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CHAPTER 1

INTRODUCTION

P. C. CIOU

DREXEL UNIVERSITY
PIILADELPHIA, PA.

This book concerns the dynamic response of materials due to
intensive impulsive loadings. The materials considered are primarily
solids, although most of the discussions are also applicable to fluids.
The loading and response in general happen within a very short
time, in the order of microseconds, rather than milliseconds. The
duration of the loading, whether mechanical impact or
thermodynamic energy input, may sometimes be described in terms
of nanoseconds. The magnitude of the loading is such that the
initial stress in the material is high, and subsequently decays to
moderate values, so that both compressibility and strength effects
are important.

We shall be concerned only with material response, and not
with structural response. The distinction between these two is not
very clear-cut, especially when con.posite materials are involved. In
general, the material response problem is concerned primarily with
the "across the thickness" wave motion, which excludes structural
problems such as plates, shells, and beams.

Except for a brief mention in Chapter 3, the uniaxial stress
problem of a wave in .a bar is not treated in this book. Experiments
of wave propagation in bars and rods are comparatively easy to
perform, but due to the geometry, high pressure and stress can not
be achieved. Furthermore, the uniaxial state of stress in a bar is
only approximately true when the lateral motion is neglected. This
limits the bar geomctry to long wave length or low strain rate
problems. If lateral motion of the rod is included in the analysis.
the calculations would be too cumbersome for the study of
constitutive relations. The main emphasis of the book is therefore
on uniaxial strain problems, w, : 'nCompasses the plane shock
wave. Governing equations, constitut'ivi. i'tions and numerical
methods of two and three-dimensional !ftilo,.., -,yitl also be
discussed.
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The material response problem nay be roughly divided into
three regimes: hydrodynamic, finite-plastic, and linear elastic. When
the pressure is very high, many times larger than the yield stress of
the material, strength effects may be neglected and the medium
may he treated as an inviscid compressible fluid. The governing
equations are nonlinear, and the constitutive relations are
represented by an equation of state relating three state variables.
The problem is simplified by the use of pressure in place of the
stress tensor. Treating solids under high pressure as a compressible
fluid is known as the "hydrodynamic" approach. (This is sometimes
perplexing to engineers, because, the term hydrodynamic usually
implies incompressible fluid.) With this approach, theories on
steady shock waves in solids, phase transition. and equations of
state have been studied extensively .since World War II, 1.11,
[1.21.

When the state of stress in the material is below yielding, linear
Hooke's law is applicable and all the governing equations are linear.
Because of the linearity of the equations, the problem is amenable
to a variety of mathematical solutions. For a general survey of
elastic wave propagation, see Miklowitz [1.31. A current survey on
elastic wave involving an edge is also given by Miklowitz [1.41.
Extensive work h,.i been clone on elastic waves in anisotropic media
by Scott 11.51. Recently, much attention has been focused on the
problem of elastic waves in composite materials, as reviewed by
Peck [1.61.

In the intermediate moderate stress range, where all equations
are nonlinear, and the firite strain tensor must be considered, the
problem is very much complicated. In this regime, which may be
called the finite-strain plastic regime, one approach is to generalize
the linear elastic Hooke's law to include plasticity and
compressibility effects. Survey articles and books following this
type of solid mechanics approach are given by Hopkins [1.7], and
Cristescu (1.81. Other recent articles may be found in the books
edited by Fluffington 1.9' and Lindholm [1.10]. Another
approach is to start with the hydrodynamic (compressible fluid)
model and include the strength effect. This general topic of shock
waves in F-lid has been reviewed in a report by Murri, et al [1.11].
Recent adwnees in shock waves in metals, composite materials,
porous materials, rocks, and ceramics are presented in the volume
edited by Burke and Weiss [1.121.

These three regimes of material response are summarized in
Table 1 .i..
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']'able 1.I Three Regimes of Material Response

Pressure

Regimes and Constitutive Governing
Stres; Equations Equations

lydro'lynamic Hligh Equations of State Non-linear

Finite-st rain Above yield Complicated (rate Non-linear

plastic effect, memory, etc.)

Linear ekL'tic Below yield I locke's law Linear

This book is aimed at a rather general audience. We attempt, to
provide sufficienty fundamental topics so that it may he u.ed as an
advanced textbook, while at the same time containing 'up to date
information so that it wilI be useful to a worker currently in the
field.

Chapter 2 presents the basic conservation laws, governing field
equations, and shock equations, all from the classical fluid
mechanics point of view. Many of the equations in the rest of the
book may be re-ated to the derivations of this chapter. In Chapter
3, the propagation of steady discontinuous stress waves is studied
from the control-volume approach. The elastic wave front and
plastic wave front are related to the shock wave in a compressible
fluid. The combination of infinitesimal stress-strain relations with a
spherical component of the equation of state is clearly less than
rigourous. Nevertheless, it has been used in most computer codes up
to the present. This chapter is intended to clarify some of the
relations within this approach.

In Chapter 4 shock waves are studied from the thermodynamics
and physics point of view. The process for developing an equation
of state from shock data is discussed in detail. It is interesting to
note that. discontinuous stress waves and shock waves have received
attention in almost every chapter of this book. In a region where
the s;tress field is continuous, the governing equations usually can be
solved only by numerical means. For discontinuous waves, the
propagation velocity can be derived explicitly as a function of tile
constitutive realtions. The knowledge of he propagation of
discontinuous waves will help us understand the complete material
response process.

Chapter 5 give:3 a thorough exposition of constitutive relations
and wave propagation in solids from a modern continuum
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echa .ics standpoint. The finite deformation is oresented utilizing

a Lag'angian coordinate description. The nonlinear constitutive
relations are p'eseiP.1 in a more rigorous manner. Since approaches
which modify the classical solid mechanics and hydrodynamics
theories are not satisfactory in the moderate stress regime, the
approach presented in this chapter will prove to he very valuable for
future study of material response.

Chapter 6 is intended as a basic text for the method of
characteri-;tics in unsteady material response problems. The basic
principles are first presented in terms of two first order partial
differential equations, and later generalized into n-equations with
n-variables. Through the use of characteristic lines and surfaces, the
concei)ts of domain o dependence and propagation of
discontinuities are introduced. These concepts are important in the
understanding of wave propagation. Numerical methods of
integ'ation along charaeter!stics and existing computer codes are
also included.

Chapter 7 contains ,an introduction to numerical analysis,
including the basic concepts of convergence and stability. The
finite-difference methods used for fluids and solids are then
presented. Next, two-dimensional Lagrangian and Eulerian methods
are explained, including those used in HEMP, TOODY, and
particle-in-cell codes. Since most dynamic response problems
require numerical solution using the digital computer, the computer
codes, such as those discussed in this chapter. are the final tool for
the analyst.

The recent advancement in our understanding of dynamic
material properties has been aided very much by the development
of new instrumentation and experimental techniques, such as laser
interferometry and lectromagnetic gages. Chapter 8 gives an
up-to-date descriptior,, of laboratory experiments primarily for the
determination of eq iation of state and constitutive equations.
These include the standard explosives, light gas gun, exploding foils,
and modern radiation techniques. A brief account of various

ieasure :fnt. methods are also presented, with the most recent
reference work cited.

Applicttions dealing with shock waves and high pressure
dynamic material response are wide ranging for scientific,
engineering, and military purposes. Chapter 9 discusses some of
these appli ations in detail while others are mentioned and referred
to proper sources. A few scientific applications are explosives, solid
state physics, material prolpertie; u nde:" high pressure, and
greophysics with new developienl s like "shock metamooip isrn" and



Ii'(H) UCT ION

thle mreteoritic impact study of moon surface structures.
Engineering aind comm-ercial applications mentioned inc-lude
exlplosive welding and bonding, shock synthesis of diamonds, and
rock fracturing. Although11 MUch of our present knowvledge of shock
waves zind material response is stimulated by miIi tary, applications,
only a brief discussion ca!.n h~e included] here. Details on
fragmientation of shells, particle acceleration, blast effect and
nuclear wveapon design are not given. Armor penetration is
presented in more detail, especially the recent work by Al. W'ilkins,.
Some of thle nuclear effect applications may also be found in Wanl

WhenI this VOILume waZs first planned0(, theIe wa.S no intention of
in-cIluding hypervelocity irtpact; Kinslow's book on high, velocity
impact t 1.14 Iwas forthcoming. During 1'971, when thle manuscript
was almost completed, it w.as felt that s ufficient new results have
appeared inl current years to warrant, its inclusion in this volume.
Ilal Swi ft's brief account on thi2z topic is therefore included as an
ap~pendlix.
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CHAPTER 2

CONSER VA- TJON E QUA TIONS

F. K. TSOU
MECHIANICS A ND STR UCTUFS GROtJP-

DREXF*I. UNIVERSITY
PILADELPIIIA, PA.

List of Symbols

E~nglish Alphabets
a - acceleration

B; - body force
E -- Specific internal energy

- rate of strain tensor
- extensive property

f - intensive Property
- body force per unit mass

H - specif ic enthalpy
Al - mass

p - pressure
Pd Dynamic Pressure, defined in Eq. (2.80)
Q - heat transfer to the system

qj- heat flux vector
Si surface force

t timre
t - stress vector
T -- temperature
U -- Wave propagation velocity

Uj) Particle velocity
V -. velocity
w work done by the systemn
X - Lagrangian coordinates
X Eulerian coordinates

X, mass fraction of i-th constituent
*Now Department or Mechanical Engineering and Mechanics
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Gree(k Alphabet

d defines in Eq. (2.' 8)
-- defines in Eq. (2.79)

u -- viscosity

defined in Eq. (2.81)
p -- density
G -- volume ratio of matrix to fiber
O, -- stress tensor

r - ;hear stress
defined in Eq. (2.16)

, -- defined in Eq. (2.1.03)

2.1 Introduction

Governing; equations based on conservation of mass, momentum
and energy will be prresented in this ,henter. These equations can be
for both iolids aid fluids. In o.der to place emphasis on the
compressibility effect, the approach used in fluid dynamics is
adopted here.

in recent years, dynamic methods based on the utilization of
strong shock waves have been used for obtaining high pressures and
compressions. The pressure, in the order of tens of megabars, was
obtained experimentally behind the shock front propagating -n a
solid. Corespondingly, the solid was compressed by a factor of two
or more. This suggests that the classical approach to the problem of
material response from the solid mechanics point of view is not
sufficient since, in this approach, one is concerned with low strain
rates, long duration, but neglects compressibility efICect.

Because of high compression resulted in a strong shock, the
strength of material may usually be negjected and the material
behaves like a compressible viscous fluid. In fact, the concept of the
compressible viscou Fluid is applicable to a shock pressure
considerably less than tens of megabars. A basic background
knowledge of fluid mechanics is therefore needed to help
understand the problem. For this purpose, we shall introduce the
concept of a real fluid, desclibe Lagratigian and Eulerian approaches
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to the motion of a fluid, derive both the governing integral
equations and differential equations based on conservation laws,
discuss constitutive relations, and finally apply the governing
equations to the problems involving shock waves. Emphasis will be
placed on the shock propagating in composite materials.

2.1a Viscosit"

To analyze the problems in Fluid Dynamics, we usually base on
either a perfect fluid or a real fluid. The former may be referred to
a fluid that, is incompressible and inviscid and the latter,
compressible and viscous. In the case of the flow of a perfect fluid,
extensive studies have been made in the second half of the last
century. The mathematical theory thus developed gives satisfactory
prediction for problms involving wave motion of a tide, lift of an
air foil, etc. For other problems of practical interest such as the
pressure loss in a pipe, skin friction, no slip condition on a soid
surface, interaction of shck waves with the bndary layer and so
forth, a study of flow of the real fluid is needed.

Viscosity usually implies the resistance of a flow. It. i. small for
ordinary fluids. The effect of viscosity, however, is often not
negligible, To obtain an expression for viscosity, we consider the
motion of a fluid between two long parallel plates. The bottom

Figure 2.1. Definitive skt Th visesity

plate is hed iftationary while the upper plate is moving with
constant velocity, U as shown in Figure 2.1. After the motion start,
and initial disturbances are over, the Flow will depend on the y
coor(linate only. For a viscous fluid, the fluid particles will adhere
to the plates, that is, the fluid particles will assume the velocity of
the solid wall. This is called no-slip condition. The fluid velocity is
therefore equal to zero on the bottom plate and U on the upper
plate. A velocity (list rihution as shown in the figure is expected. It



is also observed fromn the experiment that this velocity distrib~ution

inl the flow field is linear. Mathemiatically, one' writes
V rI

(I L , A,2. 1

where a is the di.stance betwveen two plates. TO support the fluid
mnotion, a tangential force has to be acted on the uipper plate. This
ftorce, being inl eQUihibrium with the frictional force in thle fluid, is
found experimientally prop~ortional to (U/1a). As seen fromn Eqr.
(2.1), (U/a) is equal to duldy. The frictional force is thus in general
proportional to duldy and the following Newton's viscosity law is
arrived. fl 22

The shear stress 7 represents the Frictional force pet unit area
parai!el to the flow. The proporl~tioality factor p. is cal1led A)SOILute
viscosi t or simply vi--.cosity that. is essen~tially depend --,t onl the
teMPeratuLre of the fluid. it has to be pointed out that all gasr . ':d
mro-t. simrple liquids are Newton ian Ifluids and hence bhav'e
according to the above eqluation. Blood aid polymers are examp~les
Of fluids, thtcanno1t be considered Newtonian fluids. Newton's
viscosity l11w )roOdes description o!, a Simple calse of fluid motion.
A generalization of frictional effect will be presented later in this
chapter.

As seen fron- Eq. (2.2), shear str.ass is equal to the product of
viscosity and the veoiygradient in- the direction normal to the
flow. If the velocity gradient is zero, there will be no shear stress. In
other words, the sheiar. stress is imporiant only in the regior where
the velocity gradient il significant. Consider flow over a -stationary
solid surface. The flutid velocity is zero at. thie solid wall and assumes
the free stream value in a small disUince from the wall. This implies
that inl tis small distance the velocity grqdient is very large . Sheal.
stresses will not be negligible even though the viscosity of the fluid
involved is small. Away from the(, wall, however, the velocity
radient is practically zero and so is the shear Stress. This concept

contrlhutes the developm-ent of the boundary-layer theory that was
propotwdc by Prandt'l in 190-4.

2.11) Comnpressibility

Le t u s now discuss the compressibility of a fluid.
Compress.bility is a mneasure of volume change or density change of
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the fluid under tle action of an external force., !,,e compressibility
of gases is much larger than that of liquids. Air, for example, is
about 20,000 times more compressible than water under normal
conditions. In ihe problems involving gas flow, it is convenient to
describe this compressibility by a Mach number. For small Mach
numbers, say 0.3 (corresponding to 5% density change for an ideal
gs) the gas flow is considered incompressible. For Mach numbers
larger than 0.3 the compressibility of the gas must be taken into
account.

The comprvssibility of a condensed medium (liquid or solid) is
small under normal pressure. With the development of the present
technology, however. the volume of the medium may be reduced as
much as half of the original volume when an extremely high
pressure is applied in a short duration. The compressibility in this
case is therefore an important parameter to be considered. The
basic feature distinguiishing the condensed media from gases under
high pr-ssure is the strong interaction between the atoms (or
molecules) of the media. The atoms (or molecules) of liquids and
solids are close to each other and interact strongly. This interaction
is responsible for holding the atoms within the body. It has a dual
character: particles separated by sufficient larger distances are
attracted to each other and when brought close they repel each
other. in the case of gases under compression where the average
distance bhelveen particles are much larger than the particle
dimensions, the interaction takes place mainly through collisions
when the atoms (or molecules) approach each other closely.

2.1c Continuum

To solve the problems in fluid dynamics, two approaches are
usually available, First, consider a gas to consist of a large number
of molecules that are in constant motion and collision. The motion
of each individual molecule based on kinetic theory or statistical
mechanics is studied. Tho behavior of certain statistical groups of
molecules is then determined. Such an approach is often too
cumbersome and time consuming for practical calculations. In the
second apprach, a continuum model is used to predict the
macroscopic properties of a fluid. Such macroscopic properties as
pressure, velocity. density, temperature, shear stress, etc. at any
point in the flow field are usually of engineering interest. In the
continuum approach, all properties and theil" derivatives will be
considered continuous. Through the present, chapter, this
continuum model approach will be used.
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In essence, the treatment of the fluid as a continuum is valid
whenever the s.nallest volume of interest contains sufficiently large
numbers of molecules as to make statistical averages meaningful.
For example, air under standard conditions contains 3x10 19

molecules per cubic centimeter. Imagine a cubic whose sides are one
thousandth of a centimeter long. The volume of such a cubic is
really very small from a macroscopic viewpoint and yet contains
3x10' 0 molecules. The concept of a continuum fails when a gas is
highly rarefied, where the mean free path of the gas is larger than
the characteristic dimension of the body under investigation.

2.2 Kinematical Preliminaries

To describe the motion of a fluid, it is convenient to start from
a basic mathematical transformation. Let us consider, at some
reference time t = 0, a certain fluid particle at a position X and at a
later time t, the same particle moves to a new position x. We say
that x is a function of t and X and the flow may be represented by
th' transformation

x = x(X, t) (2.3a)

For each component, this can be written as,

xi = x(X,X 2 ,X_ ,t), i = 1,2,3 (2.3b)

It should be emphasized that the initial coordinates X of the fluid
particle are referred to as material coordinates of the particle. The
particle itself may be called particle X. Thus, if t varies while X is
fixed i.e., we follow the particle X, the path of the particle is
specified by Eq. (2.3). On the other hand, if t is fixed, Eq. (2.3)
gives a transformation of the region initially occupied by the fluid
into a new position at time t. The material coordinates are often
called lUgrangian coordinates; the coordinates x are referred to the
position of the particle and are called spatial coordinates or
Eulerian coordinates.

If the motion is considered to be continuous and single valued,
Eq. (2.3) can be inverted to give

X - X(x, ), (2.4a)
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or X X(x, x2 ,x 3 , t). (2.4b)

The equation relates the material coordinates with the spatial

coordinates and time. If any fluid property F, such as velocity,
density, etc., is given to be a function of X and c, F can be changed
to F (x, t) by means of the equation.

F(x, t) = FiX(x, ), 11. (2.5)

Likewise, from Eq. (2.3a), one can write

(Mx,t) = Ftx(X, t), t] (2.6)

Physically, F (X, t) means the value of the property F which is seen
by an observer riding on the particle X at time t while F (x, t) is the
value of F at the position x and time t.

Associated with these two forms of fluid property F are two
possible tirae derivatives defined by

F_ F(2,7)
at L ,,

and

dF a 4F Xt) (2.8)

It is understood from Eq. (2.7) that x is held constant in
performing 3F (x, ')/t. Thus 3Fi13t represents the rate of change of
F at a fixed location x while dF/dt means the rate of change of F
following the particle X. The former is called spatial derivative or
Eulerian derivative; the latter is called material derivative or
Lagrangian derivative.

Now let us replace F by x in Eq. (2.8). We arrive at the
definition of the particle velocity.

dxV dx- (2.9)

The velocity is therefore the material derivative of the position of a
particle. By the same token, we define acceleration as the material
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derivative of the velocity of a particle, i.e.,

(V (2.10)

dt

For u = v(x,t), the chain rule may be applied to give a as a
function of x and t.

a. + v-grad v (2.11)
at

where the first term in the right hand side of the equation
represents the change of velocity with respect to time t at position
x. It is referred as local acceleration. In a steady flow field, the local
acceleration is equal to zero. The second term of the equation
denotes the time rate of change of velocity due to changing position
and is called convective acceleration. Corresponding to Eq. (2.11),
one can write the material derivative of any fluid property F in the
form

dF = F + v • grad F (2.12)

dt t

This equation relates the material derivative with the spatial
derivative. For further discussion of the concept of Lagrangian and
Eulerian coordinates and their derivatives, reader is referred to
Serrin (2.1) and Ais (2.2).

2.3 General Stress System in a Deformable Body

There are usually two types of forces involved in fluid
dynamics, namely body forces and surface forces. The body forces
are proportional to the volume of the body and are not in direct
contact with the body such as gravitational forces, magnetic forces,
etc.. The surface forces, on the other hand, are those exerted on a
boundary by its surroundings through direct contact. The
components of the surface forces per unit area at a point are
referred to as the stresses at that point.

In this section, we are interested in obtaining an expression for
various stresses at a point in the flow field. To begin with, let us
introduce the notation for designating the stresses with the aid of
Figure 2.2. A double-index notation will be adopted for our
purpose, Thus the first subscript denotes the plane associated with
the stress and the second subscript represents the direction of the
stress itself. For instance, (;. is the value of shear str-ss acting on a
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X3

P32

F'iigU1 2.2. Siress COMompOnentS

plane whose normval is parallel to the x,, coordinate wiethe stress
itself is parallel to the x-, coordinate. The stress component may be
positive or negative. It is considered to be positive if Lhe area vector
of thle surface on which tjE- stress acts and the stress itself have the
samne sense. i.e., either both positive or both negative. Otherwise,
thle stress component is negatve. Thus, all nine components acting
on three faces of a rectangular parallelopiped of fluid shown in the
above figure are positive.

X3

B

n

C

Fiufurt' 2.3, A small tetrahedron

With these notations available, we are now in a position to
study the stress at a point. Consider a small tetrahedron of fluid
whose vertex is at an arbitrary position P shown in Figure 2..3. Let
the slanted face ABC have unit outward normal n and area As. Then
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the area of the face PBC (denoted by As 1 ) must be equal to n,
Z (As), where the component nj is the cosine of the angle between n

and the normal of the face PBC. In general, we write

As, njAs, i = 1,2,3

the total surface force in j-direction acting on the fluid inside the
tetrahedron. is the summation of force in f-direction acting on each
face,i.e.,

(UjAs81 + 021As 2 + u01 S3) + tAS - ((uAs,) + ts

= - (uj J )A s + ts

The minus sign before each paranthesis is used since the stress has a
sense opposite to the corresponding coordinate. The stress t in the
above expression represents the one acting on the slanted face ABC,
and o.. is called stress tensor.

Next, let fj be the external force per unit mass in f-direction
acting on the tetrahedron and A v be the volume of the tetrahedron.
Application of Newton's second law gives

pAva= pAh - (osn)As + tAs

Dividing through by As, we have

AV A
= o1 f"p - pJ;fA-s (2.13)

Let the tetrahydron shrink to zero but retain its shape. The ratio
Av/As will clearly go to zero. Therefore, the f-component of stress
at an arbitrary point P acting on the slanted face is given by the
relation

ts = ,ini (2.14)

The stress vector ts is then related with the tress tensor o,, and the
unit outward normal of the slanted face n,. It is seen that t, depends
not only on the position x and time t but also on the orientation
(n) of the surface involved.
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When the fluid is at rest or if it is inviscid, there is no
contribution of shear. The stress tensor is reduced to the form

P5 =(2.15)

where Kronecker delta

• {= 0, i j

p in this case represents the uniform hydrostatic pressure that is
independent of orientation. A minus sign appears in the above
equation since the pressure is acting toward the surface.

In the case of a fluid in motion, the stress tensor has the general
form,

a = - il + rTg (2.16 )

Evidently, the second term in the right hand of the equation
represents the contribution of viscosity. Substitution of Eq. (2.16)
in Eq. (2.14) gives

t - pn, + rini  (2.17)

Thus, the stress vector is related with pressure and the stress tensor
due to the contribution of viscosity.

2.4 Integral Form of Conservation Equations

The governing equations for the motion of a fluid are derived
from conservation laws as well as subsidiary laws. In this section, we
shall describe four conservattion laws in integral form, namely mass
conservation, conservation of linear momentum, conservation of
angular momentum, and energy conservation. The differential form
of the conservation equations and the subsidiary laws will be
treated in L he next section. The latter are usually constitutive
equations, equations of state, etc..

2.4a System and Control Volume

There are two possible ways to formulate the governing
equations for the motion of a fluid. First, these equations may be
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written for a fixed mass cf fluid particles as it moves with the flow.

Secondly, one considers a volume fixed relative to the coordinate

txes and is concerned with the movements of iriass, momentum,

and energy across the boundaries of the fixed volume, as well as the

changes taking place inside the fixed volume.

The fixed quantity of mass of the fluid mentioned in the first
instance is called a system. A system may change its shape and
position in the flow field but must always contain the same mass.
Thus the system may also be called control mass and the system
approach to the motion of a fluid is therefore based on Lagrangian
viewpoint. Practically, particle paths are often quite complicated,
for examlple, the motion of particles past a turbine blade. They are
very hard to follow and may be easily lost. System approach, in
general, is very cumbersome and time consuming and may not serve
as a powerful tool to solve problems involving fluid motion. In rigid
body mechanics, however, it is very convenient to use the system
approach (the free body diagram) since the mass involved is easily
to he identified.

'['Te fixed volume mentioned in the second case is called control
volumei: whose boundaries are referred to as control surfaces. In
engineering applications, we are often interested in obtaining
information at certain locations in the flow field. For example, a jet
engine designer wants to know the fluid pressure at the engine inlet
ard outlet, i.e., at a specific unchanging location. He may not be
interested in finding out the path ol a particle or predicting the
future of certain particles that will exert the pressures on these
locations. The control volume approach is concerned with the
quantities across the control surface. This approach is therefore
very useful for solving flow problems. In the paragraphs to follow,
we shall develop the governing equations for a control volume. 'rhe
control volume approach is based on Eulerian viewpoint and the
governing equations will be expressed in terms of Eulerian variables
(x,t).

2.41) Relations Between thie System and the Control Volume

Appro:.ch

The physical laws, such as mass conservation, momentum
conservation, a:d energy conservation, are stated for a fixed mass

*'Fhe. control volume may 1b,. expanding such as a balloon. This expanding,

control volu-ne is not a system since we are adding mass to the balloon. The

problem involving expanding control volume will not be pres(nted here.
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of fluid particles. If an analysis for a control volume has to be
made, the relations between the system approach and the control
volume approach must first be established. In doing so, let us
consider a system of fluid particles whose boundary at. some
reference time t, is denoted by S, as shown in Figure 2.4. After a
time interval At, the system moved to a new location, its boundary
being S,+ A. Let L I be an extensive property possessed by the
system of particles at the reference time t. This extensive property

I ( IL S+At

Figure 2Ai. Sysim and control volurne

may represent total ciass, momentum, angular momentum, or
energy. With the aid of the figure it is seen that the volume
bounded by St is equal to volume I plus volume II. Tie control
volume is chosen as the volume bounded by St, i.e., it coincides
with system at the reference time t. Now, we have

8= 't1 +  -t (2,18)

where g tI and t,, denote respectively the extensive property of
the particles in volume I and II at time t. Likewis-- the extensive
property at time t + A t can be written as

(1 + At (t 4 It It +  (1 + At) n (2.19)

the change in during time A is

+ At v 4 At1 Ql (t + at)]1 -l (2.20)

Dividing by At, we get
+ -tI~ ;,

(2.21)
Al At At
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Let Al approach zero, the volume II will approach to the control
volume. The first term in the right hand side becomes the rate of
change of . inside the control volume. The second term denotes
the rate of d leaving the control surface minus that entering the
control surface. It is therefore the net rate of efflux that can be
expressed in a more convenient, way. Consider the corresponding
intensive property f, i.e., f is equal to ., per unit mass,
Mathematically, we write

(1 = tp(2.22)

where dv is the volume element under consideration. The
integration is taken over the whole volume V. Since the rate of mass
flow across an area element da is equal to p ni v- da, the rate of
efflux of L across da is then given by f p ni v i da, where v, is the it-h

velocity component. Eqi. (.2,21) can now be written as

Omitting the subscript of the ieft hand side and making use of Eq.

(2.22), we have

+f) f-JjJda (2.23)

where S represents the total control surface. in words, it is seen
from this equation that the rate of change of an extensive property
following a system of fluid particles is equa? to the rate of change of
the property inside the fixed control volume plus its net efflux rate
from the control surface. The double integration sign represents the
integration over the closed control surface while the triple

integration sign is ieferred to the integration over the control

volume. Eq. (2.23) provides a relation between the system approach
and the control volume approach. With this equation available, it is
straight forward to write conservation laws for a control volume.

2.4c Conservatin of Mass

The conservation of mass is automatically satisfied for a system
of fluid particles. The mass inside the system is given by

III ffjN pdt (2.24)
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where M is constant by definition.
Let us replace the extensive property P by M in Eq. (2.22). A

comparison of this equatioh with Eq. (2.22) gives f = 1. Substituting
these relations in' Eq. (2.23), we get

dM O =  fpdv + fpnuda
d., at d A

or (2.25)

jfpni'a - pdv

This means that the net efflux rate of mass from the control surface
is equal to the rate of decrease of mass inside the control volume.
Eq. (2.25) is called equation of continuity. For steady flow, the
term containing 3/t is zero. The continuity equation is simplified
to the form

ff pnvida = 0 (2.26)
S .

2.4d Conservation of Linear Momentum

Let us start from Newton's Second Law of Motion for a fixed
mass in an inertial frame of reference. This law may be written as

dpi
t. - B + S, (2.27)

dt

where the linear momentum pi is an extensive property defined by
the relation pi =fffvvj(pdv). Bi and Si are referred to as the body
forces and surface forces, respectively. If we replace 8 by p, in Eq.
(2.22), it is seen that the intensive property f is simply vi. From
Eqs. (2.23) and (2.27), we obtain the following momentum
equation:

B, + Si -~jfff puidv +ff vi (-vi da). (2.28)
fft - ff

Since the system coincides with the control volume at time t = 0, B
and S, may thus be considered to be respectively the body forces
acting on the control volume and the surface forces acting on the
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control surfaces. The latter may involve pressure force and viscous
force and the former, gravitational force, bouyancy force, etc.; Eq.
(2.28), then equates the sum of these forces with the rate of change
of linear momentum inside the control volume plus the rate of
(fflux of 11monlenturm across the control surface.

For steady-state flow with body force neglected, Eq. (2.23) will
he si m pli fied to

jf p v(11j L.)da, (2.29)

Eq, (2.28) is derived for an inertial reference. It can be applied
when the control volume is fixed in an inertial reference or fixed in
-a body that is moving with constant velocity. If the velocity is not
constant, the problem becomes the one involving a noninertial
control volume. There wil, bo extra force terms in the left hand of
Eq. (2.28). Interested readers may refer to the formulation given by
some text books, e.g. Shames (2.3).

2.4 Conservation of Angular Momentum

Angular momentum means moment of a momentum that is
defined as x x p, where x and p are position vector and linear
momentum respectively. Base on this definition and Eq. (2.23),
we can write,

M + M , fff (x x v)(P d v) + f x x v)(pv.dA), (2.30)

This is called angular momentum equation. MB and Ms are
respectively the total moment of the body force and the surface
force, i.e., the torque. Thus, the sum of M, and M. is equal to rate
of increase of moment of momentum inside the control volume
plus the efflux of moment of momentum from the control surface.
As in the case of linear momentum equation, the equation is valid
for an inertial reference, and is particularly useful for solving the
problems involving a rotating de ice.

2.4f Conservation of Energy

The first law of thermodynamics states that the rate of heat
supply to the system minus the rate of work clone by the system is
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equal to the rate of chw ge of energy of the system.
Mathematically, thisstaternent yi:.Ids

dt dt dt (2.31)

where ct is an extensive property. Let c be its corresponding
intensive property, c contains two parts, specific internal energy
and kinetic energy, i.e.,

VU.
C + '-- (2.32)

Substituting in Eq. (2.23), we obt4in

dQ dw b fff([+v: 0 , .

4. + ( .- )(pjnMd (2.33)

S

The first term dQ/dt in this equation may include the rate of

internal heat genteration, heat conduction fom the boundaries, ai-..:
radiation heat transfer. The second term dw/dt consists of the
terms: (1) the rate of work done by external body force. If the
body force can be derived from a potential, this term then
represents the potential energy, that could be added as third term in
the right hand side of Eq. (2.32); and (2) the rate of work done by
surface forces, namely pressure force and shear force. It is
convenient to express this second term as

UdwK

d (pvjnr)da + .t (2.34)dt "Js p dt (.4

in which the first term in the right hand side of the equation
represents the rate of flow work. The last term therefore represents
all rates of work except the flow work. Substitution in Eq. (2.33)
gives

dQ dwK =a fff(E -)(pdv)
dt dti tN 2

(2.35)

+ JJ(H +* )(pv, ni)da.
s 2
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The definition of enthalpy 11 = E + p/p has been used in this
equation.

2.5 Equation of Motion and Constitutive Relations

In this section, we shall treat the governing equations in
differential form and present the constitutive relations. The
governing differential equation may be derived either by using an
infinitesimal control volume or from jhe integral equations. The
latter approach will be adopted here since integral equations have
been formulated in the last section. To begin with this approach, let
us consider a vector U in a volume V bounded by a surface S, whose
unit outward normal is represented by n. A relation of a surface
integral with a volume integral can be expressed as

ff n Nd ~f,

or in index notation, (2.36)

f n1 Uida jfff- a-' dtv
S V 

This is the familiar divergence theorem. The integral on the left is
so-called net flux integral over the entire surface of the vector U
crossing the surface S which must be equal to the summation of the
divergence inside the volume V. The divergence theorem may be
extended to include the case where U is a tensor. Both cases will V.2

frequently applied when the governing differential equations are
derived.

2.5a Continuity Equation

Let us apply the afore-mentioned divergence theorem to the
integral form of mass conservation equation (2.25). We arrive at

N f ( + dv = 0, (2.37)

Since V is arbitrary, we obtain

ap a0v-a + . . (2.38)t ixi
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This is referred to continuity equation. For steady fow, this
equation is reduced to

PV o (2.39)
axi

2.5b Equation of Motion

The integral form of linear momentum equation (2.28) contains
the body force term Bi and the surface force term S,. These two
terms may also be expressed in integral form. The former is

, pffj dv, (2.40)

where fj represents the body force per unit mass. Likewise, the
latter may be written from the expression for the stress vector, Eq.
(2.14)

Si =.f ortda. (2.41)

Substitution of Eqs. (2.40) and (2.41) in Eq. (2.28) and application
of the divergence theorem give

f dv -- fJf + --t PvL;)lav o.

For arbitrary V, we may i-emove the volume integral.

b (pvv) -- pfC - ) . (2.42)

Expand the terms in the left hand side of the equations. The
resulting terms are then simplified by using the continuity equation.
We finally obtain the equation of motion in the form,

d f +  . ( ), (2.43)
dt p anx

where ij=l, 2, 3. in many practical problems of interest, the body
force f, can be derived from a potential. The surface force due to
the contributior of stress tensor oa, however, is very complicated.
In order to simplify this term, certain relations based on
conservation laws and subsidiary laws will be treated in the next
few paraT': phs.
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2.5c Symmetrical Property of Stres Tensor

Some important properties of the stress tensor may be derived
from the angular momentum equation (2.30). To begin with, let us
first express the total moment of the body force M and of the
surface force M.I in the integral form

MB = fffP(x x f)dv, (2.44)
V

and

JJ(x x t)da, (2A5)

where t is the stress vector. Substitution of these two equations in
Eq. (2.30) gives

N x f)di, + (xx t)da fy (xv)(pdv)
V S V

(2.46)

+ (x x v)(pv.da).

For the sake of simplicity, we take the first compunient of this
vector e- ,iation

jff j;1X'Pt3 ,PV 2 )dv Jf (x --v3 x.p v2)njv da
V S

-- fff (xf 3 --x3pf2 )dv (2.47)
"JV

-- Jf x J -x 3 nijl )da 
= 0,

in which the relation t = ojin (Eq. 2.14) has been used. Both the
surface integrals and the volume integcals appear in Er,. (2.47). The
surface integrals may be changed to volume inte;als by applying
the divergence theorem and finally the volun integral signs are
removed from tiie resulting expression. Thus, wee obtain
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) 1t 3 - 0 23
x 2  (p" 3 ) pv 3 j) - p;3  3 j+ '2 02

x 3  V, + 6 - f2

pPV2UV3  032 = 0. (2.48)

The contents in the first and second square brackets are precisely
the third and second component of momentum equation
respectively. They are equal to zero according to Eq. (2.42). The
remaining part of the equation gives the relation

( 2 3 : U3 2 , (2.49)

Likewise, if the other two components of Eq. (2.46) were
consic ered, we would have arrived at

(;3) - 13

and
GI 0

In general, we conclude that

oj = oji, (i,] 1, 2,3) (2.50)

Any tensor that satisfies this condition is called symmetrical tensor.
Because of the symmetrical property of the stress tensor aij, it is
only required to specify six elements of o . There are some
restrictions of this symmetrical property. Looking at the angular
momentum equation (2.30), it is seen that torques arise from the
moment of the direct forces, i.e., the surface forces and the body
forces. If stress couples are involved as an additional term in the
angular momentum equation, the relation oi = oui, will not be
obtained. The stress tensor is therefore unsymmetric. Thus, we
define a polar fluid as the one in which stress couples can exist.
Such polar fluids are generally polyatornic and nonNewtonian. For
the formulation of angular momentum equation and the description
of the unsymmetric tensor, the reader is referred to the work of
Aris 12.21.
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2.5d Stress and Rate of Strain Relation for an Isotropic Fluid
Medium

In the foregoing, we have separated the stress tensor oij into
two terms,

01 P51u + 7ij, (2.16)

The first term in the right hand side of the equation represents the
contribution of hydrostatic pressure and the second term is the
contribution of viscosity. Since oij is symmetric, the shear stress
tensor rij is also symmetric as seen from Eq. (2.16). To further
simplify oai (or rjj), one has to make the following assumptions:

(1) Fluid is considered to be homogeneous and isotropic and

(2) Each element of rij is a linear function of the rate of strain
tensor defined by

ei+i 2 -__ (a,V i (2.51)

Evidently, the right hand side of the equation is symmetric. The

first assumption implies that, for a homogeneous fluid, r7i does not,
depend explicitly on location and, for an isotropic medium, there is
no preferred direction. The second assumption is analogous to
Hooke's law in elasticity. It implies that the fluid is Newtonian.

Let us now write the elements of the tensor rij as

[r,11 7,2 r,13'

ri = r 2 =:r3 )
7 '1 732 7 33)/

where -,1 .2 7, T13 = 731,and r2 3 = 732 sincer , is symmetrical.
Thus only six different elements are involved, three diagonal
and the other three off-diagonal. Based on the second assumption,
a linear relation with the rate of strain tensor eij may be written
for each element. For the sake of simplicity, we shall proceed
with two typical elements, say T, and Tr 3, in the next paragraph
since the procedures involved in handling the remaining elements
are the same.
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Elements T I and 7. 3
Let us start from the following linear c6inbination:

A + A 1 2 Ae13 3
(2.52)

+ Be 23 + B 31 B+ 1

T2 3 C ;71 + Ce 22 + C'1 3 (.)

