
7,-~

AD-768 783

INTENSITY INTERFEROMETRY IN THE SPATIAL
DOMAIN (II)

Paul H. Deitz, et al

Ballistic Research Laboratorles

Prepared ior:

Army Materiel Command

September 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151



Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Atdditional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

.................. .......

The findings in this report are not to be construed as
an official Department of the Army position, unluss
so desigratid by other authorized documents.



BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1668

SEPTEMBER 1973

INTENSITY INTERFEROMETRY IN THE SPATIAL DOMAIN (II)

Paul H. Deitz
Concepts Analysis Laboratory

and

F. Paul Carlson
University of Washington

Seattle, Washington

Approved for puolic release; distribution unlimited.

RDT&E Project No. 1M562603A286

ABERDEEN PROVING GROUND, MAR f LAND



Unclassified RD7ý?7ýSecuRrt CL- "sificatlon

DOCUMENT CONTROL DATA. R & D
(Security c•issillcation of title. body at abestct and ,inet.,j annotation must be entered when the overall report Is clas.ifeod)

I. ORIGINATING ACTIVITY (Corporate author) - amJ. REPORT SECGURITY CLASSIFICATION
U.S. Army Ballistic Research Laboratories unclassified

Aberdeen Proving Ground, M4D 21005 2zb. GROUP,

3. REPORT TITLE

I•NTENSITY I'ERFEROMETRY IN THE SPATIAL DOMAIN (II)

S. AU T.MoRS) (First name, middle Initial, last name)

Paul H. Deitz and F Paul Carlson

6. REPORT DATE la. TOTAL. NO. OF PAGES lb. NO. OF REFS

SEPTFMBER 1973 33
85 CONTRACT OR GRANT NO. Sg. ORIGINATOR'S REPORT NI•JKCER(SI

b. PROJEC','O. RDT&E 1MS62603A286 BRL Report No. 1668

C. 9b. OTHER REPORT NOCS) (Any othor numbere Mwt mW b.e aelaled
this repon)

d.

10. OISTRIBUTION STATEMCNT

Approved for public release.; distribution unlimited.

I,. SUPPLEMENTARY WOTESTh, S material was present -- PONSORING MILITARY ACTIVITY

ed at the Spring Meeting of the Optical Soc U.S. Army Materiel Command
of America in Denver,CO, 13-16 Mar 1973. | 5001 Eisenhower Avenue
Published in J.Opt Soc Am. Mar 73. Alexandria, Virginia 22304
1S. AUSTRACT

Intensity interferometry, as developed by Hanbury Brown and Twiss for stellar
observation, has shcwn relative insensitivity to atmospheric scintillation. However,
with classical sources, the limitations placed on this technique by quantum .aoise
and detector efficiency are severe. This situation is vastly improved when laser
illumination is employed. Generalizing a form of the mutual coherence function, we
derive the far-zone behavior of the mutual intensity function for an interi,•diate
time average. This result is used to reconstruct the irradiance distribution of a
sp:atially rough source. The far-field intensity distribution is recorded spatially
for one time-resolution unit of the detector. The resulting spatial signal is auto-
corielated and related to the intensity distribution over the source. Thus, without
averaging in the time domain, a spatial Fourier-,ransform relation is derived between
the far-field intensity correlation and the source irradiance, similar to the results
of Hanbury Brown and Twiss.
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INTENSITY INTERFEROME_'r?Y IN' THE SPATIAL DOMAIN (I

