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INTENSITY INTERFEROMETPY IN THE SPATIAL DOMAIN (11D

ABSTRACT

Intensity interferometry, as developed by Hanbury Brown and Twiss
for stellar observation, has shown relative insensitivity to atmospheric
scintillation. However, with clas:ical sources, the limitations placed
on this technique by quantum noise and detcecior efficiency are severe.
This situation is vastly improved when lase ° illumination is employed.
Generalizing z form of the mutual cohererse function, we derive the far-
zone behavior of the mutual intensity function for an intermediate time
average. This result is used to reconstruct the irradiarce distribution
of a spatialiy rough source. The far-field intensity distribution is
recorded spatially for one time-resolution unit of the detector. The
resulting spatial signal is autocorrelated and related to the intensity
distribution over the source. Thus, without averaging in the time
domain, a spatial Fourier-transform relation is derived betwecn the far-
field intensity correletion and the source irradiance, similar to the
results of lanbury Brown and Twiss.
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I. INTRODUCTION

In ar earlier BRL Report under this title, we developed the
mathematical relationship between t! > intensity distribution over a
rough surface and the intsnsity correlations in the far fisld. Although
intrinsic to the underlying mathematics, the assumption of gaussian
statistics was not explicitly nsed. In an effort to extend the approach
to sources of arbitrary degree of spatial coherence, methods of gaussian
statistics have been applied to this study. This leads to a simpler

mathematical development.

: The final results of this report are nearly identical to the

. ®

“earlier work, iHowever, here the detailed development of the work of
¥oif is omitted. We have retained the original intrc tuction

so thst this report may be seif complete.

The kistory o intensity interfersmeisy is restsd in the work of
Hanbury Irown and Twiss, Their serliest investigationszf? dealt with
the probiszm of resolving stellar radio sources by 2 tachnique involving
the coyrsistion of the squared ouiputs of two receivers, The advantages

sr2 the reduction of certain kinds of experimenizl constraints as well
Iation.™ A preli usion reached at that time was that this

frequencies because of limitstions imposed by photen nelse. However,
in larer work,” st meéaningful inten-

ficizs even with highly

degenerate sources. his approach by guantum
noise and detector efficiency have been severe, ¢alling for hichiy

refined experimental technique.

1 ]
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For laser illumination, the situation is very diffcrent. The
signal-to-noise ratio can be typically increased by six orders of

. 4 s R .
magnitude. However, the statistics of the source must be considered

in the measurement. The key to relating intensity correlations to some

property involving field correlatiorns lies in the assumption of gaussian

s e
Ryd

statistics,S for which all higher moments are determined from the first
and second. Single-mode lasers, though, are distinctly nongaussian in
their statistics, and, therefore, cannot be described by thecry framed
for thermal sources. But with the addition of only a few axial modes,

the field amplitude bescomes nearly gaussian distributed.6

The principal formuala used by Hanbury Brown and Twiss7 to infer
the diameter of a distant source shows that the time-averaged corre-
lation of intensities at two points is equal to the product of a
function involving the temporal characteristics of the source with the
square of the spatial-Fourier transform of the source intensity distri-
bution. If the intent of an intensity correlation experiment is to
gain infermation concerning the source intensity distribution, then the
source temporal statistics may be of little interest in themsclves.
Consideration of the temporal statistics is necessary if the intensity-
product output of the detectors is averaged in the time domain (as it
nearly always is) to overcome the limitations imposed by photon and
detector noise and possibiy reduce scintillation effects produced by

transmission through the atmosphere.

