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ABSTRACT 

Research Perfoxnned by Robert Davison 

Under The Supervision of Pr, *<« J« HoHlchols 
—»■—«—  II  I  II ■  IIH  I   III«  III!  Ill« 

This paper develops a method to allocate reliability 

to system elements where a system reliability requirement 

must be met or a total cost constraint is imposed« Parallel 

and serially arranged elements are considered with each 

element's probability density function of time to failure 

being approximated by the two parameter Weibull distribution. 

The problem is approached as a minimization of total system 

cost or system unreliability and Lagrange multipliers prove 

to be useful as a solution technique, A cost function is 

developed to relate the cost of and element to the relia- 

bility level achieved in that element. Both the elements 

cost function and reliability expression must be continuous 

variables. Numerical examples are shown for each allocation 

model« 
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ClIAPTItt I 

INTRODUCTION TO PLIABILITY ALLOCATION 

During several phases of design and development cJ* ays- 

tens for Army use, it is necessary to translate the system's 

and subsystems* availability, maintainability and readiness 

requirements into quantitative reliability requirements for 

the many system sublevels. It is mandatory that both real- 

istic and consistent reliability specifications be assigned 

to all the components and or subsystems that comprise the 

desired operational package« The process of this assignment 

is most commonly termed reliability apportionment or relia- 

bility allocation. 

The prime factor to be considered in any reliability 

allocation is that of assuring the total system reliability 

requirement is met once the component reliabilities are ob- 

tained and the system assembled for operation. Kore fre- 

quently than not it is a cumbersome if not impossible task 

to exactly express the reliability of the system as a func- 

tion of the components' and subsystems' reliabilities in a 

mathematical statement. Several factors contribute to this 

difficulty. 2arly in the design phase some subsvston de- 

signs are not nfro«on11 with respect to configuration and 

corplexity. Essentiality of compononts to system success is 

not well known. Certain subsystems are oi?y needed intor- 

-ittantly or for a portion of the mission while others 

1 



might bo required for the duration. The una^o environment 

is not always well defined and indeed the system niyjnt  im* 

pose additional stress on its components as a consequence of 

its operation. Where a system utilises state-of-the-art 

components, the foregoing problems are compounded by the 

lack of historical data concerning reliability« To make the 

reliability allocation even more complicated is one addition- 

al constraint; economy. Today, with tho financial scrutiny 

beins exercised in all categories of government expenditure, 

it is important that the most effective system possible be 

obtained for the resources available. 

In the past two decades much work has gone into the 

development of methods to allocate reliability to system 

sublevels* Earlier allocation methods concerned themselves 

solely with the problem of satisfying a reliability or fail- 

ure rate specification. *To specific consideration for cost 

was reflected in the models used to allocate system relia- 

bility or failure rate. Although design specifications 

: ight have been not, the expenditure in scarce resources was 

greater than necessary. As systems became wore conplex and 

the costs associated with supporting such systems astronom- 

ical, it was evident that resource expenditure must he a 

variable included in an allocation model. Due to the impor- 

tance of the cost consideration, more and more emphasis has 

been riven to this quantity in allocation proeeedures. This 

increased emphasis has culminated in the use of optiristion 

SZMtitJmma&aeSuBmm 



techniques for seeking and defining the monk resource effec- 

tive methods of designing and developing a piece of enuip- 

ment. By applying optimisation, a best alternative can 

often be found that will save time, effort and money in the 

long run. A brief description follows of the more popular 

optimization methods now in use« 

METHODS OF OPTIMIZATION 

Of the several techniques used for the optimization of 

reliability constrained by scarce resources the more popular 

methods are Lagrango multipliers, linear nrogranminn and 

dynamic programming. As would be expected, each of these 

methods varies in difficulty of formulation and solution 

according to the function to be optimized nnd tho nature of 

the constraint relationship. Here an attempt rill be made 

to give a brief explanation of how each method is employed. 

The Lagrange multiplier method is analytical in that it 

attempts to simultaneously zero all the partial derivatives 

of the La^rancian function» A linear combination of the 

objective and constraint equations is first formed, then the 

partial derivative is successively taken with respect to the 

variables of the objective function and the Lorrangian mul- 

tipliers. The resulting simultaneous equations are solved 

in terns of the variables of intorest which vill thon onti- 

nize the objective function. Two principle difficulties are 

encountered in this method. The first is the difficulty 
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associated with the differentiability of the objoctive and 

constraint equations, while the second is the simultaneous 

solution of the thus obtained equations* 

The linear programming method considers objective and 

constraint functions which are linear in nature, 'ilie linear 

constraints expressed as inequalities are made equations by 

the use of slack variables and are arranged in matrix note« 

tion. This matrix is then iterated successively (by an 

operational algorithm such as the Simplex algorithm) in the 

direction which tends to optimise the objective function. 

Other solution techniques are available in linear program- 

ming such as graphical solutions and the inverse matr'x 

technique. In the graphical solution» for instance, the 

region of feasible solutions (those which satisfy t^e re- 

source constraints) is first found, then the optinium solu- 

tions) for the objective function is examined in this re- 

gion. Thero are several drawbacks to the linear programing 

model. First, the objective and constraint relationships 

must be linear conbinations of the problem variables unless 

a suitable nonlinear to linear transformation is found. 

Secondly, the easily understood graphical technique is 

H-itcd to three variables (three dimensional renrosenta- 

tion). Lastly, matrix operations in more than throe or four 

variables are quite cumbersome for longhand confutation and 

usually require digital computer solution. 

In dyneaie programing a return function in defined as 
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the sum of the values of the alternative functions of return. 

The value of each of these alternative functions is deter- 

mined by the amount of resource which is expended on that 

particular task. In addition it is permissible to have 

several stages at which portions of the total resource can 

be expended« Thus, the total return is the sum of the return 

functions at each stapje where resources aro expended. The 

problem is then to optimise the total return function 

subject to the resources available, limployin^ oxiüvcnce and 

uniqueness theroms which have been developed it is possible 

to make successive approximations to the optimum return and 

approach a desired optimum policy. The main problem with 

this technique is that a digital computer is required in all 

but the simplest cases. Also, the number of numeric itera- 

tions required in problems where an iterative algorithm i8 

used is larr-ely dependent on the closeness of the initial 

approximations to the optimum policy. 

In the chapter that follows, a portion of the litera- 

ture available on solution of the reliability apportionment 

problem is roviowed. The work in these several papers 

considers tue use of tho aforementioned techniques for var- 

ious cases of optinum apportionment. Chapter III considers 

the optinal allocation for a series system where the system 

reliability or total ccct it»  specified. Two cases aro 

considered; elements with a constant failuro rate and ele- 

ments whose failure ratos can be described by a Weibull dis- 

tribution. 



CHAPTER II 

LITERATURE R3VI3W 

As was mentioned in tho introduction, many allocation 

methods have evolved from work done in reliability over the 

past two decades. The scope of these methods ranges from 

simple to quite complex depending on assumptions made and 

the variables included in the development» With respect to 

resources expended in an allocation, the wothods so far 

developed can be divided into two distinct categories; basic 

allocations and optimal allocations• 

BASIC ALLOCATIONS 

Basic allocations are so called because the model used 

to allocate oler.ent reliabilities or failure rates only con- 

siders the overall system specification to be met; no  con- 

sideration is £iven to the resources exnond^d in mooting 

this specification 

The most elementary method used is the equal allocation 

method (1)Y Assumptions for this method are: 

1• independently failing components and 

2« serially arranged components. 

If a z^tom  reliability goal  is defined as R* and this ftoal 

# Number in parentheses refers to numbered references in 

the List of References. 
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has not been net, then 
n 

R» > II R, 
1*1 x 

and the component reliabilities must be set at 

Ri a ">s)r^r" • 

Although this method is straightforward and easily applied, 

it is only economically suitable when tho elements are 

similar enough that the cost of reliability increase among 

them is nearly equal* If this is not the case, large sums 

of money could be spent in increasing the reliability of a 

very complex component when it could be spent more effec- 

tively on the lower cost components» 

•IRIIIC (2), has developed a slightly improved allocation 

technique by defining a weighting factor. Assumptions in 

the development of this technique are: 

1. independently failing, serially arranged components, 

2. constant component failure rates and 

3« initial failure rate A , is known for each com- 

ponent. 

The weighting factor is defined as 

h 
1 lh 

for n components so that if a system failure rate of A is 

■;-:.AVjr... ■i»^.^a^^;srf^fe:ft,y^vv^^r. '":.y.-.-:. ■*:.srr-——^--t-^*W*ttfryfr**■, ' ■ ■■-■"•-.-, ■'■ ■ ■> v,,-^?-vK- 
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desired, the new failure rate of the y11  component is 

\. = o..X' . 

