AD-768 842

HLH GROUND SUPPORT EQUIPMENT (GSE) PRELIMINARY INVESTIGATION

John M. Corso, et al

Boeing Vertol Company

Prepared for:

Army Air Mobility Research and Development Company

June 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

DISCLAIMERS

. .

¥

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

UNARPOWCED	NTIS	White S clish	
1951161961198 87 DISTRICTION	DRC	Buff Costion	
SY DISTRESTION (CONTERNET) ITY SEE	UNARYCH!!CED		
DISTRICTION ACTION OF THE SUB-	JUSTIFICATION		
Bist. 1 HE. Pat H . C	BISTREEDTIGA /	at in at it is	
	Êist.	16. Pat w . 0	
	1		

iN

UNCLASSIFIED Security Classification	AN 768842			
	TROL DATA - R & D			
(Socyrity classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate outbor)	annotation must be entered when the overall report is classified)			
Boeing Vertol Company	Unclassified			
P.O. Box 16858	28. GROUP			
Philadelphia, Penna.,				
HLH GROUND SUPPORT EQUIPMENT (GSE PRELIMINARY INVESTIGATION)			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) FINAL REPORT MARCH 1972 - MAY	1973			
FINAL REPORT MARCH 1972 - MAY S. AUTHOR(S) (First name, middle initial, last name)	1975			
John M. Corso Thomas S. Hammer Frank J. Kozloski				
. REPORT DATE	74. TOTAL NO. OF PASES 75. NO. OF REFS			
June 1973 M. Contract of grant no.	123/25 8			
	S. ORISINATOR'S REPORT NUMBER(8)			
Contract DAAJ02-72-C-0041 USAAMRDL Technical Report 73-52				
•. Task 1F162203A43401	9b. OTHER REPORT NO(8) (Any other numbers that may be assigned this report)			
	D301-10188-1			
4. 10. DISTRIBUTION STATEMENT	5501 10100 1			
Approved for public release; distr	ibution unlimited.			
11. SUPPLEMENTARY NOTES	Eustis Directorate, U.S. Army Air Mobility R&D Laboratory Fort Eustis, Virginia			
required for the heavy-lift helic program to allow ample time for d lead time items. The HLH aircraf preliminary design stage to estab the necessary organizational and select equipment suitable for per The selected equipment was c requiring modification, or not av development effort. The elapsed personnel required to perform org tasks in the Army aviation enviro instances, several alternate appr will require trade-offs to complet It is concluded that the tec quired for the HLH subsystems inc GSE state of the art is not requi should be conducted early in the tion of the appropriate design co and impact can be minimized.	VICAL UNCLASSIFIED			
INFORMATION SE U S Department of Comm. Springfield VA 22131				

UNCLASSIFIED

KEY WORDS	LINK A LINK D					
	ROLE	WT	ROLE	W'T	RÖLE	WI
Ground support equipment						
Requirements and characteristics						
Analysis and Assessment						
Maintenance Downtime						
Personnel Requirements						
Alternate Approaches						
Frade-offs						
Related Equipment						
					8	
	L					
	~					
			-			
		LASSI	PIPD			
ic			Classific			709

DEPARTMENT OF THE ARMY U.S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY EUSTIS DIRECTORATE FORT EUSTIS, VIRGINIA 23604

This report was prepared by the Boeing Vertol Company under the terms of Contract DAAJ02-72-C-0041. The intent of this program was to determine preliminary ground support equipment (GSE) requirements for the heavy lift helicopter (HLH) early enough in the aircraft development program to identify the GSE required for the operational evaluation and testing of the aircraft.

The HLH aircraft system was defined in January 1972, and the design has progressed through various configurations and changes. Accordingly, to meet the completion date of this preliminary study, the configuration detailed in HLH drawing number 301-10004D, Revision D, and drawing number 301-10006, Revision C, was established as the basic design. Avionics, instruments, flight control, and power management systems were excluded because of their limited definition at this time. The HLH aircraft systems were analyzed to establish maintenance concepts, servicing, and support tasks. GSE for existing advanced technology components (rotor head, upper controls, rotor blade, transmissions, shafting, and cargo handling) was included where appropriate.

This study selected equipment that was classified either as existing as-is or as not available and requiring new design and development effort. One hundred four requirements were identified, with the resultant selection of 38 existing as-is equipment items and 66 equipment items requiring design and development effort. Furthermore, this preliminary study indicates that the technology is in hand for the GSE required.

The finalized design configurations of the HLH should provide the basis for a reexamination and study of GSE requirements. A thorough analytical evaluation or trade-off study of alternate GSE approaches to assure selection of the most cost-effective HLH GSE should be undertaken at that time.

Mr. S. G. Riggs, Jr., Military Operations Technology Division, served as Project Engineer for this effort.

iδ

Task 1F162203A43401 Contract DAAJ02-72-C-0041 USAAMRDL Technical Report 73-52 June 1973

HLH GROUND SUPPORT EQUIPMEN" (GSE) PRELIMINARY INVESTIGATION

Final Report

D301-10188-1

By

J. M. Corso

T. S. Hammer

F. J. Kozloski

Prepared by

The Boeing Vertol Company Philadelphia, Pennsylvania

for

EUSTIS DIRECTORATE U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY FORT EUSTIS, VIRGINIA

> Approved for public release; distribution unlimited.

SUMMARY

Late definition of GSE requirements and the long lead time required to procure certain items of GSE for a weapon system cause delays in test and evaluation programs as well as operational delays and ultimately result in increased total system costs.

The purpose of this preliminary study was to determine the GSE required for the heavy-lift helicopter (HLH) early enough in the program to allow ample time for development/procurement of long lead time items. This was accomplished by analyzing the HLH aircraft systems during the preliminary design stage to establish maintenance concepts, identify the necessary organizational and direct support level tasks, and select equipment suitable for performing the tasks identified.

The selected equipment was classified either existing as-is, or not available and requiring new design and development effort. One hundred and four firm requirements were identified with the resultant selection of 38 existing as-is equipment items and 66 equipment items requiring new design and development effort.

The objectives of the investigation were achieved in that the personnel, elapsed maintenance time and equipment required to support the HLH in the Army aviation environment were determined. Furthermore, this study indicates that the technology is in hand for the GSE required for the HLH subsystems evaluated.

Although a specific item of equipment was selected as suitable for each of the requirements established, it was recognized that some items may be affected by future design changes and that in some cases alternate approaches may be practical. Those alternatives which have a potential impact on the HLH aircraft design have been identified. Because of this early determination of GSE requirements, sufficient lead time remains to consider design changes and to perform trade studies of the alternate approaches without adversely affecting test, evaluation, and operation of the weapon system.

TABLE OF CONTENTS

																	E	age
SUMMA	RY		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
list	OF]	ILLU	STF	(TAS	ONS	5	•	•	•	•	•	•	•	•	•	•	•	vii
LIST	OF 7	TABL	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	viii
INTRO	DUCI	rion		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	1
OBJEC	TIVE	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
APPRO	DACH		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	3
METHO	DS L	JSED	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
	Desi	-				•	•	•		•		•	•	•	•	•	•	12
	Mair				-			-		-			•	٠	•	•	•	12
	GSE					_		3	٠	•	•	٠	•	•	•	•	٠	13
	Rela					les	•	•	•	•	•	٠	•	٠	•	•	•	15
	Docu	men	tat	ior	1	٠	•	•	•	•	•	•	•		•	•	•	15
RESUL	TS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	25
	GSE	Rea	uir	eme	ents	Id	lent	ifi	ed					•	•		•	25
	GSE	-								-								26
	Elap			-		-			ime	an	d		•	•	•	•	•	
	Pers																	26
										•			•	٠	•	•	•	26
	GSE	ĸeq	uir	eme	Ince	s pe	er C	per	ati	.ng	CON	ipan	ıy	٠	•	•	٠	20
ALTER	NATE	AP	PRC	ACH	IES	то	GSE	c c c	NCE	PTS	5	•	•	•	•	•	•	43
	Hois	tin	αΓ)evi	ce	_				_		_			-	_	_	43
	Blad		-				· A		• val	•	•	•	•	•	•	•	•	51
											•	•	•	•	•	•	•	53
	Tore										•	-	•	• 	•	•	٠	22
	Use						_	ent	. ve	1 80	19 (ver	nea	a				C 2
	Lift	-					•	•	•	•	•	•	•	•	•	•	٠	61
	Blad				-		-		•	•	•	•	•	•	•	•	•	62
	Twin	Ra	il	Ver	sus	3 Fl	atb	ed	Uti	lit	Y 1	'rai	ler		•	•	•	67

Preceding page blank

v

																	-	age
RELAI	TED	EQUIP	MEN	T	•	•	٠	•	•	•	•	•	•	•	•	•	٠	70
	Air	-Sea	Tra	ns	por	tab	ili	ty	•	•		•	•		•	•	٠	70
	Shi	pping	r Co	onta	ain	ers	•	•	•	٠	•	•	•	•	•	•	•	72
CONCL	LUSI	ONS A	ND	REG	COM	MEN	DAI	ION	S	•	•	•	•	•	•	•	•	74
APPEN	DIX	ES																
	I. I.	GSE HLH	-	-						• •	•	•	•	•	•	•	•	76
1		App]			-						•				•		•	93
II	[].	New							tio		•	•	•	•	•	•	•	95
DISTR	RIBU	TION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	115

LIST OF ILLUSTRATIONS

Figure		Page
1	General Arrangement, Heavy-Lift Helicopter Model 301	5
2	Model 301 Inboard Profile	7
3	Model 301 Inboard Profile Legend	11
4	Support Equipment Requirements and Characteristics	16
5	GSE Requirements Index	18
6	HLH GSE Requirements/System Application Matrix	19
7	GSE Inventory Analysis and Assessment	21
8	Equipment Modification Requirement and Cost	22
9	New Equipment Requirement and Cost	24
10	HLH Hoisting Device Concept	44
11	H-47 Maintenance Crane (Fuselage Mounted) .	45
12	Pettibone Model 15 Multikrane	48
13	Pettibone Model 15 Multikrane (Principal Dimensions)	49
14	H-53 Maintenance Crane	50
15	Torque Multiplier	54
16	Nydraulic Torque Wrench	57
17	Mechanical Torque Wrench	58
18	Pneumatic Torque Wrench	59
19	Hydraulic/Pneumatic Torque Wrench	60

Ser in 1

Figure						Page
20	Stanray Lift Truck	•	•	•	•	64
21	Trailer Mounted Scissors Lift .	•	•	•	•	65
22	Twin Rail Transportation Trailer	•	•	•	•	68
23	HLH C-5A Compatibility Layout .	•	•	•	•	71

_

LIST OF TABLES

Table		Page
I	Equipment Type/Functional Classification	25
II	HLH GSE, Existing As-Is	28
III	HLH GSE,New	30
IV	Elapsed Maintenance Downtime and Personnel Requirements	33
v	HLH GSE Requirements for a Single Nine Aircraft Company Deployed at Three Operational Sites	37

INTRODUCTION

The identification and analysis of ground support equipment (GSE) requirements for weapon systems have traditionally lagged the design and development of the weapon system itself. As a result, many aircraft became operational long before adequate GSE was available. This deficiency in overall weapons system planning in the past has resulted in a delay in acceptance of the weapon systems into the armed forces weapons system inventory and has impacted the total life-cycle costs through increased maintenance and spares and decreased aircraft availability.

In view of the foregoing, the need was recognized to identify the GSE required to support and maintain the heavy-lift helicopter (HLH) early enough to permit development where necessary and to assure availability of support equipment concurrent with test and evaluation of the weapon systems.

The results of this study are preliminary only and are subject to change as the design progresses and additional analyses are performed. The design of the HLH prototype will be monitored by the regularly assigned maintainability personnel. If the design has an impact on the GSE requirements identified in this study, the HLH product assurance manager will be notified so that an evaluation and corrective action can be taken.

1

OBJECTIVES

The objective of this study was to determine the ground support equipment required to support the heavy-lift helicopter in the Army aviation environment. Major areas of effort in achieving this objective were:

- Identify in terms of personnel and elapsed maintenance time the necessary maintenance (organizational and direct support), servicing, and support tasks to allow the HLH system to function in the Army operational environment.
- Identify the characteristics of equipment necessary to accomplish the tasks identified above.
- Identify existing equipment that is available to meet requirements peculiar to the HLH.
- Identify modifications necessary to permit existing equipment to meet HLH needs.
- Recommend design concepts to define equipment with those characteristics that cannot be provided by available equipment or modifications to existing equipment.
- Provide preliminary relative cost assessment information for the modified and new equipment identified above.

APPROACH

The heavy-lift helicopter (HLH) aircraft system as defined in the Prime Item Description Document (PIDD) S301-1000, dated January 1972, was the initial configuration for this study. As the design progressed through various stages, the study was updated to reflect the latest configuration; however, in order to meet the commitment dates of this study, it was necessary to establish a configuration cut-off date.

The General Arrangement Drawing 301-10004, Revision D, and In-board Profile Drawing 301-10006, Revision C, shown in Figures 1, 2 and 3 reflect the most recent aircraft configuration used for this study. All GSE requirements identified herein are based on that configuration.

Within the context of the Army's operational, logistical, and maintenance philosophies as identified in the "Material Needs" document, the HLH aircraft systems were analyzed to establish maintenance concepts and identify those maintenance, servicing and support tasks to be performed at organizational and direct support levels. The avionics, instruments, flight control, and power management systems were excluded because of the limited definition of those subsystems at this time. Ground support equipment for existing advanced technology components (rotor head, upper controls, rotor blades, transmission, shafting and cargo handling) was included as appropriate.

Maintenance engineering analyses were performed for organizational and direct support level tasks to identify maintenance requirements by level, elapsed maintenance time, personnel requirements, and ground support equipment requirements. Training and spare parts provisioning requirements were tentatively identified where such information was considered pertinent to the GSE identification and selection process.

Three different approaches for providing the maintenance support equipment were considered: (1) permanent on-board devices excluding built-in test equipment, (2) system equipment which is mounted on the aircraft at the time maintenance is required, and (3) ground based equipment items.

Common characteristics of each item of support equipment were identified. These characteristics, such as power required, capacity, speed, and sensitivity, apply regardless of the approach used. When applicable, the peculiar characteristics of either on-board, aircraft mountable, or ground based equipment were identified. Peculiar characteristics were determined by consideration of weight, size, simplicity, cost, etc.

Following establishment of equipment characteristics, currently available military and/or commercial equipment was examined to identify:

- Equipment that is available, as-is, to meet the required characteristics of the HLH
- Modifications to existing equipment that are required to meet the HLH needs
- Design concepts to define equipment with the characteristics that cannot be provided otherwise

After identification of the equipment, cost analyses were conducted to provide estimated recurring and nonrecurring costs of new and modified equipment.

MAJOR CHARACTERISTICS

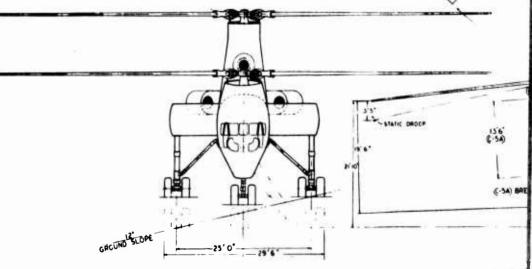
ROTOR	
DIAMETER (FT)	920
TIP SPEED (T.P.S)	750 0
DISC LOADING (SF) AT DOW	89
BLADE AREA () AT 153 SQ. FT)	1224 0
GEOMETRIC SOLIDITY RATIO	.09226
GEOMETRIC DISC. AREA (2 AT 66476 SQ. FT)	13,2950

PROPULSION

NUMBER OF ENGINES/ TYPE (ALLISON) 501-M62	UTURBOSHAFT
TRANSMISSION RATING (H P)	17,700
MAX. SINGLE ENGINE RATING (H P)	8,075
INTEGRAL FUEL CAPACITY (GAL)	3,092
INTEGRAL FUEL CAPACITY (LI)	20,100

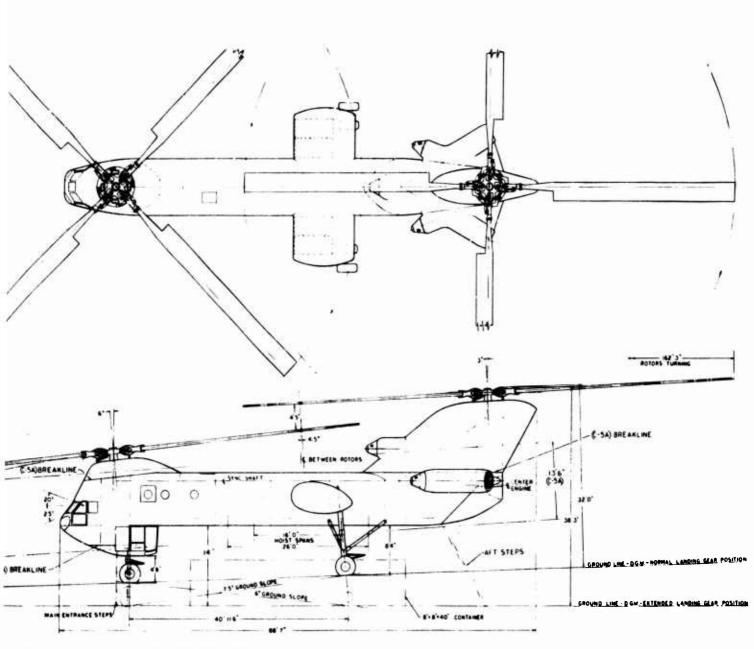
WEIGHT (LB)	
DESIGN CROSS WEIGHT, LF -2.5	118,000
DESIGN PAYLOAD	45,000
DESIGN MISSION FUEL	11,080
FIXED USEFUL LOAD (INCLUDES 5 MAN CREW)	2.340
EMPTY WEIGHT	59,560
MAX ALTERNATE GROSS WEIGHT, LF -2.0	148.000

GROUND ANGLES (DEGREES)


TURNOVER	FENTENDED GROUND LINE	26
(WT. EMPTY)	EXTENDED GROUND LINE	32
TIP BACK	FEXTENDED GROUND LINE	20
(WT EMPTY)	INORMAL GROUND LINE	25

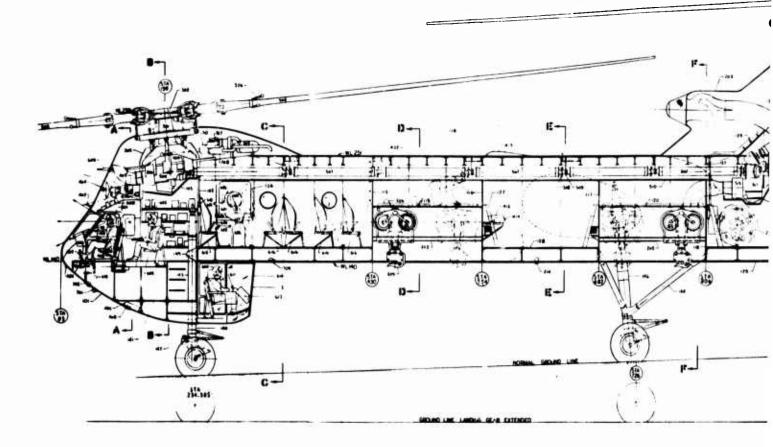
CONTROL MOVEMENTS

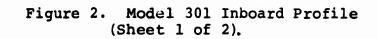
	FORMARD	AFT
COLLECTIVE PITCH	-15'TO 180	-10 10 16.5"
DIFFERENTIAL COLLECTIVE PITCH	1.50	
LONGITUDINAL CYCLIC PITCH	-65'TO 12 0	84'10 100"
DIFFERENTIAL LATERAL CYCLIC P	"S EIT HOTE	1121.
LATERAL CYCLIC PITCH	173	165


LANDING GEAR

IOSE - WHEEL/TIRE	SIZE] IA PLY	TYPE D
and - wheely the	3-46	

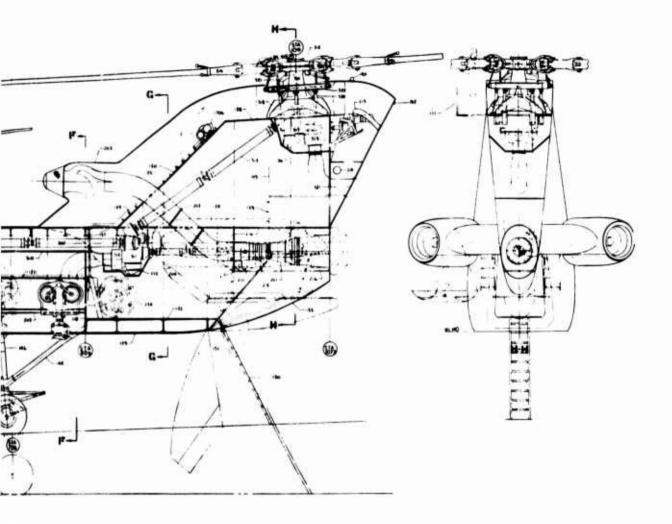
GENE

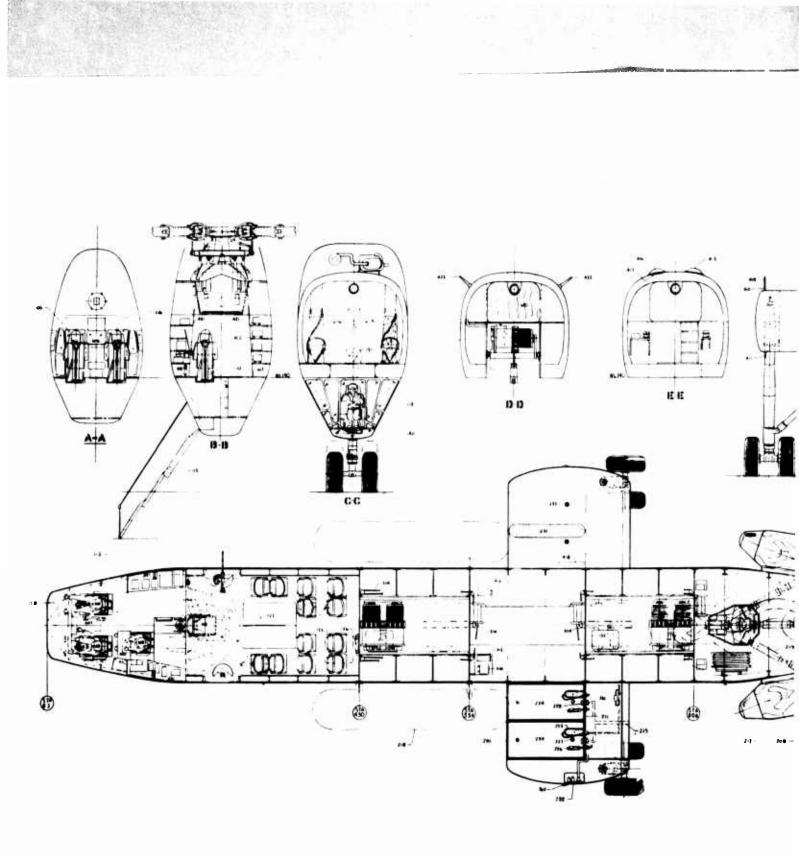

Figure 1. General Arrangement, Heavy-Lift Helicopter Model 301.