+ ri'?'.3 +D'6 3 1 + DZ1

where A's, B's, C's and D's are coefficients that may depend on
thermodynamic states. Only six elements appear in the right hand
side of the equations since kij is also symmetric. Based on sign
convention mentioned in the foregoing, the elements r,1 1 and T2 3~
are shown in Figure 2.5(a). From the assumption that the fluid is
isotropic, we can change or rotate coordinates, The form of the

X 3  T2 3  X2  T"3 2 -t 2 3  X3  r 2 3 x

A,4/

(a) MX 3  r23

XI
(d)

Figure 2.5. T'wo typical elements
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above equations still remains the same. For example, if we switch
coordinates x2 and x 3 as shown in Figure 2.5(b). the expression for
r1, may be written as,

T ,=A ,11 + A'6 33 + A e22 + B e23

+ B'e2, + Be,3  (2.54)

This relation is obtained from the replacement of subscript "2" by
"3" and vice versa. Comparison of Eq. (2.54) with (2.52) gives A' =

A", B' = B". Thus,

Tt A + A'( 22 + e 3) + B$ 2 3

+ B'( 3 , + a,2 , (2.55)

Likewise, it can be shown that C' = C" and D' = D", or

= Cel, + C'(e22 + C33)+ De,-

+ D'(' 31 "1 $ 2 ) (2.56)

Next, let us reverse the x, coordinate as shown in Figure 2.5(c).
It is seen that 3, and , 2 are transformed to (-3,) and (-1,2)
respectively. The other elements of i emain unchanged, i.e.,

T = A 1, + A'( 22 + e33 ) + B 23

- B'(j 3 , + 12 ) (2.57)

compared to Eq. (2.55), we find that B' = 0. Likewise, it can be
shown that the coefficient D' in Eq. (2.56) is also zero. Thus Eqs.
(2.55) and (2.56) become

Tl, = A ,, + A'(e2 2 e 3 ) - B es (2.58)

- 72 3 = C 11 + C'(2 + e3 ) - D-3 (2.59)
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Now, let us reverse x2 coordinate as shown in Figure 2.5(d).
The elements T2 3 and e2 3 will bp transformed to (-723 ) and (-e2 3)
respectively. The above two equations may thus be written:

T.. A . 11 + A'( 22 + 63 )  B e2 3  (2.60)

= C ~ + C'(e 12 + 3)-DC 3  (2.61)

comparison of Eq. (2.58) with Eq. (2.60) gives B = 0. We arrive at

T = (A-A')e1 1 + A'j (2.62)

where the notation for summation on repeated indices has been

used, i.e., + e + + e3

Next, substracting Eq. (2.61) from Eq. (2.59),

T-23 = e 3  ID v ')V3 (2.63)

Consider simple shear flow sketched in Figure 2.1, where the flow is
one dimensional. Let the non-zero velocity component be v 2 . The
shear stress equation corresponding to Eq. (2.2) is

a V2

Compared to Eq. (2.63), we obtain

D =2p

Therefore, the coefficient D represents twice.of the viscosity ,.
Eq. (2.63) thus becomes

7:3 Ae 2 3 . (2.64)
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Eqs. (2.62) and (2.65) are for two typical elements. The equations
for the remaining elements can also be obtained without any
difficulty. For example, the equation for r 2 2 can be written from
Eq. (2.62) by replacing subscript "1" by "2". It r(.mains, however,
to determine the coefficients A and A' appearing in Eq. (2.62). In
doing so, we need to rotate the axes. A description of rotation is
given below.

Rotation

Let the coordinate system x, x 2 ,3 be rotated about the axis x,
through an angle 0. The new position of the system is denoted by
x, x2 x 3 , where the axis x, coincides with the axis x, , as shon in
Figure 2.6. Consider a position vector with components x,, x 2 , and
x 3 in the x1 x 2 x 3 coordinates. The components of the same vector
in the .XI x 2 .x3 coordinates are given by the relations:

.! = xI,

x '- cosO + x3 sin 0, (2.66)
X .. x, sinO + x. cosO.

X 3

XI :XX

Figure 2.6. Rotation of axis

In matrix notation, these can be written as

[2] [x] (2.67)
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where [.'] and 1x are column matrix and [S] is the 3 x 3 square
matrix. They are given by

[x] X, (2.68)

1 0 01
[SI :0 cos 0 sin 0

0 - sin 0 cos 0

From matrix algebra, it ,an br' shown that a matrix [T] transforms
according to the similarity transformation

[T [S-. [T] [S'] (2.69)

in which 'S-" I represents the inverse of [S], i.e., S-= Sm. In

indicial notation, the above equation may be written in the form,

S~TiS,, (2.70)

where Einsteins's notation of summation on repeated indices is

adopted. For extensive treatment of tensorial transformation for

various ranks, the reader is referred to the work of Tsai [2.41
Let us now apply this equation for a shear stress tensor.

Referring to the X, x2 x 3 coordinates, the expression for -T2 3 is,

By means of Eq. (2.68), we obtain the equation,

r,3 = (cos20 --- sin 2 )72 3 + sin0cosO(--72 2 + 733)

=2p(cos20 -- sin 2 0)e 2 3

4 sincos0[I (A -- A')(23 - e,) (2.72)
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Likewise, application of Eq. (2.70) to the rate of strain tensor eii
gives

k, (cos2 - sin' 0 )
2 3 + sinO cosO-- + e 3 ). (2.73)

Since the fluid is considered isotropic, Eq. (2.65) mill be valid for

the coordinate system X, x 2 x 3 as well. Thus we have

f23 21 23. (2.74)

Substituting Eqs. (2.72) and (2.73) in Eq. (2.74), it is observed that

A - A' 2

or (2.75)
A A' + 2p

Substitution in Eq. (2.62) gives

T,,= 2U5,, + A' ej. (2.76)

In general, Eqs. (2.65) and (2.76) can be written as

T..+ A'ekk . (2.77)

The term e1,k may be expressed in the form

+v, 3v2 bV3 -v A
k + - div v A. (2.78')e X Ix W -2 ' ax3 x

Thus, e is seen to represent the expansion or contraction of a

fluid element. It is referred to the rate of dilatation denoted by a

short notation A. For an incompressible flow, ekk is therefore equal

to zero. The notation A will later be used frequently.
Recall that the stress tensor is given by

= --Pbi + Tii (2.16)

With Eqs. (2.77) and (2.78) available, we can write

=-p + + 2 pj. (2.79)
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The coefficient A' appearing in Eq. (2.77) has been replaced by
more familiar notation X that is always associated with the rate of
dilatation A.

Coefficient of Bulk Viscosity

Let us define a dynamic pressure to be the mean of the
3 principal components of stress with a minus sign, i.e.,

Pd - (2.80)

The right hand side of the equation may be worked out by setting
ji in Eq. (2.79).

o-p = - ( p-+U) -

or
Pd P X j)

Let us define,
' ' = ( ) -( 2 .8 1 )

A

where a' so defined is called coefficient of bulk viscosity or second

viscosity that measures the difference between thermodynamic

pressure p and dynamic pressure Pd divided by the rate of dilatation
A.

Stokes assumed that p Pd and on this ground he claimed that

= 0 (2.82)

This assumption, supported by the kinetic theory of gases, is
seemed to be reasonable for flow of monatomic gases. It is,
however, not true for the case of polyatomic gases, or liquids. The
coefficient 4' has certain importance in dispersion phenomena
[2.51.

Substituting Eq. (2.81) in Eq. (2.79), we obtain

Oi - p + (pj' --. p)AI6j + p + (2.83)



36 F. K. TSOU

This is the constitutive reiation for a Newtonian fluid. The fluid
medium has been considered homogeneous and isotropic.

2.5e N-.ier-Stokes Equation

Ijet us substitute Eq. (2.83) to the equation of motion (2.43).
The following equation, Navier-Stokes equation, is obtained

dvi 3. (P 1 a 2
--t -, I , ,--.-- +  .... __ I V

4 i - + (2.84)

The equation is derived for Newtonian fluids in Cartesian
coordinates. The effect of both viscosity and compressibility is
included in the equation. The viscosity is usually temperature
dependent. In the case of incompressible flow, the dilatation A
vanishes as seen from the continuity equation (2.38). Since the
temperature variations are, general speaking, small in this case, the
viscosity u may be taken to be constant. For Navier-Stoke's
equation in general orthogonal coordinates, the reader is referred to
Goldstein's book [2.61.

One of the assumptions used in obtaining Navier-Stoke's
equation is the linear relationship between stress tensor and the 1ate
of strain tensor. In the case of solids, we usually start from the
similar assumption, i.e., the stress tensor is linear with strain tensor
(Hooke's law). The resulting equation is then referred to as Navier's
equation.

'?.5 Energy Equation

To develop the energy equation, we start from the integral
equation described in the foregoing.

(IQ d w o7+) )- (
(It dt at fff(+, 2

+ ff (E + 2,, Pnj)da (2.33)
S 

2
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The equation is written for a control volume V enelosed by the
boundary surfaces. It states that the rate of heat energy transferred
to the control volume V minus the rate of work done by the
control volume to the surrounding is equal to the increase of energy
inside V plus the net efflux of energy from the control surfaces.

The rate of heat supply may be considered to consist of two
terms, i.e.,

s fff pidu Jjnjqjda. (2.85)
dt J v S

The first term in dhe right hand side of the equation represents the
rate of total internal heat. generation inside the control volume, I
being the rate of generation per unit mass. Examples of the internal
heat. generation include chemical reaction, electrical heating, energy
generated in a nuclear reactor and so forth. The second term in the
right hand side of the equation refers to the heat conduction from
the outside of the control surface S to the inside, qj being the heat
flux vector or the rate of heat flow per unit area across the surface
in the direction of its unit outward normal ni. The minus sign is
needed in this term because of the way we define qj. By applying
the divergence theorem. the surface integral in this equ.ation is
changed to a volume integral,

Q-a q1
-.ff( (2.86)

dt V

Next, let us look at the tern dwidt in the left hand side of Eq.
(2.33). This rate of work term is due to the contribution of body
force and surface force

div fl-ff f.V pd , Jjf ti Vda (2.37)

where fj is the body force per unit mass and ti is the stress vector.
Th- two terms inside the square bracket represent the rate of work
flow on the system, It is called that the stress vector is related with
the stress tensor in the form

ti = ov t . ( oI,
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Substituting in (2.87) and applying the divergence theorem, we

obtain

dw ff= fff + ' % 1)d 2.88).

With the expressions of dQ/d1 and dw/ldt av ailable, Eq. (2.33)
becomes after application of the divergence theorem and removal of
the volume integral sign

~(p E -+ I J),) (V [ (pE ' v'I

pfiX V 1 .) 4t (2.89)

Rearrangement of the terms gives

p E + ,]4. + dp)

(2.90)

-~ r. J~~Oi 4 pS -

The contents in the first two square brackets are identified as the
continuity equation; those in the last bracket are ,%!-e momentum
equation. The resulting equation is

dI' 1 VL, I q
S d- - (2.91)

This energy equation is still not convenient to use. In order to
obtain a simpler form, further manipulation has to be made. First,
the conduction of heat is governed by Fourier's law. The law states
that the rate of heat conducted per unit -area is proportional to the
temperature grad ent. Mathematically, one writes

qj 6 (2.92)
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The proportionality constant I is called thermal conductivity that

is, generally speaking, a function of temperature. Since heat flow is

from a region of high temperature to another region of low

temperature, the temperature gradient a T/axi is thus negative, The
minus sign in the ieft hand of the equation insures that the heat

flux vector qj is positive.
Secondly, if we limit ourselves to the flow of a Newtonian fluid,

the equation for stress tensor given by Eq. (2.83) may be applied to

the second term in the right hand side of the above equation. The
result is

[-- p + ( ' p)A A4 2p(ej)2  (2.93)

Substituting Eqs. (3.5.57) and (3.5.58) in Eq. (3.5.56)
dE 1 +P- 2 :[(u -- 2 ]

- L= - p + 2pe_[II (2.94)

dt p p

+

It is sometimeS convenient to use specific enthalpy 1i in place of the
specific internal energy E. By applying the continuity equation
(2.38), one obtains

dE = dH _1 dp .PA (2.95)
d t dt p de t p

where 1! = E + p/p. Substitution in Eq. (2.94) gives

dHdp + 1r, , ) ,2 (2.96)

di $x -_x

dH _ 2p4...... + +t --kU)

It is interesting to express the term dH/dt in terms of the equation
of state variables, i.e., p, p and T. In doing so, we start from the

consideration,
[1 JIHT,p), (2.97)

then tIh = c dT +,P. (2.98)
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From the first and second law of thermodynamics, one writes

dJ = 7d1S + -dp. (2 99)
P

Take partial derivative with respect to p holding T constant

P a P (2.100)

Applying Maxwell's relation to the first term in the right hand side
of the equation, we get

. F L , (2.101)

With this expression available, we obtin from Eq. (2.98)

d1- ' dT I ( +2.102)
d- T (+ (2 .

SubsIitution in Eq. (2.96) gives" the following energy equation:

0
dP Xi M A + + Pd,, (2. i03)

C,, i.- = - L3 ¥J, - - -x ax. + )
dTa d (;- LTI-

w h e re P 2 +,

2", 2.aLr, au v 3\
2 V + , Da 3

F,'aL1\2 aL'2 
2  ( a --C3

+ 2

.*. a VY ) +(2. t a '3) +(IV +

,I refers to the dissipation function since it represents the rate ofwork by viscous stre;ses that will be dissipated in the flow field. Itcan be shown that the dissipation function is always greater than or
at least eq ual t o zero.



CONSERVATION EQUTATIONS 41

Some simplification of the energy equation (2.103) can be
made for two particular cases: (1) For flow of liquids where the
volume of expansion (-lIp) (3)p/a T), is small, the first term in the
right hamd side of the equation can be neglected and (2) for ideal
gas flow, (7/p) (3p/3T)0 can be calculated from ideal gas I'w and
the value of this quantity is equal to unity with a minus sign.

2.5g Equation of State

We have thus far described three conservation equations,
namely continuity, momentum, and energy. The first and third are
scalar equations; the second is a vector equation. Counting three
scalar equations for one vector equation, we have five equations in
total. However, there are six unknowns*, p, V 1 V, V 3 , p, T. One
more equation is therefore needed to complete description of the
problem. This equation is obtained from thermodynamics, i.e., the
equation of state which relates pressure, density and temperature

f(p, p, T) = 0 (2.104)

where p, p T are mewsurable properties The simplest form of the
equation of state is for an ideal gas

T. (2.105)

This ideal gas law is a good approximation for real gases at low
pressure and high temperature. It is therefore widely used for
problems involving gas flow. For liquid flow with small pressure
changes, the flow is usually incompressible. The density is constant.
We have one less unknown and hence the equation of state of the
liquid is not needed.

In the case of liquids and solids under intensive loading in a
short duration, the pressure is high and the compressibility effect
cannot be neglected. The equation of state will be used. The
equation of state of liquids and solids are usually obtained by shock
wave measurements and is expressed in the form,

f(P, p, E) = 0 (2.106)

The transport. properties p, k are essentially functions of temperature. These
functions are considered to be known.
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in which pressure, density, and specific internal energy are related.
Some discussions will he given in later chapters.

2.6 Shock Waves

In the foregoing, we have described the conservation laws in
both integral forms and differential forms. The former implies that
the conservation laws are satisfied for a control volume while the
latter means that the laws are satisfied everywhere in the flow field.
In this section, we shall apply these conservation laws, to the
problems involving shock waves. A detailed discussion of the
physics of the shock waves is given in the next chapter.

When there is a relative motion between a fluid and a body, the
compression waves, if infinitisimally small, caused by the body in
the flow field are propagated with speed of sound. On the other
hand, if the compressions are of finite amplitude, a shock wave will
usually be formed. Consider steady one-dimensional flow of an
ideal gas, where the non-vanishing velocity component and the
other fluid properties are functions of the x coordinate only. The
system of the governing differential equations including the
continuity equation (2.38), Navier-Stokes equation (2.84), and the
energy equation (2.103) may be simplified and its exact solution is
given elsewhere [2.71. The solution indicates that the thickness of
the shock is in the order of several mean free paths although the
effect of viscosity and conductivity has been taken into
consideration. Because of the small thickness, the shock is
practically a mathematical discontinuity. The equilibrium states are
assumed to prevail immediately ahead and behind the discontinuity.

The concept of the mathematical discontinuity is based on the
viewpoint of a continuum. Its application may be extended to any
homogeneous isotropic material. in the case of multiple flow field,
such as flow of dust in the air or composite materials, the thickness
of the shock may be finite but usually small. In what follows, we
shall give several examples of shock propagation in various media.
Integral equations developed in the foregoing will be applied to
obtain solutions.

2.6a Normal Shock in Homogeneous and Isotropic Media

Consider a normal shock moving with a constant supersonic
velocity U into a homogeneous and isotropic medium as shown in
Figure 2.7(a), The medium may be the atmosphere, the shock being
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produced, for example, by an explosion; or the medium may be a
solid under an impact. Ahead of the shock front, the states are
undisturbed and the particle velocity is zero. Behind the shock, the
medium is compressed. We expect to have high pressure, high
density,' and certain non-zero particle velocity u0 . To analyze the
problem, let us select a coordinate system that is fixed with the
shock front as shown in Figure 2.7(b). Thus an observer sitting on
the shock will see the medium with particle velo"!ity U toward him
and with particle velocity (U-u 0 ) away from him. Since the shock
front is stationary, a fixed control volume can be drawn around it.
The sections labelled x and y in Figure 2.7(b) are referred to ahead

and behind the shock respectively. Since the shock is a
mathematical discontinuity, the sections x and y can be considered
infinitisimally close. Ahead and behind the control volume, the
states are uniform, To obtain governing equations for the control
volume, we first apply the continuity equation (2.26).

-u P. Py : P"]
Y P. L J

Figure 2.7. Normal shock propagating in a homogeneous medium (a) moving
shock in a stationary coordinates and (h) stationary shock in a moving

coordinates.

f p niu d= fa f [- + pj(U - oj)]do = O,

S S

where p,,, U, p, and uO are aUl constant. The integral is reduced to

P, U = p, (U -- o). (2.107)

To write the momentum equation for the present control

volume, we may start from the steady-state equation (2.29). The

surface force Si in this equation generally has two contributions,
the pressure force and the viscous force. The velocities ahead and

behind the shock are uniform. The contribution of the viscous force

must be zero since it depends on the velocity gradient. Application

of Eq. (2.29) yields

P, ., p,. Uuo. (2.108)
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Finally, an observation of the energy equation (2.35) gives
dQ/dt dw/dt = 0 and ot = 0. The remaining part of
the equation is reduced to

E - E+ LU2
p U 2

U and uo appearing in the right hand side of the equation may be
eliminated from Eqs. (2.107) and (2.108) to give the following
relation.

EY E = " + P, (2.109)

In addition to these conservation equations, we need the
information from the equation of state. For gases, this equation is
given as,

f(p,p, T) 0 (2.110)

while in the case of liquids or solids, the equation of state has the
form,

fip, p, E) 0 (2.111)

It is understood that when liquids and solids are uinder strong
impact, the strength of material can be neglected, i.e. the pressure is
the only surface force involved in the problem. Consider now a
system containing equations (2.107), (2.108), (2.109) and (2,111).
There are four equations with four unknowns, p,., p3,, Ey, and U
for a given particle velocity uo. Thus, we may plot one property
versus others behind the shock. The curves thus obtained is called
the Rankine-Hugoniot or shock Hugoniot curve. For a weak shock,
the Hugoniot curve in (py, py) plane is very close to isotropic path.
Such is usually the case for a solid under impact if the solid is
compressed slightly. In the case of a gas under compres.;ion, a
strong shock usually results because of its large compressibility. The
Hugoniot curve will differ significantly from the isotropic path. It is
interesting to note that the shock Hugoniot in the (U, u0 ) plane for
various homogeneous materials is approximately linear as observed
from a large number of experimental data 12.81. This linear
behavior can be seen from the continuity equation (2.107) when
the density variation is small.
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2.61. Unidirectional Fiber-reinforced Composite Materials

Consider a shock wave moving along the longitudinal direction
of a unidirectional f iber reinforced composite matei ;al as shown in
Figure 2.8. The shock is created by an intense irrpact on its
boundary so thiat, the constituents of the material, matrix and fiber,
behave like a viscous comnpressilble fluid. It is assumned that, after
some transient response, a steady wave front with a shape, shown in
the figure prevails and propagates at a constant velocity U. The
assuImptionI of the s-shape wave front is based on the argument that
the shearing force exist,; in the layers of matrix and fiber. If thle
impact on the boui.dary is of "rigid wall" type, the particle velocity
tio is uniform behind the shock. Further assumptions include: (1)
velocity and pressure equilibrium prevail in ai region far from the
wave front and (2) in the same region, the flow may be either
isothermal, i.e., the thermal equilibrium,. has been established, or
adiabatic, i.e., there is no heat transfer between the fib~er and thc
matrix because of the fa~st propagating wave velocity [2.9].

-WAVE FRCMiT

RIGID , - -- --- ;

Fi!4ure 2.N. 'Nave Propagat ion in the (inposifce

,-WAVE FRONT

A P3

F T3

F2  A, 4iCP

T, T4

Figure 2.9. Control Volume JDCG
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To analyze the problem, we focus our attention to the flow
field betweer, the center lines aa and bb. An observer sitting on the
shock front will see the material with particle velocity U flowing
across the wave front. This situation is shown in Figure 2.9 where
DFC represents the stationary shock front. Subscripts "3" and "4"
are referred to undisturbed states; "1" and "2" are unknowns. In
addition, "1" and "3" represent matrix; "2" and "4" are for fiber.
It is seen from the figure that immediately behind the curved shock
DFC, the flow is two dimensional and its details remain unknown.
Away from the shock, say JG, the influence of shear stress between
two constituents becomes insignificant. Based on the assumption
made in the foregoing, the velocity equilibrium prevails, i.e., the
velocity across JG is equal to (U - u0). Furthermore, for pressure
equilibrium we have p, = p,.

It has to be noticed that in the two-dimensional flow region
DFCGiIJ, the velocity and temperature profiles are symmetrical
about center lines DJ and CG, i.e., the velocity and temperature
gradients are zero there. It follows that the shear stress along DJ
and CG and heat transfer across DJ and CG are zero. In addition,
the vertical components of the velocity will not exist at DJ and CG.
DJ and CG are therefore streamlines.

Behind the shock, the constituents are compressed but to a
different degree owing to their own physical properties. As a
consequence of this compression, there is an accompanying volume
change represented by c shown in the figure. The inatrix-fiber
interface behind the shock is denoted by FH-K that is also a stream
line.

Let us now choose JDFHJ and HFCGH as two fixed control
volumes. Six steady flow conservation equations i.e. 2-continuity,
2-momentum, and 2-energy, based on the integral form given in the
foregoing can be written for these two control volumes. We
eliminate the volume change c, shear force along F1, and heat
transfer across PH respectively from the continuity, momentum,
and energy equations. The folloing three equations are obtained:

p, 1 -j a(U -- no) pfU 4 P'-.-- U, (2.112)
P2

P (U) - ( )(p, -- p. 0, (2.113)

l(QP3 + 2 ,
" (l,, £,) i* (E., - ') 1Q2\ +.,

P .2
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P3 UO_

-- (1 + =i) (2.114)
P4 U

where (= A 3 /A 4 ) represents the ratio of volume of the matrix to
the volume of fiber. Eqs. (2.112), (2.113), and (2.114) are
continuity, momentum, and energy equations respectively. The
equatio s of state for both constituents also considered to be
known and are in the form

f,,p,E) = 0; (2.115)

f((P2 , P2 . E7) = 0. (2.116)

For a prescribed particle velocity u0 on the boundary of a
composite of volume ratio a, we have six unknowns, p, P2, p,
(= p2 , )E, E2, and U with five equations. The remaining equation
is obtained from either the assumption of isothermal
condition or the assumption of adiabatic condition. If the
dimension of the fiber and the matrix is much smaller than that of
the composite, temperdture equilibrium is likely to be established
imnediately behind the shock wave and hence the isothermal
condition is a good approximation i.e.,

TI T2. (2.117)

On the other hand, if the fiber or matrix have the size comparable
to the composite, heat is unlikely to be transferred from one
constituent to another because of the fast wave propagation
velocity. The process therefore tends to be adiabatic. For either one
of the control volumes, this condition may be written as,

E, -- E3 P - P-) + 1(2 u0 -- u0
2 ). (2.118)

It has to be noted that by applying thermodynamic relations, we
may express temperature in terms of other variables. Thus, no new
unknowns will be involved in Eq. (2.117).

With these equations available, one may obtain the solution for
a composite whose constituents' equations of state are known. Such
a solution for the aluminum (fiber) -epoxy (matrix) composite as
well as the experimental data [2.101 are shown in Figure 2.10. It is
seen that the composite Hugoniot is significantly different from a
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direct proportion of constituents' Hugoniot. The calculation is
based on the adiabatic assumption which is closer to the
experimental condition. The results of the calculation for both the
adiabatic and isothermal condition differ in general. In some cases,
however, their difference is not discernable [2.91. With the solution
of the system kncwvn, the shear force 3n the flow direction may be
obtained by writing the momentum equation for either one of the
control volumes shown in Figure 2.9. In the case of an isothermal
condition, the heat transfer across the interface can be computed
for the same control volume.

The isothermal mad adiabatic conditions have been discussed by
Duvall and Taylor [2.111. Temperatures of the two constituents of
a composite will be equalized in a time the order of several times
the larger of the two numbers, ci pili/kz (i=1,2), where ci, pli,

ki are specific heat, density, dimension and thermal conductivity of
a constituent. For a time shorter than this, the adiabatic condition
will be a better approximation.

The samples used in the experiments were from 2" to 4"
diameter with 1/8" fiber diameter. The flyer-plate technique was
employed to oi-utin a pressure in the order of 400 kb. Steady wave
fronts were obt;_ined in a fairly short distance 3/8", i.e., three times
the fiber diameter. The data points as seen from the figure compare
satisfactory with the calculated results.

To justify the assumption of the steady wave front is perhaps
the most meaningful contribution from the experiment. In this
way, one may greatly simplify the problem involving the shock
propagation in various composite materials. Based on the steady
wave concept, Munson and Schuler [2.1.21 extended the present
analysis to a composite that has more than two layers of
constituents. For the sake of simplicity, the energy equation was
omitted. Rankine-Hugoniot equations for individual constituents
are used in place of the complete equations of state. Torvik [2.131
considered the velocities not to be in equilibrium behind the shock,
and the energy equation was also omitted for sample calculations.

The calculated results from Munson and Schuier [2.12], Torik
12.13] and the present analysis with the test data are compared in
Figure 2.11 [2.141. For a given particle velocity, two standard
deviations ir shock velocity is about 4% of its value*. i\Ninety-five
percent ot the observed values of shock velocity should be within

*Where the difference .between the predicted sh'ock velocity and the observed
shock velocity is plotted verses the par.icle velocity.
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4% of the predicted values if the -Ia'dysis gives satisfactory

comparison with data. It is seen from the figure that the results of
the adiabatic model compare best with the data.

2.6c Macroscopically Homogeneous Composite Materials

Another approach may be employed when we consider a
composite whose components have characteristic dimensions much
smaller than that of the composite 12.151. In this sense, the

composite may be treated as a mixture. To analyze this problem,
we assume that the composite is maci'oscopically homogeneous and

isotropic and behaves like a compressible fluid. The go-:erning

equations are obtained in a manner similar to those described in
section 2.6a if the relations of the properties of the mixture with
the properties of its constitute are known. To describe these
relations, let us consider a macroscopically homogeneous mixture,
whose volume V is the sum of the constituents volume Vi

V -., (2.119)

The expression for specific volume is therefore,
?1

V Xi(2.120)
ii:

where xi is the mass fraction of ith constituent. Since the density is
the reciprocal of the specific volume, we have

1
P .. / ...... (2 .1 2 -1)

Corresponding to the additive rule of specific voiuine (2.119), the

additive rule of specific internal energy also holds

E ZX'i. (2.122)

In these equations, the quantities without subscripit "i" are referred
to the .mixture; those with this subscript are referred to the

constituents.
Let us now consider a shock created by a constant particle

ve!ocity impact.. Since thn composite is macroscopically

homogeneous and isotropic., tht :hock wave created is plane and
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normal, its propagating velocity U being constant. The same contro!
volume fixed to the shock front shown in Figure 2.1b) may be
used in the present case. The continuity, momentum, and energy
for this control volume are respectively

0)U (U (2.123)

_ PXi -p. U; (2.124)

X. PxxO 12
_x (Ey - E- I ) (+ x2p, ,. (2.125)

The pressure equilibrium has been used in obtaining these
equations. In addition, the equations of state for constituents,
which are considered to be known, have the following form,

pi Pl, Ej) = 0 (2.126)

i = 1, 2, 3, .... n.

Behind the shock front, we have either the adiabatic condition,

E - E P= - + -(MUo uo2 )

i 1, 2, 3..... (n - 1). (2,127a)

or the isothermal condition.

T, = T, = T3 -- ..... = Tn. (2.127b)

where Ti's can be expressed in terms of Ej, p, and pi. Now, the
system consists of Eqs. (2.123) through (2.127). The number of
equations is seen to be 2(n + 1) for a composite with n constituents.
The same number of unknowns are py ,py, . . ..- py,,, Ey1

Ey 2, Ey,,. The system of equations may be solved by a numerical
scheme involving an iteration technique.
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EQUATIONS

The prf,,tpi approach may treat n coflstituents. In particular, ifn-2, the result is same as the.f of the unidirectionalfiber-reinforced composite described ill the foregoing since theirgoverning equations for both approaches can be shown to beidentical. This is not surprising since the basic assumption of steadywave front was used in both approaches. The separated flow wastreated previously while a uniform flow concept was employed atpresent. By using the present approach, however, the shearing forceand heat transfer between constituents can not be calculated.
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CHAPTER 3

DISCONTINUOUS STRESS WA VES

P. C. CHO U

DREXEL UNIVERSITY
PHILADELPHIA, PA.

LIST OF SYMBOLS

A cross-sectional area

c wave front velocity

Cr reduced stiffness coefficient of fiber

C7, reduced stiffness coefficient of matrix

E Young's Modulus; also internal energy

E. extension

e,, strain deviator tensor

J, second invariant of the stress deviation tensor

K elastic Bulk Modulus

p pressure

Sij stress deviation tensor

U shock velocity

u particle velocity

v step velocity input

Vf fiber volume fraction

Vn, matrix volume fraction

YO yield strength

a matrix-fiber volume ratio

5 ij Kronecker delta

V Poisson's ratio

p mass density

spherical stress

Preceding page blank
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0, normal stress

7, average interface shear stress

.Iagrangian normal strain
c relative extension

C,,, mean normal strain

In this chapter, we shall discuss the propagation of abrupt
changes of stress and velocity from the classical mechanics point of
view. The basic approach is to take a control volume enclosing the
wave front and write the conservation equations across this control
volume. The linear elastic medium is considered first, this is then
extended to the elastic-plastic case, and also to the
elastic-plastic-hydrodynamic case. In order to tie in with the work
on stress waves in bars, both uniaxial strain and uniaxial stress
problems are included for the elastic-plastic medium. The
differences and similarities of an elastic-plastic wave front and the
shock Hugoniot ate analyzed.

The stress waves discussed here are the same as "the
discontinuity in the variable themselves" of Chapter 6, where the
same topic is discussed from the differential equation point of view.
In Chapter 5, the same "waves" are studied as steady strong
disturbances from modern continuum mechanics point of view. The
shock waves and precursor wave are also presented in detail in
Chapters 4 and 8 from physics and thermodynamic angles.

3.1 Control Volume Approach

Let us consider a homogeneous solid medium, semi-infinite in
length along the x-direction as shown in Figure 3.1. The
cross-section of the medium may be of any finite shape, or may be
unbounded in one or both directions. In other words, we are
considering either a bar, a sheet of infinite width, or a semi-infinite
medium. At the left end of the body, we apply a step velocity
input, v, positive as shown. We shall assume that the constitutive
equation and geometry of the medium are of such a nature that the
resulting stress o., will be constant over the cross-sectional area, and
that the wave front will propagate towards the right at constant
velocity c. The validity and limitation of these assumptions will be
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-DYNAMIC STRESS FIELD

."AE FRONT

-v-i
0xV Cx

/Z +

-ZERO STRESS FIELD

-QUASI-STATIC STRESS FIELD
(a)

-CONTROL VOLUME

-Cr, ,

,_C +
(b)

Figure 3.1. Propagation of plane wave front (a) moving wave front (b)
stationary wave front. and control volume.

discussed later. After a certain time period, the wave front will
ceparate the stressed region from the unstressed region as shown in
Figure 3.1a. For certain cases, the stress field is not constant in a
small region to the left of the wave front. Our theory is still
applicable if this variable dynamic stress field moves at the same
speed as the wave front and its volume remains unchanged.

The medium to the right of the wave front is assumed
stationary, but vAth an initial stress o., . The equations in this
section are still applicable if the material has an initial particle
velocity; in that case, both v and c are velocities relative to materials
to the right of wave front.

Following the conventional control volume approach, we shall
superimpose a left traveling velocity c to the whole body so that
the wave front becomes stationary relative to the particle in front
of the wave. A finite control volume which contains the wave front
and the region immediately behind it is taken. Therefore, the
material in front of the wave is seen to enter the control volume at
a velocity c towards the left and moves out from the control
volume at a velocity of c - v, as shown in Figure 3.lb.
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The complex stress field immediately behind the wave front lies

within the control volume and therefore does not affect the

equations governing the quantities entering and leaving the control
volume. In the case of the semi-infinite elastic medium, there is no

complex stress field behind the wave front; abrupt jumps in stress

and particle velocity exist across the wave front.
We may now write the conservation of mass and conservation of

momentum equations across the control volume, or

cpAi = (c v)p 2 A, (3.1)

and o,,: A, P:(, 2AI PA C (3.2)

where p is the mass density, A is the cross-section area of the

control volume, ax is the normal stress, and the 1 and 2 quantities
refer to the states in front of and behind the wave, respectively. For

the semi-infinite body case, both A, and A, are taken as unity.

For our present purpose, the only components of the

constitutive equations required are the normal stress-strain relation,

or more specifically, the stress-extension relation in the x-direction,

and the area ratio AiAO where the subscript 0 refers to the

unstressed state. We shall writ.e these constitutive equations in the

form

- o, (E) (3.3)

A = f(E.) (3.4)
AO

where EX is th., extension of an element as related to its unstrained

state and defined by
dx - dx ,, (3 .5)

- dx,

Relations (3.3) and (3.41 can be linear, nonlinear, elastic or plastic.

The only limitation is that for certain types of these relations, our

assumption of a steady wave front is not valid. The extension E,

applies to both finite and infinitesimal deformation and is related to

the Lagrangian normal strain c., [3.11 by

(, , ( I (3.6)
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For srnafl! strains, E, =e . If the a, = u., (c, ) relation is known for a
given Material, the stress -extension relation, (3.3), can be obtaine d
by Eq. (3.6).

At this timne wE! sh tll introduce a quait-ity c which is the relative
extension between the states 1. and 2 and def'ined as

dx, - dx, , pA 1 (37

It cain be showvn that c -arid E, are related by

which for small deformrations reduces to

E, E, = A E., 39

Summing thenber of equations available wve have 2 conservto
equations (,3.1) and (3.2), two, constitutive equations (3.3) and
(3.4) relating a, , A, and E 2 and two exrsinEs 37 n

(3.8). These 6 equations govern the 7 variables u,%P2, Ex2. ax2, c, c,
and A 2.- Specifying any one of these variables, and assuming that
the properties in front of the wave are known~, Y "DJ vipill -3J4
properties behind the wave.--

Without specifying tbc constitutive equations (3.3) and (3.4),
Eqs. (3,1), (3.2.), and i37 yield

I)

C (3.10)

where

r, o-Az - (j,,Aj(3.12)

and

where (3.10) is the well-known kinematic condition, (3.11) the
dynamic condition, and (3.13) gives the wave front velocity. These
6?hwe equations are exact; they are true. for uniaxialiress or
u-'axial strain problems independent of the type of constitutive
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relations encountered. At this point, we will again stress that c and
v are velocities relative to the material in front of the wave.

Let us now compare our present set of equations, (3.1) to (3.4),
(3.7), and (3.8), with the ones governing the classical
one-dimensional compressible fluid flow problem. In the fluid case,
there are three conservation equations, (mass, momentum, and
energy) governing the jump in properties across a shcck wave, and
one constitutive equation (equation of state). These four equations
govern the five variables: U, shock velocity relative to the material
in front of the shock; p, pressure; p, density; and E, internal energy.
In the present notation, it is evident that U = c, u = v, p = o, and p
is the same in both cases. The equation of state in the fluid case
does not involve strain, therefore the definition of strain (or
extension) is not needed. Also, for a homogeneous fluid, the area
ratio A/Ao is always unity. Since, in general, the energy term enters
into the constitutive equation, the conservation of energy equation
must be introduced.

In the present case of a solid medium, we have limited the
constitutive relations to those which do not involve internal energy
or thermodynamic consideration, therefore the conservation of
energy equation is not needed.

3.2 Discontinuity in an Elastic Medium

We will, for convenience sake, limit our discussion to problems
with small deformations, and with the state in front of the wave
unstrained; embodied in this restriction is the fact that o. , =0, p
=p 0 , A = AO, and E. = ex, = e.

Let us first consider a bar with lateral surfaces free from
external tractions and possessing a linear stress-strain relation ax =

E Ex, where E is Young's modulus. Then Eq. (3.12) reduces to

AF, A 2o,,2

and Eq. (3.13) becomes
2 E A2.

poA 0  (3.14)

where
A2 1 ,.:) \ + V](.5
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For a sheet which is free from surface traction and possesses a
linear stress-strain relation of the form

S= Eex/(1 _,2) (3.16)

Eq. (3.13) becomes

E A
e2 = (3.17)

(1 -2)po A0

where

- (i --- c._l (3.18)

For a semi-infinite medium which possesses a linear stress-strain
relation of the form

E(1 v) c... ,
+(1 ± v)(1 -- 21) (3.19)

Eq.(3.13) becomes

(1 + 1,)(1 - 2v) Po (3.20)

If we disregard area changes due to the Poisson effect in the
cases of the bar and the sheet, as is practiced in the classical bar or
plate analyses, expressions (3.14) and (3.17) reduce respectively to
the familiar bar and plate velocity. But expression (3.20) remains to
be the exact dilatational wave velocity in an infinite elastic medium.
These velocities are derived in [3.2] by applying the method of
characteristics to the governing differential equations.

All equations formulated above are exact within the context of
linear stress-strain relations. The only underlying assumption in the
cases of the bar and the plate is that the wave front reaches a steady
state after perhaps a short time period after the impact. The
nonlinear dependence between the wave sp-Pd c and the particle
velocity v in the cases of the bar and the sheet is due to the
nonlinear area ratio. These nonlinearities usually may be ignored
which is consistent with the linear elasticity theory.

