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ABSTRACT

The effect of rocket exhaust plume impingement on scnsitive vehicle
surfaces is an area of continuing concern in the design of spacecraft, mis-
siles, and reentry vehicle systems. Specifically, the contamination and
subsequent degradation of functional surfaces, such as solar cells, thermal
control coatings, optical lenses, optical view ports, and highly reflective
surfaces, have resulted in compromises of mission effectiveness. The
objective of this study was to develop a single computer code capable of
predicting the production, transport, and deposition of engine and plume
contaminants, and the change in absorptivity, emissivity, reflectivity, and
transmissivity of a functional spacecraft surface, such as thermal control
coatings and optical view ports and lenses, resulting from plume contami-
nant deposition or mechanical abrasion (sand blasting). Both bipropellants
and monopropellants have been treated. Surface chemical reaction with a
deposited plume contaminant layer was not treated. Analytical models and
computer subprograms have been developed and integrated to form the

CONTAM computer program, Complete User's manuals for each of the

computer subprograms as well as the CONTAM program are included in
this report, aloag with details of the analysis and numerical methods. A
sample case illustrating the CONTAM program's capability is presented.
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Section |
INTRODUCTION

The effect of rocket exhaust plume impingement on sensitive vehicle
surfaces is an area of continuing concern in the engincering design of space-
craft, missiles, boosters, and RV systems, Spoecifically, the contamination
and s;ubsequent degradation of functional surfaces, such as solar cells,
therinal control coatings, optical lenses, optical view ports, highly reflective
tmirrored) surfaces, and secalants, have resulted in compromises of mission
effectiveness.

To illustrate the deposition of contaminants problem, several photo-
graphic examples of contamination occurring as the result of actual bipropel-
lant engine firings will be presented, These examples were taken from a
series of contamination experiments conducted by MDAC under the MOL
program,

Figure 1 compares a control surface (no impingement) with a surface
which has been exposed to normal impingement by the exhaust plume of a
liquid bipropellant engine (MMH-NTO). FEvidence of surface damage is
apparent, and was postulated to be caused by condensed droplets in the core
of the plume flow.

During a vacuum chamber subscale thrustor test by MDAC at AEDC,
a 1-1b thrust Marquardt MMH-NTO rocket engine was fired horizontally so
that the exhaust products would impinge upon a vertically oriented test panel
containing scveral siurface specimens, Surface specimens included thermal
control coatings, polirhed metal, and specialized glass lenses.,

During pulse-mode operation of the motor, copious quantitics of brown-
ish, viscous liquid were observed about the nozzle lip and upon the lower
external surface of the motor. This liquid exhibited considerable activity,
bubbling while suspended from the motor lower external surface apparently
due to some boiling and/or decomposition phenomenon.  An impingement
pattern of sorts was visible upon the test panel that appeared symmetrical but
did not agreec well (qualitatively) with theoretical predictions of the gas-phase
impingement region. The region within the symmetric impingement pattern
was coated with viscous liquid and/or solid material that increased in quantity
with the number of pulses to which the panel was exposed; the coloration of
this material was difficult to identify, but was definitely darker than the
panel. Above and b.low the symmetric impingement region liquids were
splattered in very large quantities, particularly near and below the rocket
motor where semisolid formations of brownish color were noted; deposition
of this variety seemed randomly distributed and was observed fore and aft of
the nozzle exit plane. The amount of liquid generated by the rocket motor
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varied inversely with pulse duration, with maximum amount generated
during the 16-msec '""minimum impulse" pulses, Thermal control coatings
exposed to these exhaust products were visibly coated and :uffered losses in
reflectance., Similarly, transparent samples suffered transmittance losses.
After certain periods of liquid buildup upon the panel, brownish liquids ran
down the panel surface. During long-duration firings in excess of several
hundred seconds, a well-defined symmetric impingement pattern was noted
upon the panel. It was difficult to discriminate between liquid and solid
formations at this point. The symmetric impingement region gained further
definition by virtue of a continuous ridge of solid and/or viscous liquid
deposits at the symmetric impingement region boundaries. Postiest micro-
photography revealed that glass surfaces were coated with micron-sized
droplets, even though the incidence angle of exhaust products was (theoreti-
cally) very small or nonexistent. Deposits upon the panel and surface
samples displayed phase instability at standard temperature and pressure
(STP) conditions, changing from solid to liquid to solid when disturbed
physically or environmentally, When the chamber was repressurigzed to
facility ambient conditions, much of the material deposited upon the panel
became less viscous and ran off the panel.

Figures 2 through 4 show some of the deposits observed after various
duty cycles,

This report will present the results of a 27-month study for the Air
Force Rocket Propulsion Laboratory to develop an analytical model and com-
puter program system for the prediction of spacecraft functional surface
contamination effects caused by interactions with liquid bipropellant rocket
exhaust plumes. Emphasis has been placed on development of computer
codes to describe the complex two-phase combustion gas-dynamic processes
occurring in a bipropellant combustor and the thermodynamic and kinetic
nonequilibrium processes occurring during a two-phase nozzle and plume
expansion. The operation of monopropellant hydrazine (N2Hj4) combustors
has also been included in this study.

This report is divided into six discrete parts: the main body of the
report and five appendixes. In the main body, emphasis is placed on describ-
ing the operating characteristics of the integrated Plume Contamination
Effects Prediction Computer Program, CONTAM, A description of the
program, User's Manual, and sample case run illustrating the ability of
CONTAM to predict contaminant production, transport, and condensation are
presented.

Each of the subprograms of CONTAM are described in detail in a
separate appendix as follows:

Appendix A TCC Transient Combustion Chamber Dynamics
Computer Program (a bipropellant contam-
inant production model)

Appendix B MULTRAN Multiphase Nozzle and Plume Transport
Computer Program (a multiphase nozzle
and plume flow field characterization model)
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(a) HORIZON SENSOR LENS
SHOWING DEPOSITS

(b) BOX MAGNIFICATION OF (a)

Figure 4, Effect of Thrustor Exhaust Continuous Long-Duration Firing on Glass Sample
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Appendix C KINCON Nonequilibrium Chemical Kinetics and
Condensation Computer Program (a multi-
phase reacting gas streamtube model)

Appendix D SURFACE Deposition and Surface Effects Computer
Program (a plume impingement, deposition,
abrasion, and surface contamination effects
model)

Appendix E N2H¢ Monopropellant Combustion Chamber
Dynamics Program

In addition to the sample case in the main body of the report, each
appendix contains a sample case illustrating additional capabilities of the
particular subprogram, Detailed operating information for each subprogram
is contained in the User Manual section of each appendix.

This report has been loose-leaf bound to facilitate updating of the
various User's Manuals, either by MDAC or other Government and industry
users. The authors would greatly appreciate comments, corrections, addi-
tions, and suggestions for inclusion in future updates to be distributed to
all users, Please send comments to:

R. J. Hoffman

A3-833-BBBO-28

McDonnell Douglas Astronautics Company
5301 Bolsa Avenue

Huntington Beach, California 92647

Qualified persons may obtain copies of the CONTAM computer program
by a addressing a request to:

AFRPL/DOE
Edwards AFB
Edwards, California 93523



Section 11
OBJECTIVES AND SCOPE

1. OBJECTIVES

The objective of the study was to develop a single computer code capable
of predicting the production, transport, and deposition of engine and plume
contaminants and the change in absorptivity, emissivity, reflectivity, and
transmissivity of a functional spacecraft surface, such as thermal control
coatings and optical view ports and lenses, resulting from plume contaminant
deposition or mechanical abrasion (sand blasting). Surface chemical reaction
with a deposited plume contaminant layer is not treated.

The study was divided into five main areas:

(1) Improvement of predictive technology for the characterization of
reactive, multiphase rocket nozzle and exhaust plume flows con-
taining propellant contaminants and nonequilibrium combustion
products, including condensables,

(2) Continued development of an analytical model to predict the produc-
tion of contaminants in bipropellant rocket-engine combustion
chambers.

(3) Development of a semiempirical model to predict changes in surface
properties of functional spacecraft surfaces (resulting from deposi-
tion or abrasion).

(4) Integration and coupling of existing computer programs and newly
developed computer programs to achieve a systems engineering
design tool for the prediction of contaminant effects on spacecraft

surfaces,

(5) Verification of the contamination prediction model by comparison
with experimental data.

2, SCOPE

The study was restricted to the developnmient of predictive methods for the
production, transport, and deposition of contaminants from hydrazine mono-
propellant and hydrazine-family fuels in combination with nitrogen tetroxide
and to changes in thermal and optical surface properties of common thermal-
control paints and optical lenses. The model development has considered
RCS engines in the 5- to 600-1b thrust range; the validity of the model for
much larger engines has not been assessed.

Preceding page blank




SECTION III
MODEL DESCRIPTION

Section IV describes the CONT AM plume contamination effects
prediction computer program system developed during this study. The ana-
lytical models associated with each link of the CONTAM program are
discussed in detail in the appropriate appendix. In this section, a summary
description of the analytical models employed in the CONTAM system is
given.

The general objectives of the study were to construct a single analytical
model capable of predicting the effects of bipropellant and monopropellant
plume impingement contamination on optical and thermal spacecraft surfaces
based only on a knowledge of available engine operating conditions, engine/
spacecraft configuration geometries, and spacecraft orbital parameters. To
this end, it was necessary to construct a model for the production of contam-
inants in bipropellant and monopropellant combustion chambers (unburned
propellants ejected through nozzle throat); transport of these contaminants by
the expanding gases in the nozzle and exhaust plume; chemical nonequilibrium
composition of plume species; condensation of plume species in the expanding
plume; abrasion damage and deposition resulting from plume impingement;
and, finally, the changes in thermal and optical surface properties, absorp-
tivity, emissivity, transmissivity, and reflectivity resulting from contam-
inant deposition and/or abrasion damage. In addition, the model considers
the effect of engine duty cycle and spacecraft radiant energy transfer on the
rate of contaminant deposition over an entire mission profile.

The feasibility of constructing a valid model, considering all of the
above aspects, relied heavily upon the existence of several models and com-
puter codes which could be used as a basis for construction of the overall
contamination effects prediction model. Several new portions of the model
and computer subprograms were developed. Figure 5 schematically illus-
trates the computation flow logic and the related computer codes. Details of
each computer code can be found in the appropriate appendix.