ABSTRACT

Intensity interferometry, as developed by Hanbury Brown and TWiss
for stellar observation, has shoiwm, relative insensitivity to atmospheric
scintillation. However, with clasiical sourc~es, the limitations placed
on this technique by quantum noise and devcic~or effi-ciency are severe.
This situation is vastly improved when lase- illum-inationt is employed.
Generalizing a form of the mutual coherep,-e, ftrnction, we derive the far-
zone behavior of the mutual intensity funmct ion for an itermedaetm

average. This result is used to reconstruct the irradiarece distribution~
of a spatialiy rough source, The far-field intensity distribution is
recorded spatially for one time-resolution unit ofl the detector. The
resulting spatial signal is autocorrelat'd. and related to the intensity

distribution over the source. Thus, without averaging in the time
domain, a spatial Fourier-transform, relation is derived between the far-
field intensity correletion and the source irradiance., simtilar to the
results of Hanbury Brown and Twiss.
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1. INTRODUCTION

In an earlier BRL Report under this title, we developed the

mathematical relationship between tf ; intensity distribution over a

rough surface and the intansity correlations in the far field. Although

intrinsic to the underlying mathematics, the assumption of gaussian

statistics was not explicitly used. In an effort to extend the approach

to sources of arbitrary degree of spatial coherence, methods of gaussian

statistics have been applied to this study. This leads to a simpler

mathematical development.

* Th•:e final results of this report are nearly identical to the

earlier work. However, here the detailed development of the work of

M;&rch.nd and Wo.f is omitted, We have retained the original intrc4uction

so that this report may be self complete.

* M' k historv oi intcesity interFerzm.eti* is rested in the work of

.{anbuw:/ 5),w -and wis=_, Their earliest investigationsr dealt with

Sthe p obli of resolving stellar radio sources by a technique involving

Shc :-rreiation of the squared ou--_uts of two receivers. The advantages

are the reduction of certain kinds of exerimentai constraints as well

as the co-parati-e insensitivity of th-e method to atmospheric scintil-

lai:7A . ::iix conc .u.ion reached at that time was that this

technicue of intensitv correlation would not be applicable at optical

frequencies because of limitatians imposed by photon .oise. However,

in later work,' Hianbuf. Br.wn. and -'iss shcn-ed t•hat ••_aenlngfui inten-
sity correlations could be made at optical frequencies even with highly

degenerate sources. The limitations placed on this approach by quantu.mn

noise and detector efficiency have been severe, calling for hiehly

refined experimental technique.

BRL Report No. 1616
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For laser illumination, the situation is very different. The

siznal-to-noise ratio can be typically increased by six orders of
4magnitude. However, the statistics of the source must be considered

in the measurement. The key to relating intensity correlations to some

property involving field correlationr lies in the assumption of gaussian

statistics,5 for which all higher moments are determined from the first

and second. Single-mode lasers, though, are distinctly nongaussian in

their statistics, and, therefore, cannot be described by theory framed

fir thermal sources. But with the addition of only a iew axial modes,

the field amplitude becomes nearly gaussian distributed. 6

The principal formala used by Hanbury Brown and Twiss7 to infer

the diameter of a distant source shows that the time-averaged corre-

latio- of intensities at two points is equal to the product of a

function involving the temporal characteristics of the source with the

square of the spatial-Fourier transform of the source intensity distri-

bution. If the intent of an intensity correlation ?xperiment is to

gain information concerning the source intensity distribution, then the

source temporal statistics may be of little interest in themselves.

Consideration of the temporal statistics is necessary if the intensity-

product output of the detectors is averaged in the time domain (as it

nearly always is) to overcome the limitations imposed by photon and

detector noise and possibly reduce scintillation effects produced by

transmission through the atmosphere.

