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13 ABSTRACT

The objective of this research program was development of finite element pro-
cedures for prediction of stresses and deformations in the vicinity of underground excavation.

E

! E Two models of rock behavior viere selected. In one the rock is treated as isotropic

E elastic-plastic following a generalized Mohr-Coulomh law and in the other the rock is iso-
. tropic elastic-brittle subject to Griffith or modified failure theory.
!

For each model, mathematical relationships governing stress-strain behavior and pro-
gressive failure were developed. Finite element computer programs incorporating each of the
two models were coded. Preliminary to this development, a revised version of Zienkiewicz's
no-tension analysis was programmed.

The procedures developed all for initial stresses in rock, arbitrary shape and size of the
opening, any given sequence of construction/excavation, material nonhomogeneity and pro-
gressive failure.

Thig report is in three parts: Volume 1- Main Document; Volume 2-Computer Program
ser's Manual; Volume 3-Computer Programs. -

Volume 1, Main Document, contains the theoretical development, and discussion of appli-
cation of the techniques to theoretical solutiocns, experimental data, published results and a

parametric study of forces in structural supports for a tunnel excavation.
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TECHNICAL REPORT SUMMARY

Program Objectives

The objeetive of this researeh program was development of finitc clement
procedures to prediet stresses, deformations and progressive failure of roek assoei-
ated with underground excavations, For applieability to arbitrary sequenee of exea-
vation operations, it was necessary that the proeedures developed allow for arbitrary
initial stresses in rock, arbitrary size and shape of the opening and progressive fail-
ure, Plane strain conditions and two different types of muterial behavior werc eon-
sidered, Rock was treated as an isotropie elastic-plastie generalized Mohr-Coulomb
material in one model and as an elastic-brittle material following Griffith theory of
fracture in the other,

Background

In previous applications of the finite element method to rock meehanies, eclastie-
plastic behavior of rock has been modeled as nonlinear elastic for computational eon-
venience, Further, it was assumed that the results of a one-dimensional test could
ve generalized to three-climensional analysis tiurough the use of an equivalent stress-
equivalent strain curve, In some applieations, two stress or strain parameters were
used, These procedures are unsatisfactory, Assumption of isotropic elastieity assumes
that the prineipal directions of stress and strain eoincide, In plastieity this is not true.
Also, rock behavior is eharacterized by u significant part of deformation being irre-
versible. For this reason, the meehanieal behavior in unloading is different from that

in loading. For roek with preexisting joints or developing tensile eracks, a 'no tension’
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procedure is often adopted. In this method, a iiisar elastic solution is obtained .nd
all tensile stress redistributed simultaneously, Actually, as cracking progresses,
the rock on either side of the crack is relieved of stress and a stress concentration
develops near the crack tip. Conventional proceduras ignore these effects and the
progressive nature of crack development, leading to erroneous conclusions regarding
stresses around underground openings.

Accomplishments Under the Present Program

The research conducted under this contract has resulted in development of
computer programs based on more realistic simulation of material behavior, The
incremental theory of plast.city has been used to characterize the stress-strain be-
havior of elastic-plastic rock, Role of kinematic constraint of plane strain in deveiup-
ment of residual stresses in rock has been examined on the basis of Hill's theory,

New techniques have been developed for study of initiation and propagation of fracture
in rock following Griffith's theory or the modified Griffith theory. Allowing for sequen-
tial fracture of various elements in a system, the effect of progressive stress redis-
tribution in the remaining system is correctly incorporated., Arbitrary initial stress
states, arbitrary sequence of excavation (or construction), arbitraryA size and shape

of opening, and nonhomogeneous material properties were allowed for, The actual
construction operations can be simulated. The procedures developed were applic. to
several typical problerr;s in rock mechanics as well as to some theoretical and labora-
tory studies for the purpose of verification and illustration, These were used to carry

out parametric studies to examine the influence of rock propertie. upon th.: stresses

in steel supports in a tunnel.
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DOD Implications

The procedures developed provide useful means for study of stability of under-
ground excavations based on stresses and deformations associated with the mining 1
operations, structural support evaluation, safety analyscs of openings, study of
blasting effectiveness under certain ronditions, evaluation of mining sequences, study
of vulncrability and serviceability of underground structures ctc,

Organization of the Report

g e W

This report is in three parts as follows:

ks B

Volume 1 - Main Document
Volume 2 - Computer Program Uscr's Manual ,j
Volume 3 - Computer Irograms 1

Volume 1 contains the main body of the report including the theoretical development, pro-
gram verification and casc studies, Chapter I reviews prcvious cfforts in the general . :
research area and describes thc objectives and mcthods of the prescnt research in the

historical context. Chapter II describes thc mechanical behavior of rock and the ideali-
zations used in the research under report, The basis and methods of the finite element,

theory are briefly discussed in Chapter III lcading to the formulation of matix equations,

Chapter IV gives details of the analysis technique for isotropic elastic-plastic generalized

Mohr-Coulomb rock materials and Chapter V gives the numerical analysis procedure for

Pav- S =

Lo

jointed rock and rock subjected to progressive fracturc following Griffith or modificd
Griffith theory. Examples of application are included in Chapters IV and V., Chapter VI
presents application of the elastic-plastic analysis computcr program to a parametric 3
study to evaluate the influence of rock properties on stresses in stcel supports for specified

initial stresses and design of the openiry,



In the original proposal, model testing to verify some aspects of rock behavior
under plane strain conditions was foreseen, The effort under the present contract
covered procurement ¢f suitable plane strain test equipment and design of suitable
test material, Appendix B includ2s a report on this effort,

Volume 2 of the report contains description of the thre2 computer programs
developed under the contract along with fortran listings and instructicns for input pre-
paration, The input definition and the listings are for the IBM 370/165 version,

The programs are the primary content of volume 3, These are available on

magnetic tape from DDC-TC, U,S. Department of Commerce, Springfield, Virginia

22151, telephone (703) 321-8517.
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CHAPTERI. INTRCODUCTION

The terrestrial crust is in a complex state of stress. Excavations in this
stressed medium profoundly influence the distribution of stress which in turn de-
termines the stability of the pit, slope or underground opening as the case may be.
Feasibility of a project is related to economics of safe and stable construction.

As an aid to decision making, it is necessary to develop quantitative information
regarding the 'slate’ of insitu rock and predict the stability characteristics of rock
under a change in mechanical environment associated with the proposed construction
or >xcavation operations. Accordingly, engincering investigations in rock mechan-
ics are motivated by the following two objectives:

Evaluation of the 'state’ of insitu rock. This includes,

among others, investigation of pre-existing stresses

in the rock and mapping of discontinuities, materiai

symmetries and other physical data relevant to

engineering decisior. process.

Evaluation of changes from the initial state, asso-

ciated with excavation or construction operations,

including among other factors, changesinthestress

field, along with conscquent yield of materiai, ex-

tension of ~xisting faults and discontinuities and

davelopment of new ones,

The reseuarch effort covered by this report was directed towards the second

objective. In order to realistically predict the stresses, deformations and distress

\

of roek, it is necessary that the method of analysis used take account of the following:

The initial state including pre-existing stresses,
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discontinuities, nonhomogeneity, and material
symmetries, if any.

ii. The sequence cof cxcavation ©r construction operations.
tii. The mecchanical behavior of rock i.e.,, deforma-
tion, yield, failure or fracture of rock under

changes in stress environment.

iv. Interaction with structural supports, if any, used
to improve safety and stability.

Traditionally, limit equilibrium methods have been used to predict stress states

and fuctors of safety. The theory of elasticity has been extensively used to evalu-
ate stresscs in rock in the vicinity of underground openings. However, these meth--
ods are applicable only for linear elasticity, homogeneous materials, simple geome-
try (e.g. circular or elliptical openings), and isotropic materials. None of these
assumptions are valid for rock. Furthermore, the excavation was assumed to be
carried out in a singie step. Influence of sequential nature of any construction

could not be taken into account by these methods.

With the advent of high speed digital computers, numerical methods of analy-
sis have proved to be increasingly useful. Of available techniques, the most power-
ful is the finite element method. The method was introducea by Clough (1960) and
was essentially an offshoot of the general matrix structural analysis techmiques
developed in the aerospace indusiry (Argyris (1960), Tarner et al. (1956) ). Develop-
ment f the method has been rapid and a considerable volume of literature has accu-

mulated ovcr a relatively short period. Among the more important references are




and proceedings

the text books by Zienkiewicz (1972), Oden (1972}, Desai (1972)

of conferences and syinposia (WPATB (1965, 1968, 1971), Vanderbilt (1969), U.S.-
Japan Seminar {1969), IUTAM Symposium (1970) ). Mathematical {oundations of the
method (Zlamal (1968), Oliviera (1968), Oden (1969), Aubin (1972)), its relationship
to variational methods (Melosh (1963), Pian and Tong (1968)), convergence of se-
quences of approximate solutions (Walz et al, (1968), Yamamoto and Tokuda (1971),
Key (1966), Oliviera (1968)) have received attention,

The finite element method has been applied to rock mechanics problems
and its special suitability stems from the fact that any geometrical configuration
can be considered and nonhomogeneity of material does not present any difficulty
in the solution process. Also arbitrary loads, including body forces and surface
loads, and displacements can be prescribed for the problem.

King (1965) developed finite element techniques for incremental construction
which were used by Clough and Woodward (1965) and Sandhu et al. (1967). King
also incorporated a technique for relieving stresses in individual elements in analy-
sis of time-dependent problems. This procedure has been since used to simulate

excavations by Nair et al. (1968), Dunlap and Duncan (1969), Duncan and Chang (1970),

among others. It also forms the basic procedure in analysis of rock as 'no tension'
material by Zienkiewicz et al. (1968) and also in Zienkiewicz et al.'s (1968) ana'ysis
of elastic-plastic materials. Kulhawy (1972) improved the procedure somcwhat

by using stresses at the excavated surface rather than stresses at centers of surface
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clements to simulate stress relief due to excasvation.

Nonlincar maierial behavior was treated by Gallagher et al. (1962) using
the 'initial strain' approach. Finitc element analysis procedures were developed
for nonlinear elasticity by several investigators. The approach v.as to approximate
a one-dimensional stress-strain curve by a mathematical relationship. Wilson (1965)
used the bilinear law. Multi-iinear laws have been proposed by Dunlap et al. (1968).
Salmon, Berkc and Sandhu (1969) ineorporated Richard-Goldberg (1965) and Ram-
berg-Osgood law (1943) and Wilson's bilinear representatioﬁ in a single program.
Kulhawy and Duncan (1969) and Kulhawy (1972) adopted Kondner's (1963) hyperbolic
representation of the stress-strain curve. These mathematieal equations use one
or more parameters to get best fits and are unsatisfactory insomueh as the slope of
the curve is not closely approximated. Desai (1971) used spline funetions to obtain
the =t fit. This way he was able to obtain the best fit,not only to the stress-strain
plot,but also to the slope of the curve which is the information aectually used in the
computer program. Decai (1972) extended his work to allow for the effect of
confining pressurc, This was achieved by using bi-cubie splines. Singh and Chang
(1972) further developed upon Dcsai's work to use spline fit by approximating curves
independent of stress path and calculated sccant modulus and poisson's ratio. The
proecdure has been extended to laminates,

To extend the proeedurc to threc-dimensional analysis, thc gencral approach
has been to interpret the one-dimensional test data as equivalent stress-equivalent

strain plot, Seeond invariant of the stress dcrivative and the octahedral shearing

v et o e v Lo Mol e Tl S s R




strain are the quantities most often used. Defining a shear modulus in this manner,
the Poisson's ratio is assumed constant. Kulhawy (1972) defined both clastic modu-
lus and Poisson's ratio as stress-dependent quantities. This approach 1ssumes iso-
tropic behavior throughout. Another approach using the laws of plasticity was used
by Salmon, Berke and Sandhu (1969) and Sutherland (1970). All these approaches
are essentially empirical. If the material is indeed nonlinecar clastic, onecan either
treat it as Green-elastic and set up on energy functional for isothermal or adiabatic
conditions as the .ase might be, or directly treat the stress tensor as a nonlinear
: function of the strain tensor and for isotropic matcrials using the Cayley-Hamilton
theorem to obtain a representation, Evans and Pister (1966) showed that for energy
' functional cubic in strain, five constants are required to define the stress-strain
law, and these cannot be obtained from any single test, Similarly the constants in

any Cayley-Hamilton representation caunot be obtained from a single test. It is

well-known that equivalent stress-equivalent strain plots obtained from different
tests on rocks and soils are path dependent and thcrefore different,

For finite element aralysis, elastic-plastic materials (rate independent
materials exhibiting path dependent behavior above certain stress level) were treated
as nonlincar elastic by scveral workers. In rock mechanics the deformation theory
of plasticity has been used (Jacger and Cook (1969), Brady (1970), Malina (1970)).
This theory assumes the principal strain directions to coincide with the principal

stress directions, assumes no volume change during plasticity, and is inapplicable
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to nonmonotonic loading. Hill (1950) has discussed the shortcomings of this
theory in detail. It suffices to note here that this theory is unsound uand for

this reason it was not considered in the present research program as a possible
model for n;echanical behavior of rock,

Incremental theory of riasticity was used by Zienkiewicz et al. (1968),
Swedlowet al, (1965), Marcal (1969), Marcal and King (1967). Drucker's method
for evaluation of A in the 'normality rule' was uscd leading to the tangent modulus
approach for von Mises materials. Felippa (1966) developed stress-strain relations
in terms of total incremental strain (clastic and plastic) and incremental stress.
This relation is identicai to the one proposed by Naghdi (1960) and Prager (1949)
for work-hardening materials but has the additional advantage that it is valid for
perfectly plastic solids for which Naghdi-Prager relationships are undefined,

Reyes (1965) and Reyes and Deere (1966) used a rate of work equation to develop
stress-strain relations for Mohr-Coulomb materials. This approach has the limi-
tation that it cannot be generalized to ather failure laws., Yamada (1968) used an
energy ratc approach for von Mises materials. These energy rate approaches are
limited in application and can be derived trom Felippa's more general formulation.
Zienkiewicz ct.al. (1968) used this approach in conjunction with an 'initial stress'
technique to snive for stresses without interest in displacements. Baker, Sandhu

and Shieh (1969) used Reyes and Deere's formulation for finite element analysis

of stresses vnd deformations in rock. It was noticed that under plane strain
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conditions, a radial path eannot be followed in the Westergaard-Haigh stress spaee.
Diseontinuities in rock appear as joints, fissures and faults, Modeling of
diseontinuitics has reeeived eonsiderable attention. However, exclusively, the
geometry of the eraeks and joints was assumed to be known, With this as the
starting point, researeh effort has principally been eoncentrated on eharaeteriza-
tion of stress-strain behavior of jointed roek and on ineorporating limiting shear
strength of joints in finite element analyses, Anderson and Dodd (1966) considered
open joints or faults as surfaees with no resistanee to shear, ineapable of with-
standing tensile stresses normal to their planes, "This capability is now routinely
ineorporated in most finite element programs, A two-dimensional 'soft' material
element has long been used to represent weak joint planes in roek. Duncan and
Goodman (1968) objeet to this on the basis of the large number of elements needed
to ensure a reasonable 'aspect ratio' in the shape of clements, This becomes
a problem for elements representing very thin joints, For rock systems having
thin, elosely spaeed parallel joint planes, an equivalent orthotropic elastie eon-
tinuum representation regarding the orientation of the joints as the plane for reflee-
tive symmetry in the material was proposed by Dunean and Goodman (1968), A
one-dimensional element with shear and normal stiffness eharaeteristies was
developed by Goodman et al, (1968). Rceently, Heuze et al, (1971) have intro-
duced nonlinear meehanieal properties in this element, Christian is eredited with

development of an element capable of simulating eonstant shear and residual shear
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charaeteristies. All these investigations were concerned with setting up stress-
strain relationships for rock with pre-existing joints, Propagation of fracture
has been considered by several investigators. Chan et al, (1970), Gross et al,

(1968) sought to ealculate stress intensity factors at erack tips to determine

wheilier a given eraek would propagate, To improve aceuraey, Wilson (1971),

Byskov (1970) and Levy (1971) introdueed stress singularity elements at craek tips,
Pian (1971) used hybrid finitz elements to obtain improved stress intensity factors
without reecourse to sirgularity elements, Throughout, it was assumed the geo~
metry of the erack was known beforehand, These proeedures eannot be used to
study diseontinuities arising as a result of fracture under changes in stress environ-
ment, Also these eannot consider propagation of fraeture. To use the same pro-
cedure for pre-existing as well as post-failare eraeks, it is necessary to allow
eracks and joints within elements, Then, the mesh layout is more flexible and
arbitrary failure laws ean be used, Malina (1970) used this approach to study failure
alung joint planes and then went on to eompute the amount of slip and the aecompanying
stress redistributuion on the basis of deformation or slip theory of plasticity. Re-
cently, Bock (1971) has used Malina's teehnique to study propagation of faulting in

roek,

Simulation of rock behavior after craeking develops can be achieved using a bi-
modular elastie representation (Sandhu, 1969). However, recognizing the craektobe a

plane of material symmetry, the material is bimodular orthotropic withno resistanee
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to tension in the direction normal to crack. For cracks in two independent directions,
an element under uniform stress can be regarded as bimodular isotropic, The 'no
tension' method used by Zienkicwicz ct al, (1968) is an iterative procedurc of obtain-
ing tension free stress states, The philosophy refleets an iterative solution of a
bimodular orthotropie problem. Howcver, the mechanics of solution climinatcs only
the tensile principal stresses, This amounts to using a non-symmetrie stress-strain
relationship and is open to objcetion, This situation was correeted by Sandhu (1971),
New procedures for finite element analysis of elastic-plastie Mohr-Coulomb
materials and elastic-brittle materials following Griffith's theory under plane strain
conditions were devecloped in the eourse of the present researeh. Arbitrary gco-
metrie eonfigurations, eomplex boundary eonditions, nonhomogencity of roek are
allowed for as is usual in finite element techniques. Variational formulations of
the ficld equations shows that arbitrary initial stresses and pore-water pressures,
if any, can be dircetly ineluded in the problem. Stress-strain relations in plas-
ticity follow Reyes and Decre (1966) and Felippa's (1966) formulation. At carly
stages of work (Sandhu, 1971), it was assumedthat in plane strain plasticity, the clastic
and plastie components of strain on planes normal to the axis separately vanish, Thus
a sudden jump in axial stress was introdueed to ensurc eontinuity of deformation,
Later, Hill's (1950) analysis of plane strain was adopted using the vanishing of total
strains. In an arbitrary eonstruetion scquenee, a given element may be subjceted

to exceursions to, from and within the yicld surfaee in the stress space. Capability
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to allow for loading followed by unloading has been incorporated in the analysis.

