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TECHNICAL REPORT SUMMARY 

■" 

B 

Program Objectives 

The objective of this research program was development of finite element 

procedures to predict stresses, deformations and progressive failure of rock associ- 

ated with underground excavations.   For applicability to arbitrary sequence of exca- 

vation operations, it was necessary that the procedures developed allow for arbitrary 

initial stresses in rock, arbitrary size and shape of the opening and progressive fail- 

ure.   Plane strain conditions and two different typer-; of material behavior were con- 

sidered.   Rock was treated as an Isotropie elastic-plastic generalized Mohr-Coulomb 

material in one model and as an elastic-brittle material following Griffith theory of 

fracture in the other. 

Background 

In previous applications of the finite element method to rock mechanics, elastic- 

plastic behavior of rock has been modeled as nonlinear elastic for computational con- 

venience.    Further, it was assumed that the results of a one-dimensional test could 

be generalized to three-dimensional analysis t irough the use of an equivalent stress- 

equivalent strain curve.   In some applications, two stress or strain parameters were 

used.   These procedures are unsatisfactory.   Assumption of Isotropie elasticity assumes 

that the principal directions of stress and strain coincide.   In plasticity this is not true. 

Also, rock behavior is characterized by a significant part of deformation being irre- 

versible.   For this reason, the mechanical behavior in unloading is different from that 

In loading.   For rock with preexisting joints or developing tensile cracks, a 'no tension' 
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procedure is often adopted.   In this method, a iu^ar elastic solution is obtained und 

all tensile stress redistributed simultaneously.   Actually, as cracking progresses, 

the rock on either side of the crack is relieved of stress and a stress concentration 

develops near the crack tip.   Conventional procedures ignore these effects and the 

progressive nature of crack development, leading to erroneous conclusions regarding 

stresses around underground openings. 

Accomplishments Under the Present Program 

The research conducted under this contract has resulted in development of 

computer programs based on more; realistic simulation of material behavior.   Th' 

incremental theory of plasticity has been used to characterize the stress-strain be- 

havior of elastic-plastic rock.   Role of kinematic constraint of plane strain in develop- 

ment of residual stresses in rock has been examined on the basis of Hill's theory. 

New techniques have been developed for study of initiation and propagation of fracture 

in rock following Griffith's theory or the modified Griffith theory.   Allowing for sequen- 

tial fracture of various elements in a system, the effect of progressive stress redis- 

tribution in the remaining system is correctly Incorporated.   Arbitrary initial stress 

states, arbitrary sequence of excavation (or construction), arbitrary size and shape 

of opening, and nonhomogeneous material properties were allowed for.   The actual 

construction operations can be simulated.   The procedures developed were applies to 

several typical problems in rock mechanics as well as to some theoretical and labora- 

tory studies for the purpose of verification and illustration.   These were used to carry 

out parametric studies to examine the influence of rock propertie   upon th J stresses 

in steel supports in a tunnel. 
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POD Implications 

The procedures developed provide useful means for study of stability of under- 

ground excavations based on stresses and deformations associated with the mining 

operations, structural support evaluation, safety analyses of openings, study of 

blasting effectiveness under certain conditions, evaluation of mining sequences, study 

of vulnerability ard serviceability of underground structures etc. 

Organization of the Report 

This report Is in three parts as follows: 

Volume 1    - Main Document 
Volume 2    -  Computer Program Uwer's Manual 
Volume 3   -  Computer Programs 

Volume 1 contains the main body of the report including the theoretical development, pro- 

gram verification and case studies.   Chapter I reviews previous efforts in the general 

research area and describes the objectives and methods of the piesenr, research in the 

historical context.   Chapter II describes the mechanical behavior of rock and the ideali- 

zations used in the research under report.   The basis and methods of the finite element 

theory are briefly discussed in Chapter III leading to the formulation of matix equations,, 

Chapter IV gives details of the analysis technique for Isotropie elastic-plastic generalised 

Mohr-Coulomb rock materials and Chapter V gives the numerical analysis procedure for 

jointed rock and rock subjected to progressive fracture following Griffith or modified 

Griffith theory.   Examples of application are included In Chapters IV and V.   Chapter VI 

presents application of the elastic-plastic analysis computer program to a parametric 

study to evaluate the influence of rock properties on stresses In steel supports for specified 

initial stresses and design of the opening. 
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In the original proposal, model testing to verify some aspects of rock behavior 

under plane strain conditions was foreseen.   The effort under the present contract 

covered procurement of suitable plane strain test equipment and design of suitable 

test material.   Appendix B includes a report on this effort. 

Volume 2 of the report contains description of the thrti computer programs 

developed under the contract along with fortran listings and instructions for input pre- 

paration.   The input definition and the listings are for the IBM 370/165 version. 

The programs are the primary content of volume 3.   These are available on 

magnetic tape from DDC-TC, U.S. Department of Commerce, Springfield, Virginia 

22151, telephone (703) 321-8517. 

VI 
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CHAPTER I.   INTRODUCTION 

The terrestrial crust is in a complex state ot stress.   Excavations in this 

stressed medium profoundly influence the distribution of stress which in turn de- 

termines the stability ol the pit, slope or underground opening as the case may be. 

Feasibility of a project is related to economics of safe and stable construction. 

As an aid to decision making, it is necessary to develop quantitative information 

regarding the 'state' of insitu rock and predict the stability characteristics of rock 

under a change in mechanical environment associated with the proposed construction 

or excavation operations.   Accordingly, engineering investigations in rock mechan- 

ics are motivated by the following two objectives: 

i.    Evaluation of the 'state' of insitu rock.   This includes, 
among others, investigation of pre-existing stresses 
in the rock and mapping of discontinuities, material 
symmetries and other physical data relevant to 
engineering decision process. 

ii.    Evaluation of changes from the initial state, asso- 
ciated with excavation or construction operations, 
including among other factors, changes in the stress 
field, along with consequent yield of material, ex- 
tension of existing faults and discontinuities and 
development of nev/ ones. 

The research effort covered by this report was directed towards the second 

objective.   In order to realistically predict the stresses, deformations and distress 

of rock, it is necessary that the method of analysis used take account of the following: 

i.   The initial state including pre-existing stresses. 
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discontinuities, nonhomogeneity, and material 
symmetries, if any. 

ii.   The sequence of excavation :r construction operations. 

iii.    The mechanical behavior of rock i.e., deforma- 
tion, yield, failure or fracture of rock under 
changes in stress environment. 

iv.   Interaction with structural supports,  if any,   used 
to improve safety and stability. 

Traditionally, limit equilibrium methods have been used to predict stress states 

and factors of safety.   The theory of elasticity has been extensively used to evalu- 

ate stresses in rock in the vicinity of underground openings.     However, these meth- 

ods are applicable only for linear elasticity, homogeneous materials, simple geome- 

try (e-g- circular or elliptical openings), and isolropic materials.   None of these 

assumptions are valid for rock.   Furthermore, the excavation was assumed to be 

carried out in a single step.   Influence of sequential nature of any construction 

could not be taken into account by these methods. 

With the advent of high speed digital computers, numerical methods of analy- 

sis have proved to be increasingly useful.   Of available techniques, the most power- 

ful is the finite element method.   The method was introducea by Clough (1960) and 

was essentially an offshoot of the general matrix structural analysis techniques 

developed in the aerospace industry (Argyris (1960), Turner et al.  (1956) ).   Develop- 

ment   f the method has been rapid and a considerable volume of literature has accu- 

mulated over a relatively short period.   Among the more important references are 
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the text books by   Zienkiewicz (1972), 0 Jen (1972), Desai (1972)    and proceedings 

of conferences and symposia (WPAFB (1965,  1968, 1971), Vanderbilt (1969),   U.S.- 

Japan Seminar '1969), IUTAM Symposium (1970) ).   Mathematical foundations of the 

method (Zlamal (1968), Oliviera (1968), Oden (1969), Aubin (1972)), its relationship 

to varlational methods (Melosh (1963), Plan and Tong (1968)), convergence of se- 

quences of approximate solutions (Walz et al. (1968), Yamamoto and Tokuda (1971), 

Key (1966), Oliviera (1968)) have received attention. 

The finite element method has been applied to rock mechanics problems 

and its special suitability stems from the fact that any geometrical configuration 

can be considered and nonhomogeneity of material does not present any difficulty 

in the solution process.   Also arbitrary loads, including body forces and surface 

loads, and displacements can be prescribed for the problem. 

King (1965) developed finite element techniques for incremental construction 

which were used by Clough and Woodward (1965) and Sandhu et al. (1967).   King- 

also incorporated a technique for relieving stresses in individual elements in analy- 

sis of time-dependent problems.   This procedure has been since used to simulate 

excavations by Nair et al.  (1968), Dunlap and Duncan (1969), Duncan and Chang (1970), 

among others.   It also forms the basic procedure in analysis of rock as 'no tension' 

material by Zienkiewicz et al.  (1968) and also in Zienkiewicz et al.'s (1968) ana'ysis 

of elastic-plastic materials.    Kulhawy (1972) improved the procedure somewhat 

by using stresses at the excavated surface rather than stresses at centers of surface 
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elements to simulate stress relief due to excawition. 

Noiilinear mau'fial behavior was treated by Gallagher et al. (1962) using 

the 'initial strain' approaeh.    Finite element analysis procedures were developed 

for nonlinear elasticity by several investigators.   The approach v.as to approximatc- 

a one-dimensional stress-strain curve by a mathematical relationship.   Wilson (1965) 

used the bilinear law.   Multi-linear laws have been proposed by Dunlap et al. (1968). 

Salmon, Berke and Sandhu (1969) incorporated Richard-Goldberg (1965) and Ram- 

berg-Osgood law (1943) and Wilson's bilinear representation in a single program. 

Kulhawy and Duncan (1969) and Kulhawy (1972) adopted Kondner's (1963) hyperbolic 

representation of the stress-strain curve.   These mathematical equations use one 

or more parameters to get best fits and are unsatisfactory insomuch as the slope of 

the curve is not closely approximated.   Desai (1971) used spline functions to obtain 

the      •it fit.   This way he was able to obtain the best fit.not only to the stress-strain 

plot,but also to the slope of the curve which is the information actually used in the 

computer program.   Decai (1972) extended his work to allow for the effect of 

confining pressure.   This was achieved by using bi-cubic splines.   Singh and Chang 

(1972) further developed upon Desai's work to use spline fit by approximating curves 

independent of stress path and calculated secant modulus and poisson's ratio.   The 

procedure has been extended to laminates. 

To extend the procedure to three-dimensional analysis, the general approach 

has been to interpret the one-dimensional test data as equivalent stress-equivalent 

strain plot.   Second invariant of the stress derivative and the octahedral shearing 
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strain are the quantities most often used.   Defining a shear modulus in this manner, 

the Poisson's ratio is assumed constant.   Knlhawy (1972) defined both elastic modu- 

lus and Poisson's ratio as stress-dependent quantities.   This approach assumes Iso- 

tropie behavior throughout.   Another approach using the laws of plasticity was used 

by Salmon, Berke and Sandhu (1969) and Sutherland (1970).   All these approaches 

are essentially empirical.   If the material is mdeed nonlinear elastic, onecan either 

treat it as Green-elastic and set up on energy functional for isothermal or adiabatic 

conditions as the ~ase might be, or directly treat the stress tensor as a nonlinear 

function of the strain tensor and for Isotropie materials using the Cayley-Hamilton 

theorem to obtain a representation.   Evans and Pister (1966) showed that for energy 

functional cubic in strain, five constants are required to define the stress-strain 

law, and these cannot be obtained from any single test.   Similarly the constants in 

any Cayley-Hamilton representation cannot be obtained from a single test.   It is 

well-known that equivalent stress-equivalent strain plots obtained from different 

tests on rocks and soils are path  dependent and therefore different. 

For finite element analysis, elastic-plastic materials (rate independent 

materials exhibiting path dependent behavior above certain stress level) were treated 

as nonlinear elastic by several workers.   In rock mechanics the deformation theory 

of plasticity has been used (Jaeger and Cook (1969),  Brady (1970), Malina (1970)). 

This theory assumes the principal strain directions to coincide with the principal 

stress directions, assumes no volume change during plasticity, and is inapplicable 
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to nonmonotonic loading.   Hill (1950) has discussed the shortcomings of this 

theory in detail.   It suffices to note here that this theory is unsound and for 

this reason it was not considered in the present research program as a possible 

model for mechanical behavior of rock. 

Incremental theory of plasticity was used by Zienklewicz et al.  (1968), 

Swedlowet  al.(l965), Marcal (1969), Marcal and King (1967).   Drucker's method 

for evaluation of  A in the 'normality rule' was used leading to the tangent modulus 

approach for von Mises materials.   Felippa (1966) developed stress-strain relations 

in terms of total incremental strain (elastic and plastic) and incremental stress. 

This relation is identical to the one proposed by Naghdi (1960) and Prager (1949) 

for work-hardening materials but has the additional advantage that it is valid for 

perfectly plastic solids for which Naghdi-Prager relationships are undefined. 

Reyes (1965) and Reyes and Deere (1966) used a rate of work equation to develop 

stress-strain relations for Mohr-Coulomb materials.   This approach has the limi- 

tation that it cannot be generalized to other failure laws.   Yamada (1968) used an 

energy rate approach for von Mises materials.   These energy rate approaches are 

limited in application and can be derived trom Felippa's more general formulation. 

Zienklewicz et.al. (1968) used this approach in conjunction with an 'initial stress- 

technique to solve for stresses without interest in displacements.   Baker,   Sandhu 

and Shieh (1969) used Reyes and Deere's formulation for finite element analysis 

of stresses and deformations in rock.   It was noticed that under plane strain 
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conditions, a radial path cannot be followed in the We^tergaard-Haigh stress space. 

Discontinuities in rock appear as joints, fissures and faults.   Modeling of 

discontinuities has received considerable attention.   However, exclusively, the 

geometry of the cracks and joints was assumed to be known.   With this as the 

starting point, research effort has principally been concentrated on characteriza- 

tion of stress-strait; behavior of jointed rock and on incorporating limiting shear 

strength of joints in finite element analyses.   Anderson and Dodd (1966) considered 

open joints or faults as surfaces with no resistance to shear, incapable of with- 

standing tensile stresses normal to their planes.   This capability is now routinely 

incorporated in most finite element programs.   A two-dimensional 'soft' material 

element has long been used to represent weak joint planes in rock.   Duncan and 

Goodman (1968) object to this on the basis of the large number of elements needed 

to ensure a reasonable 'aspect ratio' in the shape of elements.   This becomes 

a problem for elements representing very thin joints.   For rock systems having 

thin, closely spaced parallel joint planes,  an equivalent orthotropic elastic con- 

tinuum representation regarding the orientation of the joints as the plane for reflec- 

tive symmetry in the material was proposed by Duncan and Goodman (1968),   A 

one-dimensional element with shear and normal stiffness characteristics was 

developed by Goodman et al. (1968).   Recently, Heuze et   al. (1971) have intro- 

duced nonlinear mechanical properties in this element.   Christian is credited with 

development of an element capable of simulating constant shear and residual shear 
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characteristics.   All these investigations were concerned with setting up stress- 

strain relationships for rock with pre-existing joints.    Propagation of fracture 

has been considered by several investigators.   Chan et al. (1970),   Gross et   al. 

(1968) sought to calculate stress intensity factors at crack tips to determine 

Whedier a given crack would propagate.   To improve accuracy, Wilson (1971), 

Byskov (1970) and Levy (1971) introduced stress singularity elements at crack tips. 

Kan (1971) used hybrid finite elements to obtain improved stress intensity factors 

without recourse to singularity elements.   Throughout, it was assumed the geo- 

metry of the crack was known beforehand.   These procedures cannot be used to 

study discontinuities arising as a result of fracture under changes in stress environ- 

ment.   Also these cannot consider propagation of fracture.   To use the same pro- 

cedure for pre-existing as well as post-failare cracks, it is necessary to allow 

cracks and ioints within elements.   Then, the mesh layout is more flexible and 

arbitrary failure laws can be used.   Malina (1970) used this approach to study failure 

along joint planes and then went on to compute the amount of slip and the accompanying 

stress redistributuion on the basis of deformation or slip theory of plasticity.   Re- 

cently, Bock (1971) has used Malina's technique to study propagation of faulting in 

rock. 

Simulation of rock behavior after cracking develops can be achieved usinga bi- 

modular elastic representation (Sandhu, 1969).  However, recognizing the crack to be a 

plane of material symmetry, the material is bimodularorthotropic withno resistance 
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to tension in the direction normal tc crack.   For cracks in two independent directions, 

an element under uniform stress can be regarded as bimodular Isotropie.   The 'no 

tension' method used by Zienkiewicz et al. (1968) is an iterative procedure of obtain- 

ing tension free stress states.   The philosophy reflects an iterative solution of a 

bimodular orthotropic problem.   However, the mechanics of solution eliminates only 

the tensile principal stresses.   This amounts to using a non-symmetric stress-strain 

relationship and is open to objection.   This situation was corrected by Sandhu (1971). 

New procedures for finite element analysis of elastic-plastic Mohr-Coulomb 

materials and elastic-brittle materials following Griffith's theory under plane strain 

conditions were developed in the course of the present research.   Arbitrary geo- 

metric configurations, complex boundary conditions, nonhomogeneity of rock are 

allowed for as is usual in finite element techniques.   Variational formulations of 

the field equations shows that arbitrary initial stresses and pore-water pressures, 

if any,  can be directly included in the problem.   Stress-strain relations in plas- 

ticity follow Reyes and Deere (1966) and Felippa's (1966) formulation.    At early 

stages of work (Sandhu, 1971), it was assumed that in plane strain plasticity, the elastic 

and plastic components of strain on pianos normal to the axis separately vanish.  Thus 

a sudden jump in axial stress was introduced to ensure continuity of deformation. 

