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EXPt:RIMDJTS IN MULTI-DINIIIIIOIIAL n,QATUIG SHOCl(-FITTING 

by 

Gino Moretti * 

Pol~technic I~• titute of Brooklyn 
tre• ton R. Ba •• ett Re•earch Laboratory 

Farmingdale,•• York 

ABSTRACT 

Four numerical experiment• arQ performed to •upport floating •hock

fitting technique• in multi-di•neion•l flow problem•• By floating 

shock-fitting we mean the fitting of a •hock a• a •harp di•continuity, 

free of moving within the computational me•h. Evidence• of accuracy 

and stability are given. 

* Profes• or, Dept. of Aero•pace En9ineering and Applied Mechanics. 
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I. Itfl'RODUCTION 

In the controversy between 1uppo:rter1 of .•hock-fitting and 

1hock-capturi~g technique,, I have tried to e1tabli• h a few basic 

point• in • upport of the •hock-fitting approach 

l) Shock-capturing ia a poor interpretation of a phy1ical 

phenomenon and i •, to s ay the· lea• t, an extremely uneconoll',ical 

1-5 way of computing. 

2) Prediction of imbedded •hock formation i n one-dimen• ional 

problem• and in multi-dimen• ional problem• a• well i • po1• ible 

and • imple, in the general framework of finite-differen-:e tech-

2-7 nique•• 

3) Shock-fitting work• not only if the •hock i • one of the 

9-12 boundarie• of a 1ingle computational region but also if 

the shock i • a boundary between two con1nutational regions, 

in one-dimensional 
1,3-5 

problems and in multi-dimensional 

problems a• well~-e The work reported in Ref. 8 ha• currently been 

extended to flow field • with additional cro•• -flow •hocks: the yet 

unpubli•hed results show the overwhelming • uperiority of ahock

fitt ing to •hock-capturi1~g in a very complicated problem, and, 

as the authors of Ref. 8 point out, ahould .axhal1• tily an•wer 

certain objections raised again1t ahock-fittinq in more than one 

dimension. 

l 



The ca•• for •hock-fitting techniquea, howevei, i• not 

completed without proving that •hock-fitting i• al•o fea • ib le and 

accurate when shock• are not fitted a• boundar~•• ot computational 

region •• In multi-dimen• ional problem•, indeed, we may have good 

rea•on• for fitting imbedded •hock• without aubdividing the com

putational region into partial region• bounded by them, at lea• t 

in part:· in other word •, we mly wi• h to let the •hock• (treated a• 

sharp di•continuitie•) float among me•h point •• There i• no 

advantage in •o doing when the number of •p~ce-like dimen• ion• i• 

one: there are advantage• in• tead in multi-dimen• ion~l problem• 

with very complicated •hock pattern•, • inc• the logic nec•••ary 

to handle the topology of •hock-bounded region• • eem• to be too 

complex and, anyhow, more complex than the logic of floating •hock•• 

Que• tiona, however, have been a•ked about the numerical • tability 

16 of the approach, and there i• a good deal of akeptici•m on it• 

practicality~3 

In forthcoming paper• , I intend to apply floating •hock

fitting to practical problem• of increa• ing difficulty1 

a) Three-dimen• ional, • teady, • uper• onic flow• pa• t • imple, 

wingl••• airframe• (• uch a• in Ref. 8 but without wing• , to 

eliminate lengthy mapping• which are irrelevant to the pre•ent 

di• cu•• ion), 

b) Transonic (supercritical) flow pa• t a boattail by a 

time-dependent technique (to be compared with the re• ult• of Ref. 6), 

c) Tran• onic (• upercritical) flow pa• t a cylinder by a time-

2 



dependent technique (to complete the analy• i • of Ref. 15), 

d) Steady, •uper• onic flow pa• t cone• at yaw, with form~tion 

of crou-flow shoc'k (to complete the a·~':l lyais o.f Ref. 12), 

e) Three-dimen1ional nozzle flow• with multiple •hock •, etc. 

As a preliminary work, I have studied one-dimen• ional, 

4 
unsteady flows with •hocks fitted among me•h point• in order to 

under• tand the numerical difficulties connected with the pas• ing 

of the •hock from one me•h intervftl to the next, and I have con

cluded that the technique• developed in Ref. 4 are • afe, • table, 

and accurate. In th• pre• ent report, I intend to preaent pre

liminary exerci••• on multi-dimen• ional problem,, to pave the way 

for the application• mentioned above under a-e. 

The reader •hould not anticipate anything 1pectacular in 

the•e exerciae• : they are kept in a low key on purpo• e, to make 

the analysis simple and to reveal the nature of the difficultie1 

and the • tep• to take without unnecessary complications, irrelevant 

to the basic problem of floating •hock fitting. 