For jointed rock subject to progressive fracture, Grifﬁth and Modificd Griffith
thcories were used to predict fracturc initiation. Bimodular clastic orthotropy
describes the post-fracturc behavior of rock and an iterative-incremental process
is uscd to dcfine the sequential fracturc of clements in a system giving the extent
of various fractures, The new pr ccdure diffcrs significantly from the 'no ten-
sion' concepts. The latter define a region where the clastic solution indicates
tensile stresscs and the solution proccss ncutralizes all tensions simultanecusly,
This is incorrect and does not allow for the stress redistribution, in its neighbor-
hood, caused by the formation of a crack. Scquential cracking constitutes a non-
linearity in material behavisr and linear superposition implied in simultaneous
releasc of all tensions in the 'no tension' procedure is not valid,

The procedures developed allow for arbitrary construction or cxcavation
sequence, and can allow for pre-existing joints, open or closed. Linear elastic
elements can be included in the analysis. The procedures can include tunnel sup-
ports as part of the sequential construction scheme. These were uscd to obtain
numerical solutions to sevcral problems. Results are included 1n ti.e report.

Chapter i of the report discusses mathecmatical modeling of mechanical
behavior of rock. In Chapter II basis of the finite element method is outlined.
Chapters IV and V present details of application of the finite clcment method res-

pectively to plane strain analysis of elastic-plastic Mohr-Coulomb rock and

plane strain analysis of progressive cracking of rock following Griffith's thcory.

10




Chapter VI reports the application of the elastic-plastic incremental structure

analysis to a parametric study. The objective of this study was to detcrmine

the influence of rock property data on stresses in steel supports of a tunnel,
Chapter VII contains a discussion of results of this research cffort, Appendices
A and B present, respectively, Griffith's theory of fracture propagation and the

experimental research efiort under the contract,
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CHAPTER II., MATHEMATICAL MODELING OF
MECHANICAL BEHAVIOR OF ROCK

2.1. Mechaniecal Behavior of Rock

Figs, II-1 and II-2 show, respcetively, typical stress-strain plots for a
granite and a marble, Upon loading the stress-strain eurve is almost linear and
reversible over a short portion, Unloading from higher loads does not coincide
with initial loading, This eharacteristie along with rate independenece distinguishes
elastic-plastie behavior. Rcloading closely follows unloading until the previous
maximum is reached; whercupon, the original curve is followed., This leads to
some simplifying assumptions,

i, A yield point exists below whieh the material
is linear elastic,

ii. The yield point eorresponrds to the maximum
stress level previously attained,

iii. Unloading and reloading paths are linear,

coincident and parallel to the initial elastie

loading eurve,
Fig, II-3 shows this simplifieation, Clearly the yield point ean be dcseribed by
the permanent or irreeoverable strain or the area bounded by the loading curve,
the unloading curve and the horizontal axis, Whercas in generalization to the three-
dimensional ease, the stresses and strains beeome seeond rank tensors and are
thercfore unordered; the arca is still a scalar product and retains its ordering
characteristies, To this extent, it is often preferred as a measure of the elastie

limit, Other approaches treat the elastic limit as a sealar function of the strain

tensor,
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Mechanical behavior of rock under polyaxial state of stress has been examined
in the light of brittle failurc theorics. Four rcgions of bechavior are identified in
Fig. II-4, The first region corresponds to closurc of preexisting opcn cracks and
is peculiar to compressional loading. In region II material behavior is lincar elastic,
Fracture initiation occurs near the end of this region in accordance with Griffith or
Modified Griffith theory., This stagc also corrcsponds to onsct of nonlinearity in the
relationship of stress to volum=etric strain (Brace, 1966). Stable fracture propagation
characterizes region III, In region IV, unstable fracture propagation results in strength
failure and rupture, Differerces in loading and unloading behavior are observed (Walsh,
1965).

We have, thus, two general approaches to the characterization of stress-strain
behavior of rock, One follows the theory of elastic-plastic solids without consideration
of micro-mechanics of the system, The other uscs Griffith theory or Modifi:d Griffith
theory to relate deformation and failure to initiation and propagation of fracture. It
has bcen observed (Swanson, 1970) that Mohr-Coulomb failurc law anplies for mode-
rate values of confining pressure and that at low confining pressures, failure is by
rupture, Contrary to plastic behavior, strength of material drops to almost zero in
the direction normal to the crack if rupture theory is followed. Figs. II-5 and II-6
depict typical relationships of failure strength and pest-failure bchavior in relation

to confining pressures, It is reasonable to assume that the material is linear-elastic

upto yield or rupture, as the case may be, and that the post-failure behavior only is
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governed by the theory used to define failure. In the present research program, both
the elastic-plastic Mohr-Coulomb failure theory and the Griffith theory have been used

for analysis of stresses, deformation, and failure of rock.

2.2, Characterization of Elastic--Plastic Bechavior

Scveral approaches have been used for formulation of elastic-plastie behavior
of rock., One approach is to treat rock as nonlinear elastic material, It is argued
that this assumption is a rcasonable onc in case unloading docs not occur and loading
is 'proportional’ (or radial in the stress space), Under such circumstanccs, the
state of stress is described completely by a single parametcr. If stress-strain data
for the actual stress path are available, these can be directly used to predict defor-
mation response to applied loads. This approach is attractive because of its apparent
simplicity. However, stress path dependence of material behavior rcsults in diffi-
culties in correct representation of behavior vnder arbitruary stress changes, Attempts
have been made to represcnt strain invariants as functions of stress invariants

and vice versa, thereby permitting generalizations to arbitrary stress paths. It is
customary to usc a stress or strain dependent Young's modulus and Poisson's ratio,
Wilson's bilinear law (1965), Goldberg-Richard equation (1965), Ramberg-Osgood
equation (1943), Prager's formulation (1938), the work of Kondner (1963), Duncan and
Chang (1970), Kulhawy (1971), Vallabhan and Reese (1968), Desai (1971) and recent
work by Singh (1972), are all based on this philosophy.

In general, there are two distinei approaches to characterization of nonlinear

elastic materials. Onc is to assume the cxistence of encrgy functional such that its
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derivative with respect to any strain component is the corresponding component

of the stress tensor, The other directly writes stress as a tensor function of strain.

Assuming the existznce of strain energy functional, Rivlin (1960) proposed
a B Y
U = }_{ I I I3 (1X-1)

where 11 = €, 12= 2 €jf + € 65 = €4y €ij and 13 = determinant (5ij + 2 €43 - 1,
Toupin and Bernstein (1961) proposed

1 1

U =<2 Eja 4 ‘k1* 5 Fijklmn 4§ kK1 Cmn*ee (I-2)

Neuber (1969) used

U = Ulgr By B (11-3)
where ¢1 = Aij “j
P2 7 A 4 K 53

®3 = Ajjkimn €ij k1 ‘mn
Neuber's formulation includes Toupin and Bernstein's as a specialization, For isotropy

Aij , Aijkl . Aijklmn are taken as identity tensors. Evans and Pister (1966) proposed,

for isotropic elasticity

as a cubic or biquadratic expression in (ij' For biquadratic expansion

An 2 A 3 A31 ¢4
U= ey P A (11-6)
2

9
2 Agg P Po +2A00 By Po o+ Agy Pyt A Pat Agg P
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requiring nine constants to describe the energy functional, Here ¢1 = ., ¢2 =
<y
1 [ " .
3 ‘ij ‘ij’ ¢>3— 3 ‘ij €k ki - It is important to note that (ij—>0 does not imply

linearity in thc limit, Using a cubic cxpansion, therc arc five constants,
Alternatively, writing stress dircctly as a polynomial function of

strain, Cayley-Hamilton theorem leads to the following rclationship for isotropic

o materials
& Tij = 2 Bt bogyre € € (I1-7)
i whnere a,b,c are functions of strain invariants,
. ’ It is clear that the characterization of material behavior based on a single type
’ of test cannot be expected to completely represent nonlinear elasticity. Even if it

were possible, the analysis could not simulate elastic-plastic behavior in which the
plastic strain increments are normal to the stress increments in loading. It is nce-
essary therefore that elastic-plastic behavior of rock be modcled using the thcory
& of elastic-plastic continua,

A general theory of elastic-plastic continua was prcsented by Green and Naghdi
(1965). Stress-strain relationships in plasticity and thermo-plasticity have been re-
’ viewed, among others by Drucker (1950), Naghdi (1960), Koitcr (1953) and Hill (1950),
| In general, theoretical concepts have been bascd on generalization of material behavior

in a one-dimensional test,

The deformation thcory of plasticity rclates increments in components of the

strain tensor to corresponding components of the stress deviation tensor, This theory
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is unsound theoretically and fails to properlv explain physical behavior of materials,
It has been used to represent material behavior under proportional or almost pro-
portional loading (Budiansky (1959), Havner (1969), Ilyushin (1945)). Hill (1950) has
examined the shortcomings of the theory in his text, These will not be discussed
here, and we shall confine our attention to the incremental or rate type theory of
plasticity.

Using Prandtl's idealization, shown in Figure II-3, it is assumed that in one-

dimensional loading:

1. There is a yield point yield such that any loading beyond
this level is accompanied by permanent deformation and
any stress changes below Tyield have linear reversible
response independent of prior deformation history.

The yield point is a function of history of prior permanent
deformation,

The stress-strain behavior is independent of sign of the
stress,

In generalization to arbitrary stress states, it is customary to introduce a yield
surface in the six-dimensional (three-dimensional for isotropic materials and nine-
dimensional for non-symmetric stress tensor) stress space, Allowing for history

of deformation and material properties, the yield condition is:

(II-8)

where ‘"ij are components of the plastic strain tensor (irreversible) and k; are mate-

rial parameters depending upon history, The mapping f in Eq. I1I-8 defines a func-

k. , and orders the space

tional on the linear vector space V spanned by Tig0 e"ij "

i’
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V such that 'loading' and 'unloading' can be defined analogous to the one-dimensional
test where the set of stress states is an interval on the rcal line and is naturally
ordered. Thus f < 0 will imply elastic states and plastic deformation is possiblc
only for f = 0. We shall dcnotc the interior of the surfacc defined by f =0 as D.

Thus fu) < 0 for uED. Assuming only onc matcrial constant k, the time rate of f is

k (I1-9)

of M, of
ok

ol €..
o-l_] t bf"ij l_]+

For f <0, f+ fdt < f. Hence the strcss change associated with f <0 must lead to

an elastic state in D, This constitutes unloading, Prandtl's assumption for unloading

= &”i’ = 0 and consequently k = 0, Hence during unloading,
)

o df
f = bo_ij (J'ij < 0 (H—lO)

if the change in state is from one point on f= 0 to another on the surfacc, f=0, If

""ij =k =0, i.c. thc change is not accompanicd by any plastic strain, then

(II-11)

i.e. the stress path is tangential to the surface f = 0, This is termcd neutral loading.

When the stress change is accompanicd by changcs in ‘"ij , K,

and af o.: > 0
Ay
J

This constitutes loading,
In order to obtain stress-strain relations in plasticity, Drucker (1950) used a

thermodynamic postulatc to obtain the normality rule
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where \ is a positive scaiar which, for rate independence, must be homogeneous of
order one in ‘;'kl' Fer von Mises materials, Equation (II-13) reduces to the well-
known Prandtl-Reuss relationships. To evaluate \, Drucker defined equivalent stress
oo and equivalent plastic strain rate é"e as second invariants of the stress deviation
tensor and of the plastic strain rate tensor respectively. Theseinvariants are proportional
to the L, norm on the linear vector spaces spanned respectively by the components 84
of the stress deviation tensor and the components é'i’j of the plastic strain rate tensor,
Thus

To = 0 sijsij )-é (I1-14)

1
e = (3 &, )P (I1-15)

where the components of the stress deviation tensor are related to the stress tensor

by the relationship
Tkk

8ij = Ofj - &ij T3 (11-16)
1 JX 1] (A1
) S S D L
Ly NGRS L (I1-17)
, O f ) f
2 bo‘kl BO'k]
.H
A = ‘e
Podo Aoy
&e

Writing -~ , the slope of the g, ¢ curve as H, we obtain upon substitution of
e

Equation (II-18) in Equation (II-13),
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This formulation was used in the so called tangent-modulus methods e, g. Swedlow and
Yang (1965). Clcarly this analysis satisfies the condition f = 0 and the normality rulc
but fails to satisfy f=0in plastic deformation,

Hill (1950) used the normality rule assuming \ to bc a fourth rank tensor linear

in ok and introduced a plastic potential, Using normality as well as the condition f= 0,

Prager (1949) obtained for f = f(o-ij, €"ij)
= I 4
: 0} 1) :
X = ] (11-21) )
) f of : !‘-i
de So !
mn mn

Naghdi (1960) also obtained the above equation. This formulation breaks down for

elastic pcrfectly plastic solids where f is independent of ¢ Felippa (1966) obtained

mn-

A in terms of EU., the total strain increment as follows,

The incremental stress is related to the incremental clastic strain by the equation

, :
Tij = Eija €'kl (H-22) a

where f'kl are components of the elastic strain rate tensor and Eijkl is the fourth rank

isothermal clasticity tensor satisfying the symmectry properties

B = Bjikt = Bk < Py (I1-23)

*
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Writing é'kl = o = é"kl and using normality rule, (I1-24)
g & B € - B, n f 11-25
ij ijkl kI T Mk Sop (11=25)
Alsof(crij , ("ij) = 0 implies
o f of
S o “ij i e i 0 (II-26)
1 1j
Using normality rule, Equation (II-26) gives
. 2 \
2L oy v 2 L (1-27)
ij I
Substituting Equation (II-25) in Equation (I1-27),
o f . [ 5 f y f d N f
AT €1 == + —— E.. —-—]x (I1-28)
) T ijkI "kl 3¢ if 3 o5 ? % ijkl o1
o f 1
Hence : Eijkl €1l
A= 7 (T1-29)
1 B
N . N .
where B = - ) 1 _'f + ;’ f Eijkl =il (II-30)
\("ij )O’ij Iﬂ'ij b(rkl
4 Substituting Equation (II-29) in Equation (I1-25)
: , ¥
3 Gs: = Ess [‘ . I J
] ij ijkl ki S0kl
j = Ejjk [bkm 5n = Lkimn ] €mn (II-31)
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where Iyt 3¢ 5t
Lglmn = YT +

) f 2 f
UpPdy nq dorg rskl 3 Tmn

o 2oy 0%y

(11- 32)
This formulation relates the total stress increment to the total strain increment and is
valid for all cases including perfect plasticity. For work-hardening plasticity, it can
be shown to be identical to the Prager-Naghdi formulation of Equation (II-21).

Using rate of work equations, it is possiblc to evaluate X\ in terms of stress
rates for von Mises or generalized Mohr-Coulomb materials, Yamada (1968) used
shear deformation energy rate to set up incremental stress-strain relationships for
von Mises materials, Assuming €' to occur in f as the second invariant only, a
tangent modulus approach was introduced., Reyes (1965) developed the incremental
stress-strain relations for generalized Mohr-Coulomb materials using the total energy
rate., The general forms of these equations can be shown to be specializations of the
more general formulation developed by Felippa.