INERAL ARRANGEMENT - MODEL 301 - HLH

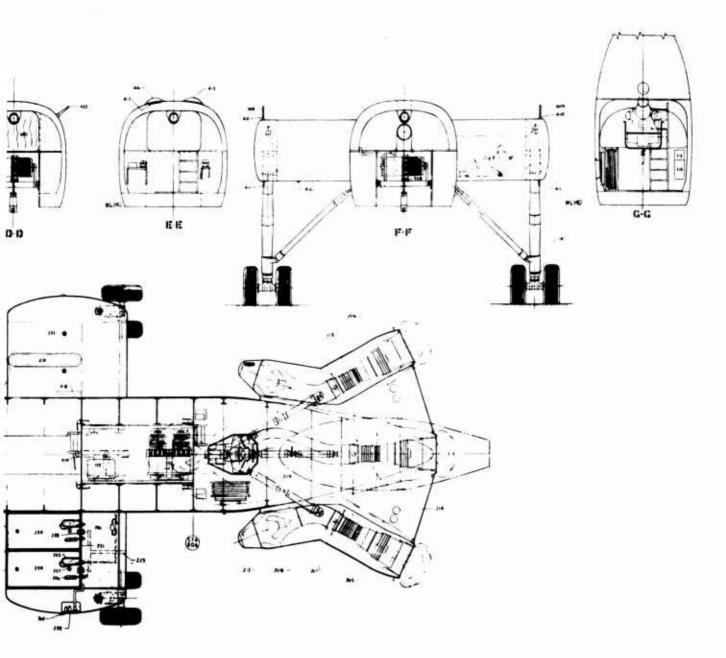
A 2 100 100




7

1.200

Preceding page blank



Preceding page blank

Figure 2. Continued (Sheet 2 of 2).

606 Instrument Display Panel 607 Center Instrument Paceral 608 Overhand Instrument Pacel	609 Fitot Tube 610 Systems Engineer's Console	611 Load-Facing Filot Side Stick Controls 612 Visual Augmentation Display Panel (L.C.C.)	614 Load-Facing Pilot Emergency Exit Panel 616 Creat Pinet Emergency Cait Panel		618 Portable Fire Extinguisher (3) 619 First Aid Kit (2)			623 Ammunition Storege (2) 624 Ammunition Chute (2)	625 Ammunition Roceter Drive (2) 626 Flaxible Ammunition Feed Chute (2)			EXDEMITICS PURITIES . PLACEFICAL &	ENVINOMENTAL CONTROL SYSTEM		101	703 Forward Landing and Searchlight 704 Carso Handling Plondlight (3)	205				710 Water Separator	712	713 Secondary Electrical Distribution Panel 714 Electrical Distribution Panel									
 403 Collactive/Power Control Lever 404 Ground Map Radar Antenna 405 Ground Wap Radar Antenna 	30	40 Abdr Altaméter Attenna (2) 10 - VH-UHF Antenna (2) 410 IFF Antenna	411 VOR-Localizer Antenna (2) 412 Markar Baacon Antenna	83	415 LOPAN Antenna 416 AD ⁶ Sense Antenna 411 An ⁶ Sense Antenna	410 ar woor witenna 418 ar Antenna	20	421 Avionics and Flight Control Equipment	422 Verren Antenna (2) 423 Collision Avoidance System Antenna (4) 424 A-Stem Tarrirel Landing Exercit		1		Su. Porward Motor Hub 503 Porward Motor Blades	100		509 Eync/Shaft Couplings Shaft (6 Sections) 508 Eync/Shaft Couplings	510 Sync/Shaft Shrowd	511 Combining Transmission	513 Elent Shart (2 sections)	514 Aft Notor 515 Aft Notor Web	-	Aft Transmission	520 Control Actuator/Upper Rotor Controls		523 Drip Pan Combiner Motor Controls	524	526 Pendulum Absorbers	CHEM STATIONS AND EQUIPPENT	601 Filot		664 Load-Pacing Filot 605 Crash Attenuation Seat (4)	
10.00	202 Center Engine Air Induction System 203 Center Engine Air Inlet Particle	204 Centration Drive Shafting 205 Lef: Outboard Engine Installation 205 Hout Outboard Engine Installation	-			212 Starter Unit 213 Engine Oil Tank			217 Engine Inlet Screen 218 Auxiliary Fuel Tank				3	Fun. System Fuel/Defuel Valv-1 (4)				233 Gravity Fill Cap	2.99 METURING ROLE and Reel Assembly		Forward Kuist Assembly Aft Noist Assembly	Moist Positioning Guides Traverse Brive Unit (2)					2112	313 314 External Cargo Optical Sensor		PLIGHT CONTROLS AND AVIONICS	401 Cyclic Control Stick 482 Yew Control Pedals	
DOEMO MODEL SHI MEDAND MOTALE LEGEND (REFENENCE DAANNAD 3H-1988), CHANGE CI	ALPPRANE AND LANDING GLAR	Perebody Structure Sta. 83 to Sta. 236 Transidation Support Bulkhaad Sta. 120 (Md) Transidation Support Bulkhaad Sta. 236 (Mf)	Transmission Nounting Deck and C-5A Splice Transmission Compartment Invulation Papels	and Drip Pan Windehisld	sie visio Transparent Fanal Porvard Vision Transparent Panel Transmishin Summort Bulbhand Sta. 1011 (Pud)	Emergency Exit Eatch (2) (Filot 6 Copilot)	Nort Platform Aft Tremandssion and Notor Flight back	Load Pacing Pilot's Enclosure (Newswahle) Constant Soution Mid-South Soundary Constant	2014 to Sta. 040	Porvard Hoist Support Builthead Sta. 554 Aft Medist Summer: Builthead Sta. 602	Aft Hoist Support Buikhead Sta. 305 Forward Hoist Bey Structure	ALL BOUST MAY STRUCTURE	Troup/Caryo Deck (Floor) Careo Batch	Storeble Intrance Stairs (Net)	Contrast Ditching Ratch	Ditodiaș Ezit Integrel Ledhor Temori Stair (4)	Mid-body Malkway Flooring Afterthody Structure Sta. 640 to Sta. 1077		Mft Bulkhead and Transmission Support #ta. 1077 Aft Cargo Deck (Floor)	Aft Door and Castar Dagine Work Platform	Upper Aft Pylon Structure	tending Mage Access Ladder	Aft Transmission Nounting Deck Integral Maintenance Ladder (Aft Notor)	Porterd Lending Gear According	ML 98 Deck (C-5A Splice)	Mose Gear Steering Unit Vartical Gear Metraction Strut (Mose)	Dreg Brace (Main)	Nain Landing Gear Assembly (2)	Vertical Gear Metraction Struc (Main) Mome Gear Support Structure	Storeble Extension Ladder (Aft)	Mear Eatrance Match Noist Access Match (2)	
	I	333	ii	3	135	3	33	33	1 3	33	33	5	33	a	iä	1	55	5	53	33	15	15	35		141	33	11	15	33	150	151	í

Figure 3. Model 301 Inboard Profile Legend.

Strangenter and an and a strangenter and a state of the

Preceding page blank

11

METHODS USED

This study was composed of the following elements:

Design Reviews Maintenance Engineering Analyses GSE Inventory Analyses Related Activities Documentation Monthly Reports

all of which were accomplished by specialists in maintainability and/or ground support equipment.

DESIGN REVIEWS

Maintainability personnel conducted preliminary and critical system and component design reviews and continuous daily drawing board reviews with design engineers. This was a vital element of the investigation which provided the necessary data to establish maintenance concepts, define maintenance requirements and perform maintenance engineering analyses. These reviews also provided opportunities to influence the design by making maintenance recommendations.

Pertinent information from the "Material Needs" document was correlated with the HLH system design concepts and objectives to ensure compatibility with the Army's operational, logistics, and maintenance philosophies.

MAINTENANCE ENGINEERING ANALYSES

Existing maintenance engineering analyses (MEA) written under the advanced technology components (ATC) contract were reviewed and the results are included in this study. MEA's were written for all organizational and direct support level servicing and maintenance tasks for each applicable component, assembly, subassembly or installation of the non-ATC systems. The MEA's contain the following elements of data:

- Maintenance concept
- Maintenance task descriptions by level
- Elapsed time required to accomplish each maintenance task
- Personnel requirements
- GSE requirements/characteristics

The following documents were used to identify MEA's and assign Military Occupational Specialty (MOS) codes:

- AMCP 700-4, Standard Integrated Support Management System (SISMS)
- AR611-201, Enlisted Military Occupational Specialties

GSE INVENTORY ANALYSES

All GSE requirements identified by maintenance engineering analysis were researched by GSE personnel and compared to existing military and commercial equipment to determine:

- Existing as-is equipment available in the inventory to meet the requirement
- Existing equipment requiring modification to meet the requirement
- Requirements which cannot be satisfied with existing equipment and will require new design and development effort

Some of the sources utilized in this examination are as follows:

• Army Adopted/Other Selected Items and List of Reportable Items

SB700-20

 Military Standardization Handbook Technical Information File of Ground Support Equipment

MIL-HDBK-300B

 Army Aviation Maintenance Engineering Manual Ground Handling Test & Service Equipment

TM55-405-10

Index of Supply Catalogs & Supply Manuals

DOA Pamphlet No. 310-6

- Test Measurement & Diagnostic Equipment (TMDE) Manual by USAWECOM
- Shop Sets, Aircraft Maintenance

SC1730-99-CL-AC1 (Thru) -A04

• Tool Kits, Aircraft Mechanics & Repairmen

SC5180-99-CL-A01 (Thru) -A07

 Aircraft Maintenance and Repair Shop Specialized Equipment

SC4920-99-CL-A-08

The effort to review a maximum number of individual ground support equipment items, prior to the selection of the best equipment to satisfy each requirement, entailed a moderate degree of difficulty in finding detailed data for existing commercial and military GSE. The above-listed documents were utilized to the fullest extent in the review and selection process; however, in some areas success was limited by the following factors:

- The number of items included in some categories of equipment is relatively small compared to the number of such items available in military inventories. This condition limits the scope of equipment review and selection from these documents, particularly with regard to MIL-HDBK-300B.
- In many cases, the descriptive data for individual items does not specify maximum capabilities. For example, data regarding draw-bar pull and height for tow vehicles, hook height for lifting equipment, and maximum outputs for electrical units is not always clear or is not included on the equipment data sheets.
- Recently developed equipment is not included.

In the effort to review the available commercial equipment and to determine the latest state of the art as related to HLH equipment requirements, reference criteria were reviewed in the Thomas Register and the Marketing Directory issue of AVIATION WEEK AND SPACE TECHNOLOGY magazine. Additional leads for technical data were obtained from cognizant Boeing personnel in the Manufacturing Engineering and Materiel Departments.

Extensive use was made of the facilities, experience, and data available in the GSE Division of the Naval Air Engineering Center at the nearby Philadelphia Navy Yard.

RELATED ACTIVITIES

The facilities at nearby Philadelphia International Airport Several visits were made to were used to good advantage. commercial activities to observe firsthand their servicing and maintenance operations and to discuss with maintenance personnel their problems and recommendations for solutions relative to large fixed-wing jet aircraft which have similar GSE and/or GSE requirements. Servicing and maintenance were observed on the DCl0 and L1011 aircraft which recently became operational at Philadelphia and require high lift GSE comparable to that envisioned for the HLH for a number of maintenance tasks. Equipment required for aircraft towing, fueling, engine servicing, and cargo loading was observed. Design features of the aircraft such as cockpit instrument layout and hydraulic compartment arrangement were also observed. The information obtained provided recommendations to design engineers for onboard features to eliminate or facilitate maintenance.

DOCUMENTATION

Support Equipment Requirements and Characteristics

As the MEA's were completed for each maintenance task, pertinent data relative to the associated GSE requirements/characteristics were documented on Support Equipment Requirements and Characteristics worksheets (Figure 4). These worksheets identify maintenance tasks and provide a summary of personnel requirements, task times, and equipment types and characteristics necessary for the performance of each task.

The plan of performance calls for the characteristics of each piece of equipment to be identified for each equipment approach, i.e., on-board equipment, aircraft mountable equipment, and ground based equipment; however, it became apparent that this requirement was impractical for this particular

REMARKS 5 DATE 0475 GROUND BASED EQUIPHENT PAGE ____ AIRCRAFT MOUNTABLE E QUIPMENT PREFARED OV APPROVED BY CHARACTERISTICS ON-BOARD E QUIPMENT SUPPORT EQUIPMENT REQUIREMENTS AND CHARACTERISTICS COMMON [ON-BOARD ACFT MOUNT. GROUND] CONTROL NO. PART NO. NOISIABE EQUIPMENT TASK TTASK TIME TIME ELPSD. PERSONNEL RORMTS MOS MAINTENANCE CONCEPT AND TASK DESCRIPTION THE BOEING COMPANY VENTOL DIVISION HAINT, LEVEL HAINT, L REQUIREMENT MUTALONG MARGORS 10101 ----

Support Equipment Requirements and Characteristics. Figure 4.

.

study since most of the GSE requirements identified could be logically classified into only one equipment approach.

Furthermore, the exclusion of built-in test equipment (BITE) from this investigation resulted in identification of relatively few GSE requirements having characteristics which could place them in a category other than ground based equipment.

As a result of these considerations:

- Most of the requirements for GSE were classified as ground based equipment.
- Several requirements were identified as either aircraft mountable or ground based, depending on circumstances.
- A few requirements were classified as aircraft mountable only.
- None of the requirements were classified as on-board equipment since they were part of the basic aircraft design or were designated as flyaway equipment, i.e., built-in work platforms, rotor blade tie-down lines, etc.

GSE Requirements Index

GSE requirements were extracted from the Support Equipment Requirements and Characteristics worksheets and compiled in a single GSE Requirements Index (Figure 5). This index lists the GSE items by nomenclature, provides a brief statement of function and identifies whether the item is military inventory/ commercially available, or new equipment.

This requirements index was periodically reviewed to ensure validity of requirements as related to basic ground rules of the investigation.

Appendix I is the complete GSE Requirements Index developed during this study.


HLH/GSE Requirements/System Application Matrix

As GSE requirements were identified, a matrix was developed (Figure 6) to provide a ready cross-reference of all GSE

			GSE REQUI	IREMENTS INDEX
NOTE	RQMT. NO.	CLASS	NOMENCLATURE	DESCPIPTION & PURPOSE
				· · · · · · · · · · · · · · · · · · ·

	-	-		—	-	-	RE	2	11	R	śМ	EI	1T		U	ME	E.	R		- 1	_	-	Ŧ	T -				-
SYS/COMP/TASK	1	2	3	4	5	6			,														⊥			\square	\downarrow	
	Γ		Γ																		Τ	Τ	T	Τ	Γ		T	
				Ì																				1				
				ł																								
																										1		
	1																				1				1			i
																					- [
	1	I		í.																								
																					1							
				1																								
		1		1																								
	1																											
			Ł																									
																									Li			
			ĺ	1																								
	E																								1			
														1														
				'																	1							
				L																	1							
															i													
				Í –																								
	1																											
																												1
				Į –																								
				İ.																								
	1																											
																								ł				
	1	'																										
																								1				
	1																								1			
		1			1																		1	1			_	

このであるのであるので

requirements and the aircraft components/subsystems to which they apply. This matrix was used with the GSE Requirements Index (Figure 5) to screen items for multiple application and ultimately to select the best item for any application and to eliminate redundant requirements.

Appendix II is the complete HLH GSE requirements/system application matrix.

GSE Inventory Analysis and Assessment

Inventory screening and equipment availability was documented on GSE Inventory Analysis and Assessment worksheets (Figure 7). Each equipment requirement identified through maintenance task analysis was recorded on the Inventory Analysis worksheet and an assessment was performed to define whether the requirement could best be satisfied with the on-board equipment, aircraft mountable equipment, or ground based equipment approach. The part number and/or Federal Stock Number (FSN) for suitable military inventory or commercially available equipment was subsequently completed with the recommendation to use existing equipment, modify existing equipment, or develop new equipment as appropriate.

Equipment Modification Requirement and Cost

One of the recommendations of the GSE inventory analysis and assessment above could be to modify existing equipment for use on the HLH. An Equipment Modification Requirement and Cost worksheet (Figure 8) was provided for documenting the necessary modifications to the existing equipment selected and the estimated recurring and nonrecurring costs. Preliminary analysis identified several items of equipment that fell into this category. However, subsequent analysis eliminated all modification items for one of the following reasons:

- Design change eliminated the requirement for equipment modification.
- Reanalysis indicated that existing equipment could be used without modification.
- Reanalysis indicated procurement of new equipment to be more cost effective than equipment modification.

Although there are presently no GSE items for modification in this study, the Equipment Modification and Cost worksheet has been included to show the approach used and to retain the worksheet for any future follow-on studies.

THE BOENG COMPANY	A NY		G.S.E. MV	G.S.E. INVENTORY ANALYSIS AND ASSESSMENT	P. MAR	
17 18 0 14				CONTROL ND.	Pag Pang 0 By	DATE
44 8 T Q.M				181 × 131 On		9446
NOMENCLATURE				Past 20.		
QUIREMENT			ON BOARD EQUIPMENT	AIRCRAFT MOUNTABLE EQUIPMENT	GROUND BASED EQUIPMENT	PMENT
100 A	100	PART NO.	FSN	PART NO. F\$N	PART NO.	r.
		N N	MENCLATURE	NOMENCL ATURE	NOMENCL AT URE	
-						

Figure 7. GSE Inventory Analysis and Assessment.

21

THE	a a	LING VISION	8	THE BOEING COMPANY VERTOL DIVISION	_	EQUIPMENT MODIFICATION REQUIREMENT AND COST	EQUIREMENT AND COST	•	PAGE	0
	74 83 0 H 4	1.				20	CONTROL NO.	PAEPARED BY	DATE	
PAT AV	1						NOI\$IA 3U	A PPROVED BY	DATE	T
202	10MB	NOMENCLATURE	Ļ			<u> </u>	.0N. 4814			
¥ #3	3 74	REQUIREMENT		-78	SOUTE PORT				COST ESTIMATE	TIMATE
1848	s ens	CONN OU V22	NIA10 NEAT	AP.		F.2.N.	MODIFICATION DESCRIPTION		RECURRING RECURRING	RECURRING
	-									
		-								
	_									
	- 1									
_		-								
•										
	_									
		-								
	_									

Equipment Modification Requirement and Cost. Figure 8.

New Equipment Requirement and Cost

All requirements for new equipment are documented on New Equipment Requirement and Cost worksheets (Figure 9). This form provides equipment nomenclature and description, development and procurement lead time, and nonrecurring and recurring cost estimates for the new equipment. Estimates for GSE nonrecurring effort were generated by a technique developed for estimating the full engineering process. The technique is based on experience data related to CH-46/CH-47 GSE programs. Variable factors for project research, layout, and drafting are added to relatively constant factors for engineering descriptions, design review, coordination, liaison, and fit and function demonstrations to obtain a total man-hour estimate. The man-hour figure is multiplied by a current dollar per manhour figure to obtain the final estimated (planning) cost for the nonrecurring effort. For new equipment, two recurring estimates are supplied: for one piece and for one piece in a lot of five pieces. Descriptions, sketches and diagrams of the new equipment were prepared to provide sufficient detail for estimating purposes (see Appendix III).