Intensity Interferometry can be understood as a two-point corre-

lation of intensities following the squaring of the electric field at

the detector. If the source is qua:i-monochromatic, cach differential
element on the object emits a number of temporal modes that interfere

8
with each ether at the detector. If the detector has sufficient speed8

to detect these beat frequencies, the amplitude and phase of the in-

coming intensity beats are utilizer.. ft is commonly argued that in

these circumstances, the random flut.:uations of the temporal statistics

from different points of the source cause the beat frequencies from



each source point to add incoherently at the detector. The time-

averaged intensity correlation is then proportional to the squared

spatial-Fourier transform of the source intensity. This approach gives

essentially a squared version of the van Cittert-Zernike theorem. 9

We suggest that the requirement of surface roughness at the source

(to assure spatial incoherence) is sufficient to guarantee the in-

coherent addition of beat frequencies at the intensity detectors. Thus,

if temporal noise (photon noise, time-dependent detector noise) is

largaly absent in a local spatial sense, as might be the case with a

multi-axial-mode laser with photographic detection, then the intensity

information might be gathered during one resolution time of the detec-

tor over a plane section normal to the direction of light propagation.

Any noise arising in the process would be spatial, and might be averaged

out by taking a sufficiently large area of spatial correlation. The

reduction of atmospheric spatial noise would be similar to a process

known as aperture averaging. 10 Film-grain noise would be extremely

well averaged by the relatively large area of averaging.

The relative insensitivity of intensity interferometry to turbu-

-lence is due to the assumed dispersionless nature of the propagation

£ medium. Because each temporal frequency sees the same refractive index,

the differentiai (beat) frequencies remain unchanged. However, the

spatial-Fourier-transform relation between the source and the far field

is scaled as the average frequency, not the beat frequency, and thus

the resolution afforded by optical frequencies is maintained.

The idea of examining spatial beat frequencies of second-order

correlation is, of course, not new. Mny classical field-c:rrelation

interferferomeL-.•rs, as well as holographic experiments are built on this

principle, involving a spatial or time lag between interfering beams of

the same source. More difficult is the spatial recording of beats from

two independent sources, as demnnstrated by Magyar and Mandel.I1

z•9
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We have examined the problem of relating far-field spatial inten-

sity (fourth-order-field) correlations to the intensity distribution of

the source, without here considering the limitations due to noise. Our

approach has been completely classical, drawing on a straight-forward
12

generalization of a method given recently by Marchand and Wolf. Our

notation is similar through the develornent of their Eq. (35).

II. THE INTERMEDIATE-AVERAGE MUTUAL COHERENCE FUNCTION

For a stationary scalar wave field, the mutual coherence function

for the correlation of two space-time points is often written

T
T T

-T

where x = x I + y nj, and the limits for the time integration are-n n n
allowed to approach infinity. For this case, however, we wish to keep

the parameter T finite, and by the subscripts indicate that we assume

a knowledge of VT(xIt+T) and VT*(x 2 ,t) only over the finite sample

length 2T. We wish to call r(x 1 ,x 2 ,t,T) the intermediate-average mutual

coherence function and stress that, for arbitrary T or shift of origin,

it may bear little resemblance to the mutual coherence function defined

by the ensemble average.

Following Ref. i2, we represent V(x,t) as the temporal Fourier

transform of thc complex analytic signal (where a factor of (27)- 1 has

been suppressed),

VT(xt) = v T (x,w) exp(-iwt)dw for 0 < It, <T (2a)

0

= 0 othernise (2b)

and
T

vT(-x') = J VT(x,t) exp(iwt) dt. (2c)

--T

S~10



Substituting Eq. (2a) iito Eq.,Q interchanging the order of integra-

tion and time-averaging, and performing the time integration, wo get

r (X1,,x2,T,T) f~f 'IT 1'212
0

x exp(-iw!T) sinc[(iw1 -W2 )TI dwldw 2, (3)

where

sinc x sin x (4)

and the function

"WT(X1,,x2 wl,w) vT(xll]cl) VT*(X!9 2 ) (5)

is termed the cross-spectral density. The subscript T here and later

implies a function based on the electric-field statistics only for the

particular sample 2T in length about the origin. The sinc function of

Eq. (3) assumes the role of a low-pass filter. If T is very small, the

two frequency variables of Eq. (3) are essentially independent and all

cross term, are represented in the product of Eq. (5). These cross

terms form a high-frequency spectral content. However, as T tends to

infinity, the sinc function assumes the role of a 6 function, constrain-

ing correlaticn to occur only between identical frequencies in the

transform product and forcing the integral to a one-dimensional form.