The stress-strain rclations expresscd by Equations (1i-22) and (II-31) for the

elastic and elastic-plastic deformation respectively have to be specialized for any

kinematic constraints that may exist in the casc of plane strain, for example
€3= 0; 1=1,2,3

Thus in the elastic domain, if Eijkl is invertible such that

-1
Cijk1 = (Ejjkp) (I1-34)

the kinematic constraint is expressed by a lincar rclationship betwcen components

e
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of incremental stress tensor,

C

‘% " Yiskt k0 ° (II-35)

For the clastic-plastic deformation, writing

-1

Cijr = [Eijkl (Fkm FIn - Lklmn)] (II-36)
the kinematic constraint is
‘19 = Cigk1 %% = O (I1-37)

It is important to note that Eijkl depends upon 0§ and €y . Consequently the
relationship exprecssed by Equation (II-37) is nonlinear and involves Tijo ("ij as well
as o). For a perfectly plastic solid, Ei3k1 is a function of stress and elastic pro-
perties. IFor a von Mises solid the problem was studied by Hill (1950). Figure II-7
shows a plane strain loading and unloading cyclc for T11= %992, Tyg = 0. Path OA

represents elastic loading to yield at A, Conti-ued loading requircs the stress path to
follow AD,the tracc of the loading surface on the 011> 733 Plane. Loading from A to D
18 accompanied by development of plastic strains ¢''j1, ¢''9y4 and a residual stress
o33. Upon elastic unloading from D to E, the path is parallel to OA. The intercept
OE reprecsents the residual stress o33, This stress remains in the material upon
rcmoval of the two-dimensional load, Accompanying this residual stress are elastic
as well as plastic strains satisfying the kincmatic constraints. The above theory was

used to develop mathematical model representative of plane strain elastic-plastic ba-

havior of Mohr-Coulomb rock, Thc details are coutained in Chapter IV of this report.
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2.3. Mechanical Behavior of Brittle Rock

Stress-strain behavior of rock under polyaxial compression has reccived con-

siderable attention (Brace (1964), Cook (1965), Ticniawski (1967), Brady (1970) ).

In a one-dimensional test the stress-strain curve can be divided into four regions.
Figure II-4 taken from Brady (1970) shows thc different regions., Thesc are char-
acterizcd by the following:
Closure of initial flaws undcr compression
il. Microcrack initiation
iii, Stable fracturc propagation
iv. Unstable crack propaga‘ion leading to rupture

In compression, closure of precxisting microcracks is esscntially completed
over a small increment of stress, A nonlinear stress-strain relation has been ob-
scrved for this zone, showing the high deformability due to open cracks decreasing
as the cracks close., Friction is developed when surfaces of the initial flaws contact
each other, rcsulting in an increasc in the obscrved modulus of clasticity.

When the applied strcss is incrcased further, thc mcechanical behavior as seen
from the stress-strain curve is esscntially linear elastic, and the modulus of elasticity
is constant, However, somc sliding across the faces of closed cracks may occur,
Walsh (1965) demonstrated that the loading-unloading process at this stage shows
hysteresis in the stress-strain curve (Figure II-8), Some of the frictional strength

contributed by the roughness on the crack surfaccs is overcome by sliding, and upon




L REGION Il .1, REGION Ill . REGION IV

STRESS

= — —REGION |

STRAIN.
FIG. 1I-8. Typical Stress-strain Curve for a Rock Specimen Under
Multiple~Axial Loading (Walsh, 1965a)
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unloading, the crack does not move back to the original position immediately. Thus,
even in the linear elastic region II, rocks may exhibit irreversibility as well as
hysteresis (Figure II-1),

Sliding along each initial crack produces new cracks at the ends of the initial
crack. Tests on quartzite led Bieniawski (1967) to conclude that the relative dis-
placement of crack surfaces is the primary factor which influences fracture initiation,
{ In region III, the microcracks propagate with increasing stress level, Stable fracture

propagation is a function of stress only and the process is quasi-static, Initiation and
propagation of cracks is reflected in the aeparture from linearity of the stress-strain
;3 curve (Brace, (1966) ). Crack growth starts right after the initiation of new surfaces,
Tests in glass and rock (Hoek and Bieniawski, (1965) ) have shown that stable fracture
propagation follows a curved path leading to a direction parallel to the major compres-
sive stress, and the length of propagation is related to the ratio of major principal
stress to minor principal stress and related to the initial crack as well (Paul, et,al.
(1967)). Pattern of crack array can also influence ‘he fracture propagatio:..
Before the applied stress reaches its peak, some abrupt changes on propagation
behavior would happen, Although the stress is still increasing, the slope of the stress-
strain curve is decreasing. As soon as slopc reaches its stationary position, it drops
down rapidly and rupture begins, In terms of Irwin's concept (1958), the rate of strain
energy released at this stage is equal to a critical value, G,, which marks a state of

instability.
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Compression tests have revealed (Bieniawski (1967) ' that the major type of

unstable fracture propagation is still following the direction of major prineipal stress.

M -

Jt has bcen commonly observed by rescarchers (Bieniawski, ct.al. (1969), Brady (1970))
that the unstable fracturing process is greatly affected by the type of loading, rrte of
loading and type of machine used in the testing.

Mechanical properties of rock containing flaws or cracks are somcwhat differ-
ent from those of intact rock. From a statistical point of view, flaws or cracks in the
rock can be assumed to be randomly distributed and oriented. Therefore, no definite
expression of the matcrial properties can be obtained unless the distribution function
of flaws is known. In a series of papers Walsh (1965-a,k,¢) derived mathematical

formulas for effective compressibility, modulus of clasticity and Poisson's ratio as

i 2 e i sl " . &
T = Ay ey e Ay ARG

functions of mean crack length and mean unit volume which contains the mean erack
length., Those mathematical expressions were shown fo be qualitatively justified by

a limited number of experiments, In gencral, it was found that compressibility decreased
as the cracks closed under pressure and remained almost constant with further

change in pressure, Brace (1965) reported that linear compressibility is a function

of applied pressure and is rclated quantitativeiy to porosity, grain sizc and dimen-

sional orientation. If the clastic modulus is defined as the tangent to the stress-

strain curve, the initial tangent in region I (Figurc II-4) represents Young's modulus

of a rock with initial open cracks (Ej); the constant slope in regions II and III repre-

sents the modulus for rock with closed erack (Ef); and the initial tangent to the un-

B e e S

31

B s Sy ,

A A s AT L




loading curve in regions II and III represents the intrinsic modulus of an intaet rock

(Ey) (Walsh (1965-b)). The magnitudes of these quantities can be ordered as

Walsh (1965) observed that the Poisson's ratio of a rock having open cracks
is slightly lower than that of a solid rock. The value of Poisson's ratio ranges from
zero to 0.5 as E; changes from zero to the value of E;, and vyis greater than 1,
but within the limit of 0.5.

For study of crack initiation and propagation in tensile siress fields, Griffith
(1920,1924) proposed a theory postulating the propagation of elliptical cracks as an
instability phenomenon, A crack was expected to extend if the energy released in
propagation exceeded the surface energy of the additional surface created by the

E £ extended crack. Initial flaws exist randomly in a solid body and have random orienta-

tion, Fracture propagation can occur at the extremities of these flaws, The theory
1 is briefly outlined in Appendix A to this report. For nonuniform multi-axial stress
fields, a crack may propagate until it stabilizes on reaching a region of low stress,

Also for finite systems, this effect of stress redistribution associated with crack

R e e

propagation may be significant in relation to the extension of other microcracks in
the system,

Crack propagation can also occur at the ends of closed cracks in compressive
stress fields, McClintock and Walsh (1962) developed the modified Griffith theory

applicable to these situations, This theory is also discussed in Appendix A.
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Extensive surveys (Hoek and Bieniawski (1965)) of published experimental data
have shown the Griffith and modified Griffith theories to be satisfactory criteria for
fracture initiation, Tests by Brace (1963) and Lajtai (1971) confirmed that in com-
pressive stress fields, cracks started at the cnds of closed joints, in the direction
normal to the maximum tensile stress and then became parallel to the direction of
the major compressivc stress applied to the specimen. At this stage, the crack
stabilized and additional compression was needed for further growth, Brace (1963)
observed cracks propagating at stress levels much lower than required to extend a
single crack. Experimental evidence (Hahn (1972)) exists to show that the energy
absorption associated with fracture may be one or two orders of magnitude higher
than the energy of surfaces created. Moreover, the experimental results show con-
siderable scatter. Thus encrgy balance does not appear to be a useful means to
examine crack propagation in rock,

Irwin (1956) proposed the use of stress intensity factor to predict crack pro-
pagation., Stresses or displacements could be used to obtain the value of the stress
intensity factor and propagation would occur if the value equaled or exceeded a
critical value characteristic of the material. Compliance or energy balance methods
have also been used. The finite element method has been used to evaluate the stress
intensity factor for complex geometries and loadings. However, this approach is
unsatisfactory inasmuch as the extent of propagation and stress redistribution associ-

ated with such propagation cannot be directly cvaluated., Also, the crack geometry
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his to be known before hand, It is not possible to study initiation of fractures at
microeracks or Griffith (laws arbitrarily ortented and located in the material,

in the current research program, the Griffith and medified Griftith theory were
used Lo prediet mierocrack initiation and propagation,  Post=fracture hehavior across

a4 crack was stmulated on the aseumplion that an open crack cannot transmit tensile

and shear stresses,  In the finite element ideslization, an element was presumed to

have flaws in all directions such that {racture vwas entirvely dependent apon the stress
field. Also, for small elements it is reason ble to assume that if e clement eracks,
the fracture extends throughout the element it a constant orientation, With this

modeling, the exact location of the ~rack within an ciement is unimoortant,
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CHAPTER IlI. THE FINITE ELEMENT METHOD

3.1. Basic Concepts in Direct Method of Solution

T ] S PR T

A boundary value problem can be statec ... the form
Au = f on F (II-1)

where u is the unknown function to be determined, A is an operator, and f is the
"forcing' function, F is the domain of interest and may be an open, connected,
bounded spatial region embedded in R3 or in a cartesian product RS x [0,x)
where [0,) is the non-negative time interva!. In addition to the field equation
(III-1) ,there will be some conditions to be satisfied on boundary 4 of F. For A
linear positive, it can be shown that Equation (III-1) has a unique solution, Nec-
essarily, any approximate solution will in general not coincide with the unique
solution of Equation (III-1) and consequently no approximate solution is expected
to satisfy the field equation as well as the boundary conditions completely.

Solutions to engineering problems as well as the forcing functions are, in
general,bounded and therefore belong to Ly, the space of square integrable
functions. Lo is a Hilbert space. However, u muy be contained in a subset D
of Lg such that A is defined on D, We assume that D is dense in Ly. If the set
of functions {‘Pk’ k=12, ,oo} is a basis in D, then any function u€ Ly can be
j expressed as an infinite sum:

k- oo
u = kzl By <,'bk (II-2)

A scheme to generate approximate solutioi's is to use a finite set of terms 'n the
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infinite sum above, Thus, we use
N
u - Z Ny @y (I11-3)
k-1
as an approximation. The approximation process then consists of appropriate choice
of N, ¢k and the coefficients .. Several alternative procedures are available, The
finite element method is a special process of selection of finite subset of the basis
{ ¢k } . The coefficients ay are evaluated by requiring the approximate solution to
satisfy the field cquations, Often a more systematic approach is to use a variational
formulation and obtain ay by requiring the approximate solution (Eq. III-3) to satisfy
the variational principle, Ritz' method, Galerkin's method, least squares method,
all belong to this category.
The finite element method is well documented in literature (Zienkiewicz (1972),
Bell and Holand (1969), WPAFB Conferences (1965,1968,1971), Felippa (1966), Clough
(1960,1965)). Its theoretical basis (Oden (1969), de Arantes e Oliveira (1968), Zlamal
(1968), Melkes (1970), Aubin (1972)) and relationship to variational principles (Melosh
(1963), Pian and Tong (1969)) have beer: examined, Essentially a finite element ideali-
zation partitions the spatial region F into a finite number of nontrivial discrete elements

or subregions, The geometry of the elements is defined by a set of points in space called

the nodal points of the system,

Over an clement e, let an approximation to u be
Ne

W€ =D ¢k (ITI-4)
k=1
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or in matrix form
-
W - 8%} {a°) (I11-5)
- T =
where / ¢}~ is a row veetor eonsisting of ¢i as its c'cments and { ¢} is a

e
column vector of cocfficients a . Evaluating the function at nodal points

ey _r e~Tc e _
ful} “(¢i i | (IT1-6)
e -e T

where |{ u; } is the vector of nodal point values of the function and [sbi ] is the matrix
of basc functions cvaluated at each nodal point. Rows and columns of [ible ] are
linearly 'ndependent. If square, the matrix is invertible, If the number of nodal
points is not equal to the number of independent base funetinns, a least squares pro-
cedure ean be used for inversion, Hence, we can write

{ac}

SRR a0

- [T et

-¢c.T
where A = [ @ ]
Substituting Equation (III-7) in Equation (III-5)

. m
O LY (ITI-8)

H]

T

e e

(9%} {vf

where {¢e} ean now be regarded as a set of interpolating funetions relating nodal

point values of a function to the value at an arbitrary point within the element e,
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l 3.2. Variational Methods in Continuum Mechanics

3.2.1. Underlying Philosophy

Let A be an operator such that
A Ve—aVx (I11-9)

where V, V* arc linear vector spaces over a field F or a finite connected subset

thereof, For u€V, we introduce the operator equation

Au = f, 3, fEV* (ITI-10)
Let B be a bilinear map on V*

B : V¥ x Vkee§ (I-11)
where S is a linear vector space. To each ordered pair of vectors u,vevx B

assigns a point B(u,v) €S, such that

It

B(auj+uy,v) a B(uy,v) + B(ug, v)

(ITI-12)
B (u, avy +vg) = aBu, vy + Bu, vy)

For simplicity, in the sequel we shall use the notation < u,v > as equivalent to B(u,v).
In order to set up variational principles corresponding to the field problem ex-
pressed by Eq, (III-10), we introduce a pair {Q, A'y. The first element, Q0 , defined

through a bilinear map B on V¥, is a function of the quantities appearing in Eq. (I11-10),

and for given A and f can be regarded as a function of u. The other element of the pair,

A, is a variation operator defined on the range of Qin S. By appropriate selection of
F | B, 0, A, different variational formulations of a problem are realized. In the context

f of obtaining an approximate solution to Eq. (IlI-10), if B is continuous and V, S are
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metrie spaces, the distance of an approximation ug from the correct solution u

is intuitively related to the: distanee betwcen their respective images under , thus

providing a basis for study of convergence of sequenecs of approximate solutions,
Many variational formulations use R, the space of real numbers, as the range

of B, For this ease, two alternative approaeches are used., Onc defines A so that

AQ>0 (II1-13)
whenever (III-10) is satisfied. This yields a c¢lass of 'minimum’ principles. Another,
somewhat more versatile approaeh applicable to bilinear m aps in genceral is to define

A so that

AQl= 0 (Il1-14)
is equivalent to Eq. (III-10). An interesting feature of this second alternative is that
if §,A are defined sueh that

AQu) = Au-f (III-15)
Eq. (III-14) is direetly equivalent to Eq. (III-10). Thus A can be viewed as a gradient
operator or derivative, In literature, this has bcen identified with the Gateaux deriva-
tive, the Frcehet derivative or vhe variation operator used by Gurtin, The Gateaux

derivative of {1, denoted by Gg € (u), is defined such that

Q(U+aa) - Q)

a

<Gz Q),u > - Lim

QA == O

(ITI-16)

Here < , > indieates the bilinear map appropriate to the problem and UEV* is the

'path' or the 'direetion' of the derivativc sueh that u+aq u € V; a is a scalar, We note
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here that for the notion of a limit, we require a suitable topology is S and continuity of
. T'heseanalytieal aspeets are not discussed in this report, Itisassumed that such
conditions where necessary are satisfied.  The right hand side of Eq. (I1I-16),

denoted V Q(u, W), is the Gateaux differential of Qat u in the direetion T;

assumed to be linear in u to cstablish Gy Q(u), Following Vainbeirg (1964), we write
a lincar Gateaux diffcrential as D (u,a). To ensure a norrmn, S has traditionally
been identified with R, the set of real numbers, although clearly, this is not

necessiary,

If V* and S are normed, the Freehet derivative, denoted by F_ Q(u) is defined
u

such that

< I Q(u),a >

A _Lim |Q(u.ﬁ) - Q () (III-17)

|luj=—=0
where l | denotes a norm, Gurtin (1963, 1964) regards Q(u+ q;) as a function of a,
a sealar, Then,

AE Qu) - quc: Q(um;)

a 0 (ITI- 18)

provided the derivative exists. Aﬁ (u) is expeeted to be of the form

Al Q) <Au-fiu> (- 19)
{

such that vanishing of the varviation for arbitrary uE V* is equivalent to Eq, (I1I-10), Indeed
Aﬁ {1 (n) cin be shown to be identieal to the lincar Gateaux differential, For Eq. (III-10) to
be equivalent to Eq, (III-19),in conjunetion with Eq. (III-14), the bilinear map must have

the pmpcr‘t:yI

I'we do not usce speeial notations to distinguish between zero clements of V, V*, S,
The nature of the zero is apparent from the eontext in which it is used,
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<u, 0> ( ~<0o,V>3V¥Yu veVx (I1I-20)
<u,v> 0 >u=0or v: 0 (I111-21)

A class of variational principles dircetly uses Eq. (III-20) along with its con-

verse, i.e., if <u, v>= 0¥ vEV* u=0, Thus if we define {} as a bilinear map

.

on V* x V* sueh that
Qu,v) = < Au-f, v> (II1-22)
Q(u,v) = 0¥ vEV*direetly implies Eq. (III-10). This approach, for operators

with suitable symmetry properties, leads to prineipal of 'virtual work' type. In this

formulation, based on the orthogonality of zero with the linear veetor spaee V*, the

j variation operator plays no part and may be taken to be the identity operator, For
obtaining approximate solutions to Eq. (II}-10), Eq,(III-20) ean be used as a starting
point for several well-known procedures, For examplz, if v = Au-f, defining }(v) =

| <v,v >| leads to a generalization of the least squares method,

Pt Lo

I 3.2.2, A Formulition for Linear Operators
l Consider, eorresponding to the field problem expresscd by Eq. (III-10),
. E Qu) = <u, Au> -2<u,f> (I11-23)
; where < , > denotes a bilinear map satisfying Eqs. (IlI-12, III-20, II-21), Using
i the variation operator of Eq. (III-18), we obtain for linear A,

A-Qu =<u, Au >+ <u, Au> -2<u,f> (I11-24)

If A is symmetric, i.e.,

5 <u, Av> =< v, Au> ;u, véVv (ITI-25)
' then _ _ r
Az Q) = <Ay, u > +< u, Au> - 2<uy,f > (I11-26)
41
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If, further, the bilinear map is symmetric,#i.e. ’

<u,v > = <v,u > ; u,veVvx (ITI-27)

it rollows that -
Az Qu) - 2<u, Au-f> (I11-28)

Eq. (UI-28) seen with Eqs, (ITI-20) and (III-21) implies
Aﬁ Qu) = 0 for arbitrary ue v* (I11-29)
if and only if Fq, (III-10) is satisfied.