I I. FOUR VARIATIONS ON THE SAME THEME 

The fir• t flow field we are going to examine is • imply the 

claaaical supersonic flow, uniform at infinity, pa• t a pointed 

cone (with a circular cros• section) at no incidence. The now 

is conical and axiaymmetrical and we may get a very accurate pi cture 

of the shock layer by integrating an ordinary differential equation. 

Therefore, we have Al) "exact" solution of the problem, which we 

may use to teat t he accuracy of our comput ations. 

3 



We will pretend we ignore the axi•yanetric, conical nature 

of tha flow; we will • tart at a • tation, z•O, •omewhere down• tream 

from the apex of the cone, u• ing the exact •olution to provide 

initial value•: for increa• ing value• of z we will compute the 

flow u• ing a three-dimen• ional, finite-difference technique with 

floating •hock-fitting. To analyze the floating •hock-fitting 

technique we need a computational region wider than the 1hock 

layer: therefore, we u• e an outer boundary arbitrarily located 

in the region of uniform flow. A proper choice of the •hape of 

the outer boundary (a cone with the •ame apex and the • aroe axil 

as the body) keep• the frame of reference axilymmetrical, and the 

problem in thi• ca•e depend• on one • pace-like dimen• ion only. 

A cross-1ection of the flow field will appear a• in Fig. la1 

OUTER IOUNDARY 

., b) 

Fig. l 
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no peripheral eUect• will appear, the •hock will float among meah 

points only radially. 

If the 1hape of the outer boundary i1 cho• en differently (for 

example, a1 in Fig. lb, with elliptical cro1•-• ection•) and the radial 

coordinate i1 normalized betw~en the body and the outer boundary, 

three-dimenaional effect, will be introduced into the computation of a 

fl\)W which i1 phyaically axi•ynne~rical. For example, the (conical) 

floating 1hock will have to cro• 1 me• h lJne1 in both direction,. When 

expressed in cylindrical coordinate•, however, the •olution • hould be 

identical with the exact solution. 

In the third and fourth problem• to be con• iderecl in thi• report, 

the body it•elf ha• an elliptic cross-1ection. The eccentricity of the 

ellipse i~ 0 at z=O and varie1 with z: the flow, thue, is the 1ame as 

in the previou1 ca• ee at z•O and then become• really three-dimeneional. 

TWO caaee again may be coneiderecl, according to the geometry of the 

outer boundary (Fig. 2). 

IOUNDAIIY 

SHOCK 

., ., 
Fig. 2 
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III. FRAMI OP REFBRINCE AND BASIC EQUATIONS ~r K>TION 

Th• ba1ic frame of reference for all four ca••• i1 a 

cylindrical frame, . who1e z-axi1 lie• along the ,axi1 of th• body: 

rand 8 are, a1 u1ual, the radial coordinate and the angle between 

a fixed meridional plane and any other meridional plane. Th• body 

ii defined by 

( l) (ca•• l, ca•• 2) 

where b1 i1 the radiu1 of the cro11-1ection of the cone at z•O and 

6 i1 the 1emiaperture of th• cone: or by 
2 

f
COI q r•b(9,z)• a + 
A0 (z) 

( 2 } 

where 

(3) 

• • in 
II 

e
0 

(z) 

and ba and b3 are • uch that B (z )=b, B'(z )•O. 
0 0 0 0 0 

The outer boundary i1 defined by 

(4) 

(ca•• 3, cue 4) 

(ca1e l, ca1e 3) 

where c
1 

i• the radiu1 of the cro11-1ection of the outer boundary 

at z•O and r i1 an arbitrary parameter: or by 

( 5) r•c ( 9, z) •[coe2 
A +sin2 

A ] -~ 
Tf2 ( z) 82 ( z) 

where 

(6) 

Again, o and 
in cases 1 and 

IA(z)• c 1 + z otan 

B(z) a: c 1 + z r tan 

will be arbitrary parameters. 
3. 

6 

(ca• e 2, ca• e 4) 

At z=O, c( ,O) =c 1 a• 



several derivative• of band care nece •• ary in our calcu

lation •: they are easily obtained and reported here: 

(7) 

(8) 

whe't'e 

(9) 

(10) 

(11) 

where 

(13) 

b stan, b •O, be •O, b =O 
Z A Z ZZ 

b = -b3[co•
1 9 A + • in~ ll 

z A 3 oz B 3 
0 0 

b "" b3 [_l_ - ..i..] • inAco• /l 
A1 B1 

0 0 

(case 1, ca• e 2) 

