] (28)
! = %’ﬁ@a(\-w) gf+ )‘
5{ = 6; + 6;

After this initial solution occurs, the addition vertical strain
that will develop at the excess pore pressure 1s allowed to decay
to zero is

6} = o-:éf i(\-?.vﬁ(:%’)}

(29)

80 that the final strain is the sum of the strains from equations

3.11
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'As'may be noted, the difference in limiting values of cohesion for

28 and 29. The solutions for scveral parameter variations are shown

in Figs. 11 through 1i4. 1In Fig. 11, the nondimensional vertical
intergranula: stress is plotted as a function of the ratio EJ/'6=,
where Cé is the vertical strain that would occur in the dry state

and is simply

P T

. R re———— e

X S e |
3 5 (30)

this problem is relatively small, but the influence on the final F
strain is large (ratio éf 6.25). ‘Curves are shown for four equally .
spaced values of cohesion between the limiting values. -

The same solution is shéwn in Fig. 12, except that the
friction ancle was increased fcom 5° to 30°. As may be noted, the
final strains are much lower than those of Fig. 11, and the associ-
ated plastic strains occurring during the initial undrained state
are much smaller. This is due to the fact that for the higher fric-
tion angle the plastic volume expansion is larger than for the
smaller friction angle causing the ?xcess pore pressure to decay
more rapidly as plastic strains develop. Fig. 13 shows the same
results for a still Jarger friction angle of 45°, again showing a
smaller difference in final strains.

The results for a different value of Poisson's ratio
(= 0.25) are shown in Fig. 14 four a friction angle of 30°. As
can be noted, the behavior is essentially different than that of
Fig. 12. This is due to the fact that the elastic volume change

3.12
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during the initial loading decrcases as Poisson's ratioc increases.

3.4 McCormick Ranch Sand Model

e e

ot g

It is, of course, well known that the relatively simpli-
fied constitutive models, such as the Coulomb-Mohr model, can only

crudely approximate the stress-strain behavior of real soils. 1In

ke W - .

order to properly take into account the influence of pore fluid on
scil -esponse, more realistic models mu.st be developed. An example
of such a model was presented in Ref. 4 wherein the parameters of

the model were chosen to match (as closely as possible) available
experimental data on a éarticulaglsand sample, known as McCormick
Ranch Ssand. A rather ;xtensive series of triaxial, uniaxial, and
hydrostatic compression tests wefe conducted and an attempt was

made to fit the analytic model so as to reproduce the available d&ta.

It was found that for the particular parameters chosen

the stress-strain curve during the initial load-unload cycle could

e

be adequately reproduced'for the triaxial compression test (over a

A il adae

wide range of confining pressures) and for the uniaxial compression

test. The soil model, however, was significantly stiffer under

hydrostatic compression (although the shape of the load-unload curve

e

ot e O R D ey &Y kY L) BN G BN B BE @

was the same) than the experimental data.

The model is based on the following analysis. The hydro-

static and deviatoric stress-strain components are related by

Sij = 26 &

e g e ¥ P

gt

.=3Ké 31
10 3.13 it

p =]
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tc_slmzn..,::_,rl::l‘:c::(_:

where 'SU = deviatoric stress tonyor
e*'J = deviatoric strain tengor
19 = hydrostatic pressure
e [ ) [ ]
€ = volumetric strain = % (5' +d, rE)

and are related to the total stress-strain components by

éij n ié}J - é Jk]

|5¢, » dzf - 35 é(j

where (O;J, “'.)' ) are the total nt;:eu-strain tenvors and J"j is the
Kronecker delta. The dots in equations 31 and 32 indicate the cor=-
responding rates. The parameters X and G represent the bulk and
shear moduld, respectively, and are taken as functions of stress

history.