We recognize A‘J {}(u) as the generalized Gateaux differential such that
Eq. (III-28) implies

Gﬁ Q) = 2(Au-f) (I11-30)
Clearly GU Q(u) vanishes if and only if Eq, (III-10) is satisfied.

The foregoing discussion shows that for lincar bounded symmetric operator A,
solution of equation Au = f is equivalent to vanishing of variation of € (u) where in the
pair {Q,A} y SQ=<u, Au> -2<u,f >, and A is the variation operator defined
by Eq. (II-18) or, alternatively, is the Gateaux derivative, The bilinear map < . D>
satisfied Eqs. (III-12), (III-20), (II-21) and (III-27),

If the symmetric bilinear map has its range in R, and in addition to Eqs, (IlI-12),
(I11-20), and (III-27) satisfies

<u,u> >0, ¥V u #0 (II1-31)

the bilinear map defines an inner product, In this case, for A positive, i.e.

<u, Au> > 0, u # 0 (ITI- 32)

#Magri (1972) has shown that for cvery linear operator, A, there exists a bi-
linear form B such that A is symmetric in the sense of B.
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using the pair {&‘;, A} where (u) is defined by Eq, (III-23) and A is defined as
A~ QW = QEu+w) - QE (II1-33)

minimum principles ean be developed for positive or positive definite operators, A
comprehensive exposition has been presented by Mikhlin (1965) for this case.

Traditionally, variational prineiples have been based on an inner produet,
whieh is a bilinear functional satisfying Eq. (III-31) but not Eq. (III-21). The motiva-
tion has been to use positive property (Eq. (III-32))of the operator to establish unique-
ness of the solution. Also the functionals have their range in R, the set of reals, a
Hilbert space, However, other bilinear maps are available,

The above diseussion for a single field variable u is easily extended to the
ease of several dependent field variables, If there are n variables, V is defined
as the direet sum space Vi 0 Vo @ ... O V, and an element u€V is an n-tuple
(Upslgy ovvy W) withy; €V, fori=1,2,...,n. Abilinear map on V is now defined
as

<u,v> = <up,vy > t <Ug,vg > bt <UL, VD> (I11-34)
1 2 n

(no sum on n)

where < , > is abilinear map from V* x V*—=§, Symmetry of each of

<y > implics symmetry of <u,v >, The operator A is defined as a two-dimensional

array of linear operators with n x n elements such that an element Aij maps a set

Mij - VJ into Vi . Corresponding to Eq. (III-25), we define symmetry of A as

<uyy, Aij U >.i = <y Aji up> (no sums) (I11-35)
J
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For diagonal clements of the array, Eq. (III-35) is identical to Eq. (I1I-25), The

operator cquation (III-10) is now a set of linear equations for the problem

i,j = 1,2,...,n (I1I-36)

Aij llj = fi 5

Equation (III-23) will then define {}(u) and we shall require each of the variations

. A;i Q) = 2<uj, Ajjyj-fi> (ITI-37)

for EiEVi; i=1,2,...,n to vanish, Examples of this type of formulation have been
presented by Sandhu and Pister (1970,1971), Often problems which are not in linear
symmetric form can be manipulated to write them in the form of Eq. (III-36) with

Aij satisfying Eq. (III-35). Symmetry of the operator matrix lcads to extended vari-
ational principles such that the unique intersection of the sets of solutions associated
with these alternative formulations is the problem solution. Generalizations to include
nonlinear operators on the diagonal of the operator matrix arise as natural extensions,
These aspects of the problem have been discussed in detail by Sandhu and Pister (1977)

who also presented a general discussion of variational principles in continuum mechanics (1972),

3.2.3. The Elastostatics Problem

The variational formulation of problems in elasticity has been discussed by

Washizu (1968) and by Sandhu and Pister (1971). Herein we only present generalized

}
‘ i potential energy formulation in which the variation of the functional
i Q = Ff (2U - u, o-ij,j -2 ‘ij °-ij + ui,j “ij -2y fi) dF
}1.- + ui(trij nj-zti)ds - f(ui-zﬁi)(rij njds
3 A1 By

(II1-38)
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vanishes at the correct solution to the field equations
U
o 3o (I1I-40)
1
and €, = U, . II1-41
1 (1,§) ( )
subject to the boundary conditions
t on A
‘Tij nj = ti on 4, (II1-42)
u = G on (IT1-43)
i i 2

Herekgl,»gz are complcmentary subsets ofﬂ,the boundary of F. U is the strain energy

function, Tjj» €5 are respectively the components of the symmetric Cauchy stress tensor

and the infinitesimal strain tensor. u;, f; arc the components of the displacement vector

and the body fcrce vector, n; are direction cosines of the outward normal to,§ .

Using the symmetry property of the field equations, and requiring uj to identi-
cally satisfy the strain displacement equation as well as the boundary conditions on
482, Eq. (III-38) reduces to the potential encrgy functional

Q - f(U-ui f) dF - fui't‘ids (ITI-44)
F B

To allow for initial stresses,the Eq. (III-40) is written as

T (IIT-45)
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where ;ij is the initial stress, Then the potential energy functional has the form
f(U uj fy <+ u; jtrl] dF - j uj i ds (I11-46)

Equation (I1I-46) is the functional used in devclopment of stiffness type finite
element formulations,

In the analysis for progressive failurc according to Griffith's theory, the
above formulation was used assuming the system to be piecewise linear elastic --
changes in structural properties being introduced in a stepwise fashion as elements
in the system develop cracks in a scquential manner.

3.2,4, Variational Formulation for Elastic-Plastic Solids

The field equations of incremental plasticity in symmetric form are

i d d : (=
0 0 AL vl vy | “iW Py
0 Ejjk -1 ;le "";ij ‘

3 .
L’é (ki -g—l- + B -—a—k—) -1 0 ] !L"'ij Lo )
(II-47)

Here Eijkl are components of the symmetric tensor relating the components of the

incremental stress tensor Ty ij to the components of the incremental strain tensor ‘IJ

u , Fy, Fij are respectively the components of the incremental displacement vector,

the body force vector (including seepage forces if any), and the initial stress tensor
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for the specific increment under consideration. Following Sandhu and Pister (1970,

1971) the governing functional is
f= Ff[ “ gk k" Y4i%5,5 2% Fp oo 69
- o-ij (ij :l dF

. A
+,3fui (o'ij n; -2t ds - ,/‘(ui_zui\o-ij nj ds
)32 ‘

1
(ITI-4R)
where we have included the boundary conditions (Eqs. III-42, III-43) in the formulation,
Noting that
F.'[ﬁivij,de = - Ffﬁi’jvij dF
+ f Uj o3 mj ds L (TI-49)
P
and defining U as 1 c'ij E{jki 0 = U( €ij) (I11-50)

J can be written as follows:

+ 2 (i] (Tij+0'ij ui,j —(Tij (ll]dF

-2 fﬁl(z\l) ds - 2/(&i_ﬁi) Tij 0y ds (I1-51)
)81 J82

Requiring that the strain displacement re.ationship and the displacement boundary

conditions be identically satisfied,
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J2 = Ff(U—ui Fi+ui’j O'IJ)dF = f ultids (HI—52)
1

which is ofthe same form as 92 in Eq. (I1I-46) except for the displacement components
uj being replaced by the incremental displacement l.,li and U replacing U, Explicitly,

introducing the seepage force into the formulation,

F, = p fi + ",i (ITI-53)
where @ is the hydrostatic pore water pressure, Eq. (III-52) then becomes

F
A
- f u; t; ds (III-54)
Sl

The above formulation would reduce to that given by Washizu (1968) if the equilibrium

equation were to be written in the form

G, .+ 6. )+ (F. + F)=0 I-55
@y, " Ti,) T 5 i) ( )

with the boundary condition t; - t; + & (IT1-56)
Then upon using symmetry and the specialization of displacements satisfying the

boundary conditions and the strain displacement equation, the governing functional

would have the form

1 o oA
J4 = ‘/}U-uiF}) dlr - fuitids (III-57)
F )81

The finite e} “ment procedure for elastic-plastic Mohr-Coulomb rock described in

Chapter IV was based on the variational principle using the functional J2.
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3.3. Matrix Formulation of Field Equations

Follewing the proeedure indieated in seetion 3.1, a finite dimensional approxi-
mation to the problem solution is written using the values of the funetion at the nodal
points of the system as the generalized eoordinates, The spatial domain F is parti-
tioned into a finite number of nontrivial disjoint elements sueh that their union
approximates F, Eaeh point in I* belongs to one distinet element, The ambiguity
regarding points on interelement boundaries is resolved by ensuring that the funetion
value will he the same regardless of whieh element the point is assigned to, This
is the requirement of 'eompatibility' on finite element modelling, For a point within
an element, the funetion value is expressed in terms of nodal point values (the gen-
eralized eoordinates) through a set of interpolating funetions, The approximate
funetion is inserted in the governing funetional so that the funetional ean now be
regarded as a funetion of the generalized eoordinates, Vanishing of variation of
the funetional yields the matrix equations for evaluation of the generalized eoordinates
andhenee the approximate solution, We give below the formulation for ineremental
analysis of elastie-plastie solids, The treatment for the elastie ease is similar,

The funetional J5 in Equation (III-54) has inerements of the displacement veetor
as the field variable, In an approximate solution, the ineremental displacement field

within the mth element is defined in terms of the nodal point values as

"
: = .
u:n (x) - i) < uo (I11-58)

'm
Here u, (x ) is the ith eomponent of the incremental displaecement vector at spatial
l ~
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loeation defined by the veetor x in a global referenee frame, t¢m} is the set of
displacement interpolation funetions and ﬂui} is the set of the ith eomponents of

nodal point ineremental displacements for the entire system,

The strain displaeement relationship ean be written as {
. - T .
{em(i)} = [gbe ] { u% (I1I-59)
f Here fLem (.’f.)f is the redueed strain tensor, For the two-dimensional ease,
. €x -
m 4
{ ™0} cy (ITI-60) |
Yxy

m o
[¢e ] is the transformation matrix derived from the displaeement interpolation
funetions {¢f“} by suitable differentiation and rearrangement of terms and {u |
is the veetor of nodal point ineremental displacements for the system, ".
Writing the stress-strain relationship as mairix [H™] for the mth element and
replaeing integration over the spatial domain by sum of integrals over individual ele-

ments, the governing funetional Eq. (III1-54) becomes

] 5, = T ik] fad e 20y T gy} -2 u)T oomyt
i . T
-2 {u p (I1-61)
- T
m m.
where [K] = Z /[¢:‘][ J[gbe Jodvy (’II-62)
m=1 YV,
M
m 9 L
(M} - /[cpe] T} dvy, (ITI-63) .
3 m=1 vm
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Mg} = i /[¢m] {p ™} dvy (I1-64)
m=1 vm

M
- T
{r} Z / [¢mJ qumJ 4 ¢} ds_ (I11-65)

Application of the variational prineiple to Equation (III-61) yields the matrix equation

[x] {up = {r!} (T1I-66) f,_‘t

3

where .. \ ‘ . 4

fRY = ayp - impr + e (T1I-67) 3

{Ml} , { le'{ , ‘ P} respectively represent the contribution of the residual stresses, %
the body forees and the boundary loads. For ineremental formulation,the residual

|

stresses are the stresses at the beginning of the inerement. Pore water pressures 3

are included in the form of seepage foree in the body foree contribution. i

For the elastie ecase, the funetion to be approximated is the displacement veetor,
Equations (III-66), (ITI-67) will apply with the difference that 1';1 [y R - will be re-
placed by 4u‘; , {R: and J;ii will represent the initial stresses in the system.

The computer programs developed both for elastie-plastic rock and progressive

failures following Griffith theory used a quadrilateral element made from four eonstant

strain triangles, This element as well as other quadrilateral elements have been dis-

eussed by Wilson (1965) and Dougherty et, al, (1968),

51



3.4. Initial Stresses in Rock

The initial stresses present in rock in the 'insitu' state are the stresses corre-
sponding to reference displacement field generally taken as zero, These are ecasily
included in the stress-strain rclationships by assuming that the total stress is the

sum of the initial stresses and the stresses associated with the displacements, Thus
Tij = Eijkl i1t Tij (III-G8)

where % » €)) are components of stress and strain increments and Eij are components
of the initial stress, With this formulation, the initial stresses appear in the variational
formulation and vector {Ml}in Equation (III-61) represents a pseudo-load corresponding

to the initial stresses. This technique is the basis of stress-rclief methods used by

various investigators, The analyses described in Chapters IV and V use this approach,

3.5. Incremental Procedures

In finite clement analysis, allowance for incremcntal loading or incremental con-
struction is quite straightforward, For any step of loading or construction (excavation),

the initial state is used as a reference state and increments of stresses and displace-

ments worked out for the particular step, Thus

[K]n {Au}n - {An}n (I11-69)

where [K]n, {Au}n, {AR}n, are respectively the system stiffuess matrix, the

incremental displacement vector and the incremental loading vector for the nth step
of construction/excavation/loading. In cascs where [K]n is dependent upon displace-

ments or stresses, iterative procedures or Runge-Kutta methods can be used to im-




prove accuracy. In the research described in this report, essentiaily the method
was 'initial stiffness' for each increment in the case of elastic-plastic analysis.
For the case of progressive cracking, the influence of stress redistribution and

stiffness change due to cracking was allowed for in an iterative process,
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CHAPTER IV, FINITE ELEMENT PLANE STRAIN
ANALYSIS OF ELASTIC-PLASTIC MOHR-COULOMB ROCK

4.1. Review of Previous Work

Attempts to use the finite element method for stress and deformation analysis
of elastie-plastie materials may be elassified on the basis of the modeling of meehan-
ical behavior or the computational teehnique. Early attempts noticed the nonlinearity
of deformation response to applied loads. The material was regarded as nonlinear
elastic having stress or strain dependent elastie 'moduli'. In order to extend the
results of the >ne-dimensional test to the six-dimensional stress-state, an equivalent
stress to equivalent strain curve was adopted. Bilinear (Wilson 1963) or multilinear
(Zienkiewicz 1967) approximations, Richard-Goldberg law (1965), Ramberg-0Osgood
law (1943), Koundner's hyperbolic equation (1963), cubie splinc ‘unctions (Desai 1971)
have been used to app.oximate test data by smooth or piccewise smooth eurves for
ease of data handling within the computer,

Swedlow and Yang (1965) used the normality rule and Nrucker's (1952) method
for cvaluating the constant of proportionality in the Prandti-Reuss equation, This
was a tangent modulus approaeh. It did not satisfy the n&&i ' condition f =0,
Mareal (1968) and Mareal and King (1967) used similar formulation, Reyes (1966)
and Reycs and Deere (1966) used a rate of work equation to develop stress-strain

relations for Mohr-Coulomb materials under plane strain conditions. This was

consistent with the ineremental theory of plastieity. Felippa (1966) developed
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equations for incremental theory of plasticity which include Reyes work as a speciali-
zation, Marcal and King (1967) and Zienkiewicz et al, (1969) use a formulation iden-
tieal to Felippa's, Baker et al, (1969) used Reyes formaulation in their work, Yamada
(1968) used a rate of work in distortion to set up equations for von Mises materials,
Isakson et al,(19¢7) developed the incremental stress-strain relationship for kinema-
tic hardening using Ziegler's (1959) modification of Prager's rule (1955).