1. COMBUSTION CHAMBER CONTAMINANT PRODUCTION
(See Appendixes A and E for further details)

Unburned propellant and intermediate products of combustion (liquid
phase) ejected from the combustion chamber are considered first as a source
of contaminants. Referring to Figure 5, the Transient Combustion Chamber
(TCC) Dynamics Program, developed at MDAC, is used to calculate contami-
nant production from bipropellant thrust chambers. The contaminant produc-
tion from monopropellant hydrazine thrust chambers is calculated using a
modified version of the program developed at UARL by A, S. Kesten, et al
(References 1 and 2).

Preceding page blank "



TCC PROGRAM

Contaminant material is produced by the combustor of a bipropellant
rocket engine when unburned propellant vapor passes through the throat,
when partially burned propellant droplets pass through the throat or when
fuel and oxidizer droplets strike a cold chamber wall to form a liquid film of
hydrazine nitrate which i moved downstream by chamber gas shear forces.
When the unburned propellant or intermediate reaction products are ejected
from a rocket engine, they may be transported in the plume and deposited on
nearby sensitive spacecraft surfaces, changing their thermal or optical
properties.

The sequence of combustion related events in the rocket engine combus -
tion chamber is calculated by numerically integrating the differential and
algebraic equations which describe the basic processes of the feed system,
injector, and combustion chamber. Figure A-1 in Appendix A is a drawing
of the rocket system.

a. Feed Systems

The feed systems are approximated with single lumped parameters
representing the inertial and resistive aspects of the feed system, the rate
of acceleration of flow being proportional to the amount that the instantaneous
pressure drop exceeds the instantaneous pressure losses in the system. The
opening and closing of the valves arc modeled by varying the feed system
resistance as a function of time. Flow rcversals or initial start conditions,
which result in partially or fully gas-filled feed lines, are simulated by
varying both the resistance and inertia of the feed system as functions of time.

b. Atomization

The atomization process is calculated for one of several modes,
depending on the chamber pressure. If the injected propellant is sufficiently
supersaturated, the stream is presumed to flash-atomize. The flash-
atomization process resembles the gas-atomization process, with the gas
being supplied by the explosive growth of bubbles in the supersaturated
stream. The flash atomization process gives relatively fine droplets, on
the order of 40 microns in diameter,

When the chamber pressure is sufficiently high that the injected
propellant streams do not flash, the atomization occurs by the impingement
of the fuel and oxidizer streams. The median droplet diameter is obtained
from an equation based on the orifice diameters. injection velocities, rela-
tive momentum of the streams, and physical properties of the propellants.

When only one stream is being injected during a start transient,

there can be no impingement and droplet formation is calculated based on
singlestream breakup.

The injected propeliant moves from the injection point to the
impingement point along the direction of injection. After impingement, the

12
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stream moves in the direction of the resultant angle. The stream moves in
this new direction until its atomization is complete, after which its two-
dimensional trajectory is determined by the aerodynamic drag forces.

c. Chamber Calculations

The vapors or gases that fill the combustion chamber are derived
from several sources: vapor from flashing propellant streams; material
evaporated from propellant droplets; evaporation of material deposited on the
combustion chamber walls and from the ignitor if one is used. Fuel ana oxi-
dizer vapor from these sources are axially cumulated in the chamber at each
time interval, while the amounts calculated to flow through the nozzle are
subtracted. This gives current values for the chamber-gas mass and stoichi-
ometry, and the axial addition rate of mass. These are used to calculate the
pressure, temperature, molecular weight, and velocity distribution in the
chamber. The simplifying assumption is made that at any instant the pres-
sure is constant throughout the chamber, and the gas is well mixed. Hyper-
golic ignition is based upon global vapor-phase chemical kinetics, and
extinguishment is based upon a quenching distance correlation,

d. WallCalculations

When a2 computed propellant droplet moves radially to the location
of the combustion chamber wall, its fuel or oxidizer mass is added to the
axial distribution of fuel or oxidizer previously deposited on the chamber
wall. In calculating the axial and tangential velocities of the liquid material
on the wall, each axial element of fluid is treated as an inertial free body
acted upon by shear from the wall and gas, spin-induced forces, mass and
momentum increments from the impinging droplets, from evaporation, from
entrainment, and by convection at the upstream and downstream boundaries
of the element. Evaporation.is calculated based upon heat transfer from the
gas during the firing, and by heat transfer from the wall coupled to vacuum
evaporation during the '"off" periods.

The heat transfer and entrainment associated with each axial seg-
ment of wall is calculated using the correlations of Gator, with corrections
being made for mass transfer and rippling. The shear stress and heat trans-
fer coefficients are correlated with local Reynolds numbers which are reeval-
nated at each axial segment of the chamber each time interval.

For ease of visualization, many of the calculations may be presented
as computer plots or computer produced motion pictures.

e. Comparison with Experimental Results

Contamination from a conventional bipropellant RCS engine takes one
or more of three forms: reacted or unreacted propellant vapor; incompletely
burned droplets expelled through the throat; and unburned propellant that
impinges upon the chamber wall and is eventually ejected from the nozzle lip.
Figure 6 shows typical values for the amounts, directions, sizes, and
velocities of the material making up these three forms for one particular
small engine and one particular duty cycle.
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The vapors of fuel, oxidizer, or combustion products emitted during
preignition, ignition, steady state, or postcutoff dribble periods will form
plumes that can impinge upon various surfaces with the possibility of deposi-
tion and in-situ reaction. Contamination from this source usually takes the
form of a hazy deposit of smokelike particles (fairly uniform in size, 1to 2
microns).

The fuel and oxidizer droplets, which are too large to burn
completely in the chamber and which are centrally directed, will pass
through the nozzle throat., These particles will be accelerated by aerodyna-
mic forces both upstream and downstream of the throat, and can attain quite
high velocities, which gives this class of particles the capability of doing
considerable damage by abrasion,

The third form of contamination is the propellant that impinges upon
the chamber wall and is then dragged downstream under the influence of
shear forces from the combustion product gases, If this wall-film material
is able to move to the nozzle lip without being thermally destroyed, it will
be thrown off as large droplets in directions roughly normal to the axis of the
chamber. This material is generally dark colored and shows the cffects of
thermal decomposition.

Figure 4 shows a horizon sensor lens exposed to wall-film conta-
mination from an RCS engine operaied in a vacuum chamber.
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Quantitative experimental data on contaminant production are still
rather scarce. However, two recent papers have been published describing
contaminant production from pulse-mode firings of the 22-pound Marquardt
R1-E engine (References 3 and 4). This engine is very similar in design,
but larger than the 5-pound Marquardt R6-C engine, which has been
thoroughly parametrically analyzed, using the TCC program. Many aspects
of the experimental firings of the R1-E engine agree with the trends calcu-
lated for the R6-C engine.

Martinkovic found that contaminant production was a function cf
injector temperature. His measurements for the temperature trend of the
R1-E engine show good agreement with our calculations for the R6-C engine
as shown in Figure 7, The absolute values for contaminant expelled as wall-
film were also in good agreement. The Martinkovic 22-pound R1-E engine
experimentally produced 0. 772 mg of wall-film per 17 msec pulse at 75°F;
i.e., about 1 part per thousand of total injected propellant ended up as wall-
film contaminant. Our c:liculations for the 5-pound R6-C engine indicated
that 0.33 mg of wall-film would be produced for each 17 msec pulse at 70°F;
i.e., about 2 parts per thousand of total injected propellant. This is in
agreement with the well-known trend toward increased contaminant produc-
tion with decreased engine size.

Other indications of the accuracy of the TCC program are to be
found in its excellent predictions of low-frequency combustion instability,
start transients, popping amplitudes, spiking tendency, and pulse-mode
specific impulse or total impulse versus pulse-width. These are discussed
in some detail in Appendix A.
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N2 H4: Monopropellant Combustion Chamber Dynamics Program
(See Appendix E for further details)

Contaminant production data is generated for monopropellant engines by
the program N2H4, based on the transient and steady-state programs
originally developed by Kesten, Smith, and Smith of UARL (References 1
and 2) and modified by F. B, Cramer of MDAC. In monopropellant engines,
"normal'' operation will produce primarily NH3, N2, H2, and N2H4 vapors,
However, during cold starts or ''chugging', droplets of liquid hydrazine will
also be formed as a contaminant.

The original UARL program only treated the smooth vapor phase decom-
position problem. MDAC modifications have extended the program to esti-
mate '"hard start'' characteristics as an alternative option. In particular, the
peak pressure, time to the pressure peak, mass of liquid hydrazine eje ‘ted,
and the masses of the vapor constitueats are printed out. This program will
not calculate beyond the start transient when calculating a cold (hard) start:
however, even in its present form, this computer program gives information
when cannot be obtained any other way.

The smooth monopropellant decomposition calculations are carried out
using a slug flow model. That is, the vapor (vaporization is assumed to
occur instantaneously) formed upon contact with the catalyst bed is modeled
one dimensionally.

The MDAC N2H4 monopropellant ""hard start' subprogram is based in
large part on curve fits of experimental data obtained from various engine
firings. At present no monopropellant program will effectively follow a
cold start after the initial pressure surge. The current MDAC program does
provide working information about this initial pressure peak and then shuts
down with a printout of the estimated start transient operational
characteristics.

2. CONTAMINANT TRANSPORT (See Appendix B for further details).

Having defined the average amount cf liquid phase contaminant ejected
from the combustor for each pulse segment (see Subsection III, 1) the two-
phase nozzle and plume flow is then computed for transient and steady state
pulse segments, using method-of-characteristics computer programs
described by Nickerson and Kliegel in (Reference 5) and modified by Gabbert
and Hoffman (Reference 6). In Figure 5, these programs are identified as
TD2 and TD2P. Variations in chamber pressure, chamber temperature,
droplet velocity, and droplet-size distribution produce considerably different
two-phase 10w fields for each of the pulse segments (preignition, ignition,
steady state, and tailoff) and therefore require a unique analysis for each
pulse segment,

Because several contaminant sources originate upstream of the nozzle
exit plane (for example, unburned propellant and nonequilibrium condensed
fuel nitrate species), it is necessary to obtain a complete characterization
of the multiphase flow at the nozzle exit, including droplet/particle
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distributions (size, velocity, temperature, and species) as well as an
axisymmetic distribution of the gas-phase flow, The extreme radial com-
pression of droplet/particle laden regions indicates the need for accurate
information concerning the combustor and nozzle transport of condensables
as input to the plume analysis.