3.3 Condition for Two-Wave Formation

In this section we shall discuss the case where the stress-strain
relation is not linear, but is given in the general form of
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aox,(es). In a later section, the case of elastic-plastic-hydrodynamic
constitutive equations will be included. It will be seen that
depending on the slope of the o, vs e, curve, a single discontinuity,
or wave front, may not be stable. The discussion here can also be
applied to the familiar two-wave structure present when a phase
transition occurs during shock wave propagation, or when an elastic
precursor wave is present in uniaxial strain problems. Further

-E-X
-x

Figure 3.2. Stress-strain relationship for a bilinear elastic-plastic material.

C-X 8765 4321

-C 2+ --?C1

t

RISE TIME

Figure 3.3. Step function input Q, in a bilinear elastic-plastic bar.
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discussion of two-wave structures may be found in [3.3], [3.4],
[13.51, and [3,6].

Consider a material %ith the stress-strain relation as shown in
Figure 3.2. This is a typical bilinear elastic-plastic constitutive
relation. If a bar made of this material is impacted at one end, it is
customaiy to assume that there is a time-vAse step function input in
OT, as shown by the horizontal line o = a,. in Figure 3.3.
Actually, a inathematical step function does not exist in the
laboratory; there is always a finite rise time, although it may be so
short that it is beyond the resolution of the instrumentation.
Following a similar approach given by White and. Griffis [3.7],
[3.8], we shall assume that a step stress input is composed of a
large number of small but finite wavelets, as shown by the
stair-shaped curve in Figure 3.3. The step input is broken down
arbitrarily into eight smalier steps, or wavelets. It is also assumed
that the stress at the fourth wavelet is equal to the yield stress o,,.
Each of these wavelets will propagate according to Eqs. (3.10),
(3.11), and (3.13) with the proper stress-strain relations Eqs.. (3.3)
and (3.4). Assuming A'/A -t1 and neglecting the differences
between E, AE,, and ac,, the first four wavelets will all propagate
at a speed

1 AQ. E1

For the last four wavelets, the propagation speed is

E2

According to Eq. (3.13), the wave speed is relative to the material
particle ahead of the wave front. Here, if the particle speed in front
of the wave is v, , then the wave speed relative to the undisturbed
material is c2 + v, . As indicated irn Figure 3.2, the case being
considered here is such ihat E1 > E2 ; in addition, since :; is usually
much smaller than c, or c., we shall assume c , > C2 + V1.
Therefore, the first four wavelets propagate at a greater speed than
the lkst four. After a short time, these wavelets will separate into
two groups, one group consists of the first four wavelets, and
propagates at the higher speed c, . Since the distances between these
wavelets are very small, they appear as one wave front. The other
group of wavelets 5, 6, 7, 8, constitutV a slower wave front. Thus,
for a material with a stress-strain relation of the form of Figure 3.2,
two waves will form if the impact creates a stress above the yield
stress u,,.
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/

C-'

Figure 3.4. Bilinear stress-strain relationship, concave upwards.

Next, let us consider a stress-strain curve that is concave
upwards, as shown in Figure 3.4. Following the same approach as
before, we see that the group of low stress wavelets propagates
slower than the high stress group. The high-stress wavelets very soon
catch up with the low-stress wavelets and form a single sharp wave
front. It is obvious that the fast wavelets cannot pass the slow ones
because as soon as that happens the stress level in the fast wavelets
drops, and they become slow wavelets. The speed of the final wave
front depends on the slope of the line OA in Figure 3.4, or, for
small strains and neglecting the area change,

Sc 2  (1A (3.21)
P AC., p CExA

The same explanation can be applied to materials with other
types of stress-strain relations. For the case shown in Figure 3.5a,

VA

!/ /
le x 0 "E X

(a) (b)

Figure 3.5. Stress-strain relationships producing (a) a wave which spreads out
(1)) one Iinite wave front.
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where the curve is concave downward, a compression impact will
excite a wave that spreads out; no finite wave front will result. If
the curve is concave upward as in Figure 3.5b, one wave front will
result, and the wave speed is calculated from the slope of the line
OA.

3.4 Elastic-Plastic Materials

The simplest type of material that will produce two distinct.
waves under a longitudinal impact is one with an elastic-plastic
constitutive relation. We shall discuss both the uniaxial strain and
the uniaial stress cases with this type of constitutive equation.

In order to specify the plastic behavior, let us first define the
stress deviation and strain deviation tensors. The stress deviation
tensor, or deviator stress tensor, Sij is defined as

So a, -,, (3.22)

where 8 i.i is the Kronecker delta, a, is the spherical stress, or mean
normal stress, defined by

,, ((. + (ay + oz)/3 p (3.23)

where p represents pressure. The strain deviation tensor is defined
as

eij EU .- C,,,5ij (3.24)

where

, = x ±C. + E3 (3.25)

is the mean normal strain; 3 c,, is the cubical dilatation, or increase
of volume per unit volume, for small values of strain.

As is customary, the deviator stress will be related to the elastic
component of the deviator strain and the spherical component of
the constitutive relation will be linear elastic, or,

SIj 2Gc{ (3.26)

= 3Kc,, (3.27)
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where K is the bulk modulus, G the shear modulus and e'j is
defined according to general practice by decomposing the deviator
strain into elastic and plastic parts, or

C) ='(3.28)

When the material is behaving elastically, ef- is governed by the
relation

,-- = onstant (3.29)

For loadings from an initially unstrained state, this constant is zero.
When the material is behaVing plastically, cP'j is governed by a flow
rule of the general form

1S (3.30)

where the dot represents time differentiation. For uniaxial
problems we will show that a flow rule is not needed; the yield
condition is sufficient to give a stress-strain relation in the plastic
range.

The decision as to whether a material is behaving elastically or
plastically is dictated by a yield condition. One such yield condition
is the Von Mises yield condition whiich states that the material is
behaving elastically if

J, < yc
- 3

and behaving plastically if
J,

where J. is the second invariant of the stress deviation tensor and in
the case of an elastic-perfectly-plastic material Y = Yo = v.3 Ys,
where Y,, is equal to the yield stress in simple tension (uniaxial
stress) and Y, is the yield stress in pure shear. In place of the Von
Mises condition, we may use the Tresca yield condition which states
that the material is behaving elastically if all of the three
magnitudes Io, - 021, 102 -" 031, 103 - oI are less than Y, and
behaving plastically if any one of the three is equal to Y; 01, 02,03

are principle stresses.
For the following discussions we will limit ourseives to

problems of loading from an initially unstrained state.
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3.5 Uniaxial Strain Problem

Lt' us now consider the sPecial case of uniaxial strain problem
charatcterized by the condition,

C' (X)

(:3.31)

The only nonvanishing strain is c,~. The normal stress in the y and z
directions are equal, or, a,, = a,,. Keeping in mind that in this case

c,,=c, /3, and 3e? =- 2cx, wve see that the Von Mises yield
condition reduces to

2 ' I (3.32)

It can be shown that the Tresca yield condition for uniaxial strain
problem is also Eq. (3.32). When a material exhibit,- work
hardening, Y is not constant. For this discussion we wHi assume a
simplified expression for Y of the form 7 = Y (e."), or more
specifically, Y" Y,~ + k ' . or an elastic, linear work hardening
material, the constitutive equations reduce to.

OM KE, (3.33)

2G(2c,. -- er'} (3.34)

and, either

(~ .0 when < -< y (3.35)

or
2 h c" hnA (3.36)

where the upper sign is for tension and the lower sign for
compression. The four variables a, ~, c,, S,~ and eP? are governed by
the three equations, (3.33), (3.34), and either (3.35) or (3.36). If k
is zero, the material becomes elastic-perfectly-plastic.

In ordler to study the propagation of abrupt wave fronts, we
miIay derive the following stress-strain rolations. In the elastic range

(K + Gc~when S~ ~TY(3.37)
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., , L(± ( 3G o!,(k + 3G] (3.38)

r ,!!: ... / 2G

± K Y0 (;7 Y-3; (3.39)

Equations (3.36) to (3.39) are plotted in Figure 3.6a.

The u. vs cx curve represents a bilinear stress-strain relation.
Accoiding to the discussion of the previous section, an elastic
precursor wave will precede the plastic wave if an impact generates

a stress above the yield point. There is no area change across a wave
front in the uniaxial strain problem, Therefore, noting that e = Aex,

the elastic wave front propagates at a velocity, c, given by Eq.
(3.13), or

K + 4G/3
P, (3.40)

which is identical to Eq. (3.20). The plastic wave front propagates
at a speed, relative to the material in front, given by

, k 1 K] (3.41)
!z tk 3G)

When the material is elastic-perfectly-plastic, k vanishes, and the

plastic wave speed becomes

= (3.42)

and the corresponding stress-strain curves are shown in Figure 3.6h.

The wave speed given by Eq. (3.42) is sometimes known as the
"bulk velocity". As can be seen here, it is the wave speed of a

material with elastic spherical stress-strain relation,
elastic-perfectly-plastic deviator stress-strain relations, under a state

of ,niaxial strain, and loaded beyond the yield point. Note that the

slope of the stress-strain curve does not vanish for uniaxial strain
problems: with perfectly plastic materials. The bulk velocity may
also be considered as the limiting case of vanishing shear modulus,

as can be seen form Eq. (3.41), [3.3].
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(a) Work-hardening material

sx

(b' Perfectly plastic material

F'iguirc 3.6. Stress-strain relation for urniaxiaZ strain problem.

The normal stress at yield for a perfectly plasti -. material s

u+(IG Y (3.43)



70 P. C. CHOU

This stress is sometimes referred to as the Hugoniot elastic limit
[3!3]. Note also that the relation between yield stress in simple
tension, Y 0 , and yield stress in pure shear, Y,, is YO = /3 Y, under
the Von Mises yield condition. Under the Tresca yield condition
Yo =2 Y,.

Q3A jnjai,1 n qfrav Prnhiprn

Tension and compression waves in a string or a bar are
characterized by the following conditions.

a. (X)

rY2  ZC 0 (3.44)

Ey = C

The only nonvanishing Atress is a,. This type of problem may be
called a uniaxial stress problem. It should be noted that. this state of
stress and str&in does not satisfy all the compatibility equations in
the linear theory of elasticity, and thus is only an approximate
theory. Consider again a material with elastic spherical, and
elastic-plastic (linear work hardening) deviator stress-strain
relations. From Eq. (3.44), we note that

S = -vx(3.45)

The Von Mises yield condition and Tresca yield condition both
reduce to IS I = 2Y/3, the same as Eq. (3.32) for uniaxia, strain
problem. The constitutive relations are then,

G. 9Kc,, (3.46)

(' 3 ( " 0 e.1' (3.47)

and, either in the elastic range

e" 0 when IS1,. < Y.Y (3.48)
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or, in the plastic range

Similar to the uniaxial strain Case, the four variables (i x C'e , and
eP are governed. by the three equations, (3.46), (3.47), and either
(3.48) or (3.49). The'se equations can ho arranged, in the elwstic
range, as

I~ E whn~ < 2 1. (3.50a)

In the plastic range,

4 1 J,) Y,,k when Ii 2Y (3.501))

The stress-strain relations of Eqs. (3.50) are plotted in Figure 3.7.
Note that when the material is perfectly plastic, I? 0, the
stress-Ftrain curve has a zero slope; the material has uncontained.
plastic flow and plastic wave front speed becomes zero. This is
different from the corresponding uniaxial strain case where the
plastic wave speed for perfectly plastic material is (K/p) 1 2.

Figure 3.7, Stress-strain relation for uniaxia! stress problem.

3.7 Elastic-Plastic-ilydrodynamic M,%aterials

Under very high pressure, the spherical components of stress
and strain are no longer related by linear Hooke's law;
thermodlynamic effects must be included in the constitutive
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relations. In this section, we shall assume that the spherical
component of the constitutive relation is replaced by a simple
equation of state, This type of material will be called the
elastic -plastic-h ydrodynamic (EPH) material.

The equation of state of the EPH materials is wrfitten in the
general form

(Jill E) (3.51)

where p is the density and E the specific internal energy. This
e.ua,-,on replaces the elastic spherical stress-strain relation,

K E,, used before for an elastic-plastic material. The
introduction of the internal energy terms complicates the
constitutive relations; the stress-strain relations cannot be
deterinined in general; they are dependent on the process involved.

For the linear elastic material and the elastic-plastic material
discussed previously, a direct one to one relation between stress and
strain exists. For given initial conditions, a stress-strain curve can be
plotted for loading, independent of the loading path, or process
involved. For instance, the elastic-plastic relation for the uniaxial
strain case is given by Eqs. (3.33), (3.34), and either (3,35) of
(3.36), which govern the four variables (j, c.,, S,, and eP. The
curve g, vs c, plotted from these equations is applicahle to any
type of leading. Now, for the EPH material Eq. (3.33) is replaced
by Eq. (3.51). Adopting the strain-density relation

C, (3.52)
p

for the EPII material under uniaxial strain, we have four equations,
(3.34), (3.35) or (3.36), (3.51), and (3.52), which govern the six
variables , ,., S,, eP. p, and E. These equations are not sufficient
to solve for ., o. , ) relation; an additional equation, or
process, would have to be specified. For the present purpose, we are
conidering only the process across a discontinuous wave front, or a
shock, we may use the conse-vation of energy equation across the
shock for the additional equation. Assuming that ahead of the
shock ti-. material is stress free, the energy equation across the
shock is

I(( p 1c '/ 2)IE,- E,] (3.53)
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where ,, and c are both velocities relative to the material ahead of
the shock. Since the particle velocity v is involved here, we are

compelled to. use the other two conservation equations for
establishing a stress-strain relation. With no area change in the
uniaxial strain problem, the equations of conservationI of mass arid
monmentum, Eq. (3.1) and (3.2), becorne

Cp, (c u,. (3.54)

, . - , p .c -~ m-c" - c (3 .5 5 )

Altogether, now we have seven equations, (3.34), (3.35) or
(3.36), (3.51), (3.52), (3.53), (3.54), and (3.55), which govern the
eight variables (j,, e, cSxe, p? E, c, and v. Solving these equations
we can plot a u, vs e. curve, or a curve governing any two of the
variables. Thus, i the properties in front of the shock are known,
specification of any one of the seven quantities behind the shock,
or the shock velocity itself, will determine the rest. A typical set of
stress-strain curves are shown in Figure 3.8. It must be emphasized
again that Figure 3.8 gives the state of stress and strain behind the
shock, and it does not represent a general constitutive relation. It is

equivalent to the shock Hugoniot of compressible fluid, but not the
complete equation of state.

C

A

0 .- p ix

Figure 3.. Schematic stress-strain curves for a elastic-plastic.hydrodynafic

meat ria.
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Due to the nonlinear nature of the equation of state, the o, vs
c,, and other functional relations between any two variables in
general cannot be expressed in closed form equations. Curves like
those in Figure 3.8 are usually plotted by numerical means.

Eq. (3.52) is only one possible means of relating the normal
strain with density. Depending on the definition used for strain,
other types of strain density relations may be written, e.g.

,, tln(e.)! (3.56)

and

Po (3.57)

which are the natural logrithmic strain, and extension per unit
deformed length, respectively. Note that the strain defined in Eq.
(3.52) is actually the extension (per unit original length), as can be
seen from Eqs. (3.5) and (3.7). We shall restrict our strain to that
defined by Eq. (3.52), thus c., = E,. If the material is unstrained in
front of the wave, the strain is equal to the relative extension
2x C~.

When an unstrained material is under a sudden impact, a single
stable wave will be excited if the stress behind the wave is below the
point A in Figure 3.8. The wave front speed, according to Eq.
(3.13), is

1 J

(3.58)Po

where a, and c., are the stress and strain behind the wave front, and
since in front of the wave there is no strain, p = po. When the
impact speed is tiige,! and the stress behind the wave is moderately
above point A, a two-wave structure pfevaiis; the faster wave,
known as the elastic precursor wave, travels at a speed given by

cO (3.59)

The slower wave, known either as the plastic wave or shock wave,
propagates at a speed

1 , .. . (.,A dl ) Po (.,. - xA
c ..... ... . . .. P.. . . . . . .. .. . (3.6 0 )p. (c, c.., ) PA2 (.,. - xA
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From Figurc 3.8, it can be seen that the square of the precursor
wave speed is given by the slope of the straight line joining points 0
and A multiplied by 1/po; the square of the plastic wave speed is
given by the slope of the line joining the point A and the point of
the final state, say point B, multiplied by the constant P" /pA. The
stress at point A is known as the Hugoniot elastic limit. Note that
the Hugoniot elastic limit refers here Lo the stress a, not the
pressure, a,,,

As the impact speed and the final stress increase, the plastic
wave speed also increases, whilc the elastic precursor wave speed
remains constart. The point C in Figure 3.8 represents the state

where the plastic wave speed is equal to the elastic precursor speed,
or

[ o- (o~ XC ~ + - -x + x~~ (3.61)

LPA 2 (CEx xA) Go, /

When the stress after impact is higher than oV, a single-wave is
again stable, and the shock wave speed is given again by Eq. (3.58).

If the deviator stress-strain relation is elastic-perfectly-plastic,
then ;1 = 0, and the S, vs c, curve in the plastic range would be
horizontal in Figure *.1,8. If h - -, then the S, curve in Figure 3.8
would be one straight Line and point C on the o., curves would
coincide with point A.

A few other types of curves representing the condition behind
the wave are often used in the literature. Figure 3.9 contains
schematic curves of various stresses plotted against the specific
volume, 11p. The slope of lines joining points on the ax vs (lip)
curve also represents the square of the wave speed. For instance, the
elastic precursor speed is

1 OxAC 
2  =- .... ..... . .

In Figure 3.9 the straight line AB is known as the Rayleigh line (see
Chaptcrs 4 and 8).

Similar to the pressure vs particle velocity Hugoniot curves, we
can plot the stress against particle velocity, as shown in Figu; e 3.10.
The wave speeds can also be expressed, in terms of the slopes of
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lines in this FigUre. When this is a single wave, with a stress either
below UA or above arc, the wave speed is

C 1- Ox (3.63)
PO V

The elastic precursor wave speed is

I - .,0 A (3.64)
PO VA

and the plastic wave speed, relative to the material behind the
precursor, is

C = - -(3.65)
PA V VA

We can also plot a "shock velocity" f~ainst particle velocity
curve, just like the ccnventional Hlugonic' curve. Figure 3.11 ssc
a plot, where U is the wave speed relative to the undisturbed
material, and U c + vA when there is a precursor wave; otherwise,

C

0~0
mP

Figurce 3.9. Schiematic stress vs U/p curves for an elas tic- plastic- hyd!rodynamrnic
material.
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I C

A'

- V
/ 0

Figure 3.10. Schemnatic curves of stresses vs particle velocity of an elastie-
plastic-hydrodynamic material.

V--ELASTlC WAVE SOKWV
PRECURSOR
WAVE SPEED

CA-

I -PLASTIC WAVE

1TWO WAVE
ONE WAVE' REGION OkNE WAVE

VA V

Figure 3.11. Schemnatic curves of the wave velocity vs particle velocity for an

elastic-plastic-hydrodynamnic material.

To demonstrate the order of magnitude of the stress-strain
curves of a realistic material, we have made calculations for
aluminum with an assumed EPH constitutive relation. The equation
of state used is of the form

=n a77 bfl2  drl3 - fpE (3.66)

where

Po (3.67)

a nd
(1 773 Kbar; b 491. Kbar; d 469Ka;f 21
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Also, we shall use the following values,

G = 276.1 Kbar, Y - 2.976 Kbar; k 0, or 276.1

We shall now show an example of an impact problem where an
initial two. wave structure is weakened to one wave by a rarefaction
wave. The problem involves the impact of a thin flyer plate on a
finite-thickness target plate, as shown schematically in Figure 3.12.

We shall consider the cse of a moderate impact speed, where
both an elastic wave and a plastic wave propagate into the target;
both wre compression waves. After intersecting the free surface of
the target plate, the eiastic precursor wave reflects as an elastic
expansion wave. When this expansion wave interacts with the
plastic wave at point I, the strength of the plastic wave is decreased.
That is, the increase of compressive stress from region al to a2 is
greater tan that from regions bI to b2. Eventually through a series
of in eractions between the elastic and plastic waves, the stress
behind the two-wave stncture (a. in region c2) will fall below
point A in Figure 3.8, and only a one-wave structure (elastic wave)
will be supported in the target plate. From point II in Figure 3.12
to the free surface, the material Vill not be deformed plastically.

Let, us emphasize the fact that to construct a stress-strain curve
behind the shock in this problem, a set of 8 equations in 9
unknowns must be solved. The properties ahead of the shock must
also be known. As the T roperties ahead of the wave change so will
the stress-strain curve representing all possible states behind the
wave. Referring to Figure 3.12, we will notice that the states in
regions aL, bl and cl (states in front of the waves) are not the
same, thus the stress-strain curves representing all possible states in
regions a2, b2, c2, (all possible states behind the waves) will also
not he identical.

3.8 Wave Front b. Composite Materials

Applying the control volume analysis outlined previously, we
shall n)ow investigate the elastic unidirectional wave front in
ccmposite bodies. These composites may be either laminated or
fiber reinforced. The .raves are initiated by impating a uniform
particle velocity v in the x-direction at the one end of the
semi-infinite body, Figure 3.13. The wave front is again assumed to
reach a steady state after a short time period. In addition, a perfect
interface bonding is also assumed.
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I, I C

0>2

//

ELASTIC ___ELASTIC EXPAN-
--- COMPRESSION StoN. VvAVE

--- PLASTIC-AVE

Figu re 3.12. Schematic of the impact of a thin flyer plate onr. a finite-thicktwss
target plate.

We shall restrict our discussion to small values of strain. The
material in front of the wave is. considered as unstrained. ri~T

discussion is also limited to composites of two constituents. TIhese
restrictions are imposed for simpliciy; the more general ('asr ; may
be analyzed with the same procedures.

We select a representative section s'ich as shown by lines a-a and
b-b in Figure 3.13. This section is enlaxged itt Figure 3.14 to show
the details of the chosen control volume. It is seen that the
int~erface between the fiber and the matrix is distorted in the regio.n
immediately behind the wave front, and a dynamical shearing stress
exists along the curved surface. The comp',ex stress field is assumed
to be limited in extent; at a distance to the: left of the wave front
there is essentially a quasi-static zone in which the particle velocity

is uniform and the interface shear stress vanishes. Thus, by writing
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bb

, 
Yb X

(C) (d)

Fig~ure 3,13. Isometric views of composite bodies (a) laminated medium (b)
fiber-reinforced medium (c) laminated plate and (d) two-ply plate.

the steady state continuity equations for the part of the matrix and

the fiber respectively, we obtai~n

'A', (c -v) pA~

p,'A (c v)- PffC (.8

where a prirne refers to the quasi-statically strained state, in refers
to the mnatrix material and f the fiber material.
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Since the material is unstrained ahead of the wave front, therelative extension, E, is equal to the extension, E,. The extensionis -lso equal to the normal strain c,. From Eq. (3.7), we see that

p,, AA. (1 +

pA = p/A' (0 F I r (3.69)

Cornbining.. Eqs. (3.68) and (3.69), we obtain the kinematic
condition of Love

.. --. (3.70)
which is the siime as in the homogeneous material, Eq, (3,10),The unidirectional stress-sixain relations for the materials on theleft of the control volume, i.e., in the quasi-static strain zone, maybe expxsxed in the general form

(3.71)

in which the reduced stiffness coefficients C, and Cf, for thematrLx and the fiber respectively, are to be determined from theimposed equilibrium and geometric restraints for the specific

CONTROL VOLUME-,
WAVE FRONT-- /

rn , M 
IM

" + 
c toAm A

f( 
f~1

Figure 3.1,. Stationary control volume.
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problems considere.d. Note that Cm and C, are the reduced stiffness
coefficients of matrix and fiber when they are in the composite;
they are not the values when each material is situated alone. By
combining the two equations of (3.71), we note that the "average
stress" may be obtained in terms of E, ai'd an "average reduced
stiffness,

, V,, + " (VmCn + VGf)fX (3.72)

where V,. and Vf are volume fractions of matrix and fiber,
respectively.

It remains now to write the momentum equation across the
chosen control volume. This is done by considering either
separately the portions of the matrix and the fiber of the control
volume, Figure 3.14, or by combining the two parts as a whole. In
the first case, the interface shear stress will appear in the two
momentum equations, but may be eliminated from these equations
easily; while in the latter case, the shear stress is only an internal
stress, therefore it does not affect the total balance of momentum.
From either approach, the resulting momentum equation takes the
general form

G ,,An + o.,A = - cv(p,,A,, + prAt) (3.73)

where, as before, c is the constant wave speed and v is the uniform
particle velocity.

Let the matrix-fiber volume ratio (also area ratio) of the control
volume be denoted by

a = V,/Vt A,, /A, (3.74)

By using the relations in Eqs. (3.70) and (3.71) we obtain from
Eq. (3.73) the wave front speed

( ,, A, A',
4-,1 = + C-. (apm + pf) (3.75)

in which the area ratios A 1 /A,,, and Af!Af depend on the geometric
dimensions and matrix-fiber arrangement for a specific problem
considered. in general, these area ratios can be expressed as a
function of v/c or the longitudinal strain c,. Therefore, Equation
(3.75) depicts a nonlinear dependence between c and v. For small
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values of strain, the nonlinear dependence betwien c and v. is rather
ivvak, Thus, by making the area ratios a Unity, We Obtaint app rox i mately the wave speed,

V CM fC
C i 77 6f'

which is independent of v.
Note thatl the terms of the right-hand side of Eq(. (3.761 are the

ratio of' two average quantities. The denominator represents the
aVe~rage- density" while the Mnmerator is the "average reduICeci

stiffness"'. In particLulai, C,,, and C( are derived from the conditions

miatrix-fibur arrangement. and the geomretric dimension of the
copsthe inidaerialbehsavor teue sificmner f the~

F average density of the composite remanins the samie.
When the composite body is made hotinogen :*ous and isotropic,

that is, When the two materials have the same properties or one, of
the constituents has a zero volume (a' --~ 0 if all is fiber, a~- if all
is mnatrix), it is easily seen that Eq. (3.75) reduces to Eq. (3.17) for
a plate, to Eq.. (3.20) fOr ani infinite mnedium.

3.9 Interface Shear Stress Near the Wave Front

Consideration is now given to the determination of the shear
stress on the mnatrix-fiber interface. Since the particle velocity of
the miatrix and fiber materials are the samie in the quasi.staitic zone
(behind the control volume), a shear str-ess exists only on the
interface within the dynamic stress field, i.e., inside the cointrol
voILlue, as shown in F"igumre 3.14. The exact distribution of the
shear stress, however, is indeterminate by the present analysis. In
what follows, we assu Lme the interface area on which shear stress
exikts is approximately the samle as that of the cross-sectional area
of the, control volume. Then by w.riting the momentumn equa~tion
for eiti-1r thu, matrix or the fiber part, of the control volumn-e, the
total shear force oi, the interface, is obt;,ined explicitly in the form
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Figure . 5.Wv front. speed vs fiber content foraBro-pylmitd
medi umn.

'rhe average shear stress is obtained by dividing F., by the area
A,,+ A,)f

7a-r ~ ~P CV -- C" IX (3.78)

Again, if the area ratio A,,/A ... is made unity, we obtain
approximately,

~a 77~(Pmy Cv - (3.79)

which is a linear function of v.

Illustrative Example

The general equations governing the steady-state wave front
derived above arc valid for all types of unidiiection composite
materials. For each specific type of composite, the particular
expressions of the recdced stiffness coefficients C,, and C,, and the
area ratios 4, , /An1 and A//1,1 must be obtained separately. In Ref.
13.9]1, four types of composites are considered in detail. Here, we
shall summarize the results for the case of semi-infinite laminated
medlium.
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For this case, we may write three Hooke's law equations, the

three normal components of

(ij = 
2pci;i + 34...,6iy (3.80)

for each constituent. In addition, we shall require that the normal

strain in the z-direction vanish and the total area is unchanged, or,

C1,,, = 0, c" = 0 (3.81)

+ A, = A,' + A/ (3.82)

To maintain equilibrium at the interface, we shall require that

G., = Cyr (3.83)

The conditions (3.81) to (3.83), when combined with the six

Hooke's law equations, Eq. (3.80), can be arranged to give

Cm (X.4 + 2p,,,) - , V*
(3.84)

Cf + 2pf) - o~y v*

where

e- ___ ,__----- -(3.85)
-e: -n + 21, + + 21,u)

The area ratio can also be obtained easily from the above

conditions and they are:
A,,A- == 1 -- v:J -  ( .6

Am c
(3.86)

Numerical calculations have been made for a laminated composite

of bor vn and epoxy with the following constituent properties:

Epoxy Boron

E,,, = 72 x 102psf E( = 8460 X 10 6 psf

v, = 0.35 vt = 0.30

P mi, = 2.4 slug/ft3 Pf , 5.1 slg/ft
3
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For comparison purpose.s, an "average wave speed" is also

('alcuLda ted according to the formula

2 ~ ~~au)(1 t3.871

where E,,, ,, and v0,, are the volume average of these quantities.
The ratio of the linearized wave speed co and the average wive
speC'CI c is plotted against "fiber" volumne in Figure 3.15. It can he
seen thiat the avrage speed can be different from cc, by 15%.

L_.xperimental measurement of the wave speed in unidirec-tional
,omnposite materials is currently being made by many investigators.

The dynamic photoelastic method has been used in m.-easuring wave
speed in laminated sheets, [3.10], [3.11.1. Preliminary results
indicate that the wave front reaches a steady state within a short
distance, although no conclusion has been reached as to the
accuracy of the present theory as compared to measurements.
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SHOCK WVA VES AND EQ UA TIONS OF STA TE
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List of Symbols

A Helmholtz ftee energy
C longitudinal sound velocity

CQ dilatational wave velocity
Ct shear wave velocity
C", specific heat

D Dehye function
E internal energy

eii strain deviator tensor
G Gibbs free energy
H- enthalpy
h Planck's constant
K bulk modulus

I shock thickness
In mass flow rate

p pressure-
Q heat
RD ratio of deformational to compressionial work
S entropy
Sij deviatotic stress tensor
T temperature
u particle velocity
V specific vorUmne
1W work

Xi generalized forces

Precedilng page blank
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Yi generalized coordinates
Y yield stress in simple tension

dyi generalized displacement
Z partition function

thermal expansicn coefficient

,j Kronecker delta

'ii strain tensor
I' Griineisen parameLer

Grtineisen parameter
, Lame' constant
pg shear modulus

v Poisson's ratio
v, normal mode freque.ncies

Oii stress tensor

: Debye temperature

dO dilatation
highest resonant frequency

The first scientific application of shock waves provided
information about equations of state of solids at very high
pressures. This is still one of the very important uses of shock
experiment., and much effort is devoted to generation and
interpretation of data. Before we can appreciate this work and
understand fully the process for developing an equation of state
from shock wave data, we must consider some basic
thermodynamic and mechanical questions concerning the
deformation and compression of a solid.

4.1 Complete Equations of State 14.11

The thermodynami,- properties of a substance are related to its
capacity for absorbing heat and storing it as thermal energy and t3
the m:.nn..r in which work can be done upon it. These properties
can be summarized in the potential functions of thermodynamics:
internal energy, E, enthalpy, H, Helmholtz free energy, A and Gibbs
free energy, G. All of the thermodynamics of a substance or system
is contained in any one of these forms. Each of these potentials is a
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function of a thermal variable, T (Temperature) or S (Entropy), and
of a set of work variables which may be mechanical, electric,l, or
other. If work done on the substance is characterized by the
re!ttion dW = )21Xidyi, where the Xi are generalized forces and dyi
are generalized displacements, the Helmholtz free energy, A, can be
written

A = A(T,y) (4.1)

dA - SdT 4+ZXfyj (4.2)

For example if a continuum can support a system of stresses oaj
and in the process develops strains ci, then

0il '- Xi, Ec1 "- yi, A = A(T, eij) , and
(.4.3)

dA -- SdT + V Y _ d%,
i i

where V is specific volume. In this as in all other equations of this
chapter, extensive quantities will refer to unit mass of substance.

The Xi and yi of Eq. (4.2) need not be independent. Of the nine
components of stress or strain in a continuum, only six are
independent. It is often convenient to choose these as density or
specific volume, pressure and stress and strain deviators. These are
defined as follows:

stress deviators: Su = aj + P ij (4.4)

strain deviators: eij = - (O/3)Vjj (4.5)

pressure: p = - aii/3 (4.6)

dilatation: dO = dei. = dV/V (4.7)

Dilatation is defined only incrementally since it is not simply
related to the trace of tne strain matrix for large strains. With these
variables the Helmholtz free energy is

dA .. SdT . Vpd® + VZ_,3 S ,dc"i (4.8)
i j
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In principal axis coordinates

dA - SdT VpdO + V Sde, (4.9)
J

Only two of the Sj's and ej's are independent; the sums of each of
them must vanish, by definition.

The second term on the r.h.s. of Eq. (4.9) represents work done
by compression; the third is work of deformation. The latter is
normally the source of irreversibility when elastic limits are
exceeded, as in yield and plastic flow.

Thermodynamics of a fluid are contained in Eq. ('1.9) as a
special case. Stress and strain deviators vanish in a fluid in
equilibrium, so the Xi and yj of Eq. (4.2) reduce to one term each:
Xi - 'p, yj -- V, dW - pdV. The same is true for hydrostatic
compression of a solid. The thermodynamics of such systems has
been thoroughly devaloped, and this fact is useful when we come to
uniaxial strain because there, too, there is but one work term and
the thermodynamics is identical as long as elastic limits are not
exceeded.

It was mentioned earlier that any one of the potential functions
provides a complete equation of state. independent variables are
different for each one, and this normaily determines the choice of
potentials. Transformations among them are simple:

Gibbs Free Energy: G(T, X) = A -- x. Yi (4.10)

Enthalpy: H(S, , i) = G 4 ST (4.11)

Internal Energy: E(S, y) = Hi (4.12)

The Helmholtz function is a particularly useful one because of
its simple relation to the partition function, Z, which can be
determined directly from atomic models by statistical methods.
This will be discussed in more detail in Section 4.4.

Equilibrium mechanical and thermal properties of a continuum
are obtained directly as derivatives of the potentials. For a
continuum in hydrostatic compression, assuming A(T, V) to be
known, we have from Eq. (4.9)

S -- AT, p - A (4.13)
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where differentiat.on is denoted by a subscript: =(()A/1T)V,

etc. Other measurdhle quantities are given by higher derivatives:

Specific heat: CI, T(OS/5 T TATT. (4.14)

Bulk modulus: K -~pD )I VAt, 1, (4.15)

Cross derivative~s produce various thermodynamic identities; for
example

--r (bS/3V) 1 . = 1 V Av, (OpI1T),,, ICvIV (4.16)

where P is the Griineisen parameter [4.21. From higher derivatives
still other identities can be established:

A,--r (i/T'-(CI,/JV)T = 4 7' (4.17

4.=(11V)(aKfliT)v. ATVV -- [D(Ka)/3VIT (418

air is thermal expansion coefficient, (1/1V) (o V/T) T. in
obtaining Eq. (4.18) the identity

(-)S/aV)T -K (4.19)

has been used.
The, 1 situation envisioned here i' which A(VT) or G(p,T) is

exactly kt,. ,vn is seldom met. More often one must fabricate an
equation of state from fragmentary measurements of isothermal
compression, ultrasonic velocity measurements, shock
measurements, miscellaneous measurements of thermal expansion
=nd specific heat, theoretical models, and the like. As 'we shall see,

shoc2k measurements can and do contribute significantly to total
knowledge of equations of st-Ate, though they are necessarily subject
to uncertaint es of interpretation.

As long as the deformnation is elastic, deformation properties
ca in be o.Kt ~ined byv differentiating A according to Eq. (4.19) or
equivalent:

:3 3j etc. (4.20)
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Then cross-derivatives yield various identities among deviators and
other qtiantities. In dealing with shock phenomena, such relations
are seldom useful, except for such materials as quartz and alumina,
which have very high elastic limits. When the elastic limit is
exceeded, A ceases to be a point function of the strain deviators,
and thermodynamic behavior is irreversible. This leads to grave
difficulties in general formulations of A; but understanding is still
possible for particular cases, as in uniaxial strain, to be discussed in
the next section.

Special emphasis has been placed on hydrostatic compression in
this section, in spite of our primary interest in plane shock waves in
which uniaxial 3train applies. This too will be discussed in the next
section where it will be shown that the thermodynamics of shock
compression is well approximated by that of hydrostatic
compression when the energy of deformation is relatively small.

4.2 Uniaxia! Strain and Hydrostatic Compression

The thermodynamics of uniaxial strain is formally identical ,o
that for hydrostatic compression because the mechanical work in
this case can also be described by a single term,

dW -- p.dV - Vp.,dc, (4.21)

where p., - x =  compressive stress in the direction of
displacement, de. = dV/V is the sole component of strain, and
principle axes of stress and strain lie in and perpendicular to the
direction of displacement. Then changes in internal energy per unit
mass are given by

dE = dQ - Vp.,dex (4.22)

The work of Eq. (4.21) can be separated into wor] of compression
and work of deformation by introducing thu stress and strain
deviators (Eqs. (4.4) and (4,5):

dW = - VpdO + V'Sdej (4.23)
" j

where

S = 4r/3, Sy = S 27/3 7 = (a. - ay)/2 (4.24)

/= 2e3, ey e, - ex/ 3 , E =c. (4.25)
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Then

dI . Vpdc, ( - 4r/3p) (4.26)

where -- 4r/3p RD = (work of deformation)/(work of
compression).

For elastic compression and dilatation we may write
constitutive relations in a linear differential form:

dp - Kd- (4.27)

dS- = 2pdej (4.28)

or

d (. X 0. 2ud, (4.29)

day =dc= dG- (4.30)

dr P ,dcx (4.31)

where K, X, u may, in general, be functions of temperature and
strain. Because strain is uniaxial, all F-resses tan be written in terms
of PX -- a.:

- d = dp.!(1 -- ,) dp (4.32)

dp (dp.1/3)(1 4 v)/(1 - 1) (4.33)

d - (dp.,/2)(1 - 2v)/U. v) (4.34)

where Ps (X/2)/(X+A Poson's ratio, possibly a function of
strain and temperature.

For the special case of small strains we have K, pu, P

indepe.ndent of strain. Then

(X 2p),. (4.35'

0 2, - (4.36)

(4.37)

= (V V,/V,, (4.38)
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In this case the ratio of deformational to compressional work is

R - 4,r/3p 2(1 -- 2v)/(i + v) (4.39)

R? ranges from 1.0 at v = .2 to 0.0 at v = 1/2. It is clearly too large
to be neglected for solids in elastic compression (or dilatation). For
example, aluminum with v = 0.34 has R) = 0.48.