Intensity interferometry can be understeood as a two-point corre-
lation cf intensities following the squaring of the electric tield at
the detector. If the source is quaxi-monochromatic, cach differential
element on the object emits a number of temporai modes that interfere

with each cther at the detector. If the detector has sufiicient speed8

from different point

7]

of the source cause the Leat frequencies from
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each source point to add incocherently at the detector. The time-
averaged intensity correlation is then proportional to the squared
spatial-Fourier transform of the source intensity. This approach gives

essentially a squared version of the van Cittert-Zernike theorem.g

We suggest that the requirement of surface roughness at the source
(to assure spatial incoherence) is sufficient to guarantee the in-
coherent addition of beat frequencies at the intensity detectors. Thus,
if temporal noise (photon noise, time-dependent detector noise) is
largaly absent in a local spatial sense, as might be the case with a
multi-axial-mode laser with photographic detection, then the intensity
information might be gathered during one resolution time of the detec-
tor over a plane section normal to the direction of light propagation.
Any noise arising in the process would be spatial, and might be averaged
out by taking a sufficiently large area of spatial correlation. The

reduction of atmospheric spatial noise would be similar to a process

knowr. as aperture averaging.10 Film- grain noise would be extremely

well averaged by the relatively large area of averaging.

The relative insensitivity of intensity interferometry to turbu-

lence is due to the assumed dispersionless nature of the propagation

e L S
¥

medium. Because each temporal frequency sees the same refractive index,

o

the differentiai (beat) frequencies remain unchanged. However, the
spatial-Fourier-transform relation between the source and the far field
is scaled as the average frequency, not the beat frequency, and thus

the resolution afforded by optical frequencies is maintained.

The idea of examining spatial beat frequencies of second-order
correlation is, of course, not new. M.ny classical field-carrelation
initerferferome.2rs, as well as holographic experiments are built on this
principle, involving a spatial or time lag between interfering beams of
the same source. More difficult is the spatial recording of beats from

two independent sources, as demnnstrated by Magyar and Mandel.11
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We have examined the problem of relating far-field spatial inten-
sity (fourth-order-field) correlations to the intensity distribution of
the source, without here considering the limitations due to noise. Our
approach has been completely classical, drawing on a s*raight-forward
generalization of a method given recently by Marchand and WO1f.12 Our

notation is similar through the development of their Eq. (35).

IT. THE INTERMEDIATE-AVERAGE MUTUAL COHERENCE FUNCTION

For a stationary scalar wave field, the mutual coherence function

for the correlation of two space-time points is often written

T
= _]; *
T(x),%y,0T) ¥ 37 [ Vp(x),t41) VE(x,,t) dt, (1)
T

where X, = xni + ynj, and the limits for the time integration are

allowed to approach infinity. For this case, however, we wish to keep

the parameter T finite, and by the subscripts indicate that ws assume

a knowledge of VT(fi’t+T) and VT*(EQ’t) only over the finite sample
length 2T. We wish to call F(§4,§2,1,T) the intermediate-average mutual
coherence function and stress that, for arbitrary T or shift of origin,

it may bear little resemblance to the mutual coherence function defined
by the ensemble average.

Foilowing Ref. i2, we represent V(x,t) as the temporal Fourier

transform of the complex analytic signal (where a factor of (2«;;)'1 has
been suppressed),

Vo (x,t) = [ volx,0) exp(-iwt)de for 0 < el <T (2a)
0
= 0 otherwise {2b)
and
T
VTQ§,N) = f Vr(i»t3 exp(iwt) dt. (2¢)
-T

10
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Substituting Eq. (24) intc Eg. (17, interchanging the order of integra-

tion and time-averaging, and performing the time integration, we get

F (_x_l }iz’T,T) = JJ “’T 'li_x_z ’wllmz)
0
x  exp(-iw,7) sinc[(w;-0,)T] dudu,, (3)
where
sinc x 3 22X 4
X
and the function
wrp(l(_l ,_)_(_2 wl’mz) =2 VT(ilxwl) VT*(_)_(_7(L)2) (5)

is termed the cross-spectral deasity. The subscript T here and later
implies a function based on the electric-field statistics only for the
particular sample 2T in length about the origin. The sinc function of
Eq. (3) assumes the role of a low-pass filter. If T is very small, the
two frequency variables of Eq. (3) are essentially independent and all
cross terms are represented in the product of Eq. (5). These cross
terms form a high-frequency spectral content. However, as T tends to
infinity, the sinc function assumes the role of a § function, constrain-
ing correlaticn to occur only between identical frequencies in the
transform product and forcing the integral to a one-dimensional form.
In the limit of large T, the filtered spectrum of Eq. (5) becomes the
mean-square value (dc) of each temporal-frequency component in the

sigpal.