GSE Requirements (Limited Data)

GSE requirements which are not fully identifiable and/or justifiable until the HLH development program has progressed further are included in the GSE Requirements Index, Appendix I. Separate MEA's for these requirements were not considered practical due to limited configuration definition at this time. Instead, maintenance tasks at the organizational and direct support levels were first identified and the necessary GSE to support these tasks was then identified by nomenclature.

GSE requirements numbers P120 through P150 (ref. GSE Requirements Index, Appendix I) are dependent on the design of the engine. Basic engine design information was insufficient to permit MEA's to be completed on this system. However, through liaison with the engine manufacturer, the power-plant maintenance requirements and related GSE for organizational and direct support level activities were identified and documented.

GSE requirement numbers 151 through 156 (ref. GSE Requirements Index, Appendix I) for the rotor blades, supervisory panel, anti/deicing system, and the master caution panel were identified as a result of discussions with engineering design personnel and review of preliminary drawings and sketches. Sufficient information was not available to write MEA's, but maintenance task requirements and related GSE were identified and documented.

THE BOEING COMPANY VERTOL DIVISION	VISION C		ANT		HEW EQUIPMENT REQUIREMENT AND COST		PARE.		
NO BORA					CONTROL NO.	PRE PARCO BY		0476	
	1				ati cisi de	A PROVED BY		DATE	
NOMENCI	ATURE								
	EMENT	F					LEAD	ŝ	-
AS 805	COMP.	TEVE INVI		NOMENCLATURE	NEW EQUIPMENT DESCRIPTION		ž ž	ECURRING	RCURING
	_								
							$\left \right $		
							-		
							-		
	_	_							
	-								
						-			

Figure 9. New Equipment Requirement and Cost.

RESULTS

GSE REQUIREMENTS IDENTIFIED

Eighty MEA's were written on the non-ATC systems, while 101 MEA's written as part of the program maintainability effort for the ATC systems were reviewed. The analyses identified 119 GSE requirements. In addition, 37 GSE requirements peculiar to the power plant, rotor, and power supply systems were identified without the benefit of any MEA's. The 156 requirements identified are summarized in Table I.

TABLE I. EQUIPMENT TYPE/FUNCTIONAL CLA	SSIFICATIONS
TYPE	NO. OF ROMTS.
Power Plant Tools Slings Adapters Standard Tools (torque wr., elect. wiring repair, etc.) Special Tools (pin puller, blade fold, spanner, etc.) Hoist Equipment Gauges Fixtures Dollies Jacks Cleaning Equipment Maintenance Platforms/Ladders Flyaway Equipment (tie-down) Trailers External Power Units Servicing Units Towing Equipment Testers	31 15 19 11 2 , , , , , , , , , , , , , , , , ,
TOTAL	<u> </u>

GSE INVENTORY ANALYSIS

Analysis of the GSE requirements resulted in the selection of 40 items of existing equipment that meet the required characteristics of the HLH (Table II) and 66 items of new equipment that will require design and development effort (Table III).

Equipment was not selected for the remainder of the 156 requirements originally identified. Eight requirements were for transportability only and were excluded from the study. Forty-two requirements were deleted either by design changes and combining of requirements, or were considered to be satisfied by use of base equipment, flyaway or standard items.

ELAPSED MAINTENANCE DOWNTIME AND PERSONNEL REQUIREMENTS

The maintenance downtime in elapsed moutes and the quantity of personnel required for each maintenance task have been extracted from the Support Equipment Requirements and Characteristics worksheets. This information was developed through maintenance engineering analysis.

The elapsed maintenance time reflects the pure time to accomplish each task. Administrative time, time to obtain tools and parts, and time to position and/or move the aircraft are not included. The number of personnel required is shown for each maintenance task. This data, by aircraft system, is shown in Table IV.

GSE REQUIREMENTS PER OPERATING COMPANY

A preliminary list of the ground support equipment required to support a single company of heavy-lift helicopters is provided to aid integrated logistics support (ILS) preliminary planning and trade study efforts. This information, shown in Table V, was compiled based on the following guide lines:

- An aircraft company is assumed to have nine aircraft located at three operational sites (one main - two satellite).
- All organizational level tasks can be performed at any of the three sites.

- In order to keep quantities of equipment to a minimum, removals will be accomplished using only one sling and one adapter whenever possible. This is based on the assumption that the replacement component is positioned at the aircraft and the old component can be supported temporarily on a suitable surface.
- The figures in the cost column for new equipment are estimates for each unit when purchased in lots of five. If only one prototype is procured, these costs will increase from 50 to 100% per item.
- Nonrecurring effort is not shown as part of the company outfitting costs (these costs are shown in Table III).

	TABLE II. HLH GSE, EXISTING AS-I	S
RQMT. NO.	NOMENCLATURE	FSN
11	Bomb Hoist (Aero 14B 3340# cap.)	R1095-216-2334-S210
17	Truck, Lift, Wheel Change	1730-293-3849
25	Jack-Tripod Adjustable Height (3)	1730-391-7946
26	Jack-Axle (3) (1) Regd.	5120-203-4697
	(2) Regd.	5120-544-5648
27	Trailer - Transportation Model	Not Assigned P/N
	3060	106281 Air Logis-
		tics Corp.
31	Power Unit - Propeller Shaft	5120-337-9652
32	Cleaning Equipment	4920-986-0809
37	Spray Outfit Type MB-3	1730-529-8885
42	Trailer - Transportation Model 3000	1740-516-7930
43	Hoist Winch Lug-All Model 238-R-M	3950-947-0457
46	Tractor, Wheeled Aircraft Towing	1740-580-7990
49	Air Cylinder, Portable	1730-625-6872
54	Dispenser, Hydraulic	4920-245-1832
57	Test Stand, Hydraulic	4920-141-8801
58	Tank and Pump Unit, Jet Oil Servicing	4930-628-1121
64	Wrench, Crow-foot	5120-184-8385
65	Press, Arbor, Hand Operated	3444-163-4338
73	Charger, Battery	6130-985-9157
74	Gauge Air Pressure, Type GMU-25/E	4935-793-1677
76	Multimeter, Type AN/PSM 4C	6625-893-3779
77	Auxiliary Power Unit	4920-938-8363
78	Compressor, Reciprocating, Power Driven	4310-764-2316
86	Tow Bar - Universal	1730-640-8080
89	Auxiliary Power Unit	6115-553-8937
91	Scrub Brush, Long Handled	7920-685-3969
		7.920-926-5146
95	Tool, Contact Insertion	5120-765-3689
96	Tool, Contact Extraction	5120-765-3688
97	Tool, Crimping	5120-919-8078
98	Tool, Ty-Rap	5120-986-5907

RQMT.		
NO	NOMENCLATURE	FSN
99	Heater Gun	4940-785-1162
100	Test Set, Insulation Breakdown	6625-765-9079
105	Tensiomometer, Cable	6635-647-3371
109	Regulator, Pressure, Compressed Gas	6680-551-1094
110	Manometer	6685-526-5325
111	Test Set Liquid Quantity	4920-834-1453
113	Combustible Gas Indicator Set Portable	6665-664-4650
116	Wrench Set Crow-Foot	5120-181-6747
117	Platform Maintenance Type B-1	1730-390-5618
119	Crane, Truck	Not Assigned
P126	Boroscope	Not Available

	TABLE III, HLH GSE, NEW			
		ESTIMATE	UNIT	COST
ROMT.		NON-	RECUI	RRING
NO.	NOMENCLATURE	RECURRING		
	Sling - Swashplate	\$4554		\$ 870
4		5152		
P5			Availa	
6	Sling - APU	5244		
7	Lifting Eye/Sling QTCU or	6992	1220	560
	Aft Pylon			
8	Sling - Stub Wing/Fuel Cell	5106	500	
10	Sling - Nylon, Multi-Purpose	4347	575	
12	Adapter - Rotor Head	5497	6800	
13	Adapter - QTCU	6831	6750	
14	Adapter - Combining Transmission	5727	4500	
P15	Adapter - Engine Package	5497	4950	
19	Adapter - Cargo Winch	5612	5040	
23	Dolly - Transport, Rotor Blades	5520	11000	
30	Tool Set - Blade Fold		vailat	
33	Adapter - Cargo Winch Spool	5382	3920	
34	Centering Blocks - Boost Actuator		1365	
39	Sling - Combining Transmission	4278	1100	
45	Adapter - Swashplate	5704	2550	
47	Sling - Cargo Winch Assembly	4324	1890	
66	Adapter Set - Arbor Press	4002	1200	
69	Lifting Tool - Generator	4416	990	
71	Removal Tool - Wheel Brake Lining		495	
74	Wrench - MLG Oleo Retaining Nut	4554	700	
79	Wrench - FLG Oleo Retaining Nut	4462	700	
80	Assembly Fixture - Pitch Link	4554	2210 7920	
	Test Set - Dynamic Absorber Adapter - Pitch Housing/Cross	5198 4232		
104	Beam Assembly	4232	4000	1935
P114	Engine Adapter - Bomb Hoist	5014	800	380
			1300	
118	Davit, Maintenance, Lightweight Adapter Set - Rotor Xmsn Mounting			2000
	Bolts			
P120	Depth Gage - Torquemeter Pickup	Not	Availa	able
P121	Test Set - Torquemeter Runout	"		
P122	Test Set - Thermocouple	11	**	
P123	Test Set - Electrical Components	11		
P124	Checkout Rigging Fixture - Variable Com-		**	
	pressor Vine Linkage			
P125	Trim Fixture, Fuel Control		11	
P127	Plug - Shorting, Permanent Magnet Generator (PMG)	89	"	
P128	Adapters/Nozzles - Engine Wash			

¥

		ESTIMATEI	D UNIT COST
ROMT.			RECURRING
NO.	NOMENCLATURE	RECURRING	QTY-1 QTY-5
P129	Adapters/Nozzles - Compressor Cleaning	Not A	Available
P130	Adapter - Lifting, Compressor Case Half	"	
P131	Puller - L.P. Turbine Oil Tube Filter	"	"
P132	Puller - Accessory Gear Box Seal	**	**
P133	Puller - Fuel Pump Drive Oil Seal	11	"
P134	Adapter - Accessory Gear Box Assy		н
P135	Component Stand - Universal	11	н
P136	Adapter - Combustor Assembly	**	н
P137	Adapter - Power Turbine Assembly		11
P138	Test Set - Electronic Control and Power Management With Adapter Cables	••	n
P139	Rigging Pins, Inlet Guide Vanes		
	and Fuel Control	н	**
P140	Adapter - Socket, Gas Generator Rotation	"	п
P141	Trim Fixture - Remote	11	11
P142	Test Set - Fuel Control/Com- pressor Variable Geometry (CVG) Position	n	n
P143	Wrench - Spline, L.P. Turbine Rotor Coupling Nut	87	"
P144	Puller - L.P. Turbine Coupling Nut Lock	"	"
P145	Adapter Set - Power Turbine Support	н	11
P146	Fixture - Setting, Power Turbine Rotor, Axial Position	"	"
P147	Wrench - Spanner, Power Turbine Rotor Bearing Retaining Nut	"	U.
P148	Holder - Power Turbine Rotor	11	11
P149	Holder - Power Wrench to Power Turbine Rotor	••	"
P150	Adapter Set - Power Turbine Removal	11	**

			MATED UNIT CO)ST
RQMT.		NON-	RECUF	RRING
NO.	NOMENCLATURE	RECURRING	QTY-1	QTY-5
151	Wrench - Spanner, Rotor Blade	\$ 4,350.00	\$ 400.00	\$ 185.00
152	Retention Pin Nut Wrench - Anti-Rota- tion, Rotor Blade Retention Pin	4,780.00	575.00	330.00
153	Guide Pin - Rotor Blade Retention Pin	3,700.00	350.00	140.00
154	Test Set - Super- visory Panel	5,700.00	8,500.00	3,000.00
155	Test Set - Ice Pro- tection Systems	6,900.00	27,000.00	15,000.00
	Test Set - Master Caution Panel	3,500.00	1,000.00	400.00
		\$172,150.00	\$122,940.00	\$65,536.00

NOTE: Except for P15 and P114 which are Boeing designed, cost estimates for 'P' requirements are not shown since these items will be designed and fabricated by the engine contractor (Allison).

TABLE IV. ELAPSED MAINTENA AND PERSONNEL RE		
TASK DESCRIPTION	ELAPSED MAINTENANCE TIME (min)	
AIRFRAME		
Replace Work Platform Fwd Xmsn	46	3
and Rotor		
Replace Work Platform Aft Xmsn	52	3
and Rotor		U
Replace Engine Work Platforms	52	3
Replace Pendulum Absorber	33	3
Replace Dynamic Absorber	40	2
Tune and Test Dynamic Absorber	30	3 1 2 2 2
		1
Moor Aircraft	15	2
Tow Aircraft	23	2
Wash Aircraft	240	
Clean Aircraft Inside	120	1
LANDING GEAR		
Replace Oleo Strut - Fwd	45	3
Landing Gear		
Service Oleo Strut - Fwd	17	1
Landing Gear		T
Replace Forward Landing Gear Assy	73	3
Replace Oleo Strut - Main	45	3
Landing Gear		5
Service Oleo Strut - Main Landing	17	1
Gear	1/	T
Replace Drag Brace Assy - Main	50	3
Landing Gear		
Replace Main Landing Gear Assy	80	3
Replace Wheel Assy (Main or	31	3
Forward Landing Gear)	~ 4	5
Replace Tire (Main or Forward	32	2
	32	2
Landing Gear)	F 4	•
Replace Brake Lining - Main	54	3.
Landing Gear		
Repair Brake Assy - Main Landing	45	1
Gear		
Bleed Brake - Main Landing Gear	26	2
Replace Brake Assy - Main Landing	41	3
Gear Poplago Dick - Main Landing Coar	50	3
Replace Disk - Main Landing Gear	50	3

All Marine

TASK DESCRIPTION	ELAPSED MAINTENANCE TIME (min)	
ROTOR		
Replace Rotor Blade	53	3
10-Hour Inspection - Rotor Blade	33	2 3
Replace Shear Bearing - Rotor Hub	36	3
Replace Pitch Housing/Cross Beam Assembly	104	3
Replace Elastomeric Bearing - Rotor Hub	40	3
Replace Damper Assembly	42	2
Replace Rotor Hub	299	3
Adjust Pitch Link	15	2 2
Replace Pitch Link Bearings	30	2
Replace Pitch Link	21	3
Replace Bearing Condition Sensor	25	1
Replace Swashplate Assembly	332	3
CARGO HANDLING		
Replace Hoist Drive Assembly	25	2
Replace Cable Cutter Assembly	23	2
Replace Winch Assembly	45	2
Clean Winch Assembly	7	1
Replace Coupling Assembly	8	1
Clean Coupling Assembly	13	1
Replace Cables - Suspension System	30	2
Replace Control Panel	22	1
Replace Switch - Control Panel	21	1
Replace Position Lock Actuator	18	2
Replace Load Isolator	21	2
Replace Cable/Pulley - Support and Span Positioning System	38	1
Replace Hinged Section - Support and Span Positioning System	22	1

TABLE IV - Continu	ed	
TASK DESCRIPTION	ELAPSED MAINTENANCE TIME (min)	
APU (AIRBORNE)		
Service APU (oil) Replace APU Assembly	12 83	1 3
DRIVE		
Replace Forward Rotor Transmission Replace Aft Rotor Transmission Replace Combining Transmission	718 756 257	3 3 3
POWER PLANT		
Replace Outboard Engine (No. 1 or No. 3)	148	3
Replace Center Engine (No. 2)	155	3
Replace Exhaust Device (Typ)	37	3 2 3
Replace Engine Air Inlet Particle Separator (No. 1 and 3 Engine)	51	3
Replace Engine Air Inlet Particle Separator (No. 2 Engine)	47	3
Replace Tail Pipe (Typ)	67	3
Replace Ejector (Typ)	83	3
AIR COND. PRESS. & SURFACE ICE CONTROL	<u>.</u>	
Troubleshoot Environmental Control Unit on A/C	15	2
Troubleshoot Environmental Control Unit in Shop	15	2
Replace Environmental Control Unit	55	3
Replace Chemical, Biological, Radiological (CBR) Filter	49	3

TABLE IV - Continu	ed	
TASK DESCRIPTION	ELAPSED MAINTENANCE TIME (min)	PERSONNEL
ELECTRICAL POWER SUPPLY		
Replace Generator (Aft ATD Mounted) Replace Generator (Aft Xmsn Mounted) Replace Generator (Fwd Xmsn Mounted) Replace Battery Charge Battery Functional Check All Exterior Lights Repair Wiring (Typical)	70 18 33	3 3 3 1 2 2
HYD PNEUM POWER SUPPLY AND DISTRIBUTION		
Replace Hyd Power Pack (Fwd Xmsn Driven)	48	3
Replace Hyd Power Pack (Aft Xmsn Driven)	51	3
Replace Hyd Power Pack (ATD Driven) Service Hydraulic Fill Module Functional Test Hydraulic Subsystem	51 12 40	3 1 2
Replace Air Turbine Motor (Fwd Pylon) Replace Air Turbine Motor (Aft Pylon) Replace Air Turbine Motor (Hoist) Replace Heat Exchanger	55	3 3 3 3
FUEL		
Service Fuel Sys (Press. Fueling Method)	12	2
Service Fuel Sys (Gravity Method) Service Fuel Sys (Suction Method)	39 23	2 2
Defuel Aircraft (Through Gravity Filler Caps)	33	2
Defuel Aircraft (Through Defueling Valves)	17	2
Defuel Aircraft (Using A/C Fueling Reel) Clean Fuel System Pressure Test Fuel Cell	24 283 199	2 2 2
Replace Fuel Cell Calibrate Fuel Qty Indic Sys	215 90	2

.

	600 0 0000000 0000000 0 00000000 0 000000	90
	N NEW EST UNIT 5000 540 5640 5640 5640 5640 5640 5640	
RAFT	0 10 11 11 11 11 11 11 11 11 1	11
SINGLE NINE AIRCRAFT OPERATIONAL SITES	CLASSIFICATION ABLE AS-IS CLASSIFICATION FSN OTY	1730-529-8885
FOR A SIN THREE OPER	AVAILABLE QTY QTY C C C C C C C C C C C C C C C C C C C	3
TABLE V. HLH GSE REQUIREMENTS COMPANY DEPLOYED AT 1	 NOMENCLATURE NOMENCLATURE Sling - Swashplate Sling - Swashplate Sling - Swashplate Sling - Sytub Wing/Fuel Cell Sling - Nylon, Multi-Purpose Bomb Hoist (Aero 14B) Adapter - Rotor Head Adapter - Rotor Head Adapter - Combining Xmsn Adapter - Combining Xmsn Adapter - Cargo Winch Dolly - Transport, Rotor Blades Jack - Axle (3) 1 Reqd Trailer - Transportation Model 3060 Tool Set - Blade Fold Power Unit, Propeller Shaft Cantering Equipment Cantering Equipment 	fit Type MB-3
	ROMT. NO. PI12 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI132 PI3	37

and the second sec

	TABLE V - Cont	Continued				
		AVAI	CLASSIFICATION AVAILABLE AS-IS	CATIC	NN NEW	
	NOMENCLATURE	OTY		ATO	EST UNIT PRICE	TNOTE
sling	g - Combining Xmsn			H	650	9
Trailer	20	4	1740-516-7930	1	I	00
Hoist,	t, Winch, Lug-All Model 238-R-M	4	3950-947-0457	I	1)
Adapter	- Swashplat	I	1	7	1530	C
Trac	н	ო	1740-580-7990	1	ı	0
Slin	Winch	I		Ч	1122	θ
Air	Air Cylinder, Portable	ო	730-625-	I	1	0
Disp	Dispenser, Hydraulic	ო	4920-245-1832	I	I	0
Test		1 Set	141-	I	I	8
Tank	Tank and Pump Unit, Jet Oil Servicirg	m	930-628-	1	I	00
Wren	, Crow-foot	m	5120-184-8385	I	1	C
Press,	s, Arbor, Hand Operated	Ч	444-163-4	1	ı	
Adapter	Set - Arboi	ı	ı	-1	006	0
Lifting	Tool -	I	I	2	549	0
Removal	val Tool - Wheel Brake Lining	ł	I	m	240	0
Char	Charger, Battery	Ч	6130-985-8157	1	I	00
Wren	Wrench - MLG Oleo Retaining Nut	ı	1	Ч	285	e
Gaug	Gauge, Air Pressure Type GMU-25/E	Н	4935-793-1677	I	1	
Mult		ო	-6625-	I	I	0
			3779			
TXNV		-1	20-938-83	1	ł	9
Comp	Compressor, Reciprocating, Power Driven	1	4310-764-2316	1	I	θ
Wren	Wrench - FLG Oleo Retaining Nut	I	ı	Ч	285	6
Asse	F	I	ı	Ч	1430	θ
Mo₽	Tow Bar - Universal	ო	-640-	I	ı	0
Auxi	iary Power Uni	ч	-553-	I	I	6
Long	Handled Scrub Brush	m	7920-685-3969	I	I	0
		m	7920-926-5146	I	I	0
						ę

21.21

.