In the limit of large T, the filtered spectrum of Eq. (5) becomes the

mean-square value (dc) of each temporal-frequency component in the

signal.

Omitting here the details, the far zone form of the cross-spectral

density function nas been derived by the method of Marchand and Wolf

wi,.h the exception that the parameter T is left finite. The resulting

'-:xm of the intermediate-average mutual coherence function is

1l



IE 2x 2 , T)

= 4r2 Cos0 1 cose 2  ff exp(-iw1,T) sinc[(w1 -w 2 )T]

0

exp[i(k Ir -k2 r2)]

r 2 r' 2~ rx k _kd.l•1l2

xV 1  - k 0 0; k2- k2 2 0; (6)

where the spatial-frequency correlation function in the plane z = 0 is

defined

--x, x2 - 0;*

Tkl -f-, k 1 -; 0; W~ - ;:- ' ; 2TT 2I r 2 2  2

/ 1  2x-

, x, ki L.; 0; kx2 " k L2 0; W12 , (7)
V.. r 1 ' 1  2 r 2  2 r'

and vT(fg;z;w) is related by a two-dimensional spatial-Fourier transform

to the time-frequency representation of the electric field by

VT(X,y,z;W) = ff T (fg;z;w) exp[i(fx+gy)] dfdg. (8)

0

Finally the circular functions give the direction cosines for the two

correlated fields, while the arguments are the angles that the two

directions make with the z axis; specifically

z1I z2 =
- cos 1  and - cosa 2  (9)

12



If T is allowed to approach infinity, Eq. (6) reduces to the form given

in Ref. 12 using Eqs. (5) and (35). We are now ready to form the self-

intensity function in the far field.

III. THE SELF-INTENSITY FUNCTION IN THE FAR FIELD

We now examine the form of the self-intensity in the far field by

letting points x1 = x = x and then letting the time delay, T, be zero.

Under these condition3 the mutual coherence function reduces to the
33

L self-intensity, and using Eq. (6), we have

I(x,T) 4- 42 cos 2O d lc 2

0

exp[i(k 1 -k 2 )r) sinc [(wrW]T]
2 1 2

r

X T~N (k , k, X-; 0; wl)vT- (k2 ., k Y-; 0; ")' (10)

where, as indicated earlier, the sinc function acts to suppress temporal

frequencies in the cross spectrum higher than Ql/(2T) Hz. We now

utilize the linear transformation of the time-frequency variables (for

which the jacobian is unity) defined by

i+W2

l -w 2 -~ 3 and 2 C(F)

Writing the w variables in terms of these center-of-mass coordinates.
we get

W G u ad w)2 = -p (12)2 2

which, when substituted into Eq. (10), gives

13 1



I (x,T) ()

Cos 2 I d a a2  J sinc(pT) exp(ipr/c)d

a=O p=-•

VT (!+-P12 0 ~12~ ; 0; p

(2-p/2 x a-p/2 yX0; Q; 13T k r' c r O -p/ (13)

where the dependence of the amplitude on the difference-frequency co-

ordinate, p, has been dropped, since for quasi-monochromatic radiation

a2 >> IV2/41.

Now, using the defining transform relation of Eq. (8), we write

the spatial-correlation function at the source (z = 0) where

VT (ai-1 rx a-c1 r 0; a+P/2)

* (Va-p12 x a-p/2 y 0; o-o,2)
M vT c r c r

-- OI Hi v~( 1,rI;0; aF+p/2)

x V T (ý,n2 ;0; a-p/2)

14



-- exp e++2 x n

f2exp [) (o-2) (2 rx+ r-2 Y) d d1"& 2 d2 dnd2  (14)

Now the intermediate-average spatial-correlation function,

vT(&l,nl;0; i+p/2) VT (2,n2;; a-p/2)

when considered wit! Lhe filtering action of the sinc function of Eq. (13),

will have an effective contribution only for the low-frequency components

formed by the difference-frequency terms . 1!(2T) Hz or less.