Thus, the decrement ^or increment)  of eaoh component failure 

rate is proportional to its initial value. Two specific 

problems arise from using the ARINC method« First, if a 

component failure rate is unreasonably high or lot* initially, 

the allocated failure rate will not tend to remedy the situ- 

ation. Secondly, no consideration is made for the effort 

to decrease a components failure rate. Less total effort 

could be involved in arriving at the same system failure 

rate if other component failure rates were allocated, 

A method slightly more complex is the AGHSE (7) allo- 

cation technique. The assumptions for the use of this 

method are: 

1. constant element failure rates, 

2. serially arranged components where the i  component 

contains n^ elements which are required for time t^ 

in each mission, and 

3. the ith element has conditional probability w, that 

its failure will result in system failure. 

If overall system reliability R* is desired, the mean life 

allocated to the i  component is 

ei = 
H wjL tt 

n^-ln a») 

where n 

hn> H ""'  £     M*  * 

"■JlVy-iS-i 



This method is considerably more realistic than tho afore- 

mentioned techniques* It not only considor3 tho complexity 

of the component, but also the essentiality and mission op- 

erating time« In this sense it doesf to a degree, consider 

the difficulty involved in reducing a component's failure 

rate. The failure rate is in inverse proportion to the com- 

ponent complexity. If, however, the elements in one com- 

ponent are not similar to the elements in anothor component, 

the complexity is not a good comparative measure of tho 

difficulty to decrease failure rate. Additionally, it is 

hard to dofine a component's essentiality in the early de- 

sign phase. 

For considering redundancy within subsystems, the 

HAVW2P3 (6) allocation is applicable. Assumption for its 

use are: 

1. subsystems are serially arranged, each with constant 

failure rate, and 

2, the failure probability of each subsystem is inde- 

pendent of other subsystems. 

The fir3t step is to reduce the redundant configuration^) 

to a series system (i.e,, any active element results in 

system failure). The redundant failure rate is estimated 

by 
Mt) K-^2L \s 

where 51 (t) is the serial pystem reliability over time t, 
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H (t) is the redundant system reliability and X,, is the 

serial system failure rate. If a system reliability of 

R*(t) is required the reliability of the i  subsystem is 

given by ^^ 

\(t)  * Rf(t) 

where A ^ is either a redundant or series failure rate of 

a redundant or series subsystem and AQ is the sum of all 

subsystem failure rates» This is the sane result as ob- 

tained by the AHjftTO (2) technique. 

As with the other basic methods, no consideration is 

given to the effort to incroase a susbsystem reliability. 

In addition it is necessary to have at least a good estimate 

of the series and redundant reliabilities for a particular 

tine as well as series failure rate. The results, as with 

some earlier techniques, are directly dependent on prior 

knowledge of component's reliabilities. 

OPTIMAL ALLOCATIONS 

Up to this point only basic allocation techniques have 

been reviewed. Methods which will now be discussed are not 

basic allocations in that parameters considered in the allo- 

cation are not just those that quantitatively doscribe the 

reliability, ossontiality or complexity of the systems ele- 

ments. Procedures have been developed to not only allocate 

in so.e -anner to satisfy a reliability requirement, but to 

do this while satisfying some constraint on recuuroo expen- 
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dituros. Several of these methods will now be discussed. 

One of the earliest attempts at finding an optimum al- 

location with a minimum of resource expenditures was devel- 

oped by Albert (1). An effort function is assumed that 

reflects the expenditure (of effort, tine, money, etc.) 

necessary to increase the reliability of a component. The 

assumptions in the development are: 

1. serially arranged, independently failing components, 

2. initial component reliabilities are well established, 

3# all components share the same effort function, and 

Ij.. the effort increases monotonicelly with component 

reliability; an increment in component reliability 

requires as much or more effort at higher initial 

reliability levels. 

V/ith these restrictions, the minimum effort allocation for 

an n component systom is 

R« 
1/k 

R « I  ra 
n R 
J»1 J 

where 

R« reliability allocated to components with initial 

reliability less than *>Qf R* . 

S1* system reliability goal • 

m 
Et R«* reliability product over all elements with inl- 
* m 

tial reliability greater than '^TW'iTl  R, 

»1 when no components meet this requirement), 
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lc= number of components that have reliability less than 

Where a system is encountered that meets the assumptions of 

this model, the allocation procedure is simple aid straight- 

forward. The assumption of a common effort function is 

rather restrictive in that this will probably occur only 

when the components aro identical, which is seldom the 

case« 

For considering redundant configurations, Brier (3) has 

developed an optimisation model for switched components in 

parallel standby The author considers a system with H 

identical subsystems connected in a parallel switching 

arrangement. 2aoh subsystem is oomposod of H identical ele- 

ments. The assumptions made in tho development are 

1. all elements are identical and havo constant, inde- 

pendent failure rates, 

2. elements do not fail when not energised, 

3. successful operation of one element is adequate for 

subsystem operation, 

k*  switches between subsystems are identical with time 

independent probability of success, and 

5. switch failure is due only to non-switching when 

required; premature switching is not considered. 

The system begins operation on the first subsystem until all 

i: elements have failed then switches sequentially until all 

*.M redundancies are failed or a «witch fails. An optimum 

''':p'^^^^^^i^'^M^iiti^^Uää^ät 
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N and K are found from the Lagran^ian 

3 K 
L = (1-?f  if   - <rH (I4rtt) 

whore P is tho switch reliability, eris a Lagranr,e multi- 

plier, and r is the ratio of element cost to switch cost» 

Prom algebraic rearrangement the system mean time between 

failure can be found from 

1     N-1 ft 1 

^system =X (1"?)   El*   ' 

where 1/A is the I-iTBP of each element. The  total cost is 

found fron the second part of the Lanranp;ian function and is 

C [JTtUrll) - j| , 

where G is the cost of a switch» Since a closed form solu- 

tion was not obtainable for the above Lagran^ian, the author 

provides a digital conputcr program and shows a table of 

optimum redundancies for ranges on the problem variables of 

1 * i: » 50, 1 * K * 50, »95 *  P * .99 and .2$  * r * 2.00, 

The cost model developed is a poworful tool to the desinner 

considering a switched parallel redundancy» Several draw- 

backs exist in this model: 

1• Failure rotes must bo constant» 

2. All elements and switches must be identical. 

3« It is necessary to have access to the author1s com- 

puter program or tables of optimum redundancies» 

i field very much akin to reliability is availability. 

Availability considers not only reliability or failure rate 

"■mummmict^ 
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of an equipment, but also tho tirr.o required to brine t^ie 

equipment fron a failed stato to an operable state. 

I-IclTichols and lessor { ) have *onsiderod the  ■■ iin*i»*y.« tton of 

cost to achieve a level of inherent availability. Although 

not oxpressly designed for use as a reliability optimization 

technique, a form of the equation is prasentod that cai be 

used as a tool for failure rate allocation. The annurr.ptions 

of the model are 

1• serially arranged components with independent fail- 

ures, 

2. each compon«3nt has a constant failure rate, and 

3. the cost of a decrement AA in element failure rate 
r  i        "1 

is CL 1 . tmj\TT  " '"\ "'  where C*  is a constant. 

Inherent availability can be expressed ay 

i=1 x    * 

for n elements in series where K* is the mean time to repair 

the i  item, and X^ is the failure rate of the i*n item. 

If we let the VL^  equal unity for oach element, the inherent 

availability reduces to 

1 * ?.,xi 
n 

?or a series system, however, j \    ia the system failure 
i=1  i 

rate. Usinr; a Lagran^ian of the form 

■■'-—-1 - -itinniiTtmiwji) 
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n 

i*1 
*1   *i 
■ ■ M'^II.  ■  I '■ «■» MM«' m 

-  K 
n 

i«1 -nr-J 
where A is the present availability, A» is the desired 

availability (determined in this ease by 1/(1+ A»), A' being 

the desired system failure rate), and K is t-ie Laßran^ian 

multiplier, Hearranjprinrr the results» of the author, the min- 

inun cost failure rate allocation for the i* element is 

*   n    

This allocation is considerably more flexible than that de- 

vised by Albert (1) in that each element can have a differ- 

ent cost function« Two possible drawbacks aro the necessity 

of a series assumption and the aocuracv of "fitting ' the 

cost function r>ivon  to the actual cost versus failure rate 

data« The cost function proposed for» the series system in 

the next chapter is more powerful in that it is a two para- 

meter family of curves and can therefore nore accurately 

describe a general cost versus failure rate curve. 