Starting at the convergent nozzle sections, up to 10 droplet groups are
considered as an approximation to the distribution of condensed phase
material produced in the combustion chamber. The concentrations, distri-
bution, and trajectories of each droplet/particle group are considered at each
mesh point in the axisymmetric method-of-characteristics flow analyris
throughout the entire nozzle and plume. Fully coupled momentum exchange
(drag) between the gas and droplet/particle phase is considered, including
rarefication effects. The results (output) of this program set provide the
initial conditions (input) for the impingement model and subsequently, the
surface effects analysis,

While the transport model will provide information about the dynamic
condition and flux of species arriving in the vicinity of a functional surface
submerged in an exhaust plume, the kinetic/condensation model and the
deposition model are required to provide information regarding the chemical
composition and amount of plume exhaust material actually deposited on the
submerged surface.

3. CHEMICAL KINETICS AND CONDENSATION IN THE
NOZZLE AND PLUME FLOW FIELD (See Appendix C
for further details)

In addition to unburned propellant droplets, many liquid-bipropellant
exhausts contain condensed phases as an important contaminant source. The
primary condensables in bipropellant plumes are thought to be H20 and
nitrate salts of the fuel. One of the major study objectives was to review
existing data on plume condensables and to model the mechanism of conden-
sation analytically in rocket nozzles and exhaust plumes. A thermodynamic
nonequilibrium nucleation and condensation model has been developed and is
discussed in detail in Appendix C. The MDAC Streamtube Chemical Kinetics
and Condensation Computer Program, identified in Figure 5 as KINCON, has
provided the framework for development of this portion of the model. A pre-
liminary study, using the combined chemical kinetics and condensation model,
was performed to size condensation characteristics in the nozzle and plume,
corresponding to typical engine operating regimes (both transient and steady
state). The relative effect of condensation as a contaminant source, relative
to combustion chuamber sources, is yet to be determined, although it is
thought to be an important factor in contamination of surfaces beyond the
central core of the plume where heavy, unburned propellant droplets seem
to dominate.

The modeling of this phase of the contaminant-production problem

requires (1) the chemical kinetic analysis of the expanding exhaust gases and
(2) a realistic analysis of the condensation process.
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a. Chemical Kinetics Model

The chemical kinetic processes in the nozzle and plume are calcu-
lated along streamlines utilizing the MDAC KINCON computer program. The
KINCON program possesses several unique features which make it well
suited for analyzing the nozzle/plume chemical kinetics, Thesec features
include (1) a fully implicit numerical integration scheme that permits the
rapid integration of the full set of kinetic equations (up to 40 species and 150
reactions) with complete numerical stability; (2) capability to treat the
addition (or subtraction) of mass, momentum, and energy to the streamtube
bv specifying the specific rate as a function of streamtube distance;

( 1 reaction-rate screening capability, which identifies reactions and species
that are unimportant and need not be considered in the calculation of a
specific species concentration or fluid property in any particular application.

Principal assumptions inherent in the use of the streamtube kinetics
model include the following: (1) the flow is one-dimensional, steady, and
inviscid: (2) each component of the gas mixture is a perfect gas: and
(3) internal degrees of freedom of each component are in equilibrium,

bh. Condensation Model

It is well known that condensation of a rapidly expanding supersonic
flow does not occur at the point in the flow where the gas equilibrium tem-
perature reaches the saturated vapor temperature-of the particular species
in question. Instead, condensation is delayed and eventually occurs as a
"condensation shock' or condensation zone downstream of the equilibrium
condensation point, Although this phenomenon is not thoroughly understood,
it may be caused by a number of factors, including (1) lack of nucleation
material on which condensables niay form and (2) inability of the surrounding
gas phase to readily remove heat from the condensing material.

To treat condensation effects in rapidly expanding gases, a kinetic
model of the condensation process utilizing the classical liquid drop theory
was adopted. The condensation phenomenon, as described by this model,
occurs as a result of two distinct processes: (1) nucleation and (2) droplet
g-owth,

As saturated vapor conditions are reached in a rapid expansion,
sufficient surface area will not usually exist for the condensation required i{o
maintain equilibrium (P, = Pyg), and a supersaturated condition results
(P, > P,.g). The nucleation process (spontaneous self-nucleation) occurs in
the expanding supersaturated vapor and involves the clustering qf vapor
molecules to give rise to very small nuclei (radius of 10 to 100 A), Orly
nuclei reaching the critical drop radius r* can exist and grow. The critical
drop size is determined from thermodynamic equilibrium considerations and
represents the size at which the drop has an equal probability of either
evaporating or growing.

Figure 8 illustrates the effects of condensation on the flow static

pressure and temperature. Foliowing the saturation point, the vapor con-
tinues to expand along the frozen gas isentrope until a suitable number of
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nuclei arc formed and the droplet growth process begins. At this point, the
effects of condensation are observed. Both the static pressure and tempera-
ture increase rapidly with the temperature approaching the saturated-vapor
temperature. The expansion then continues along a different isentrope
corresponding to a new gas mixture,

4., DEPOSITION, ABRASION, AND SURFACE EFFECTS
(See Appendix D for further details)

An analytical model for the prediction of plume contaminant deposition,
surface abrasion due to liquid and solid particle impingement, and changes
in thermal and optical surface properties due to deposition or abrasion has
been completed.

Development of a surface effects model was based heavily upon experi-
mental data relating plume species deposition and mechanical abrasion
characteristics to changes in @ and ¢, in the case of thermal surfaces; and
changes in transmissivity and reflectivity, in the case of optical surfaces.
Such data are scarce for realistic plume-deposition products, such as
MMH-nitrate, although recent experiments have provided some data.

The first step in developing a model to predict surface property changes,
based on a computed amount of abrasion or deposition, is to examine the
possible interactions of plume material with spacecraft surfaces. The model
developed accounts for plume-induced changes ina and ¢ on thermal control
surfaces, such as heat-rejection radiators and optical surfaces.
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Figure 9 is a sketch of the possible interactions with both coated and
uncoated portions of a radiator surface.

a. Solar Absorptivity

The absorptivity of the system is primarily determined by the
characteristics of the external surface upon which the external radiation
falls. The average or net absorptivity a et of the radiator can be taken as
the mean of the absorptivity of each type of absorptive surface o times the
area of each type Aj. Generally, oj is a simple term, easily determined or
calculated, but in some instances, such as a transparent deposit, terms
related to the thickness and internal parameters of the deposit become
important.

b. Hemispherical Emissivity

When contaminant deposits are thin, it is assumed that they offer
little resistance to heat flux through the layer., The emissivity of the surface
is assumed to be that of the contaminant layer. For thick layers of deposits,
the impedance to heat flow through the layer is also modeled.
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¢. Surface Abrasion

Abrasion can occur on either or both of the coated or uncoated
portions of the radiator surface. Abrasion of the radiator coating affects
the heat flux in a step-function fashion. If only the thermal-control coating
is abraded, the effect is simply that of decreasing the original coating thick-
ness without affecting the absorptivity or the emissivity. Ifthe abrasion
proceeds far enough, it will penetrate through the coating and expose an area
of the metal plate subhstrate. The abrasion of the metal surface, both that
originally present and that exposed by removal of the coating, will alter its
apn and €4 significantly. The abraded area of the metal will consist of two
parts, the part that was originally bare and now abraded, plus all that was
exposed when the coating is abraded away. It is assumed that in any area
where the abrasion is sufficient to remove the coating, the flow field will
attack the metal at once.

d. Material Deposition

A deposit of material from the plume, randomly loca’ :d on the
exterior of the spacecraft radiator, acts simply like an additional coating
through which the heat must be transferred. The deposit may be transparent
(crystalline, glassy, or liquid), or it may be opaque due to either its basic
nature or to particle sires,

Opaque deposits affect the heat flux in a manner identical to the
thermal-control coating, The situation can become more complex if the
deposit forms a transparent film. Such films are not completely transparent
at all wavelengths, and therefore a complex interaction occurs.

Radiant energy impinging from the environment is partly reflected,
partly absorbed, and partly transmitted into the film at the outer surface in
accordance with the usual p, a, and 7t coefficients. As the energy passes
through the thickness of the film, more of it is absorbed. At the bottom sur-
face with the opaque paint or metal, the energy is either absorbed or
reflected. That portion of the radiation that is reflected from the substrate
then passes outward through the film, and again, part is absorbed. When the
energy again reaches the outer surface, the part that strikes the surface at
less than the critical angle is radiated away; but the portion that strikes the
surface at an angle equal to, or greater than, the critical angle cannot
escape and is eventually absorbed. A similar process also occurs for the
emission of energy from and through the transparent layer.
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SECTION IV
THE CONTAM COMPUTER PROGR AM

1. GENERAL DESCRIPTION

This section describes the integrated computer program, CONTAM,
which has been developed to provide an engineering design tool for the pre-
diction of plume contaminant effects on sensitive spacecraft surfaces arising
from direct plume impingement, Figure 10 illustrates the component subpro-
grams of the CONTAM program. The CONTAM program is capable of inde-
pendently running any of th. subprograms or of running the entire analysis
sequentially. Except fr. TCC or N2H4, each program is dependent upon the
output of previous p:ograms. It is suggested that CONTAM be run sequen-
tially, with an examination of each subprogram's output before the subsequent
subprogram is called since improper data inputs can result in excessive
computer run time. When run independently, the capabilities of each of the
subprograms may be.extended to solve problems associated with: combus-
tion dynamics; nozzle and plume multiphase flow field characterization;
nonequilibrium streamtube chemical kinetics and condensation; and impinge-
ment, deposition, abrasion, and surface property changes - not necessarily
associated with plume contamination,

The subprogram SURFACE has not been fully integrated into CONTAM at
the present time. This program is based for the most part on very large
tables of experimental data, and in the current version of the program
system, the memory requirements of this particular subroutine are con-
siderably greater than any of the other programs. Consequently, while all
the rest of CONTAM has now been overlayed via '"Cell Loader', SURFACE
has been lefc in the normal "SCOPE' loader overlay structure,

Each of the major subprograms of CONTAM are described in detail in
separate appendixes as follows:

Appendix A TCC Transient Combustion Chamber Dynamics
Computer Program (a bipropellant con-
taminant production model)

Appendix B MULTRAN Multiphase Nozzle and Plume Transport
Computer Program (a multiphase nozzle
and plume flow field characterization
model)

Appendix C KINCON Nonequilibri» :n Chemical Kinetics and

Condensation Computer Program (a multi-
phase reacting gas streamtube model)

Preceding page blank 25
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Appendix D SURFACE Deposition and Surface Effects Computer
Program (a plume impingement, deposition,
abrasion, surface contamination effects
model)

Appendix E N2H4 Monopropellant Combustion Chamber
Dynamics Program

This section concentrates on describing the operation of the integrated
or controlling program CONTAM, and the interfacing of the various subpro-
grams. The reader is referred to the appropriate appendix for detailed
information concerning the operation of the individual subprograms.