(ca•• 3, ca• e 4) 

b az • b' fb•(A~, -8:, 1-2,::: -t~ ]•inecoee 

b •-3b"b (coaa 8 A + • ina e B ~ -
zz z A 3 oz B 3 . oz 

0 0 

- oz + • in' 3A
1 1 

(

8ozz - oz ~B I )] 

A • tan6 oz 

8 •ltan~+2bez+3b3z 3 

oz 
0 

A • 
0 

Aozz•O 

B 3 
0 

B • l2b+6b3Z 
ozz 

0 

B 4 
0 

C •Ttan6, C •0 1 C aO I C =0 z e 9z zz 
(Case 1, Case 3) 

_ 1 [co• 2 A A+ sin
1 A BZ J cz--c A§ z 5S (Case 2, Case 4) 

sin AB )-c3 cosa8( zz -· 2 [ A 
8 3 z ~ 

~)] 
A =0 tan6, B =Ttana, A =B =O z z zz zz 

7 
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The frame of reference will be normalised by the tran•formation 

(14) X • ~ , Y•8 , Z•z c:,;-

which yield• 

( lS j 

(16) 

(17) 

(18) 

X = ...1... , x e=xr ( (X-1 )b txc 
8 
J , X •X [(X-l)b -Xe ] r c-b z r z z 

y =0 r ' 
y • l 

a ' y - o z 

Z • 0 r Z • 0 
8 

Z • l z 

con• equently, for any function f (r,e,z), 

fr=fxXr 

ftfy•fxxe 

fz=fz + fxXz 

The equation• of motion in the phy• ical •pace, in cylindrical 

coordinate•, are 

where 

(20) 

( 21) 

(22) 

uPr+ Y P +wP +y(u + l v -t-w + ll) • o re z rr ezr 
V V 8 

uu + - u +wu + 'p - - • 0 r r e z r r 

V ' • uv 
UV + - V +wv + - P + &:. • 0 rr e zr er 

uw + y w +ww + 'p • 0 r r e z z 

usr+ y s +wS 
r e z 

s 0 

p • ln p/p
00 

P;Pg, 'J • 
p Poo 

s = ln p/p
00 

- yln pl p
00 
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and the cylindrical velocity components, u, v, and w, ar.~ expressed 

as multiple of 

With the above assumption •, the problem is defined once the cone 

semi-angle, , the Mach number at infinity, M and the ratio of • pacific 
ex 

heats, Y , are assigned. In particular, the vetocity at infinity i • 

(24) V • /\',M 
oo v' 00 

In the (X, Y, Z) frame of :r.eference and in matrix form, (19) become 

(25) fz • Afx +sty+ c 

where 

p (a 3X -Aw) t:,. - y/J,IX - y/3,IX /r yt:,.(A-WXZ) 0 
z r e 

u - :7x /w -A/w 0 0 0 
r 

f = V ,A• - :7X/rw 0 -A/w 0 0 

w 'J6(A-WXZ) aa 6X r a• AX gir (a 3 X -wA) t:,. z 0 

s 0 0 0 0 -A/w 

(26) 

-vwA/r 0 -y/Jll/r yt:,.v/r 0 -yuwA/r 

0 -v/rw 0 0 0 v3 /rw 

8 - - 'J/rw 0 -v/rw 0 0 ,c = -uv/rw 

'Jt:,.v/ r 0 a a t:,./r - /1,IV/r 0 a 3 t:,u/r 

0 0 0 0 -v/rw 0 

with 

( 2 7) A=UX + ~ X +WX , 6=1/(w2 -a 2
) , a= J°"v5 

r r e z 

9 



IV. A CHARACTERISTIC EQUATION 

To treat the shock, we need a compatibility equation along a 

characteristic lying on t he (~, C) piane of a frame of reference defined 

as follows, 

(28) ~ 
r-b • 
s-b 

~ = A 

' = z 

where 

(29) r • s (Q,z) 

is the shock surface. To treat the boundary condition• on the body we 

al~o need a compatibility equation along a characteri ~tic lying on the 

(X,Y) plane. Here I will obtain both characteriatics using the symbols 

defined by (28). Note that ,-o, as well as X•O, represents the body 

surface, whereas ~= l represents the shock surface. Therefore, deriva

tives with respect to~ at ~•O coincide with derivatives with respect 

to Y at X•O and are a-derivatives taken along the croas-section of the 

body at a constant z, whereas derivatives with reapect to~ at ~•l are 

8-derivatives taken along the croas-aection of the shock at a constant z. 

Similarly, derivatives with respect to at (•O coincide with derivatives 

with respect to z at X•O and are z-derivatives taken along the section 

of the body with a meridional plane, whereas derivatives with respect to 

at ~• l are z-derivatives taken along the section of the shock with a 

meridional plane. The derivatives with respect to ~. instead, differ 

from the derivatives with respect to X because of the different scaling. 