Onitting hern the details, the far zone form of the cross-spectral
density function nas been derived by the method of Marchand and Wolf
wi-li the exception that the parameter T is left finite. The resulting

*xm of the intermediate-average mutual coherence function is
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(-]
2 . .
= 49 cosel c0562 ” exp(-lwlr) smc[(wl-wz)'l‘]

exp[i (klrl-kzrz) ]

x klk2dwldw2

L)

X Yy % Yo
X VT kl ;? kl ;—1—; 0; Ky g, k2 g; 0; Wiy ) 63

where the spatial-frequency correlation function in the plane z
defined

X Yy / b y.
- 1 1. 4. b 2 . 0-
v (kl R S “1) rfary e “2)

= 0 is

]

"
-
3

X Y X y
S S SR 2, 2. 4.
e Ak T R T 05 Ky 1k 1 05 ey ) (7)
1 1 2 2

and \A/T(f,g;z;w) is related by a two-dimensional spatial-Fourier transform

to the time-frequency representation of the electric field by

vp(Xsy,250) = [I GT(f,g;z;w) expli(fx+gy)] dfdg. (8)
0

E: Finally the circular functions give the direction cosines for the two

3 correlated fields, while the arguments are the angles that the two

iy

directions make with the z axis; specifically
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If T is allowed to approach infinity, Eq. (6) reduces to the form given
in Ref. 12 using Eqs. {5) and (35). We are now ready to form the self-
intensity function in the far field.

ITI. THE SELF-INTENSITY FUNCTION IN THE FAR FIELD

We now examine the form of the seli-intensity in the far field by

letting points X =X

Under these conditions the mutual coherence function reduces to the

= x and then letting the time delay, 1, be zcro.

self-im:ensi‘cy,]3 and using Eq. (6), we have

< (V)
I(x,T) = 432 cosze ff dw, dw 12
0

exp[i(kl-kz)r] _
X 5 sinc [(ml-wz)T]

)

[N

) (10)

o s . - . &
.where, as indicated earlier, the sinc fumction acts to suppress temporal

-x_ Zo . o 5 X- .
X Vp (kl = & 0 “’1) Vr (kz = ko 0w

frequencies in the cross spectrum higher than ~1/(2T) Hz. We now

utilize the linear trarsformation of the time-frequency variables (for

which the jacobian is unity) defined by

w1+m2
2

and =0 . (i)

"
O

s B

Writing the w variables in terms of these center-of-mass coordinates,

we get

w =280 g o = 22 (12)

which, when substituted into Eq. (10), gives
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I(x,T)
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where the dependence of the amplitude on the difference-frequency co-
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ordinate, p, has been dropped, since for quasi-monochromatic radiation

- % >> |o%/a).

Now, using the defining transform relation of Eq. (8), we write

the spatial-correlation function at the source (z = 0) where

- [o*0/2 x o*p/2y. . _. ;s
Vr ( c T ¢ 1 05 a+p/2

s 03 o-p/?.)

1

= V.(E,,n,:0; o+p/2)
2n)2 I watenpos oo

x VT{' (Ezﬁnz;o; 6-0/2)
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Now the intermediate-average spatial-correlation function,

- - * - - P
JT(El,nl,O, 1+0/2) Vp (Ez,nz,O, o-p/2) ,

when considered wit! che filtering action of the sinc function

will have an effective contribution only for the low-frequency

formed by the difference-frequency terms ~ 1/(2T) Hz or less.

In addition, we zssume the mode population tc be a slowly

function of o, since ¢ >> p/2, and thus we write

A(El.nls o+p/2) A(Ez,nz; c-p/2)

exp[ié (€1_€2’ ﬂl‘nz;p)

A(E;.0) A(E,y,0) Hp) explis (§;-Eyim)]
where

1 for A(g;04c/2} # 0
H(p) =
0 otherwise.