A paper written by Upivey (0) compares and contrasts 

the results obtained by usin^ three differs it optimization 

methods on a specific system configuration« The methods 

considered arc dynamic pronramming, mathematical pro~r»arr iry: 

arid I^asran^e multipliers• öue to the complexity of the 

system considered, a aeries-parallel network, the author 
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eloctod to employ a digital computer solution. The spocific 

model used with each technique will not be repeated here, 

only the results found. It was determined that the optimum 

solution for the system considered was found by dynamic pro- 

grassdns« The solutions obtained by mathmatical programming 

and Lanran?:ian multipliers were within .6*1 and »5 ' of the 

optimum. These errors night be attributible to arithmetic 

operations in the digital computer or the nature of the 

model developed. 

The following chanter will discuss and develop a sories 

model and some constraints applicable to the allocation 

problem, Por the series confißuration, two forma of the 

cost function are considered. The preference of one devel- 

opment over the other should be based on the adequacy of a 

particular cost function in describing actual improvement of 

reliability or failure rate with cost. In Chapter IV an 

optinun allocation is developed for the parallel system. 

«--.Ka^^.,.jicSM^vg4a, 



CHAPT33 III 

SBRIES SYSTEMS 

israoDüöKoa 

In this chapter only serie3 systems will be considered. 

This configuration is a result of the following assumptions: 

1. The probability of failure of any element is inde- 

pendent of failures in any other elements« 

2« All elements are required to operate for system 

success« 

She first two sections deal with a series system with one 

additional assumption, constant element failure rates« A 

specific cost function is developed for which the optimum 

allocation is found for both a total cost constraint and a 

system failure rate specification« Constant element fail- 

ure rates are not assumed for the second series model con- 

sidered« 

OO:;STA:IT FAILUM IATICS - TOTAL COST co;is?ai:<T 

A special case of the series model is where oach ele- 

ment displays an exponentially distributed time to failure« 

V/hon this is time and each element failure is independent 

of all others, the statement 
m 

maximise IT R. 
1=1 * 

is equivalent to 
m 

minimize   £   $< 
1=1 * tfc 

where ö   is the failure rate of the lw element mid 1^ Is 

17 

,.     .->. I.^^JU»!.,)   iVii^ji jjtfjTiiijf Jinan jjidf-'^ " 
i ^iL.^m*^*~ ■•jäitii^^ijiJäaiaitajäJ h^M^TTT-iraTW-irrli ISÜM 



16 

the reliability of the i™ element. In this raodel the ob- 

ject will be to minimize the system failure rate subject to 

an overall expenditure in achieving this failure rate. 

Thus, it is necessary to express the cost of each oloment as 

a function of the failure rate achieved in that elenent. 

Sunning over the costs of these elements, the total system 

cost can be determined. 

One reasonable assumption in expressing the cost of an 

element as a function of its failure rate is that addition- 

al expenditures for failure rate improvement result in 

diminishing returns of failure rate reduction. One func- 

tion that displays this characteristic is an exponential 

cost function in i*hich the cost increases exponentially 

with a reduction in failure rate. Expressed mathematically, 

the cost of failure rate 9^  in element i is 

*1 e 

where A^ is the cost of obtaining the lowest possible fail- 

ure rate Co^ in element i, and B^ is the cost gradient. To 

completely define this cost function, two estimates are 

required; 1) the cost A at the minimum failure rate obtain- 

able r.nd 2) a cost C at the present or any) failure rate 

level %.    For a cost C at failure rate level 9, B can be 

estimated as 

3 * ln(c/A)/(ao-§) 

With a cost function defined for each element of the series 
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system, the total cost for ra elements is 

1*1 * 

If for the development of this system the upper bound on ex- 

pend! curd is H, the Lagrangian function can be written 

m     . 

i*1 x   [i*1 

Taking partial derivatives, the equations to satisfy are 

H yw. a 

1 +MiBi e * 
cl    i a o 

and X A± e 
1 oi * - H = 0* 

1*1,2, »ra 

One additional restriction i3 that 

gi  te öoi    W|2f.,B 

to insure that a failure rate is not allocated that is bet- 

ter than can be obtained» Summing Equations 1 over all m 

elements gives 

■M«„i-<>1> 
i»1 Bi  i=1 * 

Substituting Equation 2, 

0. 

m. X--1S j 
i»1 Bi H 4—« B* 

Usin*: this in Equation 1 and solving for 9^$  the optimum 

failure rate allocation for the i  element is 

3q# 1 

Sq. 2 

*järmu&i&*ab!&&>& i&ö&i&tisi*^ tatSia £a<ifeasisj^ »- -■ ■■^.■^■"^^a?^^. ■^^-A<^S»ÄMttfi>l»-->^.-/.r/»-|---.rrn:-M^-fc»« 
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ei « doi + 

1 

l*   [Vl f-1 *] '«.i 
In tho case where this last inequality is not mot by tho 

allocation for one or more elements, the failuro rato of 

these elements is set equal to their respective minimum 

failure rate. This will occur when the quantity 

m,  1 
1*3, 2  I, ui=1  1 

H 

is found to be less than one in a particular element. At 

this point a reallocation must be made to the remaining ele- 

ments with the remaining resources available for allocation« 

The new maximum expenditure is 

k 
H, new ■ H - 2 Ai 

for the remaining elements, where the summation is over the 

k elements sot at their minimum failure rate. 

12XAHPL3 1 

During the design phase of a vibration recording sys- 

tem it is desired to find the most cost effective allocation 

of failure rate to the system, She system is composed of 

acceleroncter, amplifier z.n&  recorder. All elements must 

function for system operation (series assumption)f and ele- 

ment failures are independent. The elements are assumed to 

have a constant failure rato and the applicable cost para- 

meters ire: 

Sq. 3 

faf «jrjatfa^rfPfe^^^^^-^^Triii ilrtggMftrifSrfi.ifiiil.iT.if"   '"" ■- agÜü 
^.^.--.Li^'-^iiii^^ iMtf*   - .^*WMMtt£ft 

,4 
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Acceleroraeter{1 ) Amplifier »(2) Recorder(3) 

eo .0001 .001 .002 

A $250 $1600 $1lj.Q0 

« .00025 .003 .007 

3 3100 $900 ,#00 

The total expenditure for system development should not ex- 

ceed $2,500. What failure rates should be allocated to the 

system elements? 

Using § and <? for each element, the cost gradient B, 

can be found as 1^=6110, B2-3^6, B^199. The initial allo- 

cation using Equation 3 is 8^= .000365t &£*  •°°30ö and 

&ys  ,001 i{.6. At this point the system failuro rate is 

.OOij.905. However,. since 6^ is less than that obtainable, it 

is set to its lowest value of .002. This results in an ex- 

penditure of .<J1,!;00 on element three. Using the allocation 

equation again with Hnew
s $2,500- S1 ,lj.00 =* $1,100 gives 

6^ .000337        and      e2= .00258  . 

The design criteria for minimum system failure rate is 

Accelerometer     Amplifier     ."tocorder 

e 

Cost 

•000337 

?58.60 

.00258 

$1,01*1 .W> 

.002 

$1,W>0 

System failure rate = .OO/j.917 

cousTAirr ?AILUHE RATKS - SYSTSK PAILURIS RATS OO:;JT JAIOT 

Tho problem considered here is essentially the same as 

■■ - ir'fVTliiittgyiBTii ^^CgöaaJtoaaiWaLÄkisfei ' atiObt jiaiiiiaaijaiMiM^^ lyftfrtiriihyftfr^iawM^i 
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the one just presented except that in this c*so allocation 

must satisfy some requirement on system failure rate. Stat- 

ed mathematically, 

minimize £ A* e 
i*1 x 
w    B^(60^-d^) 

m 
subject to 5J 64 * S^  and Q^ 0 6S i=1,2f 

The Lagrangian function can be written as 

L- 1 A,e i oi" i - X( I ei - 6fi) 
i=1 1 i=1 %        s 

where the conditions to satisfy in this case arc 

3i(doi-ei}  \ AiBie 
x öi x    + A= 0     i*=1t2, ..„.,n 3qs. k 

m 
and 

i=1 x   s 

Taking the natural logarithm of Equation k and sicnmin# over 

all i yields 

2»i-I»ol- ln(-A)2  i+ji   lnfA.B.). 

Substituting   Equation 5 into this equation and solving in 

terms of the Lapjran.^e multiplier give 
in m 

ln( -A) -    1-1  01      i»1Jl 1 1 s      . 

i=1Bi 

U3inc fiouation Ij. with this relationship gives the optimal 

failure rate allocation to the i  element as 

di s 6oi + E  ln<Ai3i) - ln(-A)l    i=1,2,..,m      liq. 6 
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and ei * eoi is1 f%$ * • *,m • 

Again, if this last Inequality is not net by the first allo- 

cation, then for those elements for which it i3 not satis- 

fied the minimum failure rato should be allocatod. Ü?hi3 

situation will occur whenever the quantity A.B* is less than 

- A . v/ith the^e elements allocated, the new system failure 

rate to satisfy is 

€L. -ie< 
i=1 new  "s  ?I, oi 

summed over all k elements at their minimum failure rate, 

£XAN?m 2 

For the system presented in iSxample 1» it is decided 

after further investigation that a system failure rate of 

.00J> would be adequate to meet design specifications* "ihat 

amount should be spent on sach element for development and 

what failure rates can bo expected? 