10 



-------

The 1y1tem of equation• from which we extract the characteri1tic 

equation ii limilar to (25), (26), (27), with X,Y,Z replaced by ~•, 

respectively. From the fir• t, •econd, and fourth of • uch equation,, 

we obtain a linear combination, 

where 

( 31) R 1 • i VWP +.,W(V ~~
9
+v T1+u) vW ] 

V 
R3 = rw u -v J 

V. BODY POINTS 

To inforce the boundary condition at the body, the ume tt: .. ~hnique 

used in Refa. ll and 12 will be applied. Eq. (30), written with X,Y and 

z in lieu of ! , , and , is made explicit with respect to PZ. The third 

_qu ation from (25), (26) is used to obtain vz. After updating v and P, 

i can be computed since Sis a constant on the body, using the equations 

( 3 2) 

Then , the square of the modulus of the velocity, q~ is obtained from the 

law of conserv tion of total energy: 

(33 ) 

nd the two velocity components, u and w, follow fro~ the condition of 

vanishing of t he veloc ity component norma l t o the body: 

11 



(34) 

(35) 

w = 1 
i+i,,. 

z 

VI. SHOCK POINTS 

The shock points will also be treated by the same technique used 

in Refs. ll and 12. In the present problem, however, two changes have to 

be made1 the impinging velocity is simply parallel to the z-axis, and 

the shock ia not the Z=l boundary of the computational region. Let 

I\ " I\ 
i, j, Lnd k be unit vectors in the uirections of increasing r, increasing 

I\ 
, and increa~ing z, respectively, I a unit vector normal to the shock, 

I\ 
oriented inwards, and Ka unit vec.-tor tangent to the shock and contained 

in a meridional planu. Let s(e,z) be the r-coordinate of a point on the 

- I\ 
shock, and u the velocity component in the I-direction. Finally, let 

I\ 
be a coordinate along K. Then, 

(36) 

(37) 

(38) 

(39) 

(40) 

( 41) 

I\ 
V = V k 

00 00 

~ I\ I\ ~ I\ f\ 
I= (-i+(se/s)j + szkJ/~ = I1i+I.j+I,k 

v • .jl+(a /s) 1+sa 
~ z 

UCD = VOOI, 

The Rankine-Hugoniot conditions yield 

2uc:J- ( v-1 > 
p = ln Y+l 

u = tlu +1-L...L. 
y+l co y+l UCO 

where P and u are values behind the shock. Since the Rankine-Hugoniot 

conditions are identically satisfied along the shock, it follows that 
4u 

(42) P = oo u 
2ua -(v-1) ooc 

00 

(43> u .. .t:!._ ll..-1...a 
C Y+l y+l ua CD 

Cl) 

12 



In addition, if we write 

(44 ) 
.. • A • 
V • u I + V CX) Cl) 

it follows that, behind the •hock, 

( 45) 

From (45), 

(46) 

Now, 

( 4 7) 

.. _.,A ;; • -- A v • u. I + v • V 
00 

+ (u-u
00

) I 

u,• (u-uCX>) Ci+ (u-u00 ) Ii C 

v ( (u-uCX) > , I.+ (u-uCX), :r.,, 

w =(u-u00 ),Is+(«-u00 )I1, 

The derivatives Ii , 18 ~,and I 1 can be evaluated by differentiating (37). 

After • ome algebraic manipulation,, it follow• that 

(48) 

with 

u,•E1Ii+E••zz 

wc•EiI 3 +Es•zz 

P,•E•+E1 • zz 

4 .• 
E1 =- 'r+i' u00 C1I1Ia 

E =-u If CV /u + • ct>a •oo CX> 
4 - a Es= v+l u

00
I 1 (l-I 1 ) 

13 



Eq. (30) is ·u• ed a5 written, with ~• l. The derivative• , P, u, and w 
. , ' 

The quantity• i • u• ed to updates and this, in turn ,, to updates. zz z 

Once the updated geometry of the shock is known, all physical parameters 

behind the shock follow f~om the Rankine-Hugoniot c~nditions. 

VII. ORGANIZATION OF A COMPUTATIONAL STEP 

At any station, z, the computational region in the (X,Y) frame is 

a rectangle (Fig. 3) whose horhontal sides represent the body and the 

outer boundary, ~nd who• e vertical • ides represent two symmetry l ines, 

at =O and 8• /2 (in the present calculation, obviously, one quadrant is 

sufficient to describe the entire region around the body). The shock 

(whose cross-section i n case land case 2 is really circular) appears 

in the computational region as a curve, whose shape depend • on the 

geomet r y of the outer boundary. 

All vertical lines in the grid of Fig. 3 correspond to meridional 

planes. Shock points will be tracked along such lines, as shown in the 

figure. 