The form used for the bulk modulug is:
loading: X = Kg 4K+ K, €, for é»p (33)
unloading: K, = Kouw Kw.'f
where the parameters LYYIR W) Ko+ Koy K, are parameters found by
fitting the experimental data. In equation 33, volume compression

is assumed to be positive. The corresponding form used for tha

shear modulus is

3.14
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loading:
G;‘Go+7.ﬁ'+l.~\o+np‘ Ly P £Pe
(34)
.G.*aﬁ’;ﬁ -‘or?7']’¢
unloading:
6“' Gou. + auﬁ?e-x..,rﬂup-‘ "or ‘P*‘F‘-
* G "'auﬁ: br P> Pe
and "
G G%"é‘?f
X (35)

6‘“.60&-4' -8& '

where-fh is a critical hydrostatfb pressure (positive in compres-
sion and J{ is the second invariant of the deviatoric stresses
(equation 19).

To match the specific test results for the sand sample,

the followinyg parametera'were found to best reproduce all the data:

G, 8.0 RS( G, * 8.0 ks

K, s 5,08 ks EITR

K, » 80 R Ko ® 143

Y = 324 | § r-llc

Y0 =150 Y Ki ® 30,000 ksl
&, 900 Yao - 18.5 ksi
Z“ 1+ £00,0

The stress-strain behavior under uniaxial compression is

3.15
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shown in Fig. 15 under both initial loading conditions as well as
strain load/unload cycling. As may be noted, the stress-strain
response exhibits the characteristic stiffening effect as well as
the nonrecoverable behavior under load cycling. The préssure ranges
shown are higher than normally used but suitable modification of

the data input would convert this typical resvonse to lower stress
ranges of interest.

The behavior under triaxial compnression is presented in
Figs. 16 to 19 and again exhibits much of the characteristics antic-
ipated for a sand samplg. During‘the load/unload cycling, the
model can be further improved to reproduce test data by modifying
the shear modulus formulation under reload conditions to better
match strain behavior with consta;t load cycling.

The previous data were obtained for the Ranch Sand model
in the dry condition. To determine the behavior with pore fluid,
similar problems were investigated including load cycling effects.
In Fig. 20, the triaxial response is nresented for a consolidated/
undrained experiment with load cycling in the vertical direction
corresponding to the load cycles shown in Fig. 18 for the dry sam-
ple. In both cases, latéral or confining stresses were maintained
constant. As can be seen in Fig. 20, the effect of pore pressure
is to decrease the axial strain increment between load cycles.
That is, in the undrained state, the soil model "shakes down" to

effectively a linear model, although strong nonlinear bchavior

again takes effect as the apolied load 1s finally increased beyond

the load cycling regime.
3.16
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Similar behavior is shown in Figq. 21 Wwhere the applied

vertical load is cycled through the complete load range from 0 to
300 psi. This tesc corresponds to the dry triaxial test shown in
Fig. 19. Again, it may be noted that within a load cycle, pore
pressure effects cause thc stress-strain hehavior to "shake down"
to an effective elastic state. Of course this type of response

can be modified by changing the definition of the reload shear mod-
ulus as defined by equation 34. A plot of the invariants of effec-
tive stresses during the loading cycle for the triaxial tests is
shown in Fig. 22, for both the consolidated undrained and drained
tests. As may be noted, J, is constant during the undrained test
indicating that the bulk modulus (equation 33) is constant with this
nmodel. Therefore the ?ycling re;ponse will be completely dependent
upon the variation in the deviatoric response, or the shear modulus
behavior. The cycling response dill be essentially elastic as long
as the shear modulus is maintained as the unloading modulus within
the cycling load range.

Two other triaxial experiments were conducted where the
samples were consolidated under a confining stress of 400 psi,
loaded vertically in the drained state to 630 psi and then further
loaded cycled between 575 psi and §90 psi in both the drained and
undrained states. A comparison of the results is shown in Fig. 23,

in which anticipated responses were determined.