Using the A^9  B^ and 6oi as defined in Example 1, 

ln(-A) * 12.6J;. This is greater than In(A^B^) so that 6^ 

is again set to .002. ^*ho now failure rate constraint ie 

6^,, m  .005 - .002 « .003. Allocating .003 between the re- 
«is» */ 

naininf* elements yields 

61 * .00033^    and    B2  ■ .(-0267. 
f2ho  new design criteria are 

Accelerometer     Amplifier     Recorder 

6, 7i 
Cost 

.000330 

$61.30 

.00267 

?1,010 

.002 

)1, uoo 

:.,, ri,^,|t.wa.^^^^.^.^ ="    ' 



.-■,.■ :-..----^-*.V-. JV    - ^- «WA^-M^.^.S.^!-..^,,..,, ... 

2k 

The system failure rate is now .00J> at a total cost of 

$2,1+71,30. 

Because many systems exist whioh do not exhibit a con- 

stant failure rate the section which follows will consider 

a series system where the elomonts can have other than a 

constant failure rate. It is assumed that each oloments 

orobability density function can be adequately described by 

the V/eibull distribution« 

A M03K G3N3RAL Siiftl^S MODEL — DISCUSSION 

Up to this point, the only series system considered was 

one which consist**"! of elements v;hich all displayed exponen- 

tially distributed times to failure. The optimum allocation 

derived is only valid where the failure rate for each ele- 

ment is constant and the form of the cost function assumed 

can adequately describe the cost of acheivinn a failure rate 

for an element.  >/en though the constant fr.ilu.ro rate as- 

sumption i3 not too far-fetched for most electronic equip- 

ments, it is definitely not applicable to obtain other 

equipments. In practice it is found that certain equipment 

nay display times to failure that are distributed as a nor- 

mal, garra, chi-square or other familiar probability density 

function (p.d.f.). For such equipment, it is believed that 

money and effort spent in design and development will result 

in a norc reliable piece of equipment. This beirr: tho case, 

it should be possible in certain instances to find tho basic 

aaa^saa;^^ ^^aa»^^^ - *** * *** - 



25 

relationship betweon the levol of rollability achieved and 

the effort expended in the process. In the case of the 

exponential p.d.f. it is possible to relate tho reliability 

to cost by defining a functional relationship botwoen the 

failure rate and its associated cost. Such a function was 

defined in the allocation method derivod in the first part 

of this chapter. Generally, for a p.d.f. other than the 

exponential or chi-square, it is necossary to specify more 

than one parameter in order to specify the distribution. 

The resulting functional relationship between oost and re- 

liability in an element ttfill bo more complicated since it 

may now be a function of nil the distribution parameters. 

At this point if the discussion is restricted to the fam- 

ily of two parameter p.d.f.!s, a cost function for obtaining 

distribution parameters <X and ß   would be G(OL9ß).    An 

example of such parameters might be the mean and standard 

deviation of the normal distribution. 

under the assumptions of a series system, the system 

reliability is the product of the element reliabilities. 

The system reliability is thus 

lUt) = II Rt(t) 
3     i=1 1 

for n elomonts and t hours of operation. This is equivalent 

to the system failure rate beixv» the sum of the eloment 

failuro rates, or 

<"Ki~m~*-iaMjtn1tm. 

i 

-MMMWU^ 
. ■■■**•«*.*    .*nJ*J,.*-*nZ-±..-*/i*  j,^iJ»M»»^ai^^,^^^fa^i^Vfti«^iiifel. :' 
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«.(*) I Mt) . 
i=1  x 

For any p.d.f., the reliability con be writton 

!^(t) ■ exp -J> (u)du 
th where ^(t) is the failure rate of the i  element* In or- 

der to maximize the system reliability at time t it is ne- 

cessary to find the minimum value of 

J! "'M^ -f* [|,H * 

3q. 7 

2q. 8 

Sq« 9 

for the system elements. To greatly simplify the task of 

miniiaizinß Equation 9 with respect to the distribution par- 

ameters of each element, a common and intertable p.d.f. 

could be used for each element. A p.d.f. which is quite 

flexible in its ability to approximate othor distributions 

is the V/eibull distribution which can be expressed as 

n n P-1    -wa ^(t;a,/?) * (ß/ü) t      e       , t*0. 

For judicious choices of 01 and fJ 9  accurate approximations 

to the normal, exponential, gamma, ehi-squara, and other 

distributions can be obtained. The Appendix considers the 

values of CL and ß  that can bn estimated to describe other 

p.d.f.fs. Since the failure rato of the V/eibull distribution 

can be expressed aa 

ß   £-1 
3(t) « ^ t .icu 10 

the rißht hand side of aquation 9 can be written 

j_. :i,1ii'« j^Jü^i^lib^itkJtkKäiimtiteikmula^u 
ii,jffliri.ffM»-■irfi.i 
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s: [I,H - -s: M 
A'] du 

i       J 

which whon evaluated yields for tho system 

Now that tho integral of the system failure rate in the 

interval of interest (0,t) has been expressed as a function 

of the tine interval and Weibull parameters for each ele- 

ment, it is of interest to define the costs associated with 

designing and developing the V/eibull parameters CL  and ß 

into oach element. Although there are many mathematical 

possibilities for expressing the cost of achieving para2ietor3 

CL and ßin  an element as a fraction of these parameters, it 

mi-rht be helpful to understand how CX and ß affect the moan 

and variance of time to failure for the system» It  can be 

seon f-'om aquation 11 that each elements contribution to 

the value of the integral Increases with increasing ß and 

decreases with increasing & .  Qualitatively then, increas- 

ing 01 and decreasing ßtov  any element will result in a 

smaller value of the integral in Equation 11 and thus a 

hinder system reliability.  examination of the equations in 

the Apnendix reveals the changes in the distribution mean 

and variance with chan':os in 01 and ß .    It is intuitive that 

for a .^iven element the cost of development will increase 

if Q is increased and/or pis decreased in the ..'oibull den- 

sity describing the elements p.d.f. of time to failure. 

iiMmiaKitLmäiaiat£mm ̂ Vk^i^^^^ ■ -     ' 
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A co3t relationship which is proposed for use in the follow- 

ing analyses is 

C((X,/?) « Aaa/T tiq. 12 

where A, a and b are positive constants vÄiich appropriately 

describe the cost of a particular element, Equation 12 is 

flexible enough that a wide variety of actual cost versus 

reliability curves could be approximated. The Appendix con- 

siders methods to approximate parameters in thi3 cost func- 

tion for an element. One such sot of cost curves for cost 

divided by A versus element reliability is shown in Figure 1 

for b=1.C and a=.25. 

ALLOCATION OP a AHO ß FOH A 33HISS SY31SK  

TOTAL COST R^t«IR^;tfIT 

Using the cost function proposed in the last section, 

the allocation problem for the series system is to minimize 

n A. Hi n    a, /\-b* 
£ ^o    subject to 2 A, a^ [S,   x  - II, wl where H is 

the maximum permissible cost and n is the numbar of system 

elements. The La^ran^ian function for this problem is 

i=1 G.£    Li» i J 

Taking partial derivatives, the equations of interest are 

*o   - AaiAiai  /gj x « 0   i=1,2,..,n &p. 13 

a. 

tefrrrTiV ti'HiVTfTil tiiiAiVfauin in.- n^^li-'t'fffrtfffliiffihfilTfitiia'iiiTniffi1' iflftfiim MrtiTBTiiiiifril fr'MlMa^lilTBtoi&Jl^illwrtt Ji" JI**'J*atttd^* "* **~™lZRII&tääfäWikir'Js^-~ naj^eaabMUSäii MhhdSüaMBBlirai^i ttefntfttMftlir'f ill i<JR.lMilri,liffiiii^,^7''irti^1i^«^te»aifl 
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ßs \ a1  Si""**! -1 
£- t^1 ln(t0) + AtoiA1al

aA/i       « 0     i=1,2,..,n 
«i 

n a. /^*"4 
and    2  Xiai

xßi 
x - H * 0 • 

Equations 13 and lit oan be combined to ftive 

A H *»<v 
Substitution of Equation 15 into Equation 13 or 1ii yields 

a, -t, 
«ilntt») 

»il»(t0J; 

or 
a« 

r b JL 

Xa^ 

| bi 

1 

V ai 
aJ+T 

Aa^A* 

Tho cost constraint oan now bs written: 

H 
i*1 "W [Ai(qin1 

-b. V*ii 1 a!j*7T 
2quation 17 can be solved for the Lagrange multiplier A by 

trial and error choice of the multiplier» Onee a suitable 

multiplier is determined it can be used in Equation 16 to 

find the allocation of O^ to the i  olerccnt. If an ele- 

ment is allocated an CL and ß which is better tfiim can be 

obtained for that element, the & is set at the highest and 

ß to the lowest possible values for the element» A now 

allocation is now made over the remaining ©laments with the 

renainin- funds» 

üqa. 11* 

äq»  15 

Kq» 16 

&L* 17 

-  -^H.-**...-*. *:-,'.•*, t^jfö 

h.af. ■-■-- ajmai a a Mn-i-1-.iite-iiiifitfcii 11,1.' h-i'Mrtf»intfi HnPflrtf yjftgifo-iJffc.ifl.^^aitartte'Mia^!^^ *,»* 1» ■ -11»^^^-^i-^^jeiii-^isa-». tä B rfy TVtfrHt^i*Mii 
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/ 

To find the appropriate multiplier in Squall <a YJ  with any 

de^reo of accuracy would require a digital eoropitUop solu- 

tion. A situation where the solution of ;vquatl>n 17 for the 

multiplier is simplified is considered in the following 

section. 