X 

1 9, .,,,2 
B..Jy SYNrcntY 

SY 11V SNOQ( LAYEii LINE 
LINE 

0 
0 IOOY -v 'ff/2 

[r• a.cB)] 
Fig. 3 
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Any computational • tep con• i1t• of thr•• part• ,· 

l) an introduction, to evaluate the • tep • iz• • ati• fying the Courant

Friedrick• -Lawy condition, 

2) a predictor • tage, and 

3) a corrector • tage. 

Both the predictor and the corrector • tag•• u•• th• • am• code with 

minor change•• Fir• t, the •hock i • computed. !q. (50) i • u•ed to get 

• Without change• in coding, predictor and corrector • tag•• will zz 

automatically u• e different value• for the right-hand • id• of (SO), in 

the predictor • tage all initial value• and initial geometrie• will be 

u• ed, in the corrector stage all predict9d value• and updated geometrie• 

will be u•ed. 

In the predictor 

( Sl) 

( 52) 

• tage, • and• are obtained a• z 

( s ) • (. ) +• A& 
z pred z initial zz 

8 pred.8 initia1•<•z>initial 62 

In the corrector • tage, • and• are obtained•• z 

(SJ) 

(54) 

In both stages, after updating all •hock point •, the new geometry 

is used to obtain I and then u , P and~ follow from (39), (40), and 
00 

( 41) • 

After computing the shock, in both • tage•, the ordinary me•h point• 
14 are computed. A• a rule, (25) i • integrated by the Mac Cormack •cheme. 

Forward and backward difference• are u• ed in the predictor and in the 

corrector stage, respectively. 

15 



Except'ional point• ares 

a) body point• 

b) outer boundary point• 

c) points in tho vicinity of the •hock. 

Ou t er boundary points are not computed at all since they always lie 

in a region of uniform, unperturbed flow. 

At body points, (30) i • u•ed to obtain P, and the remaining physical 

parameter• are computed ae explained in Section 5. 

Point• in the vicinity of the shock are computed ae ordinary points 

as long the interval on which t he f inite difference i • taken does not 

intersect the shock. If intersection occurs, the derivative• will be 

evaluated differently, as explained in the next Section. 

All these points are computed in the predictor stage. At the end 

of the stage, the geometry of the body and of the outer boundary i• up

dated: a new search of "points lying in the vicinity of the shock" is 

performed, with the shock in its updated position. Then all the interior 

points and body points are recomputed in the corrector stage. 

VIII. SPECIAL APPROXIMATIONS OF DERIVATIVES 

Section 7 exhausts the entire logic of the computation: with all 

points, except shock points, computed similarly and the predictor and 

corrertor stages programmed in a single loop, the code is indeed simple 

and short. It• only delicate feature is the discretization of the X-and

Y-derivativee at body points and at point• in the vicinity of the shock, 

as well as of the ~-and-,,-derivatives at shock points. 

16 



At body pointa, if one-aided X-differencea ar• uaed in both pre

dictor and corrector atage, th• preaaur• tend• to become slightly lower 

than at the adjoining row: a re•ult which i• definitively incorrect, a• 

a compariaon with th• exact ·•olution •howa. Taking one-1ided difference• 

in the predictor • tage ' i • in agreement with the code for interior point•. 

In the coti-ector atage, however , I prefer to u•• 3-point difference •, of 

the f"rm 

( 5 5) 

where 1,2,3 denote point• on th• body and the two 1ucce1aive row•, in 

order. 

At ahock point •, -derivative• will •imply be approximated ~Y 

centered difference• of ahock point value• (note that the •hock point• 

are equally apaced in 8). More delicate i • the treatment of ~-deriva

tive •• Following the augge• tion of page 70, Ref. 4 and particularly the 

procedure exprer• ed by Eq. (100), I uae her• the formulas 

(56) 

where 

(57) E: = 

and Q,P,R, and S denote value• at the •hock and at the 3 me•h point• 

lying on the same X-line as the •hock point on the high-pressure side, 

for decreasing values of X (Fig. 4). To get the f-derivative, note that 

(58) 

where X is the value of X at the shock point. 
s 

--:--~-.... :-f .... •--•• X 

Fig. 11 
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Pointi in the vicinity of the •hock (denoted by a double circle 

in Fig. S) hZ1ve at lea• t one of the adjoining me•h interval• cro11ed by 

the shock (aa shown in Fig. S where the shock i • denoted by a waving 

lute). If only one mesh interval ii crouE:d, the point is labeled as 

shown in rig. 5. 