3.17
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the effective modulus of the soil (plane strain/stress condition)

= e an

4.0 Stress Wave Propagation in Uniaxial Compression

The first dynamic problem conidered was the one-
dimensional soil column subjected to a step pulse pressure a’
its end, a configuration often used in determining wave pro-
pagation properties through actual soil columns. The configu-
ration studied assumed the soil column to be contained within
an imprevious membrane so that no pore fluid (for the case of
saturated soils) could escape. Hc ¢ver, it was assumed that
the membrane provided no lateral restraint to the soil column,
so that even for an incompressible fluid, a finite compressed

wave speed exists. If lateral inertia effects are neglected,

is

[y

e*r €/ (-9
(36)
and the effective dry wave speed is
.Il [
& c*
<t /
[€7 ) -

The finite element configuration used for this

problem is shown in Fig. 24, and consisted of a set of square

4.1
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plane strain elements with no lateral restraint provided to
the nodes. In the numerical calculation, lateral inertia
effects are in fact included since each node is considered

to have two degrees of freedom. The first problem rur con-
tained no pore fluid, and the computed stress profile along
the rod is shown in Figure 25. As can be noted, the computed
stresses show the usual oscillations about the true solution
caused by the sharp stress front applied to the rod. The
propagation of the pulse through the soil is shewn in Fig. 26
and the computed wave speed is seen to compare favorably with
the actual effective wave speed. A similar result is shown in

Fig. 27 for the case of a different Poisson's ratio.

For the case of saturated soils, the stress profile
along the rod at a late time in\the pulse is shown in Fig. 28.
As may be noted, the wave speed is higher than the dry wave
speed, since the pulse is already reflecting off the bottom
boundary. At the loaded end of the soil column, the solution
approaches the static solvtion, which for an incompressible

pore fluid, indicates that the pore pressure is

we G'./Q- (38)

4.2
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where O, 1is the applied static loading. Fiéure 29 shows
similar results for undrained soil with a different Poisson's
ratio. As may be noted by comparing F.gs. 28 and 29, the
effective wave speed decreases as Poisson's ratio increases,
a1 which is opposite tu the results computed for dr: soils.

4 114 Obviously the reason for this discrepancy lies in the amount
of lateral inertia effects that are allowed to occur for the
different Pcisson's ratios.

i A plot of peak stress traverse through the soil

8] rod is shown in Figure 30, for cases of both dry and saturated

soils. As may be seen, the effective dry wave velocity increases

*

[
.-

as Poisson's ratio increases (as predicted by equation 37).

[ 4
*

‘However, the opposite effect occurs for saturated soils since -

;ij the partition of energy into the lateral direction essentially

=i

lowers the effective wave speed.

¥ J e
[
.

A series of problems were investigated for different

coefficients of permeability. Stres< profiles along the rod

are shown in Fig. 31 for various valuec of Rk where

ke R/ Vw
(39)

ol s L ) 5

and R is the coefficient ¢’ permeability. From these
results, it may be determined that the effective wave speed

(as determined by peak stress traverse through the rod) is

ARG MR Ry | i, -

unaffected by fthe coefficient of permeability. However, the
stress profile, both in the vicinity of the front and behind

the front, is affected. This would indicate that local fluid

migration, controlled by the coefficient of permeability,

directly influencesthe local intergranular stress conditions.

4.3
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5.0 POYTENTIAL FOR WATER WAVE INDUCED SOIL LIQUEFACTION

A problem of’considerable interest for off-shore struc
tures is the potential for liquefaction cf soils due to storm i
waves traversing a site. If foundation soils liquefy, then ob-
viously they lose strength and ability to support any applied
loads. It is well known (Ref. 11) that pressure changes on the
sea floor, associated with passage of an ocean wave, can cause
shear fiilure in soft sediments, this shear failure developing
from the effects of both water flow and reduced strength. 1In ac-
tual cases, the waves impose an oscillatory motion on the soft
sediments, leading to repeated reversals of shear strength, re¥
molding oi the soil with an associated loss of strength.