UiLer, Hill's (1950) analysis of plane strain was adopted using the vanishing of total 

strains.    In an arbitrary construction sequence, a given element may be subjected 

to excursions to, from and within the yield surface in the stress space.    Capability 
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to allow for loading followed by unloading has been incorporated in the analysis. 

For jointed rock subject to progressive fracture,   Griffith and Modified Griffith 

theories were used to predict fracture initiation.     Bimodular elastic orthotropy 

describes the post-fracture behavior of rock and an iterative-incremental process 

is used to define the sequential fracture of elements in a system giving the extent 

of various fractures.   The new pr icdure differs significantly from the 'no ten- 

sion' concepts.   The latter define a region where the elastic solution indicates 

tensile stresses and the solution process neutralizes all tensions simultaneously. 

This is incorrect and does not allow for the stress redistribution, in its neighbor- 

hood, caused by the formation of a crack.   Sequential cracking constitutes a non- 

linearity in material behavtar and linear superposition implied in simultaneous 

release of all tensions in the 'no tension' procedure is not valid. 

The procedures developed allow for arbitrary construction or excavation 

sequence, and can allow for pre-existing joints,  open or closed.    Linear elastic 

elements can be included in the analysis.   The procedures can include tunnel sup- 

ports as part of the sequential construction scheme.    These were used to obtain 

numerical solutions to several problems.   Results are included in tue report. 

Chapter Ü of the report discusses mathematical modeling of mechanical 

behavior of rock.   In Chapter in basis of the finite element method is outlined. 

Chapters IV and V present details of application of the finite element method res- 

pectively to plane strain analysis of elastic-plastic Mohr-Coulomu rock and 

plane strain aralysls of progressive cracking of rock following Griffith's theory. 
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Chapter VI reports the application of the elastic-plastic incremental structure 

analysis to a parametric study.   The objective of this study was to determine 

the influence of rock property data on stresses in steel supports of a tunnel. 

Chapter VII contains a discussion of results of this research effort.   Appendices 

A and B present, respectively, Griffith's theory of fracture propagation and the 

experimental research efiort under the contract. 
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CHAPTER II.    MATHEMATICAL MODELING OF 
MECHANICAL BEHAVIOR OF ROCK 

2.1.   Mechanical Behavior of Rock 

Figs, II-I and II-2 show, respectively, typical stress-strain plots for a 

granite and a marble.   Upon loading the stress-strain curve is almost linear and 

reversible over a short portion.   Unloading from higher loads does not coincide 

with initial loading.   This characteristic along with rate independence distinguishes 

elastic-plastic behavior.   Reloading closely follows unloading until the previous 

maximum is reached; whereupon, the original curve is followed.   This leads to 

some simplifying assumptions. 

i.   A yield point exists below which the material 
is linear elastic. 

ii.   The yield point corresponds to the maximum 
stress level previously attained, 

iii.   Unloading and reloading paths are linear, 
coincident and parallel to the initial elastic 
loading curve, 

Fig. II-3 shows this simplification.   Clearly the yield point can be described by 

the permanent or irrecoverable strain or the area bounded by the loading curve, 

the unloading curve and the horizontal axis.   Whereas in generalization to the three- 

dimensional case, the stresses and strains become second rank tensors and are 

therefore unordered; the area is still a scalar product and retains its ordering 

characteristics.   To this extent, it is often preferred as a measure of the elastic 

limit.   Other approaches treat the elastic limit as a scalar function of the strain 

tensor. 

12 
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FIG. II-l. Stress-Strain Curves for Certar City Granite 
(Swanson, 1970) 
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FIG. n-2. Stress-Strain Curves for Marble 
(Swanson, 1!)70) 
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Mechanical behavior of rock under polyaxial state of stress has been examined 

in the light of brittle failure theories.    Four regions of behavior are identified in 

Fig. II-4.   The first region corresponds to closure of preexisting open cracks and 

is peculiar to compressional loading.   In region II material behavior is linear elastic. 

Fracture initiation occurs n^ar the end of this region in accordance with Griffith or 

Modified Griffith theory.   This stage also corresponds to onset of nonlinearlty in the 

relationship of stress to volumetric strain (Brace, 1966).   Stable fracture propagation 

characterizes region III.   In regnn IV, unstable fracture propagation results in strength 

failure and rupture.   Differerces in loading and unloading behavior are observed (Walsh, 

1965). 

We have, thus, two general approaches to the characterization of stress-strain 

behavior of rock.   One follows the theory of elastic-plastic solids without consideration 

of micro-mechanics of the system.   The other uses Griffith theory or Modified Griffith 

theory to relate deformation and failure to initiation and propagation of fracture.   It 

has been observed (Swanson, 1970) that Mohr-Coulomb failure law applies for mode- 

rate values of confining pressure and that at low confining pressures, failure is by 

rupture.   Contrary to plastic behavior, strength of material drops to almost zero in 

the direction normal to the crack if rup'ure theory is followed.   Figs. II-5 and II-6 

depict typical relationships of failure strength and post-failure behavior in relation 

to confining pressures.   It is reasonable to assume that the material is linear-elastic 

upto yield or rupture, as the case may be, and that the post-failure behavior only is 

14 
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FIG. n-3. Idealization of Elastic-Plastic Stress-Strain Behavior for Rocks 

Strength Failure Strength Failure 

—4 Microcrack Initiation 

«3 '      (Brady 1970) 

FIG. II-4. Typical Axial and Lateral Stress-Strain Behavior of Brittle Rock 
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FIG. 11-5.    Proportional Limit in Shear for Westerly Granite 

(Swanson, 1970) 
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FIG. II-G.    Effect of Confining Pres 
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governed by the theory used to define failure.   In the present research program, both 

the elastic-plastic Mohr-Coulomb failure theory and the Griffith theory have been used 

for analysis of stresses, deformation, and failure of rock, 

2.2.   Characterization of Elastic-Plastic Behavior 

Several approaches hive been used for formulation of elastic-plastic behavior 

of rock.   One approach is to treat rock as nonlinear elastic material.   It is argued 

that this assumption is a reasonable one in case unloading does not occur and loading 

is 'proportional' (or radial in the stress space).   Under such circumstances, the 

state of stress is described completely by a single parameter.   If stress-strain data 

for the actual stress path are available, these can be directly used to predict defor- 

mation response to applied loads.   This approach is attractive because of its apparent 

simolicity.   However, stress path dependence of material behavior results in diffi- 

culties in correct representation of behavior under arbitrury stress changes.   Attempts 

have been made to represent strain invariants as functions of stress invariants 

and vice versa, thereby permitting generalizations to arbitrary stress paths.   It is 

customary to use a stress or strain dependent   Young's modulus and Poisson's ratio. 

Wilson's bilinear law (1965), Goldberg-Richard equation (1965), Ramberg-Osgood 

equation (1943), Prager's formulation (1938), the work of Kondner (1963), Duncan and 

Chang (1970), Kulhawy (1971), Vallabhan and Reese (1968), Desai (1971) and recent 

work by Singh (1972), are all based on this philosophy. 

In general, there are two distinct approaches to characterization of nonlinear 

elastic materials.   One is to assume the existence of energy functional such that its 
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derivative with respect to any strain component is the corresponding component 

of the stress tensor.       The other directly writes stress as a tensor function of strain. 

Assuming the existence of strain energy functional, Rivlin (1960) proposed 

*=Z i? h' i (0.-1) 

a,(Vy 

where l^ = f^, 12=2 (ii + (ii  rjj -  f ij fij   ^ ^ = determinant (5ij + 2 fy) - 1. 

Toupin and Bernstein (1961) proposed 

U  _"2Eijkl 'ij   fkl+7   Ei3klmn (ij (kl    (mn + 

Neuber (1969) used 

where 

U  =   U (0lf 02> ^3) 

<*,   =   A.,    f.. 
rl i]     i] 

^2   =   Aijkl   'ij    'kl 

^3  =  Aijklmn   'ij   'kl   fmn 

(n-2) 

(n-3) 

(11-4) 

Neuber's formulation includes Toupin and Bernstein's as a specialization.   For isotropy 

^ii » Aiikl' Aiiklmn  are taken as identity tensors.   Evans and Pister (1966^ proposed, 

for Isotropie elasticity 

u = u ( ^ <p2, 03) (n-5) 

as a cubic or biquadratic expression in <-.   For biquadratic   expansion 

TT        
All     d 2     A21     0 3 4 

A31 04   +   A      w,    «y, U   ^   __     9!   + -^     ?!   + — V^     +   A34   9i   <P3 (II_6) 

2 2 
'   A33   ^1     ^2   + 2A22   ^1    ^2   f   A32  ^2     ' A12    ^2 + A23  ^3 
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requiring nine constants to describe the energy functional.   Here  0J =     f ^ ,   ^   = 

2   fii 'ii'     ^3" ^  fii f1k fki '   ^ is imPortant to note t^^   ^^ '    > 0 does not imply 

linearity in the limit.   Using a cubic expansion, there are five constants. 

Alternatively,   writing stress directly as a polynomial function of 

strain, Cayley-Hamilton theorem leads to the following relationship for Isotropie 

materials 
rij   =   a   V   b    Vc   fik   fkj (11-7) 

wnere a,b,c are functions of strain invariants. 

It is clear that the characterization of material behavior based on a single type 

of test cannot be expected to completely represent nonlinear elasticity.   Even if it 

were possible, the analysis could not simulate elastic-plastic behavior in which the 

plastic strain increments are normal to the stress increments in loading.   It is nec- 

essary therefore that elastic-plastic behavior of rock be modeled using the theory 

of elastic-plastic continua. 

A general theory of elastic-plastic continua was presented by Green and Naghdi 

(1965).   Stress-strain relationships in plasticity and thermo-plasticity have been re- 

viewed, among others by Drucker (1950), Naghdi (I960), Koiter (1953) and Hill (1950). 

In general, theoretical concepts have been based on generalization of material behavior 

in a one-dimensional test. 

The deformation theory of plasticity relates increments in components of the 

strain tensor to corresponding components of the stress deviation tensor.   This theory 
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is unsound theoretically and fails to properlv explain physical behavior of materials. 

It has been used to represent material behavior under proportional or almost pro- 

portional loading (Budiansky (1959),Havner (1969), Ilyushin (1945)).   Hill (1950) has 

examined the shortcomings of the theory in his text.   These will not be discussed 

here, and we shall confine our attention to the incremental or rate type theory of 

plasticity. 

Using Prandtl's idealization, shown in Figure II-3, it is assumed that in one- 

dimensional loading: 

1. There is a yield point o-yield such that any loading beyond 
this level is accompanied by permanent deformation and 
any stress changes below o-yieij have linear reversible 
response independent of prior deformation history. 

2. The yield point is a function of history of prior permanent 
deformation. 

3. The stress-strain behavior is independent of sign of the 
stress. 

In generalization to arbitrary stress states, it is customary to introduce a yield 

surface in the six-dimensional (three-dimensional for Isotropie materials and nine- 

dimensional for non-symmetric «tress tensor) stress space.   Allowing for history 

of deformation and material properties, the yield condition is: 

f ^ij •    ''ij • ki )   =   0 (II-8) 

where    f".. are components of the plastic strain tensor (irreversible) and k. are mate- 

rial parameters depending upon history.   The mapping f in Eq. II-8 defines a func- 

tional on the linear vector space V spanned by or       «"   , ^ , and orders the space 
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V such that 'loading' and 'unloading' can be defined analogous to the one-dimensional 

test where the set of stress states is an interval on the real line and is naturally 

ordered.   Thus f < 0 will imply elastic states and plastic deformation is possible 

only for f - 0,   We shall denote the interior of the surface defined by f = 0 as D, 

Thus f(u) < 0 for ueD.   Assuming only one material constant k, the time rate of f is 

. of' Of 
f  ^  ^    ff«  +    V7 

lj 

;"    ö f i (11-9) 

For f < 0, f + f dt < f.   Hence the stress change associated with f <0 must lead to 

an elastic state in D.   This constitutes unloading.    Prandtl's assumption for unloading 

;"   = 0 and consequently k = 0.   Hence during unloading, 
ij 

(11-10) 

If the change in state is from one point on  f ^ 0 to another on the surface, f = 0.   If 

''    ^ k ^ 0, i.e. the change is not accompanied by any plastic strain, then 

f 
of 

TFT.   *ii o (11-11) 

i.e. the stress path is tangential to the surface f = 0.   This is termed neutral loading. 

When the stress change is accompanied by changes in    ("^ , k, 

f  =  0       and JLL.     "cr      >   o (11-12) 

This constitutes loading. 

In order to obtain stress-strain relations in plasticity, Drucker (1950) used a 

thermodynamic postulate to obtain the normality rule 
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< 13 B ... 
(n-i3) 

where \ is a positive scalar which, for rate independence,must be homogeneous of 

order one in cr^.   For von Mises materials, Equation (11-13) reduces to the well- 

known Prandtl-Reuss relationships.   To evaluate X, Drucker defined equivalent stress 

(re and equivalent plastic strain rate   ("    as second invariants of the stress deviation 

tensor and of the plastic strain rate tensor respectively.  These invariants are proportional 

to the L2 norm on the linear vector spaces spanned respectively by the components Sj* 

of the stress deviation tensor and the components   (^ of the plastic strain rate tensor. 

Thus 

"■e  =  (iSijS^r2 

1     in ;II     \2 

f"e  =  (I   f"u    <"«) 

(11-14) 

(11-15) 

where the components of the stress deviation tensor are related to the stress tensor 

by the relationship 

■Ttk 
sij  - ""ij  - &ij    3 

Then i i" ..        i" .. 
1L 

1 J_L Of 

(11-16) 

(11-17) 

rkl ^cr, kl 

or 
(1       *{        $1     \ ^ 
y    ^w   ^^ki / 

(11-18) 

Writing      MI     , the slope of the <re ,    ("e curve as H, we obtain upon substitution of f e 

Equation (11-18) in Equation (11-13), 
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df 
bv Ij      H 

- 
,2 

(il-19) 

2Ho- 

"d f 
"TI      s B d o-"        mn     mn 

V    ^ki      ^ki/ 

(11-20) 

This formulation was used in the so called tangent-modulus methods e.g. Swedlow and 

Yang (1965). Clearly this analysis satisfies the condition f ^ 0 and the normality rule 

but fails to satisfy f ^ 0 in plastic deformation. 

Hill (1950) used the normality rule assuming \ to be a fourth rank tensor linear 

in O-J^I and introduced a plastic potential.   Using normality as well as the condition f = 0, 

Prager (1949) obtained for f = f((ry,  £'\A 

  f 

111 'ij 

3 f o f 
(11-21) 

mn mn 

Naghdi (1960) also obtained the above equation.   This formulation breaks down for 

elastic perfectly plastic solids where f is independent of f",^.   Felippa (1966) obtained 

X  in terms of    (,., the total strain increment as follows. 

The incremental stress is related to the incremental elastic strain by the equation 

'Jijkl   ( kl (11-22) 

where    f'^j are components of the elastic strain rate tensor and E..^. is the fourth rank 

isothermal elasticity tensor satisfying the symmetry properties 

Eijkl  -   Ejikl E. ijlk Eklij (11-23) 

I 
- 

i 
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Writing   f'k]   -       <ki  -     ft'k   and using normality rule, 

^ij   Eijki 'ki - Eijki ^ -rf 
kl 

Also f (o-    ,    f"  )   -   o   implies 

Of if    ;" 
■r  <r..    f      ' r   n 
5 <r..     ij >f" ij       u 

(11-24) 

(11-25) 

(11-26) 

Using normality rule, Equation (11-26) gives 

ärij  lj     ^"ij    ^ij 

Substituting Equatton (11-25) in Equation (II-:7), 

Hence 

b f E,., 
SO-JJ   "ijkl      kl + 4I-E, 

1]       IJ ^u m ^kl 

5  f 
\ =      Ü, 

Eijkl    (k\ 

B 

(11-27) 

X        (11-28) 

(11-28) 

whei'e B =-l^—L- + ±L E.. if 

^"ij     )<rij «kl     ^cr kl 

Substituting Equation (11-29) in Equation (11-25) 

Eijkl [»km ^ln  "   Lklmn   j    'mn 

(11-30) 

(11-31) 
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where 
Jklmn T-U—     $1      +   -Li E,- bt 

i] J pq 
I      -s Erskl "T  J        J (rrs o-j^n 

(11-32) 

This formulation relates the total stress increment to the total strain increment and is 

valid for all cases including perfect plasticity.    For work-hardening plasticity, it can 

be shown to be identical to the Prager-Naghdi formulation of Equation (11-21). 

Using rate of work equations, it is possible to evaluate \ in terms of stress 

rates for von Mises or generalized Mohr-Coulomb materials.   Yamada (1968) used 

shear deformation energy rate to set up incremental stress-strain relationships for 

von Mises materials.   Assuming    ("u to occur in f as the second invariant only, a 

tangent modulus approach was introduced.   Reyes (1965) developed the incremental 

stress-strain relations for generalized Mohr-Coulomb materials using the total energy 

rate.   The general forms of these equations can be shown to be specializations of the 

more general formulation developed by Felippa. 