The CONTAM program is written in FORTRAN IV, The primary version
of the system includes the option of a monopropellant engine, subprogram
NZ2H4, and requires 150, 000 words of memory. However, a secondary
version which only has a dummy N2H4 program, i.e., to be used with hipro-
pellant engines only, can be run in only 120, 000 words of memory. The cell
loader directives for each of these editions are illustrated in this report.

The program SURFACE has not been incorporated into CONTAM proper at
this time for reasons previously explained in the report, and in its present
form SURFACE requires 240,000 words of memory to execute. All aspects

of the programming system have been written to run on a CDC 6000 series
computer. '

a. Combustion Chamber Contaminant Production

Unburned propellant and intermediate products of combustion (gas
and liquid phase) ejected from the combustion chamber are considered first
as a source of contaminants, Referring to Figure 11, the Transient
Combustion Chamber Dynamics (TCC) subprogram or the monopropellant
combustion chamber dynamic subprogram (N2H4) are used to generate conta-
minant production data. 'T'he results of the TCC or N2H4 subprograms are
time dependent and require interface manipulation for subsequent modeling
and analyses since the transport model treats the flow as steady state. After
examination of the production of contaminants during the entire transient
pulse, representative ''time slices' are chosen so that gas and liquid proper-
ties may be averaged over the time intervals for use as input to the
MULTRAN subprogram. The required output from TCC includes: chamber
pressure, chamber temperature, droplet size distribution, droplet velocity,
and mass flux of gas and droplets,

b. Contaminant Transport

Having defined the average amount of gas and liquid phase ejected
from the combustor for each pulse segment, the two-phase nozzle and plume
flow is then computed.for each steady state pulse segment, using method-of-
characteristics computer subprogram MULTRAN (subprograms TDZ2, TD2P,
and SLINES are included in MULTRAN).
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Computer subprogram SLINES was developed to provide the
necessary interface between the TD2, TD2P and the KINCON subprograms,
Basically, SLINES interpolates between points on each characteristic line to
provide exhaust gas properties for points on a streamline. A streamline is
defined as that line which runs through the throat, nozzle, and plume,
bounding a given constant percentage of the mass flow hetween it and the
nozzle axis.

c. Chemical Kinetics and Condensation

In addition to unburned propellant droplets, many liquid-
bipropellant exhausts contain condensed phase products of combustion as an
important contaminant source. The formation of condensables in liquid
propellant exhausts has been analytically modeled. The KINCON subpro-
gram predicts the nozzle and plume condensation effects utilizing a classical
nucleation and droplet growth model. It also provides the gas-phase chemi-
cal kinetics analysis along streamlines,

d. Deposition and Surface Property Effects

The flux of contaminants approaching a surface submerged in a
bipropellant plume, as determined above, provides the starting point for the
analysis of liquid and solid deposition on impinged surfaces. A model has
been developed to account for the accommodation of momentum and energy
upon impact of liquid and solid particles and to predict the amount and state
(thin film, thick film, droplets, crystals, etc.) of the deposited materials,
Damage and changes in surface properties due to mechanical abrasion and/or
deposition are also treated in this subprogram, SURFACE. The surface
property changes considered are absorptivity, emissivity, reflectivity, and
transmissivity.

2. PROGRAM DESCRIPTION

This section describes the structure and logic of the Plume Contaminant
Effects Prediction Computer Program, CONTAM. Particular emphasis is
placed on the description of the main program, the cell loader structure, and
the data interface between the various subprograms. Detailed descriptions
of the subprograms may be found in the appropriate appendix.

The CONTAM program is structured so that any one subprogram may be
run independently or any number of the subprograms may be run sequentially.
Only the main program and required subprograms as defined by cell loader
directive, reside in computer core during operation.

The main program (EXEC) was coded to perform the required selection
of the various subprograms. It initializes certain logical control variables,
accepts control variables through input, and provides overall logic control
for the program. It also provides overlay communication.



3. PROGRAM STRUCTURE

The makeup of CONT AM is illustrated by Figure 12, a list of the
various subprograms of the overall system.

4, PROGRAM DATA INTERFACES

The resultant data fr - m the various subprograms reside on magnetic
tape or disc file for use by subsequent subprograms.

The data interface has been designed so that the input and output data to
a particular subprogram are preserved subsequent to the running of that
subprogram, while at the same time, the number of lggical file units used
are minimized by reusing logical files. This meanw that while the user may
run each program independently but sequentially, if the data output from a
particular subprogram is not acceptable for some reason, the input data file
to that subprogram has been preserved so that the user has a ''restart' capa-
bility without having to restart from the initial subprogram of the sequence.

a. TCC Data

Data output from TCC is written on to logical file 9 (in addition to
the NAMELIST'S RESRT1 and RESRT?2) for subsequent use in the cases of
multiple pulses or reprintouts of the results. '"Movie' information is stored
on TAPE 13, In addition, TCC uses files 1, 16, and 48 internally. File 1
contains the variable data used by the plotting routine in the subroutine
GRAPHS; files 16 and 48 are required for the system plotting package. A
quick visual inspection of the final printout of TCC will allow the user to
choose the correct inputs for MULTR AN,

b. NZ2H4 Data

When using the monopropellant option, the needed input for
MULTR AN is obtained by quick visual inspection of the printed output from
N2H4.

c. TDMAIN

TDMAIN is the driver program for TD2 and TD2P, It also defines
the overlay structure for COMMON block storage used by both of these
programs,

The input logical file number for the TD2 program 1s 10. The TD2
subprogram provides data output un two logical files; 8 and 12. Logical file
8 contains data required to be input to the TD2P subprogram. Logical file 12
provides input data for the SLINES subprogram and the deposition and surface
effects subprogram, SURFACE.

Subprogram TDZ2P receives its input data from logical file 8. TD2P
provides output data on logical files 9 and 12. File 9 contains radiation and
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force field data. File 12 contains the contaminant properties data. The
subroutine which writes on file 12 is common to hoth TD2 and TD2P. It is
located in the main overlay level so that it is accessible to both subprogram
overlay levels,

d. SLINES Data

The SLINES subprogram reads data from logical file 12 which has
been generated by subprograms TD2 and TD2P. It generates the streamline
data and writes this data on logical file 8 for use by the KINCON subprogram.

e. KINCON

The KINCON subprogram uses five logical file units. The file unit
numbers are 1, 4, 8, 11, and 12, Files | and 11 are scratch files used
internally by the subprogram. File | contains the initial conditions and area
ratio table to be used in the condensation calculation. File 11 contains
reaction tables. Files 4 and 8 are input files. File 4 is an optional input
which contains a list of thermal properties in JANAF format. Since logical
file 4 is an optional input, if it is not used as such, it will default to an
internally used file by the subprogram. If the logical file 4 input is not exer-
cised, the thermal properties data must be input by punched cards (see
Appendix C). The subprogram will then write JANAF thermal properties

on logical file 4 from the punched card input. Obviously, with the appropriate

control cards, file 4 may then be saved for subsequent use. File 8 contains
the streamline properties required by the KINCON subprogram. Logical
file 12 is the output tape of the subprogram and contains the multiphase and
kinetic results to bhe used by the deposition and surface effects subprogram,
SURFACE.

5. PROGRAM USER'S > ANUAL
a. Input to CONTAM

Punched card input is required. l.ogical file 4 input is optional, but
the option must be specifiea in the card input.

The punched card inputs required are of three types; NAMELISTS,
some nonstandard format, and variable formats. Subsection 5. b describes
the general nature of the data input through the various NAMELISTS and
indicates the subprograms to which they apply. For a detailed description of
the contents of the various NAMELISTS, the user should refer to the appro-
priate Appendix for each subprogram as listed in subsection of this section.
A detailed description of the variable format inputs will also be tfound in the
appropriate appendix. Section 5.d discusses the nonstandard format data
and the required stacking (organization) of the punched cards.