Cycles of adiabatic, quasistatic compression and expansion of a
solid in elastic, uniaxial strain and in hydrostatic compression are
compared in Figure 4,1. Both processes are isentropic and the cycle
is represented by excursion of the state point up the appropriate
curve and down the same curve to the starting point. Slopes of the
two czrves ,are

-dp/dV ;- K; ' (4.40)

- dp.,/dV = (K + 4p/3)/V = c2/V '  (4.41)

where c is longitudinal sound velocity.
Wheu the elastic limit is exceeded and plastic flow or fracture

occurs, the problem becomes rauch more complicated ind depends
upon details of the failure mechanism. General formulations of the
thermodynamics become very difficult and not particularly useful.
We illustrate the problems for a aimple case of a linear elastic solid
which yields according to the von Mises or Tresca criterion and

HY/'OS T, T.C, p(V)

U/AX/AL ST7RA/,V, p(V)

v/ VO /0

Figure '.1. Adiabatic Compression of an Elastic Soid under Hydrostatic
Pressure and in Uniaxial Strain.
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which may undergo work-hardening. An adiabatic cycle of
quasistatic compression and expansion is represented in Figure 4.2.
Starting at point 0 the sample is compressed uniaxially until it fails
at A. Compression continues and plastic deformation increases
along AB as p increases. At B the process is reversed, p. is allowed
to decrease, and expansion occurs elastically from B to C. At C
failure once again occurs and expansion from C to D is plastic. The
displacement OD represents strains that are frozen in by the yield
process. The cycle can be completed by an appropriate combination
of thermal and mechanical processes, but this is not of interest here.

We now consider each of the regions OA, AB, BC, and CD:
Along O.4:

Elastic compression, small strains assumed, Eqs. (4.35)--(4.38)
and (4.41) apply. Compression is isentropic.

\ \

iA

vo A

Figure 1.2. Compression and Expansion of an Etastic-Pla.:tic Solid.

At A:
This is the yield point in uniaxial strain. Either the von Mises or

Tresca criterion reduces to -- -, = I- = Y/2, where Y is yield stress in
simple tension. The value of p, at A is called the "Hlugoniot Elastic

Limit," -IEL. In terms of Y it is given by

p, - Y( - - 2v) (4.42)

Other parameters at A are aiso denoted by super or subscript "A":
p" , VA, E., etc.
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Along AB:
Plastic deformation is essentially irreversible. If the direction of

loading is reversed at any point above A, IT[ is reduced and the
unloading becomes elastic; i.e., the slope of the unloading curve is
steeper than for loading- The following relations apply in loading:

p., > pAV < "t'AF > EA p > PAT Y/ 2

The slope of the loading curve is

- dp_.JdV = K(V, T)/V - (2/3)dY/dV (4.43)

where -dY/dV is the work hardening modulus. Comparison of
Eqs. (4.43) and (4.41) shows that point A forms a cusp unless
- d Y/dV is extraordinarily large. If d Y/d V = 0, the slope along AB
is that of the hydrestat.

In thic; region, part of the total work done on a sample by
compressive force p., is irreversible. To determine this fraction we
follow the conventional practice of separating strain incremelts
into elastic and plastic increments, de and dcP respectively. We
assume the plastic strain to have no effect on the density, then

dej = d-?1" + deir (4.44)

Work of plastic deformation: VZSfdeP (4.45)
j

Work of elastic deformation: VE_,ej" (4.46)
j

We also assume that stresses are supported only by the elastic
strains:

dSj = 2udef" (4.47)

The condition of uniaxial strain requires only that total strain, e,
and e,, vanish. This allows elastic and plastic components to be
non-zero:

de. = 0 = dc.. + d.,"' de, (4.48)

If we define

(e -- )/2 (4.49)
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Equation (4.47) leads to the relation

dr - 2pd7" (4.50)

Then, using Eqs. (4.24) and (.4.25)

dWV,-- V L' i" '---(4V7r/3)2d -. (4Vr/3)dr (4.51)

According to this relation, dW, is clearly reversible. If r > O,dr > 0,
dWIVC d > 0; if T > 0, d,' 0, dWI,.,, 0., etc.

From Eq. (26), the total work of deformation is

dW) = (4/3)Vrdc, (4.52)

The work of plastic deformation is obtained by subtracting Eq.
(4.51) from (4.52)

dW1, = (4/3)Vr(dc, - dr/p) (4.53)

If '2here is no work hardening, d- 0 and the total work of
deformation is plastic along AB. In this case, the ratio of
deformation work to comnpression work, Eq. (4.39), becomes the
ratio of irreversible to reversible work

dW = -- Vpd(-) 4- (4I3)V-de, - Vpde., (1 + RD) (4.54)

By virtue of the identity p, p - 4r/ 3 , dp, = dp for constant Y.

Tht,n p continues to increase with p,, but T =- Y/2 remains
constant. Since Y seldom exceeds a few kilobars for metals, ID
becomes so small as to be negligible when p, increases to several
hundred kilobars. It does, however contribute to the entropy and

therefore the temperature. Equating the increase in internal energy

to the work done plus the heat added yields the Gibbs relation for

the entropy [4.3]:

TdS (4/3)Vrd, + dQ (4.55)

If work hardening occurs, de., is replaced by (de, - drp). If other

dissipative forces act, such as viscous forces when strain rate is
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finite, they vili contribute additive terms to the entropy; e.g., if q is
viscous Stress

TdS = (4/3)V(r 4 q)dc, + dQ (4.56)

If irreversible work occurs in compression, Eq. (4.53) must be
modified to account for this fact and there %vill be still another term
added to Eq. (4.56).

Along BC:
If, the B, p, is allowed to decrease, the state point moves inside

the yield surface, p, - py < Y, and expansion is elastic. According
Lo Eq. (4.. 2). p, diminishes more slowly than p,; at the crossing of
the hydrostat, Figure 4.2, p, = py, and on further decrease of Px,
P,, -Pv < 0. Finally, at C, py -p, = Y and yield again occurs.
Strain increments along BC are elastic, dc, = dTrp, so dWp = 0 from
Eq. (4.53). The expansion is isentropic.

Along CD:
Expansion is plastic. The slope changes from

-dp /dV-- (K + 4p/3)/V to -dp,/'dV= K/V- (2/3)dY/dV. When
applied io a rarefaction wave running into a compressed region, this
leads to a separation into elastic and plastic rarefactions, with the
latter following the former. This effect has not been observed,
indicating that the present model is oversimplified.

In this region both r and dc_ are positive with dri/i normally
small. Then dWlp > 0 according to Eq. (4.53), and entropy
continues to increase.

Completion of the cycle:

At D, p., is again zero, strains remain in the material, and
entropy has accumulated. Entropy is primarily thermal, though
some is stored in microscopic defects. ignoring the latter, it is
necessary to expel some heat to reduce the entropy and to do some
additional plastic work to arrive at the elastic adiabat passing
through 0. This having been done, the cycle can be repeated. This
last step will not be executed here.

From this example it is clear that, once beyond the elastic limit,
the thermodynamics of uniaxial strain rely entirely on the physical
model of stress and strain. Knowledge of solid behavior in this
region is meager and often highly speculative. It is quite clear that
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we may invert the process ad use :stress-strain measurements in this
region to gain new information about solid behavior. This is, in fact,

one of the most active areas of shock wave research at present. It
should also be clear from Eq. (4.54) and the discussion which

follows it that, for strong shock waves, it may be a very good
approximation to neglect the energy, of distortion.

4.3 Irreversible Effects in Shock Transition

Irreversible forces manifest themselves through rate or

time-dependent terms in the constitutive relations; these
correspond, phenomenological!,, to viscous or relaxation processes.
Heat conduction also contributes to irreversibility, but its effect is

usually small enough to be neglected. Physical sources of viscous
and relaxation effects may be creation and motion of dislocations,
twinning, development and propagation of fracture, stress-induced

diffusion, phase transitions, generation of lattice defects, etc.

Isolation of these sources in a given material may be possible with

painstaking persistence but they are not known in detail at present.

Fortunately some general statements about the effects of
irreversible forces on the shock transition can be made without such

detailed knowledge.
As backgrT.und for this discussion we require the equations of

steady, one-dimensional, plane flow

pu :i ,n = co nst. (4.57)

,U,)141( x + ap., !x 0 (4.58)

3E+x + p.D'V/ax - Qi3x (4.59)

Ti' term o-, the r.h.s. of Eq. (4.59) represents heat flow into the

materia! from radiation or conduction. In the latter case, it becomes

S(K( T/3x) /3 x, so heat flows into an element in initial stages of

shock compression anO out at later stages. Integration of Eq. (4.58)

yields the relation for successive states of shock compression, the

Rayleigh line:

P -- P0 m(VO -- V) (4.60)

Substitution of this into Eq. (4.59) and integration yields

E E, (112)(p, + po)(Vo -V) + AQ (4.61)
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where A Q is heat transferred to unit mass in the compression
process. When shock compression is complete, E - E 0 is given by
the first term on the right hand side, th;refore A Q vanishes and the
shock compression is necessarily adiabatic.

The states described by Eqs. (4.60) and (4.61.) are not
equilibrium, i.e., thermodynamic states, except fcr the end points..
The tota' stress, p., is composed of an equilibrium term and a time
or rate-dependent term. In Figure 4.3 are shown the Rayleigh line,
an iseutr-pe, the Hugoniot curve, and the curve of equilibrium p,
in the shock transition. The difference between this last curve and

the Rayleigh line is due to time-dependent forces. The equilibrium
curve is determined as follows: as a material element is compressed,
V diminshes, heat is generated by irreversible forces, and :',ws in
by conduction. Since (3p/l T) t > 0, the heat so generated drives p.,
upward from the isentrope to the dotted equilibrium curve of
Figure 4.3. This last curve is quite difficult to calculate, being
dependent on detailed knowledge of the dissipative mechanisms.
However, for condensed materials (3pI3T)v is small and the
equilibrium curve i3 not apt to differ much from the Hugoniot for
weak to moderate shocks. Then Ap , the contribution of
time-dependent forces, is approximately equal to the difference
between the Rayieigh line and the Hugoniot for that partic,-lar
value of V, ,,ay V, in Figure 4.3. For example, if the controlling
time-dependent forces are viscous, P ou = - pului3x. then

u/ax = - Ap,. and the shcck thickness is approximately
Q=PAUp/(AP.)max, where ,u, is the total jump in particle
velocity across the' shock and (AP,)max is the greatest difference
between the Rayleigh line and the equilibrium curve of p,- This
calculation is obviously circular because the equilibrium curve can.
not 'le calculated until the irreversible forces are known, and
vice-versa. However, because (3p/ T)v is small, as indicated earlier,
the Hugoniot provides a good first approximation to the
equilibrium curve.

Interplay between propagation velocity and viscous forces is
very important in establishing the steady profile. If a shock is
generated with a profile steeper than the steady profile, the locus of
states lies above the Rayleigh line and is convex upward. The
propagation velocity at each stress level is approximately
proportional to the slope of the locus at that level and the variation
acts to diminish the slope and returns the locus to the steady
profile. If the initial profile is too gentle, the locus of states is
concave upward and lies below the Rayleigh line. Then a "shocking
up" process occurs. When the steady profile is reached, the locus is
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RAYLEtGH L /E

'- \-,----HUGcN/Or
% \

QISENTROPE, 4 " \\. .

Vf Vo /o

Figure 4.3. Hugoniot, OBA, and Rayleigh Line for. a Solid.

the Rayleigh line and each point in the profile propagate. at the
same velocity - the shock velocity. The profile in this way A;3usts
itself to whatever time-dependent forces exist by changing its slope
until the locus of state points coincides with the Rayleigh line.

4.3a Entropy Production by Shock Compression in Fluids

An alternative procedure for discussing the irreversibility of the
shock transition is to focus attention on the locus of end states,
called the "Rankine- Hugoniot curve," "Hugoniot," "shock
adiabat," or "dynamic adiabat." The last two terms are justified by
Eq. (4.61); when the end state is reached, the net heat transferred
to the element is A Q = 0. Though the process is adiabatic, it is not
isentropic beca:se of the action of irreversible forces, discussed in
the preceding paragraphs.

To see that entropy increases in the shock process, set p,, =p to
denote a fluid and set A Q = 0 in Eq. (4.61) to specify the end state
of the compression and differentiate:

2dE = dp(Vo - V) - (p + po)dV (4.62)

This gives the relation among dE, dV, and dp for two neighboring
points on the Rankine-Hugoniot curve. Each end state is
thermodynamic so

dE TdS - pdV
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TANGENZ , -

1C ? T _HR

V/I1" /0

Figure 4. Relative Slopes of Chord and Tangent. for a ShockcJ State, B,
Showing Increase of Entropy OU) I-goniot.

Combining this with Eq. (4.62) yields an expres. ;ion for dS:

TdS =(1/2) [dP( Vo -- V)] t (- )(V - (4.6 3)
(-dpId V)

'Iie-second term in brackets is the ratio of the slope of the chord.,
.4B, and the tangent line in Figure 4.4. If the R-H curve, ABC, is
concave upward, this ratio is clearly less than unity, so S increases
as shock pressure p increases. Under certain circumstances the B-U
curve can turn hack on itself, as shown by the dotted curve in
Figure 4.4 [4.41. Even in this anomalous situation dS/dP. remains
positive since dp/dV is now positive and the square bracket in Eq.
(41.63) > 1.

The relative positions of isothermal, isentropic and B-H curves
in the p-V plane are also of interest. Consider curves passing
through the initial state PO, 1V0. To. The isentrope for a "normal"
material always lies above the isotherm., T= To. To see this, let p=
p( V, T) and calculate the slopes of the two curves:

a/V. =(ap/aV)7 ., -f(a/3T)I(aT/WV) (4.64)

= (3P/aV)T - C,,(p1Tv (4.65)

(Wav - (OP/a7J ) + (T/Cj,)(3P/aT), 2 (4.66)
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In going from Eq. (4.64) to Eq. (4.65) the Maxwell relation
(a T/ V)s = -:(aP/aS)v has been used, along with the identity

(3l3~v=-(3p/a7h,(aT/aS)v = T(ap/aT)v/Cv. Both (ap/a'V)'r
and (ap/8 V),q are negative for stability. T and Cv, are positive,
therefore the slope of the isenfrope is always greater in magnitude
than'that of the isotherm and the former lies above the latter for
V< V0.

Similarly, we calculate the slope of the Hugoniot:

dp/dV = (pjaV) + (ap/aS)v(dS~dV) (4.67)

From Eq. (4.63) it is evident that dS/dV has the sign of dp~dV.
Then' if dp/d V< 0, (- dp/d V) > - fap/a V) and the Hugoniot lies
above the isentrope. If dp/dV > 0, the difference is amplified.

4.3b Shock Compression in Solids

Formally the analysis leading to Eq. (4.63) for entropy changes
on the Hugoniot applies to solids as well as to fluids if p,, replaces p
and -uniaxial strain is maintained. However special consideration k;
required for solids lcecause of the irreversibility of Static
compression and the existence of multiple shocks. The latter
question will be considered first.

The existence o" a cusp in the c-aive of uniaxial compression, as
at point A in Figuie 4.2, implies the possibility tha~t a single shock
to the final state, say B, may break into two shocks. [4.5, 4.61. The

-ov epodpV* do)

-s6YEF or H'r-l'$ 4/

CL//STA IC AD/A BAT

Figure 4.5. Quasiztatic Process Equivalent to Incrementing the 1lugoniot. AP.
x13P/aV).diabaticdV- .'\PQ(a/QdQ
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practical criterion for determining whether or not this occurs is to
draw a straight line from the initial state, 0, through the cusp, A,
and on to intersection with the Hugoniot, F, (For the purposes of
this discussion we suppose that OABF in Figure 4.2 represents the
Hugoniot.) If the final state, B, lies below the intersection, F, two
shocks will be formed. The first, usually called the "elastic
precursor'" has amplitude p,, A; the second, called the "plastic
wave," has final amplitude p," and travels more slowly than the
first. If the final amplitude lies above F, a single shock is stable.
Further discussion on the formulation of two shock waves can be
found in Chapter 3.

It is clear from review of the permanent regime analysis leading
to Eqs. (4.60) and (4.61) that those two equations do not apply
when p3 < pf since a permanent regime no longer exists. We can,
however, treat the elastic precursor and the plastic shock separately.
Then there are two Rayleigh lines, Eq. (4.60), and two
Rankine-Hugoniot equations, Eq. (4.61):

For the precursor: Py, - Po = M, (Vo - l') (4.68)

EA -Eo = (1i 2 )(pA + po)(Vo VA) (4.69)

2A P.,A - P0 )/(Vo - VA) (4.70)A =M A V
For the plastic shock: B - = A( - V) (4.71)

EB - EA = (1/2)(P," + p.A)(VA - VB) (4.72)

mA = (p p.A )/(VA - V) (4.73)

If compression in the elastic precursor is indeed linearly elastic,
the Rayleigh line, OA, is an i'entrope and the state A lies on the
isentrope through 0. Then all dissipation takes place in the plastic
shock. The energy at A, given by Eq. (4.69) is totally elastic,
composed of compressional and of deformational energy;

EA = Eo + (pA/l)(Vo - VA)( 2 -,A/3)

= + (pA /2)(Vo VA)(1 + RD) (4.74)

where Po has been neglected with respect to rA, p, A = PA
4TA /3, RD = -4TA ! 3 PA, and - A Y/2. As indicated in § 4.2, RD
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cannot, in general, be neglected in this case. The shock velocity in

this case is the elastic velocity:
D 2 = (K + 4Ui3 V0 - marVo2  (4.75)

In calculating entropy changes in the plastic shock we write in
place of Eq. (4.62):

dE = 2dp,(VA -- V) . + pA. )dV (4.76)
22

The first law relates the change in energy, al, to a

thermodynamic process, in this case

dE dQ - p.dV (4.77)

where dQ is the heat which must be added to unit mass, following

the adiabatic compression, -p, dV, to bring the state point of the

element up to the energy, E + dE. This is illustrated in Figure 4.5:

quasistatic adiabatic compression c:ir'ies the state point from 1 to

2; addition of heat carries it isochorically from 2 to 3. Equating dQ

of Eq. (4.77) to TdSQ and combining with Eq. (4.76) we have

TdSQ1 Pn- PXA)/(VA -- . (478)

(2 . 11]Vdp. d V)

which gives the entropy change corresponding to the addition of

heat dQ. The total entropy change is this value plus the entropy of

quasistatic adiabatic compression, Eq. (4.55):

TdS TdSQ + (4/3)r(dV-- Vdr/l) (4.79)

with dSQ given by Eq. (4.78).
When p, lies above F in Figure 4.2, a single shock is again stable

and

TdSQ (1I2U[dp' , V v) d.. . d 1 I i) (4. 8 0 )
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The ratio of dS0 t~o total entropy change dS is shown in the
following table for different pressures.

Al Cu

Y,kb p,kb dSQ/'dS Ykb p,kb dSQ/dS

7.2 90 .75 5.1 166 .88
17.4 202 .87 12.8 413 .95
23.0 375 .92 25.3 816 .97

Those examples indicate that at low and intermediate shock
pressures, where total entropy changes are small, the plastic effect is
an important fraction of the total; whe-areas at high pressures,
where total entropy change is significant, the contribution from
lplastic flow may be neglected. The distinction between adiabat and
isentrope is thus important only for small compression. it should be
noted that the entropy of adiabatic compression may become very
large in the flow following a shock in cylindrical or spherical
geometry.

For high pressures with a single stable shock the jump
conditions become:

P m 2 (10 -- V)

E , (1/1(p., + p0 )(V o -V I.

The increase in energy can ue decomposed into compression and

defor:nation changes; assuming Po = 0,

E -- l-E -- (p/2)(V0 -- V) + (Yi3)(Vo -- V)

The ratio of deformation to compression energy is 2Y/3p, which
can be neglected when p is sufficiently large. This again verifies the
earlier assertion that deformation energy can be neglected in the
thermrodynarmnii, ( of shr'cks.

4.4 Factors Affecting the Equation of State

We discussed in § 4.1 the thermodynamic potentials, their
dependence on the variables of thermodynamics, and the
representation of various thermodynamic quantities as their
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de: ivativcz,. The equation of state problem vould be v.%y simple if
these po'Ctntials were all set down some place in complete
gen-,-eiY,.y. Unfortunately they are not. We must construct them or
relion,3 among their derivatives from various thermal and
mucharical measurements, from theoretical models of solids, and
from considerations of thermodynamic consistency. Some idea of
the problems involved in constructing an equation of state can be
obtained from a recent article by Royce and the references therein
[4.7]. Here we shall briefly touch on some of the physical
considerations involved.

Solids are broadly classed as crystalline or amorphous. In either
case they consist of atoms or molecules bound to their neighbors by
variois electrical and quantum mechanical forces. The microscopic
distinction between crystalline and amorphous materials lies
principally in the degree of long range order which exists in the
molecular arrangement. An ideal crystal has all atoms arranged on
periodically repeated lattice cites, but every real crystal suffers from
defects which disturb the periodicity. These include atomic
vibrations, atoms missing from lattice sites, atoms located
interstitially betw'een sites, foreign atoms, and assemblies of these
point defects. Multi-atomic solids may consist of atoms tightly
bound within molecules which are in turn loosely bound to one
another. The relative values of these binding energies strongly affect
the physical properties. The atoms themselves consist of positively
charged massive n..lei and of negatively charged electrons of slight
mass. Ehctron corfigtrations within the atom are disturbed by the
proximity of other atoms, and this disturbance provides the force
which binds atoms into a solid. On the basis of these forces solids
are commonly atssigned to four csses:

1. Ionic solids
2. van der Waals solids
3. Valency solids
.1. Metals

1. The atoms of an ionic s,.,lid exchange one or more electrons
when they are bound together; tle Mlectrons given up by one type
of atom adhere to another so that the former become positively
charged ions, the latter are negatively charged. The cohesive force
which hinds the solid is then due primarily to electrostatic forces
acting among the ions. The alkali halides are typical of ionic solids,
e.g., sodium chloride, composed of Na' and C1- ions. These
materials normally have large binding energies.
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2. The atoms of a van der Waals solid are neutral, but once
apin the forces are primarily electrical in nature, being determined
mainly by dipoles which neutral atoms induce in one aMother when
hrought close together. Solid rare gases are good examples of solids
)ound by these forces, and many organic solids consist of neutral

molectules hcund together by van der Waals forces. The cohesive
energy of a van der Waals solid is quite small and it normally has a
low melting point.

3. Valency solids are held together by shared electrons. They
differ from the other three types of solids inasmuch as the bonds
become "saturated-" i.e., the attractive force of a given atom is
limited to a fixed, small number of neighbors. For example an
oxygen atom combined with a hydrogen atom will attract a second
hydrogen atom, but not a third. This situation is distinctly different
from that existing in ionic solids wberein the electrostatic force due
to on~e ion acts on all the others. Both electron sharing and
saturation, which results from the exclusion principle, are quantum
mechanical effects which cannot be readily explained by classical
anaugtOc,', 4,91. The covalent bond may be very strong; diamond
and grmnanium are materials held togethcx by covalent bonds.

-1. In metals the sharing of valence electrons extends to the
entire crystal. This means that electron energy levels depend upon
the breadth of the potential in which the electrons are confined,
i.e.. the dimension of the entire crystal, and are strongly depressed
relative to atomic levels from which they derive. It is this depression
of electron energy levels which provides the binding energy for
metals. In this case the bonds are not, saturated. The alkali metals,
Na, K. etc. typify this mple model and other metals are more or
less similar. Metals are qualitatively different from other solids
inasmuch as the binding forces are in no sense localized nor can
Lhey he derived fron a potential in a simple way. In fact, even the
Kittice vibration,; are not independent of the valence electrons since
there is a continuous exchange of energy between the two. In spite
of this theoretical difficulty it turns out to be possible to describe
metals approximately, with reaso-nable accuracy, by assuming them
to consist of ions, interacting in prescribed ways, confined to the
same container as a gas of valence electrons. It is especially
im 4rtan that this is so because all solids, under the influence of
pres .ure, tend to share electrons and to approach metallic states.

It is clear from these few remarks about characteristic features
of sol Is that they are very complicated and that, consequently, any
theory which pretends to describe the equation of state of a solid
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will be quite approximate, if simple, or very complicated if precise.
It turns out., as such things often do, that reasonable
approximations to equations of state can be derived if a simple
model is combined with experimental data to produce a kind of
semi-empirical equation of state. To this end we start, out by
assuming for small compressions that the energy of any solid can be
written as the sum of potential and kinetic energies. The potential
energy, called the "energy of cold compression" includes the
intera ;t-on energy among ions or neutral molecules, the energy of
"zero-point osciliations," aind, in a metal, the enrgy of
compression cf the gas of valence electrons. It turns out that such a
model can be used with some success for densities up to about
twice normal density, and this is what w. mean hy small
compression in this context. The kinetic energy is princip!ally the
energy of lattice vibration, minus the zero-point energy, augmented
by the energy of thermal excitation of electrons at sufficiently high
temperature. In a real solid the energy of .old comp-ession ;s
anharrnonic, i.e., no a parabolic function of atomic separation.
therefore, vibrations of the lattice are not harrnoidc. Correct
treatment of these anharmonic vibrations leads to grave
mathematical difficulties j,1.1I]. These can be avoided by assuming
that frequencies of vibration ,re functions of atomic spacing, i.e.,
density, but that nnmplitudes of vibration are sufficiently small th'at
they can be " reated as harmonic at each density. This is known as
the "quasihiarnonic approximation" and is reasonably a.,c-urate
except at high temperatures.

For large compressions or at very high temperature;, the
excitation of electrons is great enough that their distribution in the
solid can be treated statistically. Then equations of state can bo
ge:ncrated based on Thomas-Fermi (TF) or Thomas-Ferm i-Dirac
(TD) approximations to charge distribution and quantum behavior
14.11). The regions of validity for such equations do not normally
extend down to pressures generated in shock wave experiments, so
they are not considered further here.

The quasiharmonic approximation enables us to reduce the
lattice vibration p-oblem to that of the vibrations of a set of
independet harmonic oscillators with frequencies L'.. For a lattice

of N atoms there are 3N such oscillators so 1 = 1, .... 3N. Any
single oscillator has energy states e = (n1+1/2)hvj, where h is
Planck's constant and nj is an integer running from zero to infinity.
This collection of 3N oscillators has energy states

E' V. T,,,,. ... Fl.(V) + h (4.81)
o )=1
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where Ej, is the energy of cold compression and the zero point
energy, hvj/2, has been absorbed in Ek.

In the formalism of statistical mechanics, the energy states given
in Eq. (4.81) determine the partition function,

CIO 00

Q~ P exp(-- 41 n.., /kT)

The Helmholtz free energy is formed by taking the logarithm of Q
and adding the free cnergy of the electron gas 14.121:

A =-kT~nQ +

=Ek (V) + k 7' Inlul exp( -- lv/kT)]
j. 1

V-) " 2~T2  (4.82)

where a~ is a coefficient best determined from specific heat at )ow
temperature, rather than from electron theory, since the valence
e ectrons do not, in fact, comprise a perfectly free electron gas.

In the quasiharmonic approximation, discussed above, it is
assumed that the normal mode frequencies, vj,, are functions of the
lattice spacing or material density. We define for each frequency a
"Griineisen parameter,"

yE-d Inz/dlnV (4.83)

Then the derivatives of Eq. (4.82) can he taken to yield p and S:

p -(4~). - dE,./dV ± IV

+ (2/3)oxV"13 T 2  (4.84)

S =-(a/~aT)v 1  kE Intl exp(hix/k1T1

+ IT + 2c*V 13 T (4.85)pi
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where e, is the mean thermal energy of a single normal mode of
vibration at temperature T:

=j htr,[exp(hvj/kT) 1)

The sums in Eqs. (4.82), (4.84), (4.85) cannot be evaluated
unless the distribution of normal mode frequencies. Pj, is known,
These distributions are quite complicated and difficult to
determine, [4.13] but a useful, simple mxodel is due to P. Debye.
Vibrational modes ave assumed to be those of an elastic solid; the
number of modes in the frequency interval (v, v+dv) is then
proportional to i. d. In the usual form of the theory, thi
assumption leads to the following equations for.A, p, S, E: [14]

A Ek,(V) + NkTJ3 Intl - exp(- O/T)

-. D~e/T)~ - aV2 /3T(4,&

E =4( V) + MekTD (0-T) ±cV 1 T2  (4.87)

P Pk(V) + 3NkzTP(V)D(0/T)/V d- (2,/3)aV-"3 T 2  (4.88)

S =4NkzD(EOT) - 3Nkzln[1 exp(- Ef)1~ ± 2a 121 T(.9

where D(9/ T) is the Debye function,

DWx (31x )Y3[Cxp(y) - lCV

D'(x) dD/dx
p, (V) -dE, Id V

F(VM y(V) for allj

-- dine 1dlnV (4.90)

E) Dehye temperature (61Tr 2N/ V) 1 13 (h/k) <c-3>-'/3  (4.91)

=o highest resonant frequency
=(113)(11c' ± 2/C3)

cc=dilatational wave velocity

c= shear wave velocity
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q.(41.88) is called the "Mie-Griineisen equation of state. The
j 's ol* Eq. (4.83) clearly play a key role in this equation, since they

ooterimne the thermal pressure of lattice vibration. In Eq. (4.88), it
has beeni assumed that the -yj's are all equal1 to 1'. Royce 14.71 has
(1l;i:u55d this at some length and shows that wssumption of this

eqaiyis equivalent to the assumption that ii FDT- 0, and that
this v'onld-tjol holds at T1' 00 k and for T> 0. Moreover, under
the-Se conlditionls the P' defined by Eq.. (4.83) is also identical to the
thermi-odynamic F:

Ft, V(i3p/;)E,,jb)k, (V/C(.,) (arp/aT)V~ (41.92)

prov idedI electronic contributiorns zre subtracted out.
11a."tine has shown I 4.Sl 1 that a logic:ally miore consisteint

formulation of the Delhye theory involves separate consideration of
loZiudna and transverse modes of vibration, leading to two

distinct Debye temperatures, one for each type of vibration, aAd
two G:rUi(eisen parameters, P, and V t. This in turn appears to give
improved vaIlues for thermial pressures. Royce [4.71 has carried this
ana1lysis further, showing that thlere are three sigifficant F's, the
tIhircl corresponding to vibrations of pure volume expansion, I'v.
Sivae thle N,' aire equal to [Q or Prt principally at high temperatures,
T1 > 0,* the theoremn of ea *uipartition of ei~ergy applies and the
energties of shear and longitudinal modes of vibration become equal.
Then die aplpropriate value of I' is

r= (1-v + 21-t) /3

EuIV04 -- 5/031 -,)2)(1 20)1

whe1Cre di/d V and v = Poisson's ratio. The difficulty in applying
this f'ormlula is that 1) is unknown.

Various miodels have been developeld to relate I' to pI ( V),
corresporiiig to different assumptions about. '. Three of these can
he summarized in the following formula, obtained fromn the
dehod ticas of Eqs. ( 1.90) and (4.91):

l'v.>- (2 t2)/3 - (1/-) dlnY./dlnV (4.93)

Id (. >)/V (4.94)

where ti 0 for the Slater relation, 14.21 n~ for the
Dti~il-Nlc~oaldrelation, i 4.91 and n =2 and for a free-volunme
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relation .[4.151. The first of these corresponds to the assumption
that i5  0, the other two correspond to other assumptions about tf
14.71 Royce notes that, at p = 0, the Dugdale-MacDonzdd r agrees
best with thermodynamic values for common metals, whereas the
free-volume value (n = 2) is more appropriate for alkali metals and
alkali halides. By expanding rF in the ration of pk(V) to
-Vdpj, IdV, he shows that tdl three values tend to converge for large
compressions [4.71.

In summary it appears that P is the most uncertain element in
this theory of the equation of state, and that neither theory nor
experimental measurements offer much help in choosing
appropriate forms for its variation, except it very special cases.
Fortunately in shock wave thermodynandcs, as Royce has
remarked, 'thenumerical errors assodated with this uncertainty in P
may not be large. The greatest uncertainty in P is at low pressure
where the difference between Pk (V) and the Hugonilot are small. At
high pressures, where these differences are large, the various
theories of I' tend to converge.

There are serious efforts in progress to avoid some of the
limitations of the Mie-Griineisen-Debye theory and to establish
reliable equations of state for special materials from first principles.
These efforts are largely dependent on extensive use of high speed
computing machines. They are exemplified by Ross's work on are
gas solids, 14.191 based on Lennard-Jones-Devonshire cell theory
and pairwise potentials, Monte Carlo calculations of elastic
constants by Hoover and others [4.20] for argon atoms on a cubic
lattice, and Hartree-Fock calculations by Liberman [4.21.1. These
kinds of calculations are tedious, time-consuming and expensive,
but they seem to represent the next rational step beyond the simple
quasiharmonic theory, and they have already produced some
pleasing successes in understanding of experimental observations.

4.5 Calculation of Hugoniot from Equation of State

There are two important problems involving the Hugoniot p-V
curve and the equation of state: (i) given the equation of state,
calculate the 1-lugoniot; (ii) given the Hugoniot, infer an equation of
state. The first of these is a completely defined problem, though
one must take care to not become lost in an algebraic jungle and to
search for instabilities of shock compression. The second is an
indeterminate problem which can be resolved o;- by assuming
something about the form of the equation of state. We consider
problem (i) first.
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In a normal fluid qjhoc.k, cornpreptol fromi thu jhICInI j, thq
rtial ttt takes place In a tingle Jumrp. In a solid material where
fracture or flow occurs or when a phase change occurs, a single
shock transition may not be stable; it may break uip into two or
more smaller shocks. The possibility of this may he inferred from
the discussion of entropy associated with Figure 4.1 or from a
simple mechanical argument [4.161. There are seve-:ral ways to state
the criterion of shock instability. A useful way for computations is
to say that if a stable i-ugoniot curve has been constructed up to a
pressure PA , volume VA, and if the isentrope passing through
(PA~, VA) is steeper than the Rayleigh line to A, then a single shock
will be stable to a state (PA +AA, VA +A V); if the isentrope -,less
steep than the Rayleigh line, then A is a Etarting point for a n!iv
shock wave.

h~ the simplest case an equation of state is given explicitly ii
the form E --E(p, V). Then E is eliminated between the equation of
state and the Rankine-Hugoniot equation, Eq. (4.61), to yield the
Hugonict (p. V) relation. Each point of this rela-tion can, be checked
for instability by comparing the slope of the isentrope wvith the
Rayleigrh \ine. Points of instability will appcar as cusps In the (p, V)
locus or &sregions of negative curvature.

If the iquation of state, is not given in such a simple form, the
Hugoniot ii easily formed by direct numerical integration. Suppose,
for examplf, that the Hielmholtz free energy is known and therefore
p(V,T), S(1\T) are given. Equating the thermodynamic expression
for dE with the differential of the Rankine-Hugoniot equation, Eq.
(4.62), yields a relaf on among dp, dT, and dV:

CvdT + [TMp/3T)t, - 14p -P,)]dV = '(Vo - V)dP (4.95)

The equation of state, p(VTn can be differentiated and solved for
dT:

dT =(OT13p),dp + (aT,'V),dV (4.96)

Between Eqs. (4.95) and (4.96) dT, dp, or dV can be eliminated,
Elimninating dT yields the differential equation for the Hlugoniot
(p, V7) curve:

(IV (, I 1) .( Tp). ) (4))
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For temperature variations along the Hugoniot, dV or dp can be

eliminated between Eqs. (4.48) and (4.49).

dp 2 - (p po)(V/IaT)p + T(Vap/T)(aV/aT)p (498)
dT (Vo - V) + (P -' pO)(aV/ap)T + T(3V/T)p

dV C-- -- -- V)(pl9T)9)

dT 2(VO V)(aPl/V)T + (P PO) - T(api8T)v

For the assurmed form of the equation of state the various
derivatives in Eqs. (4.97) - (4.99) can be calculated as follows:

(3 T1I V)p - (fPf V)T/(aP/a T)V

(W ia T)p = /(O TI Vp
(aTlap)v =/(Tp)aT)v

(aV/P)T = l,(aplaV)T

C1 from Eq. (4.14)

There are various ways in which the above differential equations
can be used. One is to increment p independently and calculate dV
and dT from Eqs. (4.97) and (4.98) respectively. Another is to
increment dV or dT independently, calculate dT or dV from Eq.
(4.99) and obtain p from the equation of state, p = p(V, T). At each
point in the integration the Hugoniot curve can be checked for
stability by comparing the isentropic slope with the Rayleigh line.
If a point of instability is found at, say, pi, Vj, Ti, the Hugoniot is
"recentered" at that point and the integration is continued. That is,
Eq. (4.61) is replaced by

E =(p + pi)(Vi- V1)

and the procedure leading to Eqs. (4.97) -- (4.99) is repeated. This
has the effect of replacing Po and Vo in these equations by pi and
Vi. Now the test for stability becomes dual. If

- (ap/aV)s < (p - p1)/(Vi - V) (4.100)
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the Hugoniot is again recentered. This means that the total
compression phase has broken into three shocks. If Eq. (4.100) is
false but

- (p/a V)s > (p -po)/(Vo - V

a single shock is again stable and pl, V are replaced by p0, VO in
Eqs. (4.97) - (4.99).

4.6 Reduction of Hugoniot Data

Suppose that a Hugoniot (p,17) curve has been established
experimentally, and for simplicity we assume that no phase changes
occur. We suppose furthermore that p, has been reduced to p by
the additic-, of 4r/3 and that the resulting curve is concave upward.
At each point on this curve we have values of p, V, E. These data
define a curve on a three-dimensional surface in p, V, E space,
which is an equation of state of the substance. The problem is:
given the curve, construct the surface. Clearly additional
information is required. What is usually done is to assume a form
for the equation of state, usually the Mie-Griineisen equation, Eq.
(4.88), with any electronic contributions subtracted off. The
resulting equation is then solved for I, and p and E are specified as
being points on the Hugoniot curve:

F = V( 1)1 - P)/(El - Ek) (4.101)

Then a value of n is assumed for Eq. (4.93) and P is thus eliminated
from Eq. (4.101). The resulting equation is a second order
differential-integral equation for Pk which can be transformed to a
third order equation for Ek (V), with V as independent variable, by
making the substitution p,. =-dEk/dV. This equation can be
numerically integrated with initial values chosen in various ways. A
convenient starting point is V= Vo, the value at the foot of the
Hugoniot, and T = 0. Denoting values at this point by the subscript
"00", mid those at the foot of the Hugoniot by subscript "0", we
have for starting values:

E,;(Vo) = Eoo 0- 0, (dEkidV)o0  Poo l'oEolVo

Eo = 3RToD(eo /To), (d2Eh/dVho -- (dpt/d V)OO KJ /Vo
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wvhore K' is i othermal bulk modulus, P. is computed
tlwmo(Ix'iur iail, ad HO Supplies the h est fit to Lhe specific, heat

CUr've for T 0~), The coefficient a in Eq. (,L8G) is best obtair~d
fromn specific heat data at low temperature. Given Ithis and F,( V),
the 1 e~lhltz function is then completely known and all other
thermcxdynainic parameter; can be derived. Examples of equations
of state obt-ained in this way can he found in references 14.16' and
Iz. 17 1.