The stress-strain relations expressed by Equations (11-22) and (11-31) for the 

elastic and elastic-plastic deformation respectively have to be specialized for any 

kinematic constraints that may exist in the nase of plane strain, for example 

'13=   0;    1= 1,2,3 (11-33) 

Thus in the elastic domain, if E..^, is invertible such that 

Cijkl  =   (Eijkl)" (H-34) 

the kinematic constraint is expressed by a linear relationship between components 
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of incremental stress tensor, 

'13       Ci3kl   "kl        0 

For the clastic-plastic deformation, writing 

Cijkl  ~   [Eijkl   (pkm   Fln   " Ijklmn) 

the kinematic constraint is 

(11-35) 

(11-36) 

ei3  =  C13kl  ^kl  "■  0 (11-37) 

It is important to note that Cjs^ depends upon o-j:   and f"jj .   Consequently the 

relationship expressed by Equation (11-37) is nonlinear and involves a-..,   f"t. as well 

as (Tj^ .   For a perfectly plastic solid, Cj.^ is a function of stress and elastic pro- 

perties.   For a von Mises solid the problem was studied by Hill (1950).   Figure II-7 

shows a phine strain loading and unloading cycle for ""ii ~ o^» r \2 ' 0-   Pa^ ^ 

represents elastic loading to yield at A.   Contf lued loading requires the stress path to 

follow AD,the trace of the loading surface on the o-^, cr^g plane.   Loading from A to D 

is accompanied by development of plastic strains  t"\\,   t"22 anc' a residual stress 

0-33.   Upon elastic unloading from D to E, the path is parallel to OA.   The intercept 

OE reproyents the residual stress 0-33.   This stress remains in the material upon 

removal of the two-dimensional load.   Accompanying this residual stress are elastic 

as well as plastic strains satisfying the kinematic constraints.   The above theory was 

used to develop mathematical model representative of plane strain elastic-plastic be- 

havior of Mohr-Coulomb rock.   The details are contained in Chapter IV of this report. 
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2.3.   Mechanical Behavior of Brittle Rock 

Stress-strain behavior of rock under polyaxial compression has received con- 

siderable attention (Brace (19(54), Cook (1965), Bleniawski (1967), Brady (1970) ). 

In a one-dimensional test the stress-strain curve can be divided into four regions. 

Figure II-4 taken from Brady (1970) shows the different regions.   These are char- 

acterized by the following: 

i.   Closure of initial flaws under compression 

ii.   Microcrack initiation 

iii.   Stable fracture propagation 

iv.   Unstable crack propaga'^on leading to rupture 

In compression, closure of preexisting microcracks is essentially completed 

over a small increment of stress.   A nonlinear stress-strain relation has been ob- 

served for this zone, showing the high deformability due to open cracks decreasing 

as the cracks close.    Friction is developed when surfaces of the initial flaws contact 

each other, resulting in an increase in the observed modulus of elasticity. 

When the applied stress is increased further, the mechanical behavior as seen 

from the stress-strain curve is essentially linear elastic, and the modulus of elasticity 

is constant.   However, some sliding across the faces of closed cracks may occur. 

Walsh (1965) demonstrated that the loading-unloading process at this stage shows 

hysteresis in the stress-strain curve (Figure II-8).   Some of the frictional strength 

contributed by the roughness on the crack surfaces is overcome by sliding, and upon 
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STRAIN 

FIG. II-8.   Typical Stress-Strain Curve for a Rock Specimen Under 
Multiple-Axial Loading (Walsh, 1965a) 
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unloading, the crack does not move back to the original position immediately.   Thus, 

even in the linear elastic region n, rocks may exhibit irreversibility as well as 

hysteresis (Figure II-l). 

Sliding along each initial crack produces new cracks at the ends of the initial 

crack.   Tests on quartzite led Bieniawski (1967) to conclude that the relative dis- 

placement of crack surfaces is the primary factor which influences fracture initiation. 

In region III, the microcracks propagate with increasing stress level.   Stable fracture 

propagation is a function of stress only and the process is quasi-static.   Initiation and 

propagation of cracks is reflected in the Departure from linearity of the stress-strain 

curve (Brace, (1^66) ).   Crack growth starts right after the initiation of new surfaces. 

Tests in glass and rock (Hoek and Bieniawski, (1965) ) have shown that stable fracture 

propagation follows a curved path leading to a direction parallel to the major compres- 

sive stress, and the length of propagation is related to the ratio of major principal 

stress to minor principal stress and related to the initial crack as well (Paul, et.al. 

(1967)).   Pattern of crack array can also influence the fracture propagatioi.. 

Before the applied stress reaches its peak, some abrupt changes on propagation 

behavior would happen.   Although the stress is still increasing, the slope of the stress- 

strain curve is decreasing.   As soon as slope reaches its stationary position, it drops 

down rapidly and rupture begins.   In terms of Irwin's concept (1958), the rate of strain 

energy released at this stage is equal to a critical value, Gc, which marks a state of 

instability. 

30 

  
fcatny^Vaii 

-   ■ nMMMMMH^llim 



si(«iw»«f«fww.«»*isikiwMJ.iBSiWPnmmmvmm'mpmmmM'4>- w*i ^m» «IWPHWJPw*' i> «^m'mumM'mimmmmwmimiiw'mmiumWH»"•m*J|Wi<P(SBiip^| 

Compression tests have revealed (Bieniawski (1967) ' that the major type of 

unstable fracture propagation is still following the direction of major principal stress. 

It has been commonly observed by researchers (Bieniawski, et.al. (1969), Brady (1970)) 

that the unstable fracturing process is greatly affected by the type of loading, rnte of 

loading and type of machine used in the testing. 

Mechanical properties of rock containing flaws or cracks are somewhat differ- 

ent from those of intact rock.    From a statistical point of view, flaws or cracks in the 

rock can be assumed to be randomly distributed and oriented.   Therefore, no definite 

expression of the material properties CJin be obtained unless the distribution function 

of flaws is known.   In a series of papers Walsh (1965-a,b,c) derived mathematical 

formulas for effective compressibility, modulus of elasticity and Poisson's ratio as 

functions of mean crack length and mean unit volume which contains the mean crack 

length.   Those mathematical expressions were shown to be qualitatively justified by 

a limited number of experiments.   In general, it was found that compressibility decreased 

as the cracks closed under pressure and remained almost constant with further 

change in pressure.   Brace (1965) reported that linear compressibility is a function 

of applied pressure and is related quantitatively to porosity, grain size and dimen- 

sional orientation.   If the elastic modulus is defined as the tangent to the stress- 

strain curve, the initial tangent in region I (Figure II-4) represents Young's modulus 

of a rock with initial open cracks (E^); the constant slope in regions II and III repre- 

sents the modulus for rock with closed crack (Ef); and the initial tangent to the un- 

31 

' 

-      ■—-- IIMII 



rr^^w^„,ww,ii,^v>iiip,lw,ul|,<UMLiu4 .■wtjpWti|iMJHJ.ui J.J DIU IIIIIIIIIWII)JJJJ iiwmip#Miini.n»i.wiiM»>w.^iu«ii.nii.,iiuj. i Jjmi*ini^waniii.uut»wawiw^^ipi^wiwiwwp|^ 

a 

loading curve in regions II and HI represents the intrinsic modulus of an intact rock 

(E0) (Walsh (1965-b)).   The magnitudes of these quantities can be ordered as 

E.   <   E,  <    E 
i f o 

Walsh (1965) observed that the Poisson's ratio of a rock having open cracks 

is slightly lower than that of a solid rock.   The value of Poisson's ratio ranges from 

zero to 0.5 as Ej changes from zero to the value of Eot and   i/f is greater than     v0 

but within the limit of 0.5. 

For study of crack initiation and propagation in tensile slress fields, Griffith 

(1920,1924) proposed a theory postulating the propagation of elliptical cracks as an 

instability phenomenon.   A. crack was expected to extend if the energy released in 

propagation exceeded the surface energy of the additional surface created by the 

sxtended crack.   Initial flaws exist randomly in a solid body and have random orienta- 

tion.   Fracture propagation can occur at the extremities of these flaws.   The theory 

is briefly outlined in Appendix A to this report.   For nonuniform multi-axial stress 

fields, a crack may propagate until it stabilizes on reaching a region of low stress. 

Also for finite systems, this effect of stress redistribution associated with crack 

propagation may be significant in relation to the extension of other microcracks in 

the system. 

Crack propagation can also occur at the ends of closed cracks in compressive 

stress fields.   McClintock and Walsh (1962) developed the modified Griffith theory 

applicable to these situations.   This theory is also discussed in Appendix A. 
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Extensive surveys (Hoek and Bieniawski (1965)) of published experimental data 

have shown the Griffith and modified Griffith theories to be satisfactory criteria for 

fracture initiation.   Tests by Brace (1963) and Lajtai (1971) confirmed that in com- 

pressive stress fields, cracks started at the ends of closed joints, in the direction 

normal to the maximum tensile stress and then became parallel to the direction of 

the major compressive stress appUed to the specimen.   At this stage, the crack 

stabilized and additional compression was needed for further growth.   Brace (1963) 

observed cracks propagating at stress levels much lower than required to extend a 

single crack.   Experimental evidence (Hahn (1972)) exists to show that the energy 

absorption associated with fracture may be one or two orders of magnitude higher 

than the energy of surfaces created.   Moreover, the experimental results show con- 

siderable scatter.   Thus energy balance does not appear to be a useful means to 

examine crack propagation in rock. 

Irwin (1956) proposed the use of stress intensity factor to predict crack pro- 

pagation.   Stresses or displacements could be used to obtain the value of the stress 

intensity factor and propagation would occur if the value equaled or exceeded a 

critical value characteristic of the material.   Compliance or energy balance methods 

have also been used.   The finite element method has been used to evaluate the stress 

intensity factor for complex geometries and loadings.   However, this approach is 

unsatisfactory inasmuch as the extent of propagation and stress redistribution associ- 

ated with such propagation cannot be directly evaluated.   Also, the crack geometry 
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has to be known before hand.    It is not possible to study initiation of fractures at 

microcracks or Griffith flaws arbitrarily oriented and located in the material. 

In the current research program, the Griffith and modified Griffith theory were 

used to predict microcrack initiation and propagation.    Post-fracture behavior across 

a crack was simulated on the assumption that, an upon crack cannot transmit tensile 

and shea)- stresses.    In the finite element idealization, an element was presumed to 

have flaws in all directions such that fracture was entirely dependent upon the stress 

field.   Also, for small elements it is reason bit to assume that if an clement cracks, 

the fracture extends throughout the element at a constant orientation.   With this 

modeling, the exact location of the 'rack within an element is unimportant. 
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CHAPTER HI.   THE FINITE ELEMENT METHOD 

3.1.   Basic Concepts in Direct Method of Solution 

A boundary value problem can be stated i.. the form 

Au  =   f  on   F (III-l) 

where u is the unknown function to be determined, A is an operator, and f is the 

"forcing" function.   F is the domain of interest and may be an open, connected, 

bounded spatial region embedded in R3 or in a cartesian product    R3 x [.0, oo ) 

where [0,oo) is the non-negative time Interval.   In addition to the field equation 

(III-l), there will be some conditions to be satisfied on boundary^ of F,    For A 

linear positive, it can be shown that Equation (III-l) has a unique solution.   Nec- 

essarily, any approximate solution will in general not coincide with the unique 

solution of Equation (III-l) and consequently no approximate solution is expected 

to satisfy the field equation as well as the boundary conditions completely. 

Solutions to engineering problems as well as the forcing functions are, in 

general,bounded and therefore belong to L2,    the space of square integrable 

functions.   L2 is a Hilbert space.   However, u m.;y be contained in a subset D 

of L2 such that A is defined on D.   We assume that D is dense in L^.   If the set 

of functions   {QU, k= 1,2,... ,00 J.   is a basis in D, then any function UGL2 can be 

expressed  as an infinite sum: 
00 

k-1 
(in-2) 

A scheme to generate approximate solutioi s is to use a finite set of terms  n the 
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infinite sum above.   Thus, we use 

N 

ü   E \   ti 
k 1 

(III-3) 

as an approximation. The approximation process then consists of appropriate choice 

of N, ^>k and the coefficients a. . Several alternative procedures are available. The 

finite element method is a special process of selection of finite subset of the basis 

i ^k I •   The coefficients a^ are evaluated by requiring the approximate solution to 

satisfy the field equations.   Often a more systematic approach is to use a variational 

formulation and obtain ak by requiring the approximate solution (Eq. 111-3) to satisfy 

the variational principle.   Ritz' method, Galerkin's method, least squares method, 

all belong to this category. 

The finite element method is well documented in literature (Zienkiewicz (1972), 

Bell and Holand (1969), WPAFB Conferences (1965,1968,1971), Felippa (1966), Clough 

(1960,1965)).   Its theoretical basis (Oden (1969), de Arantes e Oliveira (1968), Zlamal 

(1968), Melkes (1970), Aubin (1972)) and relationship to variational principles (Melosh 

(1963), Plan and Tong (1969)) have been examined.   Essentially a finite element ideali- 

zation partitions the spatial region F into a finite number of nontrivial discrete elements 

or subregions.   The geometry of the elements is defined by a set of points in space called 

the nodal points of the system. 

Over an element e, let an approximation to u be 
Ne 

uc  = E        a€ 

k=l 

,e       -re 
k      </)k (in~4) 
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or in matrix form 

e u    = l*e}Vi (m-5) 
—       T 

where i <pe j      is a row vector consisting of d^ as its c1 events and | ',e | is a 

e 
column vector of coefficients a^.   Evaluating the function at nodal points 

Ki-onK1 (III-6) 

where | u. | is the vector of nodal point values of the function and [<£. J      is the matrix 

T 
of base functions evaluated at each nodal point.   Rows and columns of [ 0.   j     are 

linearly 'ndependent.   If square, the matrix is invertible.   If the number of nodal 

points is not equal to the number of independent base funct'ons, a least squares pro- 

cedure can be used for inversion.   Hence, we can write 

-     [Aj1    |uf| 

(in-7) 

ric i T 

where A = [<p\ J 

Substituting Equation (III-7) in Equation (III-5) 

T        -1 
u 

^.e) P\    [AJ j uj-j 

=   {0e}Tiue) 

where - 0el can now be regarded as a set of interpolating functions relating nodal 

point values of a function to the value at an arbitrary point within the element e. 

(in-8) 

;{7 i 
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3.2.   Variational Methods in Continuum Mechanics 

H. 2,1.   Underlying Philosophy 

Let A be an operator such that 

A   ;    V ►V* (III-9) 

where V, V* are linear vector spaces over a field F or a finite connected subset 

thereof.   For u£V, we introduce the operator equation 

Au = f . 3 . fev* 

Let B be a bilinear map on V* 

B   :   V*   x  V*—•►S 

(111-10) 

(in-il) 

(in-12) 

where S is a linear vector space.   To each ordered pair of vectors u,vGV*, B 

assigns a point B(u, v) G S, such that 

B(au1 + Ug, v)   = oB(Ultv) + B(U2,v) 

B (u, a Vj + v2)   = a B(u, Vj^) + B(u , V2) 

For simplicity, in the sequel we shall use the notation < u, v > as equivalent to B(u,v). 

In order to set up variational principles corresponding to the field problem ex- 

pressed by Eq. (Ill-10), we introduce a pair (fi, A } .   The first element, Q  , defined 

through n bilinear map B on V*, is a function of the quantities appearing in Eq. (III-10), 

and for given A and f can be regarded as a function of u.   The other element of the pair, 

A, is a variation operator defined on the range of Qin S.   By appropriate selection of 

B, fi , A , different variational formulations of a problem are realized.   In the context 

of obtaining an approximate solution to Eq. (III-10), if B is continuous and V, S are 
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metric spaces, the distance of an approximation UQ from the correct solution  u 

is intuitively related to thf distance between their respective images under Q , thus 

providing a basis for study of convergence of sequences of approximate solutions. 

Many variational formulations use R, the space of real numbers, as the range 

of B.   For this case, two alternative approaches are used.   One defines A so that 

ADX) (111-13) 

whenever (III-10) is satisfied.   This yields a class of 'minimum' principles.   Another, 

somewhat more versatile approach applicable to bilinear maps in general is to define 

A so that 

Aft-  0 (III-14) 

is equivalent to Eq. (HI-10).   An interesting feature of this second alternative is that 

if    Ü, A   are defined such that 

An(u)   =  Au - f (HI-15) 

Eq. (111-14) is directly equivalent to Eq. (111-10).   Thus A can be viewed as a gradient 

operator or derivative.   In literature, this has )een identified with the Gateaux deriva- 

tive, the Frechet derivative or the variation operator used by Gurtin.   The Gateaux 

derivative of Q, denoted by G^ ^(u), is defined such that 

< G^  n(u), u   > Lim 
a —♦-o 

Qju+auj - fl(u) 
a 

(III-16) 

Here <   , > indicates the bilinear map appropriate to the problem and uGV* is the 

'path' or the 'direction' of the derivative such that u + a u G V; a is a scalar.   We note 

no 
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here that for the notion of a limit, we require a suitable topology is S and continuity of 

Q.   These analytical aspects are not discussed in this report.   It is assumed that such 

conditions where necessary are satisfied.   The right hand side of Eq. (111-16), 

denoted   V ^(u, li) , is the Gateaux differential of fiat  u in the direction   u; 

assumed to be linear in u to establish G[7 n(u).   Following Vainbcig (1964), we write 

a linear Gateaux differential as D ü (u,u).   To ensure a norm, S has traditionally 

been identified with R, the set of real numbers, although clearly, this is not 

necessary. 

If V* and S are normed, the Frechct derivative, denoted by F_ ß(u) is defined 

such that 
< FII   a(u), u  >|     _Lim     ln(um)-n(u) 

|u|-*0 
(111-17) 

where       | denotes a norm,   Gurtin (1963,1904) regards f2(ui au) as a function of a, 

a scalar.   Then. 

_d 
da 

A-    Q/u)   -    ~-     «(u fau) 
a     0 (III-18) 

provided the derivative exists.    A-   ^(u) is expected to be of the form 

A_  ü(u)       < Au - f, u > 
u 

(III-19) 

such that vanisbitig of the variation for arbitrary uGV* is equivalent to Eq. (111-10). Indeed 

A—   J)(u) can Ix« shown to be identical to the linear Gateaux differential.   For Eq.(III-lO) to 

be equivalent to Eq. (III-19),in conjunction with Eq. (111-14), the bilinear map must have 

the property 

' We do not use special notations to distinguish between zero elements of V, V*, S, 
The nature of the zero is apparent from the context in which it is used. 
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< u, o >       0       < o, v  >   ; V U, ve V* 

< u,  v >      0     -> u *- 0 or   v     0 

(111-20) 

(111-21) 

A class of variational principles directly uses Eq. (111-20) along with its con- 

verse, i.e., if <u, v >^ 0 V v£V*,u = 0. Thus if we define (I as a bilinear map 

on V* x V* such that 

a(u,v)   =  < Au - f, v > (111-22) 

n(u, /) ^ 0 V v£V* directly implies Eq. (Ill-10).   This approach, for operators 

with suitable symmetry properties, leads to principal of -virtual work' type.   In this 

formulation, based on the orthogonality of zero with the linear vector space V*, the 

variation operator plays no part and may be taken to be the identity operator.   For 

obtaining approximate solutions to Eq.(III-lO), Eq. (111-20) can be used as a starting 

point for several well-known procedures.    For example, if v = Au-f, defining (l(v) = 

j < v, v > |  leads to a generalization of the least squares method. 