Section V presents a sample case which includes a data listing, the
resulting output, and a ''day file' from the CDC 6500 computer system. The
'""day file'' is included to illustrate the required system control cards and
their proper sequence.
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In addition to the aforementioned inputs, there are the data
interfaces which are required by the various subprograms and discussed in
Subsection 4 of this section. These interface data should be considered as

inputs when running the subprograms independently.

b. Program NAMELISTS

Table I presents a list of the names of each NAMELIST and the sub-
programs to which they correspond. To determine the details and param-
eters contained in each NAMELIST, the user should refer to the appropriate
Appendix as listed in Subsection 1 of this section. NAMELISTS required by
CONTAM (the main program) are described in the Subsection 5. c.

c. CONTAM NAMELISTS

Two NAMELISTS are required by the main program, CONTAM, to
provide control of the overall program. They are:

(1) NAMELIST/NCASE/
(2) NAMELIST/IPATH/

’ Table I
NAMELIST AND SUBPROGRAM
NAMELIST Name Subprogram
NCASE CONTAM(EXEC)
IPATH CONTAM(EXEC)
PROCED TCC
PRTDIR TCC
RESRTI1 TCC
RESRT2 TCC
STEADY STDST
ENGINE N2H4
CATLST N2H4
CONTRL N2H4
DATA TD2
DATAP TD2P
SID XMGKS(SLINES)
THERMO TTAPE(KINCON)
PROPEL INPUT(KINCON)

There are eight NAMELIST sets in SURFACE, refer

to Appendix D
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There is only one parameter in the NAMELIST/NCASE/. 1t is
ICASE. ICASE is an integer variable which tells the program how many '&0)
pulse segments are to result from the transient pulse output of the TCC sub-
program. Each pulse segment is considered a ''case.' Each subsequent
subprogram in the sequence must operate on each pulse segment (case), one
segment at a time. The default value is ICASE = |, which is recommended
for most applications,

NAMELIST/IPATH/ contains ten variables. However, only two of the
variables are required per run (sequential mode). The variable list for
NAMELIST/IPATH is:

TC
BIPROP
SSCP
NOZZLE
PLUME
SLINES
MGKS
SURFAC
KMODE
NSL

Each variable exccgt KMODE and NSL is logical, For example:

TC =T, BIPROP =T,

The above examplé indicates that the subprogram to be run will be TCC.
If the data input were changed to

TC=T, BIPROP=F,

the program run would be N2H4. When running the MULTRAN portion of

CONTAM, the user may desire to run sequentially during a single run the
programs TDZ2, TD2P, and SLINES. In this instance, the data input would
read

NOZZLE=T, SLINES=T.

In the case the subprogram KINCON is to be run, KMODE and NSL may also
be required.

The variable KMODE is used only when the KINCON subprogram is
run independently. If used, it is input as the integer variable ''one.' It
indicates that certain options will be exercised in the operation of the KINCON
subprogram. These options are described in Appendix C.

The variable NSL is required only when the KINCON subprogram is
run independently. NSL indicates the number of streamlines that will be
analyzed by the KINCON subprogram. If subprogram SLINES is run in
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conjunction with the KINCON subprogram, any NSL value input here will be
overridden by the value of NSL input for the SLINES subprogram.

d. Nonstandard Format Inputs

All of the nonstandard format punched card inputs are used by the
KINCON subprogram. The names of these inputs are:

Thermodynamic Data (Optional)
Title Card

Species Cards

Reaction Cards

The format fsi the data on these cards is detailed in Appendix C.
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Section V
SAMPLE CASE

This section presents a data listing and printed output for a sample case
run in the sequential mode on the CDC 6500 computer system,

1. DEFINITION OF SAMPLE CASE

The sample case is chosen to illustrate the application of the successive
subprograms of CONTAM for the prediction of the contamination effects
resulting from a typical firing of a real rocket engine, The engine chosen
for these computations is the Marquardt R-6C. The R-6C is a commer-
cially available NTO-MMH rocket engine having a nominal thrust of 5 pounds
and designed for pulse-mode operation. It is an excellent choice for experi-
mental vacuum-chamber studies of contaminant production because of its
small size, which makes it easier to maintain vacuum in the test chamber,
and its short pulse capability which can be used to aggravate the production
of contaminants. The effect of the small engine size, however, must be
considered in designing the experiment. The R-6C is being used in an
experimental contaminant effects study currently underway at NASA Lewis
Research Center under the direction of Dr, Herman Mark, It is hoped that
the computed values for contaminant production, transport, deposition, and
surface effects can be experimentally verified by comparison with experi-
ments such as those being run at NASA Lewis Research Center.

A pulse width of 17 milliseconds was chosen for these computations.
This duration corresponds to a minimum impulse bit firing. Minimum
impulse bit firings are particularly important for production of contam-
inant material, and are commonly employed for limit-cycle pointing
corrections on vehicles which must maintain a prescribed attitude.

In our calculations, the engine is fired with its walls initially clean and
with its dribble volumes both initially empty, but with the lines full of
propellant behind the valves. This initial condition would be easier to match
experimentally than any prescribed axial accumulation of fuel and oxidizer on
the wall or partially filled dribble volumes, The chamber, injector, and
tankage were initially set to room temperature values, again for ease of
experimental comparison, The line lengths, line diameters, tank pressures,
and other installation and operational variables were chosen to agree with
the NASA Lewis vacuum chamber installation,

2, CONTAMINANT PRODUCTION — THE TCC PROGRAM
The TCC (transient combustion chamber) program calculates

contaminant production by digital integration of the time-dependent engine
processes, i,e., propellant flow, atomization, and combustion of the

Preceding page blank e



injected droplets. The calculated two-dimensional trajectories for the burn-

ing droplets determine how much propellant is deposited on the wall, and )
how much passes through the throat unburned, The trajectories for the ~
ejected unburned droplets are calculated up to the throat by the TCC sub-

program, and in the nozzle and plume by the MULTRAN subprogram. The

unburned propellant which is deposited on the combustion chamber wall is

subjected to burnoff and axial flow from the action of the hot, fast-moving

chamber gases. The amount of this wall film material which survives and

passes through the throat is calculated by the TCC subprogram, Experi-

mental firings of small pulsing engines show that much of this material

accumulates on the nozzle lip during each firing, and is blown off during the
succeeding start transient, The droplet size, initial direction of flight, and
subsequent trajectory of this material may be defined statistically from

experimental firings, but is outside of the present scope of the CONTAM

program,

a, TCC Input-Sample Case (R-6C Engine)

Input data for the TCC program arec broken down into several large
blocks of related data. The block headings are: General Instructions,
Time-Average Performance Values, Droplet Trajectory Plot, Flo Rate
Overrides, Operating Conditions, Ignition Description, Fuel Feed System,
Oxidizer Feed System, Atomization Parameters, Fuel Properties, Oxidizer
Properties, Product Properties, Thrust Coefficient Table, Adduct Proper-
ties, Contaminant Viscosity, Valve Timing, Multi-Ring Injector, and
Combustion Chamber Profile,

Loading such an extensive array of input information can never be )
easy; however, considerable effort has been made to make it as easy as
possible. Wherever possible the input units chosen are those which are
obtainable directly from a blueprint, engine test, literature reference, or
standard engine performance computer program,

Certain of the data blocks, i.e., Fuel Properties and Oxidizer Proper-
ties, remain fixed for particular materials and can be passed on from one
data set to another uncharged. The Product Property Deck for a particular
propeliant combination and pressure can also be reused when appropriate.
Haviny such subdecks on hand for the common propellant constituents and
combinations greatly facilitates loading the input for the TCC subprogram,
When subdecks are created with the injector and chamber characteristics for
particular engines, these can be used for a variety of operating conditions or
for a variety of feed-system configurations, i.e., line lengths and diameters,
restrictHr areas, etc,

(1Y Origin of Engine and Propellant Data

The known physical properties of nitrogen tetroxide and
monomethylhydrazine were taken from the Battelle '"Liquid Propellant Hand-
book'' (Reference 7) and the Aerojet publication '"Performance and Properties
of Liquid Propellants'' (Reference 8). The burning-rate coefficient for
monomethylhydrazine was estimated to be halfway between the experimental
values given for hydrazine and UDMH by Dykema and Greene (Reference 9),
The burning-rate coefficient for NTO was calculated using Godsaves' equa-
tion, The equilibrium combustion gas properties of chamber temperature,
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mean molecular weight, gamma, and vacuum thrust coefficient for an

expansion area ratio of 40 were calculated, using the MDAC thermochem- .
istry program H099 and the JANNAF (Reference 10) values for heats of

formation., The chamber dimensions, injector parameters, and valve ramp

durations come from the manufacturer, while the feed system values were

supplied by NASA Lewis Research Center. :

The ignition parameters, activation energy, and frequency
factor multiplied by heat of reaction are the experimental values measured
for NTO and MMH by Seamans, Vanpee, and Agosta (Reference 11). The
fuel and oxidizer droplet size correction factors are taken from Rocketdyne
Report R-8455 by L, J. Zajac (Reference 12), The fuel and oxidizer fan
lengths are taken to be the same multiple of orifice diameter as for another
motor where this value could be taken from NACA TN 3835 (Reference 13),
and then experimentally verified by measuring chugging frequency and
chugging amplitude., The distance to single-stream breakup is taken to be
the same multiple of orifice diameter as shown in the photographs of NACA
TN 3835, The flash cone angle was taken from photographs of flashing
streams in the thesis of Brown (Reference 14). The drop size distribution
is from NACA TN 4222 (Reference 15). The fraction of propellant hitting
the wall which is presumed to stick is suggested by film-coolant injection
effectiveness values published by B, L. McFarland (Reference 16), (Using
a value of 1.0 for the fraction sticking when the film coolant is injected
tangentially and a value of 0.5 for nontangential injections appears to give
good agreement with experiment.) Experimental chamber wall temperature
histories for small motors have also been published by McFarland
(Reference 17).

The decomposition temperature for the MMH nitrate was taken
from the paper of Perlee, Christos, Miron, and James (Reference 18). The
values used for the density, vapor specific heat, latent heat and viscosity of
the MMH nitrate and its solutions, and the accommodation coefficients for
MMH and NTO are estimated values since no experimental values have ever
been published.

The details of the fuel and oxidizer feed systems were unknown,
while the flow rates and overall pressure drops were known, For this
reason equivalent feed system orifice diameters were obtained using the
flow override option, These values were obtained in an earlier computer
run and are incorporated into the data input used for this run,

(2) Input Data for TCC Subprogram (Marquardt R6C Engine)

Title information is input via a variable format on the first
card of the data deck. At present a title 58 characters long may be input.

The first card in the data for the TCC program is a variable
format card which is used to introduce the hollerith information used as a
printed heading for the TCC data (see Table II).

(IHO, 10X, * MARQUARDT R-6C ENGINE, SAMPLE CASE
FOR CONTAM *)

This card begins in card column 1 and extends to card column 70 inclusive.
The hollerith title is inserted between the asterisks. .