The above procedure, wvhile effective and uIseful, clearly has
soi-e drawbaks. In the first place it cortains some logical
inconsistenci-.. inasmuch -is the relations for I' -are ex trap%)lated
right through to 0'"K. even though they arie demonstrably
inadeqUate. Consequently it is quite possi-ble that Ei,,( V) derived by
the above procedure differs- significantly from, the true value of the
00' isotherm. Secondly, the electronic correction in Eq. (4.136)
re.,resents t.he first termi in an expansion in powers of T. At hu,,gh
sh~ock compressions. say V/V 0, 1/2, shock temperature can easily
be the order of several thousand degrees, at which higher ordter
terms maiy beQ irnpoiant. Moreover at high pressures aLnd
temnperatu res the model of a free electron gas with a fixed numbe~r
of electrons becomnes icss attractive. Finally, the above procedure
igi ici~s otlier quiin.of stat, e measurements; e.g. thermal

exv.:'s oeficieots, soe(:ific heats, sound velocities, isothermal
comprsso meaureents. etc. One would like to use al suCh data

and weave them into a looically consistent framework which would
provide a best Tit to the dlata andl would also extend into regions of
,I" v, T1space inacces ible to experiments.

Andrews 14.181 has attempted such a program for iron, which

tu rns out to be complicated byteiantcenergy, Nith
consjderabie success. Ile has shown that determination of A(1V. T
can he redceLC(d to determination of five functions, each of a single
variable, alnd of two constan.s,. Of these, two functions; pertain to
the magnetic properties of iron, an,,' one constant, a of Eq. (4.86),
pertains t~o the electronic correction for metals. The others are

p~ertinent to any solid arnd are equivalent to the cold bulk modulus
a:; a function of V, specific heat as a function of 0/77 '(-( IT), or its
equivalent 1,(V) plus a constant, 0%, and a reference volume. The
speCif'ic lcat function was found to be- given satisfactorily by Dehye
theory, though an empirical form could be used. The other
functions were determined by adiabatic sound velocity at standardl
con(litions and its pres-sure derivative, specific heat in the interval
50') K - 250 K, tlwernil exp~ansivity, the temperature coefficient of
soundl velocity, u-Il thc highi pressure Ilugoniot. The result is quite
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satisfying. There are some uncertainties in some coefficients,
reflecting uncertainties in experimental measurements, but no
thermodynamic relations are violated, one's intuition is not violated
insofar as limiting behavior is , ,ncerned, and one is not beset by
agonies of doubt over the choice of formulas for 1'. As a matter of
fact, Andrew's results tend to support Royce's remarks about the
insensitivity of the equation of state to the formula for F(§ 4.4),
since substantial variations in the volume derivative of r have but a
small effect on the agreement between calculated and observed
quantities, except at very high pressure Hugoniot points.

REFERENCES

4.1 Callen, H. B., "Thermodynamics", Wiley and Sons, 1960.

4.2 Slater, J. C., "Introduction to Chemical Physics," McGraw-Hill, 1939.

4.3 deGroot, S. R. and Mazur, P., "Grundlagen der Thermodynamik
Irreversibler Progesse," B. . Hochschaltaschenbucher, Mannheim, 1969,
p. 27.

4.4 Kormer, S. B., Funtikov, A. I., Urlin, V. D., Kolesnikova, A. N.,
"Dynamic Compression of Porous Metals Rnd the Equation of State With
Variable Specific Heat at High Temperatures," So'. Phys.-JETP, Vol.
15, p. 477, 1962.

4.5 Duvali, G. E., Les Ondes de Detonation, Editions du CNRS, 15, Quai
Anatole.France-Paris, (VII), 19,62, p. 337 ff.

4.6 Rice, M. H., McQueen, R. G., Walsh, J. M., Solid State Physics, Vol. 6,
pp. 1 ff, Academic Press, 1.'58, F. Seitz and 1. Turnbull, Eds.

4.7 Royce, E. B., "High Pressure Eq. of State From Shock Wave Data,"
Course XLVII, "Physics of High Energy Density," School of Physics,
Enrico Fermi, Varenna, Italy, July 14-26, 1969. Academic Press, 1971.
p. 80

4.8 Pastine, D. J., "Formulation of the Gruneisen Parameter on Monoatomic
Cubic Crystils," Phys. Rev., 138, #3A, A767, 1965.

4.9 Dugdale, J. S. and MacDonald, D., "The Thermal Expansion of Solids,"
Phys. Rev., 89, 832, 1953.

4.10 Liebfried, G. and Ludwig, L., Solid State Physics, Vol. 12, pp. 330 ff,
Academic Press, 1961. F. Seitz and 0. Turnbull, Eds.



S1;OCI( WAVES '4ND EQUATIONS OF STATE 121

4'.11 March, N. Ti,, -Trhe Thomas Fermi Approximation in Quantum
* Mechanics," Advanced in Physics, 6, 1, 1957.

41.12 Band, W., "Quantumn Statistics," Van Nostrand, 1955.

4.13 Liobfried, G. and Ludwig, L., op. cit.

4.14 H1erring, Conyers, ",Fuindamental Formulas of Physics," 0. H. Mangel,

* Ed. Chapter 25, p. 604, Prentic -Ha1l, 1955.

4.15 Zubarev, V. N. and Vaschei-.ko, V. Ya., "Concerning the Gruneisen
Constants," Sev. Phys. -Solid State, 5, p. 653, 1963,

4.16 Rice, McQueen, and Walsh, Op. cit.

4.17 McQueen, R. G. and Marsh, S. P., "Equation of State for Nineteen
Metallic Elements From Shock-Wilve Measurements to Two Megabars," J.
Appi. Phys., Vol. 31, N 7, pp. 1253-1 269, July 1960.

4.18 Andrews, Dudley Jo, "Equation of State of the Alpha and Epsilon Phases
of Iron," J, Phys. Chern. Solids, 34, No. 5, p.825, 1973.

4.19 Ross, Marvin, "Shock Compression of Argon and Xenon. TV. Conversion
of Xenon to a Mvetal-Like State," Phys. Rev. 171, No. 3, pp. 777-784,
July 15, 1968.

4.20 lMhover, WV. G., Holt, A. C., and Squire, D. t., "Adiabatic Elastic
Constants for Argon Theory and Monte Carlo Calculations," Physica,
Vol. 44, pp. 437-443, 1969.

4.21 Liberman, D. A., "Exchange Potential for Electrons in Atoms anid
Solids," Phys. Rev. 171, No. 1, pp. 1-3, Jluly 5, 1968.



123

CHAPTER 5

NONLINEAR CONS TITUTIVE EQUAToIOS

W. HERRMANN
J.'VW. NUNZIATO

iANDIA LABIORATORIES
ALBUQUERQUE, NEWIMXCO

List of Symbols

a Amplitude vector

P External body force vector

d Displaccment vector

Z Infinitesimal strain tensor

g Temperature gradient vector

h Hiaat flux vector

*n Unit vector

n Normal vector

P Hydrostatic pressure

q External heat source strength

r Infinitesimal rotation tensor

s Elapsed time parameter

t ~Timle

ii Particle velocity vector

v Volume

x Spatial coordinate vector

y Spatial dliscontinuity piosition

A Aniplitticie vector

A Hlelmholtz free energy

Preceding page blank
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B Elasticitv tensor

C Elasticity tensor

I) Stretching tensor, Elasticity tensor

E Green's strain tensor

Internal energy

F Deformation gradient tensor

G Rela.ation function

G GiA,)s free energy, Relaxation function

H Displacement gradient tensor

H Enthalpy

J Jacobian

K Compliance tensor

L Velocity gradient

L Secant modulus

M Tangent modulus

N Normal vector

N Second order modulus

Q Spatial acoustic tensor, Arbitrary rotation tensor

R Rotation tensor

S Intrinsic acoustic ten.sor

S Entropy

T Temperature

U rtiigiht stretch tensor

U Wave velocity

V Left stretch tnsc r

V Intrinsic wave speed

W Spin tensor

X Material coordinate vector

Y Material discontinuity position

Thermal expansion tensor

a Attenuation coefficient

ly Engineering shear strain
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Internal dissipation
E Engitiering normal strain

Curvature parameter

r7 Curvature parameter

K Thermal conductivity tensor

Lame' constant

p Lame' constant

Convected coordinate

p Mass density

U Cauchy stress tensor

T Thermal history, time parameter

OT Stress-temperature tensor

Stress-temperatu7e coefficient

0S Stress-entropy tensor

Ps Stress-entropy coefficient

NE Specific heat at constant strain

NU Specific heat at constant stress

W0 Frequency

A Displacement vector

11 Relaxation function tensor

I2 Second Piola-Kirchhoff stress tensor

X Mechanical History
p Griineisen tensor

A Relaxation spectrum tensor

1 Relaxation function tensor

Note: The notation of continuum mechanics as used in this chapter is extremely complex.
We will deviate from the conventional vector notation for this chapter i.e., a vector
representing a coordinate position will be denoted X and not X as elsewhere in the text.
The authors' manuscript notation will be retained thr ;ughout.
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1. Introduction

Materials show a rich variety of behavior in their response to
dynamic deformations. A few types of behavior have long been
categorized, and represented by simple mathematical idealizations:
linear elastic behavior, linear viscoelastic behavior, infinitesimal
elastic-perfectly plastic behavior, hydro-dynamic (non-viscous
compressible fluid) behavior, etc. Theories based on these
descriptions are well-developed, and the principal theoretical
difficulties remaining concern obtaining solutions to specific initial
and boundary value problems. Considering the complex
microstructural processes accompanying deformation in most solid
materials, it is surprising that such extremely simple descriptions
work as well as they do. Many problems involving wave propagation
at very low stress amplitudes are described very well by linear
elastic or viscoelastic theories. Considerable success has been
achieved by representing some structural metals, at pressures up to
an order of magnitude above their yield points, by an infinitesimal
elastic-perfectly plastic model. The representation of the response
of solid materials at extremely high pressures by a hydrodynamic
theory has been very successful, and several important problems
concerning explosions, implosions, and impacts have been treated
successfully with such a description.

There is ample evidence that the above "classical" theories are
inadequate to describe the behavior of many materials in an
intermediate stress range. In a recent review of stress wave
propagation in metals, Herrmann (1969) cites observations of
phenomena associated with elastic-plastic yielding at stresses of
several hundred kilobars. Strains associated with these pressures are
in excess of ten percent. Schuler (1970a, b) and others have
observed strongly nonlinear viscoelastic behavior in polymers at
stresses up to about 10 kilobars, with associated strains of the order
of ten percent. Stresses and strains of these magnitudes are very
commonly achieved in situations involving impacts and explosions.
These strains are certainly not within the realm of a linearized
infinitesimal strain theory. A properly invariant, nonlinear,
finite-strain kinematics is inescapable in problems of this type.

When only infinitesimal strains occur, accompanying
temperature or entropy changes are usually sufficiently small in
most problems so that it is unnecessary, to consider a coupled
thermodynamic theory, that is, one in which mechanical and
thermodynamic changes can influence each other. This is often not
true at larger strains, wheie a 2oupled thermodynamic theory is
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usually required.
Attempts to generalize infinitesimal linear theories by assuming

that their coefficients are variables, dependent on strain,
temperature, internal energy, etc. are fraught with many pitfalls. It
is difficult to avoid making contradictory or mutually exclusive
assumptions. It is frequently difficult to ensure that the resultant
theories do not violate kinematical compatibility reiaitions or
thermodynamical principles. A rational methodology for
construeting nonlinear constitutive equations is needed. Such a
methodology has emerged from studies in modern continuum
mechanics.

A number of broad classes of nonlinear constitutive equations
have been studied in some detail within the framework of modern
continuum mechanics; for example, firte elasticity and equations
of the fading memory type, the latter embracing ionlinear
viscoelasticity. Despite the fact that these classes are distinguished
only by very general constitutive assumptions, surprisingly specific
results may be deduced about their behavior. In particular the
propagation characteristics of various types ')f waves in materials
governed by these classes of constitutive equations have been the
subject of intensive study during the last few years.

There is obviously a great economy in a unified treatment of
broad classes of materials. The search for a particular set of
constitutive equations to fit the behavior of a given real material
may be narrowed at once by comparing the observed behavior of
the material with the predicted behavior of the known constitutive
classes. Moreover, once a specific set of constitutive equations is
found to describe the behavior of a real material, all of the
established properties of its class immediately are known to apply
without the necessity of establishing these properties over again for
the specific set at hand.

After a brief outline of the methodology of modern continuum
mechanics in Sect. 2 and some general material on wave
propagation in Sect. 3, some of the simpler classes of constitutive
equations are reviewed; nonlinear elasticity in Sect. 4,
'hermoelasticity in Sect. 5, rate-type viscosity in Sect. 6, and
nonlinear viscoelasticity in Sect. 7. For nese classes, the
constitutive assumptions and their consequences for the
propagation of waves have been reasonably well established.

The topics dealt with here by no means exhaust the constitutive
classes of interest in stress wave propagation. In particular, the very
important topics of plasticity, and of coupled thermo-plasticity are
not treated. At the present, the general formulation of such
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constitutive equations and the investigation of their consequences
rest, on less firm ground. They and others are currently the subject
of vigorous investigation, and a unified treatment here would be
premature.

Since work in wave proragation has progressed to a
consideration of problems in more than one space dimension,
equations will be intruduced in general three-dimensional form. In
order to do so concisely with proper observance of coordinate
invariance, direct tensor notation is employed, as used for example
by Martin and Mizel (1966). The notation is outlined in Appendix
1. As an aid to readers unfamiliar with direct notation, a number of
tensor operations are summarized there, together with their
equivalents in Cartesian indicial notation.

2. Formulation of Constitutive Equations

2.1 Motion; Mechanical History.

We are concerned with material bodies 11, which in the
continuum approach are considered to be smooth manifolds of
material particles characterized by continuous fields of mass,
energy, temperature, forces, etc. A motion of Aj is described by

x x(X, t) (5.1)

where the vector x represents the positions of material particles at
time t which are labelled with their positions X in some arbitrarily
chosen fixed reference configuration. The motion is assumed to be
smooth and continuously differentiable, except possibly on a finite
number of surfaces, lines or points representing boundaries,
interfaces, shock waves and other such discontinuities. The first.
putial derivatives of % are termed the deformation gradient tensor
F and the particle velocity vector u,defined by

F X ~(XY t) (5.2)

The motion (5.1) can also be considered as a transformation
from X to x at. a particular time t. The Jacobian J of this
transformation is

J detF' (5.3)
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The Jacobian relates the volume of -in element in the current
configuration to that in the reference configuration. If mass is
defined ras an invariant measure of material, with a mass density p,
then conservation of mass implies that

J = PR/P (5.4)

where pR is the mass density in the reference configuration, c.f.,
(A34). To insure that a finite region of material never goes to zero,
or becomes infinite the concept that mass cannot be
destroyed or created) and that a region of material never l-ecomes
everted (so that mass never becomcs negative), it is assumed that X
is such that

0 < J < (5.5)

Note that (5.5) implies that (5.1) is uniquely invertible in X.
Equation (5.1) embodies information regarding the positicn of

every material particle in the body : for all timos. We will be
concerned with histories involving only the present and past times,
and thus denote the mechanical history of 'A up to the time t by

x x(X,t-s) 0 < s < o (5.6)

The parameter s is known as the elapsed time. Note that the history
embodies information for all past time to t =

2.2 Determinism; Simple Materias

In certain cases, thermal, magnetic, electrical and other
processes do not affect the mechanical behavior. In this special case,
the basic concept involved in writing down a constitutive equation
is that the response of the material at time t is completely
predictable if the mechanical history up to and including the time t
is known. This embodies the concept of determinism. Thus, one
would argue that the Cauchy stress tensor a at a given material
particle X and time t should be a functional of the mechanical
history of the boO

t = "t × X) (5.7)
Th f

The functional t is to be understood as a rule of correspondence
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ascribing a single set, of values to the tensor components of for a
gival hsto .- Y in which s assumes all values zero and greater, and
X runs ovr aff values corresponding to all the material particles in
the body '.

Heterogeneous bodies are accommodated by making f depend
explicitly un X, ie., different material particles may respond
differentlv to identical histo ies. If the body ) is homogeneous, all
materia: particles in 'J would respond identically to identical
histories. With a suitable choice of homogeneous reference
con rigrt /t1on, X could be dropped as an inde)endent variable. We
will hencuorth not, carry X as an explicit independent variable,
recognizing that it may be reinserted to handle h-terogeneous
bodies.

The constitu tiv,, equation (5.7) is mu,, more general than is
needed for most purposes. In most cases it may be argued that the
response of a given material particle depends only oi the local
history at that particle, and not on motions occurring at remote
locations in the body. One way in which this principle of local
action 'can he incorporated is to assume that the response at a given
material particle depends on the mechanical history only through
:he history of the deformation gradient F at that particle

F= '(F ) (5.8)

where ,"' is the history of' F up to the present time L.

A material whose response depends on the mechanical history
only through F in this way is termed a sinple material. Since in a
si iple material, spatial interactions can only he represented
through the deformation gradient F. it follows that the constitutive
functiCOnal ' canl be evaluated purely from experiments involving
homogeneous defornation, i.e.. ones in which x depends linearly on
X, and F is constan!. throughout the )ody. Only simple materials
will he considered in what follows.

2.3 Frame-Indifference; Material Symmetry

A mtion can boe described quantitatively only if a reference
frame, with respect to which positions are measured, and a time
datun, with respect to which times are measured. are specified. An
important restriction on the form of constitutive equations arises
from the expectation that the material response should be
unaffectecd hy the choice of reference frame and time. This is
tantamount to the expectatiol that the (onstitutive equation
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should b:e ini ant under a transformation in which distances, timne
intervals, and thle sen.se, of time are leIft UndlangC'). The Most
general such transformation is

t t t 0

where i(t) is a vector representing atimeo-dependent change of
Origi since the point x is transformed into a, is ail orthogonal
tensor Q representin~g a tirne-dependent rotation, and ti, is a
COnIML an prestnting a change in time ori-in.

The reauironlent that. cu(-nstitutive equations renmin Invariant
Under the transforniaion (5.9), termed /raine-inuifp'renec, places
restrict ions onl the possible functional dependenc of the stress onl
the historv of the deformation ,rdet re to ma I ths
explicit, wve first notc. that any Invertible tensor, Such as the
(dorm i ()n gradient F', Can 100 deCOMpo0sed Uniquely into an
orthogonal tensor R and positlive-definite symmetric tensors U orV
(see for example Mlartin and Mizel (1966), p. 291),

F =R U = VP Ria

where TP -7- R and

U = F'!' V2 = FF"' (5.101))

Thi: fundamental theorem of tensor analysis. known as the polar
decomposition theoremIl. mnay I)( interpreted geomnetrically in the
Present catse "is follows. Thfe orthogonal tensor R? represents a
rotation, while the symmietric tensors T! and V represent,
irvotatjcnal stretches. Jh uFs, (5.10~a) implies that the deformation
f11l he Oe coniposec iInto a pure stretch foloed by a rotation, or
alte(rnately hy aI rotation followe d by a pure str-?tch. Thie Stretches
for. the two cases are related through the rotadIo!n byN

InI a pur. Irigio Im dy rotatijon UT V' 1 while il an irrotational
stretch R- I

11 considerniz the behavior of the0 cm Istitu tiVe equation (5.8
under Owc the enral transformation ( 5.9), and dlemandoing invarian"Ce.



132 W. HERRMANN and J. W. NUNZIATO

it is shown in Appendix 2 that (5.8) can )e reduced t, the form

a Rf (").R"

Thus, the stress may depend on the history of the stretch, but
only on the current value of the rotation, not on its history. It
follows that in simple materials, only irrotational deformation
histories need be considered when attempts are made to evaluate
the constitutive functional .J from experiments, since the rotation
history does not enter .

While U may be used as a stren mensure, it is more conv,%nient
to use Green's strain tensor, defined by

E = - f2 ( - F"F) (5.12a)
2- 2- -

or in component form

E1 ij, (5.12b)

Note that, contrary to the usual convention in mechanics, E ias
been taken positive in compression. It has the property that E= 0
in a rigid body rotation. It is also convenient at this point to
introduce the second Piola-Kirchhoff stress tensor E, definedA from
the usual Cauchy stress a by the relation

o = IF FT (5.13a)

or in component form

Oj -v, '(5.13b)

Note that r and E will aiso be taken positive in compression.
Upon using 1 and Z, the reduced constitutive equation (5.11)

may be put irto the simple equivalent form

0 (v(5.14)

as shown in Appendix 2.
The constitutive equation (5.14) is applicable to arbitrarily large
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deformations of aeolotropic matei'ials. Written as above, the

constitutive relation appears in s.mple form. However, the measures
of stress and strain appearing in this equation are not simple. Just as

Green's strain E is a measure of the in-otational deformation from
the reference configuration, Piola's stress I is a measure of the
contact loads within the material referred to areas and directions
not in the current configuration, but in the reference configuration.
Alternate forms in terms of the Cauchy stress a and other measures
of strain :an be developed by using their appropriate defining
equations, it desired, but these will usually take a more complicated
form Qhan (5.1-4). Obviously the theories are equivalent, whatever
measures of stress and strain are used, as long as care is taken to be
consistent.

It is evident from their defining equations that F. X and E
depend on the particular choice of reference configuration which is
used. rhe choice of reference configuration should not. affect the
results of the theory. This fact may be used to determine the
transformatioi; properties of the constitutive functionals 'f and , ir,
(5.8) and (5.14) kinder a change of reference configuration, as
shown in Appendix 2. Specifically, these properties are given by
(A20) and (A21) for i and S; respectively.

A material may aiso have certain symmetry properties. These
will be reflected in restrictions on the particular forms which the
constitutive functionals may take. Restrictions on the constitutive
functionals arising from material symmetry are also explored in
Appendix 2.

2.4 Thermal History; Equipresence

A purely mechanical theory, considered thus far, can represent
the behavior of real materials only in a restricted number of
circumstances. If the thermal expansion coefficient of the material
is zero, or is assumed to be negligible in some sense, then any
change in temperature cannot affect the mechanicai response, and
need not be considered in the theory. An idealized material of this
type is termed piezotropic. Real materials approximate piezotropic
materials only for relatively small temperature changes. Other
situations also arise in which a purely mechanical theory may
suffice. For example, the body may be subject to special constraints
during a particular motion. It may happen that temperature and
strain vary in a one-to-one correspondence. It is then unnecessary to
consider the temperature a. an independent variable, its variation
being implicit in the variation of the strain. Some cases in which
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such thermodynamic constraints may arise will be rendered specific
later.

In many situations, the special circumstances under which a
purely mechani,al theory is appropriate do not apply. The response
of the material must then be considered to depend explicitly on the
thermal history of the material. One convenient way of specifying
the thermal history is through the temperature T by an equation of
form

T =(XI t) (5.15)

Here T is the absolute temperature, defined such that T > 0 for all
attainable states. Equation (5.15) speciie the temperature T of
every particle X in the body i at all times t.

In this case one would argue that the stress a and
thermodynamic quantities such as, the Helmholtz free energy A,
entropy S, and heat flux vector h at a given particle X and time t
should be functionals of both the mechanical and thermal histories

X(t 7) S T'~,)
(5.16)

A (', -T) W, T')

As in the case of the mechanical response, it may b,v further
argued that the response of a material particle should depend only
on the local thermal and mechanical histories at that partice. One
such description might employ the history of the temperature
gradient at X rather than the thermal histories of all particles in t.
The gradient of ; in (5.15) with respect to X may be denoted by
gR. Noting that (5.1) is invertible, the temperature T may also be
expressed as a function of x by writing

T = T(X, t) = T (ix' (x. t). tI = T x, t)

The gradient of 7 with respect to x will be denoted by g. Using the
chain rule in differentiating the above expression. we obiun

R . .g. - - yaj (5.17)
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The quantity g1R may be termed the material, or convected
temperature gr-adient. It is usually more convenient to use tile
spatial ternperature gradient g.

In terms of g one rnighf'rnake the rather restrictive constitutive
assumption

q 'r (L 'g) S -(F" 7 ",

Ttg

Wvhere aA, S and h depend only on the present value of g and not
onl its history. Of co.sohrcosiuieasmptions call h
made in wvhich othe;7 aspects of thle mechanical and( thermal
histories are inlludedC, but the ab)ove Will ind~Ude, amont0!l mn1y
others, all of the specific classces of materials to be colns-idered here.

Not tht te ame argunt -we lMeti includled ini each of the
constitutive functionals in (5.18)~. Thsis codnewt h
concept of equipre'wtce; the sarne' argurnent must appear in ieach
Constitutive relation unless ex liciNr forbiddien by tile principle's of
Mechanics or thermnodynamics, or by inivariance requirements such
as, frame-indifference anid material symineiry. Fach set" of
constitutive equations, resulting from a jpartwcular assumpti~on
regarding the nature of the ccnistitutive functionals anld t heir
arguinerits must be e'zarmined sepaxiately for comp~iaiice with these
restrictions. Equipresence guarantees reciprocity of action. in the
above case, if thle mechanical processo.s affect the thermal proc. esses,.
then the reverse must. also be aSumed to be true uiess proved
otherwise.

2.5 NMechanica -,-nd -Thermodynamic Principles

As indicated by the concept of equipresenwe. any formulation
of the constitutive equations must be cornpa!ible N"Vith the
priciples of mech anics and thezinodyna mics. This is interp~reted to
imply that the constitutive ecituations inust be such that thle
principles, of conservatiorl of mass, momnentumn and encrgy. -Ind of
irreversibility be satisfied for any mechanical and thermal fli!tories.,
of thle body 'A whatever.

Conservation cf nls~ omentum andi energy, and
irreversibility axe expressed by the following local equatitns,
obtainied iii AIppendix 3
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p p divt1 (5.19a)

pu . divo + pb (5.191)

p L -- div/h + pq (5.19c)

pS ".- div (5.19d)

where L is the specific internal energy, b is the specific external
body force field, q the specific external heat source strength, and L
is the velocity gradient

L= grad u (5.20)

The superimposed clot implies the material time derivative with X
held constant, and the divergence and gradient are 'taken with
respect to X.

We recall that the internal energy / and Hermholtz free energy
A are related by

L A + ST (5.21)

We now consider possible restrictions imposed on assumed
constitutivP equations by the requirement that the principles of
conservation and irreversibility be satisfied for any mechanical and
thermal histories of the body 'A whatever. We can imagine a history

specified by functions x = X(Xt) and T r (Xt) with
corresponding o, A, S, h and & specified as functions of (Xt) via
the constitutive equations. say (5.18), and the equation (5.21).
Note that conservation of mass is automatically satisfied if X is such
that. det F is positive and finite. We further recall that ,r 'nust be
such that T is positive and finite. Histories X and r satisfying these
restrictions are termed admissible histories fGi the body.

Any admissible history can be made to satisfy the principles of
conservation of momentum and energy (5.191)) and (5.19c) by
suitable choice of external body force and heat source fields _X, t)
and (X,t). Only some of these histories will be attainable in
practice, due to physical limitations in assigning body force and
heat source fields, but we demand that the constitutive equations
be such that any motion whatever be compatible with the
mechanical and thermodynamic principles.

The principle of irreversibility (5.19d) cannot be satisfied so
easily. It places restrictions on the rate of change of entropy in the
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miaterial. Si nc there are no fUrther ex ternial ly assignable fields such
as b or q available, this places certain restrictions onl thle adm issihle
forms of the constitutive equations. The specific nature of these
restrictions varies wvith thle paruticular constAitUtiVe aSSUmlptIMIuS
which are made, and they will he investigated in subs,.cjuent
sections.

2.6 Summary

'rile construction Of conIStitUtive equations *to describ~e a
plarticular class of materials idea'.lly begins by making particular
assumptions about thle structre of ,Ihecotiuveuninas
properly observing the requirements of equ ipresence. The princ(ip~les
of framle-indiffere-nce and irreversibibily are then applied to arieat
reduced constitutive equations wich arc, propcedy invariant and in,
accord with thermiodynamic requiremients. If necessary, these may
be further reduced to satisfy material symmnetry requirements, for
exarl Iple, isotropy.

Mod(1ern continuum mechanics provides a (rnmework for the
construction of constituti,'e equations which aeproperly inaran
and whi ch are compatible with thle principles of mechanics and
thermodynamics. These equations stil, contain arbirr merial
functions or fUnctionals, whlich-, are tcj be evaluated em prically fromj
experimental data onl thle response of a particular material.
H-owev er, even %vithout evalu.tn thr, uciniti osbet
investigate in some de tail tie qualitatv. eiirrp~etdb
various types of conlstiti-'cive equations. An attempt will bev made to

* discus- this qualital ie beP-.avior, particularly wjith regard t o wave
S propa'ain fo Ach th,- ovv treateol in stibsequent. secions.

in Ht evalutation of specii material func-i -x tions -romnI ex<per-imental data it is often very helpful to haVe recourse to)
micrornechanical theories (e.g., stitistical mecncs (lilcto
mechanic. etc.). Thie micromechanical theories will not be
considered in what followVs, but some ronirks on thle evaluation of
COII.stitutiveI%( functions' from experimnent will be m-ade as appropriate.

3. Wave Propagation

3.1 Kinematics of Singular Surfaces,

In order to display thle types of dynamic response to he
exee l-fom, spe(cific constitutive models, *wo shall conVsidler in

subsequent sections the pr() aga Lion Of van ioUs. types of waves. Prior
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to doing so, genera: results pertaining to the propagation of waves
will be reviewed in this section in a form particularly appropriate to
the study of solid materials. Reading of this section may be
omitted, if desired, returning for reference as needed during the
reading of sLubsequent sections.

We have assumed that the motion x described by (5.1) is
continuous. A shock wave is a singular surface on which first
dlerivatives of k (e.g., the velocity u) are discontinuous. An
acceeration wavi' is a singular surface on which first derivatives of x
are continuous. but second derivatives (e.g., the acceleration 6)a re
discontinuous. The general kinematics of singular surfaces will first
be developed.

Many important prollenms concern the propagation of plane
waves. In order to avoid the complications involve6 in the
treatment of curved waves,. the treatment will be restricted here to
the consideration of plane waves traveling in material symmetry
directions and described in terms of a single spatial coordinate. It is
then possible to reduce the analysis to that of motion in one
dimension.

Consider a singular surface or wave, located in our
one-dimensional space at the material particle X = Y(t) at time 1.
Since the wave may propagAte, it may be located at different
material particles at different times. The intrinsic velocity of the
wave is defined by

V Y W(t) (5.22)(it

It is only necessary to consider waves propagating in the direction
such that V > 0, since the case V< 0 can always be converted to the
former by an inversion of the coordinate system.

It is also possible to give a spatial description of the wave. The
point is space occupied by the wave at time t will be denoted by
x -(t). (, wave velocity U is defined by

d-
U -y (tl (5.23)

The wave velocity U is the rate at which the wave is moving
with respect to the spatial coordinate x, while the intrinsic velocity
V expresses the rate of advance of the wave with respect to the
material in the reference configuration. The intrinsic speed is the
most convenient tnmaisnre of wave velocity in solid materials, since
wave velocities are generally measured with the aid of detectors
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imbedded in tie niaterial. Then V is given by the original distanlce
lbef"veen two (ift-cir in the rerence configuration divided by the
w! vt 1;ansit tianc oetween them. T[his is in contrast to the situation
in fluid miechanics, Where it is usually more convenient to mneasure
wave velocit.;es with respect to detectors fixed in space, and U is the
natural measure of wave speeds.

Now, we assume that all quantities are continuous everywhere'
except at Y, but. that some quantities suffer jump dlscontinuitios ait
Y. If Wve deno1te such a discontinuous quantity by 1p(X, t), we
assumet specifically that ,k has finite limits P and 0~ as Y is
approached from the right and the left respectively. The jump in ~
is denotedl hy

It my he noted that the kump ~eIis a function of time only.
We will further suppose that 0 QI3X and (exist and( ar t

continuous except for a jumip at the wave. If we approach the wa'e
from the continuous regfion on the right, then use of the chlain rule
at X Y( 1)Provides the relation

dd

A sinifar expression hold:- wh en approaching Y fro] thle !eft.
Subtracting the two results pirovides

d F. I V ,1

where (5.22) has been used. If ~'itsel f is cont inuous at Y so that

01I

This fundamental relation of compatibility at a singular surfnce is

known w:' Maxwell's Theorem.
One final kinematical Yesult is useful. if 0. and ~pare both

discontinuous at Y, then it, follows from (5.24) that

1C'~ H(5.27)
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3.2 Shock Waves

We restrict attention in this subsection to plane longitudinal
waves, in which first derivatives of the motion X undergo jump
discontinuities. Such waves are termed shock waves.

In a plane longitudinal motion described by the deformation
field X, (X1,t), x2 = X 2 , x 3 = X 3 , the strain is conveniently
characterized by the single parameter e termed the engineering
strain

e = 1 - F - p (5.28)

where F F,, a laX1 , c.f. (A44). Note that e is taken positive
in compression. It is convenient to define the amplitude of the
shock wave, denoted by a(t) as the jump in strain c across the shock

a() - = - IF) (5.29)

Note that with this definition, the shock is compresstve when a > 0.
If we set ¢ x in Maxwell's Theorem (5.26) the basic

compatibility condition at a shock wave is obtained

[u] V e] Ka (5.30)

where the subscript S is used as a reminder that the discontinuity is
a shock wave.

The equations representing conservation of momentum and
energy and of irreversibility at a shock wave are developed in
Appendix 3. They are

p. Vs 0) = o(5.31a)

p1 - + s [ 1 [au + [h] (5.31b)

'0 V s ] :> (5.31c)

Here the external body force field b(X,t) and external heat source
field q (X,t) have been assumed to be assigned in such a way that
they are continuous at the shock. It is possible to solve for the
velocities from (5.30) and (5.31a)

P1  ] [a) [e) a[a] (5.32a)

. . . . . - . . .
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PI110]) u (15.32b)

Using (5.27), (5.30) and (5.32a) in the energy equation (5.31b)
yields the result

%2[a] =~ , E]+ 1-!,2 + - [] + (5.33)

If the heat flux is zero, i.e., if the material is a non-conductor, then
[hi 0 and (5.33) reduces to the familiar Rankine-Hugoniot
relation

[& D' + a-)[c] (5.34)

Note also that in this instance, the entropy inequality (5.31c)
reduces to

[s) > 0 (5.35)

The jump relations (5.30) and (5.31) have been written here in
terms of the intrinsic shock speed Vs. In order to compare these
results Nvith those conventionally used in fluid mechanics, for
example by Courant and Friedrichs (1948) or Serrin (1959) who
use the wave velocity U, it is necessary to develop the relation
between V Lnd U. This has been done in Appendix 3.

Some additional relations will be useful in our discussion of
shock, wave propagation. We note that quantities are continuous on
either side of the shock. In these continuous regions, the equations
expressing conservation of momentum and energy are (A49) and
(A50).

u _ o +PRt Pb (5.36a)

__ au Dh + pRq (5.36b)PR t °X X q

These equations hold in the limit as the discontinuity is approached
from the right and the left respectively. Subtracting across the
discontinuity provides the results

KPl -bol

PR LLj L X XJ (5.37b)
Fa ad all]
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where 1) and q have again been taken to be continuous. These
relations connect jumps in derivatives across the shock.

An expression for the rate of change of amplitude with time can
he obtained by setting i t in (5.25) and using (5.30), whence

c/a a d~+ I Yu F;
dt ~ ~ p VitVL -- F~i (5.38)

This result is a consequence solely of compatibility. A more useful
result can be obtained as follows. By setting a = in (5.25) and by
using (5.37a) we obtain

dt ka -J I/ . (5.39a)

But, by (5.32b)

(I d
P -ij]ap (5.39bldt R dt s

By using (5.39) in the amplitude equation (5.38) we obtain the
result

da a 1 Fd V')cI
2 + 3v- .. .. 7 (5.40)

which is the basic equation for the growth or decay of the
amplitude of a shock wave. More specific results are obtained when
the material constitutive equations are specified, and we shall return
to this point in subsequent sections.

3.3 Acceleration Waves

We consider first plane longitudinal acceleration waves, in which
second derivatives of the motion x undergo jump discontinuities
but its first derivatives are continuous. The strain field is again
characterized by the engineering strain c defined in (5.28). Clearly c
is continuous at an acceleration wave but its derivatives are not. In
this case it, is convenient to define the amplitude of the acceleration
wave as the jump in strain rate

a [] (5,41)

The wave is termed compressive if the strain rate increases across
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the wave a > 0, expansive if a < 0.
Setting 0 = u and F successively in Maxwell's Theorem (5.26)

provides the compatibility condition

[U] V ] Va (5.42)

where the subscript a serves as a reminder that the discontinuity is
an acceleration wave. This resilt may be compared with that for a
shock wave (5.30).

It is also assumed that the temperature, given by (5.15), is
continuous at an acceleration wave, but its derivatives may suffer
jump discontinuities. Setting 4 = T in Maxwell's Theorem (5.26)
provides the additional compatibility condition

ran rT

At an acceleration wave u is continuous, [-u] 0. Thus, from
the jump conditions (5.31a) and (5.31b) it follows that the stress is
continuous Io 1 0, and that

RV (8 (5.44)

A jump in the internal energy across the wave must be associated
with a jump in the heat flux. For a non-conductor [hi = 0, and the
internal energy is also continuous I& I = 0.

From their derivation, it is clear that (5.37a) and (5.37b) are
equally applicable at an acceleration wave. Setting Vi = a in
Maxwell's Theorem (5.26) provides a compatib.lity condition which
may be used to simplify the first of these to obtain

PRK - (5.45)L-J LbtJ
The jump in acceleration and the wave velocity may be found from
(5.42) and (5.45) whence

R- [al] (5.46a)

V2 I t (5.46b)

These equations may be compared to the corresponding shock
relations (5.31) and (5.32).
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The energy equation (5.37b) may be simplified using (5.27) and
the fact 'hat [a] = 0, whemne

aPibX (5.47)
For a non-conductor the last term disappears and this result isanalogous to the Rankine-Hugoniot relation (5.34).