OPTlEUK ALLOCATION P03 H^UAL ^ 

tihen a situation is encountered in which the a., »a can 

be set to a common value in the element cost functions, 

Equation 1? can be solved explicitly for the multivior. 

vith a^ « a i=1,2,...,n, aquation 17 becomes 

H 
a 

•liT ■ 
tä^hbü 

7b 

smgj 
i   b, 

e " ] 
i 
a 

iitauation 16 can not/ be written 

a, -ttftr bi/a 
a ialt'0)j 

V1 

a "*T 
Fron Equation 1? the p. can bo written 

/°i    a ln(t0> 

Sor.o r.ention should ho -lade of the situation in which the 

&*fs are equal« Ono obvious Instance is where the p.d#f« 

of tir.o to failure for all elements is similar enough that 

the ratio of cost increase to increase in Ct is approximately 

orual« It is possible however for ensos to occur '.:her»o the 

3q. 16 

Sq. 19 

.inflfr^.^^.  teäuää*imii>ai**imJu* M*a *a .ninriM^WiMi^irttii^^ rtBiriiP' "i aWtr* w iiiiriir ~ii > i i ma 



32 

a^s are nearly equal although the p«d«f« of timo t?> failure 

for elements la not t^e same« 'fho  etxanplo which follows 

will illustrate an approach to the case w; ere the p«d,f • of 

element time to failure ia not the sane but the a.»3 are 

I •      nearly equal« 

>)XAKPL3 3 

It ia desired to find the optimum distribution paramet- 

ers to allocate three elements which comprise a soM.es sys- 

tem in order to maximize the system reliability for 20 hour* 

operation with the funds available« The p«d«f.'s of time to 

failure for the first, second and third elements aro normal, 

garaa and exponential« Two estimator, or coat versus mean 

lifo for the elements are as follows: 
2   2 

::ornal   CT/ fl    = .01   ,.fl^  ■ 50 hrs.  C{ =,'1,000 

2        2 d * 
Oanma CT / jLL    « .r<25   /Xj  = 20    •• Ct  -,#00 

2        2 2 * 
3xponen.   CT /   /*/« 1#o        /l^ * 100 ;I C1  = !i200 

fJL2 * 150  " C2 =.;*220   « 

Vfnat CL and (S p^ra^eters should be allocated each element if 

total cost should bo >>1,500? 

■*sinf! the methods of the Appendix to estimate the cost 

~/ara:-oteps,  the cost functions for elements one, two and 

three can now be written 

16.Ü7      .226 /)-8.2? P.20      .Ml!    „-3.V-: 

-****Sfij# 

,.,,...,„;,,   nr.mlrtymyM-toiBAr^^^^^     Mte* *■ ^iWW^.f *liM»röm»H^^^ <*« —     ' 



.■^»<-«™?.»*m'«P«';m-«Hi<»':. ««äWte-.i 

33 

and 
k.2$       .220    ^-.665 

3 ^3 

Usins Equation 1G,  the optimal GU  are found to be 

a1 - e 
1*0.55 16.15 7.137 

a2 
s ° 

Substituting these into their appropriate C03t equations, 

the amount to be a^ent on components one, two and three is 

Ct - 
:;202        C2 ■ 391*0       C3 * ^360 , 

for a total cost of '51,502. The resultant nean lifo of each 

element will be 

/X1 a 31.2 hrs.   /X2 
ä
 3*|..7 hrs.   fl^  ■ 1,250 hrs. 

The system reliability can be written as 

exp -2 "7T"*   * 
i»1  a i 

so for this allocation and t ■ 20 hours, the svsten relia- o        * 

bility is .933« An improved allocation could now bo accomp- 

lished by making new cost parameter estinatos in tio region 

of the initial allocation« 

The section which follows oonsiders a problem very sim- 

ilar to t*~»at just discussed. How, however, the systom reli- 

ability will be held constant and minimum co3t found to sat- 

isfy this reliability. 

: i;nrr:t cow ,*<& S^JT.S: ^LIABILITY 1:^11 ; j • 

The last section considered maxird^inr ayston reliabil- 

ity subject to a total expenditure. A typical problr\i anal- 

aprous to this is finding the minimum desirn and development 

• -*> i'«»»INM«vJ,ä5fe^^iÄ^Jt 

s,m^&«&&&'A 
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cost associated wilh mooting the system reliability require- 

ment. Suppose a system reliability requirement of R (t ) is 
so 

specified for operating time tQ. For a scries system then 

n .A 
sv o nit)  = exp -X *o 

so that 

» A X Io_ « . la R (t )  . 

In the following discussion, the term - In Zl (t ) will be 

considered the requirement to meet and Kill be denoted by 

K. Therefore R„(trt) is equal to exp(-X). ?or the system s  o 

composed of n elements in series the la^ran^ian function is 

1=1 i x   x       Li=i^rj    J 
L * 

where the ob.}eet is now to minimize the total cost torm 

The equations resulti^ f«om partial differentiation are 

a,-1 „-b,     ßi i     Hi. t aiAiai      ßt        + X_°        =0        i=1,2,..,n ,iqs. 19 

a, 
'i 

a.       -b.-1 j-^i 
ViV" Pi   ''       + X   °        In  (t0) i=1,,',..,n 2qs.  20 

i 

and 
ft     t       1 
X     o      - K = 0. 
i=i a± 

-. rt-.^WfcfrJfcj-^-^"— -<■■- -' -■:.^->J--^^--.J..ian-'äj»Mi;--,--^--w-!^ , ..-^ , -■■....,■ .J_- ,^«. ^- ::yfa-^..j j^^^.0..^.^::^^- ^..■H.-jfcA. i.. --'j^A'i^'i^rtrV'Mi^tS^'irftii>1rlra';T'i-"i       -mft 
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Solution of ■iqualions 19 and 20 for ß^ ßivos 

^i - H  ln(t0) 

Fron this it is seen that the optimal lovol for Pin an ele- 

ment is the sane whether optimizing in terms of total cost 

or system reliability and is only a function of the cost 

parameters a and b and the operating time tQ. Equation 19 

can be used with t.ie  equation for {J*  to find the CL. as 

b< 

-x ä^InT^ e 

H Ai 

i  

The reliability constraint can now !>e litten 

1=1 L ai AI 

b^.1 

= K. 

Prom this relationship a trial and error technique can be 

used to find the required multiplier« As before an accurate 

allocation would require a digital corputor solution« Once 

the multiplier is determined, the 01 ^ can bo found fr^m 

, iL-JLjLJ bi a
bi/ail r^ 

L «i /^ J 

Tho following section deals with the case of equal a^ and 

the resulting straightforward solution. 

ALLOCATION FOH  3'WAL aj[ 

Inspection of Equation 21 reveals that when the a. are 

equul tho GL can be found directly, Let^in/r all a^ equal 

JSq. 21 

,q. 22 

^^.MJikiULimuä&Miiiia^^ 
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the com-non valuo a, Hquation 21 can be written 

f-x) &"" - v A' -   n     b,/a+1 

i=1 

The allocation for CL and JJ   in the i  elonent becomes 

<*i" 

'i 
a lnttQ)j 

ibj bj/ail 
e 

A- 

a A, 

bi 

i+T ^ .V**1 

i=1 
e (a"ln(t0)j 

b£l-1 

aAi 

a+T 

K 

a ln(t0) 
Sqs. 23 

For the system of Example 3 it was found that the allo- 

cation resulted in a syntom reliability of ,933 for 20 hours 

operation at a cost of in,5>00. What savings could be made 

if the system reliability requirenent for 20 hours operation 

v;as .90 (IC=.1052)? 