For this study, an appfoach has been taken, basaed upon
the combined stress—seépage analysis presented in Section 2.0,
which may be used to establish the potential for liguefaction be-
ing induced in marine soils due to ocean storm waves. The con-
figuration analyzed is shown in Figure 32, and consists of a ralf-
space of submerged saturated soils to which a differential total
stress is applied at the surface equal to the pressure differen-
tials generated by the storm wave. In addition, an «xcess pore
pressure distribution along the surface imposes a seepage
condition aggravating the intergraﬁular stress picture in the
soil due to the seepage forces generated. In fact, unis storm
wave 1s traversing the site at a (say, constant) velocity so that
the storm wave pressure distributions at any one location are

functions of time.
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5.1

An approximate approach to the problem is to freeée
the wave at any instant of time and analyze the foundation
response to steady load and seepage criteria. This approxi-
mation neglects the potential time lag effects which may oc-
cur in the foundation soil, but this effect cannot be too
significant for pervious soils at the surface of the founda-
tion. If this approach is utilized and if the soils are as-
sumed to behave linearly, the infinite half-space problem can
be reduced by required symmetry conditions to analyzing the

restricted region shown in Figure 32.

Applied Pressure Condition

As mentioned above, the loading condition applied
to the soil surface consists of equal amounts of total pres-
sures and excess pore pressures. The excess pore pressures
will induce seepage to occur from the area of ithe wave peak
to the wave trough and the equal applied surface pressures
are applied to maintain proper intergranular stress condi-
tions. This last statement may be amplified by considering a
uniform increase in the water level across the site, leading
to a uniform increase in pore pressure along the ;oil surface.
No seepage occurs for :his condition, but the intergranular
stress condition will change unless an equal surface loading
is also applied.

As a wave p.sses a site, an increase in pressure, p,

occurs below the cres., while beneath the trough there is a

5.2




pressure decrease, -p. The characteristics of the applied
¢ pressure pulse used in the analysis was taken as a sine func-
tion of the form

p: P sm(zmx/D) (40)

where p is the pressure increase at a given point, Po is the

peak water pressure, and D is the wave length or distance be-

e

tween wave peaks. -At any point, the corresponding pressure
var ation with time is

+: P. em (2w ¢ /T) (41)
where T is the periocd of the wave. The relation between D
and T is specified by

-

D:V T (42)

where V is the velocity of the wave profile. The magnitude
of the peak pressure change, P, which is in phase with the
wave, depends on the wave length, the depth of water and the
wave height. The actual pressure puls~ “-plied by the ocean
wave is complex, but using tables ba:.: upc: linear wave

theory (Ref. 12) the following paramet<: s w-re used

P.* ¢oo I’"
Ve 37 fps
Te 14 sec (43)
D+ s &
j 5.3



These correspond to a storm wave of about 30 feet occurring in a
water depth of about 5C feet. These parameters correspond to de-
e nign conditions for near shore structures which may be placed on

i the East Coast.

5.2 Problems Investigated

U

Returning to Figure 32, the finite element mesh is used
[ g only in the region extending across one side of the loading wave,
since by symmetry conditions the response on the other side of
the loading wave can be deducec. For each soil site considered,

two computer runs were generated, the first to obtain the in-situ

' stress conditions due to the bouyant unit weight of the soil and
= the second to determine the additional stresses due to the com-
i bined effects of the excess pore pressures (seepage stress ef-

fects) and applied surface pressures. The final output is then

i { the total stress state due to both the initial and final load
conditions. For inelastic soils, the load cycling effect could

. be estimated by alternating the sign of the applied wave loadings
1 to determine growth of soil strain with time, while for elastic
materials, this is not required.

For each phase of the problem, the specified boundary
conditions used for the finite element mesh are as shown in Fig-
L ure 33. For each problem, these conditions satisfy the required
symmetry conditions imposed by freezing the wave motion. Three
separate soil site configurations were investigated for this prob-
lem, in an attempt to estimate general liquefaction behavior, and

these sites are shown in Figure 34. The first site consists of a

N e oy

pervious sand stratum overlying a relatively impervious clay

5.4
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stratum, the second site consists of a sand/clay/sand configura-

tion, and the third is a clay/sand/clay/sand site, these being

typical of offshove sites. The loose surface sands are relatively

mobile in that scouring cffec! s transport these soils relatively
easily.