POii HIGH 
,.._ IHOCK I 

10 

zo 
Fig. S 

100 1000 

200 2000 

If more than one mesh interval is crossed by a shock, corresponding 

labels are added, ao that for any possible situation a four digit label 

describes the nature of the point. Examples are given in Fig. 6. 

Fig. 6 
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In the pre•ent problem•, with only one •hock, the • ituation is 

never a• complicated a• in Fig. 6, but the example i • given to • how the 

advantages of a four-digit label. It i1 clear that, by •canning the 

label of each me1h point, each non-zero digit may divert the computation 

of fx or fy to a special code, u• ing information on one aide of the •hock 

only, when the usual procedure would imply difference• between point • 

lying on opposite • ides of the •hock. Note allo that each digit work• 

independently; therefore, complicated 1ituation1 auch a• the one• 1hown 

in Fig. 6 are resolved into simple routine •• 

With x and Yasin Fig. S, in the predictor 1tage fx ha• to have a 

1pecial definition for point• labeled 100 and 200, fy for point • labeled 

1000 and 2000. In the corrector 1tage, the 1pecial treatment is reserved 

for point~ labeled land 2, and 10 and 20, respectively. 

The X-derivative at Pis obtained a• followss Let f~
1

) and f~•) 

be two approximations to fx, the fir • t obtained by forward differencing 

between point P and the adjacent •hock point (Q)s 

(59) 

the second linearly interpolated between the derivative at Q given by 

(56) and the forward-difference approximation to the derivative at Rs 

(60) 

We will use the approximations 

( 61) 

= 

where 

(6 2) 
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- -' 

·. • imilar formula may be obtained for point• Q,P,R,S located in the 

order oppo1it• to the on• of Fig. 4. 

The Y-derivative at a point labeled 1000 or 2000 i • obtained by 

applying the • am• argument to the Y-coordinate. In thi• ca• e, the 

value• at Q are not di'rectly available line• point Q lie• at the inter

•ection of th• •hock with an Xacon• tant line and •hock point• are evalu

at•d only at the intersection of the •hock with Y•con• tant line•• There

fore, the value• at Qare ~btained by linear interpolation between values 

at bracketing •hock point•• 

Note al•o that, occa~ionally, the • nock may : utan X• con• t ant line 

twice a• • hown in Fig. 7. 

-o ' 0 S I 11 

Fig. 7 

1-w I.~ J 0 • y 

bl 

Iffy ha• to b• computed at P, in the ca•e of Fig. 7a) (61) can • till be 

u•ed, but (56) cannot, • inc• point S lie• on a different • ide of the 

•hock a• Q,P, and R. To evaluate f in thi• ca• e I u• e the formulas 
YO 

(63) 

where 

(64) 

(65) 

d 1• -(l+t) 

.c... 1-c ~a 
d1 • l+c + 1-c - l+e• ,.,<I+'t +3,it-2+2c) 

d- • l+2 c + 1-c (...Jl +l+,-,) 
• l+c l+c+,-, l+c 

d• • -l+ r. - ~(l-2,,-2-2c) 

c• (Y0-Yp)/ 6Y 

~ (YR-YB)/~ 

. 
• 
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Thie formula i• obtained by balancing a three-point interpolation for

mula which uee• point• Q,P, and R, a three-point interpolation formula 

which uees point• O,R, and Band a difference on point• Q and B~ the 
• I I 

firet provide• a derivative f(i)' the eecond a derivative f(,) and the 

third 
I • 

a derivative f(,) 1 then 

(66) fyo= ct;
1
,+(l-e) (T1f(•)•C1-,.,)f{ 3 ) J 

By so doing, the v~luee off are well-behaved even if c or 
YO · 

become 

very small, that ia, when the shock at O or at Bis about to cro•• from 

one meeh interval to the next. A eimilar formula ia uaed for the deriva

tive at Bin the caee of Fig. 7a). 

(67) 

In the ca•• of Fig. 7b) the derivative at Pi• eimply taken a• 

fo-fB 
fy• Y0-Y; 

IX. RESULTS FOR CASE l 

0 
Rune were made for a 27 cone, at M

00
•2.5, using b1 •0.5, c 1 • l.O. 

The slope of the outer boundary wae chosen as follows, 

Run No. 12 
13 
14 
15 

,. •2. 7 
2.5 
2.0 
l. 5 

The number of mesh interval• between body and outer boundary was kept 

equal to 15 for all runs. Since the f ow is actually axisymmetric, only 

one interval (with 68=~/2) was considered in the computational quadrant. 

Sideviews of the cone, the theoretical shock and the outer boundary are 

shown in Fig. 8, together with some of the mesh lines. 
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It appears that in Runs No. 12 and 13 the shock crosses mesh lines in

wardly and in Run No. 15 the shock crosses mesh lines outwardly, whereas 

in Run No. 14 no crossing occurs. Difficulties and instabilities due 

to meshline crossing should appear differently in these four runs, showing 

how the ac curacy is influenced and perhaps damaged by different choices 

of computational parameters. 