3.2.2.   A Formulation for Linear Operators 

Consider, corresponding to the field problem expressed by Eq. (111-10), 

Ü{u)   - <u, Au>   -2<u,f> (111-23) 

where  <  ,  >  denotes a bilinear map satisfying Eqs. (111-12, 111-20, ill-21).   Using 

the variation operator of Eq. (111-18), we obtain for linear A, 

A- n(u)   = < u, Au   > + < u, Au >   - 2< u,f > 

If A is symmetric, i.e., 

< u, Av >  = < v, Au >   ; u, vGV 

then _ _ _ 
A- n(u)   =   < Au, u>f<   u, Au>-2<u,f> 
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(111-26) 
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If, further, the bilinear map is symmetric,#i.e., 

< u,v >   -  < v,u >  ;   u, vGV* 

it lollows that 

(111-27) 

(111-28) 

(111-29) 

A- n(u)        2< u, Au - f > 

Eq. (111-28) seen with Eqs, (111-20) and (111-21) implies 

Ä-   ü(u)   --   0 for arbitrary ÜGV* 

if and only if Eq. (111-10) is satisfied. 

We recognize A-   ^(u)   as the generalized Gateaux differential such that 

Eq. (111-28) implies 

GJJ   n(u)  =   2(Au- f) (111-30) 

Clearly G^ n(u) vanishes if and only if Eq. (111-10) is satisfied. 

The foregoing discussion shows that for linear bounded symmetric operator A, 

solution of equation Au =- f is equivalent to vanishing of variation of n(u) where in the 

pair   { n,A}   ,     n=<'u, Au>   -2<u,f>, and A is the variation operator defined 

by Eq. (111-18) or, alternatively, is the Gateaux derivative.   The bilinear map   <   ,   > 

satisfied Eqs. (Ill-12),(III-20),( 111-21) and (111-27). 

If the symmetric bilinear map has its range in R, and in addition to Eqs. (111-12), 

(111-20), and (111-27) satisfies 

<u, u>   > 0,   V   u   /  0 (111-31) 

the bilinear map defines an inner product.   In this case, for A positive, i.e. 

< u, Au >    >   0, u  /  0 (III-32) 

#Magri (1972) has shown that for every linear operator. A, there exists a bi- 

linear form B such that A is symmetric in the sense of B. 
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A- n (u) =  n (u + u) - n (u) 

using the pair { i^,,Ä}     where   ft(u) is defined by Eq. (111-23) and  A is defined as 

(111-33) 

minimum principles can be developed for positive or positive definite operators.   A 

comprehensive exposition has been presented by Mikhlin (19(55) for this case. 

Traditionally, variational principles have been based on an inner product, 

which is a bilinear functional satisfying Eq. (111-31) but not Eq. (111-21).   The motiva- 

tion has been to use positive property (Eq. (III-32))of the operator to establish unique- 

ness of the solution.   Also the functionals have their range in R, the set of reals, a 

Hubert space.   However, other bilinear maps are available. 

The above discussion for a single field variable u is easily extended to the 

case of several dependent field variables.   If there arc n variables, V is defined 

as the direct sum space Vj   0  V2   0   ...   (!)  Vn and an element uG V is an n-tuple 

(u1,U2, ..., u ) with U| E V| for i = 1,2,... ,n.   A bilinear map on V is now defined 

as 
<U,v>   =  < u^Vi >    t  <u2,v2>     t ...  1  <un,vn> (111-34) 

1 2 n 

(no sum on n) 

where <  ,   >    is a bilinear map from V*    x  V* ►S.   Symmetry of each of 

<,   >     implies symmetry of <u,v>.   The operator A is defined as a two-dimensional 

array of linear operators with n x n elements such that an element A-, maps a set 

M" Q V. into V, .   Corresponding to Eq. (111-25), we define symmetry of A 

< uj , A« u; >     - < Ui, A^ Uj > (no sums) 
j   J   . j 

as 

(111-35) 
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For diagonal elements of the array, Eq. (111-35) is identical to Eq. (111-25).   The 

operator equation (III-10) is now a set of linear equations for the problem 

Aij uj   r   fi    •       l»i   =   1»2 n (III-36) 

Equation (111-23) will then define ß(u) and we shall require each of the variations 

^üi   ß(u)   =   2<ui. Aijuj-fi> (in-37) 

for ujE VJ; i = 1,2,... ,n to vanish.   Examples of this type of formulation have been 

presented by Sandhu and Pister {1910,1971).   Often problems which are not in linear 

symmetric form can be manipulated to write them in the form of Eq. (111-36) with 

Au satisfying Eq. (111-35),   Symmetry of the operator matrix leads to extended vari- 

ational principles such that the unique intersection of the sets of solutions associated 

with these alternative formulations is the problem solution.   Generalizations to include 

nonlinear operators on the diagonal of the operator matrix arise as natural extensions. 

These aspects of the problem have been discussed in detail by Sandhu and Pister (19?:) 

who also presented a general discussion of variational principles in continuum mechanics (1972), 

3.2.3.   The Elastostatics Problem 

The variational formulation of problems in elasticity has been discussed by 

Washizu (1968) and by Sandhu and Pister (1971).   Herein we only present generalized 

potential energy formulation in which the variation of the functional 

fl  =     /   {2U - u. <riU] - 2   ... cr.. + u^. ^ - 2 u. f. )   dF 
F 

^1 ^2 
(111-38) 
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vanishes at the correct solution to the field equations 

and 

subject to the boundary conditions 

"ii.J + ft = 0 

^ij 
au 

V u 
(1,J) 

(III-39) 

(111-40) 

(111-41) 

"ij nj = h on ^1 

u   =    u   on   J5 
i i 2 

(111-42) 

(111-43) 

Hereilt^2 are complementary subsets ofjfyhe boundary of F. U is the strain energy 

function, OJJ , f.j are respectively the components of the symmetric Cauchy stress tensor 

and the infinitesimal strain tensor.  uif f. are the components of the displacement vector 

and the body fcrce vector,   nj are direction oosines of the outward normal to^J 

Using the symmetry property of the field equations, and requiring Uj to identi- 

cally satisfy the strain displacement equation as well as the boundary conditions 

•*2» Ecl- (ni-38) reduces to the potential energy functional 

on 

Q1  =     y (U-Uift) dF    -      f Uittdi (111-44) 

To allow for initial stresses,the Eq. (111-40) is written as 

'ij 
au 

—    i     o-.. (111-45) 
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where tr    is the initial stress.   Then the potential energy functional has the form 

fi2 J (U - "i fi i ui,j^ij)   dF    -     J uj   ti   ds (111-46) 

Equation (111-40) is the functional used in development of stiffness type   finite 

element formulations. 

In the analysis for progressive failure according to Griffith's theory, the 

above formulation was used assuming the system to be piecewise linear elastic ~ 

changes in structural properties being introduced in a stepwise fashion as elements 

in the system develop cracks in a sequential manner. 

3.2.4.   Variational Formulation for Elastic-Plastic Solids 

The field equations of incremental plasticity in symmetric form are 

Eijkl 

-2 ^ki "äT  + ?H "5k > 

--2<Rik 
dj 

- 1 

+ * jk di 

f       \ f 

ui Fk 

• = — 
< 'M \  s 

"^1 
hi. I« J 

(in-47) 

Here E  ,. are components of the symmetric tensor relating the components of the 

incremental stress tensor a-- to the components of the incremental strain tensor  i 
i] 

"i » Fk» ""ij are respectively the components of the incremental displacement vector, 

the body force vector (including seepage forces if any), and the initial stress tensor 
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for the specific increment under consideration.   Following Sandhu and Pister (1970, 

1971) the governing functional is 

/['« ^ .,,     (,,   -u.o-..  .   -2u. F.   -     f.. o-.. ijkl      kl       i  i],j ii i]   ij 

t   2    f..   a-..  + o-.. u.  .   - o-,.     f.. I d F 

+   /üj (a. ^ - 2 V d 8-    /(Uj - 2 y o-.. ^   ds 

^1 J>2 

(111-48) 

where we have included the boundary conditions (Eqs. 111-42, 111-43) in the formulation. 

Noting that 
/ u.' o"« 4 d F =  - 

F F 

/uio-ijnj  . 

dF 

i 
anddefiningU as        | f^ Eijkl    <kl  =  Ü ( e^) 

J C£in be written as follows: 

(111-49) 

(111-50) 

+   2       f ij ^ + (Ty Ui j   -^    f^jdF 

- 2 y   Uiftj)   ds   -  2j^i-ui)  o-ij nj   ds       (in-51) 

Requiring that the strain displacement relationship and the displacement boundary 

conditions be identically satisfied, 

I 

■ 

• 
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J2  =     y (Ü-^Fi + ii jö
!
lj)dF  -   /^tidi 

F ^1 
(ni-52) 

which is ofthe same form as   ß2 in Eq. (111-46) except for the displacement components 

uj being replaced by the incremental displacement uj and Ü replacing U.   Explicitly, 

introducing the seepage force into the formulation, 

'"i = P h+ v (ni-53) 

where rr is the hydrostatic pore water pressure.   Eq. (111-52) then becomes 

J3   -   ^/ (U-Uipfi-Üj     ff^+üij^ij)   dF 

tids (111-54) /. 

The above formulation would reduce to that given by Washizu (1968) if the equilibrium 

equation were to be written in the form 

(<r..  . +  o-..  .)   +   (F.   +   F. )   -   0 

with the boundary condition    t|  ~  ti  +   Ij 

(111-55) 

(111-56) 

Then upon using symmetry and the specialization of displacements satisfying the 

boundary conditions and the strain displacement equation, the governing functional 

would have the form 

/(U-u   F)   dF  -     f üi\di 
11 

(111-57) 

The finite el "•ment procedure for elastic-plastic Mohr-Coulomb rock described in 

Chapter IV was based on the variational principle using the functional JQ. 
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3.3.   Matrix Formulation of Field Equations 

Following the procedure indicated in section 3,1, a finite dimensional approxi- 

mation to the problem solution is written using the values of the function at the nodal 

points of the system as the generalized coordinates.   The spatial domain F is parti- 

tioned into a finite number of nontrivial disjoint elements such that their union 

approximates F.   Each point in F belongs to one distinct element.   The ambiguity 

regarding points on interelement boundaries is resolved by ensuring that the function 

value will be the same regardless of which element the point is assigned to.   This 

is the requirement of 'compatibility' on finite element modelling.   For a point within 

an element, the function value is expressed in terms of nodal point values (the gen- 

eralized coordinates) through a set of interpolating functions.   The approximate 

function is inserted in the governing functional so that the functional can now be 

regarded as a function of the generalized coordinates.   Vanishing of variation of 

the functional yields the matrix equations for evaluation of the generalized coordinates 

andhence the approximate solution.   We give below the formulation for incremental 

analysis of elastic-plastic solids.   The treatment for the elastic case is similar. 

The functional Jg in Equation (111-54) has increments of the displacement vector 

as the field variable. In an approximate solution, the incremental displacement field 

within the mth element is defined in terms of the nodal point values as 

u     (x) {0    )     '   u. ; (111-58) 

•m 
Here u    (x ) is the ith component of the incremental displacement vector at spatial 

i     "" 
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location defined by the vector x in a global reference frame,   i0   }   is the set of 

displacement interpolation iunctions and -iujf   is the set of the ith components of 

nodal point incremental displacements for the entire system. 

The strain displacement relationship can be written as 

Here -je    (x) [   is the reduced strain tensor.   For the two-dimensional case. 

1 ' em (in-60) 

rxy 
T 

N* J is the transformation matrix derived from the displacement interpolation 

functions l^111) by suitable differentiation and rearrangement of terms and { u \ 

is the vector of nodal point incremental displacements for the system. 

Writing the stress-strain relationship as matrix [llm] for the mth element and 

replacing integration over the spatial domain by sum of ir tegrals over individual ele- 

ments, the governing functional Eq. (111-54) becomes 

.*. ,T J     -    i u 1T [ K H u 1   i   2 • u J1   { Mj}     - 2  J u p   - M2 • 

C   T 
- 2 > u •    ' P • 

where 
M f 

m^ 1 

M 

m .T     . 
c J       dvm 

m 

JM 
E/ r ,m,        m. 

(111-61) 

(111-62) 

(111-63) 
m = l   v ra 
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M 

m 

m    1      S. 
in 

(in-64) 

(111-65) 

Application of the variational principle to Equation (111-61) yields the matrix equation 

[K]   {ui    =    {R] (111-66) 

where 
{ R t    =   {MJI     -     ^M2^     +    (?) (in-67) 

^M   |   ,   '!M2;   , • P}   respectively represent the contribution of the residual stresses, 

the body forces and the boundary loads.    For incremental formulation,the residual 

stresses are the stresses at the beginning of the increment.   Pore water pressures 

are included in the form of seepage force in the body force contribution. 

For the elastic case, the function to be approximated is the displacement vector. 

Equations (111-66), (111-67) will apply with the difference that (u ', - R '   will be re- 

placed by •< u > , | R    and | o-j;   will represent the initial stresses in the system. 

The computer programs developed both for elastic-plastic rock and progressive1 

failures following Griffith theory used a quadrilateral element made from four constant 

strain triangles.   This element as well as other quadrilateral elements have been dis- 

cussed by Wilson (1965) and Dougherty et.al. (1968). 

'-9 
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l 
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3.4. Initial Stresses In Rock 

The initial stresses present in rock in the 'insitu' state are the stresses corre- 

sponding to reference displacement field generally taken as zero.   These are easily 

included in the stress-strain relationships by assuming that the total stress is the 

sum of the initial stresses and the stresses associated with the displacements.   Thus 

'ij       Eijkl   'kl^ij (II1-68) 

where OJ* ,  c^j are components of stress and strain increments and o-j* are components 

of the initial stress.   With this formulation, the initial stresses appear in the variational 

formulation and vector «Mj >in Equation (111-61) represents a pseudo-load corresponding 

to the initial stresses.   This technique is the basis of stress-relief methods used by 

various investigators.   The analyses described in Chapters IV and V use this approach. 

3.5. Incremental Procedures 

In finite element analysis, allowance for incremental loading or incremental con- 

struction is quite straightforward.   For any step of loading or construction (excavation), 

the initial state is used as a reference state and increments of stresses and displace- 

ments worked out for the particular step.   Thus 

W„ {4u}n   =    Mn f111-69' 
where [K]n,  | Äuln, | ARL, are respectively the system stiffness matrix, the 

Incremental displacement vector and the incremental loading vector for the nth step 

of construction/excavation/loading.   In cases where [K]n is dependent upon displace- 

ments or stresses, iterative procedures or Runge-Kutta methods can be used to im- 
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prove accuracy.   In the research described in this report, essentially the method 

was »initial stiffness' for each increment in the case of elastic-plastic analysis. 

For the case of progressive cracking, the influence of stress redistribution and 

stiffness change due to cracking was allowed for in an iterative process. 
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CHAPTER IV.    FINITE ELEMENT PLANE STRAIN 

ANALYSIS OF ELASTIC-PLASTIC MOHR-COULOMB ROCK 

4.1,   Review of Previous Work 

Attempts to use the finite element method for stress and deformation analysis 

of elastic-plastic materials may be classified on the basis of the modeling of mechan- 

ical behavior or the computational technique.   Early attempts noticed the nonlinearity 

of deformation response to applied loads,   ^ne material was regarded as nonlinear 

elastic having stress or strain dependent elastic 'moduli'.   In order to extend the 

results of the  me-dimensional test to the six-dimensional stress-state, an equivalent 

stress to equivalent strain curve was adopted.   Bilinear (Wilson 1963) or multilinear 

(Zienkiewicz 1967) approximations, Richard-Goldberg law (1965), Ramberg-Osgood 

law (1943), Kondner's hyperbolic equation (1963), cubic spline   unctions (Desai 1971) 

have been used to approximate test data by smooth or piecewise smooth curves for 

ease of data handling within the computer. 

Swedlow and Yang (1965) used the normality rule and Drucker's (1952) method 

for evaluating the constant of proportionality in the Prandtl-Reuss equation.   This 

was a tangent modulus approach.   It did not satisfy the '1 *** < condition  f   = 0. 

Marcal (1968) and Marcal and King (1967) used similar formulation.   Reyes (1966) 

and Reyes and Deere (1966) used a rate of work equation to develop stress-strain 

relations for Mohr-Coulomb materials under plane strain conditions.   This was 

consistent with the incremental theory of plasticity,   Felippa (1966) developed 
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equations for incremental theory of plasticity which include Reyes work as a speciali- 

zation.   Marcal and King (1967) and Zienkiewicz et al. (1969) use a formulation iden- 

tical to Felippa's.   Baker et al. (1969) used Reyes formulation in their work.   Yamada 

(1968) used a rate of work in distortion to set tip equations for von Mises materials. 

Isakson et al.(19r7) developed the incremental stress-strain relationship for kinema- 

tic hardening using Ziegler's (1959) modification of Prager's rule (1955). 