In addition, we assume the mode population to be a slowly varying

function of a, since a >> p/2, and thus we write

S[vT(CI,nl,0; a+p/2) vlT*(&2,n2,0; a-p/2)]io'w freq.

= A(ýlpl; a+0/2) A(&2 ,n 2 ; L-p/2)

exp[iý (&1-&2, n!-nl2;p) (15a)

S= ~A(_$1,) A(L_2,a) H(p) exp~i¢ (_l42;p)] (15b)

where

I1 for A(_;a±p/2) 1 0
H(p) =

10 otherwise.

i5



N

We note that, in Eq. (1Mb), a spatial-vector symbolism has been adopted
to shorten the notation, where + n•. Equation (15) indicates

the loss of the optical-frequency phase, whereas the phase of the in-

tensity envelope formed by temporal beat modes is preserved. The degree

to which the phase of this envelope is detected depends on the bandwidth

of the source and the detector resolution, 2T.

Essentially, the approximation of Eq. (15b) was made by Hanbury

Brown and Twiss, except for the defining of the H function. Its intro-

duction is brought about by the description of narrow-band sources by

terus in A(L,a). For a thermal source of relatively large bandwidth,

many of the higher beat-frequency (p) components will not be resolved

by the system response (%2T) described by the sinc function. in addi-

tion, the beat bpectrum will be a continuous function. For a Laser

source exhibiting a series of axial modes, however, the complete

difference-frequency domain might lie entirely within the system re-

sr)onse but be pieco-wise continuous in its extent.

Relative to the representation of the intermediate average by ahe

form of Eq. (15), we wish to reiterate a statement made following Eq.(l)

that the intermediate-averaging prccess mzay bear litte resenblance to

the infinite time average, even so far is the detail of the ampl'

terms, A(E,c). This situation would be serious if our intent were to

infer, fo7 example, the time-frequency statistics of tha source. But

in the present concept, we desire only to infer the spatiol properties

of the source. If we consider a multi-axia!-mode laser beam scattered

from a spatially rough surface, the lack of correspondence between the

two averages is uimportant, for all such mode histor-y is integrated

out; all areas of the scatterer see the same mode characteristics. Any

mode fluctuation would be seen simply as a variation in total .eceived

power from one sample to the next. Here, we simply require for one

detector-resolution time over a spatial domain that the process of

Eq. (15) exhibit a minimum of two temporal modes [to maintain t.e phase

term '(,i-e_,l) with sufficient mode population freflected in the

16
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amplitude terms A(_,c))] such that quantum noise ir both the carrier

wave and the detector can be ignored.

Using the results of Eq. (15) in Eq. (13) and taking 0 << I, we

write

I(x,T) a cda dp exp(ipr/c) sinc(pT) H(p)

0 -o

Sex [i (1-p.1 di"l%% (16)

We now have the self-intensity in the far field as a double integral

over sum- and difference-frequency components as well as two, two-

dimensional spatial Fourier transforms over the source.

Following Goodman, 1 4 we argue that the received field at any point

in the far zone consists of a sum of random-amplitude, random-phac,

complex phasors contributed by the elementary scatterers. If the size

of the scattering area is large enough ýo include many point scatterers

(or there are enough e]ementary coherence areas composing the source),

the central limit theorem may be used to conclude that the electric

field in the detection plane is u gaussian random piocess in a spatial

sense.

1.'7
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Us-.g the firm of Eq. (16) and its property of spatial gaussian

statistics, we are ready to form the fourth-order correlation function

in the far zone.