Using the cost functions as developed for elements one, 

two and three, Equation 23 gives the following 01 allocations: 

WM3        17-73   Ä    6.717 a1 = e     a2 « e     a = e 

These values yield a system reliability of .9Q0. The re- 

sulting elenent costs are: 

C1 ■ ilßl mo 33 = ^325 . 

The nw total cost is • .»1,356; a savings of $1tj2(.# 

Analysis of the type just presented eould be a valuable 

tool to examine cost effective reliability specifications. 

,, --.=-- .^;.f,-Aa\jia^«^j«^j^« JB.L.'-jt^^iffijaJtAi.'^iai» «imri-ä-» tw» isftta.^t- 
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A trade-off could be performed to determine a suitable bal- 

anoe between cost and achieved reliability. In this way a 

more effective systom could be defined« 

Chapter 3 has restricted the discussion to scries sys- 

tems. The first part considered the allocation when the 

elements displayed a constant failure rate. The second part 

of this chapter considered the series system where the fail- 

ure rate of each element was not necessarily constant^ but 

the distribution of times to failure for saoh eloment could 

be adequately described by the Weibull distribution. An 

optimum allocation for a parallel system will be treated in 

the next chapter. The V/eibull approximation will again be 

used to aid in the mathematical development. 



CHAPTSft IV 

PARAILÄL SYST13M3 

INTRODUCTION 

This chapter will bo devoted to tho consideration of 

parallel systems. Por tho purpose of discussion, a parallel 

system will be defined here as one which requires the suc- 

cessful operation of at least one element of two or more 

elemonts in active redundancy* It is also assumed that the 

failure of any element or elements in the redundancy places 

no additional stress on the remaining elements. With the 

restrictions stated above, the system reliability for tine 

tQ can be written 

m 
W * 1 - g1

(1-Ri(to> >' 
where 1-^i(t0) is the unreliability of the i

th olement of m 

in active redundancy. If the object is to mozinise system 

reliability for time tQf then it is necessary to minimize 

the quantity   iJL  ,,  n  ,.   v*    for the system elements. 
11  P~*MIVft 
i«1   x    ° 

Since for V/eibull distributed elements the unreliability can 

be expressed as J3 

the object is to minimize 

Ali 
n (1- • °      > ü«. 2ii-; 

«here, as in tho last chaptoi«, tho total oxnonditure con- 
i 

38 | 
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straint is 

2 A.a/p, * = H 

If Equations 21|. and 25 are used to form the Larran^ian 

function, the equations which result fron partial differen- 

tiation are simultaneous, non-linear in the Ct^# These 

equations are not ameable to closed form solution. One 

possibility in reducing the complexity of these equations is 

to make the first order approximation 

ß A. 
exp -t^/a = 1- t0/a . 

For element reliabilities greater than .72, this results in 

lens than 5 ' error. V/ith this approximation the tern to 

r.Inimlae for the system is 

n A n *o  

Forcing the Lagrange function as 

the oquations to satisfy are 

1    »    t^1       \ „ai"1o-bi 
"äiSiTT      ßiAiCli   A       °     iBl'2"- m 

£ 
a 

i=1 1   x    1 

£|.ar 

-iqs.  26 

ln(t0)  n t0        ♦  *Viai ft * 0    l*1,2,..,n riqe. 27 
1-1 >»1 

3q.  26 
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Combining Equations 26 and 2? yiolds 

Ä -  *l 
^   ailn(t0) 

which is a faniliar result. Summing equation 26 over all m 

elements nivos 

rn ß 

a» 

Li=i^^J L i»i aiJ      i«i i   i ^i ■ o. 

a. Ä-bi 
with  n Aitt/Ä i 

i=i x   x    x 

replaced by H, the multiplierA is 

Lisi"a7JLitti 
aiJ 

This multiplier in Equation 2? yields: 

ln(t0) 
nn £ A tf^ft   11 b A    -i^-i . 0 i-insj U=i-apLi=i HJ biAiai A>i      - o. 

H 

3earrar.sing in terms of CU, 

bi Ai I    1      _, 
i=1  fti    J 

ir.ce    ßi = bt/ at ln(t0)  , 

1 

H 

a. = i 

b. 
n (bt) 

i 

A
iai 

1   ln(t0) i S    i 0     i=i *i   J 

-.1 

3q. * 

u*«ta^A<MatoMaarifejfe^   ■'1"v" '-^.■■*.^*.^—~-.v^-»rt.^.^«jia.A^iMjgfi^tiaifcMr,i| lifffrnti"--*-"'- ttüa<fetfeifl*^*Cwatea»^tei^£a» rUniii ^ivj urtil i ii li-vj^-tairfcaataii* 
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which is tho optimal d allocation for each element when m 

different elements comprise tho system, 

A design is being considered for a programmable elec- 

tronic calculator. Because a problem can be progrcrimed or 

inputed via a manual keyboard, the programmer and keyboard 

are considered to bo parallel elements* Either clement can 

fail and a problem can still be processed using the other 

element as an input device. The cost function for the 

electronic programmer has been estimated as 

5.0 .Z$*r1.$$ 
Oj ss e <'4 

The cost function for the keyboard has similarly boon esti- 

mated as 

If v2,000 is to be spent on tie input system, what 0. and ß 

should be allocated to each element to noxiniso reliability 

for 5^0 hours operation? 

Using Equation 26 with the above coat parameters, the 

optimum p. for elements one and two are 
Jfa 

ß%  = 1.00   and    ß2  * Z.l\Z  . 

The optimal OL can be found by Equation 29 and are 

0.91 22.6? 
0l1 » e      and    GL^ « e    # 

These Gland fJsubstituted in their respective eost functions 

I I ->■ fcj^lrga^^-^lrt^-«^^.^^^^^-^^^ Ä:■*** -n .tmi„ r ii,-Ktäri±-'**-i*f-ii*ü*i<*+-- 



yield C, = In ,070    and    C^ = i930^ 

The system unreliability is m      ß. or .r.00076 far 

500 hours operation. 

W 

MINIMUM COST ?oa PLIABILITY a:3goij;c-i3?r? 

The object of the following analysis is to minimize 

when a system reliability requirement must be not. If the 

system reliability requirement is H (t ) - 1- K(0 for t SO        ' o       o 

hours operation, the object is to minimise 

subject to 
m    a. ^-b. 

» A 

?or this case the Lajnjran^ian is 

so that the eouations to satisfy are 

, A a,-1 ^-b. 
•«A, a,1  yß, 1 + A n » *  i    ^i       aL i=v 

a., ^-bi-1 

2.  ■ 0        1=1,2,..,m , 

Ä 
Vi^Ä i   '     tXlnCt )Sl *o      *0      i=1,2,..,ra 

i=i a i 

Ecs. . 
30 

Eqs.  ; 
3/ 

.-.      .iv -"^^.^-^^.M^^^-JB^^^t^ijiirtaritifl^^ i'-Vi ii'iiitnf ilift nftit^irihrrfliInffWrifihrMiitfTiiHiliifi^niiflilhiifiiiiig-i-»-i"tI-TMInr>n!■*rniiMi «■ hnnr if ^„«r't, ■ &jtjiMtf*iatf&ai*i*täsi*aü*^i*aam^^ •■**■    ....■■■-*■**••? 
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w 

and   m A 
n J^o___ - K(tQ) » o. 
1-1-57 

As before, combining aquations 30 and 31 results in 

i=1,2,».,m . A—4 ^i   a.. 1 ilKT^T 

Substituting the reliability constraint in nuation 30 and 

multiplying by 

gives 

Ai 

~sr* fi) 
L K(t0)/§*J 

1/a« 

Taking the product of this expression over all a elenonts 

yields 

A iÄi i a £. - «s> - ft (- i)*i h ^r*" 
o'^i 

m 
or 

[-X] 
2 i i=iai 

r b>+1       b. 

- 1      2_ 
- ^TETT E V 1-1 

The opti-.ur. r.ultiplior is thus 

-X =lT*7r-TlT 

a^    Aifl \ln(t0)) 1 

E7 
a. 

K(t0) b~* 

Ww 

r Ml      b. 
ai      Aie    vln(tQ)) x 

b.a- 1 

Si 
i=' 

a. 

U     K(t0) bt* 

;ith this result tho o->tinum  O. for the icn cl orient cni be 

found as 

th 

Sq. ® 
3Ä, 

1 

y,;K^iiBa«ttiytmifHtfip£''*«^^ ri-'iftrtraiii 
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m 1 r*<V h1 
_ - 

LA^1 (ln(t0)) tl 

a4 

where t refers to the time for which the system reliability 

has been specified. 