Numerical procedures for elastic-plastic analysis have been either the incre- 

mental type using Euler or Runge-Kutta methods, or the initial tangent type using the 

initial stress or initial strain approach.   In the first type the system stiffness matrix 

has to be developed at each increment whereas in the initial tangent method, tho same 

stiffness is used throughout with the effect of nonlinearity being introduced as a cor- 

rective pseudo-load in conjunction with an iterative solution scheme.   The initial strain 

approach was used by Argyris (1965),   Gallagher (1362), Lansing et al. (1965) among 

others.   Zienkiewicz (1969) used the initial stress approach.   Baker et al. (1969) 

found the iterative procedure to be unsatisfactory as convergence was often very slow. 

All the research workers mentioned above used triangular elements in their 

analysis.   It is well-known that the triangular elements do not give correct stress 

field.   In this report quadrilateral elements were used to get a good stress distribution. 

In the present research program the incremental approach reflected in the variational 

formulation of the problem was used.   The formulation follows Felippa (1966) and 

Reyes (1966). 
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4.2.   ^.ess-Strain Relations for Mohr-Coulomb Materials 

The Mohr-Coulomb failure criterion for Isotropie materials is 

Tf   -  c + o-n tan</> (IV-1) 

where Tf, (rn are the failure shearing stress and the normal stress on the failure plane 

and c, (p are, respectively, the cohesion and the angle of hi ernal friction for the mate- 

rial,   Drucker and Prager (1952) proposed a generalization of the Mohr-Coulomb law 

to a cone, in the three-dimensional principal stress-space, symmetrical about the 

principal diagonal.   The loading surface is defined as 

f =     a Jj t J22 - k    -  0 (IV-2) 

where J     <!„ are the first and the second invariants of the stress tensor, and a,k are 

material constants. 

Using Drucker and Prager's generalization of the Mohr-Coulomb law, Reyes 

(lrJ66) developed the stress-strain relationship for elastic perfectly-plastic solids 

under plane strain conditions,  A rate of work equality was used.   The same relation- 

ship can be obtained bj directly using Equation (IV-2) in Felippa's general approach 

already discussed in Chapter n. 

4.2.1.   Stress-Strain Formulation for Elastic-Plastic Mohr-Coulomb Solids 

Define a tensor with components q .. such that 

qlJ 
Of 
60-; 

(IV-3) 
i] 

For Drucker and Prager's generalization of Mohr-Coulomb yield surface 

5f, 
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. .1 

f = aJj + J22 = k. This gives 

1 1 qi3   =  aV 1 

V 
1 

i]       3     1    lJ 
(IV-4) 

where s.. are components of the stress deviation tensor and 8ji is Kronecker's delta. 

Define a tensor with components p.. such that 

of 
Pii   =      v  it 

1 ^ij 
(IV-5) 

For perfect plasticity, the yield surface is independent of the plastic strain and pji = 0, 

Let q be a reduced representation for q.. such that 

q  =<qil   q22   q33   2qi2   2q23   2q31 > 
(IV-6) 

where 
qll  =  Q + TT   ^11 " h «V 

q22   ^  a   + -1-    (<r22 " \  Jl) 
2* 

33 T  1      l  33      3     1 
J22 

2q 12 

2q 23 

TT        ^12 
d22 

T        ^23 
V 

(IV-7) 

2q 31 —T       "31 
J2~2 
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Following the notation used in Chapter II, Equation (II-3(n, 

B 
df        d{ 

      E;u 
hf 

i3 >J ij kl   ) 

T 
=   q    E   q (IV-8) 

where E is the reduced elasticity tensor.   Equation (11-32) gives the tensor L as 

1        T   v B   qq     E (IV-9) 

Hence. 

{'}= [E-iE"TE]{'} (IV-10) 

Equation (IV-10) gives the relation between the stress rate tensor o- and total strain 

rate tensor i t for an elastic-perfectly plastic material.   Explicitly, these relations 

for the generalized Mohr-Coulomb material, assuming Isotropie elastic behavior, are: 

where 

"ij   = 2G(€ira5ij-b<rlj) 

a " h2 £kkf hl ^ij   €ij 

b = hl £kk+ h.3 ""ij €ij 

and 1 -\ J2
2 H 

h2 H "•% 
uK 

[}-2u]32i 1 
il J -i H 

h      -       3     n     K h   -   — a  
2        G        6J92 

\ 
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if. 

H   =   1 + 9 a2   A 
G 

»% K, G are respectively, the Poisson's ratio, the bulk modulus and the shear modulus 

In elasticity. 

For plane strain 

t • 

2 *Qa        1    ap    cap 

1 eaa        3   aß    eaß 

where summation on repeated indices is over the range 1,2. 

4.3.   Analysis of Progressive Fa'''ure 

4.3.1.   Basic Methodology 

In applying the finite element method to elastic-plastic continuum, it was 

assumed that the stress field is constant within each element.   Under applied loads, 

an element wis assumed to be either totrlly yielded or elastic.   For sufficiently 

small elements, this appears to be a reasonable assumption.   The stiffness of the 

system represents the collective stiffness of its elements.   For each element after 

yield, the stress-strain behavior was defined by the relationships developed in section 

4.2,   Thus as each element yields, the system stiffness is altered resulting in a non- 

linear structural response.   In the study of progressive failure, it is important to 

allow for the effect of this nonllitearity.   In the current research program, the system 

was assumed to be stepwise linear within yield   of successive elements.   In the incre- 
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mental procedure, the load was divided into increments with each increment large 

enough to introduce yield in another element.   This was subject to checks on the 

validity of assumption of linear stress-strain relationship.   As several elements 

mny yield at almost the same lond, a lower limit on load increment size was 

used to avoid excessive computational effort.   Also, elements yielding within a 

prescribed load range of the computed Increment for any step were treated as if 

these had yielded simultaneously with the elements controlling the increment size. 

The total load vector < R i was treated as a sum of load increments I AR-1, i = 1, 

2,..., n where n is the total number of increments, not necessarily equal. 

W^t   {*M (IV-11) 

The first increment of load,    < ARj^ I applied to an elastic system was suffi- 

ciently large fco allow at least one element to reach the yield surface.   To evaluate 

the load increment for any step as a proportion of the load yet to be applied to the 

system, a stress ratio was introduced.   Figure IV-1 shows the calculation of the 

stress ratio Sr for a typical element.   The point A represents the initial stress state 

and C the-Stress state that would result if all the load was applied.   The curve f - k = 0 

represents the yield surface.   If A and C both were in the interior of the yield surface, 

all the load could be applied and Sr was defined as unity.   Howe-er, if A was in the 

interior and C in the exterior of the yield surface, clearly it would not be possible to 
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load the element to C and that it could only be loaded to B before onset of yield.   Here B 

is the interöection of line AC with the yield surface.   Then 

S 
|AB| 

|AC| 
(IV-12) 

Calculation of Sr is simple.   Let (o-^)^ {(r^)   represent the stress states associated 

with A and C respectively.   Then the stress state for B is cr., such that 

- = (Tu ). (i - sr) + er i.^ 

Sr is calculated from the relationship 

(IV-13) 

f^jj)   -k  =  0 (IV-14) 

The stress ratio Sr for an element represented the fraction by which the load would 

have to be scaled to ensure that after application of the load increment, the element 

was within or on the yield surface.   The value of Sr was calculated for all the elements. 

The element with the lowest stress ratio was the next to yield and governed the system 

load ratio.   Sj, thus defined the load increments in progressive failure assuming step- 

wise linear behavior.   As each load increment was applied, cumulative stresses and 

displacements were calculated.   The stresses at the end of the ith step were the initial 

stresses for the (i + l)th step. 

4.3.2.   Nonmonotonic Loading 

To allow for non-monotonic loading, at any structural increment or excavation, 

a pilot analysis is carried out assuming all elements to be linearly elastic. In case of 

unloading, any element already on yield surface can unload either plastically or elastic- 
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ally as shown in Figure IV-2 .   The two modes are distinguished by the fact that in 

elastic loading, the strain decreases whereas if the element stays on the yield sur- 

face in the unstable region the strain will increase.   If the element is assigned the 

stress-strain behavior corresponding to the yield state, it is forced to stay in the 

yield surface because the stress-strain laws satisfy f - 0.   In the pilot analysis, 

assuming elastic behavior,the element will either follow the path AB or AC.   Path 

AC corresponds to elastic unloading.   Path AB would indicate increasing strain under 

applied load and therefore the element is likely to stay in the yield surface.   This pre- 

liminary information is used to assign appropriate material behavior to each element 

previously in state of plastic yield. 

4.3.3.   Allowance for Nonlinear Stress-Strain Behavior 

The stress-strain relationship for plasticity is stress-dependent.   As the 

stresses change during application of a load increment, it is desirable to reflect 

this change in the stress computation.   Assuming c^ ^o), CJJ ^ to be the compliances 

at the initial and final stress states, respectively, we may write 

..c). v). c'i(0):c') _ Af.. 
2 * 

where u^ > , uj^ , A Pj   are the final displacement, the initial displacement and the 

increment load vectors, respectively.      Further 

and 'ki'"—W) 
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An iterative scheme would consist of the following steps 

t(o) + o..(f)(n) 
u^^D   =  u^0)  +    

ci)(0U C1J( Hn)    AP 

Cij 
(Mr) 

= cij ^ki 
(0 (n)) 

^m  —ki(«i(f)(n)) 

n - 0, 1. 

Such an iterative procedure has been used by Sandhu (1973) along with a criterion for 

convergence which defines the maximum increment of A P, consistent with the non- 
j 

(f) linear characteristics of ctj    .   However, repeated solution for displacements may 

be very expensive in terms of computation.   Also, because, in general, tne plasticity 

will be confined to local regions, the displacement solution is not likely to change 

significantly.   Therefore, it is considered sufficient to assume constant displacements 

and to iterate only on stress using mean stiffness k^j as under: 

i       (0)      ,       (f) (n) 
o-ijW*!)  = .rJO)  +     

k^l      +kijklVM 

A   €kl 

^ijkl 
(f)(n) 

kijkl (^mn        ) 

where A  «^ is the strain increment.   The procedure converges very rapidly.   The 

procedure is shown schematically in Figure IV-3a. 

An alternative procedure is to use 

,  (0(n+l) (0)' (m)(n)     , 
'ij ^ij      + Kijkl a€kl 

where the mean stiffness corresponding to the load increment is defined as the stiff- 

ness at the mean stress for the increment, i.e. 
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cijki y 
f (0) (f)(n) (m)(n)       . /  q-mn

v      + o-mn^ 
kijkl ki 

This approach is illustrated in Figure IV-3b,   Both the alternatives were found to be 

satisfactory. 

4.4.    Examples of Application 

A computer program for plane strain analysis of elastic-plastic Mohr-Coulomb 

rocks was developed using the mathematical model and the discretization procedures 

described in the foregoing sections.   The technique wf s used to solve several problems. 

There are very few problems in the theory of plasticity for which closed form solutions 

are available.   However Naghdi (1957) solved the problem of an elastic perfectly plastic 

wedge under uniform loading on one face (Fig. IV-4).   The Naghdi solution is for a 

wedge infinite in extent, made of von Mises material and loaded in plane strain.   This 

type of material is a special case of Mohr-Coulomb material obtained by setting the 

angle of internal friction 0-0.   This example was used earlier by Baker et al. (1969) 

to verify their computer code.   Another example involves analysis of stresses and 

deformation of a notched bar of perfectly plastic von Mises material.   The last example 

is of frequently used laboratory test.   Excellent agreement with theoretical results for 

the wedge were obtained. 

4.4.1.   Elastic-Plastic Wedge 

Figure (IV-4) shows a finite element idealization for the Naghdi wedge.   Figures 

(IV-5) and (IV-6; show the theoretical and computed results for the distribution of 

radial and circumferential stresses at various stages of loadings.   The angle ^ de- 

notes the angle upto which the yielding has progressed from the boundaries.   Figure 

(IV-7) shows the radial strain distribution at various ranges. 
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FIG. IV-4. Finite Element Idealization for Elastic-Plastic Wedge 

(Baker et.al., 1969) 
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Generally the agreement between results computed by the method outlined and 

the exact analysis was found to be good. 

4.4.2.   Notched Specimen 

A notched specimen of perfectly plastic vonMises material with a 90° notch 

and subjected to a uniformly distributed load was analyzed.   The finite element ideali- 

zation for one quarter of the specimen is shown in Figure IV-8.   The value of c  was 

taken as 12,15 kilogiam per square millimeter (corresponding to a yield stress of 

24.3 kg./mm. in uniaxial tension test) and <p was set equal to zero.   Figure IV-9 

shows the principal stresses at a load intensity of 19.2 kilogram per square milli- 

meter.    Figure IV-10 shows contours of failure ratio for this load as well as the boun- 

dary of the plastic zone at different values of the load.   This problem was solved by 

Marcal and King (1968) and Zierkiewicz et al. (1969),   The results are slightly differ- 

ent from those presented in this report for reasons discussed earlier. 
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CHAPTER V.   FINITE ELEMENT PLANE STRAIN ANALYSES OF 
PROGRESSIVE CRACKING OF ROCK FOLLOWING GRIFFITH'S THEORY 

5.1.   Review of Previous Work 

Stability of excavations in rock is deeply influenced by tha presence of cracks 

and fissures.   These discontinuities may be preexisting or might arise as a conse- 

quence of the stress-redistribution associated with excavation.   Classical methods 

of analysis are inadequate for study of initiation and propagation of fracture. 

Several attempts have been made to apply the finite element method to jointed 

rock systems.   Zienkiewicz et al, (1968) proposed the 'no tension' analysis pi'o- 

cedure.   This consisted of the following steps: 

1. Analysis of the system treating intact rock as 
linear elastic, Isotropie, 

2. Check to identify tensile principal stresses, if 
any, in various elements. 

3. Reanalysis assigning zero resistance to defor- 
mation in the direction of the principal tensile 
stresses. 

4. Repeat 2 and 3 to convergence, i.e. until the 
solution shows no appreciable tension anywhere. 

In order to economize on computational effort, a stress relief procedure was intro- 

duced.   The tensile principal stresses were rtlieved by introducing equivalent nodal 

point loads using the linear elastic stiffness ior an iterative correction scheme.  The 

procedure has poor convergence characteristics and even after several cycles of itera- 

tions, tension zones do not completely disappear.   Moreover, for the case of one 
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pripcipal stress being tensile and the other compressive, relieving tensile stress 

by applying equivalent nodal point loads amounts to using a non-symmetrical consti- 

tutive relationship.   In the present research effort,  a correction was introduced 

in the no-tension approach to correctly simulate the orthotropic material behavior 

of cracked elements.   For intact linear Isotropie elastic elements, 

C C 
11        12 

C21     C22 
(V-l) 

where o-j, cr2 are the principal stresses;    ^    fg are the principal strains and 

Cll» C12, C21» C22 are elements in a symmetric matrix.   In the no-tension method 

o-j >0, (r2 < 0,    Oj would be relieved by applying nodal loads b7)*1! whereFb1,1 

represents the equilibrium transformation.   The stress cr   is retained i.e. for the 

cracked element, 

C21     C22 
(V-2) 

is the stress-strain relationship.   Clearly, for symmetry in material behavior, the 

part of 0-2 corresponding to C21   f j must also be relieved so that for cracked element 

0+       0+ 

0
+       C22 

(V-3) 

Even the corrected approach was not considered worthwhile.   Aside from the poor con- 

vergence of the numerical solution procedures, there 1B a basic objection to eliminating 

tension from several elements simultaneously.   Cracking must necessarily be progres- 
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sive and as each crack forms, the rock in the immediate vicinity experiences a sisnifi- 

cant stress-redistribution.   The no-tension approach does not allow UM J.*: seciuential 

cracking of elements and is therefore not realistic. 

Duncan an 1 Goodman (1068) examined the effect of preexisting joints at arbitrary 

orientations. A linear elastic analysis was used to establish the stress field. Normal 

and shear .-tre «s on arbitrarily oriented planes (ubiquitous joint) were computed and 

the shearing strength based on Mohr-Coulomb law compared with the shearing stress. 

This analysis is useful in predicting local failure. However, the analysis did not take 

into account the stress-redistribution and progressive failure associated with local 

failure. 

In a comprehensive report, Duncan and Goodman (1968) also used an orthotropic 

continuum to simulate rock with orthogonal sets of parallel and evenly spaced joints. 

Again the progressive failure and deformation could not be allowed for. 

For preexisting joints, it is possible to simulate their mechanical behavior 

through the use of fwo-dimensional elei icnts or one-dimensional elements.   The two- 

dimensional elements have the drawback of poor »aspect ratios' (Duncan and Goodman 

(1968)) in thi« case of very thin joints leading to inaccuracy in the results.   One- 

dimensional elements to simulate joints were developed by Goodman et al. (1968) 

and have nroved quite useful.   These elements can transmit shear as well as com- 

press! ve stresses.    Figure (V-l) shows the representation discussed by Duncan and 

Goodm an. 
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a.    Before Loading b.   After Loading 

Fig. V-l,  One-Dimensional Element 
(Goodman, 1968) 
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Propagation of preexisting cracks has also been studied in conjunction with 

the concept of stress-intensity factors.   Assuming the crack geometry to be known, 

finite element procedures were developed hy Chan et :il. (1970) and Gross   ct al. 

(l9fiH) to determine the stress intensity factors at oraek tip.   I)ispl;icenu'nts, stresses 

and compliance were all used ns the basis for calculation of the factors.    To improve 

accuracy, Wilson (1971), Byskov (1970), Levy (1971) introduced stress-singularity 

element«  tcracktips (Figs. V-2 & V-3).   Pian(197 1) suggested use of hybrid elements. 

The stress-singularity elements improve the accuracy.   However, they are severely 

restrictive in the study of crack propagation as the analysis applies only for crack 

tip at the centc- *i the elemen .   Use of quadrilateral elements with stress criterion 

is sufficient, in most cases, to establish the stress-intensity factors. 