For the problems invastigated, the coefficients of per-
meability of the sands was taken to be about 200 times the ccef-
ficients of the clay stratas In addition, for each soil layer,
the horizontal coefficient of permeability was assumed to be 5
tires larger than the vertical coefficient, these values again
beinao rather typical for these soils. For sites 1 and 2, with
the surface sand layer, it can be anticipated that the majority
of the flow pattern will take place through the sands, leading to
large seepage pressures through this zone. In addition, for site
2, a variation of parameter study was made, varying the perme-
ability ratios for the sand/clay strata to determine their effect

on liquefaction potential.

5.3 Definition of Liquefaction Potential

For any problem investigated, states of intergranular
stress and excess pore pressure distribution can be determined.
The problem remaining is to interpret tlicse stress data to deter-
mine if any portion of the soil is at or near its peak shear
strength. If the computed intergranular stress states are rela-
tively small in comparison to the available soil strength, it can
be anticipated that excess strength is available and no liquefac-
tion could take place. If the stress states exceed the available

strength, liquefaction obviously occurs and no additional

5.5
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strength is available in gencral to support additional structural

loads.

A typical way of defining available strength is to use

the Coulomb-Mohr failure critcria defined by equation 18, or

ocT.*j?{‘ﬂl

(44)

where J, is the hydrostatic stress invariant, Jé is the devia-

toric stress invariant (effective shear ¢trength) and the parame-

ters o and R are related to the usual strength parameters, C and

g, obtained from a triaxial test series, and are defined by equa-

tion 20. This form of the strength law leads to the usual linear

Mohr strength envelope used in soil testing and analysis. If an

intergranular stress state is specified at a point, the hydro-

static invariant can be computed, and the "available shear

strength" defined by

()

T R- «J,

AVOIL (45)

Comparing this value with the actual applied deviator stress,
’ d D : .
(JJ2 )APPLIED' one can assess if the stress state is at or near

failure. An obvious factor of safety can then be defined as

S.Fe (ﬁ?)awm. /(E')kwueo (46)

If this factor is near unity, it can be anticipated that no sig-

nificant strength is available to support structural loads, and

liquefaction has occurred.
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5.4 Numerical Results

The finite element mesh used for Site No. 1 is shown in
Figure 35, and consists of a rciatively uniform mesh. The excess
pore pressure distribution pattern is shown in Figure 36, and in-
dicates the magnitude of the pore pressures developed by the
Ocean wave above the ambieut pore pressure condition. Obviously,
by symmetry, the pore pressures pattern on the other side of the
right boundary of the mesh is just the mirror image of the pat;
tern shown. The horizontal displacement profile under the posi-

tive wave is shown in Figure 37 and generally indicates that un-

" der this portion, the horizontal stress increments developed by

the wave are tensile and tend to reduce the confinement of the
soil. Under the negati&e portion‘of the wave, the opposite would
be true. ‘

The corresponding vertical stress increment due to the
storm wave is shown in Figure 38 and as may be noted are rela-
tively small. Similarly shear stresses (Fig. 39) are small. The
major effect is then to generate lateral tensile stresces under
the crest of the wave, as shown in Figure 42, in the top sand
layer. A comparison of available strength with applied effective
shear stress is shown in Figure 43, and, as may be noted, near the
surface of the sand layer, the avai&able strength approaches the
used strength indicating a low factor of safety.

Simiiar data for Site No. 2 is shown in Figures 44 to
486, with the same general properties of the stress state. Near

the surface of the top sand layer, the safety factor approuaches

1.0, and in fact under the crest of the wave (left boundary) the
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safety factor becomes less than 1.0. For Site No. 3 (Figs. 49
to 54), similar results are obtained with the exception that the
safety factors in the top c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>