EXAMPLE 6 

A*. 39 

Por the programmable calculator of JSxample 5, what min- 

imum cost could be expected to achieve a ,99 reliability 

for 500 hours operation? What CL and ß should be allocated 

the two elements? 

The optimum level for tho ß^  can again be found from 

Equation 2b  and are 

ß%  = 1.00     and     ß2 n 2.U2  . 

With a K($00) value of .01 $  the optimum multiplier -A can 

be found in Equation 32 and is oxp 9»i?7$. The resultant 

allocation for Qt and CL^  are exp(5.i|2) and exp(20.38) from 

iiouation 33. This results in an unreliability of .001^6 for 

element er*v and 2*22  for element two. In the development of 

the allocation for the parallel system no restriction was 

imposed on the value of unreliability an alenont could be 

allocated, however a value of unreliability greater than one 

is physically meaningless. When this occurs a close look 

should bo taken at the elements envolvod to see whether or 

not they are actually required in the system. If sof the 

lowest reliability permissable should be allocated these 

UiiitfstttM&jaKkMa&iäitutetiü & ■■' r 11 unbtiMumm mäßü&ü&tidufcmii&miii^üäi* i 
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elements in order to maximize overall systen reliability« 

For the example under discussion it is decided that .60 is 

the lowest a&nissible reliability for element two; it is 

necessary for element one to have .95 reliability at 500 

hours to satisfy the system requirement. V/ith the ß* 

held constant the new Q. are 

7.82 16.00 
O-^ ä e    and    Q*80 

These CL and ß result in element costs of -)1f030 for element 

one and $230 for element two for a system cost of $1f260. 

For the situation where more than two elononts comprise 

the systc** and one is allocated an unadmissablc level of 

unreliability the analysis would proceed as follows. The 

elements which were allocated too larre an unreliability 

would be set to their minimum reliability. The new system 

reliability requirement could be found by factoring out the 

unreliability due to the elements set at their minimum re- 

liability. A new allocation can now be made over the re- 

maining elements. 

OPTIMAL REDUNDANCY FOR IDOTICAL 3LHHKHTS 

The situation is often o.icountered where identical ele- 

ments are arranged in active redundancy to improve the 

system reliability. When this is the c&se it might be ad- 

vantageous to know how m-ny elomonts should be usod to 

achieve the most reliable system for a fixed expenditure H. 

:% 
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AQa/j   is known for If a cost function of the form 

these elements, it is possible to find the optimum redundan- 

cy m» For m elements comprising the systom, tho unrelia- 

bility      n 
5L t^1 n o 

reduces to 

m 
for identical elements. The cost associated with this 

system is 

XBA a fj    # 
Thus for this case the Lagranßian may be formed as 

rtjtf  - A(nAa
a/?-> - « 

Tho simultaneous equations to consider arc 

FÖ"-CO - **•* 
a-1 ^-b 

5 L-öd 

= 0 , 

o , 

and 

»m(t0) r^q  ♦ 

*/9"b 
nA a /Ü  - H ■ 0 . 

a^-b-1 
bmA Q. fj =0 

Simultaneous solution of aquations 35 and 36 in tor-xs ofß 

iq. * 
3* 

3ST 

iisi.*Jta.-rf»a«aä»i«*tJi adfcaattMfcaaaa*tfc^jfc—m^»^*.** r^^^-^i*(lfelr ^^i^«*; *fc vfe»^to^^^v^^^^^M-.afa^'iü^^ 
^Ü^L^Aäi 
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yiolds /j b 

^B   a ln(t0) ' üq. 37 

liquations 31+ and 35 can bo oombinod to give 

or a    a/>   b+1 
a « et    » o   # 8q. 3l 

o 

Using the cost constraint with the optimum CL and ß, the 

expression for the optimum redundancy can be written as 

b 

m s  b+1 b        b * ^q# * 
Ae  a ( ln{t0) ) 

^ere is no guarantee that m will assume an integer value in 

Equation 39 although anything but an integer number of re- 

dundant elements has no physical significance» Unless the 

optimum m is found to bo and integer, the integer just small- 

er and just larger should be tested to see which is the true 

optimum. This is accomplished by dividing the total exnen- 

diture into equal parts for each element at each integer 

tested. Using Equation 37 and the cost equation for each 

element the optimal 01 and p can be found. With those two 

parameters known for each elonent the system reliability can 

be determined and the largest one chosen for the integers 

tested* 

iSXAHPLS 7 
HI» Hit ITTlWflW 

A multi-engine, all terrain vehicle is being conaiderod 

r 
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where tho estimated cost of achieving Woibull parameters Cl 

and ß  for each power train is expressed as 

C « e aß 
For preliminary analysis, one power train operating success- 

fully is considered adequate for mission success. If it is 

decided that #20,000 should be spent on the power train(s), 

what is the optimum number of power trains and what power 

train reliability can be expected for 1000 hours operation? 

The optimum (X , ß and m can be found from Equations 37, 

38 and 39 with the cost parameters given above. The re- 

quired values are 

ß= 2.90      CU e n * 2.72 . 

It is necessary to test integers on both sides of m to see 

uhich yields the lowest value of unreliability. With m 

equal to 2, each element has a reliability of .933 for a 

system reliability of .9955« With m equal to 3, the element 

reliability is .8^6 for a system reliability of .996i{.. 

Therefore three power trains is the optimal level of redun- 

dancy from a cost standpoint. Figure 2 illustrates tho var- 

iation in system reliability with the number of redundant 

elements ^hen  the total expenditure.is $20,000. 

^  , ,  „ v _   ^  „»««—   - ^„,^,1^-M^^ — ^ 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A cost based optimum reliability allocation tochnique 

has been developed. Two basic configurations have been 

considered for allocation, series systems and parallel 

systems. The technique is based on the minimization of 

system unreliability subject to a total expenditure to 

achieve system reliability improvement» The dual of this 

problem is also considered, namely the minimum expenditure 

necessary to achieve a predetermined sy?tom reliability 

requirement. The applicability of this techninue is con- 

tingent on the accuracy with which each elements probabil- 

ity density function can be approximated by the two para-  ^^ 

1 
which discribes the cost associated with achieving a reli- 

ability level in an element. A method is outlined in the 

Appendix for estimating parameters for tho cost function. 

The solution to the reliability allocation problem is found 

by the application of tho Lasrange multiplier method. 

?or the case of the series configuration, two snecific 

systems are treated. The first is tho system where each 

element has an exponential distribution of time to failure 

(constant failure rate), and the second i3 whore the p.d.f. 

of time to failure for each element can be adequately 

50 1 
4 

meter Weibull distribution. In addition it is necessary 

that parameters can be found for the pi-w^o^   ■/.,; i'unotion I 
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described by the Weibull distribution» Where the elements 

have a constant failure rirte, an optimum failure rate allo- 

cation is shown whore the total expenditure is specified or 

tho system failure rate is specified« For the case where 

all the elements have a Weibull failure rote a closed form 

solution is not possible with the proposed cost function. 

An iterative technique is required to find a suitable multi- 

plier and thus the optimum allocation, A modification of 

the cost function is presented which allows tho explicit 

solution of optimum Weibull parameters for each element and 

thus tho money to be spent for the improvement of each ele- 

ment. To illustrate the use of the allocation technique a 

numerical example is 3hovn for each section, 3inco the 

exponential p.d.f, is a special case of the Weibull p.d.f,, 

either approach can bo employed to allocate to a constant 

failure rate, series system. The choice 3hould denend on 

the accuracy of the cost function in defining true cost 

versus element failure rate. 

For the parallel system a method is developed to 

allocrte V/eibull parameters to each element to minimize 

system unreliability for a **iven expenditure. As with the 

series system it is assumed that the p,d,f, of each element 

can bo adequately described by the V/eibull distribution. 

The cost function is the same as used with the previous 

series model. The dual of the above problem is also con- 

sidered where a system reliability requirement must be net. 

,:»:pssä;v:i;".-■•«.i.>,>,,.. ':.* l* U^sfe^?^ 
"T"****»** 
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One additional situation ia considered; finding the optimum 

number of identical elements in parallel to maximize system 

I 4,       reliability with an imposed expenditure. To allow an analy- 

tical solution of the allocation problem a first order ap- 

proximation is made for element reliability. This approxi- 

mation results in less than % error for element reliabili- 

ties greater than #72« Following each development is a 

numerical example. 

One general conclusion that can be made regarding reli- 

ability allocation is that for anything but very simple 

system configurations the mathematics involved becomes quite 

complicated. Systems of any complexity (series-parallel, 

dependent element) in most cases require a dynamic program- 

ming approach and subsequent digital computer solution. 

Reliability allocation is an important step in the concep- 

tual, development and design phases of a system. As such it 

is a task which must be performed. If a model is available 

which can be used to treat the specific system under consid- 

eration, it should be tested, 

SUGGESTIONS FOR FURTHER RESEARCH 

Uorlc on She development of the models presented in this 

paper could be expanded in several directions. 