Table II
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC U

DDD1 Array
Number

Variable

Value

Comments/Source

10

11

12

201

202

203

204

205

GENERAL INSTRUCTIONS

Punch for restart flag
(1.0 or 0, 0)

Work from tape flag
(1.0 or 0.0)

K BUG flag

No movie tape flag

(1.0 or 0. 0)

Stop time

Time interval

Print one out of

Plot one out of

Film vertical
exaggeration

1.0

0.0

0.0

0.03 sec

0.0001 sec

10

30

20

Punch a card deck giving
final distribution of pro-
pellant mass on the wall,
i.e. RESRT] & RESRT2

Calculate chamber
processes instead of
taking values from a
prewritten output tape

Do not print a large set
of diagnostic values at
the K BUGTH iteration

Write an output tape to
be used to make cham-
ber movies

Terminate calculations L')
at a model time of
0. 030 seconds

Use an integrating time
interval 0f0.0001(based
upon previous experience)

A propellant disposition
summary is printed for
every tenth time
interval

A wall-film thickness
profile is plotted for
every 30th time interval

The wall-film thickness
is exaggerated by a
factor of 20 for the
combustion chamber
movie




Table 11
' INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)
DDD1 Array
Number Variable Value Comments /Source

206 Start movie iteration 150 Motion picture frames
will be produced start-
ing with the 150th
iteration

207 End movie iteration 150 Motion picture frames
will be produced ending
with the 150th iteration

208 Data review only flag 0.0 The program will com-

. 313

314
315
316
317

318

pute the chamber proc-
esses instead of
stopping after printing
out the input data set
and values derived
from the flow overrides

TIME-AVERAGE PERFORMANCE VALUES

Start time 1

Finish time 1

Start time 2

Finish time 2

Start time 3

Finish time 3

0.0 sec

0.015

0.015 sec

0.017 sec

0.017 sec

0,030 sec

The first time slice for
average values starts
at 0.0 sec

The first time slice for
average values ends at
0.015 sec

The second time slice
for average values
starts at 0,015 sec

The second time slice
for average values ends
at 0,017 sec

The third time slice for
average values starts
at 0. 017 sec

The third time slice for
average values ends at
0.030 sec -

1)



INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Table II

DDT 1| Array
Number

Variable Value

Comments/Source

209

210

211

212

213

215

DROPLET TRAJECTORY PLOT

Fuel trajectory group 3.0

Oxidizer trajectory 0.0

group

Trajectory start

time

0.015/sec

Injector ring 1.0

Fuel flow rate

Total pressure drop

Valve pressure drop

FLOW RATE OVERRIDES

0.0 lb/sec

0.0 psi

0.0 psi

A trajectory will be
plotted for the third
fuel size group

Only one droplet can be
plotted per run, Either
fuel or oxidizer depend-
ing upon whether 209 or
210 is given a non zero
value

The fuel droplet tra-
jectory will be plotted
for the fuel droplet
injected when the model
time is 15 milliseconds

The fuel droplet tra-
jectory is for a droplet -
originating from the

first ring

No fuel feed system
values are being calcu-
lated. (Flow rate at
which experimental
pressure drops are
known)

Fuel-side orifice diam-
eter is not being
calculated (fuel tank
pressure — chamber
pressure)

Fuel valve port area is
not being calculated
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Table 1I

. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)
DDD] Array
Number Variable Value Comments /Source
216 Injector pressure drop 0,0 psi Injector orifice
discharge coefficients
are not being calculated
61 Percent of total fuel 0.0 Injector orifice
flow which passes discharge coefficients
through ring 1 are not being calculated
62 Percent of total fuel 0.0 Injector orifice
flow which passes discharge coefficients
through ring 2 are not being calculated
63 Percent of total fuel 0.0 Injector orifice
flow which passes discharge coefficients
through ring 3 are not being calculated
217 Oxidizer flow rate 0.0 lb/sec  No oxidizer feed system
values are being
calculated
) 218 Total pressure drop 0.0 psi Oxidizer-side orifice
diameter is not being
calculated
219 Valve pressure drop 0.0 psi Oxidizer valve port
area is not being
calculated
220 Injector pressure drop 0,0 psi Injector orifice dis-
charge coefficients are
not being calculated
85 Percent of total 0.0 Injector orifice dis-
oxidizer flow which charge coefficients are
passes through ring 1 not being calculated
86 Percent of total 0.0 Injector orifice dis-
oxidizer which passes charge coefficients are
through ring 2 not being calculated
87 Percent of total 0.0 Injector orifice dis-

oxidizer which passes
through ring 3

charge coefficients are
not being calculated




Table II
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
OPERATING CONDITIONS
13 Fuel tank pressure 180 psia NASA Lewis
14 Fuel tank temperature 294°K Approximate room
temperature
15 Fuel tank psi/sec 0.0 Fuel tank pressure is
not rising or falling
16 External pressure 1 x 10"6 psia Estimated vacuum
environment
17 Oxidizer tank pressure 165, psia NASA Lewis
18 Oxidizer tank 294°K Approximate room
temperature temperatnure
19 Oxidizer tank psi/sec 0.0 Oxidizer tank pressure
is not rising or falling
21 Injector initial 294, °K Approximate room
temperature temperature
22 Throat initial 294°K Approximate room
temperature temperature
25 Injector maximum 350°K Estimated
temperature
26 Half-rise time 10, 0 sec Estimated
27 Injector minimum 294, °K Approximate room
temperature temperature
28 Half-fall time 100. 0 sec Estimated
29 Throat maximum 1,400°K Estimated, based on

temperature

values for similar
engines




Table II

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
30 Half-rise time 10 sec Estimated-see
McFarland for experi-
mental curves of
similar engines
(Reference 17)
31 Throat minimum 294°K Approximate room
temperature temperature
32 Half-fall time 100. 0 sec Estimated
IGNITION DESCRIPTION
33 Assigned ignition 0.0 sec Not used when chemi-
delay cal kinetic values are
specified
34 Igniter port 0.0 in, from No igniter used
location injector
35 Igniter fuel flow 0.0 1b/sec No igniter used
rate
36 Igniter oxidizer 0.0 1b/sec No igniter used
flow rate
37 Activation energy 5,200 cal/ Seamans, Vanpee, and
mole Agosta (Reference 11)
38 Frequency factor x 3.4x 1014 Seamans, Vanpee, and
heat of reaction (cc/mole sec) Agosta
x (cal/mole)
39 Perfect mixing flag 0.0 Use normal ignition
. calculations
40 No axial mixing flag 0.0 Use normal ignition
calculations
FUEL FEED SYSTEM
41 Fuel line length 480 in, NASA Lewis Research
Center
42 Fuel line diameter 0. 189151 in, NASA Lewis Research

Center




Table II
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
43 Fuel restrictor 0.016725% in. Calculated from

44

45

46

47

48

57

59

60

65

66

67

68

69

diameter

Fuel venturi diameter

Fuel valve port area

Fuel check valve flag
Fuel valve opening
ramp duration

Fuel valve closing
ramp duration

Fuel initial void
volume
Fuel transition

volume

Fuel dribble volume

OXIDIZER FEED SYSTEM

Oxidizer line length

Oxidizer line diameter

Oxidizer restrictor
diameter

Oxidizer venturi
diameter

Oxidizer valve port
port area

0.0 in,

0. 0281 in, 2

0.0
0. 001 sec
0.001 sec

0.00113 in, 3

0.0 in, >

0.00113 in, 3

480 in,
0. 189151 in,

0.020997 in,

0.0

0. 0281 in, %

pressure drop and
flow rate values

No venturi used

No valve restriction
when open — line area
used

Reverse flow in feed
system is possible

Manufacturer

Manufacturer

Set equal to dribble
volume for initially
empty condition

No hot fuel in injector

Manufacturer

NASA Lewis Research
Center

NASA Lewis Research
Center

Calculated from pres-
sure drop and flow
rate values

No venturi used
No valve restriction

when open — line area
used




Table II
INPUT DATA FOR MAKQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments /Source
70 Oxidizer check valve 0.0 Reverse flow in
flag oxidizer feed system
is possible
71 Oxidizer valve open- 0.001 sec Manufacturer
ing ramp duration
72 Oxidizer valve closing 0,00] sec Manufacturer
ramp duration
81 Oxidizer initial void 0. 000580 in, 3 Set equal to dribble
volume volume for initially
empty condition
83  Oxidizer transition 0.0 in. > No hot oxidizer in
volume injector
84 Oxidizer dribble 0. 000580 in, 3 Manufacturer
volume
89 Fuel drop factor 0.50 Droplet size correc-
tion factor for
injector orifices which
are nonturbulent, not
flowing full or non-
circular, L.J. Zajac's
value for laminar
flow (Reference 12)
90 Oxidizer drop factor 0. 50 Droplet size correc-
tion factor for injector
orifices which are non-
turbulent, not flowing
full or nor-zircular,
L.J. Zajac's value for
laminar flow
91 Fuel fan length with 3. 0 orifice Estimated from NACA

90-deg impingement,
balanced momentum

diameters

TN 3835, (Refer-
ence 13), No experi-
mental data for
orifices this small
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Table I1
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
92 Oxidizer fan length 3. 0 orifice Estimated from

93

94

95

96

97-101

102

103

with 90-deg impinge-
ment, balanced
momentum

Hold at triple point
flag

No initial dribble flag

Flash cone angle

Single-stream breakup
distance given in
orifice diameters

Drop size distribution
table

No wall breakup flag

Drop rebound velocity
ratio

diameters

1.0

30 deg

0.198, 0.759
1.0, 1.23,
2, 3045

0.0

1.0

NACA TN3835, No
experimental data for
orifices this small.