Nothing of the sort occurs, though, as we can see from Fig. 9, wh ich 

provides the history of Pat the shock in all four runs, for 60 computa

tional steps. In ea cL run, the station at which a crossing of the mesh 

lines occurs is indi cated by a vertical arrow (pointing downwards i f t he 

22 



cros• ing i s in the inward direction and upward• if the croa• ing i • in 
., 

the outward direc t ~on). It i • evident that the computation is totally 

i nsen• itive to mesh line cros• ing. 

·~aonoo'6,oqu'Ao 
•• ,.... iCJO 

•~ oooa oi; o a Y 0 ~ 0 0 o Y A o o o a o '-'44?- 00~-00 
, • ,. ,.1.0 

' 
I ,._eq.....-. .J • 0 0 DI p A 
-~hrido O P O -

... , ... , 0 000° 
ft o A ' d 6 a A A 

•-&;! loao I L a O O o a o o o 'o : v p O P' 0 I 0 0 
•• ,.u Ooo o 

.J oo a oa t.6 ,~ IJ tJ m o ·o a a o a a a a '-0 
-1 ,.., 

Tl:~ ii 0:1 ta ta ~ ~ m e a 0 n ii • a p • • N .IO -1 

UL "': 0 0 p ft 

0 0 0 0 0 ::::: : 0 •-~~a:: 0 a a D n .... ta Io .I O IJll 
-I 

FIG. 11 
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An interesting feature of all four plots is a slight dip in the 

shock pressure between z• .4 and z=l.O approximately. Obviously, the dip 

is not mesh dependent. It is, instead, produced by the physical propa 

gation of an expansion fan generated at the body between z=O and z=0.05, 

followed by a recompression, as shown by the plot of P(z) on the body in 

Fig. 10 and probably due to some initial inconsistency between the ass •J me d 

"exact"solution and the finite difference algorithm. To prove that 

the oscillation is actually an effect of the initial expansion at the 

body, Run 16 was made under the same conditions as Run 12, but forcing 

the pressure at the body to remain constant. Fig. 11 shows that the 

depression at the shock also disappears. 

I consider the results very satisfactory. To show some deviation 

from the exact solution, I had indeed to make sure of a fairly small 

scale for P. In Fig. 9, above and below each horizontal line representing 

the theoretical pressure at the shock, there are two more horizontal 

lines defining a strip of 0.001 accuracy. With the exception of the 

initial dip, which has its own explanation, all results lie within the 

strip. To fully appreciate the power of stability and accuracy of the 

computation, one should also keep in mind the coarseness of the mesh. 

Although 15 mesh intervals are coneidered between body and 

outer boundary, not all of them lie in the shock layer. The number of 

mesh points between body and shock is indicated in Fig. 9 by the numbers 

above each exact solution line. Run 12, for example,· disposes of only 

6 points for z>3: it is obviously bound to a poorer accuracy than Run 15 

which, at z=l.4, has already 14 mesh points. That lack of resolution is 
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not affecting the computation of the • hock, but rather influencing the 

computation it the body, i • well shown by Fig. 12 where, for the four 

run •, at • tep 60, pressure distribution• between body and shock are 

plotted,~ together with the exact value, on a normalized scale. 

X. RESULTS FOR CASE 2 

In ca• e 2, we still deal with the same cone a• in case l, but the 

outer boundary has a variable elliptic cro••-• ection, defined by 

T=2.7 

By comparison with the data of rune 12 and lS, -we see that the shock 

will tand to cros• mesh points inwardly at ea /2 and outwardly at A=O. 

Fig. 13 show• a typical cross-section to be expected at zcJ. We should 

obtain the same result• as in the previou• case, that i •, a conical shock 

layer, in a me• h which i• not axially • ymmetrical. 

Fig. ~3 
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Fig. 14 •how• the minimum and maximum value• of Pat the ahock, for 

increaaing value• of z, in four different runa, The bottom of the 

figure correapond• to a computation in which the body i • evaluated 

according to Sectio~ 5, Run 21 i•· a computation where the body prea• ure 

i • kept conatant (a condition which can be impoaed aince the flow i • 

• till axisymmetric). Both runa . were made with 15 me• h intervals in the 

0 
radial direction and 9 interval• 110 wide) in the ~-direction. Run 24 

0 
ia a computation u• ing 18 interval• (5 wide) in ~he a-direction. Once 

more we find that the acattering of value• remain• in the 0.001 strip 

and it i• comforting to••• that the accuracy tend• to improve by uaing 

more interval• in the a-direction. Even better accuracy i• ahown by 

Run 28 (top of Fig • . 14), a computation which _.uaea 25 intervals in the 

X-direction and 18 interval• in the Y-direction. Here the maximum 

acattering i• of the order of 4xl0-4 • 

Fig. 14 i • the pre•entation of result• by the devil'• advocate. 