Numerical procedures for elastic-plastic analysis have been either the inere-
mental type using Euler or Runge-Kutta methods, or the initial tangent type using the
initial stress or initial strain approach. In the first type the system stiffness matrix
has to be developed at each increment whereas in the initial tangent method, the same
stiffness is used throughout with the effect of nonlinearity being introduced as a cor-
rective pseudo-load in conjunction with an iterative solution scheme. The initial strain
approach was used by Argyris (1965), Gallagher (1962), Lansing et al. (1965) among
others, Zienkiewicz (1969) used the initial stress approach. Baker et al. (1969)
found the iterative procedure to be unsatisfactory as convergence was often very slow,

All the research workers mentioned above used triangular elements in their
analysis, It is well-kncwn that the triangular elements do not give correct stress
field, In this report quadrilateral elements were used to get a good stress distribution,
In the present research program the increniental approach reflected in the variational
formulation of the problem was used, The formulation follows Felippa (1966) and

Reyes (1966).
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4,2, "iress-Strain Relations for Mohr-Coulomb Materials

The Mohr-Coulomb failure criterion for isotropic materials is

Tf - C+optang (IV-1)
where ¢, 0,, are the failure shearing stress and the normal stress on the failure plane
and c, ¢ are, respectively, the cohesion and the angle of in.ernal friction for the mate-
rial. Drucker and Prager (1952) proposed a generalization of thc Mohr-Coulomb law
to a cone, in the three-dimensional principal stress-space, symmetrical about the

principal diagonal. The loading surfacc is defined as
1
f = a Jl + Jzz - k = O (IV'2)

where Jl' J2 are the first and the second invariants of the stress tensor, and a,k arc

material constants.

|
|
:
|
|

Using Drucker and Prager's generalization of the Mohr-Coulomb law, Reyes
(1966) developed the stress-strain relationship for elastic perfectly-plastic solids
under plane strain conditions. A ratc of work equality was used, Thc same relation-

’3’ ship can be obtained by directly using “quation (IV-2) in Felippa's general approach

l already discussed in Chapter II.

4.2.1, Stress-Strain Formulation for Elastic-Plastic Mohr-Coulomb Solids

Define a tensor with components qjj such that

_df
Y = > o,

(IV-3)

For Drucker and Prager's generalization of Mohr-Coulomb yield surface




)
3 .
E f=ady +J9% = k, This gives
Kl Si:
4 q.. = as,. + )
b ij ij P 1
. %‘_ 2
i .
", = b e—— - ._l. dJd Iv-4
£ N 81] 3. (o-ij g3 1 sij) ( )
B 2.’.
3
& where Sjj are components of the stress deviation tensor and aij is Kronecker's delta,
b i1 1
i
Define a tensor with components pij such that
of
¥ Pij = — (IV-5)
- 8 o€,
1
For perfect plasticity, the yield surface is independent of the plastic strain and Pij = 0.
Let q be a reduced representation for qij such that
Y = -6
| 4 = <4y 99y 35 29)5 2054 245, > (IV-6)
e where
g 0 g = & 11 @41 ” 1 )
g8 Jo2 3
v
:
‘_ \ q22 = a + (0' - _1. Jl)
Ik 3
I 22
3 - 1 1
b = + = =1l
993 = ¢ * =5 g !
3 l Jz&
. (IV-7) '
2 = =2 o '
912 Ty 12 ‘
_ 2
2dy3 = > 23
2
_ 2
243 = —— %31
Jo2
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Following the notation used in Chapter II, Equation (II-30),

df  Af 0 f df
B = - " + | O T B
de Do, do,. UKy ;
ij ij ij kl
- q E g (IV-8)

where E is the reduced elasticity tensor. Equation (I[-32) gives the tensor L as

L=%aq E (IV-9)

Hence,
{o}- [E——I—quTE]{é} (1V-10)

B
Equation (IV-10) gives the rclation between the stress rate tensor o and total strain

rate tensor ¢ , for an elastic-perfectly plastic material, Explicitly, these relations

for the generalized Mohr-Coulomb material, assuming isotropic elastic behavior, are:

g: = 2G ( ‘ij— ablj = bU'ij)

1j
where a=h2 ‘kk" hl °'ij ‘ij
h
and hl.—. JO
J22 H
1 93 vK
hg = = | 2h, 4 -
’ H[ Y [‘-?V]Jz"']
1
hoe
3 ZJ.H




H=1+902 K
G

v, K, G are respectively, the Poisson's ratio, the bulk modulus and the shear modulus

in clasticity,

I'or plane strain
ash2 ‘aa+h1°'a[3 €45

b= h1 €aa ¥ h3 Uaﬂ €ap

where summation on repeated indices is over the range 1,2,

4.3. Analysis of Progressive Fa'lure

4,3.1. Basic Methodology

In applying the finite element method to elastic-plastic continuum, it was
assumed that the stress field is constant within each element, Under applied loads,
an element was assumed to be either totz!ly yielded or elastic., For sufficiently
small elements, this appears to be a reasonable assumption, The stiffness of the
system represents the collective stiffness of its elements. For each element after
yield, the stress-strain behavior was defined by the relationships developed in section
4.2, Thus as each element yields, the system stiffness is altered resulting in a non-
linear structural response, In the study of progressive fajlure, it is important to
allow for the effect of this nonlinearity, In the current research program, the system

was assumed to be stepwise linear within yield of successive elements, In the incre-




mental procedure, the load was divided into increments with each increment large
enough to introduce yield in another element. This was subject to checks on the
validity of assumption of linear stress-strain rclationship, As several elements

may yield al almost the same load, a lower limit on load increment size was

used to avoid excessive computational effort, Also, elements yielding within a
prescribed load range of the computed increment for any step were treated as if
these had yielded simultaneously with the elements controlling the increment size,
’

The total load vector { R } was treated as a sum of load increments {ARi} ,i=1

2,..., n wheren is the total number of incremcnts, not necessarily equal,
n
{R}: B {ARi } (IV-11)
i=1

The first increment of load, { ARI} applied to an elastic system was suffi-
ciently large to allow at least one element to reach the yield surface, To evaluate
the load increment for any step as a proportion of the load yet to be applied to the
system, a stress ratio was introduced, Figure IV-1 shows the calculation of the
stress ratio S, for a typical element. The point A represents the initial stress state i
and C the~stress state that would result if all the load ‘was applied, The curve f- k=0 r
represents the yield surface. If A and C both were in the interior of the yield surface,

all the load could be applied and Sy was defined as unity, However, if A was in the

interior and C in the ext~=rior of the yield surface, clearly it would not be possible to




FIG, IV-1, Calculation of Stress Ratio




load the element to C and that it could only be loaded to B before onset of yield. Here B
is the intersection of line AC with the yield surface. Then

s . laBl

IV-12
r iAcl ( )

Calculation of Sr is simple. Let (o'ij)i, (a-ij)f represent the stress states associated

with A and C respectively. Then the stress state for B is o,, such that

ij
_ - (S =
(r,'_;.j = (o'ij )i (1 Sr) + 8L, (o'ij)f (IV-13)
S, is calculated from the relationship
f(crij) -k =0 (IV-14)

The stress ratio S, for an element represented the fraciion by which the load would
have to be scaled to ensure that after application of the load increment, the element
was within or on the yield surface, The value of S, was calculated for all the eienicnts,
The element with the lowest stress ratio was the next to yield and governed the system
load ratio, S, thus defined the load increments in progressive failure assuming step-
wise linear behavior. As each load increment was applied, cumulative stresses and
displacements were calculated, The stresses at the end of the ith step were the initial
stresses for the (i + 1)th step.

4,3.2. Nonmonotonic Loading

To allow for non-monotonic loading, at any structural increment or excavation,
a pilot analysis is carried out assuming all clecments to be linearly elastic, In case of

unloading, any element already on yield surface can unload either plastically or elastic-
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ally as shown in Figure IV-2 ., The two modes are distinguished by the fact that in
elastic loading, the strain decreases whereas if the element stays on the yield sur-
face in the unstable region the strain will increase, If the element is assigned the

stress-strain behavior corresponding to the yield state, it is forced to stay in the

o, e b
o T il e

i,

yicld surface because thc stress-strain laws satisfy %-— 0. In the pilot analysis,
assuming clastic behavior,the element will cither follow the path AB or AC, Path

AC corrvesponds to elastic unloading. Path AB would indicate increasing strain under
applied load and therefore the element is likely to stay in the yield surface. This pre-

liminary information is used to assign appropriate material behavior to each element

prcviously in state of plastic yield,

ST T T TR A TR A

0

4,3.3. Allowance for Nonlinear Stress-Strain Behavior

AT

The stress-strain relationship for plasticity is stress-dependent, As the

£

;

stresses change during application of a load increment, it is desirable to reflect
this change in the stress computation, Assuming ¢ij (o)’ Cij @ to be the zompliances

at the initiai and final stress states, respectively, we may write

cij(O) + cij(t)

ui(ﬂ = ui(o) + > A P'j

where uim X ui(o) » A Pj are the final displacement, the initial displacement and the

e
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e Sl

= e S L

increment load vectors, respectively, Further

cijm = Cij ("klm

"klm = 0kl (“im )
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An iterative scheme would consist of the following steps

“im(ml) L “i(o) 3 cij(°)+cij(f)(n) AP

2
Hm) _ H(n
cij = cij ((rkl( )5

UL 0 (m),

= ok (y4

Such an iterative procedure has been used by Sandhu (1973) along with a criterion for
convergence which defines the maximum increment of A Pj consistent with the non-
linear characteristics of cijm. However, repeated solution for displacements may

be very expensive in terms of computation, Also, because, in general, tne plasticity
will be confined to local regions, the displacement solution is not likely to change
significantly, Therefore, it is considered sufficient to azsume constant displacements
and to iterate only on stress using mean stiffness kijkl as under:

(0) A kijkl(f) (n)

2

(H(n+1) _ ‘,ij(O) . Kijkl

U] A €kl

(£)(n) f)(n)
kjk1 = Kijjk1 ("'mn( ( )

where A €11 is the strain increment, The procedure converges very rapidly. The
procedure is shown schematically in Figure IV-3a,

An alternative procedure is to use

(H(n+1) _ (0) (m)(n)
o B ST

ij Aey,

where the mean stiffness corresponding to the load increment is defined as the stiff-

ness at the mean stress for the increment, i.e,
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Stain Increment
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Calculation of Stress for a Strain Increment - Method 2

FIG, IV-3b,

4
i i b o i — Y zon gErt S e e e Wl s e



m@ _

k ijkl

ijkl

( rmn® 4 o OO )
2

This approach is illustrated in Figure IV-3b, Both the alternatives were found to be

satisfactory,

4.4, Examplcs of Application

A computer program for plane strain analysis of elastic-plastic Mohr-Coulomh

rocks was dcveloped using thc mathematical modcl and the discretization procedures

described in the foregoing sections, The tcchnique wes used to solve several problems,
There are very few problems in the theory of plasticity for which closed form solutions
are available. However Naghdi (1957) solved the problem of an clastic perfectly plastic
wedge under uniform loading on one face (Fig. IV-4), The Naghdi solution is for a
wedge infinite in extent, made of von Mises material and loaded in plane strain, This
type of material is a special case of Mohr-Coulomb material obtained by setting the
angle of internal friction ¢ =0, This example was used earlier by Baker et al. (1969)
to verify their computer code. Another example involves analysis of strcsses and
deformation of a notched bar of perfectly plastic von Mises material. The last example
is of frequently used laboratory test, Excellent agreement with theoretical results for

the wedge were obtained,
4.4,1, Elastic-Plastic Wedge

Figure (IV-4) shows a finite element idealization for the Naghdi wedge. Figures
(IV-5) and (IV-6, show the theoretical and computed results for the distribution of
radial and circumferential stresses at various stages of loadings., The angle ¥ de-
notes the angle upto which the yielding has progressed from the boundaries. Figure

(IV-T) shows the radial strain distribution at various ranges,
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FIG. IV-4, Finite Element Idealization for Elastic- Plastic Wedge
(Baker et,al,, 1969)
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solution

O Finite element results

FIG, IV-5. Distribution of Radial Stress for Wedge at Various Loadgc
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Generally the agreement between results ecomputed by the method outlined and
the exact analysis was found to be good,

4.4,2, Noteched Specimen

A notehed speeimen of perfectly plastiec von Mises material with a 90° notch
and subjeeted to a uniformly distributed load was analyzed, The finite element ideali-
7z tion for one quarter of the specimen is shown in Figure IV-8, The value of ¢ was

taken as 12. 15 kilogram per square millimeter (corresponding to a yield stress of

24,3 kg. /mm. in uniaxial tension test) and ¢ was set equal to zero, Figure IV-9

shows the principal stresses at a load intensity of 19,2 kilograw per squ.re milli-
meter, Figure IV-10 shows contours of failure ratio for this load as well as the boun-
dary of the plastic zone at different values of the load, This problem was solved by
Mareal and King (1968) and Zierkiewicz et al, (1969). The results arc slightly differ-

ent from those presented in this report for reasons discussed earlier,
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CHAPTER V. FINITE ELEMENT PLANE STRAIN ANALYSES OF
PROGRESSIVE CRACKING OF ROCK FOLLOWING GRIFFITH'S THEORY

5.1. Review of Previous Work

Stability of excavations in rock is deeply influenced by ihe presence of cracks

and fissures, These discontinuities may be preexisting or might arise as a conse- :ar
quence of the stress-redistribution associated with cxcavation, Classical methods :,
n

of analysis are inadequate for study of initiation and propagation of fracture, i
Scveral attempts have hecn made to apply the finite element method to jointed _Ié

rock systems, Zienkiewicz et al, (1968) proposed the 'no tcnsion' analysis pro- :,!,

cedure, This consisted of the following steps:

1. Analysis of the system treating intact rock as
linear elastic, isotropic,

T e s

2, Check to identify tensile principal stresses, if
any, in various elements,

3. Reanalysis assigning zero resistance to defor-
mation in the direction of the principal tensilc

stresses,

4, Repeat 2 and 3 to convergcence, i.e, until the
solution shows no appreciablc tension anywherc,

In order to economize on computational effort, a stress relief procedure was intro-
du~ned, The tensile principal stresses were relieved by introducing equivalent nodal
point loads using the linear elastic stiffness {or an iterative correction scheme, The
procedurc has poor convergence characteristics and even after several cycles of itera-

tions, tension zones do not completely disappear., Moreover, for the case of one

(i

s




s N S S

principal stress being tensile and the other compressive, relieving tensile stress

by applying equivalent nodal point loads amounts to using a non-symmetrical consti-
tutive relationship. In the prescnt rescarch effort, a correction was introduced
in the no-tension approach to correctly simulate the orthotropic material behavior
of cracked elements. For intact linear isotropic elastic elements,

1 _|“n i ) 9 ‘ V-1)
%21 |1 Ca 2
where o}, o5 are the principal stresses; €» € are the principal strains and

Cll’ 012, 021, 022 are elements in a symmetric matrix, In the no-tension method

a
g, >0, 0, <0, v, would be relieved by applying nodal loads [bT]; 01% where[bT]

represents the equilibrium transformation, The stress 7, is retained i.e. for the

cracked element,
71 0, 0, ¢
g (V-2)
72) | Ca1 Ca2 ‘%
is the stress-strain relationship, Clearly, for symmetry in material behavior, the

part of oy corresponding to Cg; € 'nust also be relieved so that for cracked element

N 0, 0, ‘1

= (V-3)
2] L% Caz )

Even the corrected approach was not considered worthwhile, Aside from the poor con-

vergence of the numerical solution procedures, there is a basic objection to eliminating

tension from several elements sirultaneously. Cracking must necessarily be progres-
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sive and as each erack forms, the roek in the immediate vieinity experiences a signifi-
eant stress-redistribution, The no-tension approaeh does not allow 101 . sequential

cracking of elements and is therefore not realistic,

Duncan an1 Goodman (1268) examined the effeet of preexisting joints at arbitrary
orientations, A linear elastie analysis was used to establish the stress field, Normal
and shear stre. os on arbitrarily oriented planes (ubiquitous joint) were eomputed and
the shearing strength hased on Mohr-Coulomb law eorpared with the shearing stress.
This analysis is useful in predieting loeal fail:re. However, the analysis did not take
into aceount the stress-redistribution and progressive failure assoeiated with loeal
failure,

In a eomprehensive report, Dunean and Goodman (1968) also used an orthotropie
eontinuum to simulate rock with orthogonal sets of parallel and evenly spaeced joints,
Again the progressive failure nn;(i deformation eould not be allowed for,

For preexisting joints, it is possible to simulate their mcehanieal behavior
through the use of *wo-dimensional eleinents or one-dimensional elements. The two-
dimensional elements have the drawbaek of poor 'aspeet ratios' (Dunean and Goodman
(1968)) in the ease of very thin joints leading to inaeeuraey in the resuits, One-
dimensional elements to simulate joints were developed by Goodman et al, (1968)
and have nroved quite useful, These elements ean transmit shear as well as eom-
pressive stresses. Figure (V-1) shows the representation diseussed by Dunean and

Goodman,
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a, Before Loading b. After Loading