15
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of Eq. (13),

components

varying

. (15a)

(15b)
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We note that, ia Eq. (15b), a spatial-vector symbolism has been adopted
to shorten the nctation, where ¢ = £l o+ nj. Squation (15) indicates

the loss of the optical-frequency phase, whereas the phase of the in-
terisity onvelope formed by temporal! beat modes is preserved. The degree
to which the phase of this envelope is detected depends on the bandwidth

of the socurce and the detector resolution, 2T.

Essentially, the approximation of Eq. {15b) was made by Hanbury
Brown and Twiss, except fur the defining of the H function. Its intro-
duction is brought about by the description of narrow-band sources by
terms in A(g,0). For a thermal source of relatively large bandwidth,
many of the higher beat-frequency (p) components will not be resolved
by the system response (v2T) described by the sinc function. in addi-
tion, the beat specirum will be a continuous function. For a itaser
source exbibiting a3 series of axial modes, however, the complete
difference-frequency domain might lie entirely within the system re-

snonse but be piecc-wise continuous in its extent.

Relative to the representation of the intermediate average by “ae
form of Eq. (15), we wish to reiterate a statement made following Eq.(l)
that the intermediate-averaging prccess may bear littie resemblance to
the infinite time average, even sc far as the detail of the ampl® 2
terms, A{f,0). This situztion would be serious if our intent were to
infer, foy exammle, the time-frequency statistics of the source. But
in the present concept, we desire conly to infer the spatizi properties
of the source. If we consider a multi-axial-mode laser beam scattered
from a spatially rough surface, the lack of correspondence between the
two averages is urimportant, for all such mode history is integrated
out; all areas of the scatterer scve the sawe mode characteristics. Any
mode fluctuation would be seen simply as a variztion in total .eceived
power from one sample to the next. Here, we simply require for one
detector-resolution time ovex a spatial domain that the process of
Eq. (15) exhibit a minimum of two temporal modes {tc maintain the phase

term ¢(§1-§2,p) with sufficient mode pepulation {refiected in the

16
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amplitude terms A(£,0)}] such that quantum noise ir both the carrier
wave and the detector can be ignored.

Using the results of Eq. (15) in Eq. (13) and taking 6 << 1, we
write

o [+

2 .
I(x,T) = %;> J c“do J dp exp(ipr/c) sinc{pT) H(p)
0 -0

=

} ”” A(E50) AlEy»0) expli¢(E;-£,:p)]

.{o+p/2
e |-4(222) ce,om
.fo-o/ -
exp|i 9_%22 (§2-§) q§1d§2 . (i6)

We now have the self-intensity in the far field as a double integra:
over sum- and difference-frequency components as well as two, two-

dimensional spatial Fourier transforms over the source.

Following Goodman,14 we argue that the received field at any point
in the far zone consists of a sum of random-amplitude, random-phac-,
compicx phasors contributed by tae elementary scatterers. If the size
of the scattering area is large enough to include many point scatterers
(or there are enough elementary <oherence areas composing the source),
the central limit theorem may be used to conclude that the electric

field in the detection plape is ¢ gaussian random piocess in a spatial
sense.

pea
"~




Using the Iorm of Eq. (16) and its property of spatial gaussian

statistics, we are veady to form the fourth-order correlation function
irn the far :zone.

IV. FOURTH-ORDER FIELD CORRELATION IN 1HE FAR ZONE

Basic to the theovy of intensity correlation is the ability to
represent higher-order field correlations (fourth, sixth, etc.) in
terms of tle first and second. This is due to a well-known property cf
gaussian processes.ls However, in the work of Hanbury Brown and lwiss,
this property wes never explicitly used, although it was discussed later

by Wolfs as a rlausibility argument for their work.