TABLE V - NOMENCLATURE		AVAIL	CLASSIFICATION AVAILABLE AS-IS TY FSN QTY	CATIO QTY	N NEW EST UNIT PRICE	NOTE
Tool, Contact Tool, Contact Tool, Crimping Tool, Typ-Rap Heater Gun Test Set, Insu Test Set, Dyna Adapter - Fitc Beam Assy	cact Insertion Lact Extraction mping -Rap Insulation Breakdown Dynamic Absorber Fitch Housing/Cross	ოოოოო I I	5120-765-3689 5120-765-3688 5120-919-8078 5120-985-5907 4940-785-1162 6625-765-9079 -		- - 6030 1935	000000000
Tensionometer, Ca Regulator, Pressu Manometer Test Set, Liquid Combustible Gas I Portable Engine Adapter - Davit, Maintenanc Wrench Set, Crow Platform, Mainten Adapter Set - Rot	<pre>cometer, Cable cor, Pressure, Compressed Gas ter it, Liquid Quantity ible Gas Indicator Set, adapter - Bomb Hoist Maintenance, Lightweight Set, Crow Foot m, Maintenance, Type B-1 m, Maintenance, Type B-1</pre>	00000 II.001	6635-647-3371 6680-551-1094 6685-526-5325 4920-834-1453 6665-664-4650 - 5120-181-6747 1730-390-5618	0 ⁰⁰ 11111	- 380 800 2000	00000 00000
Crane, Truck Crane, Truck Depth Gage - Test Set - T Test Set - E Checkout	ck - Torquemeter Pickup Torquemeter Runout Thermocouple Electrical Components	MILI	N/A 		(* * * * *	00000

		UNIT CE NOTE	0	6	00	00		0	θ	0	0		0	0	0	ଚ	ଚ	ଡ	Θ	0		0	(0
	ON	EST PRI	*	*	- - *	*		*	*	-):	*		*	*	*	*		*	*	*		*		*
	CLASSIFICATION AS-IS	ΥТΩ	5	~	ור	ε		m	Г	0	m		m	m	2	m	7	m	-1	m		2		n
			1	I	N/A	1		I	I	ł	ı		I	I	ı	I	I	ł	I	I		I		I
Continued	AVAILABLE	ΥТΩ	1	I	2	1		I	I	I	ı		ſ	I	I	I	I	I	I	I		1		t
TABLE V -		NOMENCLATURE	Rigging Fixture - Variable Com-	pressor Vane Linkage Trim Fivture - Fuel Control		Å	(PMG)		Adapters/Nozzles, Compressor	Adapter - Lifting, Compressor Case Half	Puller - L.P. Turbine Oil Tube	ы	- Accessory Gear Box S	Fuel Pump Drive	Accy Ge	t D	- Combust	1	t - Electronic	ins - Inlet	and Fuel Control	Adapter - Socket, Gas Generator	Rotation	Trim Fixture - Remote
		RQMT. NO.	P124	D125	P126	P127		P128	P129	P130	P131		P132	P133	P134	P135	P136	P137	P138	P139		P140		P141

	TABLE V - C	Continued				
		AVATLARLE		CLASSIFICATION S-TS	4 NFW	
ROMT. NO.	NOMENCLATURE	QTY	1 1	ΟТΥ	EST UNIT PRICE	r NOTE
P142	Test Set - Fuel Control/Compressor	Ð	1	I	- *I	θ
P143		I	I	m	*	0
P144	Puller - L.P. Turbine Coupling	ı		m	*	0
P145 P146	et - Pow Setting	1 1		ოო	* *	60
P147	AXIAL POSITION - Spanner, Power	ı	ł	m	*	0
P148 P149	71	11	11	ოო	* *	00
P150 151	Turbine Rotor Adapter Set - Power Turbine Removal Wrench - Spanner, Rotor Blade	L I	11	ოო	* 185	00
152	ketention Fin Nut Wrench - Antirotation, Rotor Blade Retention Fin Cuide Pin - Rotor Rlade	1 1	1 1	~~ ~	330	00
				•) (
155 155	Test Set - Supervisory Panel Test Set - Ice Protection Systems Test Set - Master Caution Panel	111	111		3,000 15,000 400	900
			TOTAL	\$1.	118,550	

「日日の日町日に満ちる「「日日」

TABLE V - Continued	NOTES :	<pre>① One unit (or set) only for all three sites low usage rate.</pre>	One unit (or set) at main site and one floating between the two satellite sites. Usage rate requires more than one unit.	One unit (or set) at each of the three sites. High usage rate and/or multiple use item.	Two units (or sets) at the main site and one each satellite site.	Sequired in pairs for component replacement - one to handle the old component and one to handle the new component.	Quantity as required by environmental conditions or long-term storage.	Costs of these power plant items are determi power plant manufacturer and are not availab time.
		sites -	e floating Je rate	e sites. tem.	and one at	cement - ne to handle	conditions	are determined by the not available at this

ALTERNATE APPROACHES TO GSE CONCEPTS

HOISTING DEVICE

The Aircraft System Requirements Document (ASRD) contains the following requirement: "A hoisting device powered by the auxiliary power system will be provided for use in removal and replacement of all heavy components. The airframe will be fitted with hard points and other appropriate attachments to receive the hoisting device for use in removal and replacement of heavy components." This requirement was assumed to cover removal and replacement of rotor blades, rotor hub, swashplate, transmissions, engines, and the APU as a minimum and, therefore, should provide the capability of lifting items ranging in weight from 350 15 to 8000 1b to a hook height of 40 to 45 feet. This study was not limited to the above concept, however, but also includes two additional equipment approaches for meeting the requirement for removal and replacement of major components.

Following is a discussion of three concepts considered.

1. Aircraft Mounted Hoisting Device (ASRD Requirement)

The primary objective of this equipment approach is to provide a compact, lightweight unit which is easily deployable to enhance maintenance selfsufficiency of the aircraft during operations remote from fixed base support facilities.

A specific design concept has not been selected to meet this requirement; however, Figures 11 and 12 illustrate design approaches which could be developed. Figure 10 is a concept which employs a lightweight modular A-frame and ball screw actuators to facilitate self-erection and positioning of the A-frame. Figure 11 depicts the maintenance crane developed for use on the CH-47 helicopter.

Regardless of the specific design approach adopted, the item must be 'self-erecting' or modular to the extent that it can be readily set up by maintenance personnel using hand tools and/or APU power only. The most obvious difficulty in developing an acceptable airframe mounted hoisting device is the development of a lightweight winch capable of lifting the 8,000-lb load. There is no suitable inventory item for this application, and commercially available equipment is much too heavy for manual setup. For example, electric powered winches capable of lifting

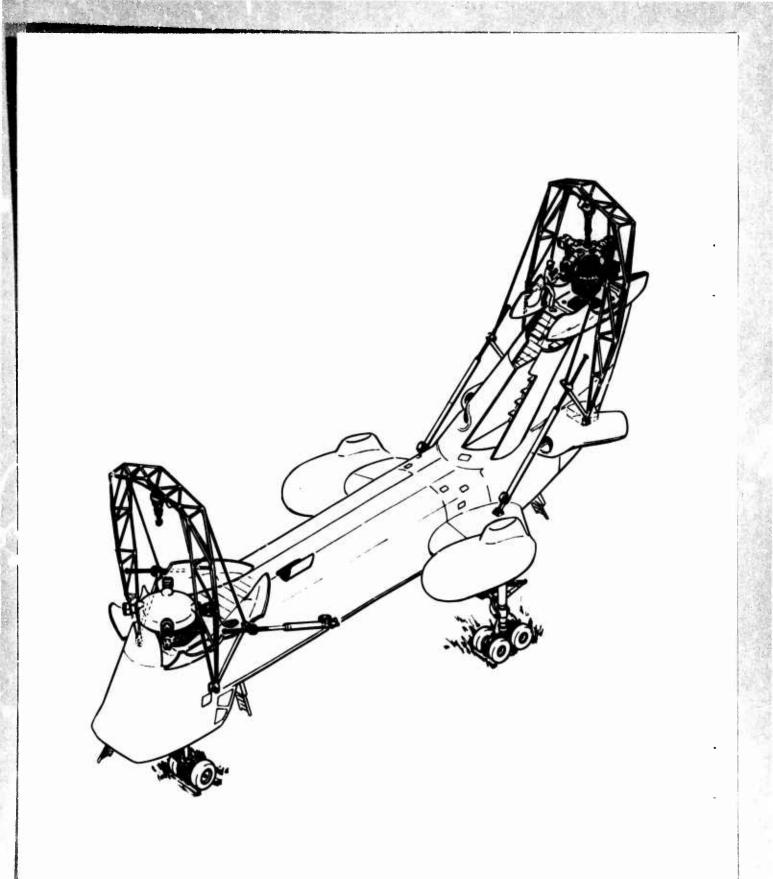
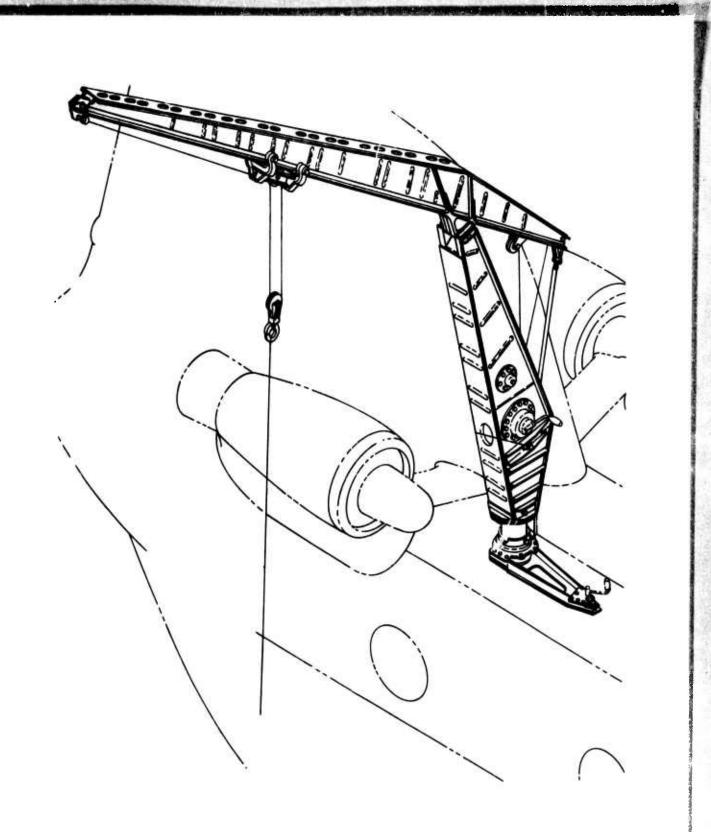



Figure 10. HLH Hoisting Device Concept.

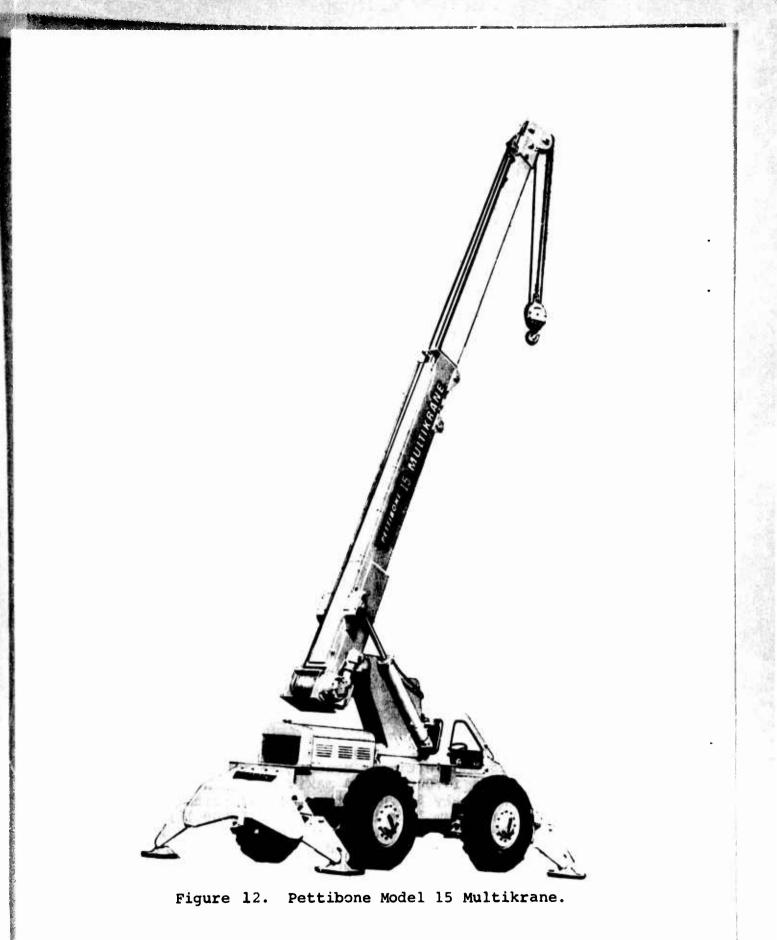
8,000 lb to a 40-ft hook height presently weigh from 850 lb to 1300 lb or greater. Pneumatic powered winches are available up to approximately 6,000 lb capacity, but the weight of these units is several hundred pounds. Even a manual powered winch capable of lifting 8,000 lb weighs at least 260 lb and has the further drawback of an operating speed of only 1/2 ft per minute. In summary, winch state of the art must be advanced if a useful, hand-erectable aircraft mounted hoisting device is to be developed.

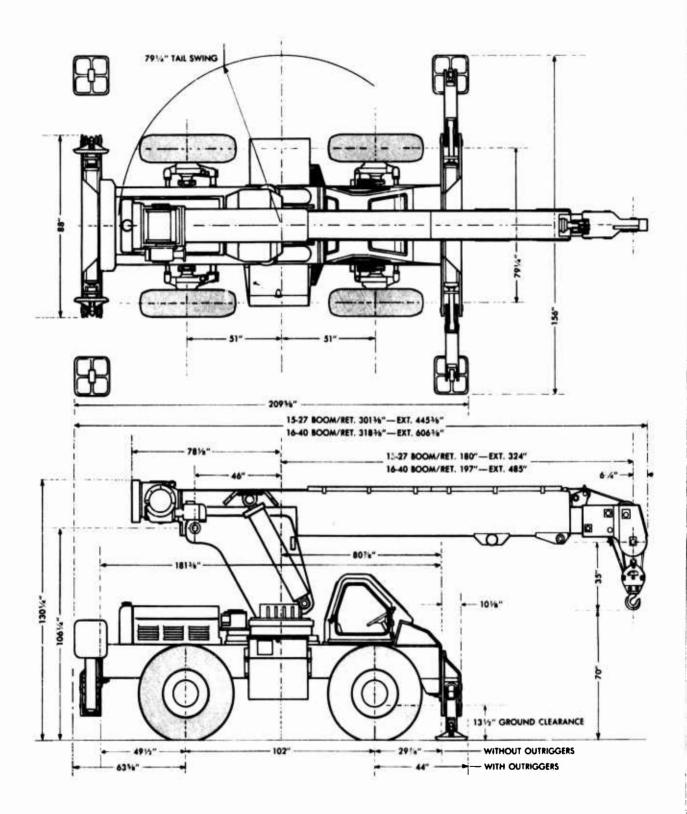
2. HLH Cargo Handling System

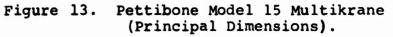
The objective of this approach is to provide maintenance self-sufficiency through use of the winch system from the HLH cargo handling system and thereby preclude development and/or procurement of new hoisting equipment. Cursory analysis indicates this approach is by far the least feasible of the three considered. Reasons are:

- Substantial modification and rigging of the cargo handling system is required to adapt it to this application.
 - Additional winch controls must be provided to permit the operator to be near the component being handled.
 - The coupling (hook) must be replaced with a smaller, lighter, more easily handled hook.
 - The dual cable rated for an ultimate strength of approximately 75,000 lb per cable is difficult to handle (8,000 lb is the maximum load in this application).
- Pulleys, brackets, outriggers/davits must be located throughout the aircraft to facilitate cable runs to the various hoisting areas.
- Structural hard points and access panels must be incorporated throughout the aircraft to accommodate the pulleys, brackets, cable, and davits.
- The probability of maintenance errors/damage to the cargo handling system is greatly increased.
- Setup or changeover time is anticipated to far exceed that of the other approaches considered.

3. Mobile Crane


The objective of this approach is to use existing inventory or commercially available equipment and thereby preclude the requirement for development of new equipment. A number of mobile cranes with 8,000lb lift capability are available in the military inventory; however, those which also provide the capability of raising a load to a 40-ft hook height are extremely large and are not considered appropriate for this application. There are many commercially available units, however, which will readily satisfy the HLH requirements. The Pettibone Model 15 Multikrane (see Figure 12) is an example. This item can lift 17,000 lb to a hook height of approximately 47 ft, weighs approximately 25,000 lb, and is selfpropelled. Principal dimensions are shown in Figure 13.


Use of a mobile crane and auxiliary equipment provides the capability for a number of maintenance tasks that annot be readily performed with the other hoisting ϵ signent considered. For example, access to all external fuselage and blade areas for inspection, repairs, cleaning, etc., can be provided through use of a personnel bucket mounted on the crane boom.


The mobile crane appears to be the most practical approach for lifting requirements at hard sites, but does involve more difficulty in transportation to remote sites than the other equipments considered.

Trade-Offs Required

Time and resources allocated for this GSE study do not permit analysis of the HLH maintenance hoisting requirement in sufficient detail to complete the equipment selection process. However, limited preliminary cost data was collected which provides some interesting cost comparisons of existing items of hoisting equipment. For example, the selling price of the Pettibone Model 15 mobile crane is approximately \$30,000; the selling price of the Pettibone Model 10-F (a mobile crane with lift capability of 10,000 lb and maximum hook height of 22 ft 9 in.) is approximately \$16,000; the selling price of the maintenance crane (maximum lift capability of 5,000 lb) developed for the CH-47 helicopter is approximately \$35,000; and the selling price of a trailer-mounted unit (see Figure 14) (3,000-lb lift capability to a maximum hook height of 25 ft) developed for the H-53 helicopter is approximately \$63,000.

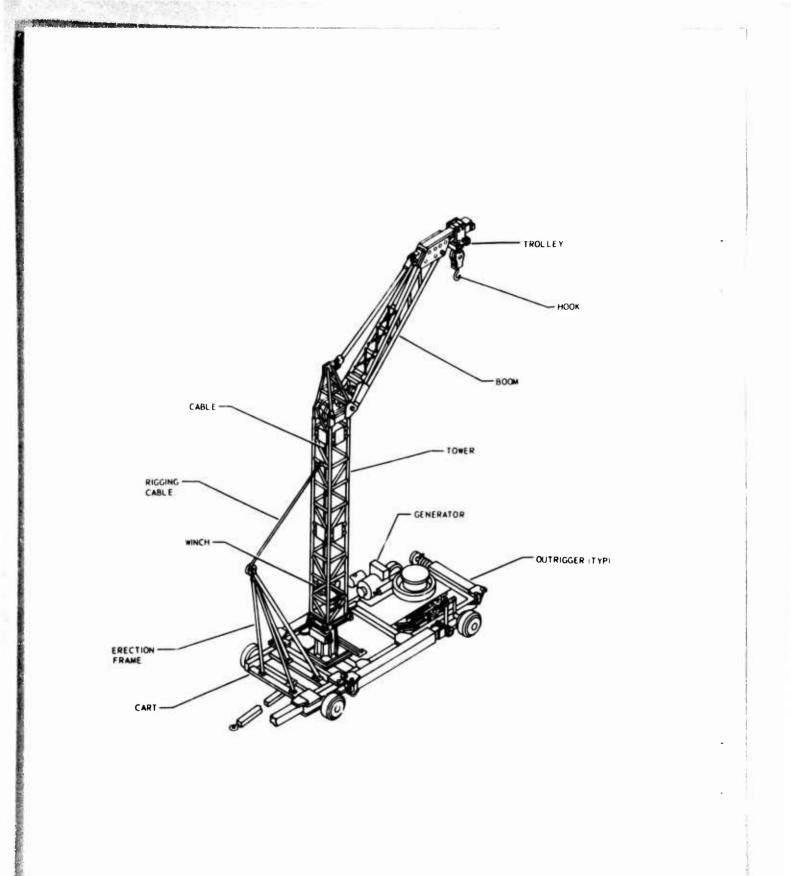


Figure 14. H-53 Maintenance Crane.

From a unit cost standpoint only, it would appear that the most practical way to handle HLH maintenance hoisting requirements is to modify the existing Pettibone Model 10-F unit to incorporate a telescoping boom and outrigger to provide the desired 45-ft hook height.

Such limited cost data is insufficient to substantiate selection of any item as the most appropriate.

Therefore, it is recommended that at least the three equipment approaches discussed herein be subjected to a rigorous, indepth evaluation to identify and trade off such parameters as:

Deployment requirements Frequency of major component replacement Personnel requirements (quality and skill levels) Elapsed time for setup/erection and use Auxiliary equipment required Aircraft hard points, fittings, and/or structural provisions required Development time required Development cost required Unit cost of each item Other potential HLH support applications for each item Anticipated maintenance requirements for the hoisting device

Thorough and timely trade off of the above considerations should result in selection of the equipment approach which best meets the HLH maintenance hoisting requirements.