A common drawback of all the previous \.urk is that the geometry of the cracks 

and Iheir location must be known beforehand.    For new cracks originating at Griffith 

flaws, the crack geometry is not known beforehand.   The present research progran 

treated the problem of fracture initiation at arbitrarily oriented Griffith flaws using 

the stress formulation.   Assigning orthotropic no-tension material behavior to cracked 

elements, it was poss'ble to trace the progressive f.'ülure of rock following Griffith's 

theory.   The procedural details are given in the following sections. 

5.2.   Analysis for Crack Inifation 

In the case of preexisting cracks, it is sometimes possible to plar a finite ele- 

ment mesh including the crack surface as a free boundary.   However, wl ere intact 
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KIG. V-2.   Cracked Element (Byskov, 1970) 
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Fig. V-:},  Cracked Element (Wilson,   l!)7l) 
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rock cracks under changes in stress environment, it is necessary to check for crack 

initiation in accordance vith Griffith or modified Griffith theoi7.   As element pro- 

perties change only at cracking, for a given initial mechanical state, a linear elastic 

analysis is valid upto cracking of an additional element in the system. 

Assuming Griffith flaws are oriented In every direction la each element, an 

analysis based on stresses in the element is carried out to verify crack initiation. 

The theoretical basis for this is outlined in Appendix A.   Upon application of full load, 

several elements may satisfy the criterion for crack initiation.   In this case, a 

stress ratio is established for each element.   The st'vss ratio is the factor  by 

which the stress increment must be multiplied such that the total stress corresponds 

to the critical stress environment for the element.   The stress ratio Is a function 

of the initial stress and the stress path.   The minimum stress ratio Indicates the 

next element to crack In a progressive failure sequence. 

5.3.   Analysis of Progressive Cracking of Rock 

As each element cracks, its stiffness changes reflecting a change in the system 

stiffness.   T'IUS the total load oeformation behavior of rock is piecewlse linear In a 

finite element representation, changes in slope being associated with sequential crack- 

ing of various elements.   In actual situations, the nonline, rity may be continuous. 

In the process of analysis, the system is assumed to be piecewlse linear elastic. 

At each stage the live load is applied and the str -ss response calculated.   As fracture 

of one element, next in the sequence, marks a change in stiffness, stress-ratio Is 
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calculated for each element as shown in Figure (V-4).    Point A represents the initial 

state of stress.    Point C along stress path AC represents the stress state if the system 

were linear elastic for the load increment applied.   If point C satisfied the fracture 

criterion, it was necessary to find the stress ratio S„   (—(  such that the point B r   /AC/ 

defined a critical stress state.   As fracture angle depends upon the stress environ- 

ment, calculation of the stress ratio involved an iterative procedure.   For fracture 

angle ß corresponding to C, a stress ratio was calculated. Then for this stress ratio, 

the corresponding stress state was evaluated and the critical angle for this stress state 

represented a better approximation to the correct fracture angle.  Convergence was r ipid. 

The stress ratios for all elements were compared.  The minimum value represented 

the end of the particular step in thr multilinear stress path dependent system, and the 

element yielding the minimum ratio was the next to crack.  Repetitive application of 

this procedure defined the progressive failure of rock. 

In order to ensure stability in computation, the total load was applied in several 

increments.   This served to keep the stress change in individual elements for a given 

load increment within reasonable limits.    Figure (V-5) illustrates incremental loading 

analysis.   For a typical load increment   AP, the initial stiffness yields point C and 

allowance for sequential fracture of several elements within this load increment shifts 

the (P,u) point to B.   The different arrows indicate sequential corrections to disp.   je- 

ment allowing for progressive fracture. 
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F{ßol=0 

•ß 

A  -   Initial Stress for the Load Increment 
C   ■  Stress for Full Load Increment 
B  -t  Scaled Increase of S»vess to Crack Initiation 

Note:    /3 calculated for state B will in general not be the 
same as ß for state C. 

FIG.V-4. Calculation of Stress Ratio, Sr 
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Fig. V- i.  Incremental Loading Analysis 
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5.4.   Modelling of Cracked Roch 

Referred to axes of material symmetry, the constitutive relationship for linear 

orthotropic isothermal elasticity can be written as 

''iS 

22 

■33 

'23 

'31 

'12 ) 

1 -U2 

-v. 

0        0        0 

0        0        0 

-v2 

E2 

1 

E3 

o 0 0 

0 0 0 G23 0 0 

0 0 0 0 G31 0 

0 0 0 0 0 G 12 

(T 11 

22 

{  ^33 

r23 

31 

1^12  j (V-.') 

Symmetry of the compliance matrix requires 

El       E2 

(V-2) 

For plane strain     'oo^ 0,    K,   -    >'«1= 0 33 23'      31 

33            > 33     u 

El        E2 (r22 E3 

(V-3) 

Using Eq. (V-2), 

33   -   "3 ^  < 1      1 >I^U 
r22 

(V-4) 

Substituting Equation (V-4) in Equation (V-l), 

8H 
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11 

22 

K 1 
(1-^^) 

-u2 

^2 

-P-r 

K. (1 + VJ 

J-; r n -^^> 

n 

(T., 

(V-5) 

Inverting 

11 
r22 

El where  k       —L 
E2 

(1 - ^ ^3) (1 - ^2^3) - k M22   (1 * r^2 

E, (1-^ .3)    E^jd^j) 

. £^2(1 '^3)     K2 (l-t'ii'^ 

(V-6) 

Upon development of fracture surface in an element, the plane of the crack can 

be regarded as a plane of mechanical symmetry.   Also the crack plane is a principal 

plane for the clement.   This involves tu, ..ssumption that the crack is planar and ex- 

tends throughout the element.   It appears to be reasonable for sufficiently small 

element size. 

Assuming that cr     corresponds to the stress normal to the fracture plane, the 

elastic modulus Ej is reduced to a very small value.   The element is still capable of 

withstanding stresses 0-22 parallel to the crack plane.   However, when (r22 also attains 

values such that another fracture plane develops within an element, the material can- 

not sustain any load.   This is modelled by letting E2 also become very small. 

As crack orientation may not be along the reference directions, it is necessary 

to transform th^. stress-strain relationship from the principal axes to the reference 

11 
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axes.   Let the angle of rotation be ß .   Then from Figure (A-4) 

P Y -n 

where       Y        the angle between (rx and o-, 

a the angle between (r2 and the fracture plane 

For Griffith failure criterion, it can be shown that 

•' 1 [ *- a -   tan sin2ö     i 1 - I (k2 - 1) sin2Ö   i 1 

/ 
I (1 - k) sin 26 

where k - o-« / o-, , and d is identical to ß defined by A-4 in Appendix A. 

For the modified Griffith criterion, 

a   =     -    -6 

where 6 .s the same angle as ß defined by Eq. (A-15) in Appendix A, 

(V-7) 

(V-8) 

(V-9) 

L'jt the relation between principal strains and strains in global coordinates be 

represented by 

{'ph Hw (V-10) 

Here     ( 'nl . I r > are ^e strains referred to the principal axes and the reference 

axes respectively and 

[-] 
cos2 ß 

sin2 ß 

sin2 ß 

cos2 ß 

cos ß sin ß 

OOß ß sin B 
(V-ll) 
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The relation between principal stress and stresses In the reference frame Is 

H KJIM (V-I2) 

It can be shown that If 

{'l-Hl'} (V-18) 

and 

i'p}     ["PJI'P} (V-14) 

then 

M-[']THH (V-16) 

5.5. Pre-existing Discontinuities 

Pre-existing discontinuities In rock may be Initial weak planes or Initial open 

joints.   In either case, strength of material would be reduced.    For an Initial open 

joint, the orthotroplc stress-strain relation doscrlbed In Section 5.4. can be used, and 

the Initial fracture angle would be defined by the Initial crack plane or by the inclination 

of joint.   In the case of Initial weak plane, we propose an orthotroplc stress-strain rela- 

tion with certain amount of shear resistance along the weak plane. 

A relation similar to those in Section 5.4  can be written as 
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N   ^ v2El 

where     ^ 1 - kj/0 

G      :>  
2 (1 • k" vtf 

and for plane strain. 

"2E1 

(i 

0 

0 

G <1 . 

for plane stress (V-16* 

M   a 
F^ (1 - ^2 ^      Ej i'2 (1 i v3) 

E, r2 (1 i Mg)     Kgd-i', ^) 

0 (i 

0 2 
where     ^2   _    U " ui *&) C1 " ^2 l'3) " k 12    (1 ' ^ 

0 

0 

GCO J 

(V-17) 

Following a procedure similar to that in Section 5.4, we obtain 

where H 
H 1)' 

K 

< - sin 2ß   sin 2ß  cos 2ß > 

In general, the fracture plane does not coincide with the weak plane.   The elasti- 

city matrix in such a case can be obtained by deleting the third column imd the third row 

of f D']  , and in the trar.sformation, i3 is replaced by the angle between the fracture 

plane and the weak plane. 

To deal with closure of open joints, it was assumed that the crack opening is planar 
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and that it can be measured normal to the crack plane.   This measured quantity can 

be either the initial opening of a preexisting joim or the equivalent opening tolerance 

for an element fractured uncier a load increment to close again.   The initial opening 

is   equivalent   to     a set of nodal displacements corresponding to the initial opening. 

The equivalent nodal displacements thus obtained were further transformed into ele- 

ment strains, and the possibility of closing was checked on the basis of computed 

strains. 

5. (>.   Incremental Excavation 

Execution ot an excavation project is a sequential process.   In discretized 

analysis procedure, the results at the end of one stage constitute the initial state 

for the next step.   History of the system in terms of stresses and deformations is 

determined corresponding to the discrete steps in excavation or construction. 

For each stage, an incremental loading analysis was used.   The equilibrium 

equation corresponding to each load increment can be written as 

Ki hi A Pi (V-1H) 

where i denotes the ith increment.   To take account of the effect of crack propagation, 

[Kj]   was modified for elements cracked and       i&l\\ corrected to include the load 

resulting from the releasing of the initial stresses from the cracks.   The total displace- 

ment and loading for N increments at jth stage are given by 
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N 

{'>) z 
liTi'A 

i    I 

N 

I ■ ! (V-19) 

pj     E {APJ} (V-20) 
i    1 

The final displacoment and loading for a complete v »rstruction of M stages are 

M N 

'     ' j    1       I -1   ' * 

I 

M N 

(V-21) 

(V-22) 

j = l       11 

5.7.    Examples of Application 

The procedure developed, for analysis of progressive failure of rock following 

Griffith's or modified Griffith theory, in accordance with the mathematical model 

described in the preceding paragraphs were used to solve several problems.   On 

cracking of concrete beams, considerable volume of data is available.   The pro- 

cedures were also applied to analysis of crack propagation in tunnels of circular 

and elliptical shape.   Effect of incremental construction/excavation was allowed 

for.   A simple model was used to simulate loadini' in underground blasting. 

5.7.1.   Crack Propagation in Concrete Beams 

Application of the finite element method in the study of cracking in reinforced 

concrete members was first proposed by Ngo and Scordelis in 1967.   In their analysis. 
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two-dimensional triangular elements were used for Idealization of concrete and steel 

reinforcement.   The bond action between concrete and steel bars was modeled by 

special links.   Geometry of crack was defined by disconnecting nodes as preexisting 

openings and progressive cracking in concrete was not allowed.   Nilson (1908) incor- 

porated an incremental loading process along vith a simple cracking criterion allow- 

ing for progressive cracking.   Agaiii, the cracks were defined by disconnecting nodes 

when the average stress at that nodal point satisfied the cracking criterion. 

Using the method of analysis described In preceding sections, sequential 

cracking In simply supported beams was Investigated.   Results of these Investiga- 

tions are summarised In the following paragraphs. 

A. A Plain Concrete Beam 

Flg. (V-6) gives the configuration of a simply supported beam without any 

reinforcement.   Crack commenced at mldspan and propagated throughout the cross- 

section.   A collapse mechmismdeveloped when the crack extended to the top element. 

Severe compression caused by th<. hinge action produces two secondary cracks which 

follow the modified Griffith criterion. 

B. A Concrete Beam with Tension Reinforcement 

A finite element representation of a reinforced concrete beam with 19 feet 

effective span and a depth of 32 inches Is shown In Fig. (V-7a).   Two concentrated 

loads of 300 lbs.  each were applied at two one-third points along the total span. 

The sequence of cracking is Indicated by numbers as shown In Fig. (V-7b) and (V-7c\. 

The cracking may be roughly grouped Into three stages.   Upon application of the load, 
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a.   System Analvzccl 

19 

TT, ^1 
Number of Nodi's        = 242 

Number of Rlomenta    229 

f / /  / ^,gi aj^j Ji.i 4^ dd417 \ \ ^-v^- 
fl17     "       "I       11      Ü 8        S        '        1        5        I        6        4        (        17      13       13       16     iVQ 

CONCHfTf RtlNfOBtfMfNT : 

E   =   3*10     PS' 
7 

Aj =   0-32      in/. 

F =   3«10 PS' 

b.   Scqaencc of Cracking        u = 015 
y = i5o pcf 

IAP/P V    75 Ps. LOAD:     p =  300   lbs 

01      02      03      04      05      06      07      08      09      10 

c.   Load-Displacement Curve 

i-   5(in.) 

FIp    V-7.    Progressive Cracking of Simple Reinforced Concrete Beam 
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primary cracks start and propagate in the middle third of the span and stop 

after travelling certain distances.   Secondary cracks then follow and spread 

over the outer one-third of the span.   Some bond sliprage associated with extension 

of the primary cracks occurs at the last stage.   The load-deflection curve In Fig. 

(V-7c) reflects the continuous process of cracking. 

C.   A Concrete Beam with Tension Reinforcement (Bresler and Scordelis, 1963) 

A series of tests on reinforced concrete beams was conducted by Bresler and 

Scordelis (196?).     The present method of analysis was applied to two of these beams 

to predict the cracking behavior. 

Fig. (V-H) shows the configuration of beam OA-2 and A-2 in the aforementioned 

tests.   All the dimensions and material properties used are taken from the paper by 

Bresler and Scordelis (1963) (See Table V-l, V-2). 

The cracking sequence for load up to 45 kips is shown in Fig. (V-9), and the 

load-midspan deflection curve is given In Flg. (V-10).   Agreement with the experimental 

data both in the crack patterns and the load-deflection curves Is excellent.   Referring to 

Fig. (V-IO), increasing deviation of the curve obtained from the finite element analysis 

from the curve given by tests would  be expected with further increase in load. 

D.    A Concrete Beam with Tension .Compression and Web Reinforcement 

In addition to the tension reinforcement in beam OA-2, compression as "  W as 

web reinforcement was used in beam A-2.   Again the cracking sequence and crack pat- 

tern were In agreement with experimental data.   The mldspan deflection curve obtained 

at a total load of 62 kips was slightly low r than the curve given by the test, but in 

general, agreement was excellent (see Figs. V-ll, V-12). 
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^— : Bresler & Scordelis (1963) 

—o— : Finite Element 
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0.1 0.2 0.3 0.^ 

MIDSPAN     DEFLECTION   (in.) 

0.5 

F:G.V-10.Load-Deflection Curve for Beam OA-2 
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5.7.2. Progressive Cracking Around a Semi-Circular Tunnel 

The configuraUon of a lined semi-circular tunnel analyzed by Zienklewicz 

et   al. (1968) using ;he no-tersion ?pproach is shown in Fig, (V-13).   Limitation 

of this approach has been discussed in Section 5.1.     .^ig. (V-15) shows the initial 

tension zones in the linear elastic solution.   This is jimilar to the solution obtained 

by Zienklewicz (Fig. (V-14a)).   Upon application of fracture criteria, the crack was 

found to initiate and propagate sequentially (Fig. 7-16).   Figs. (V-16, V-"?, V-18) 

show that stress redistribution around the tunnel resulted in reduction of the tensile 

zones.   The cracks occur mainly along the contact between the lining and the r>jck. 

Cracking of this kinJ tuny be interpreted as failure of bond between the concrete 

lining and the rock. 

5.7.3. Progressive Cracking Around an Elliptic Tunnel 

One major concern during an incremental excavation in rock mass is frag- 

mentation of the material caused by progressive fracture occurring in the vicinity 

of excavated area.   To p* jvent such situation from occurring, supports or lining 

can be applied immediately following the excavation,   A system consisting of an 

elliptic tunnel was used to study the progressive cracking in an incremen'^1 excava- 

tion process. 

A.   An Unlined Tunnel 

Fig. (V-19a) shows a system assuming excavation to be completed in a s\ngle 

step. Fracture first commences in the surface of the tunnel, then proceeds upward 

layer by layer.   The cracking sequence is shown in vig. (V-19b). 
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FIG. V-15    Initial Tensile Zones in Rock 
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It is noticed that the cracking sequence and the patterns of crack are not unique 

for a system.   In fact, they are greatly influenced by the material properties.    For 

example, if o^, the tensile strength, is the only varying parameter in the analysis, 

material having a higher value of «| would have less extensive cracking.   Similarly, 

If/a, the Internal coefficient of friction, is changed, the cracking sequence and the 

crack patterns will be different. 

B.   A Lined Tunnel 

The system described in the preceding section was reanalyzed in three steps 

using/i    0.8 aru! (Tt    25 psi (see Fig. (V-20)),   Step one simulated excavation in a 

single step as in case A.   Cracks appeared in the side wall of the tunnel as predicted 

by modified Griffith criterion and ft the bottom by Griffith criterion.   This was be- 

cause of severe compressive stresses in the side wall while high tensile stresses 

occur at the tunnel invert and crown.   Hatches in Fig. (V-20b) show the orientation 

of the cracks.   In step two, concrete linirg was introduced.   This provided the tunnel 

wall with some support due to the tendency of the concrete lining to leflect outwards 

under its own  weight.   The support effect is increased if increase in concrete 

temperature is allowed for or if the concrete/rock contact is pressure grouted.   A 

region near the horizontal diameter developed double cracks in the first step. 