Ar. expression for th,2 rate of change of amplitude with time isobtained by setting 3 = au/at in (5.25) and using p5.42), whence

da a d ,_ FAi Fr4 (5.48)(-t - dt VL at - LatJ

This expression may be put into a more useful form as follows.Differentiating the material form of the equation expressingconservation of momentum in one dimension in continuous regions
(A.49)

t tX + PyZg[ (A46a)

Subtracting across the discontinuity, as before, provides

[a U F C2(
'LR -- VJ (5.49)

Now, by setting ,' =.Da!at in (5.25)

Lai J LtA a V (5.50a)
while differentiation of (5.46b) provides

dtaJ= PR "' a (5.50b)

By using (5.49) and (5.50) in the amplitude equation (5.48) we
obtain the result

da a+' 1 aL 0  _ 5 5
2i __ + i 2 La 2  L at(5.51)dt ~ ~ P dt V W a
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which is the basic equation for the growth or decay of the
amplitude of an acceleration wave. Note that its form is analogous
to that for a shock wave (5,10). Specific results are again ohtnined
when the material constitutive relations are inserted, as will 1- "een
in subsequent sections.

Finally we will consider a plane transverse acceleration wave. 'n
this case the deformation field is x, X 1 , x2 = X, + ? (X,,t),
X1 = X 3 , and the strain is conveniently characterized by the single
parameter - termed the engineering shear strain

F (5.52)

where we have redefined F F2 1 = a7/3X,, c.f. (A61). It is
convenient in this case to define the amplitude of the transverse
acceleration wave as the jump in shear strain rate

a t)-aI (5.53)

If we now redefine other unsubscripted vector and tensor
components as u = u, b = b,, a = 02 but retain the definition
h = h, then we first note that the kinematical result's of Sect. 3.1
are unchanged. Furthermore it is shown in Appendix 3 that the
one-dimensional equations of momentum and energy conservation
(A49) and (A50) are unchanged in form. Consequently, all of
the results of this section on acceleration waves (5.42) through
(5.51) are equally applicable to tiransverse acceleration waves,
prcvided that appropriate components of vector and tensor
quantities are understood, and -y is s:.bstituted for E.

3.4 Steady Waves

We will now turn to a different class of waves. Consider plane
structured waves which will initially be assumed to be smooth,
without discontinuitif-s. but which propas:ate at constant velocity
without change of shape. The motion is described by (5.1) which
for plane longitudinal motion in one dimension may be written
x = (X~t). The displacement d may be defined by

d = ,(X, t) X, t) X (5.54)

The motion can also be referred to a coordinate system which is
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moving with iespect to the reference coordinate system X at
constant velocity Vo by introducing the coordinate transformation

= Vt -- X (5.55)

A motion is said to be a plane steady wave if in this transformed
coordinate system the displacement of material particles is
independent of time; i.e.,

d V - 0 (a) (5.56)

Moreover, the temperature field, st zes field, etc. -re steady if under
the transformation (5.55) they become independent of time. If

0j (Xt) is one of these quantfties, then on using (5.55),
S(h). By the chain rule, derivativev of V! and are related by

-(X, t) W a. -(X, t) = Vo T4(fl (5.57)
ax a~ t

The equations governing steady waves will now be considered.
The deformation gradient and velocity in a steady wave are
available by differentiating (5.54) and using (5.57)

F= I +-- 1 -- () (5.58a)
ax ax

ax _ a d
u = - t t y- () (5.58b)

while the strain is given by (5.58a) and (5.28) as

C= -d ()(5.58c)

Consequently, there follows the compatibility condition

. =... I - F (5.59)
V0

The one-dimensional iv.aterial forms of the equations expressing
momentum and energy conservation (5.36) become, on use of
(5.57)

d 1 d M (5.60a)

df -~ P)
W ( V d d (5.601)

where exter1nal body forces and heat sources have been assumed to
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be absent.
Th'ese equations are ordinary differential equations. The falst

(5.60a) can be integrated directly, since (p I? V(,) is constant,

a( W P1? Vo u(W + a, (5.61)

where a, is an integration constant. Adding It times the momentum
equation (5.60a) to the energy equation (5.60b), thle result may be
integrated directly t~o give

pjV 0 ( U( ) 4- + h()+ a, (5.61b)

where a.2 is another integration constant. Collecting and rerragin
the above equations, the relations governing plane steady wave
motion may be summarized w, follows.

It de 1 ldu
d0~d (5.62a)

da _ It
I? =PVOU +t 'JR PR (5.621))

~. , + a,u +a 2

2 PR~O(5.62c)

d 1 +u adu + 1 dh

where all quantitie.; are understood to be functins of ~
An alternative, and iluminating, form of the equations

governing steady wave motion may be obtained by evaluating thle
constants a I and a, at a particular fixed point 0 in the wavze. If we
define the notation

= -- (5.63)

then, from (5.62) we obtain

pfV( uI = 1 [C-1 (5.64a)

P[? V(' 1-It 2 + & [(ul] + [17] (5.64c)
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These have preciseiy the same form as the jump. conditions
appropriate at a shooK wvave (5.30) and (5.31), provided that V, is
identified with the intrinsic speed of the shock V.;, Thus, quantitie s
at any two points in steady wave are connected by the shock
jump conditions.

It is clear that the above equations apply without change to
steady waves which contain jump discontinuities, including the
degenerate case when the entire wave consists of a shock. Note that
discontinuities in derivatives of quantities in tha wave cause no
difficulties in the above derivation, so that the steady wave may
also include acceleration waves.

4. Elastic Ma!erials

4.1 Constitutive Relatiois

In this section the constitutive relations for simple non-linear
elastic materials will be reviewed. Such constitutive relations are of
interest because a number of real materials may respond elastically
when subjected to appweciable deformations. Furthermore they
provide the groundworl; for material descriptions considered in
subsequent sections.

An elastic material is, one which has no memory of past events,
and whose response depends entirely on the present configuration.
This concept is equivalent to that of path-independence. The
current response of an elastic material to different deformation
histories is the same provided that the histories culminate in the
same present configuration.

If thermodynamic and other influences can be ignored, then the
constitutive relation for a simple elastic material can be obtained by
simplifying the functional representation of (5.8) to

S= ~(5.65)

The Cauchy stress a is an ordinary function of the present value of
the deformation gradient F.

As discussed in Section 2, the above form is not
frame-indifferent. A frame-indifferent form can be deduced from
(5.14)

V : (E) (5.66)

where Z is the second Piola-Kirchhoff stress tensor defined by
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(5.13) a rn. E is Green's strain tensor defined by (5.12). The
de vative

C;,, , :: d ;[v~( )(5.67a)

is termed the elasticity of the material. Since E and 1 are
symmetric, the fourth order elasticity tensor enjoys the symmetries

C. ,' .(5.67b)

In the special case when i., -frivable from a potentiai function
: (F) such that

:- P, -- , i , (5.68a)ij P -ij cip, 1, d I.,,d E .
then the elasticity tensor is completely symmetric, and obeys, in

addition to (5.671), the symmetry

"iV = Ciu (5.68b)

A linear mapping with this symmetry property is termed
self-adjoint. The potential function ;, if it exists, is termed a strain
energy function, and the idealized materials based on this
description -are termed hyperelastic. The special restrictions of
hyperelasticity are not needed in many applications. Special
attention will be called to those results which depend on them in
what follows.

The Cauchy stress q depends only on the contact forces in the
present configuration, and is independent of the choice of reference
configuration. It may happen that the body possesses one particular
configuration ii which a vanishes everywhere. Such a configuration
is termed a natural state. The Piola stress 1, from its definition
(5.13), also vanishes in the natural state, but Green's strain E
vanishes only if the natural state itself is chosen as reference. Of
course, it is not necessary that elastic bodies possess a natural state,
since residual stresses may be present in a body which is free from
surface tractiors and body forces.

Since the above constitutive relations omit explicit dependence
on X, we reca'l that it has been assumed that the material is
homogeneous. Of course, since E depends on the choice of
reference configuration, it must also be assumed' that a
homogeneous reference configuration has been chosen, for
example, one obtained from a natural state by a homogeneous
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(leforniation. The sress o it-- SuIch a reference configuration is
hoim oge i"'( uS.

Many materials, such as crystals, exhibit certain symmetries in
the(ir respon:.:e. These symmetries are reflected in thle form of thle
elastic- res"ponlse function inl (5.66), as discussed in Appendix 2. We
will, consider only the simplest case, that of isotropy. In this case
rronm ( A*20 tho constitutive relation reduces, to

where the( coefficients Cc ', and e, are functions of the principal
invariant!s ot E. In order for the reprt sentation (5.69) to be valid,
not only itL,,ust the material he isotropic but an undistorted
reference con figu ration n'i'st be) used, for examlel& one obtained
from~l 11 natuAl' state by a1 pure dilatation. T1he stress in such a
reference con figuration is isotropic, i.e., a hydrostatic pressure, as
Shown inl A"ppendix 2.

A flUid is a materiai having no preferred conlfigutrat ionls. Noll
(1958) anld Colemlan anld Noll (1964) have given an elegant
treatmient. of the response of simple fluids in terms of the isotropies
of the material. 1 lere it will suffice to note that in anl elastic fluid.
chianges of shape at constant density cannot influence the stress, so
that (5.6511 reduces to

i~ (5.70)

where p) is th0 p~ressure Ulkenl l)0'sitivel in compression. It may he
notedl that every flufid is isotropic, andl every config-uration of a
fluid is undistorted.

T he above equations comnpletely specify the response of simple
elastic nlaterials. Tlheir sim plici ty is deceptive since they are
couchedl in terms of Piola's stress : and Green's strain E. Relatively
few solutions have been obtained to dynamnical initial anid boundary
value problems at this level of generality. In many applications.
approx imat ionls Validl for strains or deformations which are- limited
in some sense are mnore tractable, and somae of these will be
c oM( -idcred leX t.

.1.2 Approximate Const itutive E~quations

It imay ha'ppenl thatl (In r-ing a1 particular motion, a bodyV
eXp .eriences(- oil lv7 small excursions froml some particular
COligurlltiOl). 1If this Coiifigli'atiOln is chosenl as reference, then we
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consider only deformations such that the largest absolute values of
the components of Green's strain tensor are limited to some value c,
i.e., ..

slip)~j < C (5.71)

In this reference configuration, E = 0. The constitutive equation
(5.66) can therefore be expanded in a Taylor Series about E = 0

-RO + C,.kgEl + - + 0(W) (5.72a)

where 2.R is the residual stress in the reference configuration, and

dEij
= E 0 (5.72b)

CR - _

- dEd ,dEI- = (5.72c)

are fourth and sixth order tensors, whose components are constants
evaluated in the reference configuration.

Note that (5.72) is valid only for reference configurations
chosen so that (5.71) is satisfied during the entire motion of the
body. If a reference configuration is chosen which is too far
removed from the configurations experienced by the body, then
Green's strain may exceed the criterion (5.71). In general, a natural
state need not be among the allowable reference configurations
when small excursions from a prestressed reference configuration
are of interest. If the reference configuration happens to be a
natural state, then 1 o = 0.

It is seen that (5.72) can be used for limited strains from the
reference configuration, but that arbitrarily large rigid body
rotations or translations are allowed. Further simplification is
possible when displacements from the reference configuration are
infinitesimal.

In order to develop the equations appropriate to infinitesimal
displacements, we define the displacement vector d by

d = x - X (5.73)

The displacement gradient H may be defined by

H Grad d . -- F (5.74)
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where the gradient is taken with respect to X. We will consider
motions su. h that

sup -~'H (5.75)

Infinitesimal strain and rotation tensors are defined by

e ( ( +1 H'' r .(H - ffr) (5.76)

Note that d, H, e and r are of 0(c). It is easily shown by the use of
(5.74) and (5.76) in (5.3), (5.10) and (5.12) that

E = e + 0 (c) R = 1 -r + 0(0)

(5.77)
po!P = J= 1 - tr, + 0(E2 )

where p( is the density in the prestressed reference configuration.
These results may be used to simplify the constitutive relation

(5.72). Using (5.74) through (5.77) in (5.13), the Cauchy stress is
given by

; (1 + tr e)11 - H)(1 - H) + 0(E:)

Inserting (5.72a) into this expression, we first note that in the
reference configuration E = 0, F = 1. Denoting the Cauchy stress in
the prestressed reference configuration by Zo, we see from (5.13)
that 2R 0 = o. Noting thate and H are of 0(c), we obtain the result

Z = Rc + CR {ej + 0(C2  (5.78a)

where o, is the stress in the reference configuration, convected to
the current configuration, given by

= o + Zp.(tr e) - - - t r  (5.78b)

If the material is isotropic, and the reference configuration is
undistorted, then (A30) may be used to obtain

= , + IR(tr e)l 2 - 0(1-) (5.79a)

where X1 and PtR are Lame's constants associated with CR. Since
oZ must also be isotropic, i.e., a0 = Po 1, o reduces to
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Pol[ + (tr e)7 - 2e] (5.79b)

We note that even if the material is isotropic, and its response is
governed by (5.69), the representation (5.79) can only be used if
the reference state, from which infinitesimal displacements occur, is
undistorted. If the reference configuration is distorted, CR will
generally fail to be isotropic. We also note that, even if the material
is homogeneous, but the reference configuration is not, so that the
stress ao varies from place to place, then CR will vary from place to
place. These effects have been described as an apparent loss of
isotropy and homogeneity in severely prestressed elastic bodies,

The equations (5.78) and (5.79) are valid for infinitesimal
displacements from a prestressed configuration chosen as reference.
A situation which is frequently encountered involves a prestressed
configuration which has been obtained from a natural state by an
initial large static deformation. In this case, it is much more
convenient to choose the natural state as reference configuration.
Let the deformation gadient of the initial static deformation be
denoted Fo. The constitutive equation appropriate to this case is
derived in Appendix 4, and is found to be identical to (5.78), but
with CR given by

C,F9= jForF?,C0nrS (5.80)

Here Jo det Fo, CR is defined by (5.72b) with the prestressed
state taken as reference, and Co is defined as in (5.67a) with the
natural state taken as reference but evaluated in the static initially
deformed configuration. It is clear that both C. and CR are
functions of F0.

If the material is isotropic, and the initial deformation is a pure
dilatation, F0 = 0 1 where 0 is a scalar, then the constitutive
equation (5.79) is applicable. Noting that Jo = det Fo = 0, we see
that (5.80) implies that

R= 19?ko PR (5.81)

where Xo and go are the Lam4 constants associated with Co, and
are functions of the density in the initially deformed state.

Finally, we note that if the initial static deformation is absent,
and we condider infinitesimal displacements from the natural state,
then F0 

= 1. Wc see that CR =Co, qo = O and Z, = 0. The
constitutive equations (5.78) and (5.79) reduce to the classical
linear equations of infinitesimal elasticity in this case.
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4.3 Acoustic Wave Propagation

In order to begin the investigation of the behavior of elastic
materials, we first cunsider the propagation of acoustic waves. We
will restrict attention to a situation usually encountered in
ultrasonic experiments. Specifically, we consider the propagation of
plane infinitesimal sinusoidal disturbances propagating into an
elastic material which has been subjected to a homogeneous static
initial deformation from a homogeneous natural state.

It is first necessary to obtain a linearized equation governing the
motion appropriate to this case. The equation expressing
momentum conservation in the absence of external body forces
may be read off from (A27). The appropriately linearized
constitutive equation describing the response of the material is
(5.78). These two equations can be combined into a single
linearized equation of motion. The algebra has been carried out in
Appendix 4. In terms of the displacement d from the initially
deformed configuration, the result is (ASO)

podi = Bijk + O(E 2 ) (5.82a)

where B is a fourth order tensor defined by

Bi-Q (5.82b)

Here a o is the Cauchy stress and Fo the deformation gradient in the
initially deformed state, and it may be recalled that Co is the
elasticity tensor, referred to the natural state, but evaluated in the
initially deformed state. The coordinate XR refers to positions in
the static initially deformed state.

In order to study plane sinusoidal disturbances, we seek
solutions to (5.82) in the form

d asin (n.Z, - Ut) (5.83)

where a is the amplitude vector, n the wave normal, and U the wave
speed. Differentiating twice with respect to t, and then twice with
respect to X, and inserting the results into (5.82) provides the
equation

,o ai = BijhQnjnQa1, (5.84)

This may be expressed more simply by defining a quantity Q,
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termed the acoustic tensor, by

Qih, . (5.85)

Note that Q depends on the direcion of the wave normal 1. In
terms of Q, (5.84) becomes

( - pU) 0 (5.86)

It is seen that for a wave of non-vanishing amplitude propagating in
the direction n the determinant of the term in brackets must vanish
ThLs is the classical eigenvalue problem. The amplitude vector a
must be a right proper vector., or eigenvector, of the acoustic tensor
Q. The wave speed U must be such that po 2  is the
corresponding proper number, or eigenvalue, of Q.

If the acoustic tensor Q is symmetric, then there exist three
orthogonal eigenvectors. If, in addition, Q is positive definite, then
the corresponding eigenvalues are positive. In this special case three
plane waves are possible, with mutually perpendicular amplitude
vectors, and with real wave speeds. We ncI.te that there are three sets
of directions associated with acoustic wave propagation in this case.
First, the elastic material may exhibit certain symmetry axes in the
initial statically deformed state, reflected in symmetries of the
elasticity tensor C,. Second, there is a set of axes associated with
the direction of wave propagation n. Finally, there is a set of
acoustic axes in the directions of material particle displacements
associated with the three possible plane waves propagating in the
direction n

Of course, even if the material has certain symmetries in the
natural state, these may have been altered by the initial static
deformation. Even if some material symmetries have been
preserved, the three sets of axes described above do not generally
coincide. If they happen to do so, then that direction of wave
propagation is termed a pure mode direction. In this very special
case, waves are either purely longitudinal, with displacements in the
direction of propagation n, or purely transverse, with displacements
orthogon-al to the direction of propagation n . Pure mode directions
for several symmetry classes have been tabulated by Borgnis (1955),
Brugger (i965) and others.

Symmetry of the acoustic tensor Q demands, from (5.85), that
B be self-adjoint, i.e., that it have the symmetry property Bij!
=- B,id. From (5.82b) it is seen that this symmetry results only if
!o is self-adjoint. Consequently, if the material is hyperelastic, then

I V
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there are three real orthogonal acoustic axes for every direction of
wave propagation n. If the material is not hyperelastic, then 9 will

not, in general, be symmetric. However, for non-symmetric Q, it is

known that the eigenvalue probleni yle.ds at least one real

cigenvector; there is always at least one real acoustic axis, and one

wave is always possible for any direction of propagation.
Positive definiteness of Q demands, by definition, that

,, mtfltr2 Bi,;,rTyl7Jfli;lQ > 0 (5' .87)

for any vector m. A fourth-order kensor obeying the inequality

(5.87) for all vectors m and n is termed strongly elliptic.
Consequently, if B is strongly elliptic, all waves with real acoustic

axes have real wave speeds for all directions of propagation.
When the static initial deformation is absent, then F0

0 = 0 and it is seen from (5.82b) that B = CR, evaluated in the
natural state. Thus, wave speeds are real if Cp is strongly ellipic. If
the material is isotropic, the corresponding corditions are

+ 2 /iR > 0 P > 0 (5.8,)

which may be deduced from (A29) and (5.87) by choosing
particular vectors m and n which are co-linear m = n , and

orthogonal m* " =  These are the conditions usually imposed in
the classical infinitesimal theory of elasticity. They are found to be

necessary and sufficient conditions for uniqueness ard stability of

solutions to certain boundary value problems in the linear theory.

If the material is subjected to an initial deformation, then the

inequality (5.87) represents a restriction on the constitutive

function in (5.66), but this restriction cannot be expressed as

concisely in terms of C. While (5.87) ensures real wave speeJs, it is
thought to be too restrictive for a general theory of elasticity.

That some restrictions are required to ensure that the theory

represents physically reasonable behavior is evident; the precise
form of these restrictions is currently a matter for debate. Other

restrictions have been proposed, such as the generalized inequality
of Coleman and Noll (1964)

Bip,01ijA:k, > 0 (5.89)

where Af is any non-vanishing symmetric tensor. While this

inequality appears similar to that in (5.87), it is in fact different. If

B enjoys the symmetries Bi/, I Bjii = 'Biju, then it may be shown
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that (5.89) implies (5.87). From (5.82b) this occurs only when
o 0, i.e., in the natural state. Consequently, (5.89) implies the

classical restrictions, but is a generalization different than that
represented by (5.87). In general, (5.89) has weaker implications
than (5.87) for wave propagation; it is found to imply only that if a
pure longitudinal wave is possible for a given direction of
propagation, then its speed is real. The question of restrictions on
the constitutive equation is discussed in detail by Truesdell and Noll
(1965) and by Truesdell (1966).

In principle the measurement of wave speeds and acoustic axes
for a given state of initial deformation F. and a variety of
propagation directions should serve to determine the elasticity
tensor Co. Repetition for various values of F0 should then allow a
complete experimental determination of the constitutive equation
(5.66).

An experimental determination of the elasticity tensor i, greatly
facilitated by a treatment using the natural state as reference. We
denote the positions of material particles in the natural state by
XN. In order to develop the appropriate forms of the equations, we
first note that the initial static deformation may be viewed as a
mapping of the configuration XR into the configuration XN. Under
this mapping, a vector v in XR will map into a vector V in XN given
by v= FoV. Interpreting the vector v as the displacement d, we can
define a convected displacement A by

ax,"
di - ar Ak (5.90)

where A may be regarded as a function of (X,t). We can now
insert (5.90) into (5.82), which on use of the chain rule, becomes

P i - B 1h a a

P02 D%7N X.Kl3X bXR
This may be rewritten as

()2At~ja 2A"PN .. . D ,-, (5.91a)a t2 aX ,'aX N'

by defining a fourth order tensor D by

3X N ax
PN r Xk13;"Bp

(5.91b)

Inserting (5.82b) into the last expression provides a relation for D
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directly in terms of C. After a certain amount of algebra we find the
result

Dnrn F n ,jC, -r mn. (5.92)

We now seek solutions of the form

Ssin(Ng - Ut) (5.93)

where the vector A is a map of the vector a in the material
configuration a = F and U is the same wave speed as in (5.83).
Inserting (5.93) into (5.91a) we obtain the propagation condition

(S -PN U 1)AL)= 0 (5.94a)

where S is the intrinsic acoustic tensor

SI = DrN.N (5.94b)

In order to relate the intrinsic acoustic tensor S tc the spatial
acoustic tensor Q we first note the relationship between the wave
normals n and N. A surface in the present configuration may be
denoted by a relationship of fo m (xt) = 0. Since x= (X,t), we
can write

g(x. t) = j(X(X, t), t) = G(X,t) = 0

Thus G(Xt) = 0 is the material description of the surface. The wave
normals in the spatial and material descriptions are defined by
n = /x and N= 3GI.X respectively. Using the chain rule in the
relation above provides

N, - - -- - F 12j

or more compactly N Fn. Using this in (5.85), (5.91b) and
(5.94b) a relation between S and Q may be obtained. It is found
after some algebra that

S J0El, '<6 (5.95)

If Q is symmetric, S will generally fail to be so. Of course, there
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exist three orthogonal eigenvectors a. Each of these eigenvectors
will map into a real vector A -Fo' _, but these will not, in general,
be orthogonal.

The material description has the advantage that the intrinsic
directions of wave propagation N and the corresponding intrinsic
acoustic axes A are defined with respect to the material in the
natural reference configuration. Ultrasonic transducers are normally
applied to a specimen in its natural state. The intrinsic direction N
is determined by the initial emplacement of transducers. Under the
application of an initial deformation F0 , the direction n may well
change, but its map in the material coordinate system does not.

Truesdell (1961) has considered the problem of the evaluation
of the constitutive equation from wave speeds for an isotropic
elastic material subjected to an arbitr'ry initial deformation. Th
pure mode directions in this case coincide with the principal axes of
initial stress a0 and strain E0 . Truesdell has shown that
measurement of the velocities of the three possible types of waves
propagating in each of the three pure mode directions is sufficient
to determine C, for any F,. In fact, C, is overdetermined. and
Truesdell has given compatibility conditions on the nine possible
pure mode wave speeds.

A less ambitious program is usually considered by ultrasonic
experimenters. For example, Thurston and Brugger (1964) consider
an aeolotropic hyl:erelastic material subjected to certain states of
homogeneous stress. They show that the elasticity tensor CIf., I and
its strain derivative Cv,, r evaluated in the natural state can be
determined from measurements of intrinsic wave velocities in pure
mode directions, and their stress derivatives. When these "elastic
constants" are used in (5.72), an approximate constitutive relation
results which can be used for modest, but not necessarily
infinitesimal, strains from the natural state.

4.4 Acceleration Waves

We continu- to investigate the behavior of elastic materiais by
considering the pru.pagation of acceleration waves. Truesdell (1961)
has given an elegant treatment of acceleration waves in general
aeolotropic elastic materials. He finds a propagation condition
identical to that for acoustic waves (5.86). Rather than repeat this
treatment we will consider the rate of change of amplitude of
acceleration waves. A detailed treatment of this problem has been
given by Chen (1968a, b), who considered acceleration waves of
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arbitrary shape propagating in an isotropic elastic material. In order
to simplify the treatment, we will consider only plane acceleration
waves propagating in pure mode directions in an elastic material
with suitable symmet'ries.

Consider firs, one-dimensional longitudinal deformations. Since
rotations are absent, the constitutive equation may be specialized
from (5.65)

(5.96a)

where c 1 - F is the engineering strain and a a, F= F,, are
normal components -)f t; and F in the direction of motion.
Assuming that (5.96a) is twice continuously differentiable, we
define the tangent modulus M and second-order modulus N by

.(c N(e) =  (5.96b)

( d- de'

They represent the slape and curvature respectively of the
stress-strain relation defined by (5.96a). From (5.96a) and (5.96b)
it follows that a/t = M(e) Dc/at, which must hold on either side
of an acceleration wave. At an acceleration wave, Da/at and ae/at
are discontinuous. Subtracting across the wave, the jump in stress
rate is related to the jump in strain rate by

= ac[E (5.97)

Recalling the acceleration wave relations (5.42) and (5.45), we
obtain an expression for the intrinsic velocity of the wave

P R Va M(C.) (5.98)

If M(c)> 0 then the wave speed is real. This is analogous to the
situation in acoustic waves. In fact M may be connected to the
longitudinal component of the elasticity tensor D defined by
(5.67a), as shown !ater in Appendix 6.

In order to investigate the rate of change of amplitude of an
acceleration wave, we make use of the differential equation (5.51)
derived in Section 3. This expression involves second time
derivatives of a and c. Differentiating (5.96a) twice, and subtractirg
across the wave provides the relation.

[-] W) I (d
L~~~ ~ t~:J=M~) +Nc (5.99.)
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Inserting this consequence of the constitutive relation into (5,51),
we find that the rate of change of amplitude is given by

da adV2d-- 3- (5.100)

where we have made use of (5.98), and where il is a curvature
parameter defined by
•-.N(c)

M (C) (5.101)

The relation (5.100) simplifies if the acceleration wave is
moving into material which is at rest in a homogeneous reference
configuration. In this case e = 0 ahead of the wave and the intrinsic
wave speed is constant. From (5.27) and (5.41), [(ae/at) 2 ] =

[ac/at] 2 = a2 . Thus, (5.100) reduces to

da Ia (5.102)

where 17 is evaluated in the reference configuration. The equation

(5.102) has the general solution
2ao

a t) 2 (5.103)

where ao is the initial amplitude at time t = 0.
We have noted that real wave speeds result only when MR >0.

The sign of da/dt is therefore determined by the sign of NR. For a
compressive wave, a > 0. Thus, if NR > 0 the amplitude becomes
infinite in a finite time given by t- = 2 /?R a0 , while if NR < 0, the
amplitude will die away with time. The results hold for an
expansion wave mutalis mutandis.

The growth of a longitudinal acceleration wave to an infinite
amplitude suggests formation of a stronger discontinuity in which
the strain is discontinuous, i.e., a shock wave. Consequently, we
expect that in an elastic material with convex stress-strain relation,
compressive disturbances will grow into shock waves in a finite
time. Conversely (5.103) suggests that a compressive acceleration
wave will decay in a material with concave stress-strain relation,
even if its initial amplitude is infinite. Thus, we expect that a
compressive shock in a concave material will immediately decay
into an acceleration wave. Analogous results can be deduced for
expansion waves.

We now consider a one-dimensional transverse motion. The
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constitutive equation now takes the form

0 =:( Y) .(5-104)

whiere -y F is the engineering shear strain, and o o 2 ~ F =F2 I
are the appropriate shear components of u and 'F. With these
definitions the equations (5.96) through (5.103) apply to shearing
acceleration waves if c. is replaced by y. In this cause M(y) is the
shear modulus. If the wave is propagating into a natural state,
material symmetry imnplies that a s an odd function of -y, that is,

Vi--) (y). Thus, Nil - 0. From (5.103) we conclude that
a(t) =a,. Transverse acceleration waves propagating intLO a natural
state neither grow nor decay but propagate with unchaniged
amplitude.

It may be noted that if the stress-stfain relation is linear, then
N(yl) 0, and all acceleratiJon waves %Aill propagate with unc!angod
a111lplitUde and velocity, regardless of the strain at the wave. This is
-thle situation in classical linear elasticity.

4.5 .Shock Waves

V now turn t1o a consideration of shock waves. Thle discussion
will ag ain be limited to plane waves propagating in pure mode
directions into material with suitable symmetries. Recalling that thle
strain ahead of the wave is denoted c' , that behind by C, the
intrinsic velocity of thle Shock is given by (5.321)), which -when
expanded, provides

PR1V L (5.105a)

where L is Jefined by

L- (5.1051))
fE

The quantity L is the secant modulus, i.e., the slope of the straight
line( conn11ettit g thle point on the stress-strain curve representing the
state behlind tie wave to that in front. This straight line is known as
the Rayleigh ine. This result may be compared to (5.98). While thle
shock velocity is related to the slope of thle secant, the acceleration
wave velocity is related to the slope of the tangent to t he
strecrs-strainl curne.

WVe wvill here consider the case when the stress-strain curve js
convex, specifically we consider Mf(c) > 0, N(c) > 0 for thle ntire
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stress.-srain curve. These restrictions imply that

Al' < L K AV5.6

where Al = M(c + ) and A" = M(C). It follows from (5.9b) and
(5. O) that the velocity of a shock is always greater than that of an
acceleration wave ahead of the shock, but less than that:of an
acceleration wave behind the shock in a convex elastic material.

We will now investigate the growth and decay of shock waves.
In order to do sG we again limit consideration to a shock
propagating into material in an undisturbed homogeneous reference
configuration. Thus, c' = 0, and c =a from (5.29). The rate of
change of shock velocity can be found by differentiating (5.105)

S..dVs _ _-- 1 d~a (5.107a)
V dt 2 dt

where ' is a curvature arameter defined by

M/L (5.107b)

Consider a compressive shock, a > 0, moving in the positive X
direction, Vs > 0. From (5.106) we see that > 1. Then (5.107)
shows that the shock velocity will increase, decrease, or remain the
same according to whether the shock amplitude is increasing,
decreasing, or remaining the same.

In order to investigate the rate of change of amplitude of the
shock, we first note that for a shock moving into a homogeneous
reference state, differentiating (5.96a) and subtracting across the
shock provides

[N , P!' (5.108)

Inseiting (5.107) and (5.108) into (5.40) we arrive at the shock
amplitude equation

da 2( - 1) c'"
1 (5.109)

Altern~ately, this result may be expressed in terms of the strain
gradient behind the shock. Setting i- e in (5.25) provides, for the
present case

d(5
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Using this in (5.109) we obtain the alternate shock amplitude
equation

77+ (5.111)
dt + V

It is evident that the growth or decay of shock amplitude
depends on the strain gradient immediately behind the shock wave.
A closed form solution, analogous to that for ,an acceleration wave
(5.103) is not, in general, possible. The strain rate o strain gradient

behind the shock is not known independently of fhe flow field
solution. However, for Vs > ID, AF> L> 0, so that > 1, it is
evident that the shock amplitude will grow if the straini gradient
behind the shock is negative, decay if the strain gradient is positive,
and remain constant if the strain gradient is zero. While we will not
write down the results here, analogous equations can easily be
developed for an expansion shock in a material with a concave
stress-strain relation. While the above qualitative remarks are
intuitively obvious, the amplitude equation can be used to obtain
quantitative estimates of shock decay in certain problems, as shown
by Nunziato and Schuler (1971).

If the stress-strain relation (5.96a) is linear, then M = = MR,
1 and it follows from (5.107) and (5.109) that the shock

velocity and amplitude are constant for all cases. This, again, is the
situation in classical linear ela.sticity.

We will note one final well-known result. For a shock
propagating into a material at rest in a homogeneous reference
configuration, the shock relations (5.30) and (5.31a) provide

U
pR Vs . (5.112)

Consequently the stress-strain relation a- = a (C) can be determined
experimentally if the shock velocity V5 and the material particle
velocity u- behind the shock can be measured for a series of shocks
of different amplitudes. This technique has been used, for example,
by Graham (1972), among others, to determine the stress-strain
relation, as well as the moduli M(0) and N(O) for normal mode
directions in single crystal materials.

4.6 Summary

We have seen that restrictions on the general constitutive
equation for elastic materials arise from requirements of
frame-indifference and material symmetry. That these restrictions
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are not enough has been surmised from the fact that real wave
speeds result only whvn the elasticities or moduli are subject to
certain inequalities. In fact these inequalities are precisely those
required in the infinitesimal linear theory to guarantee stability and
uniqueness of solutions to boundary value rroblems. The precise
form of these inequalities in the nonlinear theory is still a matter of
debate. Sufficiently weak conditions are required, so that physically
expected instabilities and multiple solutions are not ruled out.

It is found that propagztion conditions for acoustic waves and
acceleration waves are identical in elastic materials. A few of the
features of the propagation of such waves in aeolotropic elastic
materials have been illustrated. Eitber type of wave is, in principle,
suitable for the experimentai evaluation of elasticities or moduli,
and consequently of the entire constitutive relation. Experimental
methods using sinusoidal acouslic wave trains have been developed
to a very high degree, and interferometric ultrasonic techniques are
capable of astonishing accurac~y.

Compressive acceleration waves propagating in elastic materials
with convex stress-strain relations have been shown to grow to
infinite amplitude in a finite time, suggesting the formation of
compressive shock waves. Converso~y it has been suggested that
compressive shocks in materials with concave stress-strain relations
immediately decay into acceleration waves. This suggests a ready
means for the e:.perimental generation of acceleration waves.
Barker and Holler, bach (1970) and Wlsh and Schuler (1973) have
shown that planar impacts on a suitable material with concave
stress-strain relation produce compressive acceleration waves whose
amplitudes de:pend on the distance of propagation, and have used
this technique to study acceleration wave propagation.

Measurements of shock wave speeds and accompanying material
particle velocities can also be used to evaluate stress-strain relations.
However, the results of Section 3 indicate that entropy jumps occur
in shock waves. It is shown in Appendix 7 that the entropy
jump hi a shock is of third order irn the shock strength.
Consequently. while shocks of modest strength are not expected to
cause difficulties, the existence of strong shocks will entail
substantial entropy changes, and violate conditions under which a
purely mechanical theory is expected to hold. There is, therefore, a
limit to the use of shock waves in evaluating mechanical stress-strain
relations. Conversely, since continuous disturbances may grow into
shocks, it is, in general, necessary to limit the application of the
purely mechanical theory to modest disturbances. It is for this
reason that approximate constitutive relations for modest strains
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are of great interrst.
In order to accommodate strong shocks and entropy changes it.

is gc-nerally necessary to consider thermodynamic influences. TFhis
will be done in the next section.

5. Thermoelastic Materials

5.1 Constitutive Relations

In order to introduce thermodynamic effects into the
description of elaf-tic matri'ils, one may take as a starting point the
constitutive equations (5.18). Since an elastic material has no
mnemory of past events, the stress o, Hlelmnholtz free energy A,
entropy S, and heat flux vector h become ordinary functions of the
dleformation gradient F, temperature T, and temperature gradient g
at the present time

o ( F, T, g) S (F, T', g)
(5.113)

'A (F. 7Tg) 11 h"F T. '

TheFse constitutive equations are in accord with the principle of
equipresence. since the same arguments have been included in e-ach.
As indicated in Section 2, however, it is necessary t~o investigate the
consequences Of irreversibility and of frame indifference. Coleman
and Mizel (1934) have considered this problem for constitutive
relations which include the present case.

We recall that the rate of change of entropy is subject to the
restriction (5.19d)

pS > - div lh 4-p (5.114)

A more convenient form for use in investigating constitutive
equations is obtained by expanding the first term on the right, and
combining (5.114) withi the energy equation (5.19c)

pT - a-I ~> g

Differentiating (5.21) in order to introduce the free energy provides
the result

P(' ~' (5.115)
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This inequality is termed the reduced entropy inequality.
The arguments of Coleman and Mizel (1964) in applying the

reduced entropy inequality to the study of the constitutive
equations (5.113) are paraphrased in Appendix 5. It is found that
the functions u, A and S in (5.113) cannot be choser. arbitrarily,
but that they must be independent of the temperature gradient g.
Moreover, the functions cannot be independent. but must (e
related by

A AW, 7T) (5.116a)

= (/. T) . . P FT (5.116b)

S S(F,T) (5.116c)

The Helmholtz free energy is therefore a potential function for the
stress and the entropy. The equation (5.116a) is often termed an
equation of state. Even though no assumptions have been made
about equilibrium, and no concepts have been introduced about
nearness to equilibrium, the conventional relationships of
equilibrium thermodynamics emerge, purely on the basis of
compatibility with the entropy inequality.

Restrictions are also found on the function h. In particular, it is
found that the function h must be such as to satisfy the inequality

-- h-g > 0 (5.117)

The quantity 5 is termed the internal dissipation. The consequences
-of this restriction may be illustrated as follows. Suppose we
arbitrarily fix F and T for the moment, and consider h and thus 5 as
functions of the temperature gradient g. Then (5.117) implies that
8(g) has a minimum at g 0. Consequently, its first derivative there
is zero:

i(F', T, 0) = 0 (5.118)

Thus, the function h must be such that the heat flux vanishes in the
absence of a temperature gradient for all (F,T). Furthermore, the
minimum of 8(g) implies that its second derivative is positive
semi-definite at = 0. The second derivative may be denoted

= (F, T,g) - ~ (5.119a)
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where K is termed the thermal conductivity tensor. Thus, (5.117)
implies that K is positive semi-definite when g 0, that is, is
subject to the restriction

ki (F, T, O)nin >. 0 (5.119b)

for all vectors n.
We will distinguish two special cases. When i = 0 and hence

h= 0 for all (F,T,g) the material is termed a non-conductor. When
is positive-definite for all (FT,g) the material is termed a definite
conductor. Of course, these cases imply more severe restrictions
than that imposed by the entropy inequality, but ,he more general
case will not be considered in what follows.

We note at this point that a simple expression can be found for
the rate of change of entropy. Differentiating (5.116a) and using
(5.116b) and (5.116c) we find that

pA - oL - PST (5.120a)

where the permutation properties of t he scalar product have been
exercised. Differentiation of (5.21) yields

p = pA - pST pST' (5.120b)

When these two results are inserted into the energy equation (5.19c),
the result is

pS -ydivh + -T (5.121)

In terms of the internal dissipation 5 defined by (5.117) this
becomes

P - div( =) + (5.122)

The internal dissipation divided by the temperature represents the
excess entropy production over that due to external heat sources
and heat conduction c.f. (5.19d).