IV. FOURTh,-ORDER FIELD CORRI.LATION IN "Il1E FAR ZONIE

Basic to the theoy, of intensity correlation is the ability to

represent higher-order field correlations (fourth, sixth, etc.) in

terms of t e first and second. This is due to a well-known property cf
15

gaussian processes. 'lowever, in the work of flanbury Bi-wn and "'iss,

this property was never explicitly used, although it was discussed later

by Wolf 5 as a riausibility argument for their work.

To form the fourth-order correlation function, we can procced by'

writing the two-point product of intensities in the far field using

Eq. (16) in a manver similar to that of Ilanbury Brown and Twiss.

Hlowever, to develop an approach -daptable to arbitrary orders of corre-

lations, as wc -as to allow con';ider; tion of scattering surfaces with

arbitrary roughness, we start by examining a relatio,:ship valid for real

fourth-order gaussian processes (here in the real electric-field
spatial variable), where

X V (V 2 (l V2 (x7a)

2 (?V(X) V (J)) 2 (V -) --V (!7a)

= (AIxl) I~x.) 17b)

and where we define

2 2AV2(x a V (x) - ( (xn) (18a)

ane

AIC ) -(x) - (1(x)'. (lSb)

-n -in -n

18



Equation (17b) follows from the dcfinition of intensity, and the ;'ngle

brackets 0 indicate an ensemble (spatial) average, not the more usual

time average.

Using the identity

i (•I(Xl) AI~~~~~.2)) =(2 1 (Xl)I12)) -((l)(~2),(9

we can write

(1(X1 ) 1(x 2)) = 2(V(X 1 ) V x2))2 + (xl)> ( _2> (20)

We can conclude from Eq. (20) that the second-order intensity correlation

is composed of two terms, of which one forms the square of the second-

order field correlation; the other is a spatial dc term, of no value here.

Hanbury Brown and Twiss eliminated a similar temporal term by means of a

dc block in their electronic apparatus. The mathematical origin of this

term can be observed in Eq. (16) for the case p = 0, corresponding to

the infinite time average. For p = 0, the product of intensities in the

far field for just two points is a constant; but, as the mean position

of the points is translated spatially, the product vaiies and thus for

the spatial averaging case, terms in p = 0 must be evaluated.

Similarly, for the complex field variable we can write, using

Eqs. (6) and (16),

I(x 1,T) I(X 2 ,T)) = I( r(xl,x 2 ; 0;T)) 12 (21a)

4 .~-j fa 2 dof dp sinc(pT)H(p) exp(ip-r/c)j

190 -0

x (A(Ll,o) A(%,G) exp[iý%-i.-;PA)]

[0



M- [i /o-p/

Xexp [i~~42 Lr_2J dd 2' (2 lb)

where we have interchanged the order of integration and avcvaging.

Next, we make the following transformation to spatial. ceinter-of-

mass coordinates where

f and = ( 2)(22)

Introducing these -into Eq. (21b), following some a)igebra, w~e find

(suppressing constant termps)

4 af sinc(pT)HI(o)dp exp(ipx'Ic)
(cr) 0 0

CC

(((Fj~jA~g.+flio) _(.fI2,o) exp[i-,(f,p)]>

xexp dfdR1 (20a)

20



(crW 4j w~w s (pT)(p)dp
r 1o

-00

f C(f) exp x+x) Lf (23b)

In going from Eq. (21a) to Eq. 23b), we have dropped the Fourier-

transform terms in the difference frequency variable p, since they are

clearly negligible in the far field. The ensentle average aas been

expressed as a product of two terms: C(f) is a normalized correlation

function14 describing the coherence interval over a rough surface, and

I(V',) is &. in, nsity in tie global-spatial variable. We have made

the reasonabLe assumption that the field amplitude is constant w-'In

a given coherence area of the source; specifically, for f sufficiently

small that C(f) ý 0, A(Z+fl2,u) = A(Z-f/2,o) = A(r,a). This final

approximation is made under the assumption that the coherence area of

the source is sma~l relative to the total source area, an assertion

aireatv marde in an earlier argument for gaussian statistics. In

Eq. (23c0, the hat indicates a two-dimensional spatial-Fourier

trans formi.