Fig. V-1, One-Dimensional Element
(Goodman, 1968)
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Propagation of preexisting eracks has also been studied in conjunction with

the concept of stress-intensity factors. Assuming the erack geometry to be known,
finite clement preeedures were developed by Chan et al, (1970) and Gross ot al,
(1968) to determine the stress intensity factors al cruck tip, Displacements, stresses
and compllance were all used as the basis for calculation of the factors, To improve
accuracy, Wilson (1971), Byskov (1970), Levy (1971) introduced stress-singularity
elements ot eracktips (Figs. V-2 & V-3), Pian(1971) suggesteduse of hybrid elements,
The stress-singularity elenients improve the aceuraecy., However, they are severely
restrictive in the study of erack propagation as the analysis applies only for erack
} tip at the center ~f the elemen . Use of quadrilateral elements with stress eriterion
is sufficient, in most cases, to establish the stress-intensity factors,

A eommon drawback of all the previous w.urk is that the gecometry of the cracks

and their location must be known beforehand, For new eracks originating at Grifiith

e

flaws, the erack geometry is not known beforechand., The present research program
treated the problem of fracture initiation at arbitrarily oriented Griffith flaws using
the stress formulation, Assigning orthotropic no-tension material behavior to eracked
clements, it was possible to trace the progressive failure of rock following Griffith's

’ theory. The procedural details are given in the following sections,

5.2. Analysis for Craek Init'ation

In the case of preexisting eruacks, it is sometimes possible to plar a finite cle-

ment mesh including the erack surface as a free boundary, However, wl ere intact



FIG. V-2, Cracked Element (Byskov, 1970)
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Fig. V-3. Cracked Flement (Wilson, 1971)
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rock cracks under changes in stress environment, it is nccessary to cheek for crack
initiation in aecordance with Griffith or modificd Griffith theoi'y. As element pro-
pcrtics ehange only at cracking, for a given initial mechanical state, a lincar clastic
analysis is valid upto cracking of an additional element in the system,

Assuming Griffith flaws are oriented in cvery direction in each element, an
analysis bascd on stresscs in the clement is carried out to verify crack initiation,
The theoretical basis for this is outlinedin Appendix A, Upon application of full load,
scveral clements may satisfy the criterion for crack initiaition, In this case, a
strcss ratio is established for each clement, The striss ratio is the factor by
which the stress inerement must be multiplied such that the total stress corresponds
to the critical stress environment for the clement, The stress ratio is a function
of the initial stress and the stress path, The minimum stress ratio indicates the

next element to crack in a progressive failure scqucnee,

5.3. Analysis of Progressive Cracking of Rock

As cach clement eraeks, its stiffncss ehanges reflecting a change in the system
stiffness, Thus the total load dcformation behavior «.f rock is pieccwise linear in a
finitc element reprcsentation, changes in slope being associated with scquential crack-
ing of various elements, In actual situations, the nonline. rity may be continuous,

In the process of analysis, thc system is assumed to be pieeewise linear elastic,

At each stage the live load is applied and thc str:ss response ealculated. As fracture

of onc element, next in the sequenec, marks a ehange in stiffncss, stress-ratio is




ealeulated for each element as shown in Figure (V-4), Point A represents the initial
state of stress. Point C along stress path AC represents the stress state if the system

were linear elastie for the load inerement applied. If point C satisfied the fraeture

_ [AB/
r /AC/

defined a eritieal stress state. As fraeture angle depends upon the stress environ-

eriterion, it was neeessary to find the stress ratio S sueh that the pcint B
ment, ealeulation of the stress ratio involved an iterative proeedure. For fraeturc
angle B corresponding to C, astressratio was ealculated. Then for this stress ratio,
the eorresponding stress state was evaluated and the eritieal angle for this stress state
represented a better approximation to the eorreet fraeture angle. Convergenee was r pid.
The stress ratios for all elements were eompared, The minimum value represented
the end of the partieular step in the multilinear stress path dependent system, and the
element yielding the minimum ratio wasthe nextto eraek, Repetitive applieation of
this procedure defined the progressive failure of roek.

In order to ensure stability in eomputation, the total load was applied in several
inerements, This served to keep the stress ehange in individual elements for a given
load inerement within reasonable limits, Figure (V-5) illustrates ineremental loading
analysis, For a typieal load inerement AP, the initial stiffness yields point C and
allowance for sequential fraeture of several elements within this load inerement shifts

the (P, u) point to B. The different arrows indieate sequential eorreetions to disp: :e-

ment allowing for progressive fraeture,
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F(B.0)=0

- Initial Stress for the Load Increment
Stress for Full Load Increment

Scaled Increase cf Stiress to Crack Initiation

a >
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]

Note: P calculated for state B will in general not be the
same as 3 for state C,

. FIG./-4. Calculation of Stress Ratio, S, .
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Fig. V-5. Incremental Loading Analysis
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5.4. Modelling of Cracked Roc}):

Referrcd to axes of material symmetry, the constitutive relationship for linear

orthotropic isothermal elasticity can be written as

A -v -y a 3
(€ 2 8 o o o -
11 E, E, Eg 11
-V 1 -V
1 3
€ 0 0 0 o
22 El E2 E3 22
€ -l B 1 0 0 o0 T
33 33 )
< - | E, E E, <
Yos 0 0 0 Ggg 0 0 Tog
Yay 0 0 0 0 Gy 0 g
(2] Lo o 0 0 0 Gppf |12

1 .2 '8
E, E Eg
For plane strain  €,,= 0, Y23= Y31=0
V1o V2 11 1 y
% = 5" es==Rl3 ok Cgp= 0
E, E 792 Eg

Using Eq. (V-9),
Ggg = V3 <1 1 >%°-11)
722

Substituting Equation (V-4) in Equation (V-1),
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22 3 : 273 22
h2 io
Inverting
i 3 : ; [E1(1-u2u3) Evptivg) || o,
To9 (1-vyvy) (1-vovg) - k we (14 Va) Eqvg (14v3g) Eg (1-v1v3) (22’
(V-6)
E
where k - 1 :
Eg

Upon development of fracture surface in an element, the plane of the crack ean
be regarded as a plane of mechanical symmetry. Also the crack plane is a prineipal
plane for the element, This involves a.. .ssumption that the crack is planar and ex-
tends throughout the element, It appears to be reascaable for sufficiently small
element size,

Assuming that 11 correcponds to the stress normal to the fracture plane, the

elastic modulus E is reduced to a very small value, The element is still eapable of

e L s R A TRl

withstanding stresses ¢ 99 parallel to the crack plane, However, when ogo also attains
values such that another fracture plane develops within an element, the material can-

not sustain any load, This is modelled by letting Ey also become very small,

As crack orientation may not be along the reference directions, it is necessary

to transform thc stress-strain relationship from the principal axes to the reference
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axes, Let the angle of rotation be B. Then from Figure (A-4)

3 Yy -a (V-17)
where 4 the angle between Ty and Ty
n the angle between Ty and the fracture plane

For Griffith failure eriterion, it can be shown that

n - tan”! { [ (k-1) sinZ9 1 - J(k2 -1 sing 1]

/-; (1 - k) sin 260 } -0 (V-8)

where k = 65 /o, , and 0 is identical to B defined by A-4 in Appendix A,

For the modified Griffith eriterion,

a = —4”- -6 (V-9)

where 0 .s the same angle as 8 defined by Eq. (A-15) in Appendix A,

L:st the relation between prineipal strains and strains in global coordinates be

{¢p} - [J] {t} (V-10)

Here {‘p} : { ¢ } are the strains referred to the prineipal axes and the reference

represented by

axes respeetively and

[ J] ) cos? B sin? B eos B sin B (V-11)
sin? B cos? B -coz B sinB -
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The relation between principal stress and stresses in the reference frame is

{a} - [JT]{VP} (V-12)

It can be shown that if

{ o } =[D]{ ¢ } (V-13)

and

{"p} B [Dp] {‘p} (V-14)

(o] - [ [ ]

5.5, Pre-existing Discontinuities

Pre-existing discontinuities in rock may be initial weak planes or initial open
joints. In either case, strength of material would be reduced. For an initial open
joint, the orthotropic stress-strain relation described in Section 5.4, can be used, and
the initial fracture angle would be defined by the initial crack plane or by the inclination

of joint, In the case of initial weak plane, we propose an orthotropic stress-strain rela-

- tion with certain amount of shear resistance along the weak plane,

A relation similar to those in Section 5,4 can be written as
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for plane stress

where (| 1- kvzz
a2 El
G D

2 (1+ k" ul)

and for plane strain,

D R ;o . e (V-17)
[ p] , Iul ;2(1 +v3) l',2 (1 '1“3) 0
0 0 G ¢,

where 42 = (1- 21 Va) (l-v2 u3) - kv22 (1+ u3)2 .

Following a procedure similar to that in Section 5.4, we obtain

o] - [ [ ]]
g LT

[K] - <-sin23 sin23 cos28 >

In general, the fracture plane does not coincide with the weak plane, The elasti-
eity matrix in such a case can be obtained by deleting the third column and the third row

! of [D'] , and in the transformation, 3 is replaced by the angle between the fracture

plane and the weak plane,

To deal with elosure of opca joints, it was assumed that the crack opening is planar




and that it can be measured normal to the crack plane, This measured quaniity can
be either the initial opening of a arecxisting joinu or the equivalent opening tolerance
for an element fractured unacr 2 load increment to close again, The initial opening
is equivalent to a set of nodal displarements corresponding to the initial opening,

The equivalent nodal displacements thus obtained were further transformed into ele-

ment strains, and the possibility of closing was checked on the basis of computed

strains,

5.6, Incremental Excavation

Execution ot an excavation project is a sequential process, In discretized
analysis procedure, the results at the end of one stage constitute the initial state
for the next step. History of the system in terms of stresses and deformations is
determined corresponding to the discrete steps in excavation or construction,

For cach stage, an incremental loading analysis was used. The equilibrium

equation corresponding to each load increment can be written as

Ki {Al‘l l { A pi } (V-18)

|

where i denotes the ith increment, To take account of the effect of crack propagation,
[Ki] wias modified for elements cracked and {Api} corrected to include the load
resulting from the releasing of the initial stresses from the cracks, The total displace-

ment and loading for N increments at jth stage are given by




s .
-

N
z:l {Ari} (V-19)

1

and
N

Py 2= { Api} (V-20)

i1

The final displacement and loading for a complete « wstruetion of M stages are

M N

o1 B B
M N

{p} D " {Api} (V-22)
j=1 i1

5.7. Examyles of Application

The proeedure developed, for analysis of progressive failure of roek following
Griffith's or modified Griffith theory, in aceordance with the mathematieal model
deseribed in the preceding paragraphs were used to solve several problems, On
eracking of eonerete beams, considerable volume of data is available, The pro-
eedures were also applied to analysis of eraek propagation in tunnels of eireular
and elliptieal shape. Effeet of ineremental construetion/excavation was allowed

for. A simple model was used to simulate loadin;’ in underground blasting,

5.7.1. Craek Propagation in Conerete Beams

Applieation of the finite element method in the study of eracking in reinforeed

concrete members was first proposed by Ngo and Scordelis in 1967. In their analysis,
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two-dimensional triangular clements were used for tdealization of concrete and steel

reinforcement, The bond aetion between conerete and steel bars was modeled by
apeeial links, Geometry of erack was defined by disconnecting nedes as preexisting
openings and progressive craeking in eoncreie was not allowed, Nilson (1968) incor-
porated an ineremental loading proeess along with a simple craeking crite *ion allow-
ing for progressive eraeking, Aguin, the cracks were defined by diseonnectiny nodes
when the average stress at that nodal point satisfied the cracking eriterion,

'Jsing the method of analysis deseribed in preceding seetions, sequential
eraeking in simply supported beams was investigated. Results of these investiga-
tions are summarized in the following paragraphs,

A. A Plain Conerete Beam

Fig. (V-6) gives the eonfiguration of a simply supported beam without any
reinforeement, Craek eommeneed at midspan and propagated throughout the eross-
seetion, A eollapse meehanismdeveloped whenthe eraek extended tothe top element.,
Severe eompression eaused by thc hinge aetion produces two seeondary eraeks whieh
follow the modified Griffith eriterion.

B. A Conerete Beam with Tension Reinforeement

A finite element representation of a reinforeed conerete beam with 19 feet
effective span and a depth of 32 inehes is shown in Fig, (V-7a). Two eoneentrated
loads of 300 lbs, eaeh were applied at two one-third points along the total span,
The sequenee of eracking is indieated by numbers as shown in Fig, (V-7b) and (V-Te\,

The craeking may be roughly grouped into three stages, Upon applieation of the load,
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primary eracks start and propagate in the middle third of the span and stop

after travelling eertain distanees, Seeondary eraeks then follow and spread
over the outer one-third of the span. Soime bond sliprage assoeiated with extension
of the primary eraeks oeeurs at the last stage. The load-defleetion eurve in Fig.
(V-7¢) refleets the eontinuous proeess of eraeking,

C. A Conerete Beam with Tension Reinforeement (Bresler and Scordelis, 1963)

A series of tests on reinforeced eonerete beams was eondueted by Bresler and
Seordelis (196%. The present method of analysis was applied to two of these beams
to prediet the cracking behavior,

Fig. (V-8) shows the eonfiguration of beam OA-2 and A-2 in the aforementioned
tests. All the dimensions and material properties used are taken from the paper by
Bresler and Seordelis (1963) (See Table V-1, V-2),

The eraeking sequenee for load up to 45 kips is shown in Fig, (V-9), and the
load-midspan defleetion eurve is given in Fig. (V-19). Agreement with the experimental
data both in the eraek patterns and the load-defleetion eurves is excellent, Referring to
Fig. (V-10), inereasing deviation of the eurve obtained from the finite element analysis
from the curve given by tests would be expeeted with further inerease in load.

D. A Concrete Beam with Tension ,Compression and Web Reinforeement

In addition to the tension reinforcement in beam OA-2, compression as v "’i as
web reinforeement was used in beam A-2, Again the eraeking sequenee and eraek pat-
tern were in agreement with experimental data, The midspan defleetion eurve obtained
at a total load of 62 kips was slightly low r than the eurve given by the test, but in

general, agreement was exeellent (see Figs, V-11, V-12),
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I''3.V-10, Load-Deflection Curve for Beam OA-2
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5.7.2. Progressive Cracking Around a Semi-Circular Tunnel

The configuration of a lined semi-circular tunnel analyzed by Zienkiewicz

et al, (1968) using ihe no-tersion 2pproach is shown in Fig. (V-13). Limitation

of this approach has been discussed in Section 5,1, fig. (V-15) shows the initial
tension zones in the linear elastic solution, This is stmilar to the solution obtained
by Zienkiewicz (Fig. (V-14a)), Upon application of fracture criteria, the crack was
found to initiate and propagate sequentially (Fig. V-16). Figs. (V-16, V-7, V-18)
show that stress redistribution around the tunnel resulted in reduetion of the tensile
zon28, The eracks oecur mainly along the contaet between the lining and the ruek,
Cracking of this kind raay be interpreted as failure of bond between the concrete

lining and the roek.

5.7.3. Progressive Cracking Around an Elliptie Tunnel

One major concern during an incremental exeavation in rock mass is frag-
mentation of the material caused by progressive fracture oeeurring in the vieinity
of excavated area, To p' event such situation from oceurring, supports or lining
ean be applied immediately following the excavation. A system eonsisting of an
elliptic tunnel was used to study the progressive cracking in an incremen'a! exeava-
tion proeess,

A. An Unlined Tunnel

Fig. (V-19a) shows a system sssuming excavation to be completed in a single
step. Fracture first commences in the surfaee of the tunnel, then proceeds upward

layer by iayer. The cracking sequence is shown in Fig, (V-19D).

106




S ione —-———‘M

7 i [ /'\\ . &
——
o
| S— S, "F—C—
_.--'"'_F.-“FF'-.-.
h ____I_;j. : B R | ol
| e
2l "
o
= = w
|
L R
W S ] -1 Ex =10ies
N o e ey e S v= .20 .
p ) R O 10 0 0 - = .90 !
BE . i ': 'y' = Isn p:‘ I..
o | | ! | Ty = Iﬂ Pil = 2o i}
71 ™ '; LiMiING
a | | F 1= 2x10% pel _&‘_""
! " v=_.15
. M ME: i 1.5 L et |
" iNumL-v: of Nodes 447
l I Numbe r h!'_'}_f‘.t_-:ﬂm';.-_ A%
| ]
1 1 | | , |

FIG,V-13 Configuration ¢f « Scmi-Circular Tunne!

107




Wo1qoId [PUUN] JO UOTIROS §iZSIMIPUIIZ yI-A 'DId

300y U] SeUOZ IISUL [BuUld ‘g Y00y U SIUOZ I[ISUS L [eNIY]

N

.Il.l.a.