BLADE FOLD VS. BLADE REMOVAL

The alternatives of blade folding versus 'blade removal' have been considered throughout this study. For the helicopters in service today, blade folding has proven to be a practical means of reducing the envelope required for shipping and storage and for securing the blades for protective purposes. For shipboard operation, blade folding capability, either manual or powered, has been a mandatory requirement due to limited space available on flight deck or hangar decks for flight operations, deck towing and handling, stowage or maintenance.

A preliminary analysis comparing manual (power assisted) blade folding against blade removal for the HLH has been completed. The results are shown below and represent requirements for a single aircraft:

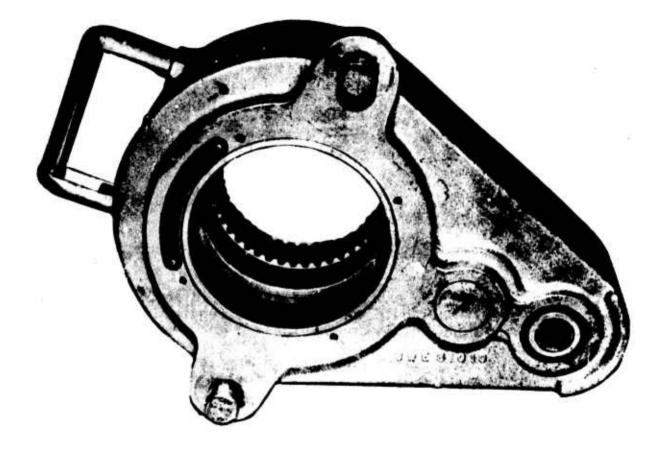
- Time requirements (two four-man crews)
 - 5.84 elapsed hours Fold and unfold 7 blades* (pure time)
 - Remove and install 7 blades* 4.60 elapsed hours (pure time)
 - * One blade is positioned over the fuselage removal and/or folding is not required.
- GSE requirements

Blade Folding

- Retention Pin Removal Tools (2 Sets)
- Overhead Lifting Device (2 ea.)
- Blade Tip Lifting Boot (2 ea.)
- Blade Pitch Angle Lock (2 ea.)
- Blade Log Angle Positioning and Locking Device (4 ea.)
- Blade Fold Actuator (2 ea.)
- Blade Fold Position Locking Device (7 ea.)
- Blade Securing Device for High Wind Operation (8 ea.)
- Blade Fold Antiflap Restrainer (4 ea.)

- Retention Pin Removal Tools (2 Sets)
- Overhead Lifting Device (2 ea.)
- Device (2 ca.) Blade Sling (2 ea.) Blade Shipping Con-tainers (7 ea.) or tainers (7 ea.) or Blade Stowage Cradle To Hold 4 Blades (2 ea.)

- Aircraft Configuration Requirements: Following is a list of component and aircraft provisions required to facilitate blade folding:
 - Blade pitch angle locking lugs: To lock individual blade pitch or swashplate position (rotor system).
 - Rotor positioning gearing: To properly position the rotor in azimuth (transmission system).*
 - To lock rotor azimuth (transmission - Rotor lock: system).
 - Rotor azimuth indicator: To indicate proper rotor azimuth for folding (rotor system).


- Blade lag positioning and locking device attaching provisions (rotor system).
- Blade fold mechanism attaching lugs (rotor hub and rotor blades).
- Blade tip tie-down and securing fitting (rotor blades).*
- Rapid disconnect blade attachment bolt (rotor hub).*
- Blade fold positioning and locking device attaching provisions (rotor hub and rotor blades).
- Pilot control position indicator (collective pitch, longitudinal and lateral cyclic stick and rudder position).
- Electrical and hydraulic power for blade pitch control system.*
- Fuselage attachment points for blade securing fittings.
 - * With the exception of the asterisked items, all of the above provisions are required solely for blade folding operations.

The previous comparison indicates an apparent time saving and a decided reduction in GSE required for blade removal in lieu of blade folding. However, it is recommended that conditions/ circumstances (including anticipated frequency of occurrence) requiring blade folding or blade removal be thoroughly assessed. Built-in provisions on the aircraft and the required GSE should be defined in detail, and a detailed cost analysis should be completed for each approach.

TORQUE APPLICATION

Installation of mounting bolts for the forward and aft rotor transmissions requires application of approximately 2,990 ft 1b of torque, wet application. The breakaway requirement for transmission removal is estimated as 4,300 ft-lb or less.

The Model 8100 Torque Multiplier, manufactured by B. K. Sweeney Manufacturing Company, Denver, Colorado (see Figure 15) and available in the Army inventory under FSN 5120-337-9652, has been identified as suitable for this torque application (see Requirement No. 31, Appendix I, GSE Requirements Index). The Model 8100 weighs approximately 45 lb, employs a 3/4-in. square female input drive and a 43-

DIMENSIONS: 17-5/8" x 12-3/8" x 7-3/8"

WEIGHT: 45 16

Figure 15. Torque Multiplier (B.K. Sweeney Mfg. Co.).

tooth internal spline output drive. It provides an 11.2:1 power ratio to produce a maximum output of 7,500 ft-1b at 670 ft-1b maximum input.

Torque may be applied to the Model 8100 Torque Multiplier through a conventional 3/4-in. square drive torque wrench or socket drive. A handle extension or a stack-up employing a smaller torque multiplier on the input drive is required to reduce manual effort to what is considered a reasonable level, from a human factors engineering standpoint, when high torque must be generated. For example, a 110-1b manual effort must be applied to the handle of a snap-on Model TEP-353L torque wrench (3/4-in. square drive, 350-ft-1b maximum range, 29-1/2-in. handle length) when used with the Model 8100 Torque Multiplier to generate the 2,900 ft-1b of torque required for installation of rotor transmission mounting bolts. Use of a comparable snap-on wrench with a 42-in. handle requires 77 1b manual input, and a 62-in. handle length reduces the manual input requirement to 50 1b.

The Model 8100 Torque Multiplier does not provide capability for direct readout of applied torque. Readout must be accomplished through calculation or through the use of conversion factors applied to indicator readings from the torque wrench or multiplier used for power input.

In addition to equipment necessary for power input and readout, a number of additional items of auxiliary equipment are required when using the Model 8100 Torque Multiplier. These include:

- An appropriate socket or adapter to transmit torque directly to the item being torqued
- A splined adapter to interface between the splined output drive of the Model 8100 and the socket or adapter
- An adapter to secure the Model 8100 in place and react the input power

The Model 8100 Torque Multiplier and similar items are the most commonly used equipment for high torque application in the military maintenance environment. However, the facts presented above indicate that a great deal of human effort can be required, and the chance of error in determining the actual torque applied is an ever-present possibility when using this type of equipment. A limited industry search has revealed a number of commercially available torque multipliers (mechanical, hydraulic, or pneumatic powered) which offer one or more of the following notable advantages over the Model 8100 and similar equipment:

- Continuous direct output torque indication provided by a gauge on the face of the unit
- Only 5 to 15 ft-lb of input torque required up to maximum output
- Square drive output minimizes cost of output and reaction adapters
- May be operated by hand, electric drill, or air motor
- 5,000 to 6,000 ft-lb output from units weighing 35 to 40 lb

Figures 16, 17, 18 and 19 illustrate some of the types of torque wrenches currently available.

Detailed information is still being gathered to provide a sufficient data base for evaluation and comparison of this equipment. However, from the limited data collected to date, it is apparent that there are better ways of generating high torque than the methods most commonly applied today. Therefore, it is recommended that:

- A thorough industry search be conducted to identify and catalog all methods of torque application which may be appropriate to aviation maintenance
- Research be conducted to identify and document usage experience with respect to equipment accuracy, reliability, durability and maintenance requirements
- A comprehensive analysis be conducted of torque requirements for the HLH
- Trade-offs and development be performed to define and/or produce equipment which will provide accurate and safe torque application with minimum human effort and simple low cost auxiliary equipment

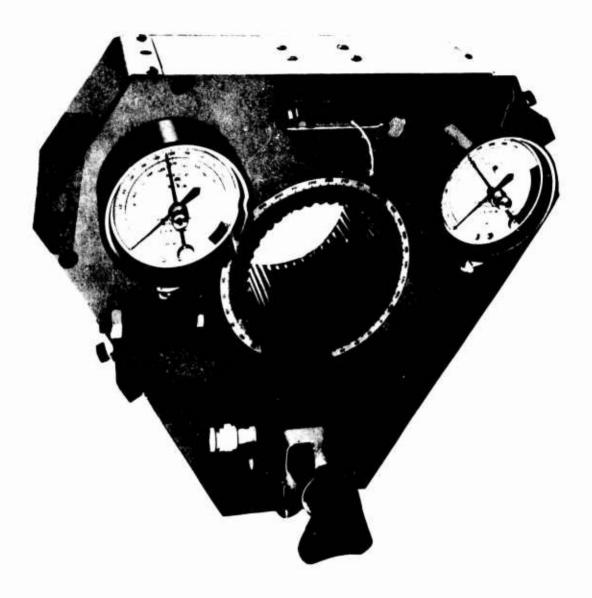


Figure 16. Hydraulic Torque Wrench (Advanced Hydraulics, Inc.).

PART NO.	CAPACITY	SIZE (INCHES)
PD-1201	0 to 1200 ft-1b	5 3/4 x 6 ¹ / ₂ x 8 3/4
PD-2501	0 to 2500 ft-1b	7 X 8 13/32 X 10 7/8
PD-6501	0 to 6500 ft-1b	7 3/8 X 10 X 14 ¹ 2
PD-20001	0 to 20000 ft-1b	11 x 15 3/4 x 20

Figure 17. Mechanical Torque Willich (Power Dyne Corporation).

MODEL	PT-1	PT-2	PT-5	PT-6	PT-8	PT-10	PT-12
RANGE MAX. ft-1b	500	1250	2000	2500	5000	12500	25000
DRIVE (inches)	3/4	1	1	14	1 ¹ 2	2 ¹ 2	2 ¹ 2

Figure 18. Pneumatic Torque Wrench (Nasco, Inc.).

Model Number	Capacity Ft-Lbs.	A."	B"	С"	D"	E″	F″	Wt. Lbs.	Rotation Per Stroke
HW-1	1,000	1	21/2	71/2	3	4	1 1/4	7	30°
HW-5	5,000	11/2	4	14	41/2	6½	2 1/4	25	30°
HW-10	10,000	2	4 1/4	15½	5	8	2 V2	40	30°
HW-15	15,000	2 1/2	51/4	17	6	9	21/2	60	30°
HW-25	25,000	3	6	191/2	7	10½	4	90	30 °
HW-50	50,000	31/2	7	21	81/2	12	51/2	160	22½°
HW-100	100,000	41/2	81/4	221/2	10½	14	61/2	300	221/20

Figure 19. Hydraulic/Pneumatic Torque Wrench (Torque and Tension Equipment, Inc.).

USE OF FORKLIFT EQUIPMENT VERSUS OVERHEAD LIFTING DEVICES

Forklifts are being used extensively throughout industry and by the armed forces. Use of a forklift, fitted with proper adapters or slings, appears feasible for the following maintenance requirements:

- Replace quick engine change (QEC) packages
- Replace cargo winch assembly
- Replace main landing gear assembly
- Replace load controlling crewman's pod
- Replace rotor blades
- Position a small two-man maintenance platform to permit inspection and/or minor repair of all exterior fuselage components (such as in the 100-300 lb weight category) which are externally accessible such as environmental control unit (ECU), engine exhaust device, engine tail pipe, and work platforms.

Furthermore, use of forklift equipment appears to have certain advantages over cranes or hoists which support the loads from a point above the component being handled.

These advantages include:

- Positive control of the component being replaced since the lifting adapter can be firmly secured to the forks. This eliminates the bouncing and pendulum action which is present in some degree when an object is being handled by a sling and overhead hoist.
- Multipurpose application component replacement, workstand support, towing operations.
- Transportable by sling load to austere sites without requiring disassembly.
- Utilization of the forklift, with applicable adapter/ slings could be in addition to or in lieu of certain GSE requirements identified in the investigation. The following GSE listed in Appendix I would be affected: Requirements P15, 19, 37, 43, 47 and 117.

It is recommended that an analysis be performed to:

- Identify forklifts suitable for HLH maintenance
- Identify related adapters required for forklift application for each maintenance task

 Prepare time line, cost and personnel requirements to compare forklift application with overhead lifting methods

BLADE HANDLING CONCEPTS

A major HLH maintenance requirement will be the replacement and handling of the rotor blades. The blades are approximately 41 ft long with a 40-in. chord length and weigh about 750 lb each. With the landing gear in normal position, the forward blades are approximately 23 ft above ground level at the root end and the rear blades are approximately 32 ft above ground level.

The specific blade handling actions which must be performed most frequently include blade removal from and replacement on the aircraft, in shipping containers, on storage/transportation racks and dollies, and on workstands. In addition, blades must be turned to the proper chordwise position for placement in storage racks or to facilitate inspection and repair. Blade removal and replacement is the most complex single operation considered, since it involves vertical motion as well as horizontal motion to position the blade with respect to the hub for pin installation, and to clear the blade/ hub interface after pin removal, and may involve rotation of the blade for proper chordwise positioning. Blade handling concepts must permit freedom of motion and application of force in the directions described above.

Several approaches appear feasible for blade removal/installation and handling as follows:

Lifting Sling and Crane - A mobile crane and a lifting sling have been identified as suitable for this task. The crane used for rotor blade replacement could also be used for replacement of other components (rotor heads, transmissions, and quick transmission change units), but the lifting sling would be a special item of GSE for blade handling only. A means of rotating the blade from horizontal to vertical chordwise position can be incorporated into the sling design. This overhead lift concept provides a ready means of placing the blades directly into ground handling equipment or storage containers. This concept is most practical for fixed sites and is feasible for remote or austere bases depending on the mobility and transportability of the crane selected.

- Forklift and Cradle Use of a forklift and cradle provides positive control of the blade, since the cradle can be firmly secured to the forks. This eliminates the need for guy lines at the blade tip and root end as required with the lifting sling and The forklift can also be used for other comcrane. ponent replacements although the cradle would be a special item of GSE used for blade handling only. The means to horizontally displace the blade and the means of rotating the blade from horizontal to vertical chordwise position must be incorporated into the cradle design. With this concept a sling and overhead hoisting method may be required to lift the blade from the cradle and place it in the ground handling equipment or storage container. Transportation of the forklift by sling load to austere sites without disassembly should be possible. However, mobility on soft terrain may require use of special high floatation tires.
- Stanray Lift Truck With Cradle The Stanray lift truck is a commercially available self-propelled scissors type lift which raises a platform to a height of approximately 40 feet (see Figure 20). The platform is capable of approximately 5 feet of fore and aft movement and readily provides the means to horizontally displace the blade. Use of this lift truck with a cradle provides positive control of the blade since the cradle can be firmly secured to the platform. The cradle can include provisions for changing the blade from horizontal to vertical chordwise posi-If this blude handling concept is used, a sling tion. and an overhead hoisting method may be necessary to transfer the blade to ground handling equipment or storage containers. The Stanray lift truck is ideally suited for other maintenance tasks such as rotor blade inspection; APU removal, replacement, and servicing; engine removal and replacement; and cargo winch system maintenance. This unit is transportable by sling load to austere sites without disassembly but may require special high floatation tires for such service.
- Lift Trailer With Cradle Trailer-mounted scissors type lifts (similar to the Stanray unit but lacking the self-propelling feature) are available which can raise a platform to a height of approximately 40 ft (see Figure 21). A powered vehicle is required for towing and positioning this trailer. Use of the trailer with a firmly secured cradle provides positive control of the blade. The cradle must be designed to provide the capability for horizontal blade displacement and can be designed to include blade chordwise

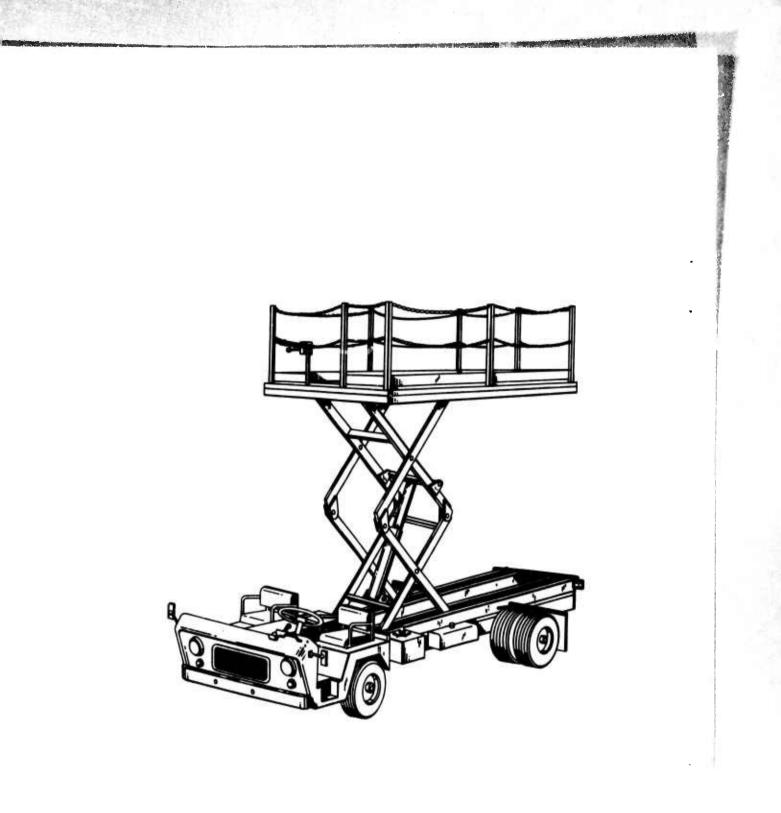


Figure 20. Stanray Lift Truck.

ALLAND A SALE TODAY STAR

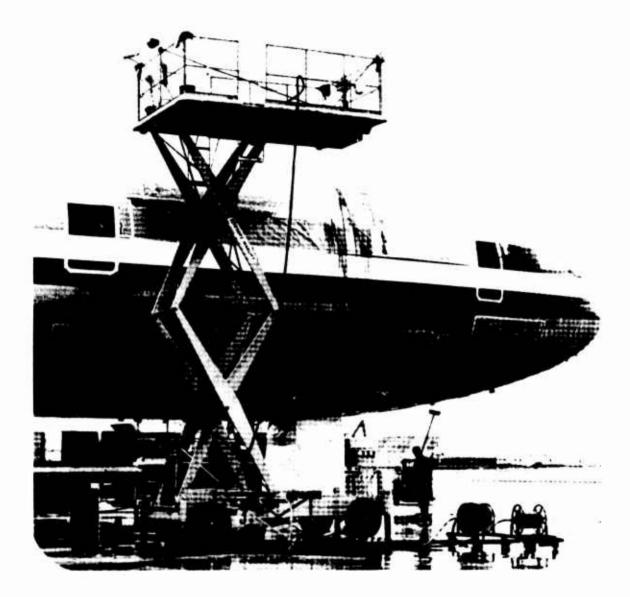


Figure 21. Trailer Mounted Scissors Lift (Selma Manufacturing Company)• position changes if required. With this concept a sling and overhead hoisting method is required to transfer the blade from the cradle to the ground handling equipment or storage container. The lift trailer can be used for performing maintenance in other areas of the aircraft. This unit is transportable by sling load to austere sites without requiring any disassembly.

Concepts for auxiliary items of rotor blade ground handling and storage equipment are as follows:

- <u>Blade Sling</u> A simple cable sling equipped for positive 2-point attachment to or cradling of the blade is suitable for use with a crane for most blade lifting and handling requirements.
- <u>Blade "Roll-Over" Sling/Cradle</u> A cradle/sling with provisions for blade "roll-over" (rotation about the longitudinal axis) is required for use in conjunction with the simple cable sling for certain blade handling operations. This cradle/sling provides the capability to change the chordwise position of the blade from horizontal to vertical and vice versa to facilitate blade placement in containers, racks, or workstands.
- Blade Cradle A cradle is required to provide support for the blade when forklifts or lift trucks are used for blade lifting and handling. This cradle could provide "roll-over" and/or horizontal displacement capabilities.
- <u>Reusable Shipping Containers</u> Reusable containers are required to protect the rotor blades during shipment. The containers could be multipurpose and serve such other functions as storage and handling. For example, the functions of the blade cradle described above could be incorporated in the shipping containers if such an approach were judged to be cost-effective.
- <u>Blade Dolly</u> A special blade dolly with provisions for holding four blades has been identified as suitable for blade transportation and storage. The dolly would be equipped with pneumatic tires and could be towed by standard tow vehicles.
- <u>Padded Flatbed Trailer</u> A standard flatbed trailer equipped with a padded rack to accommodate the blades can be used for blade transportation and storage.
- <u>Padded Blade Rack</u> A simple padded rack, fixed or skid-mounted, can be used for blade storage.

In view of the numerous equipment approaches which appear feasible for rotor blade lifting, handling, and storage, it is recommended that a more detailed analysis be conducted. This analysis should be based upon specific definition of HLH deployment requirements including base description, aircraft quantities, and predicted utilization rates. More precise equipment definition and cost analysis can then be performed to provide the most efficient and cost-effective system for rotor blade lifting, handling, and storage.