The above results have not been reduced for frame indifference.
Suitable frame-indifferent forms can be found, using the means of
Appendix 2 in the forms

A A (E, T) (5.123a)
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., '~ if 3E., )= l (5.123b)

DA (5.123c)S= S(E, T) 8T

where E is Green's ;trAin defined by (5.12) and is the second
Piola-Kirchhoff stress defined by (5.13).

The heat conduction equation is found to reduce to

hR = h,(E, T,g,) (5.124a)

where hR and gI are convected heat flux and temperature gradient
vectors cefinedby

T - = A-. = FTg (5.124b)

c.f. (5.17). Using the chain rule in differentiating (5.124) we see
that the heat conductivity tensor K defined in (5.119a) is related to

hR by

- - FTK(FT)" (5.124c)

Since det/, > 0.the restrictions (5.118) and (5.119) imply that hR
vanishes and - 3hR /jR is positive semi-definite wheng, = 0.

The equations (5.123) and (5.124) completely describe the
response of a thermoelastic material to arbitrary deformation and
temperature histories. Numerous alternate forms can be derived
from them, a few of which will be considered in the following
subsection.

5.2 The Equation of State

We now turn to a more detailed consideration of the equation
of state. The formulation of the equations of thermoe!asticity in
terms of the temperature, given in the previous subsection, is
particularly useful for situations involving definite conductors. It
will be found more convenient to use the entropy as an
independent thermodynamic variable in discussions involving
non-conductors.

The specific heat at constant strain is defined as the partial
derivative of (5.123c)

-- (5.125)
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If 18,.Y 0, then (5.12:3c) may be inverted it. provide T =T(,)

Inserting this into (5.21) provides

A E, T!1 El, S)] S7 VE. S)

We deduce the existence of an alternate equation of state of form

(E,- ) (5.127a

N~ith derivatives, following on the, use~ of the chain rule in

differentiating (5.126), given b y

2L, )Ep (5.1 27b)

T - *IiF (~(5.12Th

Th'le (letaifed properties of the translornizit rn from (5.123) to
(5.1 27) are considered in Appendix 6.

'11w consl.3tutive relations for the stress (5.1 23h) and (5.3,271))
mnay he compared to the const.itutive equation (5.66) for an elastic
material. All of the remiarks concerning elastic materials made in
Sect ion 41 liok ;1lso for thermoelastic niaterials providing that either
the temperature or the entropy is constant. Th1is makes exp!ic-it, the
remarks conceVrn1ing the relevance of a purely mnechaniical
con sti tL1tiVe rel ])jIt.01 for motions sub ject to a particular
thermiodynarnic constraint, at least -within the context of elastic
material,,. 1,or motions in wh~ch such at constraint is absent, then
the purely mechanical theory is inadequate, and the equations of
this section may be used.

For at therm oela-stic fluid, it is found that the equation of state
(5.127) reduce s to

p - ,(p.) ()~ii(5.128a)
(5.3.281))

'I' 7 T(/ , ) .i (5.128c)

Analogous forms, may be derived in terms of the free energy from-n1
(5.1 23). It may be noted that the deiivation of from A
corresponds to at Legeridre transformation; other such
transforniations are possible to produce forms of the equation of
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state in terms of the enthalpy and Gibb's function. Tile
relationships between these equations of state and their derivatives
for the special case of a fluid are the preoccupation of classical
equilibrium thermodynamics. These relationships are helpful in
evaluating the fluid equation of state from thermophysical property
measurements. For a discussion of this aspect, reference may be
made to the classical thermodynamic texts, for example Callen
(1963). The treatment has been extended to the solid equation of
state by Truesdell and Toupin (1960). Some of these relationships
are given in Appendix 6 in a form appropriate to the present
treatment,

So far, the entropy and temperature have been taken avs
independent variables. It is sometimes difficult to calculate the
entropy. In view of the fact that the temperature in (5.127c) is
positive, L in (5.127a) is invertible in S, that is, there exists a
function S S(E, ). If this is in turn inserted into (5.1271) and
(5.127c), thn it is seen that there exist. functions

= (IE, 7) T 7 T(E, L:) (5.1.29)

Since the entropy does not appear in the conservation laws, it is
therefore possible to solve problems without explicit calculation of
the entsropy if these energetic equations of state are available.

5.3 Approximate Constitutive Relations

Approximations to the thermoelastic constitutive equations for
small strains may be developed in a manner analogous to that given
in the p.,evious section. We will consider only the simplest case, that
of infinitesimal displacements and temperature changes from a
homogeneous natural state. Specifically, we consider displacements
d = x- X, displacement gradients 11, and temperatures 7' such that

suip Idc1, Jnj, 17' TI? T 1 j §£(5.130)

wh ere TI? is the uniform temperature of the natural state.
For a definite heat conductor, it is convenient to begin with

(5.123b). Expanding in a Taylor series about the natural state, and
carrying out the same approximations as those leading to (5.78), we
obtain

+ (T ' + 0() (5.131a)
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where CTR and .qT? are the values of the isothermal elasticity
tensor C- and the stress-temperature coefficient 6.., defined from
(5.123b) by

3 . a, - ,7
CT= >-a(E, T (E, ') (5.131b)

both evaluated in the natural state .6" 0, T = TR. The constitutive
equation for the heat flux vector (B.124) may similarly be
expanded in a Taylor series about the natural state if we assume in
addition that sup(IgI)< c. We note that (5.117) also implies that

= 0. a (E, T, 0) = 0 (5.132)

so that the expansion for h reduces to

h =4- 0( )  (5.133)

where we have made use of (5.77) and where K.R is the thermal
conductivity tensor defined by (5.119) evaluated in the natural
state. Equations (5.131) and (.5.133) are the classical equations of
coupled linear thermoelasticity and Fourier's law of heat
conduction, respectively.

For a non-conductor an alternate approach is more convenient.
It may be seen from (5.121) that, in this case, entropy variations
can stem only from extrinsic heat sources. It is found more
convenient to expand (5.127b) about the natural state E = 0,
S = So, assuming that sup 'ldI,IHI,IS - So 1I < c, whence

CsR e}+ 0sR(S - ,.) + 0( ) (5.134a)

where CSR and (s are values of the isentropic elasticity tensorC,
and the stress-entropy tensor .s defined from (5.127b) by

SS) (E, S) (5.1,341)

both evaluated in the natural state E - 0, S = S,. From (5.121), in a
non-conductor, if extrinsic heat sources are absent, then S 0. If
the initial entropy is uniform vith value So, (5.134a) becomes
identical with the linearized constitutive equation of the mechanical
theory (5.78), the latter taken with a( = 0.

Tht, lirearized constitutive relations can be inserted into the
equations of momentum and energy conservation, as in Appendix
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z% in order to obtain linearized field equations governing the
response of thermoelastic materials. An analysis of these field
equations shows that for a non.-conductor the partial differential
equations are completely hyperbolic with real wave speeds relted
to the isentropic elastic constants. On the other hand, for a definite
conductor, the differential equations are of mixed type with a
parabolic diffusive behavior typical of Fourier heat conduction.

This latter behavior can be illustrated by citing a particular
solution of Boley and Tolins (1962). They solved the
one-dimensional problem of an impact on a semi-infinite slab
consisting of a linear thermoelastic heat conductor. They find that a
discontinuity propagates into the material at a velocity related to
the isothermal ela.stic constants as is commonly found in the
coupled infinitesimal thermoelastic theory governed by (5.131a).
However, disturbances appear everywhere in the material
simultaneously with the application of the boundary velocity, as
shown in the plot of their solution (Figure 5.1). Disturbances

1 58TIME -15 {0. 't

0.0 !
0 2 4 6 8 10 12 14 16

D I STANCE

Figure 5.1 Impact on a Semi-Infinite Slab.

appear ahead of the discontinuity, although they are very small far
from the boundary. This qualitative behavior might be expected
also in solutions of the general nonlinear thermoelastic theory,
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although such solutions have not, so far, been obtained in closed
form.

Truesdell (1953) has given an exhaustive treatment of acoustic
waves in thermocnastic fluids. Deresiewicz (1957) has given a
subsequen disc-.ission appropriate to isotropic thermoelastic solids.
It is found that thermodynamic influences are absent in
thermoelAstic non-conductors. 'T'e motion is isentropic, and
propagation characteristics are identical to those of the elastic
materials considr.ed in Section 4.

For definite conductors the situation is much more
complicated. For pure mode directions it is found that transverse
acoustic waves are unaffected by thermodynamic effects. However,
two types of longitudinal waves appear, characterized as
predominantly elastic and predominantly thermal, respectively. The
phase velocity of elastic waves approaches that given by the
isentropic elasticity in the limit of low frequencies, but that given
by the isothermal elasticity in the limit of high frequencies. It
would seem that the discontinuity in Boley and Tolins' example is
connected to the high frequency limit of acoustic waves. It appears
that the low frequency limit applies for experimentally attainable
ultrasonic frequencies for most materials. Consequently, ultrasonic
experiments may be used to determine elasticities in both
thermoelastic conductors and non-conductors, as outlined in
Section 4.3 providing that these elasticities are viewed as isentropic
elasticities. Brugger (1.964) has discussed the determination of the
isentropic elasticity tensor C and its isentopic strain derivatives
from ultrasonic measurements.

Truesdell and Deresiewicz also discuss the characteristics of
thermal waves. Their phase velocity is found to approach zero in
the low frequency limit, and to increase without bound in the high
frequency limit. The latter phenomenon is connected xvith the
appearance of disturbances simultaneously everywhere in the body,
as illustrated by Boley and Tolins. Absorption characteristics of the
two types of waves have also been addressed. Dispersion and
absorption characteristics depend on heat conduction.
Unfortunateiy, observed dispersion and absorption characteristics
of ultrasonic waves do not seem to correspond to those predicted
by the th eory based on Fourier heat conduction.

5.4 Acc-lei-ation Waves

A tre tmint of 'herm odyni' niic influences on the propagation
of acceleration waves in thermoelastic materials has been given by
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Chen (1968c). The trea.,tment in this section will agzain he lim-ited to
plane waves propagativrg into material in pure mode directions.

First consider a non-conductor. It is convenient. to begin N611h

thle Constitutive rehitions inl the formp (5.1 27). Specializing to

longitudinal motion in the coordlinate direct ion, they canl he writi ell
as

8 8(o, S)(5.3a

a O(C p)it~ (5.1351))

7'T((- S) - (5.135c)

set, Appendix 6 for dIetails. We canl define the iAisentropic tangent

modulus and. second-order modulus by

(C., S) 0L ; (C, S) (5A13)

Since the heat flux vanishes for all c, T', g. it follows thalt.

() /)X for all X, t, Consequently Aromn (5.121) we see that

as = 0 (5.137)

where we have assumed, a,. before, that the external heat source

strength is continutous at the wave. An acceleration wave satisfying

(5.137) is termed florjen tropic. All acceleration waves in

therm oelastic n)onl-conductors are homen tropic. The intrin"siC

velocity of the,( wave is given, via (5.42) and (5.45) by

a 5 c S) (5.108

Thlis 11ny be compared to the result for an elastic material (5.98).

The growth and decay of acceleration waves inl a ther-moelastic

1),cni-conductor can be investigated by the means of Section 4.4. In

particutIlar. the results (5.102) and (5.103) hold, with Il aid N
inter~preted as isentropii moduli. Aaoosrslshl o

transverse accelera Lien \vavi.s.

Vor a definite condunctor. it is more convenient to 'oegin by

speciflizing (5.116) whence

A d 1 ~( 'fl(5,139ai)

7) P (,5.1391))
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S = S(e, T) . (5.139c)

The heat, flux equation in (5.113) becomes

h = h(e, Tg) (5.140a

Note that for a definite conductor, h is monotonically increasing in

g. We can define isothermal moduli by
32

T) N . 3C2 TU (5.1401))

Now, at an acceleration wave, e and T are, continuous. We
assume that the constitutive functions in (5.139) are smooth, sc,
that A, a and S are continuous across the wave. Thus, from (5.21),
L is continuous, and from (5.44) so is h. Tile monotonicity of h in

g implies that Ih = 0 only when [g] = 0. Then, noting that
STl,)X = g(i}x/)X) = gF, and F is continuous, we see from (5.27)

and (5.43) that

[ a '] 0 (5.141)

An acceleration wave satisfying (5.141.) is termed homothermal.

All ;'c(elera.on waves in thermoelastic definite conductors axe

honiothermal. Since the wave is homothermal, identical steps to

thos(, leading to (5.1-38) pro',de the wave velocity

* 1 M,,(c, T) (5.142)

The results (5.138) and (5.142) may be compared. In the

context of the remarks made in Section 5.3 concerning acoustic

waves, the propagation characteristics of acceleration waves and

infinitesi:mal sinusoidal disturbances coincide for thermoelastic

noa-conductors. For definite. conductors, acceleration waves seem

to correspond to the high frequency limit of acoustic waves.

Il thermoelastic heat conductors, the solution of Boley and

Tolins (1962) suggests that disturbances may appear everywhere in

a body upon application of boundary disturbance. It is therefore

unlikely that a situation will be encountered in which an

acceleration wave moves into undisturbed material n a homogenous

reference configuration. Consequently, results for tie growth and

decay of acceleration waves in thermoelastic heat conductors will

not be developed here. They have been given by Chen (1968c).
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5.5 Shock Waves

As mentioned previously, the study of wave propagation in
thermoelastic heat conductors is complicated by the possible
appe rance of disturbances ahead of the wave. Consequently we

confine attention to shock propagation in thermoelastic
non-conductors.

The intrinsic velocity of the shock is given by (5.32b)

PR V L (5.143a)

where L is defined by

L = (5.143b)

We recall that, for a non-conductor, the jump in internal energy is
given by (5.34) as

pR( = ( + a+)(" - e+ ) (5.144)
R 2

Using (5.135) this may be rewritten as

, = - (5.145)

1 [a(e-,S) + U(e+. +) (C - e ) 0

This equation implies that, for a fixed state (e+,S + ) ahead of the
wave, there exists a relation H(c,S') = 0 connecting the strain and
entropy behind the shock.

The Rankine-Hugoniot relation (5.145) may be put into an
alternate form. From (5.135b) we may define the stress-entropy
modulus by

's = aF(c, S) (5.146)

The relation between ps and ts defined in (5.134b) is developed in
Appendix 6. If s 4 0, then (5.135b) is invertible in S so that there
exists a function S = S(c,r). If this is used in (5.145) then we obtain

/ ( o)= (:, - -(e [(, a
(5.147)

---1,(o + ) (C-  -- +* 0
-2Pnt
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This ,.equation implies that, for a fixed st4ate ahead of the wave,
there exists a relation tJ(C,o') = 0 connecting the str-ss and strain
behind the shock. (C'urves defined by (5.115) and (5.147) are
termed the strain-entropy Hugoniot and stress-strain Ilugoniot
respectively. Notice that by (5.143) the shock velocity is related to
the slope of the secant connecting the point on the stress-strain
Ilugoniot representing the initial state to that representing the state
behind the shock. This secant is again termed the Raleigh line. It
should he emphasized at this point that the Hugoniot relation
(5.1 47) does not necessarily imply the existence of a Hugoniot
stress-strain law of the form - = a, (C).

IfJugoniots have many interesting and useful properties which
have been addressed in the literature in the context of thermoelastic
fluids, for example, by Courant and Friedrichs (1948), Serrin
(1959) and Ilayes (1960). The general properties of Hugoniot
stress-strain curves of the type (5.147) have been developed for the
present context by Nunziato and lerrmann (1972) and are given in
Appendix 7.

As for an elastic material, measurement of shock velocity and
material pti'ticle velocity behind the shock allows direct evaluation
of stress and strain behind the shock through the shock relations
(5.112). Consequently, the stress-strain Hugoniot may be evaluated
experimentally from measurements of Vs and u" for a series of
shocks of different am plitudes. The Rankine-Hugoniot relation
(5.144) allows direct evaluation of the internal energy along the
I lugoniot. In principle, if shock wave experiments can be performed
for a series of different initial state,, resulting in a family of
Hugoniots, then tihe energetic equation of state can be evaluated,
whose one-dimensional form, from (5.129,, is

u =- f(C, a)(5.148a)

In practice, most materials experience plastic yielding or
comparable phenomena if the stress becomes high. It has often been
a-ssumed that when the stress is very high, material strength may
safely be neglected, and the material may be assumed to behave like
a fluid. The energetic equation of state then reduces to

p i5(p, ) (5.148b)

The experimental evaluation of this equation from shock wave
measurements has been discussed by many authors, particularly
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Rice, McQueen and Walsh (1958) and MeQueen et al (1970).
While stress, strain and internal energy are available directly on

use of the equations expressing mass, momentum, and energy
conservation across the shock, the entropy or temperature cannot
be found so easily. Some a priori knowledge of the equation of
state (5.13.5 or (5.139) is required. Various approximate means of
evduating the temperature along a ilugoriot have been used, one of
which is discussed Iy McQueen et al (1970).

We now turn to the growth and decay of shock waves in
thermoclastic non-conductors. This problem was first addres-ed by
Chen and Gurtin (1971). As before, we consider only shock waves
propagating into undisturbed material at rest in a homogeneous
reference configuration. Results will be developed for a convex
material As > 0, Ns > 0. It is shown in Appendix 7 that the
entropy inequality permits only compressive shocks a > 0 in such a
material, and that M4 < L < A" as for an elastic material. ('Fhe case
N < 0, a < 0 can easily by treated in like manner, but the
equations will not be written down here.)IDifferentiating (5.135b), using (5.136) and (5.,46), and
applying the result to the state behind the shock provides

In the absence of heat sources in a non-conductor, (5.121) implies
that i-;)t = 0 at the shock. Noting that ('/i)t)+ = (3/3t) - 0, we
may insert the above result into thp shock amplitude equation
(5.40) to obtain

da .L a ds Y Ms -l L (e
-I- - - L , (5.150)

dt Vs d tL t

It remains to derive an expression for the rate of change of
shock velocity. Differentiating (5.143) we obtain

d Vs  d f ,2da

2p1  dt dl dt

where we have used (5.29). Now (A173) which relates the slope of
the stress.-strain Hugoniot to that of the isentrope may be rewritten,
for the present case, as

a (2J -- &- .d (5.151a)d t (2 a'-S -;dt



180 W. IERRMANN and .1. W. NUNZIATO

where the Grineisen ratio ' and the curvature parameter are
defined by

F 'Ps (5151)
PRT I (5.1511)

Combining (5.151) with the previous equation provides, c.f.
(5.1.07),

adVs - - 1 da (...... ..... ... . .... (5 .1 5 2 )
Vs dt a2 - adt

In analyzing (5.152) we will limit consideration to the case
r > 0. We see that for a linear material " 1, the shock velocity is a
constant, as expected. For the present case where MS> L > 0 and
hence > 1, the signs of dVs/dt and da/dt agree if aIP < 2. If
ar- = 2, dVs/dt becomes infinite. From (A173) it is seen that this
coincides with thc occurrence of a vertical tangent on the Hugoriot.
If aF > 2 the shock speed increases when the amplitude decays
and vice' versa.

If we now insert (5.1.52) into (5.150), the final shock amplitude
equation is obtained

da _ (2 -- a-)(_-1) (da- (5.153)
dt (1 2aF + 3- ) katl

Alternately, this may be written in terms of the strain gradient
behind the shock by using (5.110)

da (2--_a,_ 1) 51, 5
(3 - (3 n- (5.154)

In analyzing this equation we see that the aaplitude is a constant if
the material is linear, 1. Recalling that > I for the case under
consideration, then we see that if aP" < 2 and al < (3 + .)/(3 -
then the shock will grow, remain the same amplitude, or decay
according to whether the strain gradient behind the shock is
negative, zero, or positive, just as in the case of an elastic material.
However, if either aP" > 2 or aF > (3 + )/(3 - ), the behavior is
just the opposite. If aF "= 2, then the amplitude is constant,
independent of strain gradient. From the analysis of (A173), i- is
seen that this latter behavior is connected with the occurrence of a
vertical tangent on the Hugoniot.

5.6 Summary

We have seen that certain restrictions are imposed on the
constitutive equations of a thermoelastic material by the
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requirements of irreversibility. The entropy inequality demands the
existence of an equation of state, identical to that considered in
equilibrium thermodynamics. The internal energy, or lelmholtz free
energy are found to be potential functions for the stress; a
thermoelastic material is also hyperelastic. The entropy inequality
also plac.es restrictions on the constitutive equation governing heat
conduction. In particular, the internal dissipation due to heat
conductiol must be non-negative. This implies, in turn, that the
heat flux must vanish and the thermal conductivity tensor must be
positive semi-definite in the absence of a temperature gradient. For
infinitesimal disturbances, the equations reduce to those of classical
coupled linear thermoelasticity and Fourier's law of heat
conduction.

The propagation conditions for uvltrasonic and acceleration
waves in thermoelastic non-conductors are identical to those in the
elastic materials considered in Section 4. One may surmise that
further restrictions apply to the equation of state, analogous to
those found to lead to real wave speeds in elastic materials. These
restrictions also may be expected to be connected with questions of
stability and uniqueness. Coleman and Greenberg (1967) and
Colemai (1970) have obtained such restrictions from requirements
of material stability in the case of a very genera! cla!s of fluids, thus
establishing Gibb's stability postulates in specific terms. The precise
forms of these restrictions on the equation of state for solid
materials have not yet been established.

Thermoelastic heat conductors exhibit certain types of behavior
which do not seem to be in accord with experience. Thermal waves
may propagate with infinite sp!ed, disturbances may appear
simultaneously throughout a body, and dispersion and absorption
characteristics of acoustic waves do not seem to correspond to
observed behavior. Fourier heat conduction does, of course, give a
good description of heat transfer when time scales are relatively
longer than those commonly encountered in stress wave
propagation. One might surmise that Fourier heat conduction is an
approximation, in some sen:e, to the behavior of real materials for
slow processes. This approximation cannot be pushed to time scales
which are too short in comparison with some sort, of thermal
relaxation time. Fortunately, the effect of heat conduction on
stress wave propagation seems to be very sinall, and may often be
neglected. Nearly all analyses of stress wave propagation
phenomena are based on this premise. Ultimately. theories which
provide some accounting of thermal relaxation may be required for
the description ef some processes. \Vhile work is in progress toward
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such theories, their description here wVould he premature, c.f.
Gu~rtin and] Pipkin 1968) and Nunziato (1971).

In thIerml oel.stic non-Con(IUtors, acoustic waves may be used inl
thie experimental determination of isentropic moduli, and( hence inl
the evaluation of stress-strain isentrcopes. The same applears to he
true in thern-oelastic heat Conductors for practically attainable
ltrasonic' frequencies. Shock wave measurements offer a ready
means for the experimental evaluation of stress-strain H ugon jots,
and( hence of the energetic equation of state. This method has been
used very widely at stresses which are so high that materials may he
a1Ssuimed to behave like thernioelastic fluids.

Shock waves involve entropy changes. Thus, even if heat
conduction effects are negligible so that internal dissipation is
absent in smooth motions, and external heat sources are absent,
entropy changes may be introduced by the propagation of shock
Waves. The constitutive equations of this s;ection may be used inI
problems of this type.

6. Viscous Therinoclastic Maiterials

6.1 Constitutive Relations

11 a else iicnieing more complex material behavio~r,

we will consider a .herinoehistic material in which the response
deensno ol o teprsnt values of the deformation gradient.

FE, the temperature T, andi tho tempervturo gradicnt g, but also on
the rate of deform-ation 'F. IncIlusionl of a dependence oni the rate of
deformation will be seen to allow description of a certain type of
viscous b~ehavior.

We assume specifically that the stress a Helmholtz free energy
A, entropy 8, and heat flux hi are given by the following
constitutive relations

(F, F T, g)S S (F, F,T,

,,I A (F, F, 7',g) h : (F, F, T,g9)

The reduction of these constitutive equatiions to stfyte entrop'y
inequality has been considered by Coleman and Noll (1963) and
Coleman al]Nd 1 Mizel1 (1964) whose arguments are paraphrased in
A\ppend ix 5. A s for- the I hermoelastic material considered in thle

jIreViOUiiSVCtionI, it is foundI tha't the functions Ai and S in (5.1 55)
canl depend only oil F an(l TI, and that. tlhere exists an equilibrium
stress function Tj,(,7) suchl that
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A A(F, T) (5.156a)

Q(F, T) p - (5.156b)

87 S(W, T) 3A (5.156c)

The equilibrium stress function is defined in terms of the tol'.,
stress in the first of (5.155) by

or, _ 101, T) 7-- u(F, 0, T?, 0) (5.15'7)

i.e., the stress is in equilibrium when deformation rates and
temperature gradients vanish. An extra stress may be defined by the
difference

, =-- (F",F, T,g) =  (FF, Tg) -- &,(F. T) (5158)

It is evident from its definition that the extra stress o,, vanishes in
equilibriurm

j, (F, 0 T, 0) - 0 .(5.159a)

It is also found that the heat flux vanishes in equilibrium

1I(F, 0, 7', 0) = 0 (5.159b)

Finally, it is found that the internal dissipation 6 is limited by the
inequality

. 1-
'5 - &, " -- -h'g> 0 (5.160)

T-

Note that a derivation analogous to that in (5.120) through
(5.122) shows that the rate of entropy production is again givt'n Yy
(5.122), but with 6 given by (5.160) above. Internal dissipation in
this case therefore arises from the rate at which work is being don,
by the extra stress in addition to that arising fi-om heat conduction.
The properties of a,, suggest the name viscous stress.

Frame-indifferent forms of the constitutivo equations for
viscous therm oelastic materials have also been derived by Coleman
and Mizel (1964). The equatior of state (5.156) reduces again to
(5.123), but the Constitutive equations for the heat conduction and
the viscous stress are found to take the forms
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h = i. (E, E, T, g,) (5.161a)

V= (E,, T, g9) (5.161b)

where h,i and g1I are the convected heat flux and temperature
gradient vectors, defined by (5.124b).

We note that the entropy inequality again demands the
existence of an equation of state which is a potential function for
the entropy and the equilibrium stress. All of the remarks made in
Section 5.2 about the equation of state are thereforc applicable in
this case also, provided that the stress of Section 5.2 is reinterpreted
to mean the equilibrium stress.

We now turn to the restrictions imposed on the constitutive
functions in (5.161) by the dissipation inequality (5.160). It is seen
that (5.160) implies that the viscous stress power is separitely
non-negative only when the temperature gradient vanishes g = 0.
Let us examine this case first.

The properties of the scalar product of tensors imply that only
the symmetric part of the velocity gradient L can cortribute to the
product o,, -L, since g, is symmetric by its definition. The
symmetric and anti-symmetric parts of L are termed the stretching
D and spin W respectively,

= + L") W (L LT (5.162'

Now L is related to F ffhrough (A40). It is not difficult to show by
differentiating (5.12) and using (5.162) and (A40) thatD is related
to E by

E - IF"DF (5.163)

Using (5.13), (5.162), (5.163) and the commutation properties of
the !oalar product, we see after some algebra that, in the absence of
a tenmperature grauient g =0, the dissipation inequality (5.160)
reduces to

= 1 E. > 0 (5.164)

where E, is the function in (5.1611)).
Now 6 may be viewed as a function of E at arbitrarily chosen

fixed values of E and T. Noting that J> 0, (5.164) implies tiat
6(E) has a minimum at E 0. Thus its derivative there must vanish
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(E, 0 T, 0) = 0 (5.165)

This condition is identica) to (5.159a). Furthcrmore, there is a
restriction on the second derivative of 6 (E) at E 0. If we define
the viscosity tensor by

": V k E, E, T, g,) (5.166a)

then (5.164) implies that

.Cj , T, T,)Miih > 0 (5.166b)

for all symmetric M. We will limit consideration to two separate
cases, that of a non-viscous mteria, for which C,, = 0 and that of a
viscous material for which the strict inequality holds in (5.166b)
for all values of(E, E,T,ga ).

Returning to the dissipation inequality (5.160) we see that the
dissipation due to heat conduction is separately non-negative only
when the velocity gradient, or equivalently E vanishes. In this case
(5.160) reluces to (5.117). Consequently, we can conclude that the
thermal conductivity tensor K is positive semi-definite in

equilibrium, defined by E = 0, g R = 0. However, we will continue to
consider only the cases of 'a non-conductor and a definite
conductor, detined in the previous section.

Summarizing, the reduced constitutive equations for a viscous
thermoelastic material are given by an equilibriUm equation of state
of form (5.123) where the stress is interpreted as an equilibrium
stres3, and dissipation functions for the heat conduction and viscous
stress have the form (5.161). The dissipation functions vanish in
equilibrium, which we have defined here as the vanishing of the
deformation rates and temperature gradients, and additionally
satisfy the inequalities (5.119) and (5.166). While the total internal
dissipation (5.160) is non-negative, separate dissipation inequalities
for the viscous stress power and the heat conduction are not
required, in general, by the entropy inequality, but may result from
special constitutive assumiptions.

6.2 Approxirnate Constitutive Relatii ns

Tile devchopment of constitutive relations appropriate for
infinite~simial disturbm'nces from a homogeneous eqtilibrium natural
staL(, fh)loS p.eviotus arguments. In this case we consider
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displacements d1, displacement gradient 11, !Meocily g7radienlt 1-1,
tCmperatLut,.; T, and temiperat.Lre gradients gJ? such that,

Sup 1 1 k'~I~iT >I ,1 1  (5.167)

The stress eqUation reduces w, helfore to (5.13t or (5.134), in
termis of the ecquilibrium~ stress a,.

In order to find ;t linearized form for the hieat flux equation1
(5.161a), wve first note that when E' 0 then the dissipation
inequality (5.117) leads to conditions similar to (5.132). A further
condition canl be obtained by conmid ering material symmetry. We
proceed as in Appendix 2 by introducing a change in reference
Conlf igurationl. if the reference configurations are connected by an
orthogonal gradient Q, then it is found from (5.124b) by the
methods of Appendix 2 that the convected heat flux veCtor
transform-, as

h - ~h - QI~(5.168)

where 1F] 1',"d TN are the deformation gradients with respect to the
two reference configurations, respectively, and =~ F L is thle
hleat flux vector convevted to the second reference configuration.
Sin iiari v

g" (5.169)

If the constitutive equation for the heat flux (5.161a) is unchanged
by thle change in refercnze configuration, then using (5.168),
(5.169), (A18) and (5.163) hz I must be subjected to the restriction.

Q"~jE7z' T~R (QTEQ. QT EQ, T, Q7'~ (5.170)

We consider only the case when the material has centrai symmetry.

i.e., Q--I1. F'or this very weak symmetry (5.170) becomes

1 (E, E, T, g1j) -h,~ (E 1, 7', gR) (.11

Ih;,in thiis special case, J; is an odd function of gle . It follows
th'at

E, E, 7'.) = 0 (5.172)

in /7.( whenever g,~( for all valuies of E, then
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Consequently, for a, viscous therm-oelastic heat conductor wilh
central symmietryteepnio f(.6a about the undisturbed
natural refe rence state provides again the linearized heat conduction
equation (51.133). Note that, if central symmetiyinoasnd,;
teimn in k appears in the expansion for the heat flux.

Proce eding to find1 a linearized form for the viscous stress
equation (5.1610), we first note that the dissipation inequalli1%
(5.164) h1olds when g 0. The mninimnum property of , in this ca t

imlu.i that

- ,( ,0, T, 0) 0 __ (IE, 0, T, 0') = 0 1',7 )

If .ve again consider a material with centr,,al symmetry, then 111
arg,,ument similar to that used for O.he heat flux provides the resuiih

Thus, 1:0 is an even functon of gft . Consequently,

E t E T,O 0' - 0 (5.176)

Expanding, (5.1.61h) in a Taylor series albout the natural state, we
obtain the linearized viscous stress equation1

CR' + 0 (C' (5. 17 7)

where we have used (,5.77) and where C£vR is defined by (5.166a),
evaluated in theC latUral reference state. For an isotropic material,
this reduces by ( A30) to

Nv (r )1+ 2p c' + 0t)(5.178)

where N. and / ,, are Stokes' viscosity coefficients, evaluated in

the niatural reference state. T1he restriction (5.166b) on C, leads to

X Iq ",2p > 0) P10? > 0 (5.179)

as, may be readily seen by Inserting (A29) into (5.1661b) and making
tho parti(t~lar choices tr M = 0 and (tr /1)2 = tr(AP ) for Al. Note
.wain tlV '., if central sym-met-ry is not asqumed, then a tern- in g
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appears in the expansion for the viscous stress.
We have shown that, for a material with central symmetry, the

classical linear laws of Fourier heat conduction and Stokes viscosity
emerge when infinitesimal disturbances from an undisturbed
uniform natural state are considered. For the special case of a fluid,
the linearized equations reduce to the Navier-Stokes equation. Heat
conduction and viscosity are uncoupled in the sense that, to first
order, heat conduction is independent of strain rate, and the viscous
stress is independent of temperature gradient. If the expansions are
carried out to second order, then coupling erms appear. Such an
expansion has been given by Coleman and Vlizel (1964), who also
considered expansions under somewhat less restrictive conditions
than those which we have itnpo ;ed, in which first-order coupling
terms appear.

An analysis of the linearized constitutive equations, in
conjunction with the linearized equations of conservation of
momentum and energy shows that they are also of mixed type,
even in the absence of heat conduction. One might therefore again
expect the appearance of disturbances throughout a body
simuitaneously with the application of a boundary load or
displacement.

6.3 Acceleration Waves

We now turn to a consideration of wave propagation in
thermoelastic materials with viscosity. We first show that
acceleration waves are impossible in a viscous material with central
symmetry.

The one-dimensional forms of the equation of state are given by
(5.139). Together with the one-dimensional forms of the dissipation
functions (5.161) we can write

A = A(e, T) S = S(e, T)

a 6,(i, T) + j, (e, E, T, g) (5.180)

h = Ii(c, e,T,g)

In an acceleration wave, the strain and temperature are contintious
[6] = 0, [T] = 0, but derivatives of c and T are discontinuous. It
follows from (5.180) and (5.21) that the internal energy is
continuous, [I ] = 0 since the constitutive functions are assumed to
be smooth. From (5.44), for a propagating wave with V, * 0, it
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follows that the heat flux is continuous [h] =.0. Now, if the
material has a center of symmetry, then from the one-dimensional
forms of (5.172) and (5.119b) we see that /I is monotonic in g and
vanishes only when g does. Consequently, continuity of .,, across the
wave implies continuity of the temperature gradient, [g] 0.

Now the stress is continuous [ a 0 when Ic = 0 as may be
seen from (5.32b). Thus

- -- = a(-,T-g-)- &(c+,E . +,T*,g+) = 0 (5.181)

Bute c + T - 7'+ and g" = g+, so that

a(E, c- T, g)= 0(c," ' T, g) (5.182)

Now (5.166b) implies that in our one-dimensional case a,/a 0,
or for the viscous material which we are considering o&,/> 0.
Consequently, the viscous stress and also the total siress are
monotonic in i.Theredfore, (5.182) implies that or from
(5.41)

z = 0 (5.183)

Thus, an acceleration wave with finite speed must have zero
amplitude. We therefore conclude that an acceleration wave is
impossible in a viscous thermoelastic material.

This does not imply, t'owever, that infinitesimal sinusoidal
disturbances cannot propagate in a viscous thermoelastic material.
The rather intricate theory of the propagation of acoutic waves in
a viscous elastic fluid has been discussed in detail by Truesdell
(1953). For a viscous heat conductor, it is found that the phase
velocity of infinitesimal sinusoidal disturbanves approaches the
homentropic value (5.138) in the limit of low frequencies, but
increases without limit as the frequency increases. If acceleration
waves are considered to correspond to the high f'equency limit of
acoustic waves, then this phenomenon is associated with the
non-existence of acceleration waves of finite speed.

Truesdell (1953) also discusses the properties of coupled elastic
and thermal waves which appear in the theory of viscous
heat-conducting elastic fluids. Their predicted dispersion and
absorption characteristics unfortunately do not seem to correspond
to the observed behavior of ultrasonic waves in real materia's.
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6.4 Steady Waves

!o order to pursue the wave prcpagation behavior of ,,scous and
neat conducting elastic matc,,ials further, we are led to inquire into
the possible existence of plane steady waves. The material response
is governed by the oNne-dimcnsional constitutive relations (5.180).
Plane steady wave mot r)n is governed by the one-dimensional
conservation laws in the form (5.62) or (5.64). We therefore ask, do
smooth solutions of (5.180) together with (5.62) or (5.64) exist?

Now we first note that (5.159) implies thaL the viscous stress o
and heat flux h vanish in equilibrium, defined by = 0, g = 0. In
equilibrium, the cjnstitutive equations (5.180) reduce to the
equilibrium thermoelastic equation of state. Now the equations
(5.64) governing steady waves have a form identical to the shock
jump equations. In Appendix 7 we have shown that there are
certain wave speeds V such that exactly two equilibrium state,
(c-,o + ) and (e',o') satisfy the shoc'; jump equations. In fact, these
end states lie on the equilibrium stress-strain Hugoniot. Also, we
have shown that the entropy inequality demands that c- > c', if the
material is c,.nvex, Ns > 0.

We are therefore motivated to rephrase our question. Consider
equilibrium states (with i 0, g = 0) far ahead of and far behind the
wave, oefined by

Lim c() = c' Lim() e (5.181)

with - > c+. which lie on the equilibrium Hugoniot. Here i the
moving coordinate defined by (5.55). We now ask. does there exist
a unique continuous monotonic solution e( ) connecting the
equilibrium states c- and c+ at = -- and + - respectively, which
satisfies the governing equations (5.180) and (5.62)?

This question has been addressed in the generality maintained
here. by Gilbarg and Paolucci (1953) who show that a unique
continuous steady wave solution e() connecting the asymptotic
end states c and e does indeed exist under the following
conditions

31>0 N;> 0
(5.185)

K>0 Mj.>0

Here M, cd Ns are the isen,.ropic moduli defined by (5.156), K is
the <11> component of the thermal conductivity tensor defined
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by (5.119) and M,, is defined by

= 1 ... ,(C, C', T,g9) (5.186)

Note that ., is related to C., defined in (5.166) by a relaton
similar to (A140a). The restrictions (5.185) on Al. and N, guar-ntee
real wave speeds and convexity of isentropes. The restrictions on K
and A],, follow from those placed on K and C, by the assumptions
of definitt, heat conduction and definite viscosity respectively.

General proofs of the stability of the uniquc steady wave
solution are currently lacking. However, approximate solutions of
tran;ient compressive waves for special and simplified consLitutive
relations have been exhinited by I .ighthill (1956), Bland (1965) and
others, which suggest that the steady wave solution is stable, in the
sense that any monotonic compressive wave will approach the
unique steady wave solution with time. If this is true in general for
the viscous heat-conducting thermoelastic materials considered
here, then it would follow that discontinuous shock waves are
unstable, and would degenerate into continuous steady waves with
time.