Te form <he fourth-order correlation function, we can preceed by
writing the twe-point product of intensities in the fur field using
Eq. (16) in a mamer similar to that of Hanbury Brown and Twiss.
However, to develop an approach sdaptable to arbitrarv orders of corre-
iations, as w¢  as to allow consider: tion of scattering surfaces with
crbitrary rcughness, we start by examining a relatiouship valid for real
fourth-order gaussian pr0cesses§”ls

spatial variable), where

(here in the real electric-field

2
20¥(x) V(e = avi(x) avi(x,) (17a)
= (AI{x}) BI(x,) (17b)
and where we define
2e00y = vlrey vl \
AV (5n) =V (}n) v (}ﬂ)) (1&a)
and
BI(c) = H(x) - (1(x. ). (18b)

18
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Equation (17b) follows from the dcfinition of intensity, and the ngle

brackets () indicate an ensemble (spatial) average, not the more usual
time average.

Using the identity

(A1(x)) AI(x, ) = ¢1(x)) T(x) - 1) (LK) , (19)

we can write

e - / 2 hY
CI(x)) TGP = ZVE) V0 7+ (TG D (L) (20)

3

We can concljude from Eq. (20) that the second-order intensity correlation

T
A

[ s

is composed of two terms, of which one forms the square of the second-

vy

order field correlation; the other is a spatial dc term, of no value here.
Hanbury Brown and Twiss eliminated a similar temporzl term by means of a

dc block in their electronic apparatus. The mathematical origin of this

term can be observed in Eq. (16) for the case p = 0, corresponding to

the infinite time average.

B B b
R “'«'ﬁ*x.mt‘ jf ke by e

For p = 0, the product of intensities in the
far field for just two points is a constant; but, as the mean position

nied

jupptladsdinuain it

of the points is translated spatially, the product varies and thus for

the spatial averaging case, terms in p = 0 must be evaluated.

Similarly, for the complex field variable we can write, using
Eqs. (6) and (16),

T,

2
= M M 21

3 (1(x,T) T(x,,TH = KPGxpH%,5 05T | (212)
k£
)
«‘j o [
:} = - {f{ ! J czdo f dp sinc{pT)}H(p) exp(ior/c}
’ (= b o T o

"

<

,O‘c
X

[,

. o
”I (A(g),9) A(E,,0) exp[i¢(§;-E,50) ]

e

it oy

LN ol

W

G
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where we have interchanged the order of integration and avcraging.

Next, we make the followirg transformation to spatial center-of-
mass coordinates where

£=g-k  amd g= g (EpE) - 22)

Introducing these into Eq. {21b), following some algebra, we find
(suppressing constant terms)

[ 2
(1(54,1) I(§7,T)> = —1 3 i ¢ do j sinc(pT)il(p)dp exp(ipr/c)
- (cr) " |°
0 -

«

f(-'\(jyﬁlzm) A(g-£/2,0) explis(£f,p)])

x
M,
S,

§ Smmny 8

1

< exp | 2| TRL2) [(ge£/2) x,]
{ o-p/2 2
x exp t LS 1 (g-£/2)x,] | dfdg (23a)
A




N

sinc(pT)H(p)dp

[m
!

8

. .k
x H 1(gw) exp p-iz (x)-x,)+£dE
% J] C(£) exp —ii;-(§1+§2)j£ qgl (23b)
- (% 2 1A fx \'2
« | I ';(51'-’52) C .2-;(}'1+£2)/" . (23¢c)

In going from Eq. (23%a) to Eq. 23b), we have dropped the Fourier-
transform terms in the difference frequency variable p, since they are
clearly negligible in the far field. The ensemble average aas been
expressed as a product of twe terms: C(f) is a normalized correlation
func:t.it.m14 describing the coherence interval over a rough surface, and
I{g,w) is th- ini:msity in the global-spatial variable. We have made
the reasonab:ie assumption that the field amplitude is constant wi+.in
a given coherence area of the source; specifically, for f sufficiently
small that C(£) # 0, A(g+£/2,0) = A(g-£/2,0) = A(E,0). This final
approximation is made under the assumption thrat the coherence area of
the saurce is smsil relative to the total source areaz, an assertion
aiready madz in an earlier argument for gaussian statistics. In