TWIN RAIL VERSUS FLATBED UTILITY TRAILER

A long-established matching rail system for handling aircraft components (Air Logistics Corporation) has been considered in the maintenance concept for the HLH. The system will use standard twin rail trailers of the type presently used for CH-47 and CH-54 maintenance, and special adapters for mounting transmissions, engines, rotor heads, and the cargo winch. Additionally, for maximum utility, shop maintenance areas and storage areas would be set up with twin rail workstands and storage stands matched to the standard trailers. Components can then be rolled from trailer to workstand and vice versa with no lifting required. Functionally, the removal/replacement operation for any component would entail securing a special adapter on a trailer, moving the trailer to the location of the component, lifting the component onto the adapter and securing in place, and finally moving the trailer to the area for unloading, either at the aircraft where the component would be hoisted from the adapter for installation, or at a shop/storage area where the loaded adapter would be rolled from the trailer onto a stand, or where the component would be lifted from the adapter into a storage container. Figure 22 shows the twin rail trailer and a transmission adapter currently used for the CH-47 helicopter.

The twin rail system is most practical at a relatively permanent maintenance complex where extensive shop buildup and/or repair is accomplished. Application is far less practical where only removal/replacement operations are performed. For example, where little or no preinstallation buildup is required, intermediate component handling is eliminated if the component is lifted directly from the shipping container for aircraft installation. On the other hand, if buildup is required, the twin rail trailer and adapter can serve as a buildup stand and also provide a convenient means of transferring major components from shop to aircraft while eliminating any in-shop lifting requirement.

There are certain considerations which preclude total application of HLH component ground handling and shop buildup requirements to the twin rail concept. For example, the configuration and dimensions of the HLH combiner transmission permit adapter

Figure 22. Twin Rail Transportation Trailer.

design so that the transmission can be cradled between the rails of the 48-inch (rail spacing) trailer. On the other hand, the forward and aft rotor transmissions are too large to be suspended between the rails of the 48-inch trailer or workstand. This complicates adapter design, results in an undesirably high center of gravity for the towed load (the full 101 in. height of the transmission and rotor shaft must be supported above the 38 in. rail height of the trailer), and makes use of the twin rail trailer or workstand impractical for most repairs and buildup.

A number of alternate approaches are feasible. These include design of special transportation and/or workstands and dollies, use of special adapters with existing flatbed utility trailers, and use of shipping containers for multipurpose application (shipping, storage, transportation, and buildup). Each of these approaches offers some advantage over the twin rail concept -- especially with respect to optimizing access to the component for buildup and/or repair. However, each of these approaches, with the possible exception of the flatbed trailer, will probably entail more new design and the fabrication of more new equipment than would be required by total commitment to the twin rail concept.

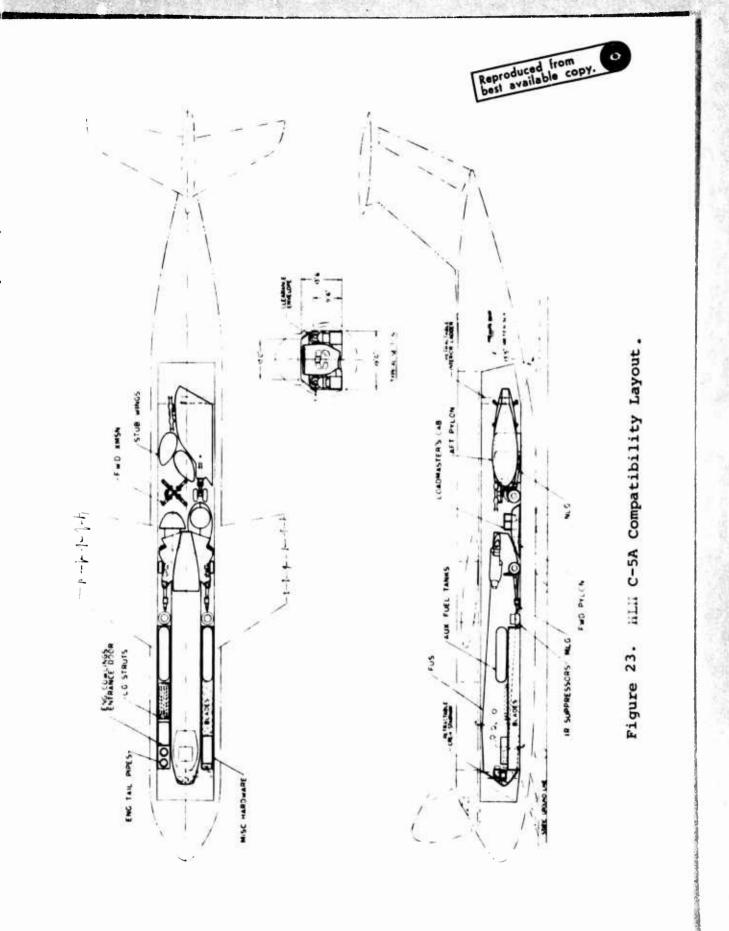
Since the twin rail system is a proven, available, and acceptable transportation and maintenance approach, it is recommended that aircraft deployment, component transportation, and shop support requirements be evaluated in detail to determine the most practical and cost-effective concept for HLH application, whether it be total use of twin rail equipment or some mix of special new items and twin rail items.

RELATED EQUIPMENT

AIR-SEA_TRANSPORTABILITY

Mobility exercises have proven the value of fast, efficient air transportability capability for weapons systems. In addition, there has always been a need to transport equipment via open deck ships or aircraft carriers.

Past experience with helicopter air transportability exercises has shown that thorough analysis and planning is required in order to achieve aircraft disassembly, loading, unloading and reassembly objectives. A key factor in developing an air transportability capability is the design of the GSE required to support and transport the major disassembled sections of the aircraft.


Shipboard transportation, by comparison, does not generate requirements for large cradles and adapters to support major sections of the aircraft. It does, however, require that special emphasis be placed on environmental protection of the aircraft for corrosion control, since in many instances aircraft are stored on open decks subjecting them to a constant bath of salt water spray.

In view of the foregoing, it is recommended that a comprehensive study be conducted of HLH air-sea transportability requirements to define the equipment necessary to perform the following operations:

Disassembly

In order to meet the C-5A air transportability requirement (see Figure 23), the aircraft will be disassembled into the following major sections/components:

Fuselage Forward pylon Rotor hub and transmission Aft pylon including rotor hub and transmission Loadmaster's cab Forward landing gear Each main landing gear Stub wing and fuel cells as a unit Rotor blades Auxiliary fuel tanks (if installed)

In addition, the following components will be removed from each outboard engine:

IR suppressor Nacelle aft cowling sections Tail pipe

A large hoisting device, a ground tow vehicle, slings and handling adapters, fuselage jacks, and transportation dollies/skids will be required for the disassembly operation.

Loading and Securing

It is anticipated the loading operation will be accomplished using standard equipment such as towing bridles, tie-down chains, aircraft installed winches and ground tow vehicles.

• Unloading and Reassembly

The equipment used for disassembly and loading will be satisfactory for all unloading and reassembly activities.

• Preservation - Depreservation

This requirement can probably be satisfied by existing equipment.

• Environmental Protection

Special covers and/or processing are recommended for the entire aircraft and/or sections depending upon the transportation mode and the degree of component exposure.

A number of the above items are currently available in the military inventory or commercially; however, the disassembly, lifting, and handling requirements for air transportability generate demands for unique equipment. Therefore, certain slings, handling adapters, and dollies/cradles will be new equipment. An in-depth study of HLH transportability and deployment requirements will identify the unique equipment requirements and provide cost and lead-time estimates.

SHIPPING CONTAINERS

Reusable shipping containers for high-cost aircraft components have usually been designed and developed to solve packaging and storage problems for those components. Hence, the primary purpose of the container has been to provide a protective device for shipping and storing the component. An alternate approach to the above concept is the development of reusable containers for multipurpose use -- for example, use as handling/maintenance adapters in addition to the principal function of providing component protection during shipping and storage. Advantages of this approach are:

- <u>Reduced maintenance time Removing a large component from a shipping container to a workstand or handling adapter normally requires a two-man crew for a period of approximately 1 hour. By using a container designed for use as a maintenance stand, this time could probably be reduced by 50% since the only action required would be removal of the container lid.</u>
- <u>Reduced logistics cost</u> Multiple-purpose containers would reduce the total logistics cost of the weapon system by eliminating certain items of ground support equipment.
- More efficient handling of components Components could be transported to and from the aircraft and transferred directly from the container to the aircraft, thereby reducing the handling operations and maintenance time currently required for use of special adapters and workstands.
- <u>Improved safety</u> The chances of injury to personnel and damage to equipment would be reduced through the reduction in component handling requirements.

The above advantages must be weighed against any added cost for design, development, and procurement as compared to the cost of the traditional-type shipping container. A primary consideration is that the increase in container functional application must be accomplished with relatively little increase in container cost, since component protection will remain the primary function of the container.

It is recommended that reusable shipping container requirements be evaluated and the designs developed concurrent with GSE design to provide a thoroughly integrated approach for all major component shipping, storage, handling, and buildup/teardown requirements.

CONCLUSIONS AND RECOMMENDATIONS

This preliminary study has provided an opportunity to analyze GSE requirements concurrent with initial configuration definition of the HLH aircraft and ATC design. This early analysis has facilitated incorporation of maintenance considerations into the aircraft design and has virtually eliminated the need for complex new items of GSE.

Only the aircraft-mounted hoisting device for removal and replacement of major components and the blade fold GSE (both requirements identified in the Aircraft System Requirements Document) are especially unique when compared to existing support equipment of the same types. Moreover, the dissimilarity is generally related to the size of the HLH components and not to technological differences. The remainder of the new GSE requirements identified fall primarily into the following categories: lifting and handling equipment, special hand tools, and test sets. All of these are sufficiently comparable to existing items to preclude the need for long lead research, development, and test.

It may be concluded, therefore, that the technology is in hand for the GSE required for the HLH subsystems included in this study. Advancement of GSE state of the art is not required. However, it is recommended that GSE requirements analysis be initated concurrent with HLH prototype development for those subsystems such as avionics, instrumentation, and the flight control system which are not included in this study. Moreover, the alternate equipment concepts, transportability equipment, and shipping containers discussed in the preceding sections of this report have a substantial impact on HLH life cycle GSE costs as well as downtime and availability when related to HLH deployment considerations. Therefore, the following recommendations are presented:

- An in-depth evaluation of HLH major component replacement requirements and hoisting equipment alternatives should be conducted and weighed against deployment considerations to identify life cycle costs for each alternative and to facilitate selection of the most effective hoisting approach consistent with HLH deployment requirements and aircraft design considerations.
- A thorough assessment of the blade fold requirement should be conducted to positively define the impact on aircraft design and the life cycle cost of equipment to perform this function.

- A comprehensive analysis of all Army aircraft maintenance requirements should be conducted to define the range of torque applications required and to identify/ develop equipment which will provide accurate and safe torque application with minimum human effort and simple low cost auxiliary equipment.
- A trade study should be performed to assess the cost and weight impact of aircraft-incorporated provisions for air-sea transportability and to permit timely evaluation and trade off of those provisions versus other equipment alternatives.

Each of the above considerations has an impact on the potential design of the HLH aircraft. Therefore, it is imperative that the recommended analyses be conducted early in the design development (at least concurrent with HLH prototype design) to provide timely cost assessment of each consideration and to permit selection of the appropriate design course at a time when hardware cost and impact can be minimized.

The other GSE analyses and trade-offs discussed in this report can be effectively accomplished Curing the course of subsequent HLH GSE selection and design processes.

APPENDIX I GSE REQUIREMENTS INDEX

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
1	1	D	Hoisting Device	Capacity 10,500 lb. Used to replace aft pylon.
2	2	D	Sling, Lifting Eye, Rotor Head	Capacity 8,100 lb. Used to replace rotor hub, transmis- sion, or quick transmission change unit (QTCU).
	3	с	Sling, Swash- plate	Capacity 400 lb. Used to re- place swashplate assembly.
	4	С	Sling, Rotor Blade	Capacity 800 lb. Used to re- place rotor blade.
	P5	С	Sling, Engine	Capacity 1,725 lb. Used to replace quick engine change package.
	6	С	Sling, APU	Capacity 400 lb. Used to re- place APU assembly (engine and compressor).
	7	с	Lifting Eye, Sling, QTCU or Aft Pylon	Capacity 10,500 lb. Used to replace QTCU or aft pylon.
	8	с	Sling, Stub Wing/Fuel Cell	Capacity 1,900 lb. Used to replace stub wing assembly.
15	9	D	Sling, Fuel Cell	Capacity 700 lb. Used to re- place fuel cell assembly.
	10	с	Sling, Nylon, Multipurpose	Capacity 1,500 lb. Used to replace any component in the weight range of 50 - 1,500 lb. Examples: boost actuators, lag dampers, generators, ATM, air-conditioning unit, etc.
	11	A	Bomb Hoist (Aero 14B)	Capacity 2,240 lb. Used to replace APU, cargo winch, engine package, etc.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	12	С	Adapter, Rotor Head	Capacity 2,950 lb. Used to support rotor head off air- craft. Possible use as a workstand.
	13	С	Adapter, Quick Transmission Change Unit (QTCU)	Capacity 8,100 lb. Used to support QTCU or transmission off aircraft. Possible use as a workstand.
	14	С	Adapter, Combining Transmission	Capacity 1,375 lb. Used to support combining transmis- sion off aircraft. Possible use as a workstand.
	P15	С	Adapter, Engine Package	Capacity 1,725 lb. Used to support engine package off aircraft. Possible use as a workstand
3	16	D	Dolly, Main Landing Gear	Capacity 1,000 lb. Used to remove, reinstall, and sup- port main and auxiliary landing gear off aircraft (includes wheel and tire assembly). Possible use as a transportability dolly.
	17	A	Dolly, Wheel and Tire Assembly	Capacity 375 lb. Supports wheel/tire assembly off air- craft.
3	18	D	Adapter, Engine Exhaust Device	Capacity 200 lb. Supports IR suppressor off aircraft.
	19	с	Adapter, Cargo Winch	Capacity 1,850 lb. Supports cargo winch quick-change pkg. Possible use as a workstand.
3	20	D	Adapter, APU	Capacity 400 lb. Supports APU/compressor assembly off aircraft. Possible use as a workstand.
	21	с	Transport Dolly, Aft Pylon	Capacity 10,500 lb. Supports and transports aft pylon. Must be towable by any vehicle.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
1	22	С	Transport/ Handling Dolly, Fuselage	Capacity 37,000 lb. Supports and transports fuselage.
	23	С	Dolly, Trans- port, Rotor Blades	Capacity 3,200 lb (4 blades). Must be towable by any vehicle.
	24	С	Transport Dolly, Left or Right Stub Wing and Fuel Cell Assy	Capacity 1,900 lb. Supports and transports subject assembly.
	25	A	Jacks, Fuselage (3)	Capacity two 20-ton; one 10- ton. Collapsed heights and extension lengths to be determined.
	26	A	Jacks, Wheel (3)	Capacity two 20-ton; one 10- ton. Collapsed heights and extension lengths to be determined.
	27	A	Trailer, Transportation	Capacity 8,100 lb. Used to transport components.
3	28	D	Adapter, Towbar	Adapts HLH landing gear for use with Standard Universal Towbar (Navy P/N 62A122J1-1, Model NT-4).
	29	D	Puller, Re- tention Pin, Rotor Blade	Needed to remove blade-to- rotor head attaching pins for blade removal and/or replace- ment.
	30	С	Tool Set, Blade Fold	Required to mechanically fold and secure the blades in the folded position.
	31	A	Wrench, Power Torque	Capacity 3,620 ft-lb. Re- quired for torquing major component hardware.
	32	A	Cleaning Equipment	Pressurized spray equipment to clean aircraft and compo- nents.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	33	С	Adapter, Cargo Winch Spool	Capacity 300 lb. Used to support replacement cable spool on transport trailer.
	34	С	Centering Blocks, Boost Actuator	Used to hold swashplate in position when centering/drive scissor arms are removed.
3	35	D	Adapter, Coupling Assembly Swivel Bearing	Used in conjunction with a standard arbor press to re- place swivel bearing on coupling assembly.
3	36	D	Wrench, Spanner, Swivel Nut	Used to remove and install coupling assembly swivel retaining nut.
	37	A	Maintenance Platform, Adjustable Height, Basket	Required to perform mainte- nance on airframe, rotor, and drive systems.
4	38	D	Wrench, Torque, 3/4-In. Drive	Used for high torque applica- tions of hardware throughout the aircraft.
	39	с	Sling, Combining Transmission	Capacity 1,375 lb. Used to replace combining transmis- sion.
5	40	D	Tiedcwn Line, Rotor Blade	Used to tie down rotor blades.
6	41	D	Hoisting Device	Capacity 3,000 lb. Required to replace components/assem- blies in the 500- to 3,000-lb weight class, i.e., rotor blade, engine package, rotor head, etc.
	42	A	Trailer, Utility	Capacity 3,000 lb. To sup- port and transport components assemblies in the 200- to 3,000-lb weight class.
	43	A	Hoisting Device	Capacity 500 lb. Required to raise and lower small compo- nents/assemblies too heavy for manual handling.

Note	Rqmt No.		Nomenclature	Description and Purpose
5	44	D	Positioning Device, Rotor System	Used to pre-position rotor head for blade folding, maintenance, etc.
	45	С	Adapter, Swash- plate	Used to support the swash- plate assembly off aircraft. Possible use as a workstand.
	46	A	Aircraft Tow Tractor	Used to tow aircraft.
	47	С	Sling, Cargo Winch Assembly	Capacity 1,850 lb. Used to replace cargo winch assembly.
3	48	D	Adapter, Fuel Pod	Capacity 1,200 lb. Used to support the fuel pod off aircraft.
	49	A	Dry Compressed- Air Unit	Regulated 0-200 psi. Used to inflate landing gear struts, tires, etc.
	50	D	Adapter, Engine Support Pylon	Capacity 2,500 lb. Used to support engine pylon and engine as a complete assembly
7	51	D	Sling, Engine Support Pylon	Capacity 2,500 lb. Used to replace engine pylon and engine as a complete assembly.
	52	D	Alignment Fix- ture, Drive System	Required to check alignment of drive system components following replacement of major fuselage sections.
	53	D	Adapter, Aft Fuselage	Capacity 1,200 lb. Used to support and transport aft fuselage section.
	54	А	Portable Hydraulic Servicing Unit	Required for servicing nose gear oleo strut with filtered hydraulic oil.
3	55	D	Sling, Main Landing Gear	Capacity 2,500 lb. Used to replace landing gear assembly.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
4	56	D	Wrench, Torque, 1/2-In. Drive	Used for torque applications of hardware throughout the aircraft.
	57	A	Ground Hydrau- lic Cart	Required for ground power and hydraulic system maintenance. 30 gpm at 3,000 psi required for each of the four systems.
	58	A	Portable Lube Oil Servicing Unit	Required to service main engine and APU with filtered lube oil.
1	59	С	Adapter, Load- Controlling Crewman's Pod	Capacity 500 lb. Should be designed to support, raise, and lower pod from aircraft and serve as a transport dolly.
	60	D	Sling, Aft Fuselage	Capacity 1,200 lb. Used to replace aft fuselage.
13	61	D	Gage, Winch Width and Depth Tra- versing Groove	Required for winch assy periodic inspection.
13	62	D	Lock Pin, Winch Drum	Required for winch assy periodic inspection.
13	63	D	Hand Crank and Indicator, Winch Drum	Required for winch assy periodic inspection.
	64	A	Wrench Set, Pitch Link Adjusting	Wrench type - 2-in. open end. Required to loosen and tighten pitch link adjusting locknuts.
	65	A	Press, Arbor	Required to replace bearings and bushings throughout air- craft. Force requirements undetermined.
	66	с	Adapter Set, Arbor Press	Used with arbor press for bearing and bushing replace- ment. Set must include a 2-15/16-india adapter for pitch link brg replacement.

a the set bubble a

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	67	D	Dial Indicator	Required to check various wear tolerances or clear- ances, i.e., pitch link bearing wear.
	68	D	Spring Scale	Used with dial indicator to check pitch link bearing wear.
	69	С	Lifting Tool, Generator	Required to facilitate re- moval and installation of the generator from the forward or aft transmission.
	70	D	Hydraulic Brake Bleeder Unit	Used for bleeding brakes. 10 to 20 psi of hydraulic pressure.
	71	С	Removal Tool, Wheel Brake Lining	Required for removing brake lining.
8	72	D	Portable Air Compressor	Required to inflate tires (109 psi).
	73	A	Battery Charger	Required to charge the air- craft battery in the shop.
	74	С	Wrench, Main Landing Gear Oleo Retaining Nut	Required to remove and in- stall the nut which retains the oleo strut assembly in the lower end of the main landing gear barrel.
	75	A	Gage	0-25 psig type GMU-25/E, FSN 4935-793-1677 AC or equivalent. Required for troubleshooting ECU.
	76	A	Multimeter	AN/PSM4C, FSN 6RD 6625-893- 3779 TANN. Required for troubleshooting ECU and electrical systems.
	77	A	Power Source	28vdc required for trouble- shooting ECU off aircraft.