FIG. V-15 Initial Tensile Zones in Rock
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a. System Analyzed b. Sequence of Cracking

FIG, V-19 Progressive Cracking Around an Eliptic Tunnel
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It is noticed that the eraeking sequence and the patterns of crack are not unique
for a system, In fact, they are greatly influenced by the material properties, For
example, if o, the tensile strength, is the only varying parameter in the analysis,
matcerial having a higher value of ¢y would have less extensive cracking, Similarly,
if u, the internal coefficient of frietion, is ehanged, the cracking sequence and the
eraek patterns will be different,

B. A Lined Tunnel

The system deseribed in the preceding section was reanalyzed in three steps
using u = 0,8 anu oy = 25 psi (see Fig, (V-20)). Step one simulated excavation in a
single step as in case A, Cracks appeared in the side wall of the tunnel as pr-=dicted
by modified Griffith eriterion and ¢t the bottom by Griffith criterion. This was be-
ecause of severe compressive stresses in the side wall while high tensile stresses
oceur at the tunnel invert and erown, Hatches in Fig, (V-20b) show the orientation
of the eracks, In step two, concrete linirg was introduced, This provided the tunnel
wall with some support due to the tendency of the conerete lining to (lefleet outwards
under its own weight, The support effect is increased if inerease in conerete
temperature is allowed for or if the concrete/rock contaet is pressure grouted, A
region near the horizontal diameter developed double eraeks in the first step,

In the second step, one set of eraeks in this region closed, No further eraecking
oeceurred at the end of this step (see Fig, (V-20e)). In the third step, a pressure of
2,000 psf was applied on the ground surface (Fig. (V-20d)), New eraeks appeared

at the base of the conerete lining, propagating downward at an angle of about 45 degrees

to the right, Meanwhile the double erack appeared again near the horizontal diameter,
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FIG.V-20 Incremental Analyses of an Elliptic Tunnel

116




5.7.4. Progressive Craeking in Blasting

The mechanism of brcakage or fragmentation of a real rock caused by blasting
is very complicated, yet the major mode of breakage is by brittle fracture, When a
charge detonates in a borehole, blasting wave will propagate outward with very high
velocity and pressure, The magnitude and direetion of the velocity and pressure de-
pend greatly on the wroperties of the eharge and the roek, They also depend on the
detonation proeess and the borehole geometry, Calculation of these quantities is by
no means simple and various theories as well as empirieal formulas have been
proposed (e.g. Brown, 1956),

Due to the radial overflow of material aceompanying the blasting wave, the
pressurc in both tangential and radial directions will decrease while radial cracks
appear and propagate, Interaction between radial eracks and the tensile stress wave
reflected by frec surfaec may increasc the tensile stress at the tip of those cracks
which are parallel to the curved wave front, Tests on plexiglass mentioned by
Persson et.al. (1970) concluded that eracks propagating in a direetion at an angle
40 to 80 degrees to the normal of the free surfaee have a greater propagation velocity .

A system shown in Fig. (V-21) was analyzed as to simulate a bench type blast-
ing . Tnertial effeets were not considered in this analysis, nor was decay of pressure
due to gas entering the cracks allowed for, The ratio of the depth of rock to the dia-

meter of the hole was 20. The effect of detonation of a eharge was simulated as sud-

den application of a radial pressurc on the perimeter of the hole, Three different

values of the pressure intensity viz., 2000, 3000, 4000 psi, were considered, The
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cracking sequences obtained are shown in Figs, (V-22), (V-23) and (V-24). At 2000
psi, only small radial eracks form near the top and the bottom of the hole, For pres-

sure intensivy equal to 3000 psi, eracking was severe around the hole, and three major

eracks extended outward. Finally, for pressure cqual to 4000 psi, the pressure [ront

was pushed out further and radial fragmentation inereased drastically with two major
eracks propagating to the boundary, Inelination of these two major cracks to the nor-

mal of the free surface was 5) degrees and 70 degrees respectively.
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P = 2000 Psi

FIG. V-22, Sequential Cracking Due to Internal
Pressure on Tunnel Surface - 2000 psi
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P =3000 psi

FIG. V-23 Sequential Cracking Due to Internal
Pressure on Tunnel Surface - 3000 psi
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P = 4000 ps;i

FIG. V-24 Sequential Cracking Due to Internal
Pressure on Tunnel Surface - 4000 psi
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CHAPTER VI, A PARAMETRIC STUDY OF STRESSES
IN STEEL SUPPORTS IFOR A 'TUNNEIL

6.1, Statement of Work

The compiter program for analysis of stresses and deformations in nonhomo-
geneous roek assuming elastie-plastie behavior was used in a parametrice study of
stresses in steel supports for a tunnel, Data for the problem werve provided by the
United States Bureau of Mines, Figures VIi-1 to VI-4 show the configuration of the
tunnel opening and the four different bloeking systems studied, Figure VI-5 shows
the steel support struecture, The initial stress field was speeified as hydrostatic
pressure corresponding to an overburden depth of 1,000 feet and a material density
of 165 pounds per cubie foot, The objective of the parametrie study was to determine
the influence of Young's modulus, Poisson's ratio, eohesion and angle of internal
frietion, upon the moments and stresses in the steel supports. ‘The range of para-
meter values specified by the sponsor is shown in Table VI-1,

6.2. Method of Solution

6.2.1. Meehanism of Load Development

When a tunnel is excavated, the load earried by the material removed must be
earried by the rock in the tunnel walls and by the unexcavated rock ahead of the face,
Continued excavation at the face results in 'loss of support!' further inereasing the stress
in the walls, For lincar homogenecous isotropic elastie rock, it has been shown (Abel,
1967) that this cffect is felt only in a region one diameter away from the face. If sup-
ports are installed immediately after exeavation, they will share in this transfev of

load as the face is advaneed, Theoretieally, after the exeavation has progressed one
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'. M“*——r-— i . = E = -A*Tﬂur‘v“’

i

MATERIAL
PARAMETERS
() Rock (b) Shotcrete (e) Steel (d) Timber
Young's Modulus; 1x10%-10x10%  2,71x10% 30 x 108 1.5 x 108
15 (psi
Poisson's Ratio, 0.1-0.5 0.1 0.231 0.03
v
Cohesion, ¢ (psi) 1000 - 5000 3300 -—- ===
t; Tin ¢ 1.0 - 2.1 1.0 - ---
- (¢ Angle of Internal
I'riction)
Matarinl. Lengity 165.0 150, 0 490.0 27.0
(peh
s
; (2) Data furnished by sponsor,
p
] (by '"Manual of Conerete Practice,' Part 2, 1968, American Conerete
",
] Institute :

E = w5 33V,

where w = 150 1b, /c.ft,

e compressive strength, assumed as 2000 psi
(¢) "Manual of Steel Construetion, " AISC

(d) "Wood Handbook, '™ Forest Products Laboratory, Forest Researeh,
The properties arc for western white pine,

Table VI-1, Material Properties
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diameter ahead of the support, there would be no further development of load on sup-
ports. Actually, it is obscrved (Abcl, 1967) that rock m ovement continues for a long
time beforc reaching stabilization., This restilts in continued growth in the load trans-
ferred to the supports. Also, exposu) .o atmosphere, loss of gouge matcrial, and
blasting damage may alter thc mechanical propertics of the rock mass resulting in
increasing deformation and increasing support stresses. In summary, the load develop-
ment may be associated with one or more of the following mechanisms:

a. Upon continucd excavation at the face, the removal of rock results in
incrensed rock load being transferrcd to the walls »f the portion already cvxcavated
and the supports in that portion,

b, Time-dependent deformation cf rock is resisted by the supports resulting
in their taking on increasing load.

¢. Changc in material propertics after installation of supports will result in
additional deformation which in turn will lead to increased strcsses in the supports
resisting such deformation,

d. By bincking, a prestress may be introduced to support rock, Wedging of
the blocks will give equal and opposite forccs acting on the tunnel surface and the
support structure,

In the work reported herein, the influence of various material properties upon
support stresscs was studied assuming load development primarily through mechanism
(a) described above, The system in Figure VI-1 (casc a) was analyzed to study the

effect of variation of parameters and to rank them in order of importance, Calculations
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werc made varying eaeh or the parameters between the limits given one at a time,
The 'constant' values of other parameters were taken to be the midpoint of the speci-
fied range, The eombination of parameter values corresponding to the worst stress
in the supports was then used to analyzc eases b, ¢, d shown in Figures VI-2 to
Figure VI-4,

6.2,2, Assumptions Made in the Analysis

a. Extent of the Finite Model

When an underground opening is exeavated, ehanges in the stress field and
associated deformations oeeur in the entirc rock mass, The prineiple of loeal action
implies that these changes diminish with inereasing distancc from the opening, In
the finite element model, a finite region is generally considered. On the boundary
of this finite model, foree or displacement boundary eonditions have to be prescribed,
These can be based on the assumption either of no change in the stress field or of no
deformation. Neither oi the two is true for finite distances from the opening and the
two assumptions in fact give bounds to the correet solution, Nair (1968) and Kulhawy

(1972), among others, have studied the effeet of lateral dimension of the finite model

- — o —

and of the ehoice of boundary eonditions on strcsses and deformations in the vicinity

of underground openings, For the present study, allowing for the speeified hydrostatie

initial stress field, a preliminary analysis showed that it would be adequate to model a

region extending approximately seven diameters above the roof of the opening, five dia-
meters horizontally on each side of the center-line and five diameters below the invert

of the opening. This region is outlined as ABCD in Figure VI-6, The boundary conditions
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FIG. VI-6. Tunnel Opening, Overburden and Region Included in the Analysis
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for the finite element model are illustrated in Figure VI-7, The overburden of the
top 858 feet was replaced by an equivalent vertieal load, The stress field on the
vertical faces AB, CD was assumed to be unaffected by the sequence of operations
in the opening and the vertieal displacement of the horizontal section BC was set
cequal to zero,

L. Modelling of Support Structure and the Sequenee of Operations

Starting with the initial stress state, the sequenee of excavation, installation
of supports and load development was simulated. The steel supports were assumed
to be in plm.» stress whereas the roek and shoterete were in plane strain, The
spacing of steel supports was speeified as three fect, Thus a three foot length of
the tunnel was supported by each support ring., Figures VI-8 and VI-9 show a typi-
cal eross-section used in the finite clement model, The eross-section of the steel
rib was represented by five finite elements to obtain reasonably good distribution of
stresses over the eross-seetion, The shoterete and the rib were assumed to be
honded, If there is no bond between shoterete and the rib, there is no load trans-
ferred through shear and the load transfer is entirely radial, This situation would
be similar to ease (d) exeept that the bloeking would be eontinuous. For eases b, e,
d, the wooden blocks were assumed to be axial members not transmitting any bending
moments,

The shoterete , the steel rib and the timber bloeks were assigned the properties
given in Table VI-1., It was assumed that C, ¢ speeified for the rock were obtained

in triaxial tests on eylinderieal specimens, It was assumed that the roek properties

= i RS i~

o
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IFIG. VI-7. Boundary Conditions on the Finite Element Model
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Strain ([0l L
System "ol SHOTCRETE |

— 3 FT.——

. R
.. " ) .

Plane Stress
System

Steel Ribs @ 3 ft. spacing

b. Representative Slice

FIG, VI-8, Longitudinal Cross-Section of Tunnel and Representative Slice
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FIG. VI-9. Finite Element Representation of the Cross-Section of Steel Rib
(5 Elements at Each Scction)
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do not ehange as a result of exeavation of the opening, Additional studies eonsidering
the effeet of sueh changes are reported in seetion 6,2, 3.

In calewlating load acting on the supports, it was assumed that, upon execavation,
the gravily load due to the arca shown shaded in Figure VI-10 was mobilized only fifty
" pereent, The rest being supported by the unexcavated roek ahead of the working face,
:, The balznce fifty pereent was assumed to become aetive upon loss of support due to
. eontinued excavation, This corvesponds to meehanism (a) deseribed in seetion 6.2.1,
The geometry of the shaded area corresponded to the overbreak line in Figure VI-2,
ease b, [t was assumud that the difference in exeavatior profiles in Figure VI-2 and
VI-1 represented the roek load wlieh could develop for eases a and d.  For case b,
the rock exerting the gravity load is shown shaded in Figure VI-11, the extent was

arbitrarily taken as an average of 3,5 feet thickness beyond the excavation line.

AT ey AT

Similarly for ease ¢, the extent (Figure VI-12) was arbitrarily taken as an average
of 3,5 feet thickness beyond the exeavation line,
6.2.3, Results
a, Preliminary

In studying the importanee of material parameters, the quantities of interest

were the maximum stresses in the steel member, It is eustomary to study the axial

?'_

and shearing forees and bending moments in sueh struetural eomponents, llenee,
these quantities were worked out, It should be noted that the basie output from the
finite element analysis is the eomponents of stress evaluated at the eenter of eaeh of
the five clements into which the steel member is divided, The moments and forees

were obtained by numerieal integration of the stress values,
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Figures VI-13 and VI-14 show the eross-secdons at whieh the stresses as well
as the forees and moments in the steel rib were eomputed,

Rock load development wis assumed to follow meehanism (a) of seetion 6.2, 1,
Additional studies using meehanism (e) and (d) are eovered in section 6.2, 4,

b, Influence of Material Properties

Four material parameters, viz,, Young's modulus, Poisson's ratio, eohesion
and angle of internal frietion were to be eonsidered to establish their order ot import-
anee in terms of their influence on the support forees,

For the speecified range of the roek properties, the eohes’ )r and the angle of in-
ternal frietion did not influenee the stresses in the struetural supports, Figire VI-15
shows a riot of Jy = 0+ 09+ 0g, the first invariant of the stress tensor as fhe abeissa

1
and Jo2 - |1 - o202 + (02 - 0g)2 + (g3 - 012 | 2
. 6

, the seeond invariant of the stress
deviation tensor as the ordinate, The generalized Mohr-Coulomb yield criterion eorre-
sponding to the nreseribed range of values of eohiesion and angle of internal frietion are shown
and alsothe stress paths traced by points of eritical loeations around the tunnel opening.

The generalized Mohr-Coulomb yield law is,
:l
a Jl + Jz")' k

2 sing

VB (B-rmo)

where;

E = 6 C coso

V3 (3 - sing)

©
!

= angle of internul frietion

O
1

eohesion,
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FIG. V1-15. ‘tress Paths for Points Around the Underground Opening, \
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C and ¢ are determined from a triaxial test on a eylindrieal specimen under
axisymmetric radial stress, Derivation of the above equationsis given by Singh (1972).

In Figure VI-15, paths A, B,C, D, k are traced by elements loeated around the
face of the underground opening, Points A,C refer to elements at the invert and the
crown, respectively, and points B, D), E eorrespond to elements on the side of the open-

ing, The locations are indicated in Figure VI-13, The initial state in all eases is of

hydrostatic stress, The terminal points represent the state after excavation. The
development of rock load has little influence on the stress state in rock for the speei-
fied values of Young's modulus and Poisson's ratio, For all locations, the entire
strcss history was found to be well below the yield eriterion,

Figures VI-16 through VI-18 show the influence of variation of Young's modu-
lus 17on bending moments and upon axial and shearing forces. Only sections
with the worst forces have been plotted. The maximum bending moments were
at seetion 16 (crown), the maximum axial foree at section 5 (side) and the maximum
sheariag force at section 10. In all eases, decrease in elastic modulus of roek was
seen to result in inereased moments and forees, This is indeed to be expected, The
load transfer to the structural support is dependent upon the tendeney of the rock face
to deform, Higher modulus implies less deformation for the same roek load and
eonsequently less load transferred to the steel member, The decrease in support
forces,with inereasing Young's modulus,is rapid at first and then is less pronouneed.
This is due to the fact that rock deformation is proportional to reeiproeal of the modu-

lus. Also, for very large moduli, the strains are extremely small and difficulties

arise with cemputational precision,




4001
300

200t

oo}

LB-IN

o

sE
-a x10° PSI-

BENDING MMT.,
|
o
<

FOR LOCATION OF SECTION

-200 SEE FIGURE VI-6

L]

-300

-400

FIG. VI-16. Influence of Elastic Modulus on Benling Moments

146




10.0

"x10° PSI
<3

AXIAL FORCE
i
3

-

E
=

FIG, VI-17, Influence of Elastic Modulus on Axial Force

147




s—_Section 5

o
=)

SHEARING FORCE, LB
w
o

-60

FIG. VI-18. Influence of Elastic Modulus on Shearing Force

148




M"ﬂ_‘"-ﬁ—, o

Figures VI-19 through VI-21 show the influenee of the variation in the Poisson's
ratio on the moments and axial and shear forees in the supports, Again, only
results for the worst seetions have been plotted, In the erown and the side (section
16 and 5), an inerease in Poisson's ratio results in deereased bending moments

whereas at seetion 10 the bending moment inereases somewhat., The higher Poisson

ratio is assoeciated with a redistribution of stress in roek. This redistributica is
i refleeted in a4 more uniform stress distribution in the steel support,
For the speeified range of values for the material parameters, the bending

moments and the shearing forees were insignifiecant, The major effect was the axial

foree in the member, Figure VI-22 shows the distribution of longitudinal stress for

the mean values of rock parameters, An explanation for the bending effeet being very

e W T

small may be found in the asssumption that the steel member is restrained by the shot-
erete, Signifieant bending of the steel member must involve signifieant ehanges in
eurvature, This is not possible for a member restrained from radial movement by
relatively unyielding roek, Also, the roek properties are assumed to be unaffeeted

by the exeavation proeess, This may not be true, There ean be eonsiderable ehange

in deformability of a roek mass due to exeavation of the underground opening,

T S T Y ST

It is not possible to assign ranks to the parameters, It is elear however, that

supports in lower elastie modulus roek will develop greater stresses, High value of

Poisson's ratio has the effeet of redistributing stresses; deereasing the peaks and

inereasing the lowest values,
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Using the lowest value, in the preseribed range, of Young's modulus and the
minimum as well as the maximum values of Poisson's ratio, stresses for cases a, b,
e, d (Figures Vi-1through VI-4) of different exeavation profiles and blocking arrange-
ments were determined,  Figures VI-23 through VI-26 show the distribution of longi-
tundial stresses on eritical seetion, A study was also earried out for ease (a) in
which no load transfer through shear between shoterete and the rib was allowed (ribs
unbonded to the shoterete). Table VI-2 shows a e mparison of forces for the cases
(a) and (d), It was seen that the bending moments in case (d) were greater than those
in case (a) in all portions of the rib exeept the invert section. Also the axial forces
in these two cases are almost the same at the invert section but were different at
other scetions, These differences are due to the restraint offered by the shotcrete
to radial deformation of the rib and due to the transfer of stresses between the rib
and the shoterete through shear, Results for the ease of no load transfer through
shear between the shoterete and rib showed tl.at the effect of bonding of rib to shot-
erete on forces in the invert scetion is insignificant, The axial forees in the other
parts of the steel rib were greater for the case where load transfer through bond
was permitted, As would be expeeted, in ease (¢), where the tunnel eross-seetion
and the rock load weie unsymmetrieal, the forees in the steel rib were also unsym-
metrical. The axial foree had a minimum vilue at seetion 22 and inereased towards
the invert on both sides of seetion 22 to 1137 lbs, at seetion 1 and 913 Ibs, at seetion
31. (Figure VI-14 gives loecation of these sections of the steel ribs).