21



In order to describe a spatially incoherent surface, C(f) is
16usually allowed to assume the role of a 6 function. Thus, Eqs. (23)

are reduced to a single integral in two space. Given this form, we see

from Eqs. (23) that the ensemble-averaged, two-pont intensity corre-

lation in the far field is proportional to the modulus of the spatial

Fourier transform across a spatially rough surface, assuming a suffi-

ciently short exposure time 2T. However, only for the case that the

intensity distribution over the source has even symmetry :an the phase

of the spatial transform be inferred and used to invert uniquely Eqs.(23)

to derive the intensity distribution on the source, I(_,,).

Finally, the form of Eq. (23c) shows explicitly that the two-point

ensemble-average intensity correlation in the far field is pro•,ortional

to the product of two spatial power spectra. The spatial power spectrum

is mu tiplied by

the spatial power spectrum of the correlation function describing the

surface roughness. If the surface is sufficiently rouigh that this

function approximates a 6 function, then the transform is essentially

constant, and all spatial frequencies of the source can be inferred.

dcwever, as the correlation interval increases,

acts to band li-it the detectable spatial spectrum of the source. This

effect is discussed, for example, by Kinsly17 for the case of micro-

densitometer imaging with partially coherent light.

22



V. AN EXPERIMENT

To illustrate the above ideas, we suggest a simple experiment

embodying these mathematical ideas. A helium-neon laser in single-

axial--mode configuration is used to transilluminate a symmetrical source

(Fig. 1). The source has a random-phase character to obtain spatial

incoherence. The far-zone intensity pattern is recorded by film, using
18

an exposure time less than the reciprocal of the source bandwidth.

Next, the film is developed so that it is linear in intensity and

used to make two identical positive transparencies. The positives are

then placed in a collimated beam (Fig. 2) to form the correlated in-

tensity over an averaging area. The signal transmitted by the trans-

parency pair is optically Fourier transformed, a dc block is inserted

to remove the unwanted average term, and the total remaining irradiance

is measured. This signal represents the mathematical expression given

by Eqs. (23) for the transparency spatial lag, d = X1 -X2 . Since the

source is known, a priori, to be symmetrical, the transform of the

source intensity is real. The square root of the correlation signal is

proportional to the spectrum, which is then known as a function of

spatial In'. Finally, this two-dimensional signal is Fourier trans-

formed by machine to give the scaled source irradiance.

VI. SU]ARY AND CONCLUSIONS

Developing an intermediate-average, mutual coherence function as

a starting point, we have derived an expression for the two-poitt, in-

tensity ctrrelation in the far field, independent of time averaging

except for the temporal resolution of the detector. This result is

valid for narrow-band, high-intensity light scattered from a spatially

rough surface of arbitrary coherence area.

There are a number of special benefits from detecting images by

the technique of intensity correlation. (i) The method is relatively

insensitive to the effects of atmospheric scintillation.2 (ii) Because
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the signal is detected in the spatial-trz,,sform domain, high-frequency

detail about the scattering surface translates to large spatial lags in

the far field. This result could be particularly important at frequen-

cies where detector resolution is not well developed. (iii) A special

advantage to intensity interferometry in the spatial domain is the

utilization of gaussian statistics in th3 spatial (not temporal) sense.

By this method, sources with nongaussian time statistics (such as single-

axial-mode lasers) can be utilized. (iv) Still another advantage of

spatial detectIon is that images of moving surfaces can be formed using

brief exposures.

We have therefore shown that, given a symmetrical, spatially in-

coherent source illuminated by hi~h-intensity light, the far-zone in-

tensity pattern can be used to form the optical image of the source if

the signal is recorded with sufficiently short time resolution.
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