A more conventional plot i• given in Fig. 15 where the preaaure distri

bution between body and •hock i• pre~ented, a• computed at the last 

• tat ion of Run 21'. Once more, , .a in Fig. 12, the diatance between •hock 

and body i• normalized. The •olid line i• the exact aolution. Different 

aymbola denote value• ,:omputed at diffe~ent meridional plane•. Tho only 

sizeable departure• fro~ the exact solution i • near the body and ob

viously decrea• ing with increaaing resolution. 

Fig. 16 • how• the computational mesh and the location of the shock 

in the phy• ical plane at the la• t • tation of Run 21. 
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In Fig. 17 the me1h and the shock are shown in t he computational 

(X,Y) plane at the 1ame 1tation. Label • for the point• neighboring the 

•hock, a• evaluated by the computer, are also shown. 
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Pig. 17 

XI. RESULTS FOR CASES 3 AND 4 

In ca1e1 3 and 4 the intersection of the body with the A•n/2 plane 

tapers down to the constant value, r =l , and maintains it from z•z •3 on. 
0 

The body aa1ume1 the shape of a delta wing with an elliptic cro11-section. 

In case 3, the outer boundary grows as a circular cone. In case 4, 

it has an elliptical cross-section with its major and minor axes at 

90° with respect to the ma j or and minor axes of the body cross-section, 

to twist the computational mash as much as possible. The mesh, in both 

cases , has 15 intervals in the X- dir ction and 9 intervals in the 

Y-direction; it is , though, very coarse me sh, as i can be seen in 
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Fig•. 18 and 19. In particular, one may no t ice the ext~eme lack of 

0 
resolution betwften t•O and 8• 10. Another •hortcoming of the calc:ula-

tion• •tem• from the abrupt expan•ion and recompre••ion taking place near 

the body: •uch effect, due to the rapid change in the body geometry, 

tend• to produce a cro••-flow •hock at z • l0, long before • izeable effects 

of tl.e expaneion at the body have a chance of influencing the shoe~ 

dr stically. Of cour••• eince no · provieion for the crosaflow •hock i• 

0 0 
made, the re• ult• in the vicinity of the body, between 8=20 and 6=40 

become wild and the computation •top•. Neverthelese, the entire flow 

field i• definitively three-dimen•ional, and the shock it•elf is no 

longer circular in croee-• ection, so that we may • ay that in both cases 

we are dealing with a three-dimensional problem, where all derivatives 

are different from zero, and, moreover, in a computational me•h which is 

the most unfitted to make the computation easy. The re• ult• are very 

encouraging. Despite •everal cros• ings of mesh line by the shock, in all 

directions, the shock develops in a stable way and appears very smooth. 

The pressure distribution within the shock layer is very good, except 

where the croas-~low shock should build up. This is shown by the isobar 

pattern of Fig. 18. The isobar pattern is not shown in Fig. 19 because 

it is exactly the same as in Fig. 18, despite the difference in the mesh 

and in the location of the shock relative to the mesh. Note also that 

the crowded isobar pattern near the body in the shadowed region of Fig. 18 

has been omitted. Fig. 20 shows the location of the shock i n the (X,Y) 

plane and the distribution of labels at the las t computed station i n 

Case 4, Run 27 . 
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FIG . 18 



FIG. 19 
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XII. CONCLUSIONS 

Computations of t hree -dimensional, supersonic, steady flows with 

shocks floa t ing amon g me sh poin t s can be perfo rmed. The results so far 

obtained are stable dnd me sh- i ndependent. The logic necessary to handle 

s uch s hocks i s s ~mple. Exten s ion of the technique exposed in the present 

epo r o c ses wh r ~ sho ks my appe a r in 11 direc t ions will require 

me r Pfo rmu l t i on e ~hoc k equa tion s wh ich, s o far, depend too 

he i ly o n t h sh c k bein 

wil l l so be ~e uired o 

efined b y ( 29 ). So me dd itional bookkeeping 

un f o r the pre s enc e o mul iple shocks. 
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The basic principles, however, will stand as stated in .this Report and 

most of the equations will be usable without changes, in particular the 

crucial approximations for derivatives at points n~ighboring a shock 

(which, so far, allow the computation to remain stable). Extensions of 

the sort and applications as mentioned in th introduction are surely 

worthwhile since the present technique can produce very accurate results 

with a minimum of mesh points, that is, using a computer at peak efficiency. 
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