In the second step, one set of cracks in this region closed.   No further cracking 

occurred at the end of this step (see Fig. /V-20c)).   In the third step, a pressure of 

2,000 psf was applied on the ground surface (Fig. (V-20d)).   New cracks appeared 

at the base of the concrete lining, propagating downward at an angle of about 45 degrees 

f.o the right.   Meanwhile the double crack appeared again near the horizontal diameter. 
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5'7'4-   Progressive Cracking in Blasting 

The mechanism of breakage or fragmentation of a real rock caused by blasting 

is very complicated, yet the major mode of breakage is by brittle fracture.   When a 

charge detonates in a borehole, blasting wave will propagate outward with very high 

velocity and pressure.   The magnitude and direction of the velocity and pressure de- 

pend greatly on the properties of the charge and the rock.   They also depend on the 

detonation process and the borehole geometry.   Calculation of these quantities is by 

no means simple and various theories as well as empirical formulas have been 

proposed (e.g. Brown, 1956). 

Due to the radial overflow of material accompanying the blastinb wave, the 

pressure in both tangential and radial directions will decrease while radial cracks 

appear and propagate.   Interaction between radial cracks and the tensile stress wave 

reflected by free surface may increase the tensile stress at the tip of those cracks 

which are parallel to the curved wave front.   Tests on plexiglass mentioned by 

Persson et.al. (1970) concluded that cracks propagating in a direction at an angle 

40 to 80 degrees to the normal of the free surface have a greater propagation velocity. 

A system shown in Fig. (V-21) was analyzed as to simulate a bench type blast- 

ing .   Tnertial effects were not considered in this analysis, nor was decay of pressure 

due to gas entering the cracks allowed for.   The ratio of the depth of rock to the dia- 

meter of the hole was 20.   The effect of detonation of a charge was simulated as sud- 

den application of a radial pressure on the perimeter   of the hole.   Three different 

values of the pressure intensity viz., 2000, .WOO, 4000 psi, were considered.   The 
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FIG. V-21.   Finite Element Idealization of a 
Circular Tunnel 
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cracking sequences obtained are shown in Figs. (V-22), (V-23) and (V-24).   At 2000 

psi, only small radial cracks form near the top and the bottom of the hole.   For pres- 

sure intensity equal to 3000 psi, cracking was severe around the hole, and three major 

cracks extended outward.    Finally, for pressure equal to 4000 psi, the pressure front 

was pushed out further and radial fragmentation increased drastically with two major 

cracks propagating to the boundary.   Inclination of these two major cracks to the nor- 

mal of the free surface was ö0 degrees and 70 degrees respectively. 

I 
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FIG. V-22.  Sequential Cracking Due to Internal 
Pressure on Tunnel Surface - 2000 psi 
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FIG. V-23    Sequential Cracking Due to Internal 
Pressure on Tunnel Surface - 3000 psi 
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FIG. V-24     Sequential Cracking Due to Internal 
Presaure on Tunnel Surface - 4000 psi 
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CHAPTER VI.   A PARAMETRIC STUDY OF STRESSES 
IM STEEL SUPPORTS FOR A TUNNEL 

(i, 1.    Stntcmcnt of Work 

The computer program for analysis of stresses and deformations in nonhomo- 

geneous rock assuming elastic-plastic behavior was used in a parametric study of 

stresses in steel supports for a tunnel.   Data for the problem were provided by the 

United States Bureau of Mines.    Figures VI-1 to VI-4 show the configuration of the 

tunnel opening and the four different blocking systems studied.    Figure VI-5 shows 

the steel support structure.   The initial stress field was specified as hydrostatic 

pressure corresponding to an overburden depth of 1,000 feet and a material density 

of lfi5 pounds per cubic foot.   The objective of the parametric study was to determine 

the influence of Young's modulus,  Poisson's ratio, cohesion and angle of internal 

friction, upon the moments and stresses in the steel supports.   The range of para- 

meter values specified by the sponsor is shown in Table VI-1, 

(!. 2.    Method of Solution 

R.2.1.    Mechanism of Load Development 

When a tunnel is excavated, the load carried by the material removed muf-t be 

carried by the rock in the tunnel walls and by the unexcavated rock ahead of the face. 

Continued excavation at the face results in Moss of support' further increasing the stress 

in the walls.    For linear homogeneous Isotropie elastic rock, it has been shown (Abel, 

1967) that this effect is felt only in a region one diameter away from the face.   If sup- 

ports are installed immediately after excavation, they will share in this transfer of 

load as the face is advanced.   Theoretically, after the excavation has progressed one 
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FIG. VI-1.   Tunnel Excavation and Supports Case a (shotcrete) 
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FIG.VI-2.   Tunnel Excavation and Supports Case b 
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FIG. VI-3.   Tunnel Excavation and Supports Case c (non-symmetrical) 
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FIG. VI-4.   Tunnel Excavation and Supports Case d 
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MATERIAL 
PARAMETERS 

(a) Rock (b) Shotcrete (c) Steel (d) Timber 

YounK'R Modulus, lxl()(5-10xl0(i 2.71 x lO0 30 x 106 1.5 x 1()(! 

K (psu 

Poisaon's Ratio, 
i' 

0.1 - 0.5 0.1 0.231 0.03 

("ohcsion, c (psi) 1000 - 5000 3300 —   

Tan <p 
(<p    Ariele of Internal 

PHctton) 

1.0-2.1 1.0     

Material Density 
(pcO 

IGS.O 150.0 490.0 27.0 

(a) Data furnished by sponsor. 

(b) "Manual of Concrete Practice," Part 2, 1968, American Concrete 
Institute 

E   -   w1-5    33\/F- 

wherc w        150 Ib./c.ft. 

Vc       compressive strength, assumed as 2000 psi 

(c) "Manual of Steel Construction," AISC 

(d) "Wood Handbook," Forest Products Laboratory,  Forest Research. 
The properties are for western white pine. 

Table VI-1.   Material Properties 
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diameter ahead of the support, there would be no further development of load on sup- 

ports.   Actually, it is observed (Abel, 1967) that rock n ovement continues for a long 

time before ronchtllX stabilization.   This res-ilts in continued growth in the load trans- 

ferred to the supports.   Also, exposui     o atmosphere, loss of gouge material, and 

blasting damage may alter the mechanical properties of the rock mass resulting in 

increasing deformation and increasing support stresses.   In summary, the load develop- 

ment may be associated with one or more of the following mechanisms: 

a. Upon continued excavation at the face, the removal of rock results in 

increased rock load being transferred to the walls, of the portion already excavated 

and the supports in that portion. 

b. Time-dependent deformation of rock is resisted by the supports resulting 

in their taking on increasing load. 

c. Change in material properties after installation of supports will result in 

additional deformation which in turn will lead to increased stresses in the supports 

resisting such deformation. 

d. By blocking, a prestress may be introduced to support rock.   Wedging of 

the blocks will give   equal and opposite forces acting on the tunnel surface and the 

support structure. 

In the work reported herein, the Influence of various material properties upon 

support stresses was studied assuming load development primarily through mechanism 

(a) described above.   The system In Figure VI-1 (case a) was analyzed to study the 

effect of variation of parameters and to rank them In order of Importance.   Calculations 
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wero made varying each or the parameters between the limits given one at a time. 

The 'constant' values of other parameters were taken to be the midpoint of the speci- 

fied range.   The combination of parameter values corresponding to the worst stress 

in the supports was then used to analyze cases b, c, d shown in Figures VI-2 to 

Figure VI-4. 

6.2.2.   Assumptions Made in the Analysis 

a.   Extent of the Finite Model 

When an underground opening is excavated, changes in the stress field and 

associated deformations occur in the entire rock mass.   The principle of local action 

implies that these changes diminish with increasing distance from the opening.   In 

the finite element model, a finite region is generally considered.   On the boundary 

of this finite model, force or displacement boundary conditions have to be prescribed. 

These can be based on the assumption either of no change in the stress field or of no 

deformation.   Neither of the two is true for finite distances from the opening and the 

two assumptions in fact give bounds to the correct solution.   Nair (1968) and Kulhawy 

(1972), among others, have studied the effect of lateral dimension of the finite model 

and of the choice of boundary conditions on stresses and deformations in the vicinity 

of underground openings.   For the present study, allowing for the specified hydrostatic 

initial stress field, a preliminary analysis showed that it would be adequate to model a 

region extending approximately seven diameters above the roof of the opening, five dia- 

meters horizontally on each side of the center-line and five diameters below the invert 

of the opening.   This region is outlined as ABCD in Figure VI-6.   The boundary conditions 
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FIG. Vl-fi.    Funnel Opening, Overburden nnrl Rogton Ineluded in the Analysis 
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for the finite element model are illustrated in Figure VI-7.   The overburden of the 

top 858 feet was replaced by an equivalent vertical load.   The stress field on the 

vertical faces AB, CD was assumed to be unaffected by the sequence of operations 

in the opening and the vertical displacement of the Iiori/.ontul section BC was set 

equal to zero. 

b.    Modelling of Support Structure and the Sequence of Operations 

Starting with the initial stress state, the sequence of excavation, installation 

of supports and load development was simulated.   The steel supports were assumed 

to be in plai." stress whereas the rock and shotcrete   were in plane strain.   The 

spacing of steel supports was specified as three feet.   Thus a three foot length of 

the tunnel was supported by each support ring.    Figures VI-8 and VI-9 show a typi- 

cal cross-section used in the finite element model.   The cross-section of the steel 

rib was represented by five finite elements to obtain reasonably Rood distribution of 

stresses over the cross-section.   The shotcrete   and the rib were assumed to be 

bonded.   If there is no bond between shotcrete   and the rib, there is no load trans- 

ferred through shear and the load transfer is entirely radial.   This situation would 

be similar to case (d) except that the blocking would be continuous.    For cases b, c, 

d, the wooden blocks were assumed to be axial members not transmitting any bending 

moments. 

The shotcrete , the steel rib and the timber blocks were assigned the properties 

given in Table VI-1.   It was assumed that C, 0  specified for the rock were obtained 

in triaxial tests on cylinderical specimens.    It was assumed that the rock properties 
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Plane Stress 
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FIG. VI-8,    Longitudinal Cross-Section of Tunnel and Representative Slice 
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do not chanRe as a result of excavation of the opening.   Additional studies considering 

the effect of such changes are »"eported in section 6.2.3. 

Tn calculating load acting on the supports, it was assumed that, upon excavation, 

the gravity load due to the area shown shaded in Figure VI-10 was mobilized only fifty 

percent.    The rest being supported by the unexcavated rock ahead of the working face. 

The balance fifty percent was assumed to become active upon loss of support due to 

continued excavation.   This corresponds to mechanism (a) described in section <).2.1. 

The geometry of the shaded area corresponded to the overbreak line in Figure VI-2, 

case b.    It was assumed that the difference in excavation profiles in Figure VI-2 and 

VI-1 represented the   rock load wl.lch could develop for cases a and d.    For case b, 

the rock exerting the gravity load Is shown shaded In Figure VI-li, the extent was 

arbitrarily taken as an average of 3.5 feet thickness beyond the excavation line. 

Similarly for case c, the extent (Figure VI-12^ was arbitrarily taken as an average 

of 3.5 feet thickness beyond the excavation line. 

6.2.3.   Results 

a.    Preliminary 

In studying the Importance of material parameters, the quantities of interest 

were the maximum stresses In the steel member.   It Is customary to study the axial 

and shearing forces and bending moments In such structural components.   Hence, 

these quantities were worked out.   It should be noted that the basic output from the 

finite element analysis Is the components of stress evaluated at the center of each of 

the five elements Into which the steel member Is divided.   The moments and forces 

were obtained by numerical integration of the stress values. 
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Figures VI-13 and VI-14 show the cross-secdons at which the stresses as well 

as the forces and moments in the steel rib were computed. 

Hock load development was assumed to follow mechanism (a^ of section 0.2.1. 

Additional studies using mechanism (c) and (d) are covered in section 6.2.4. 

b.   Influence of Material Properties 

Four material parameters, viz., Young's modulus, Poisson's r.^tio, cohesion 

and angle of internal friction were to be considered to establish their order ot import- 

ance in terms of their influence on the support forces. 

For the specified range uf the rock properties, the cohee' )r and the angle of in- 

ternal friction did not influence the stresses in the structural supports. Figure VI-15 

shows a riot of Jj - o-j + ov, + o-g, the first invariant of the stress tensor as the abcissa 

and Jo 2 1       (  (o"i - o-2)2 + (o-2 - (rg)2 + (o-g - 0^)2 ) ■ 
, the second invariant of the stress 

deviation tensor as the ordinate. The generalized Mohr-Coulomb yield criterion corre- 

sponding to the irescribed range of values of cohesion and angle of internal friction are shewn 

and also the stress paths traced by points of critical locations around the tunnel opening. 

The generalized Mohr-Coulomb yield law is, 

j 
a   Jj   + J2'2   =   k 

where: a   =        ^ &±   
V3    (3 - rin0) 

k   =      6 C   cos0 
\/3~~(3 - sin0) 

0 ■   angle of internal friction 

C   ■  cohesion. 
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FIG. VI-ia  Location of Sections Analyzed for Cases a, b and d 
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FIG. VI-14. Location of Sections Analysed for Case c 
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C and 0  are determined from a triaxial test on a cylindrical specimen under 

axisymmetric radial stress.   Derivation of the above equations is given by Singh (1972). 

In Kigurc VI-15, paths A,n,C,n,K arc traced by elements located around the 

face of the underground opening.    Points A,C refer to elements at the invert and the 

crown, respectively, and points B,i:),E correspond to elements on the side of the open- 

ing.   The locations are indicated in Figure VI-13.   The initial state in all cases is of 

hydrostatic stress.   The terminal points represent the state after excavation.   The 

development of rock load has little influence on the stress state in rock for the speci- 

fics! value« of Young's modulus and Poisson's ratio.   For all locations, the entire 

strc&s history was found to be well below the yield criterion. 

Figures VI-16 through VI-18 show the influence of variation of Young's modu- 

lus -non bending moments and upon axial rind shearing forces.   Only sections 

with the worst forces have been plotted.   The maximum bending moments were 

at section 16 (crown), the maximum axial force at section 5 (side) and the maximum 

shearing force at section 10.   In all cases, decrease in elastic modulus of rock was 

seen to result in increased moments and forces.   This is indeed to be expected.   The 

load transfer to the structural support is dependent upon the tendency of the rock face 

to deform.   Higher modulus implies less deformation for the same rock load and 

consequently less load transferred to the steel member.   The decrease in support 

forces,with increasing Young's modulus,is rapid at first and then is less pronounced. 

This is due to the fact that rock deformation is proportional to reciprocal of the modu- 

lus.   Also, for very large moduli, the strains are extremely small and difficulties 

arise with computational precision. 
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FIG. VI-17.   Influence of Elastic Modulus on Axial Force 
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FIG. VI-18.   Influence of Elastic Modulus on Shearing Force 
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Figures VI-19 through VI-21 show the influence of the variation in the Poisson's 

ratio on the moments and axial and shear forces in the supports.   Again, only 

results for the worst sections have been plotted.   In the crown and the side (section 

10 and 5), an increase in Poisson's ratio results in decreased bending moments 

whereas at section 10 the bending moment increases somewhat.   The higher Poisson 

ratio is associated with a redistribution of stress in rock.   This redistribution is 

reflected in a more uniform stress distribution in the steel support. 

For the specified range of values for the material parameters, the bending 

moments and the shearing forces were insignificant.   The major effect was the axial 

force in the member.    Figure VI-22 shows the distribution of longitudinal stress for 

the mean values of rock parameters.   An explanation for the bending effect being very 

small may be found in the asssumption that the steel member is restrained by the shot- 

crete.   Significant bending of the steel member must involve significant changes in 

curvature.   This is not possible for a member restrained from radial movement by 

relatively unyielding rock.   Also, the rock properties are assumed to be unaffected 

by the excavation process.    This may not be true.   There can be considerable change 

in deformability of a rock mars due to excavation of the underground opening. 

It is not possible to assign ranks to the parameters.   It is clear however, that 

supports in lower elastic modulus rock will develop greater stresses.   High value of 

Poisson's ratio has the effect of redistributing stresses; decreasing the peaks and 

increasing the lowest values. 
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FIG. VI-19.   Influence of Poisson'c Ratio on Bending Moments 
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FIG. VI-20.   Influence of Poisson's Ratio on Axial Force 
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L sinR the lowest value, in the prescribed range, of Young's modulus and the 

minimum as well as the maximum values of Poisson's ratio, stresses for cases a, b, 

c, d (Figures Vl-l through Vl-'l) of different excavation profiles and blocking arrange- 

ments were determined.    Figures VI-2:t through VI-2(; show the distribution of longi- 

tundial stresses on critical section.   A study was also carried out for case (a) in 

which no load transfer through shear between shotcrete and the rib was allowed (ribs 

unbonded to the shotcrete).   Table \ 1-2 shows a comparison of forces for the cases 

(a) and (d).   It was seen that the bending moments in case (d) were greater than those 

in case (a) in all portions of the rib except the invert section.   Also the axial forces 

in these two cases are almost the same at the invert section but were different at 

other sections.   These differences are due to the restraint offered by the shotcrete 

to radial deformation of the rib and due to the transfer of stresses between the rib 

and the shotcrete through shear.   Results for the case of no load transfer through 

shear between the shotcrete and rib showed that the effect of bonding of rib to shot- 

crete on forces in the invert section is insignificant.   The axial forces in the other 

parts of the steel rib were greater for the case where load transfer through bond 

was permitted.   As would be expected, in case (c), where the tunnel crooS-section 

and the rock load weie unsymmctrical, the forces in the steel rib were also unsym- 

metrical.   The axial force had a minimum value at section 22 and increased towards 

the invert on both sides of section 22 to 1137 lbs. at section 1 and 913 lbs. at section 

31.   (Figure VI-14 gives location of these sections of the steel ribs). 