Eq. (23¢), the hat " indicates a two-dimensionali spatial-Fourier

transform.
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In order to describe a spatially incoherent surface, C(f) is

usually allowed to assume the role of a & function.16 Thus, Eqs. (23)
are reduced to a single integral in two space. Given this form, we see
from Eqs. (23) that the cnsemble-averaged, two-pont intensity corre-
lation in the far field is proportional to the modulus of the spatial
Fourier transform across a spatially rough surface, assuming a suffi-
ciently short expesure time 2T. However, only for the case that the
intensity distribution over the source has even symmetry :an the phase
of the spatial transform be inferred and used toc invert uniquely Egs.(23)

to derive the intensity distribution on the source, I(§,w).

Finaily, the form of Ea. (23c¢) shows exnlicitly that the two-point
ensemble-average intensity correlation in the far field is proportional

to the product of two spacial power spectra. The spatial power spectrum
[k
E r (%% i

is mu.tiplied by

Jx _
A2r 33y

the spatial power spectrum of the correlation fumction describing the
surface roughness. If the surface is sufficiently rough that this
function approximates a § function, then the transform is essentially
constant, and all spatial frequencies of the source cah be inferred.

tcwever, as the correlation interval increases,

[k
Car (X%

acts to band limit the dotectable spatial spectrum of the source. This
effect is discussed, for example, by Kinsly17 for the case of micro-

densitometer imaging with partially coherent light.
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V. AN EXPERIMENT

To illustrate the above ideas, we suggest a simple experiment
embodying these mathematical ideas. A helium-neon laser in single-
axial-mode configuration is used to transilluminate a symmetrical source
(Fig. 1). The source has a random-phase character to obtain spatial
incoherence. The far-zone intensity pattern is recorded by film, using

an exposure time less than the reciprocal of the source bandwidth.18

Next, the film is developed so that it is linear in intensity and
used to make two identical positive transpavencies. The positives are
then placed in a collimated beam (Fig. 2) to form the correlated in-
tensity over an averaging area. The signal transmitted by the trans-
parency pair is optically Fourier transformed, a dc block is inserted
to remove the unwanted average term, and the total remaining irradiance
is measured. This signal represents the mathematical expression given

by Egs. (23) for the transparency spatial lag, d = x Since the

7%
source is known, @ priori, to be symmetrical, the tr;ns%orm of the
source intensity is real. The square root of the correlation signal is
proportional to the spectrum, which is then known as a function of
spatial la-. Finally, this two-dimensional signal is Fourier trans-

formed by machine to give the scaled source irradiance.

VI. SUMMARY AND CONCLUSIONS

Daveloping an intermediate-average, mutual coherence function as
a8 startaing point, we have derived an expression for the two-poin. in-
tensity ccrrelation in the far field, independent of time averaging
except for the temporal resolution of the detector. This result is
valid for narrow-band, high-intensity light scattered from a spatially

rough surface of arbitrary coherence area.

There are a number of special benefits from detecting images by
the technique of intensity correlation. (i) The method is relatively

insensitive to the effects of atmospheric scintillation.2 (ii) Because
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the signal is detected in the spatial-trausform domain, high-frequency
detail about the scattering surface translates to large spatial lags in
the far field. This result could be particularly important at frequen-
cies where detector resclution is not well developed. (iii) A special
advantage to intensity interferometry in the spatial domain is the
utilization of gaussian statistics in thz spatial (not temporal) sense.
By this method, sources with nongaussian time statistics (such as single-
axial-mode lzsers)} can be utilized. (iv) Still another advantage of

spatial detec:ion is that images of moving surfaces can be formed using
brief exposures.

We have therefore shown that, given a symmetrical, spatially in-

coherent source illuminated by hi:n-intensity light, the far-zone in-

tensity pattern can be used to form the opticai image of the source if

the signal is recorded with sufficiently short time resolution.
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