Assume flashing
propellant equilibrates
with chamber pres-
sure even though
freezing occurs

The quill-type
Marquardt injectnr is
not likely to dribble
during start before the
dribble volume fills
completely

Apex angle of flashing
liquid spray taken
from photographs of
R, Brown (Refer-
ence 14)

Estimated from photo-
graphs of single-
stream breakup, See
NACA TN3835 (Refer-
ence 15)

Taken from experi-
mental values of
NACA TN 4222 (Refer-

ence 15)

Streams are assumed
to atomize on wall
impact

Droplets which bounce
off wall are assumed
perfectly elastic




Table II
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDDI Array
Number

Variable

Value

Comments/Source

104

105

106

107

108

109

110
111

112

Fraction sticking

No fuel flash flag

No oxidizer flash flag

No entrainment flag

Delete droplet means
flag

Fuel normal boiling
point

Fuel fréezing point

Fuel critical
temperature

Fuel critical
pressure

0.5

0.0

0.0

0.0

0.0

360°K

222°K

594°K

1, 195 psia

One-half the streams
and droplets impacting
with the cold wall are
assumed to bounce and
the remainder stick,
B. L.. McFarland data
(Reference 16)

The fuel stream is
permitted to flash
atomize when the
correlations indicate
that it should

The oxidizer stream is
permitted to flash
atomize when the
correlations indicate
that it should

The material deposited
on the chamber walls
is permitted to entrain
when the correlations
indicate that it should

The D39, D3}, and
D32 will be calculated
for the chamber drop-
let population at each
time interval

Aerojet compilation
(Reference 8)

Aerojet compilation

Aerojet compilation

Aerojet compilation
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Table 1I
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
113 Fuel vapor specific 0.995 cal/ Value for propylene
heat at film gram °K specific heat at 1500°K
temperature extrapolated from
NBS C461, Structure
similar to MMH, No
data for MMH
114 Fuel liquid specific 0.69 cal/ Aerojet compilation
heat at 300°K gram °K
116 Fuel vapor 46,074 grams/ Aerojet compilation
molecular weight gram mole
117 Fuel latent heat of 210 cal/gram  Aerojet compilation
vaporization (at
normal bioling point)
118 Fuel latent heat 67.5 cal/gram Battelle handbook
of fusion (Reference 7)
119 Fuel liquid thermal 0,000545 cal/ Aerojet compilation
conductivity cm °K
120 Fuel accommodation 1.0 Strawman value, no
coefficient data available
121 Reference temperature 300°K Experimental values
for fuel properties available at this
temperature
122 Fuel density at 0.88 gram/cc Aerojet compilation
reference temperature
123 Fuel viscosity at 0. 0104 poise Aerojet compilation
reference temperature
124 Fuel surface tension 47 dynes/cm Battelle handbook
at reference
temperature
125 Fuel burning rate 0, 0325 cmz/ Dykema and Greene

coefficient

secC

(Reference 9)




Table II
INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number

Variable

Value

Comments/Source

126

127

128

129

130

131

132

133

134

136

137

138

Fuel monopropellant
intercept (A)

Fuel monopropellant
coefficient (B)

Fuel monopropellant
exponent (n)

0.0 cm/sec

0.0 cm/
sec psiR

0.0

OXIDIZER PROPERTIES

Oxidizer normal
boiling point

Oxidizer freezing
point

Oxidizer critical
temperature

Oxidizer critical
pressure

Oxidizer vapor specific
heat at film
temperature

Oxidizer liquid
specific heat at
300°K

Oxidizer vapor
molecular weight

Oxidizer latent heat
of vaporization (at
normal bioling point)

Oxidizer latent heat
of fusion

294 °K

262 °K

431 °K

1,470 psia

0.298 cal/
gram °K

0. 36 cal/
gram °K

46, 008 gram/
gram mole

99,0 cal/gram

39.2 cal/gram

Strand burning tests
fitted r = A + B P¢
with r in cm/sec;
P, in psia

MMH does not burn in
liquid strand tests

Aerojet compilation
Aerojet compilation
Aerojet compilation
Aerojet compilation

JANNAF tables for
NO3 (Reference 10)

Aerojet compilation

Vapor mostly NO, at
high temperature or
low pressure

Aerojet compilation

Battelle handbook
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Table II

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued) L)
DDD1 Array
Number Variable Value Comments/Source

139 Oxidizer liquid thermal 0,000306 cal/ Aerojet compilation
conductivity cm °K

140 Oxidizer accommo- 1.0 Strawman value, no
dation coefficient data available

141 Reference tempera- 300°K Experimental values
ture for oxidizer available at this
properties temperature

142 Oxidizer density at 1.45 gram/cc Aerojet compilation
reference tempera-
ture

143 Oxidizer viscosity 0. 00446 poise Aerojet cor:p.lation

144 Oxidizer surface 28 dyne/cm Battelle handbook
tension

145 Oxidizer burning 0.027 cmZ/ Calculated from
rate coefficient sec Godsaves' equation i

146 Oxidizer mono- 0.0 cm/sec Strand burning rate n
propellant fitted to: r = A + B p_
intercept (A) with r in em/sec and

P¢ in psia

147 Oxidizer 130no- 0.0 cm/sec NTO does not burn in
propellant psia liquid strand tests
coefficient (B)

148 Oxidizer mono- 0.0 NTO does not burn in
propellant liquid strand tests
exponent (n)

PRODUCT PROPERTIES
EQUILIBRIUM GAS TEMPERATURE
149-159 Equilibrium com- 300; 2103 From standard equili-
bustion gas 3084; 3397; brium thermochemistry
temperature at 3061; 2368; calculations
fuel fractions 0,0, 1705; 1433;
0.1, 0.2, ... 1,0 1344; 1266;
1190; in °K
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Table II

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDDI1 Array
Number Variable Value Comments/Source
EQUILIBRIUM GAS MOLECULAR WEIGHT
161-171 Equilibrium com- 46,008, 28.79, From standard equi-

173-183

221-231

232

185

186

187

bustion gas mean 26.41, 23,39,

molecular weight at 19. 88, 16,75,

fuel fractions 0,0, 14. 41, 13,91,

0.1, 0.2, ... 1.0 14,00, 14.10,
14, 29

EQUILIBRIUM GAS GAMMA

Equilibrium combus- 1.120, 1.252,

tion gas gamma at 1.220, 1.217,

fuel fractions 0,0, 1. 235, 1,268,

0.1, 0.2, ... 1,0 1. 309, 1.299,
1. 270, 1,247,
1. 228

THRUST COEFFICIENT TABLE

librium thermo-
chemistry
calculations

From standard equi-
librium thermo-
chemistry
calculations

EQUILIBRIUM THRUST COEFFICIENT

1.9240, 1.8028,
1.9082, 1.9617,
1.8470, 1.8122,
1. 8680, 1.9331,
1.9294, 1,9224,

Vacuum thrust
coefficients for the
correct nozzle
expansion area ratio
of the motor, and

fuel fractions of 1. 8959
0.0, 0.1, 0.2, ...

1.0

Nozzle expansion 40

area ratio
ADDUCT PROPERTIES

Contaminant
mixture density

1 gram/cc

Contaminant vapor 1 cal/gram °K

specific heat
Contaminant latent 100 cal/gram
heat of vaporization

These values were
obtained from thermo-
chemical calculations
assuming equilibrium
expansion, Values
could be used from
kinetics calculations
or from steady-state
experiments if they
were available

Manufacturer

Strawman value, no
experimental data

Strawman value, no
experimental data

Strawman value, no
experimental data

N




Table 1I

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDDI1 Array
Number Variable Value Comments/Source
188 Contaminant decom- 500°K Perlee, Christos,
position temperature Miron, and James
(Reference 18)
CONTAMINANT VISCOSITY
189-199 Contaminant mix- 0. 00446, 0,024, Experimental values
ture viscosity at 0.043, 0.068, for pure fuel and
fuel fractions 0.0, 0. 081, 0.100, pure oxidizer,
0.1, 0.2-1.0 0. 082, 0, 064, Strawman values for
0, 046, 0,029, MMH nitrate mixtures
0.0104 poise
VALVE TIMING
233 Fuel valve 0.0 sec Time of first motion
opening time opening
234 Oxidizer valve 0.0 sec Time of first motion
opening time opening
235 Fuel valve 0,017 sec Time of first motion
closing time closing
236 Oxidizer valve 0.017 sec Time of first motion
closing time closing
237-264 Valve timing for Not being used
2nd, 3rd, 4th,
5th, 6th, 7th,
and 8th pulses
MULTI-RING INJECTOR
FIRST RING
FUEL HOLES
49 Fuel hole 0.0158 in. Manufacturer
diameter
50 Fuel hole 0. 0625 in. Estimated from
length engine drawing
51 Axial locatior. 0.0 in, Approximately flush

of fuel hole

with injector face
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Table II

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source

52 Radial location of 0. 045 in, Estimated from
fuel hole engine drawing

53 Fuel radial injec- -45 deg Manufacturer
tion angle

54 Discharge 1.0 Assumed value
coefficient

55 Number of fuel 1.0 Manufacturer
holes in this ring

56 Transverse angle 0.0 Manufacturer

OXIDIZER HOJ.ES

73 Oxidizer hole 0.0186 in, Manufacturer
diameter

74 Oxidizer hole 0. 0625 in. Estimated from
length engine drawing

75 Axial location of 0.0 in, Approximately flush
oxidizer hole with injector face

76 Radial location -0. 045 in, Estimated from
of oxidizer hole engine drawing

77 Oxidizer radial 45 deg Manufacturer
injection angle

78 Discharge 1.0 Assumed value
coefficient

79 Number of oxi- 1.0 Manufacturer
dizer holes this
ring

80 Transverse angle 0.0 Manufacturer




Table II

INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

DDD1 Array
Number Variable Value Comments/Source
SECOND RING
265-272 Second fuel ring values equivalent to 49-56 for first fuel ring
(This engine has no second ring)
273-280 Second oxidizer ring values equivalent to 73-80 for first
oxidizer ring (This engine has no second ring)
THIRD RING
281-288 Third fuel ring values equivalent to 49-56 for first fuel ring
(This engine has no third ring)
289-296 Third oxidizer ring values equivalent to 73-80 for first oxi-
dizer ring (This engine has no third ring)
COMBUSTION CHAMBER PROFILE
297 Axial location of 0.0 in,
injector face
298 Diameter corre- 0.41735 in, Scaled from print
sponding to above of the chamber
station
299-310 Six pairs of sta- 0.25,0,41735, 0.5, Scaled from print
tions and diame- 0.41735, 0.75, of the chamber
ters, describing 0.41735, 0.95872,
the chamber 0.41735, 0.97363,
contour 0.30607, 1.01436,
0.22461
311 Axial location of 1. 07 in,
throat
312 Throat diameter 0.19479 in,




»

The input data are introduced through two namelists, Name-
list PROCED and Namelist PRTDIR. Namelist PROCED consists of a
319-word array DDD1. These values contain the detailed description of the
motor, propellant, operating conditions, etc. Namelist PRTDIR consists
of an 80-word array DDD2. These values are nonzero or zero to indicate
which time-varying parameters are to be plotted as graphic output.