6.2.4.   Additional Studies 

Additional studies using values of Young's i iodulus less than the minimum of the 
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Section 

5 

16 

25 

case (a) 
Steel Rib Bonded to 

Shotcrete 
M (lbs.in.)   N (lbs.) 

case (a) 
Steel Rib Not Bonded 

to Shotcrete 
M (lbs.in.)    N (lbs.) 

-212 ■1325 

+252 + 605 

-814 + 843 

-313 

+263 

-718 

-791 

+ 158 

+848 

case (d) 

M (lbs.in.)   N (lbs.) 

-2341 -1003 

+ 659 

474 

634 

+ 892 

Table VI-2.   Comparison of cases (a) and (d) 

159 

mm**m mmm mm^mm -—•- -    •• 



F " "'■ ' ' mtmmm^mmmmm 11   iiiiiBp«!      ^m^mmm^rmcwm wmmmmmmm^**** 

range given in Table VI-1 were carried out to consider situationt. where the elastic 

modulus of rock in the vicinity of an underground opening may be significantly .educed 

by damage during excavation or deterioration with exposure over a long time.   The 

simulation Mmmod that after inslallation , f supports and placement of shotcrete, 

Young's modulus may reducr from an initial value of 1 x 106 pounds per square inch. 

Different terminal values of Young's modulus used were 0.75 x 10', 0.67 x 10 , 0.4 x 

106, 0.25 x 106 pounds per square inch.   PoiSiion's ratio was assumed to be 0.49 

throughout.   For case (a), the results are plotted in Figures VI-27 through VI-29. 

As might be expected, greater reduction in the ylastic modulus was associated with 

greater bending moments am' axial and shear forces.    For reduction of Young's modu- 

lus to 0.25 x lO^ psi, the maximum longitudinal stress would be over 20,000 psi (Flgi'rc 

VI-30).   Cons derlng that deterioration of rock is more likely to occur In cases b and d, 

analysis were performed corresponding to a reduction in Young's modulus from 1 x 10 

to 0.4 x 106 pounds per sqaa.-e inch.   Figure VI-31 shows the '.istribution of longitudinal 

stresses at critical sections for the cases a, b and d. 

Another study considered mechanism (d) (section 6.2.1).    ii this, using case b 

of "igure VI-2, the lone struts or blocking points were assumed to be one-dlmensionnl 

elements under a comprcsslve stress of 200 pound? per square Inch.   Young's modulus and 

Polsson's ratio of rock were taken to be 1 x 10" psi and 0.49 respectively.   The struct- 

ural steel member was determined to h^ve maximum axial force of 25,520 pounds at 

section 12, maximum shearing force of 1,604 pounds at section 8 and maximum bend- 

ing moment of 28,700 pounds inch at section 4.   The maximum longitudinal stress was 

2,750 psi In an element located In the flange of section 4.   Distribution of longitudinal 

and shearing stresses at critical sections Is shown in Figure VI-32. 
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FIG. VI-27.   Influence of Rock Deterioration on Bending Moment in Tunnel Supports 
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FIG. VI-28.   Influence of Rock Deterioration on Axial ForceR in Tunnel Supports 
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CHAPTERVII - DISCUSSION 

Two different lypea ol mechanical behavior of rock were considered.   One 

treati rock   ai an iecHropic elaatic-plastic nuiierial followinga Keneralixed Mohr- 

Coulonih law and in the other, the rock is an Isotropie linear clastic brittle material 

subject to fracture in accordance with Griffith's theory or the Modified Griffith 

theory.    These two types of behavior are representative of a wide class of rock 

materials. 

For analysis of stresses, deformation and progressive failure of nonhomo- 

genotlR fissured rock, the finite element method is the most suitable.    In the pre- 

sent research effort,   previous attempts at finite element modeling of the Iwc  types 

of material behavior (elastic-plastic and elastic-brittle) were critically examined 

and their limitations noted.   The present development eliminates several of the 

limitations.     Analysis of elastic-plastic   .'ock is based on Felippa's formulation of 

the incremental stress/incremental strain relationship.   This is more general than 

and includes Prager-Naghdi's,  Reyes' and Reyes-Deere's, and Yamada's formula- 

tions.    In numerical procedures, the incremental approach was favored because of 

the poor convergence characteristics of the so called initial strain and initial stress 

methods.    The procedures developed al'ow for incremental const ruction/excavation, 

arbitrary initial stresses, arbitrtry geometry and considerable nonhomojeneity of 

ol material.    Nonmonotonic loading associated with b'Snuential exc-avation was 
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properly allowed for. 

For analysis o   progressive failure of elastic-brittle rock, Griffith's tht^ry 

and the Modified Grif. it^   heory were used.    Previous work used the no tension 

approach which is incorrect and unrealistic.   In the present work, propagation  of 

fracture was considered as a sequential phenomenon.   The stress-redistribution 

associated with crack extension was allowed for as incremental cracking occured. 

Preexisting joints.whether open or closed,were considered.   In all previous develop- 

ment, the location and orientat'^n of fracture has to be known for a study of its pro- 

pagation.    In the present development, fractures can initiate at randomly oriented 

Griffith     flaws assumed to be pre-existem everywhere in rock.    Propagation 

follows initiation depending upon the Griffith criteria being satisfied. 

The mathematical models of material behavior were fitted into appropriate 

variational formulations of the incremental elastostatic problem for the case of 

progressive fracture of elastic-brittle rock and the incremental plasticitj   problem 

for the case of progressive failure of elastic-plastic rock.   Discretization of the 

governing functional by the finite element method gave the set of matrix equations 

leading to the problem solution. The procedural details of the finite element method 

are well known and therefore, were not reproduced in the present report. 

The procedures developed were verified against existing theoretical solu- 

tions and experimental data.   Excellent agreement was observed.   Some typical 
i 
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problems in rock mechanics and other areas were solved as   Uustrative applica- 

tions. 

The techniques developed are applicable to analysis of progressive failure 

through plastic yield or brittle fractu.e.   In either case, arbitrary initial stress 

state, arbitrary geometrical configuration, arbitrary sequence of excavation/con- 

struction, can be considered and a history of sequential failure or fracture obtained. 

The methods can a.low for pre-existing joints and fissuies and are applicable to 

comparative stability studies based on stresses and deformations associated with 

excavation operations, evaluation of structural supports and loads on underground 

supports,   safety analysis of openings, study of blasting effectiveness under certain 

conditions, evaluation of alternative mining sequences to obtain the safest construc- 

tion sequence, etc. 

The development was applied to a parametric study of the influence of rock 

properties on the stresses in steel supports using data supplied by the sp. nsor. 

The experimental  phase of the research program was concerned with develop- 

ment of modeling material so tnat materials with predetermined shape of the stress- 

strain curve could be produced in the laboratory.    It should now he possible to carry 

PU model tests on simulated rock to predict actual behavior at site as also to verify 

computational procedures.   Certain assumptions made in the theory of plasticity 

are somewhat arbitrary.    Model experiments would serve to verify them and permit 

evaluation of their influence on the significant parameters affecting stability of under- 

ground openings. 
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APPENDIX A.   GRIFFITH THEORY OF BRITTLE FRACTURE 

A.l.   The Original Griffith Theory of Brittle Fracture 

Two different failure criteria were proposed by Griffith,   They are the energy 

criterion and the stress criterion. 

A.l.l,   The Knergy Criterion 

An extended minimum potential energy theorem can be stated as: 

If an elastic solid body is deformed by certain specified boundary 
forces, the sum of the potential energy of the applied forces and the strain 
energy stored in the body will be either decreased or unaltered by the crea- 
tion of cracks with traction-free surfaces. 

Based upon this theorem and assuming the creation of new surfaces required 

only certain amount of surface energy, the failure criterion can be written as: 

The surface energy increased must be equal to the strain energy 
released such that the foregoing theorem is satisifed. 

Mathematically the statement can be expressed by the following equation: 

ifc    (W - S)   =   0 (A. 1) 

A-l 

where o   -   half length of the new cn.ck 

W  =   strain energy released 

S  -   surface energy required to form the new crack. 

Eq. (A.l) is considered as a necessary condition fDr stable fracture propagation. 

It is understandable that stress is highly concentrated at crack tip when the 

radius of curvature of the crack tip is very small.   The stress concentration nay be 

counted for the failure of material at certain stress level lower than the strength oi 
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the material.   One major drawback of this failure criterion is that the critical orienta- 

tion of the initiil flaw which happens to be one of the important roles in the fracturing 

process, can not be generally defined.    Following the energy criterion, the crock would 

propa-ate in the direction of the initial flaw.   Apparently, this is just a special case of 

the general fracturing mode. 

A. 1.2.   Stress C riterion 

The stress criterion can be derived from the solution for stress distribution 

around the crack.    Following Inglis (191^, the tangential stress on the boundary of 

an elliptic crack is given by (Fig. A.i) 

«Sj        I (oyo-g) sinh 2^0    + (^-Og)  [ e     0   cos 2 (ß - 17) - cos 2ß] i/ 

(cosh 2 fo- cos 27?) (A.2) 

where        ^ . 'H   ~ orthogonal curvilinear coordinates 

f0 - ^   on the crack boundary 

o-j, <T2   = major and minor principal stresses, positive in tension 

ß  = angle between the major axis of the ellipse and cr9 axis 

Eq. I A.2) has been obtained on the assumption that the crack is very flat such that 

(   ' ~   I exists. 
0 

From Eq. (A.2), it can be shown (Jaeger and Cook, 1969) that the maximum 

tensile stress at tre crack tip is approximated by 

max i— [o-j cos2 ß • o-^ sin2 ß   -   ((ri    cos2 ß . o-g   sin2 ß)'] (A 3) 

A-2 
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The condition    der /ap  =  o yields 

COS 2ß    -   _    (0.1  _ (rg)   /    (o-j    f  ^j 

which riefines ß associated with trmaxt provided  ^ ^ o-2 . 

Eq. (A.4) also implies 

(A. 4) 

<rl   t   3 (r2   ^   0   if o-^o-g 

Substituting (A. 4) in (A. 3) we obtain 

(A.5) 

'Wx  :    -^i"^     /  4   ^o^l ' (T2) (A.6) 

Let o-t denote the uniaxial tensile strength of the material, and consider two 

extremal cases: 

(l) "max = 2(ri/^owhen ß is "^ equal to zero in Eq.(A.3).and 
the negative value of the square root is used to obtain the 
largest valut of (rmax.   o-j is tensile since <rl , 3<T2  A O 

and o-,   > (r„      Then o- e      2 a-      2(r   or a-   - <T       n 1 2 max  So i     ^«rj or «TJ. - o-j     u. 

(ti) ^ax  == i-0!      when    ß       i 

(A.7) 

Mathematically a2 may not be tensile since Eq. (A.5) is satisfied alright, but physically, 

failure could not happen under this single condition.   Therefore this becomes a limiting 

condition for Eq. (A.6).   It then follows from Eq. (A. 6) that 

or 

2 «rt        (o-j - <r2)     / 4 (^ , crj 

(0ri " 'S^ "   8 % ((ri + <r3) 0 (A.8) 

Eqs. (A.4), (A.5), (A.7) and (A.8) constitute the failure criterion.   They 

summarized as follows: 

are 

A-3 
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(I) 

(ü) 

(Tj - 0-2 >0 

3 (r1 i (r2   > 0 

o-t   -o-j    ^   0 

P        ^ 

.? (Tj ♦ (r2   <   0 

at -o-ng  0 

(A. 9) 

where 1 2 
*"    '7 ((ri"(r2)   / ((ri ' ^ > 0 

cos2ß        - J (o-1 -<r2)   /   (o-j t o-2) 

A.2,   Moai»cation of Griffith Theory 

The original Griffith theory did not allow for closing of crack subject to 

compressivc stresses.   When a crack closes, sliding may occur along the crack 

surfaces.   A modification permitting crack closure was proposed by Brace (1960) 

and McClintock and Walsh (1962) and was further developed by Murrell (1964) and 

Hoek and Bieniawski (1965). 

The modified theory is based on the assumption that the crack would close 

when the stress normal to the plane of crack is in compression and exceeds some 

critical compressive stress.   After crack-clo <ure, stresses are carried over the 

crack plane through interface friction.   The material strength is increased and 

stress concentration at crack tip is reduced. 

' 

A-4 
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I 
The conditions are stated as 

n       0     if     I'yl 6 I'd o--   = 

and trn   =     _   i^-^l  if     ay > ^ (A. 10) 

The interface friction and the effective interface friction are given by 

and 

where 

f -^n      ^   I ^y-^cl  • if    (rn>(rc 

xy " Tf       Txy   ^ i"y 

j" stress normal to the crack 

o-     -  effective normal stress n 

(rc       critical i )rmal stress 

xy 

coefficient of friction 

shearing stress along the crack 

(^.lla) 

(A. lib) 

Following the similar procedure for deriving the stress criterion and making 

use of the condition 
d*- 
ov 

0 , we find 

' 2((rc ^o" ^Z  (  ^o    *   ^  ' 

max 4- (^c • V7 
to 

T2) 
2^t 

and 2a-   f   ((r„ / o-.   +   1) 2 

(A. 12) 

(A. 13a) 

(A. 13b) 

Eq. (A. lib) can be rewritten as 

2 2 T   =  -J   («r, - o-«)   sin 23 t n (o-   cos   ß   ^  (r2 sin   ß - IT ) 

The condition b r/'i ß  =   0 gives 

tan 2ß   ^   -    —    , provided  o-     ^  ""r, 

(A. 14) 

(A. 15) 

A-5 
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r»#j 

Substituting Eq. (A. 15) in Eq. (A. 14) 

T   =   "2    (""j - '2)   ( 1 + M2f+  /i (o-j + o-2) - 2( (- -^) 

Eliminating r between Eq. (A. 13b) and Eq. (A. 16) 

1 
.2J C^! -<r2) {I < n   p n ((r1 f (r2)   -   4 (rt (-1 + I)2   f 2^ a 

If (rc is negligible, Eq. (A. 17) reduces to 

(A. 17) 

i 

(o-j - <r2) ( 1 + ^2)2+  M («Tj ^ <r2)   =4 <rt (A.i8) 

Eq. (A.) 8) coincides with Mohr-Coulomb criterion if 2 (rt =T, where T is the co- 

hesion of the material.   Eq. (A. 17) indicates that the modified criterion is of three- 

parameter type and Eq. (A. 18) gives a linear relationship between the principal 

stresses. 

Another form of modified criterion was suggested by Hoek and Bieniawski (1966) 

and Bieniawski (1967): 

oj        «rj    (VfT^    fM)   /    ( Vl ' /i2 - n)  ]-<r'c (A.19) 

where (r'c -   unldxial compressive strength of the material.    Eq. (A. 19) has the 

advantage of using <r'c which Is much easier to measure than o-j. . 

A-6 
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Fig. A-l.  Griffith Crack 
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a.  •* 

3^,   +   ^2   =   0 

FIG.  A-2.   Griffith Criterion in a   - a   Space 
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Fig. A-3    Mohr's Diagram for Griffith 
and Modified Griffith Criteria 
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FIG.  A-4.   ANGLES RELATED TO CRACK PROPAGATION 

aj , a^    stresses in reference configuration 

as , <7n    stresses referred to orientation of Griffith flaw 

as > a 'n    stresses referred to orientation of crack extension 
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APPENDIX B.   DEVELOPMENT OF TEST MATERIAL 

B. 1.   The Experimental Program 

The experimental program was Intended to design laboratory materials which 

would simulate the stress-strain behavtor of a wide variety of rook types.   Considera- 

tion would be „ven to brittle, plastic and strain hardening response ,„ both undralned 

and drained pore water conditions.   Since the theoretical solutions would be expected 

to operate .1th any consistent level of engineering parameters for both models and 

prototypes, it was not necessary to develop a true rock-llite material.   Instead, soils 

stabilized with additives such as hydrated lime could be used.   Materials of this type 

may be constructed so as to show failure response ranging from elastic brittle to 

elastic-work hardening plastic.   The variation may come about as a function of the 

consolidation pressure or of additive concentration.   A special reason for usir, soil 

to model rock behavior wea that the testing and modelling could be done using standard 

soil mechanics laboratory ecuipn.ent with considerable saving in equipment costs and 

development time. 

B-2.   The Study Material 

The «udy material wasabrown silt from the lacustrine deposits south of Cleveland, 

Ohio.   The oven-dried soil was combined with either hydrated Hme or Portland cement. 

After adding water, the soil was mixed and placed in a vacuum extruder.   The auger 

expelled the sol! in a saturated condition through a final die, ready shaped for testing. 

Samples were seaied in four layers of piastic and wax and then cured in a humid room 

for period of 4 to 6 weeks. 

B-l 
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A scries of consolidated-drained triaxial tests indicated that a 4% lime-silt 

mixture mi^ht have the desired properties.   As shown in Figure B-I, the full range 

of stress-strain response from elastic-brittle to strain nardening is available as a 

function of consolidation pressure.   The stress levels are within the usable range of 

the plane strain device or of modelling applications.   The testing program was term- 

inated before plane strain tests could be conducted.   The different boundary conditions 

In that test might have required modifications in the mix. 

B.3.   The Plane Strain Device 

A plane strain device was purchased from the Massachusetts Institute of 

Technology .oils laboratory.   It has been shown to be satisfactory for the purpose of | 

the tests intended.   A rectangular sample 3.5 inch x 3.5 inch x 1.4 inch is restrained 

so as to allow the application of vertical stress by means of a piston, control of stress . 

or strain in an orthogonal direction and the measurement of stress in the third ortho- 

gonal direction against a fixed plate.   The system is designed to operate under a hydrau- I 

lie back-pressure and measure pore-pressures during the test.   Schematic drawings in I 

Figures B-II to B-IV give details of the device and sho-v elements of the sample loading I 

and arrangement.   A complete description of the device and its use are given by Bovee j 

and Ladd (1970).   Due to a curtailment of the scope of work, no tests were carried out 

under the current research program. 
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