Note	Rqmt No.		Nomenclature	Description and Purpose
	78	A	Pneumatic Source	50 psig at 20 lb per min. Required for troubleshooting ECU off aircraft.
	79	С	Wrench, Nose Landing Gear Oleo Retaining Nut	Required to remove and in- stall the nut which retains the oleo strut assy in the lower end of the nose landing gear barrel.
	80	С	Assembly Fix- ture, Pitch Link	Required to adjust the pitch link to its nominal length and to establish correct rod end bearing angular relation- ship.
3	81	D	Lock Device, Oleo Strut	Required to prevent oleo from extending when supporting aircraft on fuselage jacks. This would enable the air- craft to clear the ground with a minimum of vertical movement.
	82	С	Sling, Air- craft	Required to lift complete aircraft. Sling capacity 60,000 lb.
	83	A	Crane	Capacity 60,000 lb. Required to lift complete aircraft.
13	84	D	Adapter, Dynamic Absorbers	Required to support two dynamic absorbers. Must fit a standard twin-rail trans- portation trailer.
13	85	D	Folding Step- ladder	Required to permit mainte- nance personnel to work on underside of HLH. Working height varies from 8 to 10 feet.
	86	A	Towbar	Required for ground handling.
5	87	D	Tiedown Chains (Heavy Ɗuty)	Required for securing air- craft in high wind condi- tions.

Note	Rqmt No.	Class	Nomenclature	Description and Durness
				Desription and Purpose
5	88	D	Tiedown Cables or Nylon Straps	Required for securing air- craft under normal condit- ions.
	89	A	Ground Power Unit, Elec- trical	AC electric power unit, 60 kva, 3-phase, 115/200vac, 400 Hz, required for func- tional check of aircraft electrical systems.
1	90	С	Protective Cover Kit	Required to provide protec- tion for aircraft during shipment, storage, or under adverse environmental conditions.
	91	A	Long-Handled Scrub Brush	Required for external clean- ing of the aircraft.
	92	D	Water Hose and Nozzle	Required to wash aircraft. Estimated length needed is 200 ft.
12	93	D	Adapter, Forward and Mid Fuselage	Capacity 26,200 lb. Required to support and load forward and mid fuselage into C-5A for air transport.
	94	D	Vacuum Cleaner	Required to clean interior of aircraft.
	95	A	Contact Insertion Tool	Required to repair electrical wiring.
	96	A	Contact Ex- traction Tool	Required to repair electrical wiring.
	97	A	Crimping Tool	Required to repair electrical wiring.
	98	A	Ty-Rap Tool	Used to repair electrical wiring.
	99	A	Heat Gun	Used to repair cleatrical wiring.
	100	A	Insulation Tester	Used to check electrical wiring during troubleshooting or following repair.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	101	С	Test Set, Dynamic Absorber	Required to tune and test the dynamic absorbers during re- assembly. Power supply required: 115/120vac, 60 cps.
4	102	D	Torque Wrench	3/8-in. drive. Required to ensure accuracy in low torque applications of hardware throughout the aircraft.
	103	с	Towing Bridles	Required to load disassembled HLH into transport aircraft. Lengths and capacities to be determined.
	104	с	Adapter, Pitch Housing Cross Beam Assembly	Capacity 280 lb. Required for replacing pitch housing cross beam assembly.
	105	A	Tensiomet∶r, Cable	Required for checking tension of cargo handling system cables.
	106	D	Fueling Truck	0-300 gpm, 0-50 psig. Equipped for pressure fueling of aircraft.
	107	D	Fueling Truck	0-50 gpm per nozzle. Re- quired for gravity fueling of aircraft.
	108	D	Ladder	20 feet high. Required to permit mechanic to reach pressure fueling point on stub wing which is approxi- mately 17 feet above the ground when landing gear is in extended position.
	109	A	Iressure- Reducing Regulator	Capability 0-2.2 psi. Re- quired to regulate air or gas pressure inside fuel cell during pressure testing.
	110	A	Water Manometer	Range 40 to 70 in. of water. Required to detect loss of pressure during fuel cell pressure test.

Note	Rqmt No.		Nomenclature	Description and Purpose
	111	A	Tester, Fuel System Test and Calibration	Required to calibrate the fuel quantity indicating system.
<u> </u>	112	D	Mobile Electri- cal Power Unit	Required to furnish an exter- nal source of electrical power for maintenance power requirements.
	113	A	Meter, Explosion	Required to inspect fuel cell interior for level of fuel vapor concentration to insure safe conditions for mainte- nance.
	P114	С	Engine Adapter, Bomb Hoist	Capacity 1,800 lb. Required to position and support the bomb hoist for removing and installing all engine assem- blies.
	115	С	Lightweight Maintenance Davit	Capacity 500 lb. Required to support a lightweight hoist for removal and in- stallation of components.
	116	A	Wrench, Cable Cutter	Required to remove and re- place the cable cutter assembly.
	117	A	Maintenance Stand	Adjustable height, 5 to 13 ft. Must be capable of sup- porting two men plus a tool- box. Required to perform maintenance on cargo hoist system and other aircraft maintenance on the underside of the fuselage. FSN 1730- 894-2826.
	118	с	Adapter Set, Rotor Trans- mission Mounting Bolts	Capacity 3,620 ft-lb. Con- sists of a torque reaction fixture and adapter to be used in conjunction with a power torque wrench (GSE Item No. 31) for torquing rotor transmission mounting bolts.

Land and

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	119	A	Hoisting Device	Capacity 8,100 lb. Used to replace rotor blades, rotor heads, transmissions, and QTCU. Hook height with LG in extended position, 42 ft 5 in. Hook height with LG in normal position, 36 ft 5 in.
	P120	С	Depth Gage, Torquemeter Pickup	Required to determine shim requirements to maintain the proper clearance between the torquemeter shaft exciter teeth and the pickup face.
	P121	С	Test Set, Torquemeter Runout	Required to perform torque- meter runout check and a calibration check on the torquemeter indicator. Ex- ternal power is not required for this maintenance require- ment.
	P122	с	Test Set, Thermocouple	Power requirements, ll5vac, 60 cycle. Required to check deteriorating, shorted, or heat-damaged thermocouple.
	P123	с	Test Set, Electrical Components	Power requirements, 24vdc. Required to check operation of engine electrical system components and to use as an aid in troubleshooting the engine electrical system.
	P124	с	Rigging Fix- ture, Variable Vane	Required for rigging the variable vane mechanism.
	P125	С	Trim Fixture	Required to ensure proper operation of the fuel control following replacement.
	P126	A	Borescope Kit	Required to perform inspec- tion of internal engine parts and components.
	P127	С	Plug, Shorting, Permanent Magnet Generator (PMG)	Required to prevent damage to the PMG during maintenance.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	P128	С	Adapters/ Nozzles, Engine Wash	Required for internal washing of the engine.
	P129	С	Adapters/ Nozzles, Compressor Cleaning	Required for internal clean- ing of compressor section of the engine.
	P130	С	Adapter, Lifting, Com- pressor Case Half	Required to remove and in- stall the compressor case half section.
	P131	С	Puller, Low- Pressure Turbine Oil Tube Filter	Required to remove the low- pressure turbine oil tube filter for cleaning and inspection.
	P132	С	Puller, Accessory Gearbox Seal	Required to replace the accessory gearbox seal.
	P133	с	Puller, Fuel Pump Drive Oil Seal	Required to replace fuel pump drive oil seal.
	P134	с	Adapter, Accessory Gearbox Assy	Required to adapt the acces- sory gearbox assembly to the universal component stand.
	P135	с	Component Stand, Universal	Required to support major sections of the engine.
	P136	С	Adapter, Combustor Assembly	Required to adapt the com- bustor assembly to the uni- versal component stand.
	P137	с	Adapter, Power Turbine Assy	Required to adapt the power turbine assembly to the uni- versal component stand.
	P138	С	Test Set, Elec- tronic Control and Power Man- agement, with Adapter Cables	Required to functionally check (static and dynamic) the electronic control system and Power Management Control System (PMCS).

•

.

Note	Rqmt No.	Class	Nomenclature	Decarintion and Durness
Note	NO.	Class	Nomenclature	Description and Purpose
	P139	С	Rigging Pins (2 each)	Required to rig the inlet guide vanes and fuel control.
	P140	С	Adapter, Socket, Gas Generator Rotation	Required to rotate internal components of the engine in order to permit complete borescope inspection.
	P141	С	Trim Fixture, Remote	Required to perform remote engine trimming following fuel control replacement or other related maintenance.
	P142	С	Test Set, Fuel Control Com- pressor Variable Geometry (CVG) Position	Required to check the com- pressor variable vane position and fuel control system pressures.
	P143	С	Wrench, Spline, Low-Pressure Turbine Rotor Coupling Nut	Used to remove and/or inspect the low-pressure turbine assembly.
	P144	С	Puller, Low- Pressure Turbine Coupling Nut Lock	Used to remove and/or inspect the low-pressure turbine assembly.
	P145	С	Adapter Set, Power Turbine Support	Required to support the power turbine unit in the universal component stand.
	P146	С	Fixture, Setting, Power Turbine Rotor Axial Position	Required to accurately locate the axial position of the power turbine prior to remov- al in order to ensure correct position on reinstallation.
	P147	с	Wrench, Spanner, Power Turbine Rotor Bearing Retain- ing Nut	Required to remove and install the power turbine assembly.
	P148	с	Holder, Power Turbine Rotor	Required to remove and install the power turbine assembly.

Note	Rqmt No.	Class	Nomenclature	Description and Purpose
	P149	С	Holder, Power Wrench to Power Turbine Rotor	Required to remove and in- stall power turbine assembly.
	P150	С	Adapter Set, Power Turbine Removal (on aircraft)	Required to remove and re- place power turbine unit on aircraft.
	151	С	Wrench, Spanner, Rotor Blade Retention Pin Nut	Required to remove the nut which secures the rotor blade retention pin in the rotor head.
	152	С	Wrench, Anti- rotation, Rotor Blade Retention Pin	
	153	С	Guide Pin, Rotor Blade Retention Pin	Required to facilitate re- moval and installation of the rotor blade retention pin.
	154	С	Test Set, Supervisory Panel	Required to perform a fault- isolation check of super- visory panel to locate defec- tive module(s).
	155	с	Test Set, Ice Protection Systems	Required to fault-isolate and test anti/deicing systems.
	156	С	Test Set, Master Caution Panel	Required to fault-isolate any of the master caution panels for defective module(s).

NOTES

Required for transportability

Deleted, combined with Requirement No. 7

Deleted due to design change

Deleted, considered to be a standard item

NOTES - Cont.

5 Deleted, considered to be a flyaway item Deleted, Requirement No. 11 or 119 will satisfy this need D Deleted, not a planned requirement for organizational or direct support (a) (a) (a) Deleted, combined with Requirement No. 49 Deleted, combined with Requirement No. 54 Deleted, considered to be base equipment, not aircraft equipment Deleted, combined with Requirement No. 89 Deleted, No. 22 satisfies this requirement Deleted, reanalysis indicated this requirement is not needed Deleted, not needed, combined with Requirement No. 83 Deleted, combined with Requirement No. 8 CLASS LEGEND A = Existing equipment available to meet the requirement B = Existing equipment requiring modification to meet the requirement C = Equipment not available, will require new design and development D - Deleted NOTE : The letter P preceding a number denotes a powerplant requirement.

1 HLH GSE REQUIREMENTS/SYSTEM APPLICATION MATRIX AAAAA 44 A 1 - mm 12 - 1177. ere de che - en Mere Als socialitationaries A 44 6 4 SYSTEM - COMPONENT - 1488 AIFFAME SYSTM Aft Fylon - 1 Dour Fyt Clamabell Dour Stud Mind Engine Fylon Clambell (Ing Frd Penghilam Akaobet Praelaiam Asgy Hoise Engine Asgy Prop Act for Set Ast Fanap Prop Act for Set Asg Act For Act For Set a à 1.115 1.52 X ····· LANDING GRAN SYSTEM MCC Dieu Strait HOBE Ldg Gr Assy Main Ldg Gr Assy MCC Support Brace MCC Bieu Strait MCC Brake Assy Wheel Kasy Tire Tron staften potor Blada Botor Blada Botor Hab Washplata Aray Upper Cortrols Pitch Housing/Cross Dean Aray Crossbean Aray Krosing Condition Maring Condition E Sensor Hennot CARCO HANDLING SYSTEM Minch Anay Coupling Anay Control Panal Fosition Lock Ind Noist Drive Assembly Cable Cuttor Anay Suble Lyse Assembly Load Teolator Huspension System A ķ ł -.....**A**..... APU SYSTEM APU ARBY I. DRIVE SYSTEM Combining Kaun Aft Kaun Forward Xman Rapidant Hystem Engine (Outboard) Engine (Center) Air Part, Sep Mo. 1, ÷ž Englan (Cunter) Hopers Sepi Ma. 1 Hopers Sepi Ma. 1 Hopers Sepi Ma. 1 Hopers Sepi Marnes Hopers Sepi Marnes Hopers Sepi Marnes Actuator Marchanes Actuator Personent Regnet Set Compressor Oll Yube Pilter Comparation Comparatio Electrical Control §14 Inlat Guide Vasse AIR CONDITIONING PRESSURE SURPACE ICE SYSTEM Envil Control Unit CHE Filter ELECTRICAL POWER SUPPLY SYSTEM Generator (Aft Att) Mtd) Generator (Aft Xman Generator (Aft Kman Ntd) Generator (Ped Kman Ntd) Eattery Exforior Lighta Alzeraft Wiring Fower Supply System Power Hupply System Promotic Ventum TiC Promotic Ventum TiC Profile Supply Distribution ATD Unit (Pud byton) ATD Unit (Pud byton) ATD Unit (Pud byton) Pill Reduile With Profile State Note of State Pill Action Note of State Pill Action Pill System Pill System Pill System Pill System Pill System Pill System 1 FUEL SYSTEM Fuel Cells Fuel Quantity Ind Sys

APPENDIX II

Preceding page blank

APPLICATION MATRIX

E	1	11	HÀ	min		+	YY	de la	.1	1	1					+	łf	A.	-1-1	-5		A-				-	•	-	he)		4												_																									
1220		5 %.4	- 25	1	-			di:	31		1	11	-	t	-		1	-		-	14	1	1		120	100	1	192	1	1	1	11	1	1	1114	100						1	2.1								-	33]															
4																	*								1				1	1	11																																					
					1										1					1								1	1		11			1						1			11	1	1			1																				
					H	11	1	1					ļ	H	1					1						c	li	H	11	1	H							ļļ		ļļ	ļļ	ļ	1	H	1	11	11																					
		•			1	11	li						1	ii	H			K	1	×					-	H			1	1	1					1	1	i		ļļ	ļ	1				H	1	ļļ																				
::::					1	ļ	#	#					1	H	#	ļ	t	Ĵ	1	ļ				1	Ľ	ļ		1	ļ	l						1	1	1	ļ	İ.	11	1	1,	li	ļ	1	ļ,	11	1				1															
						H	H	ļ	• • •				ļ	t	t.	1			1	1						t	ļ									i	ł		li		H			H	li		ti	1				Į.																
3		N																*																A																																		
5					1								11						1						ł	li		#						MAC 1						H					H					ek:	4																	
111	Ħ	Ħ	Ħ		Ħ	Ħ	Ħ	*	14		-		Ħ	Ħ	P	1	T		Ħ	Ħ	+	1	Ŧ	H	Ħ	**	c	Ħ	H	1	ľ	Ŧ	ii	Î	1	l	1	1		Ħ	1	H.	H	11	H	11	1					1	1							LLG	GFN	0						
					1	II	1	ľ							1				ļ	11		1	1	1	ļļ		2	1	ļļ	ij	1			1	1	l	11		1		li	1	Ľ	1	11	1	1	lİ							488 A													
ŧ	¢		#		H	H	ŧ						H	÷	ii				H	h		ł			t	H											h																		ARE D													
					1	H	l			1					1					l	1	Ì			H		li	1	ŧ	ij					H	1	H									1									ABS C											16.8.7	g n	eng
AI.			+			1	#					H	H	#	#	l.		-		H		-	-	H	#	-	łł	1		11		+	A							ļ			1		1	ļļ	4				=	-	1	Er	- Hequ - Dele	eted	- 0	Inel	bine	d wi	ith	He	qui		nn t	,		
			11			11	II						1	11	1	I			I	11	1	1	1	11	II	11	1	1	I	1	1				11	11	1	1		II	11		li	11	1	li	1	11			1	1			> Dele > Dele									sta	nd ø	4.4	tes	
					Ħ	1							H	H	H				1	h	1		#	H	#		ŧ	H	ļ	1				4	ļļ		1			H	H				1	ł.	1	1			1		11.2		> Dele		- 1	Reg	uire	ment	t 1	1 0	z 1					
		III	ti		li	Ħ	I						l	I	1				Ĩ	İ.	1		H	l	l	1	H	ij	ł					24	I	Ħ	ļ				İİ		1	H	H	1		l			1			\square	≻ De la	sted				lann				ren	ent rt i	for	ort	
Î	H	##			ij	11				1			H	H	Ħ			1	į,	H	IJ		H	Ħ	ļļ	Ħ	ij	H	ļ,	1	Ш	5		1	H	ļ	H			H	Ħ	1		1	H	11	ļ,	1			11	ŧ	1	D	- De la	eted	- 0	Com8	bane	d wi	1 t h	Re	qui	1 e m	en t	49		
2		Ħ			#	Ħ							Ħ	H	H					1	1		11	li	į.	ł	ţ	1	11		11	1		1	İ	li	1					1			H	ī.	4			1	1		11.2	-	- Dele												nt	
111				I	Ħ	Ħ	I					I	Ï	I	Ħ	I		1	Ħ	H	I	Ì	H	Ħ	ļ			11	Ţ					1	44	Į	I				I	I		I	I	1	I			1	1		71 S		» Dele » Dele			legi	utre									
		HI.			ii.	1			t			Ħ	Ħ		÷			1	H	ł	#	Ħ	È	1	ł;		H	Ħ	H	11				1	ł	ij	ł,	ų,	÷	:+				H		4					H	ł	ł	1	≃ Dela	stod						dic s n	ate ot	d t nee	net fed	սել	•	
				1									11										1		1	11		H									1111		3		4				P		 					ł	21 - Z		- Dele													
		111 										::	**							***			11	#		;;		***		•••		1														×	374			1				NOT	i Th po	be le Gwerp	ette plan	nt F	P pi requ	eced Srew	11 ns Meni	g # t.	nu	nbe	r de	not	••	•
311		111	11	1	1							ï	29	44	10			11	::	11	1	1		Ë	li	H	H	11	÷	1		1500		li	11		1		1		i	1		İ.	11	+++++++++++++++++++++++++++++++++++++++				ij	li																	
	1	••••	***	++	**				-		•	1				-			11	1.		•••	1.	1		-	•••	1					+	+	+	++		+						t	1					-	ł	1																
		1			II.			Ľ		i.	- +	t	-	ť				Ľ	t	Ì.	1	Î	•••	•	t	Ì	•••		1	į.		1	t	İ	1	1	1		Ť	t			Í.	Ħ	1	1		Ì	Ť	1	t	Ť																
				1:	· · ·	• •	• •							ŧ		-			1			* * *	eo	00	181			***								**										1.1.1				+ + + + + + + + + + + + + + + + + + + +	11M																	
: :		· · · ·			• • •	* *	• •			+			11					11111							11111										****																++++++																	
A		****				•••						**					3	1	1	1	* *	•	**		**	1						1		11	1														1	1																		
<u>^</u>					• • •		•••						1	-+-				1				1			1	1	1					-		10	11	1	11				1						3		11			1																
-++		1:1	1			• •		Π.		1.1								12.5	11	10	1	10			12	11.			l.			1		1	i.	2.1		14												ii.	.1	1																
	++	11!		4.	ļi,	.,	11	ļ.,		4.4		11	1	11					1	1 1	• •	+ +			• •	4 1	• •								• •		£ + -							10	1		0.0			- 1	-																	
11111	123	1 1 1	335	:: :: ::	17.9	19:	112		35	104		id;	i.	+ + []	129	4-4	14		- 	123		1	e i u i u i u i u i u i u i u i u i u i		1.00	102	Ä	100	100	011	11	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		- ÷	1714	1	P. 46	12.4	6114	1114	- Pird	P. 15	213	- 5114			54.4	P.4.	2144			i de la como																

APPENDIX III NEW EQUIPMENT DESCRIPTIONS

New Equipment Requirement (Supplemental Information)

Sling, Swashplate

HLH GSE Item No. 3

A sling for lifting the HLH swashplate assemblies (both forward and aft) during installation/removal operations is required.

In concept, the sling will be similar to the CH-47 sling (114E5852), except that four lift cables (approx 60 in. long) will be used, with attaching fittings for each of the pitch link lugs on the swashplate. Each cable will be attached to a lifting plate containing a lifting eye for a hoist attachment. Design will provide for lifting approximately 500 lb.

Sling, Rotor Blade

HLH GSE Item No. 4

A sling for handling the HLH rotor blades (both forward and aft) during installation/removal operations is required. It must be capable of hoisting single blades (weight 800 lb).

In concept, the sling will be similar to the CH-47 sling (114E5911) to support a blade 46 ft long, with a 38-in. chord. Two cradle assemblies with manually operated latching devices, spaced approximately 14 ft apart on a spreader beam with a center lift eye, will make up the sling. Pads under the cradles will provide for positioning a loaded sling on the ground.

Preceding page blank

New Equipment Requirement (Supplemental Information)

Sling, APU

HLH GSE Item No. 6

A sling is required for installation/removal operations of the auxiliary power unit (APU) and the attached pneumatic power compressor. Total weight to be lifted is approximately 400 lb.