In the series model using the Weibull approximation, it 

was found that explicit analytical solution was not possible 

for the optimum Weibull parameters. An iterative technique 

is required to locate the optimum Lagrange multiplier, A 
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digital computer program would enharoe the usefulness of the 

allocation technique and serve as a vool for sensitivity 

analysis and for study of alternative expenditure policies. 

Solution is not limited to the digital computer. TAO simul- 

taneous equations resulting from the Lagran^ian function 

oould be solved by the use of an analog computer and sensi- 

tivity of the optimum allocation could be studied by the 

variation of problem parameters. 

The optimum allocation for the parallel system was 

found only after a first order approximation was made on 

element reliabilities. Perhaps an analytical solution exists 

for this problem which does not necessitate this simplifying 

assumption. If not, it would be worth while to test the 

closeness of the allocation developed in this paper to the 

true optimum. This could be done by solving the original 

non-linear, simultaneous equations of the Lagrangian by an 

iterative technique. Again, a digital computer could be 

employed to solve these original simultaneous equations. 

One further area of research is in defining suitable 

parameters for the proposed co3t function. Tho method 

presented in the Appendix i3 very limited in that it is 

necessary to assume a fixed ratio between elements r.oan life 

and standard deviation of time to failure. This .Is equiva- 

lent to holding the beta or shape parameter in the l/eibull 

distribution constant. This might not be a realistic cost 

versus reliability assumption for certain elements. A 
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valuable contribution to reliability work -ould be tho re- 

search and cataloging of distributional forms of various 

sj'stom elements and components, and the cost associated with 

the reliability levels achieved. Such a listing would 

greatly aid in the development of more accurate cost func- 

tions for reliability allocation. 
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APPENDIX 

ESTIMATION OP KSIBU&L PAR/^JTiSHS 

The accuracy of the optimum allocation models that were 

presented in Chapters III and IV are strongly dcpondent on 

two assumptions. The first is the assumption that the 

p.d.f.fs of the system elements can be adoquatoly described 

by the V/eibull p.d.f. If a Weibull distribution can bo found 

it is still necessary to define a cost function Which re- 

lates the achievement of improved reliability to tho cost for 

improvement« The key to overcoming both of these problems 

lies in the accurate estimation of the V/eibull parameters, 

alpha and beta, for an element's distribution. Several 

techniques are available for finding suitable V/eibull para- 

meters to describe a given distribution. Three posr.il le 

techniques are 1) equating the mean and variance of the 

V/eibull p.d#f. to the corresponding parpjneters of the ele- 

ment's distribution! 2) defining alpha and beta such that th* 

area under the element's p.d.f. is equivalent to the area 

under the V/eibull p.d.f. for some time period and 3) use 

maximum liklihood estimators with points from the element's 

distribution. Each of theso methods will be discussed pre- 

sently. 

A very straightforward approach to obtaining estimates 

of alpha and beta is to equato distribution means and var- 

iances. ?or a V'eibull distribution of the form 

u jä*6MäLi^faL*ä%e^^Äii*icL-jr^i**^ iv .J^-AUS ~.«-«.-.. ,^\A.Xtii<iäiiitt£*^aiüitfcni>üäfs< 
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f(t;a,/?) «-g t " e" 
ß 

t  /a 

the mean (jl)  and variance ( <T ) can be written as 

and 

These equations when rearranged in terms of the tfeibull para- 

meters become 

i¥] * 1  + icr/fi) 

and 

Thus if the ratio of standard deviation to mean is known, 

beta oan be estimated« With beta and the distribution mean 

the seoond equation oan be used to estimate alpha« 

Another possibility for estimating an alpha and beta is 

to equate area under the Weibull p.d«f• for a given tine in« 

torval to the area under the element's p.d.f. If for time 

t^ the system element has reliability °^f an equation of the 

form 

4a 
FL 

oan be found for all points H^(t^) along the reliability 

curve« At least two data points are required to find esti- 

mates of alpha and beta« For each pair of points the two 

mm*imi****mmm 
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simultaneous equations 

-t$a 
and e    « R2 

L- » Jw ■■ -  *fi* solved. The result of this solution is 
«..•**•■'* 

/>. In ( laR1/lnR2) 
^        In C^/igJ  

and a«     1 • 
InPj ' 

If more than two data points are available for parameter 

estimation, the points can be taken in all combinations of 

two at a time and equations solved for several estimates of 

alpha and beta« For n data points it is possible to find 

n!/((n-2)s(2)!) estimates of the V/eibull parameters* An 

overall estimate of these parameters can be made from the 

average of the so obtained estimates. 
♦ 

Maximum liklihood estimators can be used to estimate 

alpha and beta if the distribution of the element tines to 

failure is initially assumed to be a Weibull p.d.f• For a 

sample of n times to failure (t^) the maximum liklihood 

estimators for alpha and beta are (k) 

nd- Z  tT * 0 
i*1 x 

and       n/B + £  lnt4 - 1/fclX   t< lnt4 » 0 . 
i«1      x i«r       l 

™***#*wm»mmmam 
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Solving these equations for the Weibull parameters would of 

course require an iterative procedure. To by-pasr» this 

difficulty beta can be found by solving the equations 

n 
nO, ~ 2 t. 

1-1 x 
0 

ki • a,/^[f] 
simultaneously. This second equation is an unbiasod esti- 

mate of the distribution mecji. Solution of these equations 

leads to       ß 

" wfc 
Prom this equation an estimate of beta can be found, An 

estinate of alpha is then found from 

a- L'i 

The use of one particular parameter ostimation tech- 

nique over another is dependent on several faotors. If the 

•p»ii,t.  is known for tho element under question, the first 

method should be usM. Th> ;i.i^n apd Variance of tho distri- 

bution can be equated and the dosired OL and ß  parameters 

determined. \fa<m only two points are availablo on the ele- 

ment reliability curve, the second estimation method is 

easily used and accurate enough for preliminary allocation* 

i 

m^asd&ämMiMiisääiäi^M . aäüüa n, ir-ii-vhftto«imi * &*t*u*iim*m*m*ämmm :mm a i m i i ^^^>^^^~^ 
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.on a sufficient volume of data is available and the Woi« 

bull p.d.f. is assumed then maximum liklihood estimators 

are the most accurate estimators available. 

iJMIHATiON OP COST FUNCTION PA3ASJäV&t3 

1  T3ae following is a technique whereby the parameter^ A, 

a and b can be estimated for the cost function 

a ^-b 
A aß 

One simplifying assumption of this toohnique is that the 

ratio of element moan life to standard deviation of tines to 

failure is constant. This is equivalent to hol'iin^ the 

"shape" of the distribution constant» For a preliminary 

i location this is not considered a serious dra\*bac*. It 

seems reasonable that even though the moan lifo of an equip- 

ment increases the general shape of its failure probability 

distribution should not be altered greatly. The accuracy of 

this simplifying assumption, however, will be born out by 

the ..'oibull parameters estimated for the element in question- 

In addition, at least two cost estimates are required for 

each element on the cost versus element reliability curve. 

If the proceeding requirements are met the procedure is as 

follows. Usixv; an estimating technique mentioned earlier, 

v.'eibull parameters CL^, Ct2 <*»$/?**• found for the element. 

Only one ßis defined since the ratio of mean life to stan- 

dard deviation remains constant. Associated wit'"» tieie two 

«liability levels, n(OL%9ß,t)  and a(CL>,/?,t), for oper- 

■4. 

sirMJÜ*-
Mf*i"i->I"i,t "**-* 
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T^r    rtjp <pr     a'« 

atin& time t are two cost estimates C^ and C^. The cost j 

equations resulting from these point3 on the reliability 

curve are i 

i 

and       C2 « Aa2yL? 

where A is the position parameter and a and b are the slope      j 

parameters. Taking the natural logarithm of both equations 

and combining yields 

Since it was; found for She analyses in Chapters III and IV 

that the optimal level of beta for all elements will be 

b/a ln(t ), b can be estimated as 

b » /2a ln(tj, Bq. * 

whore as beforo t is the system operating tino ovor which 

reliability is boins optimized. Usin?> an estimation tech- 

nique previously discussed, CLand/j can be doterminod for 
i 

t:ro reliability and cost levels of the elemc it» ..1th tuo 
i 

d values defined, the slope parameter a can bo found from 
1 

Squatior. 1A. Once a is detcx.oined, b can be found from 

Equation 2A. With both a end b determined, the equation for 

the position parameter A can be written as 

C1     _   C2 

^£^r^u<i r.- tm&BÜhäkkir ft&a   < aijf   i riÜfiaSül ■■„ mäm a aafc 1 &* aaa&*, -^>^;»^^-^.. 
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