The input values to Namelist PROCED are printed out by the
program along with headings in logical groupings which have been found to
be convenient. The input values will be described in the order of this
print, rather than in ascending order, as this will be a more logical
presentation.

Namelist PRTDIR directs the program to produce graphics of the
time-varying parameters which are desired. The default value for the mem-
bers at this array is zero, and graphics are produced only for members
which are given nonzero values. The graphics which can be produced are:

DDD2 array
Number Variable to be Plotted
1. Chamber pressure
2. Fuel valve trace (fraction of wide-open port area)
3. Oxidizer valve trace (fraction of wide-open port area)
4, Fuel flow rate leaving tank
5. Oxidizer flow rate leaving tank
6. Total propellant flow rate leaving tanks
7. Fuel injection rate
8. Oxidizer injection rate
9. Fuel (streams, fans, and droplets) mass in chamber
10. Oxidizer (streams, fans, and droplets) mass in chamber
11, Provellant (streams, fans, and droplets) mass in chamber
12, Fuel mass on chamber wall
13. Oxidizer mass on chamber wall
14, Propellant mass on chamber wall
15, Gas mass in chamber
16. Mass fraction of the chamber gas which is fuel derived
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17.
18.
19.
20,
21,
22.
23,
24,
25,
26.
27.
28,
29.
30.
31.
32.
33.
34.

35,

36.
37.
38.
39.
40.
41.
42,
43,

44,

Chamber temperature (gas phase)
Fuel evaporation rate

Oxidizer evaporation rate
Propellant evaporation rate

Gas outflow rate

Fuel droplet outflow rate

Oxidizer droplet outflow rate

Total droplet outflow rate

Fuel film outflow rate

Oxidizer film outflow rate

Total film outflow rate

Mass fraction of total outflow which is gas phase

All chamber contents — total explosion pressure capability
Mass of unatomized fuel streams and fans in chamber
Mass of unatomized oxidizer streams and fans in chamber
Mass of fuel droplets in chamber

Mass of oxidizer droplets in chamber

Gas and droplets only — total explosion pressure capability

Chamber wall adduct only — chamber explosion overpressure
capability

D30 of all fuel droplets in chamber

D31 of all fuel droplets in chamber

D32 of all fuel droplets in chamber

D30 of all oxidizer droplets in chamber
['31 of all oxidizer droplets in chamber
D32 of all oxidizer droplets in chamber
Fuel injector void volume

Oxidizer injector void volume

Thrust
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b. TCC Output-Sample Case (R-6C Engine)

The computer output is in the form of printout and computer
graphics done on a Stromberg SD-4060 microfilm recorder operating in a
SD-4020 emulation mode. Many of the output values are presented both in
the form of printout and in the form of plots of variables versus time., Itis
generally easier to use the plots to follow the course of events in the cham-
ber, but itis easier to use the printout to obtain exact numerical values,
exact timing relationships, etc.

Since the complete set of graphics is expensive to produce in terms of
computer time, it is best initially to request only the graphics which are
really needed, plus chamber pressure, fuel injection rate and oxidizer
injection rate (the three graphics which give the greatest amount of general
information about the firing)., If physical tape 9 and tape 13 are mounted
before the computer calculations are done, they will record enough time-
varying data that any additional graphics, additional time-slice average per-
formance values, or motion picture frames that are desired can be
recovered later from the tapes, without any additional combustion chamber
calculations being required.

The information which is typically desired about the principal por-
tions of a rocket engine firing is the duration, total impulse, fuel and oxi-
dizer consumption and total contaminant production during the start
transient; the same parameters for the cutoff transient; and the thrust level,
fuel and oxidizer flow rates and contaminant production rate during the
steady-state portion. It is obvious that for firings with sufficiently similar
initial conditions such information can be used to estimate the mean per-
formance level and cumulative contamination effects of longer or shorter
pulses or of trains of pulses. For example, the total impulse of a pulse is
simply the lumped impulse of the start transient plus the lumped impulse of
the cutoff transient plus the steady-state duration multiplied by the steady-
state thrust level. Total pulse specific impulse is obtained as the ratio of
total pulse impulse to total pulse propellant consumption,

This segmental breakdown information cannot easily be obtained in
a single pass through the computer, because it is not yet possible to
describe ''steady-state'' in mathematical terms which will permit the com-
puter to make satisfactory interval selections by itself (In typical pulse-
mode firings, mathematical steady-state is never reached; however, the
major parameters are sufficiently slow-varying that ''steady-state' assump-
tions are useful engineering approximations, The procedure used is to
perform the chamber calculations, recording data on tape 9 and tape 13.
Next, inspect the graphics which are produced describing chamber pressure,
propellant injection rates, wall accumulation, etc., and choose a time
for the end of the start transient., Tape 9 can then be remounted, and the
program instructed to work-from-tape in calculating interval values for the
designated start transient, for the steady-state portion of the firing, and
for the cutoff portion. Additional graphics, wall-film profiles, or combus-
tion chamber '"snap shots' or movies may be obtained in the same way,
(Because of the details of the programming the only droplet trajectory which
can be obtained from tape, is the single one specified in the original com-
puter run, other trajectories can be estimated from the chamber ''snapshots''

however. )
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The computer printout includes a recapitulation of the input values
and the derived fuel and oxidizer properties versus temperature, followed by
the values of the major system variables computed at earh computing time
interval. At each tenth time interval, there is a summary print which gives
the disposition of the total mass of each propellant constituent injected up till
that time, i.e., how much has been ejected in the gas phase, as drecplets, or
as wall film and how much is being retained as gas, as droplets, or as wall
film.

Statements are printed to give the times when the oxidizer manifold
fills, when the fuel manifold fills, when ignition occurs, and when extin-
guishment occurs, There are several error diagnostics programmed, but
none are illustrated in the sample case,

A fairly detailed summary is given at the end of the computation,
which includes mean values for the entire pulse. Entire pulse values are
given for mixture ratio, C-Star, and specific impulse for three possible
mass bases: propellant mass out of the tank, propellant mass through the
injector, and propellant mass through the nozzle. The final summary also
gives the propellant droplet size distribution for injected and ejected fuel and
oxidizer, the fraction of injected propellant which is expelled or retained in
seven different categories. The axial and radial mean velocities of the
expelled droplets, and the axial distribution of unburned propellant deposited
on the walls,

Approximately the same data can be obtained for any specified time-
slice by using the data on tape 9 in a program rerun from tape. The time-
slice calculations also give values to use as input to the MULTRAN
Subprogram of CONTAM.

(1) Computer Printout

Printouts are reproduced illustrating the recapitulated input
data for the R6-C engine, the curve-fitted values for fuel and oxidizer
physical properties, the derived feed system values, the chamber descrip-
tion at the start of the run and exerpts from the voluminous time-varying
description of the firing. Prints specifying manifold priming, ignition,
extinguishment, and periodic propellant disposition summaries are
illustrated.

A time-averaged interval print for the time-slice between 15
and 17 milliseconds is illustrated. Thrust, chamber pressure, propellant
flow rate, mixture ratio, C-Star, Igp, contaminant production, expelled
droplet mean diameters, axial and radial velocity components are given.

The final printout gives input values for the MULTRAN subprogram, which
follows TCC in the CONTAM ensemble. Chamber pressure, chamber tem-
perature, gas constant, specific heat, gamma, gas viscosity, and the densi-
ties, amounts and droplet size distribution are given in units compatible with
MULTRAN.



(2) Computer Graphics

Only a small fraction of the computer graphics which can be
called for are illustrated here. There are four general classes of graphics,
*he droplet trajectory plots, the time-varying parameter plots, the wall-film
thickness plots, and frames from chamber movies.

The droplet trajectory plot shows the path followed by the fuel
droplet of the third size group (median fuel droplet) injected 15 milliseconds
after start from the first ring (the only ring in this motor). This graphic is
drawn so as to fill the frame, and hence will show details of even small
motions of the droplet in either the x or y direction., Because of this expan-
sion to fill the frame, there is usually distortion because the x and y scales
are generally not expanded to the same extent. Plots of x vs. t, y vs, t
and y vs. x are produced, but only the y vs. x plot is illustrated here.

The time-varying parameter plots illustrated here are chamber
pressure (psia), fuel injection rate (lb/sec), oxidizer injection rate (lb/sec),
gas outflow rate (lb/sec), outflow rate for incompletely burned fuel droplets
(Ib/sec), outflow rate for incompletely burned oxidizer droplets (lb/sec),
outflow rate for fuel film on the wall (lb/sec), and outflow rate for oxidizer film
film on the wall (lb/sec).

Wall-film thickness plots are shown for T = 6,0 milliseconds
and T = 9, 0 milliseconds. As in the case of the droplet trajectory plots,
these are expanded to fill the frame, and thus are distorted by having a very
large vertical exaggeration, This makes it possible to see details of the film
which would not be visible otherwise,

The final type of graphic is a ""motion picture frame, ' showing
the outline of the chamber, the location of the droplet groups in the chamber
and the (exaggerated) deposit of propellant film on the chamber wall.
""Stills'" or motion pictures of this kind are very valuable for aiding in the
visualization of the very complex sequence of events which take place during
the start and cutoff transients.,

3. CONTAMINANT TRANSPORT~THE MULTRAN PROGRAM

The programs composing MULTRAN, TDZ, TD2P, and SLINES are used
to calculate the two-phase transonic and supersonic flow, The reader is
referred to Appendix B for a detailed discussion of the computation methods,

The printout "Input Values for MULTRAN" of TCC supplies the input data
for MULTRAN in the correct units, and this information has been used to
generate the NAMELIST/DATA/, as illustrated, Using the results of the
RC-o0 e¢ngine, a calculation has been made for the fuel droplets.  The given
value for the ratio of droplet mass to gas mass has been taken directly from
TCC, i.e. 0.123. However, some discussion is required in relation to the
choice of droplet size used in the calculation,
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