In concept, the sling shall be similar to the CH-47 sling (114E5924). It shall consist of a spreader bar, from which four short cables extend to attachment points on the APUcompressor assembly. Quick-release pins shall be provided. A center lift eye shall be provided on the spreader bar for attachment of a lift hook.

Lifting Eye/Sling - QTCU or Aft Pylon

HLH GSE Item No. 7

A lifting eye is required for lifting the forward and the aft transmissions, the Quick Transmission Change Units (QTCU's), and the aft pylon. Multipositions must be provided for the lift hook to permit lifting of components in proper attitudes during installation and removal operations.

In concept, the hoisting eye is similar to the CH-47 hoisting eye (114E5902). Lifting will be accomplished by interface with the internal threads of the transmission rotor shafts. Design will provide for lifting approximately 10,500 lb. New Equipment Requirement (Supplemental Information)

Sling - Stub Wing

HLH GSE Item No. 8

A sling for hoisting the stub wings (L/R) and the fuel pods (L/R) is required.

In concept, the sling will be similar to the CH-47 sling (114E5903), except that three lift cables (approx. 72 in. long) will be used. Each cable will be attached to a lifting plate containing a lifting eye for a hoist attachment. Design will provide for lifting approximately 3,700 lb.

Multipurpose Nylon Sling

HLH GSE Item No. 10

A sling for lifting miscellaneous components of the HLH during installation/removal operations is required. These components, including boost actuators, lag dampers, generators and the air conditioning unit, weigh in an approximate range of 50 to 500 lb.

For maximum adaptability in this multipurpose function, this sling shall consist of a nylon mesh net approximately 36 in. square, suspended by four nylon cords from a single lift ring. Lift ring and cords will be arranged in a manner similar to the HLH sling-combiner transmission.

New Equipment Requirement (Supplemental Information)

Adapter, Rotor Head

HLH GSE Item No. 12

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and providing for mounting one rotor hub assembly, consisting of the hub, pitch housings, and lag dampers.

In concept, the adapter shall be similar to the CH-47 rotor hub adapter (114E5840). One stub rotor shaft, centered on the adapter, will be provided for locating the rotor hub assembly. Support and securing devices will be provided for the four pitch housings, which will be positioned at 45° to the fore/aft axis of the adapter to minimize overhang. Design will accommodate a weight of 2,500 lb for the rotor hub assembly.

The adapter will be mounted on four airlog adapter single rollers (Model 2550), spaced for an airlog trailer with 60-in. track spacing. The adapter is an element of the component handling system proposed for the HLH.

Adapter, Quick Transmission Change Unit (QTCU) HLH GSE Item No. 13

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and containing mounting provisions for the forward and aft transmissions. Adapter design will provide for assembly buildup of QTCU's, with allowances for work area and position, safety for personnel, and handling stability for the assembly and equipment.

In concept, the adapter shall be similar to the CH-47 adapter assembly (114E5871). The HLH adapter will be considerably larger and heavier than the CH-47 adapter to accommodate a mounting pattern extending 62 in. center-to-center in the fore/aft direction, 65 in. between centers left to right (forward) and 53 in. between centers left to right (aft), and an approximate load of 8,200 lb. Basic structure will be steel, rather than aluminum alloy.

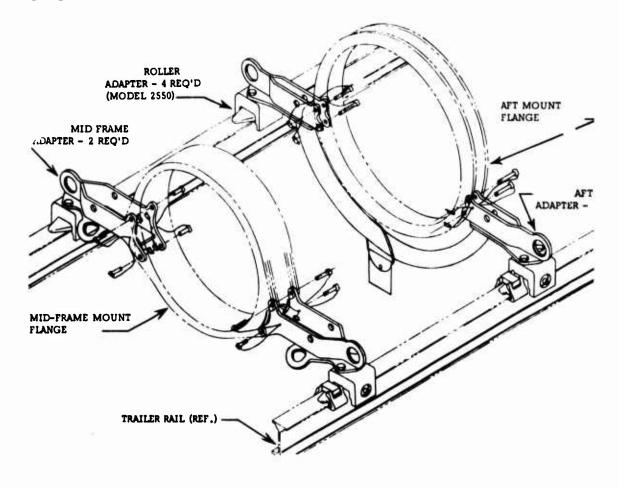
The adapter will be mounted on four airlog adapter single rollers (Model 2550), spaced for an airlog trailer with 60-in. track spacing. This adapter is an element of the component handling system proposed for the HLH.

Adapter, Combiner Transmission

HLH GSE Item No. 14

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and containing mounting provisions for a combiner transmission. It is required for assembly buildup and transportation of the combiner transmission.

In concept, the adapter shall be similar to the CH-47 adapter mix box (114E5888-1). The HLH adapter will accommodate one combiner transmission weighing approximately 1,400 lb, and will provide for each of four mounting points located in a rectangular pattern measuring 20 in. between centers in the fore/aft direction and 22 in. between centers left to right.


The adapter will be mounted on four airlog adapter single rollers (Model 2550), spaced for an airlog trailer with 48-in. track spacing. The adapter is an element of the component handling system proposed for the HLH.

Adapter, Engine Package

HLH GSE Item No. 15

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and providing for mounting one engine package. The adapter is required for transporting the engine and for use as an assembly buildup workstand.

The adapter concept shall be as shown in the shetch below. Four special mounting adapters will be attached to airlog adapter single rollers. The mounting adapters will be designed to attach to the General Electric TF-34 Engine with quick attachment devices. The adapter-engine package will be used with an airlog trailer with 60-in. rail spacing. The adapter is an element of the components handling system proposed for the HLH.

Adapter, Cargo Winch

HLH GSE Item No. 19

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and providing for mounting one cargo winch (Quick Change Package). The adapter is required for transporting the cargo winch and for use as an assembly buildup workstand.

In concept, the adapter shall be similar to the CH-47 mix box adapter (114E5888) with a rectangular frame mounted on four airlog adapter single rollers (Model 2250) spaced for an airlog trailer with 60-in. track spacing. Two rails for mounting the cargo winch cradle will be positioned on cross members attached to the top of the adapter frame. The rails will be approximately 60 in. long to support a cargo winch buildup approximately 50 in. long, 50 in. wide, an overall height of 45 in., and a weight of 1,850 lb.

The adapter is an element of the component handling system proposed for the HLH.

Transport Dolly, Aft Pylon

HLH GSE Item No. 21

For air transportability and major repair operations of the aft pylon, a transport dolly is required.

The transport dolly shall be similar in concept and design to the CH-47 fuselage cradle (114G1171). Essentially a rectangular frame, approximately 9 ft wide and 28 ft long, supported by 6 swivel casters, the dolly shall provide mounting hard points for the pylon attachment points. It shall be designed to support and transport the entire aft pylon assembly, including the transmission and rotor hub, with a total weight of approximately 10,500 lb.

Transport Dolly, Fuselage

HLH GSE Item No. 22

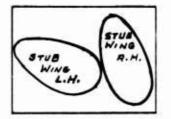
The HLH must be disassembled for C-5A air transport. The HLH fuselage is prepared by removal of both the forward and the aft pylons, the landing gear, the fuel pods, and the load controlling crewman's pod. A transport dolly is required to support and secure the stripped fuselage.

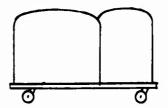
In concept, the transport dolly shall be similar to the CH-47 fuselage cradle (114G1171). The main frame shall be approximately 11 ft wide x 83 ft long, supported by 8 swivel casters. Transverse support cradles (4) plus simulated landing gear hard points (1 forward and 2 aft) shall be provided. Tow lugs shall be provided at both ends. The transport dolly shall support a total weight of 37,000 lb.

Transport Dolly, Rotor Blades

BASSEE IS CARE INCOMENT

HLH GSE Item No. 23


A transport dolly is required for handling a rotor set of 4 blades (fwd or aft). This item would be used for ground handling and for air transportability.


In concept, the item shall be similar to the CH-47 support rack (114G1119). The 4 blades shall be firmly supported in individual saddles, blade chords vertical and leading edge down. Each blade measures in cube approximately 9 in. thick, 42 in. wide, and 490 in. long. The total weight for 4 blades is 3,200 lb. Blades shall be supported by transverse saddles at the root and tip ends and 3 intermediate locations. The dolly shall be mounted on 6 svivel casters and shall have a removable tow bar provided for either end.

Transport Dolly, Main Landing Gear/Stub Wing & Fuel Cell HLH GSE Item No. 24

For air transportability, both left and right assemblies of MLG/stub wing and fuel cell must be removed from the HLH for loading in the transport aircraft. A transport dolly is required to support and transport the paired assemblies. The total weight to be supported is approximately 3,700 lb.

The transport dolly shall be similar in concept and design to the CH-47 fuselage cradle (114G1171). Essentially a rectangular frame, approximately 18 ft wide x 19 ft long, supported on 4 swivel casters, the dolly shall provide cradle support for the assemblies. Firm clamp support shall be provided for the oleo struts.

Adapter, Cargo Winch Spool

HLH GSE Item No. 33

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and providing for mounting one winch spool.

In concept, the adapter shall be similar to the CH-47 vertical shaft adapter (114E5878). The HLH adapter will mount a drum, measuring approximately 26 in. in diameter and 40 in. long, and weighing approximately 1,200 lb. Saddle and securing devices will be provided. The drum axis will be positioned parallel to the transportation trailer tracks.

The adapter will be mounted on four airlog adapter single rollers (Model 2550), spaced for an airlog trailer with 48-in. track spacing. The adapter is an element of the component handling system proposed for the HLH.

Centering Blocks, Boost Actuator

HLH GSE Item No. 34

Centering blocks are required for holding the swashplate in position when centering/drive scissor arms are removed.

In concept and design, the centering blocks shall be similar to CH-47 safety blocks (114E5900). The groove shall be designed to slip over an actuator cylinder measuring approximately 3 in. in diameter. The overall length of the blocks shall be 13 in. Centering blocks shall be considered as a set - with 6 individual blocks in each set.

Sling, Combiner Transmission

HLH GSE Item No. 39

A sling for handling the HLH combiner tramission during installation/removal operations is required. It must be capable of hoisting 1,400 lb.

In concept, the sling will be similar to the CH-47 sling (114E5903). It will consist of a single lift ring joining four equal length cables, which will have fittings at the opposite ends, providing for ready attachment to the transmission lift points.

Adapter, Swashplate

HLH GSE Item No. 45

The adapter is a structural assembly, designed for a mechanical interface with standard transportation trailers and workstands, and providing for mounting one swashplate assembly consisting of a controllable swashplate, a centralizing mechanism, a dual drive arm assembly and drive collar, and four pitch links. The assembly weighs approximately 500 lb.

In concept, the adapter shall be similar to the CH-47 rotor hub adapter (114E5840). One simulated rotor shaft, centered on the adapter, will be provided for locating the assembly. Support and securing devices for the swashplate and the pitch links will be provided.

The adapter will be mounted on four airlog adapter single rollers (Model 2550), spaced for an airlog trailer with 48-in. track spacing. The adapter is an element of the component handling system proposed for the HLH.

Sling, Cargo Winch Assembly

HLH GSE Item No. 47

A sling is required for installation/removal operations with the cargo winch assembly. The total weight of the assembly is approximately 1,850 lb.

In concept, the sling shall be similar to the CH-47 sling (114E5924). A spreader bar, approximately 40 in. long, having an integral center lift eye, shall provide lift points at each end, from which 2 short links shall extend to an interface with lifting eyes on the winch frame.

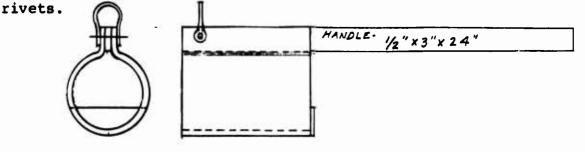
Adapter, Load Controlling Crewman's Pod HLH GSE Item No. 59

The crewman's pod is removed for airlift and field repair operations. An adapter for supporting the pod is required. The adapter shall be designed as a special pallet with provisions for forklifting. A welded aluminum alloy frame, of approximate 6 in. x 48 in. x 96 in. dimensions, to which padded cradles are attached, will support the 500-lb (approx) pod. Four drilled pads will be provided for optional attachment of Model 2550 airlog rollers (or equivalent) to allow use of the adapter in the component handling system proposed for the HLH.

Adapter Set

HLH GSE Item No. 66

Normal maintenance operations on the HLH include the replacement of various bearings and bushings in several components. To facilitate operations, an adapter set, consisting of 3 drift assemblies and 3 pushers, is required.


Drift assemblies shall be similar in concept to the CH-47 drift assembly (114E5812) and pushers shall be similar to the CH-47 pusher (114E5846). In size, the approximate diameters are 2 1/2 in., 3 in. and 3-1/2 in. (design is not final at this date).

Lifting Tool, Generator

HLH GSE Item No. 69

A lifting tool is required for removal and installation of the generators from the forward or aft transmissions. The generator weighs approximately 75 lb and measures approximately 7 in. dia x 12 in. long.

The lifting tool shall be made of aluminum alloy and consists of a wrapper plate, end plate, handle, shackle and pin, and

Brake Lining Removal Tool

HLH GSE Item No. 71

A tool is required for removing/installing the brake cylinder heads during brake lining replacement operations.

The tool shall be of the spanner wrench type, consisting of a flat steel bar, of approximate dimensions 1/4 in. thick, 1-1/2 in. wide, and 12 in. long. Two pins, of 1/4 in. drill rod, will be pressed into holes near one end of the bar. The pins will be tack welded and the assembly cad plated.

Wrench-MLG Oleo Retaining Nut

HLH GSE Item No. 74

During assembly/disassembly operations on the main landing gear strut, the oleo retaining nut must be installed/removed. A spanner wrench is required for the operation.

In concept and design the wrench shall be similar to the CH-47 locknut wrench (114E5822). It shall have machined lugs spaced on an approximate 4-1/4-in. radius. It shall be designed for use with a standard 3/4-in. drive torgue wrench.

Wrench, NLG Oleo Retaining Nut

HLH GSE Item No. 79

During assembly/disassembly operations on the auxiliary landing gear strut, the oleo retaining nut must be installed/removed. A spanner type wrench is required for the operation.

In concept and design, the wrench shall be similar to the HLH/GSE Item No. 74. It shall have machined lugs spaced on an approximate 3-3/4-in. radius, and shall provide for use with a standard 3/4-in. drive torque wrench.

Assembly Fixture, Pitch Link

HLH GSE Item No. 80

An assembly fixture is required for adjusting the nominal length and the angular relationship of the rod end bearings of the HLH pitch links.

In concept, the assembly fixture shall be similar to the CH-47 fixture (114G1102). The HLH pitch links will be approximately 24 in. between centers and the bearing inside diameters will be approximately 3 in. The fixture shall be used for both the forward and the aft pitch links.

4

Sling, Aircraft

HLH GSE Item No. 82

A sling is required for lifting the complete aircraft, for transportability and aerial retrieval. The sling shall consist of a beam, approximately 31 ft long and similar in concept to the beam used on the CH-47 sling (143G1006), from which two cables extend at each end to interface with 4 fuselage lift fittings. The four cables shall be approximately 8 ft long and be equipped with clevis fittings and lift pins. The sling shall be designed for 60,000-lb capacity.

Protective Cover Kit

HLH GSE Item No. 90

The HLH must be provided with maximum protection against adverse environmental conditions during storage and shipment. This requirement may be satisfied by provisioning a protective cover kit.

In design and concept, the kit shall be similar to the CH-47 cover, P/N 64 SSMAC-D-0213 (Ref TM1-CH47-S). The kit shall consist of 13 sections to be placed on the HLH, overlapped, and laced together (blades to be removed from HLH).

The sections shall be made of nylon fabric per MIL-C-20696, Type 1,Class 2 Color O.D. per Fed. Std. 595 (or equivalent). The following sections shall be provided:

- Constant Section	- Aft Fuselage
- Nose	- Left Outbd. Engine
- Fwd Pylon	Structure
- Load Facing Pilot's Encl.	- Right Outbd. Engine
- Left & Right Fuel Pods	Structure
- Aft Pylon	- Fwd Landing Gear

- Left Main Ldg. Gear

- Right Main Ldg. Gear

Test Set, Dynamic Absorber

HLH GSE Item No. 101

During periodic checks of the dynamic absorbers (fuselagemounted), a test set will be required to test and tune (adjust) the absorbers for frequencies and damping.

In concept, the test set shall be similar to the CH-47 test set (114G1218). It shall operate on 115/120 vac 60 Hz and shall consist of a recorder, a vibration pickup, mounting hardware, electrical cables and connectors.

Towing Bridle

HLH GSE Item No. 103

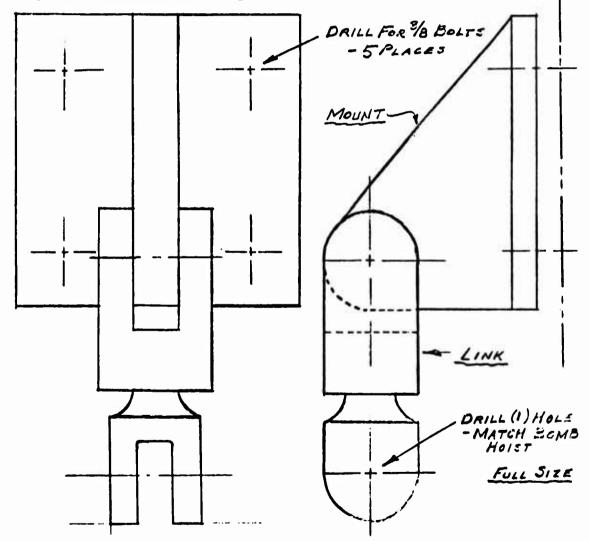
A towing bridle is required during transportability operations.

In concept, the towing bridle shall be similar to the CH-47 bridle (114G1030). It shall provide for a 20,000 lb load (approx). Each leg shall be 34 ft long (approx).

Adapter, Pitch Housing/Cross Beam Assembly

HLH GSE Item No. 104

During maintenance operations on the pitch housing-cross beam assembly (including: pitch housing, cross beam, elastomeric bearing, pitch arm, and lag damper), an adapter is required to hold the assembly in a secure position.


The adapter shall be similar in concept and design to the CH-47 work and transportation stand forward transmission (114G1026). The adapter shall consist of a base, providing forklift slots, on which cradle supports for the assembly components shall be mounted to support and secure the assembly.

Engine Adapter, Bomb Hoist

HLH GSE Item No. P114

It will be necessary at various intervals to remove and replace each of the HLH engine assemblies. A standard bomb hoist (Aero 14B) will be used for lifting the 1,800-lb engine assemblies. An engine adapter is required to attach the bomb hoist to aircraft structure.

The adapter shall be a two-piece assembly, similar in concept to the design shown in the sketch below. In function, the adapter shall be bolted to structure to provide a support point to which the bomb hoist is fastened by a bolt. Fastening hardware shall be a part of this item.

Lightweight Maintenance Davit

HLH GSE Item No. 115

Many HLH components weigh in a 40-pound to 300-pound range. Removal and installation operations will require a lightweight hoisting device (Item 43). A rigid mounting point for Item 43, for each lifting application, is required. A davit, designed for universal application, shall provide the mounting point.

The davit shall be a tubular tripod, with each leg containing an integral fitting for connecting to a hard point in the aircraft structure. Each leg shall extend from its connecting hard point to a common cluster containing a single point attachment for the hook of Item 43. The triangular hard point pattern (approx 18 in. per side) shall be common for all lift applications. Davit legs shall be made of steel tubing (approx 1 in. dia x 20 in. long) with rod-end type clevis fittings welded in one end. The 3 tubes shall be joined at the other end with a machined clevis fitting in a cluster weld. Mounting hardware is included.

Adapter Set, Rotor Xmsn Mounting Bolts HLH GSE Item No. 118

Installation of forward and aft rotor transmission bolts requires application of torque to 3,620 ft-lb (dry). GSE Item No. 31 Power Unit (P/N SWE8100 by Sweeney Mfg. Co.) may be used with adapting equipment for this operation. The adapting equipment (adapter set) shall consist of the following items:

- 1 Model SWE8104-6 Torque Multiplier (B.K. Sweeney Mfg. Co. FMC 87641)
- 1 Base Fixture In concept, this shall be similar to CH-47 adapter set anchor plates (114E5898-7 & -8). This base fixture shall be designed to function on each of the 4 mounting bolts for both the forward and aft transmissions.
- 1 Drive and Socket Assembly In concept, this shall be similar to CH-47 socket assemblies (114E5898-6), with a spline matched to the SWE8100 power unit and a driving socket for the 1.750 in. dia mounting bolts.
- 1 Backing Bar This shall be a steel rod of approximately 3/4 in. dia x 30 in.long. It shall be locked into a socket provided in the base fixture and shall extend to and react against a solid structural member of the aircraft.
- NOTE: The above described torque equipment is based on utilization of a Sweeney Power Unit (existing in Army inventory) and a recently developed Sweeney Torque Multiplier.

As an alternate method, use of Power-Dyne Torque Wrench equipment (by Power-Dyne Corp. Middletown, Conn.) was considered. This equipment offers interesting characteristics, which should be subjected to an in-depth analysis and technical trade-off with the Sweeney equipment, at some future date.

GARDER STORES AND IN THE