6.2.4, Additional Studies

Additional studies using values of Young's 'nodulus less than the minimum of the

i b
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case (a) case (a) case (d)
Steel Rib Bonded to Steel Rib Not Bonded
Section Shotcrete to Shotcrete
M (lbs.in.) N (lbs,) M (lbs.in.) N (Ibs,) M (lbs,in.) N (lbs.)j

=212 -1325 -313 -791 -2341 -1003

+252 + 605 +263 +158 + 659 - 634

-814 + 843 -718 +848 - 474 + 892

Table VI-2. Comparison of cases (a) and (d)

:
;
:
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range given in Table VI-1 were carried out to consider situations where the elastic
modulus of roek in the vieinity of an underground opening may be signifieantly .-edueed
by damage during exeavation or detevioration with exposure over a long time, The
simulation assum=d that after instailation of supports and placement of shoterete,
Young's modulus may reduce from an initial value of 1 x 106 pounds per square ineh,
Different terminal values of Young's modulus used were 0,75 x 106, 0.67 x 106, 0.4x
106, 0.25 x 106 ponnds per square inch, Poisson's ratio was assumed to be 0.49
throughout, For case (a), the results are plotted in Figures VI-27 through VI-29,

As might be expected, greater reduction in the clastie modulus was associated with
greater bending moments and axial and shear forces, For reduetion of Young's modu-
lus to 0,25 x 106 psi, the maximum longitudinal stress would be over 20,000 psi (Figvre
VI-30). Considering that deterioration of roek is more likely to oeeur in eases b and d,
analysis were performed corresponding to a reduetion in Young's modulus from 1 x 109
to 0,4 x 106 pounds per squave inch, Figure VI-31 shows the rlistribution of longitudinal

stresses at critical sections for the cases a, b and d.

Another study considered mechanism (d) (section 6.2,1), In this, using ease b
of Vigure VI-2, the long struts or bloeking points were assumed to be one-dimensional
elements under a eompressive stress of 200 pounds per square ineh. Young's modulus and
Poisson's ratio of rock were taken to be 1 x 108 psi and 0,49 respeetively. The struet-
ural steel member was determined to hrve maximum axial foree of 25,520 pounds at
section 12, maximum shearing foree of 1,604 pounds at seetion 8 and maximum bend-
ing moment of 28,700 pounds ineh at section 4, The maximum longitudinal stress was
2,750 psi in an element loeated in the flange of section 4, Distribution of longitudinal

and shearing stresses at eritical seetions is shown in Figure VI-32,
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CHAPTERVII - DISCUSSION
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§ ‘Two different types of mechianical hehavior of rock were considered.  One

b Lreats rock as an isotropic elastic-plastic material following a generalized Mohr-
Coulomb law and in the other, the rock is an isotropic lincar elastie brittle material

. subject to fractuve in accordance with Grilfith's theory or the Modified Grilfith
theory. These two types of behavior are representative of a wide elass of roek
materials,

For analysis of stresses, deformation and progressive failure ol nonhomo-
genous fissured rock, the linite element method is the most suitable. In the pre-
sent rescarch effort, previous attempts at finite element modeling of the two types
ol material behavior (elastic-plastic and elastic-brittie) were eriti ally examined
and theiv limitations noted. The present development eliminates several of the

[ 5
i limitations. Analysis of elastic-plastic ;oek is based on Felippa's formulation of
!

the ineremental stress/incremental strain relationship. This is more general thap

T

and includes Prager-Naghdi's, Reyes' and Reyes-Deere's, and Yamada's formula-

T T

tions. In numerieal procedures, the incremental approach was lavored heeause of

the poor convergence eharacteristics of the so called initial styain and initial stress
methods. The procedures developed allow for incre mental construction/excavation,

arbitrary initial stresses, arbitrnry geometry and considerable nonhomozeneity of

of material. Nonmonotonic loading associated with £oquential exeavation was




properly allowed for.

For analysis o’ progressive failure of elastic-brittle rock, Griffith's the “ry
and the Modified Grif/ itk ‘heory were used. Previous work used the no tension
approach which is incorrcct and unrcalistic. In the present work, propagation of
fracturc was considered as a sequential phenomenon. The stress-rcdistribution
associated with crack extension was allowed for as incremental cracking occured.
Preexisting joints,whether open or closed,were considered. In all previous devclop-
ment, the location and orlentation of fracture has to be known for a study of its pro-
pagation. In thc present devclopment, fractures can initiate at randomly oriented
Griffith flaws assumed to be pre-exlstent everywhere in rock, Propagation
follows initiation depending upon the Griffith criteria being satisfied.

The mathematical models of matcrial behavior were fitted into appropriate
variational formulations of the incremental clastostatic problem for the case of
progressive fracture of clastic-brittlc rock and the incremental plasticity problem
for the case of progressive failure of elastic-plastic rock. Discrectization of the
governing functional by the finite eleinent method gave the set of matrix equations
leading to the problem solution. The procedural details of the finite clement method
are well known and therefore, were not reprodnced in the present report.

The proredures developed were verified against existing thcoretical solu-

tions and experimental data. Exccllent agreement was obscrved. Some typical
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problems in rock mechanics and other areas were solved as 'llustrative applica-

tions,

The techniques developed are applicable to analysis of progressive failure
through plastic yield or brittle fractu;e., In either case, arbitrary initial stress
state, arbitrary geometrical configuration, arbitrary sequence of excavation/con-

Struction, can be considered and a history of sequential failure or fracture obtained.

The methods can allow for pre-existing joints and fissures and are applicable to

comparative stability studies based on stresses and deformations associated with
excavation operations, evaluation of structural supports and loads on underground
Supports, safety analysis of openings, study of blasting effectiveness under certain

conditions, evaluation of alternative mining sequences to obtain the safest construc-

tion sequence, etc,

The development was applied to a parametric study of the influence of rock

properties on the stresses in steel supports using data supplied by the sp asor,

The experimental phase of the researeh program was concerned with develop-

ment of modeling material sc that materials with predetermined shape of the stress-

strain curve could he produced in the laboratory. It should now he possible to ca rry

~ut model tests on simulated vock to predict actual behavior at site as also to verify

computational procedures. Certain assumptions made in the theory of plasticity

- - I' = al I' o .i.'i ——

are somewhat arbitrary. Model experiments would serve to verify them and permit

evaluation of their influence on the significant parameters affecting stability of under- '

ground openings,
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APPENDIX A, GRIFFITH THEORY OF BRITTLE FRACTURE

A.1. The Original Griffith Thcory of Brittlc Fracturc

Two diffcrent failurc criteria were proposed by Griffith, They arc the energy

critcrion and the stress criterion.
A.1.1, The Energy Criterion

An cxtended minimum potential encergy theorem can be stated as:

S

If an clastic solid body is deformed by certain specified boundary
forces, the sum of the potential cnergy of the applicd forces and the strain
cnergy stored in the body will be either decreascd or unaltercd by the crea-
tion of cracks with traction-frce surfaces,

o me

T

Ty, T

Bascd upon this theorem and assuming the crcation of new surfaces rcquired
| only certain amount of surfacc cnergy, the failure criterion can be written as:

i The surface cne~gy incrcased must be equal to the strain cnergy
relcased such that the forcgoing thcorem is satisifed.

Mathematically the statcment can be expressed by the following equation:

%__c (W - S) =0 (A. 1)

where e = half length of thc new criuck

W = strain energy released

S - surface cnergy rcquirced to form the new crack,

o

Eq. (A.1) is considered as a necessary condition f>r stable fracturc propagation,
It is understandable that stress is highly concertrated at crack tip when the
radius of curvature of the crack tip is very small, The stress concentration 1 ay be

counted for the failure of material at certain stress level lower than the strength o«




the material. One major drawback of this failure criterion is that the eritical orienta-
tion of the initinl flaw which happens to be one of thic important roles in the fracturing
process, can not be generally defined. Following the energy criterion, the erack would
propazate in the direction of the initial flaw. Apparently, this is just a speeial ease of
the gencral fraeturing mode,
A.1.2, Stress Criterion

The stress criterion can be derived from the solution for stress distribution
around the crack. Following Inglis (1913), the tangential stress on the boundary of

an elliptie erack is given by (Fig. A.1)

2
{(0'140'2) sinh 2§ + (0, -0) [e $o cos 2 (B-7M) - cos 2{3]}/

(cosh 2 fo- cos 27M)

where § . M - orthogonal curvilinear coordinates

€, = £ on the crack boundary

1» %9 ° major and minor principal stresses, positive in tension

B = angle between the major axis of the ellipse and Ty axis
Eq. (A.2) has been obtained on the assuniption that the crack is very flat such that
fu -~ 1 exists,
From Eq. (A.2), it ean be shown (Jacger and Cook, 1969) that the maximum

tensile stress at tre crack tip is approximated by

2
3

2 ]
A [0’ cos? Bia sinzﬁ - (o cos? B 1o, sin? B)L’] (A 3
£, L1 3

1




/o

The condition acmax /3B = 0 yields

s i

cos 23 = - (01 -03) / (o) + 09) (A. 9
which defines 8 ussociated with Tmax» Provided oy ¥ oy, i
Eq. (A.4) also implies ! 1
4 Tt 30, 20 ifcrl>crz (A.5)
Substituting (A.4) in (A.3) we obtain
9 1
Tmux T T (O /4 € () 40y (A. 6)

Let L denote the uniaxial tensilc strength of the material, and consider two

¢xtremal cascs:

(1) Tmax = 201/ éowhen B is cet cqual to zero in Ea.(A.3) and
the negative value of the square rost is used to obtain the
largest value of Tmax. %] is tensile since 01 +309 20

and 0'1 > 0, I'hen T max .Eo 20'1 20't or o, -0, 0. (A.7)

- ' & - n
M o = 272 when B 3

(o]

Mathcmatically o9 may not bhe tensile since Eq. (A.5) is satisfied alright, but physically,

failure could not happen under this singlc condition, Therefore this becomes a limiting

condition for Eq. (A.6). Ii then follows from Eq. (A.6) that

2
20't = (0'1—0'2) /4(0'100'2)

i

or (o —0')2-80't(0'

] 3 1+0'3) = 0 (A.8)

Eqgs. (A.4), (A.5), (A.7) and (A.8) constitute the failure criterion, They are

summarized as follows:




where a - = (0 -(rz)?' / (0, to9) > 0
cos 23 - - ((r1 =0y) / (0]t 0y)

A.2. Mouification of Griffith Theory

i The original Criffith thecry did not allow for closing of crack subject to
1 compressive stresses, When a crack closes, sliding may occur along the crack
surfaces, A modification permitting crack closure was proposed by Brace (1960)

and McClintock and Walsh (1962) and was further developed by Murrell (1964) and i

Hoek and Bieniawski (1965). 1

The modified theory is based on the assumption that the crack would close

when the stress normal to the plane of crack is in compression and exceeds some

crack plane through interface friction, The material strength is increased and

|

51

critical compressive stress, After crack-clo:ure, stresses are carried over the
stress concentration at crack tip is reduced,

£



The conditions are stated as

o, =0 if o ) ¢ |o

n cl

and L |0'y—0'C, if oy > T, (A.10)

The interface frietion and the effeetive interfaee frietion are given by

Tg T MO M ,Uy—(re,,if L (A.110)
and TS Ty =T Txy"“'“y"’cl (A.11b}
where v, = stress normal to the craek

o - effeetive normal stress

To critical 1 »rmal stress

p - ecoeffieient of frietion

-
1

= shearing stress along the eraek

Following the similar procedure for deriving the stress eriterion and making

d
use of the eondition — 4 - 0, we find
on
2 '72

o 20, & - /(€T (A.12)

20
T - CN ’\""é voTly - g4 (A.130)

fo fo

1

and T =20 4+ (0,/0 + 1)* (A.13b)

Eq. (A.11b) ean be rewritten as

T = 1 (01-02) sin 2(34“((71 e.')szp v oo, sin2}3—(re) (A, 14)

2

The condition dy /38 = 0 gives

tan 23 = - E , provided Ty # Ty (A.15)
m




Substituting Eq. (A.15) in Eq. (A.14)

!
2
- 1 - )7 =
T = 3 (01 02) (1-+p +u((rl+crz) 2crc

Eliminating 7 between Eq. (A.13b) and Eq. (A.16)

! 1
217 I :
(01-02)(1+u )2tu(crl+crz) -4(rt(;t-+1)2+2u(rc

If o, i negligible, Eq. (A.17) reduces to

A
(0 -0, (1 uz )2+ BT, +0y) = 40y (A.18)

Eq. (A,18) coincides with Mchr-Coulomb criterion if 2 oy =T, where T is the co-
hesion of the material, Eq. (A.17) indicates that the modified criterion is of three-
parameter type and Eq, (A, 18) gives a linear relationship between the principal

atresses,

Another forn: of modified criterion was suggested by Hoek and Bieniawski (1966)
and Bieniawski (1967):
2 2
oy = o[ M v/ (V1 - ]-0, (A.19)

where o' = umaxial compressive strength of the material, Eq. (A.19) has the

advantage of using o', which is much easier to measure thsn Tt .
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FIG. A-2. Griffith Criterion in 0] - 02 Space
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APPENDIX B, DEVELOPMENT OF TEST MATERIAL

B.1., The Experimental Program

The experimental program was intended to design laboratory materials whieh
would simulate the stress-strain behavior of a wide variciy of rock types. Considera-
tion would be given to brittie, plastic and strain hardening response in both undrained
and drained pore water conditions, Sinee the theoretieal solutions would be expeeted
to operate with any eonsistent level of engineering parameters for both models and
prototypes, it was not necessary to develop a true rock-lixe material, Instead, soils
stabilized with additives such as hydrated lime could be used, Materials of this type
may be eonstructed so as to show failure response ranging from elastie brittle to
elastie-work hardening plastic, The variation may come about as a function of the
eonsolidation pressure or of additive eoncentration, A speeial reason for usir~ soil
to model rock behavior wr 3 that the testing and modelling could be done using standard
soil meehanics laboratory equiprient with considerable saving in equipment costs and

development time,

B.2. The Study Material

The study material wasabrown silt from the lacustrine deposits south of Cleveland,
Ohio. The oven-dried soil was combined with either hydrated lime or portland cement,
After adding water, the soil was mixed and plaeced in a vaeuum extruder, The auger
expelled the soil in a saturated condition through a final die, ready shaped for testing,
Samples were sealed in four layers of plastie and wax and then cured in a humid room

for neriod of 4 to g weeks,




A series of consolidated-drained triaxial tests indicated that a 4% lime-silt

mixture might have the desired properties. As shown in Figure B-I, the full range

of stress-strain response from clastic-brittle to strain nardening is available as a
funetion of consolidation pressure. The stress levels are within the usable range of
the plane strain device or of modelling applications. The testing program was {term-
inated before plane strain tests could be conducted. The different boundary conditions

in that test might have required modifications in the mix,

B.3. The Plane Strain Device

A plane strain device was purchased from the Massachusetts Institute of
Technology soils laboratory. It has been shown to be satisfactory for thc purpose of
the tests intended, A rectangular sample 3.5 inch x 3.5 inch x 1.4 inch is restrained
so as to allow the application of vertical stress by means of a piston, control of stress
or strain in an orthogonal dircetion and the measurecinent of stress in the third ortho-
gonal direction against a fixed plate. The system is designed to operate under a hydrau-
lic back-pressure and measure pore-pressures during the test. Schematie drawings in
Figures B-II to B-1V give details of the device and sho'v elements of the sample loading
and arrangement, A complete description of the deviee and its use are given by Bovee
and Ladd (1970). Due to a curtailment of the seope of work, no tests were carried out

under the current research program,
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