Gilbarg (1951) has investigated the asymptotic behavior of
steady waves in the limit of vanishing heat conduction and
viscosity. Using one-dimensional forms of the linearized heat
conduction and viscous stress functions (5.133) and (5,177), he
showed that in the limit as the thermal conduction coefficient
K - 0, a continuous steady wave again exists. When the viscous
coefficient M.- 0, a steady structured wave exists which, in
general, contains a discontinuity. When botl K -+ 0, M, -0 0, the
steady wave approaches a discontinuous shock wave.

It will be recalled that the asymptotic equilibrium end states c-
and 0, lie on the equilibrium stress-strain Hugoniot. From the
steady wave equations (5.64) it is seen that all intermediate points
in the steady wave lie on the Rayleigh line connecting these
equilibrium end points. This is true even when heat conduction is
present within the steady wave.

Since the equilibrium end states of a steady wave lie on the
equilibrium Hugoniot, means of determining the equilibrium
equation of state of viscous thermoelastic materials suggest
tbems Is. The approximate solutions of transient compressive
waves, cited above, suggest that the evolution time of a steady wave
arising from a sudden application of a load at the boundary of a
body decreases with wave amplitude. Similarly, the wave thickness,
in terms of the distance required to achieve 99% of the strain
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change in the steady wave. decreases with wave amplitude. Thus,
for waves of sufficient amplitude that the propagation distance
required for a steady wave to evolve, and the wave thickness, are
much smaller than the size of an experimental specimen,
measurements of wave velocity and asymptotic material particle
velocity or stress behind the wave may be used to determine the
equilibrium Hugoniot., just as in a non-viscous non-heat conducting
thermoeastic material. Some care is required, however, to ensure
that non-steady wave evolution does not aff,ct the measurement of
steady wave velocity, and that the correct asymptotic value of
particle velocity or stress behind the wave is estimated.

Finally, we note that the detailed shape of the steady wave is
dependent on the forms of tie constitutive equations for the
viscous stress and heat conduction. If the equilibrium equation of
state has been determined, as above, and the steady wave profile is
measured, information regarding the dissipation functions can be
deduced. For the special case of a viscous non-conductor, for
example, measurement of the velocity profile allows direct
calculation, via (5.62), or profiles of stress, strain, internal energy,
antid after differentiation, -.f strain rate, etc. it is therefore possible,
in principle, to deduce the dependence of the viscous stress on the
strain and strain rate. A proposal to do so for viscous thermoelastic
solids has been made by Band (1959) and implemented by Seaman,
Barbee and Curran (1971).

6.5 Summary

In dealing with a viscous thermoelastic material, we have found
that the entropy inequality demnands existence of an equation ofstate, identical to that found for a non-viscous, non-heat conduc'ing
thermoelastic material. The free energy is a potential function for
the entropy and for an equilibrium stress, that is, the stress
experienced by the material in equilibrium, when strain rates and
temperatuc'e gradients vanish. When the material is not in
equilibrium there appears an extra viscous stress. The entropy
inequality phces restrictions on the constitutive equations for the
viscous stress and the heat flux, which ensure that the total internal
dissipation is non iegative.

Thc introduction of the temperature gradient as an argument in
the constitutive relations aPows consideration of a heat flux which
in the linear approximation reduces to classical Fourier heat
condr-ction. The introduction of the deformation rate leads to the
appeLrance of a viscou:. stress, which in the linear approximation
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reduces to classical Stokesian viscosity. Introduction of this type of
viscosity appears to rule out the propagation of discontinuous
acceleration or shock waves. However, steady waves may occur.
Large amplitude steady waves may have short evohition times and
small thicknesses. In this case, measurements on steady waves may
be used to evaluate the equilibrium equa'tion of state, in much the
same way as in a non-viscous, non-heat conducting thermoelastic
material. However, some care is required that the correct steady
wave speed and asymptotic conditions behind the wave are detected
in the experiment.

Acoustic waves show complicated frequency dispersion and
absorption characteristics when viscosity and heat conduction are
considered. However, if the acoustic wave frequency is sufficiently
low, then the homentropic wave speed is obtained. As this appears
to be the case for many real materials at practical frequencies,
ultrasonic means may again be used to determine isentropic moduli.
However, some care is required to ensure that the asymptotic low
frequency limit is approximated in the experiment.

Predicted acoustic absorption characteristics do not seem to
correspond to observed ultrasonic behavior, and it thezefore does
not seem likely that ultrasonic experiments can be used to deduce
viscosity coefficients. However, steady wave profiles depend on the
dissipation functions, and it may be possible that steady wave
experiment can shed 1i:4ht on the constitutive equation for the
viscous stress.

The theory of thermoelastic materials with a generalized
Stokesian viscosity predicts certain types of behavior which do not
seem to be in accord with experience. Acoustic wave speeds
increase without limit as the frequency increases, and discontinuous
acceleration waves and shock waves appear to be prohibited.
Observations of the frequency dependence of ultrasonic waves do
not seem to correspond to these predictions. Barker and Hollenbach
(1970), Schuler (1970a) and others have observed shock waves with
thicknesses less than a few tens of microns in polymers aid other
materials. Stokesian viscosity does, of course, provide a good
description of material behavior for many applications, such as the
flow of gases, and has been used with some success for describing
smooth motions in solids and liquids. However, it is generally
desirable to use a theory which can accommodate discontinuities if
the phenomena to be described include shock waves as thin as those
which have been observed.

We note that the assumed dependence of the constitutive
functions on the deformation rate at the present time, introduces a
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very special and limited dependence on the deformation hi:tory.
Thus, the constitutive equations of this section may be regarded as
approximations of a sort to the functional equations (5.18), which
depend explicitly on the entire past history. Qualitatively, one
might suppo - that the constitutive equations of this section are
special approximations, which may be useful for slow processes in
some sense. For .,.rocesses which occur in times short compared to
the material's memory, it would seem desirable to take account of
history effects in a more explicit manner. One such theory is
considered in the next section.

7. Viscoelastic Materials

7.1 Constitutive Relations

Up to now, we have considered materials whose response
depends entirely on the present c-onfiguration. In this section we
will consider a special class of materials whose response depends
explicitly on pas' events, termed viscoelastic materials. To permit a
more transparent discussion of the effects of memory, we will
confine our attention to a purely mechanical theory.

In Section 2 we introduced a general constitutive equation for a
bomogeneous simple material, whose response depends on the
entire mechanical history. A frame-indifferent form was found to
be (5.14)

= (EI) (5.187a)

where I is the second Piola-Kirchhoff stress, and Et is the history
of Green's strain, defined by

Et .s) E(X, t-s)O 0 < s < (5.187b)

Here s is the elapsed time parameter which measures time
backwards frc-,m the present.

In the subsequent analysis it will be convenient to separate the
history E' into its present value E E(X,t) = E"(0) and its past
history

= E(X, t-s) 0 < s < (5.188a)

By these means, the response of a simple material can be described
by the constitutive relation
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E (E, E . (5.!88b)

Before proceeding, we consider some general properties of
\ rmaterials with memory. (onsider a strain history in which the strain

\ has been zero for all past times, but at time t, the Atrain undergoes
a jump discontinuity to a value E, whereafter it remains constant.

E

t t

Figure 5.2 Strain Undergoing Jump Discontinuity.

(Figure 5.2). If we set so t to then the jump history can be
expressed by

ti s < s <

(5.189)

Suppose that the jump has just occurred at the present time, t =
or so = 0. Thn the response functional in (5.188b) reduces to an
ordinary function of the strain E

E )(5.1 90a)

The function .A)is termed the instantaneous response function
Now suppose that the material has been at the constant strain E for
all time, including the present. This equil.brium history may be
represented by (5.89) if we take so = -. The response functional
in (5.188b) again reduces to an ordinary function

(E, ) = E) (5.190b)
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The function 1 (E) is termed the equilibrium response function.
The existence of finite instantaneons and equilibrium respcnses

is an important feature of the materials which we will consider in
this section. Comparing (5.190a) and (5.190b) with (5,.66) shows
that both the instantaneous and equilibrium response of a material
with memory is elastic.

In terms of the equilibrium response function (5.190b), we can
define a functional g by

(E Ee) (E,E) - (E) (5.191a)

which clearly has the property

X (E, E) 0 (5.191b)

i.e., the functional R vanishes for an equilibrium history. Then the
constitutive equation for a simple material with memory (5.188b)
can be written in the form

I + (E,E)(5.191c)

The stress can be expressed as the sum of two parts: an equilibrium
stress corresponding to that which the material would experience if
it had been in equilibrium for all past times, and an extra stress
resulting from changes in strain which the material has experienced
in t,? past up to the present time.

So far, we have not introduced any specific assumptions about
the nature of the material's memory. It is a matter of practical
experience that many materials have little recollection of events in
the far distant past. This is indeed fortunate, since it permils the
experimentalist to interpret data obtained in the laboratory without
ha.-ing to know the entire history of the material since its
formation, in fact, for some materials it is possible to ignore
deformations which might have occurred only a relatively short
time before, if the recollection span of the material is short
compared to the time scale of the rotion. Consequently, we are led
to consider materials whose response depends strongly on recent
events, but that the influence of past events diminishes with elapsed
time so as to become, eventually, altogether negligible. Such
materials are characterized as having fading memory.

The concept of fading memory has been rendered precise by
Coleman and Noll (1960, 1961). Stated roughly, the principle of
fading memory says something about the manner in which the
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functional R in the constitutive equation (5.191) approaches zero
* as the strain history EI approaches the equilibrium history. In

particular, Xf is vssumed to be continuous at the argument functicn
E E. This statement is not mathematically precise. There are

many ways of defining the magnitude of a function, each of which
leads to a different concept of continuity of a functional. Other
fading memory principles have been proposed, for example, by
Wang (1965a,b) and Coleman and Mizel (1966, 1968). However, we
will restrict attention to that proposed by Colern.m and NolR (1960,
1961).

The smoothness properties of the constitutive functional
resulting from the constitutive assumption of fading memory allow
definition of processes of differentiation. From (5.191a)
smoothness of Yf implies smoothness of ,('. The partial derivative of
~'(E. E) w;th respect to the present value of strain E, holding the
past history fixed, is of particular importance

C C= (E, E')= ( ~)  (5.192a)

The functiona Ct is termed the instantaneous elasticity since it is a
measure of the instantaneous response of the material to a small
strain impulse imposed at the present time t on the iistory E. For
the jump history (5.189) with a strain jump at the present time t,
i.e., at so = 0, the functional C, reduces +o ?n ordinary function of
E. Noting (5.1.90a) we see that

C = C(E, P) = C(E) = dE )' (5.192b)

We can also define the derivative of the equilibrium response
function Z,:, by

C. =C ( ) =-,,(E) (5.192c)

where C, is termed the equilibrium elasticity. Both C, and C: are
fourth-order tensors, which, because of the symmetry of Y and E,
share the symmetries of C in (5.67b).

An important consequence of the principle of fading memory is
stress relaxation, as shown by Coleman and Noll. Stress relaxation
may be illustrated by considering the jump history (5.189) in which
the strain jump occurred at time to. If the strain jump has just
occurred t = to or so = t - to = 0, then the stress is he
instantaneous stress by (5.190a). We now consider n series of jump
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histories in which the jump has occurred at increasingly long times
in the past, i.e., we consider increasing values of so. The stress is
given by (5.191c). In the limit as so increases

Lim E-2; (E + Limn If(E, E,,W()

As so - , the strain history E approaches the equilibrium history
E. The smoothness properties of J( imposed by the principle

of fading memcry imply that

Lim E,E(s)) =,(E,E) 0

from (5.191b). Thus, it is seen that

Lira Z = :(E) (5.193)

that is, the stress approaches the equilibrium stress as the elapsed
time since the strain jump approaches infinity.

The stress need not approach the equilibrium stress
monotonically, as shown in the one-dimenzionad sketch in Figure
5.3. Monotonic stress relaxation, which seems to be a feature of

t--- ,,

I-I

V11

o TIME

Figure 5.3 Stress Approaching Equilibrium Stress.

most real materials, may be introduced by making special
constitutive assumptio -is concerning the properties of or Y .

It is of interest to remark on the similarity of the
decomposition (5.191) fc.r a material with fading memory, and
(5.158) for an elastic material with viscosity considered in the
previous section. The deformation rate at the present time in an
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arbitrary motion is independent of past history, and the two,
constitutive equations are quite different. The properties of the
exb :, stres,,; dewIoped it) Sectionl 0 Im [)ly tbl.Ih v ex tr e, ,it 4 1
Io0o ton ic lly i1iCeasing function of strain rate, and is unbounded

at a strain jump. By contrast, materials with fading memory have a
finite instantaneous response. Col .man and Noll (1960) have shown
that the response of a material with fading memory can I)e
approximated by the rate type material of Section 6 when the
motion is slow, se., when the rates of change of quantities are
small.

7.2 Finite Linear Viscoelastic Materials

The behavior of materials with "ading memory has been studied
in some detail, retaining the generality of the functional
representation of Section 7.1. In order to avoid the di1ficulties of
functional analysis, we will consider hereafter only a simp'e special
case, which nevertheless displays all of the qualitative features of
the general tieory.

If 1( in (5.191) has appropriate smoothness properties, and its
dependence on the past history is small, then Coleman and Noll
(1961) have shown that -( may be approximated by a lunctional
which is linear in the past history. Such a linear functional may be
represented in terms of an integral, i.e.,

00

j Q' ( -- E,. )ds (5.194a)

where ,2' is a fourth-order tensor which is defined, for later
convenience, by

: (E, s)(5.1941b)

Note that 2' and SN also share the symmetry properties of C in
(5.67b). The fourth-order tensor 2 is termed the relaxation
function. Note that (5.194a) has the desired property that 3(f = 0
when EP = E. The principle of fading memory implies that the right
hand side of (5.194a) approaches the limit 0 smoothly as E"

approaches the rest history E. Bearing in mind the jump history
(5.189), we see that Q2' must remain finite as s -, o. We will further
assume, without loss of generality, that ,is smooth and hs
the limit

1Q'(E, s) =- 0 (5.195)
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Inserting (5.194a) into (5.191c), and reverting to direct
notation, we obtain the constitutive relation

" 1 ±f,, (E) +(f E,- Et) (5.196)
0

where the chain brackets imply a linear mapping, and we have
indicated the independent variables in each function. A material
governed by (5.196) is termed a finite linear viscoelastic material.
Although (5.196) depends only linearly on the history E t , nonlinear
dependencies of &I on E and i on E and s are allowed. Since
(5.196) is frame-indifferent, this constitutive equation has meaning
for arbitrarily large deformations.

The constitutive equation (5.196) may be expressed in an
alternate form. Expanding the integral we obtain

-EE) cc (E s) E(s) ds

(5.197)
+ -,0) 12

Consider the jump history (5.189) and suppose that the jump has
just occurred s = 0. From (5.190a) the stress on the left of (5.197)
is the instantaneous stress I = (E). Moreover, the integral
vanishes, since the strain has been zero for all past times. Thus, we
are left with a relation between the instantaneous stress and
equilibrium stress

" (E) = .:(E') + [Q(E, O) -- f5E2o)] E} (5.198)

Inserting (5.198) into (5.197) we obtain an alternate form of the
constitutive equation of a finite linear viscoelastic material

= ,(E) +f '(E, s) '(s) )ds •(5.199)

The two forms of the constitutive equation (5.196) and (5.199) are
equivalent, but the latter will be found more convenient in what
follows.

Material symmetry will place restrictions on tho forms of the
response functions Y,(E) and QI(E,s). From (A.24) we may deduce
that Y, and f2 must satisfy

,(E) = t QEQr)Q (5.200a)
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) I .
-0 ¢ (5.2001))

for the appropriate isotropy group S of tensors Q. If the material is
isotropic and the reference configuration is undistorted, then
(5.200) must be sati fied for all orthogonal . In this case, from
(A2,6), (5.200a) becomes

4(E) e, + '+ e, E (5.201a)

where eo, el and e., are functions of the principal invariants of E.
Coleman and Noll (1961) have shown that (5.200b) implies the

following representation for £1 when the material is isotropic

.r[Et () V (E, )] 1 f tr[E' ( ) (E, s)]E

t r[E (S) W4(E,s) (5.201b)

The second-order tensor coefficients W 1, M. 3., are functions
of s, and for each s are isotropic tensor functions of E with
representations similar to (5.201a).

In order to introduce a constitutive assumption which will
result in monotonic stress relaxation, it is convenient to redefine
the relaxation function as follows. We define a fourth-order tensor
A by the expression

2',(E, s) .. f A(E, 7) exp(- s-)d (5.202a)
07

The function A(E. r) is known as a continuous relaxation spectrum.
It obviously shares the symmetries of 2, and it is assumed to be
positive definite, i.e., for all symmetric second-order tensors Al.,

• i1, i > 0 (5.2021))

With this assumption, it is seen that; for the jump history (5.189),
the stress will decay monotonically with elapsed time since the
jump occurred.

In applications, the integral form (5.202a) is often cumbersome,
and is approximated by a finite summation
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N

(E, s) - ( exp A (5.202c)
a=1

The discrete tela.ation functions A(El are assumed to be positive
definite in th snse. of (5.202b), and the discrete relaxation times
-r, are taken to be strictly positive. Further discussion of relaxation
spectra can be found in texts on viscoelasticity, for example, Ferry
(1961).

An especlly simple case arises when the response of the
material can be, represented by a single term in the sum in (5.202c),
that is, by a single relaxation time. Inserting (5.202c) into the
constitutive ecuation (5.199) in this case, we obtain

-- -+ A(E) 1'"1 (5.203a)

where

-,_ - f exp - ":)?,p!AL (5.203b)
0

Differentiating this result with respect to t at constant X the result
in indicial notati6n \s

= E + -- m'-; E + Aimn (5.204a)
. " dF4Q mndhQ n

where

+ 4 exp - 3!Etsds (5.204b)r 0

Now, we recall the definition of the strain history (5.187b). The
chain rule provides the sequence

;-E'(s) = _-,t(s _ Et(s}

Consequently (5204b) becomes

= f xp 5-E'(.) ds
0

=- ,: [x,(1 -+ oexp(- ) ha
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where we have used integration by parts. Evaluating the limits on
the first term, and noting (5.203b) we obtain

(E + -Q)

Operating on this result with the linear mapping A {-}, the last term
in (5.204a) can be written

where we have used (5.203a). From (5.198), this may also be
written as

We may express ' in a convenient form if A(E) is invertible, since
(5.203a) may then be inverted to provide

4' = A- 1 {v -

If these two results are inserted into (5.204a) we obtain the
constitutive equation

=" + G (5.205a)

where C and G are given by
d,., 1v dA1 im 1,

d ' d E h v ninpq - pQ1 (5 .2 0 5 b )

1.i ,, E (5.205c)G• T )

Noting that Y-, Z E and A are all functions of E only, (5.205) can
be 'written more generally in direct notation as

" C( E) E k + C(., E (5.206)

If we idetitify the functions C and ; as those given in (5.205),
then the constitutive tquation (5.206) is a convenient form of that
of a finite linear viscoelastic material (5.199) in which the
relaxation function is represented by a single relaxation time. It
happens that other, more general, types of functions C and G may

be used in (5.20C) with considerable success to describe the
behavior of viscoelastic materials. A material governed by (5.206) is
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termed a generalized Maxwell material. Except in the special case
represented by (5.205), the response of a generalized Maxwell
material does not coincide with that of a finite 1:near viscoelastic
material.

The subsequent development of this section could be carried
out equally well in terms of either a finite litear viscoelastic
material or a generalized Maxwell material. Both provide
qualitatively the same types of behavior as that obtained in the
general theory of materials with fading memory. Because of the
closer connection with the classical theory of linear viscoelasticity,
we prefer to use the equations of finite linear viscoelasticity in what
follows.

7.3 Approximations for Small Strains

In' this subsection we will consider the simplifications which
arise when strans are small in some sense. We will first consider
small excursions from the reference configuration such that the
components of Green's strain are limited by

sup~E~ (5.207)

In this case, we may expand the response functions i(E) and
rl (E,s) in (5.199) in Taylor series about the reference configuration
E = 0. Retaining only first order terms, (5.199) becomes

R + C-JRE + Q (s) E'(s))ds + 0(03) (5.208)
0

where ;R is the stress in the reference configuration, 9iR is the
instantaneous elasticity, and 9R is the relaxation function, all
evaluated at E = 0. Since we are considering only small
perturbations from the reference configuration, we may deduce
from the stress relaxation theorem that YR is the equilibrium stress
in the reference configuration, In = E(O). If the reference

configuration is a natural state, then F R .
If only infintesimral displacements from a nabural state are

considered, then the constitutive relation may be simplified further.
We consider that the displacement d = x - X and its gradient H are
limited for all times t by

sup d 1,J~ff < c(5.209)
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c.f. (5.75). In this case, using (5.76) and (5.77) in the definition of
Piola's stre-ss (5.13) we find that Cauchy's stress is given by

a (1 + tre)(l 11 ): ( H )1T + 0(5:')

where e is the infinitesimal strain tensor. Substitution of (5.208)
into this equation, remembering that e and H are of 0(s), yields

£n ' ~+f ()~e(I~ds + W(E ) (5.210)
0

where e' is he history of the infinitesimal strain. This equation may
be put into more recognizable form by defining a new stress
relaxation function

LWS) CIf ~2(r)dr (5.2 11a)

Using this, the approximate coi.stitutive equation (5.210) becomes

~. R()~ F~s)e()~s+ () (5.2 1 L)

If we neglect -terms of 0(Es2), this becomes the familiar equation of
classical infinitesimal viscoelasticity.

In order to relate the relaxation function llR to the relaxation
spectrum A, we evaluate the integral in (5.211a)to obtain

II'R(s) = C-n+E20 - 920(O) (5.212a)

Differentiating (5.1981 with respect to E, ad evaluating the result
at E = 0 provides the relation

Cm CU + ~f()- 3()(5.212b)

Combining (5.212) with (5.202a), we obtain

lIft(S) = CI-R +1 "; R(7)eXP- !d7- (5.2113)

where ARt(T) =A(O1-r) is the continuous relaxation spectrum
evalutted in the natural reference configuration.

We have derived the linearized equation (5.211b) from the
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finite linear viscoelastic eqv-tion (5.199). Coleman and Noll (1961)

have shown that (5.211b) also follows as an approximation to the

general functional constituLive equation for a simple material with
fading memory when displacements are infinitesimal. A coraplcte
treatment of the linear theory of viscoelaticity .has been given by

Gurtin and Sternberg (1962).

7.4 Acoustic Waves

Ultrasonic experiments are of great importance in the
evaluation of specific constitutive relations for viscoelastic
materials. The theory can be developed at the level of generality
employed in the previous discussion of elastic materials in Section
4. In order merely to illustrate the role of viscoelasticity in acoustic
wave propagation, we will limit ourselves to a one-dimensional
treatment which appl;es to wave propagation in pure mode
directions in material in a homogeneous natural reference
configuration. The theory has been par,,"aily given by Hunter
(1960) and others, and in the present context, by Coleman and
Gurtin (1965a).

We will consider pure longitudinal motion* in the coordinate

direction, with displacement d = x - X. The equation of

conservation of momentum (A49) can be written, in the absence of

an external body force field b as

-1 (5.214)

We assume that the displacement and its Fadient are infinitesimal,

in the sense of (5.209). From (5.74) and (b.76) we see that in one
dimension e - 3d/X. Using this in (,5.211b) the one-dimensional
linearized constitutive relation is

a (X.t)
S OX (5.215)

-f l(s) (X, t - s)ds 4 0(e )

Combining these two equations, we obtain the integro-differential
equation of motion governing infinitesimal longitudinal

displacements from the natural state

*The results to be presezted hold equally well for pure transverse waves with a proper

reinterpretation of the components of vector and tensor quantities. c.f. Appendix 3.
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Pa 2  I 0

(5.216)
_ a2
Ii~s-d(X. 1- s)ds

o) 2

where we have- omitted terms of OWc). We seek solutions it, the
form of damped sin~usoidal waves

d'(X, t) alleWp CRX)Sinj-(X - V, t) (5.217)

where a R >0 is the attenuation coefficient, w > 0 is the frequency
and VR i the intrinsic speed of the wave. The subscript R has been
used on a and V as a reminder that the result-, are valid only for
infinitesimal displaenierls from the natural reference
configuration. It is found that the displacement field (5.217)
satisfies the equation oi motion (5.21.6k if and only if

where Il',R(w) is the Fourier transform

00

Equating the real (C e) and imaginary (.Im) parts of. (5.218), we
obtain

I'f 1 (02; e (5.219a)

O(W) 1w' O(Wo .a.2n 2

where 0 (w) is the phase angle defined by

and 0 < 0 < iT/2.
The results (5.219) sYhow the effects of viscoclasticity on

acoustic wave propagation. Acoustic waves attenuate, both the
wave speed and attenuatioa~ being a function of frequency, contrary
to the resu~ts for an elastic material where dispersion and
attenuation axe absent.

The high freq.uency and low frequency liriits can be obtained
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easily from (5.219). The Fourier taxansform (5.218b) has thc
properties

Lim 111?(w) =I,110-) 1100~() Lim I 1(;, 0

Limnwj-F ~((G) 0 Lim&,i (w r H ill? (0)

Using those relations in (5.219) we see irnmediately, that

Piz V1.- I?~ iY (5.220a)

V, ~~~1; (0t(0'5,2b

4 2111? (0t, V,,j
where V , and aER are the low frequency limits as co- 0 of V(w)
and a(.)) and 111R and al,, are the corresponding high frequancy
limits as W ~ ~ From (5.212a), (5.212b) and (5.195) we see that
fil (0) = C1 R 11R CE CR where CIR an d C,.l j are the
appropriate longitudin-al components of the elasticities C,,? and

C' i for the normal mode direction under study. Consequently the
l1ow and high frequency limnit-, of the wave speed are related to the
equilibrium a\~d instantanecus ela:;ticdties by

PR V, CI! POR Q "R (5.221)

Note that'the p~iopaga~ion speed and attenuation of accu.stic
'~waves in viscolastic materials do not exhibit unbounded limits,, as

tn the theoiy' incuding a Stokesian viscosity discussed in Section 6.
'In priniciple, the measurement of limiting high and low frequency

,ave speeds allows a direct determination of instantaneous an Id
equilibriumn easticities via (5.221), while an experimental
determinatioriof the dispersion and attenuation as a function of
freqjuenicy allo~vs the evaluation of the stress relaxation function j.JR
anc' consequetitly, via (5.211la) of 92? While our present sketch of
the tuebry lis considered only acoustic waves propagating into
material h- a Iatural state, the theory can be ext:--ded to the
propagation of, acoustic waves i~n a material which has been
prestrained by n arbitrary amount, in a manner analogous to that
in Section 4.3.1 It would then be possible, in principle at least, to
evaluate the strain dependence of the elasticities and relaxation
function by ultrasonic means. Once this has been accomplished,
then the covistitutive relation (5.199) is comple~y determined.

More rodest objectives have generally been set by ultrasonic
experi-ment rs. The experimental measurement of ultrasonic waves
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in viscoelastic materials is difficult at low frequencies. However,
high frequency measurements have been made successfully. For
example, Asay, Laniberson and Guenther (1969) have made
measurements of high frequency ultrasonic velocities as a function
of hydrostatic pressure in polymethyl methacrylate (PMMA).
Nunziato, Schuler and Walsh (1972) have devised means of
evaluating the density dependence of the instantaneous bulk
modulus in an isotropic material from the pressure dependence of
longitudinal and shear waves, and have applied this to the
interpretation of the data for PMMA.

To overcome the difficulties which arise at low frequencies,
various expediencies must be resorted to. For example, Sutherland
and Lingle (1.97") have employed a time-temperature superposition
technique to determine the frequency dependence of wave velocity
and attenuation over a wide range of frequencies in epoxy and
PMMA. Nunziato and Sutherland (1973) have shown how these
data may be used to evalate the time dependence of the
longitudinal relaxation function.

7.5 Steady Waves

The existence of plane steady waves in nonlinear viscoelastic
materials was first demonstrated by Pipkin (1966). Using a special
constitutive equation similar to (5.199), Pipkin obtained exact
solutions to the steady wave equations (5.62) which contained
smooth structured waves, acceleration waves, and shock waves.
Subsequently, Greenberg (1967) showed that steady wave
solutions may exist in a large class of nonlinear mater~als with
fading memory. Greenberg (1968) also provided similar prcofs for
a generaized Maxwell material.

In order to demonstrate these results, we need the
one-d-mensional form of the constitutive relation for finite linear
viscoelasticity (5.199) appropriate to plane wave motion in a
material symmetry direction. Using unsubscripted symbols to
d-note the appropriate lungitudinal components of tensor
quantities

=(E) +f 2'(E, s)E'(s)ds
0

where we have used the fact that the only non-zero component of E
is E = E,1 in one dimensional longitudinal motion, and the motion
is in a material symmetry direction. It is more convenient to express
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the constitutive equation directly in terms of Cauchy's stress u and
engineering strain e. Using (A136), we obtain

00

+, f (Js(1) -2 s
j- 2 .' ')% s))2 (5.222a)
0

where we have defined the one-dimensional relaxation function
G(e,s) by*

G(c, s) (1 -- E)O(E, s) (5.222b)

We note that (5.195) implies that

Lim , s) 0 (5.222c)

With these definitions, the relation between the instantaneous and
equilibrium functions (5.198) becomes, in one dimension

( [E(), 0) G(e, 00)] E(2 - e) (5.223)

We define the one-dimensional instantaneous modulus in a
manner analogous to (5.192a) by the partial derivative of the
constitutive functional in (5.222a)

oc

Al, 'i 1 (EE1,,(5.224a)

00

For the jump history (5.189) with the strain jump at the present
time s = 0, lit reCduces to an ordinary function

deM, l; (. ) M1l(E) 
=  5 e) (5.224b)

c.f. (5.192b). The one-dimensional equilibrium modulus is defined
in a manner analogous to (5.192c) by

~d-
M . " = E= d ( (5.224c)

* Note that G; (c,s) is not related directly to the tensor function G used in Section 7.2.
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Note that the instantancous modulus is, in general, a functional of

the past strain history. The moduli M, and AME may be related to
the normal components (in the direction of motion) of the

elasticities C1 and CE by means similar to those employed in
Appendix 6. In fact, the resulting relations have the form (A140al. It

is seen that M, ard MA. become identical with C1 and CF when the

material is in a natural ref rence configuration.
We can define velocities V, =(E,cf,) and Vj, V(e) by

PR Vi" = lil(e, ct) (5.225a)

PR VE = (e) (5.225h)

The velocities V, and V. reduce to V,,1 and VE R given by (5.221)
for infinitesimal disturbances from a natural reference

configuration. Consequently, we are motivated tu term V, and V :

the instantaneous and equilibri'im acoustic wave speeds,

respectively, for an arbitrary strain history. This identification vill

be strengthened in what follows. Note that while the equilibriuwn
sound speed is a function of the current strain only, the

instantaneous sound speed is a functional of the past strain history

as well as the current strain.
We now return to the problem of the existence of steady waves

in a. finite linear viscoelastic material. In particular we seek

conditions under which solutions exist to the governing steady wave

equations (5.62) and the constitutive equation (5.222a). These

conditions for a finite linear viscoelastic material may be read off

from the results of Pipkin (1966) and Greenberg (1967).
We will consider the existence of solutions c(-) which aye

monotonically increasing from an equilibrium strain e = 0 ahead of

the wave at } = + - to a finite equilibrium strain r- behind the wave
at - with 0 < c_ < 1. The conditions for the existence of

such solutions are found to be:
a) The response functions 01(c) and ,F.(c) are monotonically

increasing functions of e with G_ (c) > GE() for all values
0 < E < 1. The derivatives M1 (e) and ME1p: (c) are positive and
monotonically increasiiig functions of c with M() > " (c)

for all values 0 < c < 1. These conditions imply that the

instantaneous and equilibrium stress-strain curves are
convex, and the instantaneous curve lies above the
equilibrium curve.

b) The instantaneous modulus 11i ,(c,e,) is strictly positive and is
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a monotonically increasing function of strain c for all
monotonically increasing strain histories c'(s) and for all
0 < c < 1. In the monotonic compressive steady wave which
we are considering, the strain history at any material
particle will be monotonically increasing with time. This
condition therefore ir.plies that the instantaneous sound
speed w" 1(,e,) will he real and -monotonically increasing
from c = 0 at .= + t, c = c- at. =- -.

c) The response function G (cs) is such that
S(C) > S(C Cj >Y- : 6, ,c)for all monot:inically increasing strain

histories c(s) with cf(0) =c and for all 0 < c < 1. This
condition implies that the stress experienced at any point in
the wave will lie between the instantaneous and equilibriam
stresses corresponding to the strain at that point.

4) The response function (e.v,s) is a monotonically increasing
function of strain c, and has a strictly negative tm
derivative G(<,&) K 0 for all 0 < c < 1. This condition
implies that the material will exhibit monotonic stress
relaxation.

These four conditions malke precise the physical concepts
connected with steady waves. Intuitively, a steady wave is achieved
whenever there is a balance between dissipative effects, which tend
to disperse the wave, arid_ the effects of nonlinearities in the
material's stress-strain response, which tend to steepen the wave.
The conditions (a) and (b) guarantee that the material nonlinearities
are such that every part of a compressive wave will tend to stoepen.
The conditions (c) and (d) guar,.,ntee that the dissipative effects are
such that waves tend to dispe's:. i'he no.ipositiveness of G' and its
relation to internal dissipation has been discussed by Gurtin and
lerrera (1 965) in the context of linear viscoelastic materials.

With the above four conditions, it can be shown that steady
wave solutions indeed exist which exhibit the following behavior.
Four different. cases can be distinguished, depending on the po3itior
of the Rayleigh line (on which points in the steady wave lie) with
respect to the instantaneous and equilibrium stress-strain curves.

(i) If the slope of the Ruyleigh line R is less than or equal to
the initial equilibrium modulus Ir (0) = C;, t!en no
non-trivial steady wave so',utiuns exist (Figure 5.4).

From (5.3"' ) and (5.221), and the fact that the steady wave
equatio as are identical to the shock equations, an equivalent
condition is that the steady wave speed V) is less than or
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STRAIN

Figure 5.4 Rayleigh Line with Slope Less than Initial Equilibrium Modulus.

equal to the initial equilibrium acoustic wave speed, that is
V0 < V .

(ii) If the slope of the Rayleigh line lies between the initial
instantaneous and eq~uilibrium mnoduli C, R and CE Ri or
equivalently i V1Y R > V 0 > VE R , then a unique continuous
steady wave solution exists for each wave speed V0 . This
solution exhibits the features shown in Figure 5.5.

STRA IN

Figure 5.5 Rayleigh Line with Slope Btween Tni~,iaI Equfibirium and
Instantaneous Moduli.

The strain c-(Q) -~ 0 as t - -i-cc, and c(-+ c-. as ~-c
'with c_ given by
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Pr,(O ) (5.226a)

(iii) If the slope of the Rayleigh line equals the initial
instantaneous modulus CIR, thtis, if VO VIR, te
unique steady wave solution exists, which contains an
acceleration, wave (Figure 5.6).

The strain c(Q) - c as ~ ~- given by (5.226a). However,
e(Q) = 0 for > 0, and a discontinuity in the slope of CQ)
occurs at 0

E

A

L,

0 STRAIN

* Figure 5. Rayleigh Line with Slope Equa e o a Initial Instantaneous dls

Modul~is
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(iv) If the slope of the Rayveigh line is greater than the initial
instantaneous modulus CIR, or equivalently, if Vo > VIR,
then a unique steady wave solution exists for each wave
speed V0, which contains a shock discontinuity (Figure
5.7).

The strain e() -_ e., as -* -o with e- given by (5.226a),is
above. However, a shock occurs at } 0, with c(Q) 0 for

; 0, and (- w at Z 0", with c given by

,0COVe = (5.226b)

Proofs of these results are lengthy and will not be given here.
We note the existence of an analogous set of expansive steady wave
solutions in a material with concave instantaneous and equilibrium
stress-strain curves, that is, for M1(c), Mj(e) and %h (e,e,)
monotonically decreasing functions of strain e. We will not give
Lhcse in detail, but will merely comment on some of the
consequences of the compressive steady wave results.

It has been found by Barker and Hollenbach (1970) and Schuler
(1970a) that steady waves can be generated and observed in
viscoelastic materials in plate impact cxperirnents. In particular, they
repoited steady wave profile measurements in PMMA of type (iv)
above, which contain shock waves followed by a steady continuous
wave. Measurements of the steady wave velocity V0, the strain
amplitude at the -hock e0 , and the asymptotic strain amplitude -..
tar bebind the shock, for a series of experiments at different impact
velocities, allow evaluation of the instantaneotis and equilibrium
response Iunctions 01(c) and (E) via (5.226).

We note that the accuracy with which E () is determined
depends on the accuracy with which the asymptotic value of the
strain e- is estimated from the steady wave data. In plate impact
experiments, the duration of the experiment is, at most, a few
microseconds. The values of UE(C) obtained from shock wave
experiments may fall above those obtained in q,,asi-static
experiments, if the material exhibits long-time stress relaxation.
Nevertheless, the valkes of E (e) determined from steady wave data
may serve for an adequate description of motions in which the time
scale is also on the order of microseconds.

Once the instantaneous and equilibrium response functions
al(c) and UE(-) have been evaluated, then it is evident from the
constitutive equation (5.222a) that the detailed shape of the
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continuous portion of the steady wave depends on the relaxation
function G(E,s). In fact, Schuler (1976a) has evaluated a relaxation
function for PMMA from steady wave measurements, assuming a
discrete relaxation spectrum with a single relaxation time. Thus it is
possible, at least in principle, to evaluate the complete
one-dimensional constitutive equation (5.222a) from steady wave
measurements.

7.6 Acceleration Waves

The general theory of acceleration waves in materials with
fading memory has been developed, in the purely mechanical case,
by Coleman, Gurtin, and Herrera (1965) and Coleman and Gurtin
(1965"-). Tl- oy presented a one-dimensional treatment appropriate
fo-r plane waves propagating in pure mode directions. Coleman,
Greenberg, and Gurtin (1966) treated acceleration waves in a
Maxwell material. We will follow these treatments within the
context of finite linear viscoelasticity.

Consider first longitudinal motion in a material symmetry
direction. The constitutive equation is given by (5.222). The
instantaneous and equilibrium moduli are defined by (5.224). It
will also be useful to define the instantaneous second-order
rnodulus N1 by

d () + G'(e, s)e (s) [2 - es)]ds (5.227a)
de' f0 2 ac- 5.2a

Note that, in general, the instantaneous second order modulus is
also a functional of the strain history. For the jump history (5.189)
with he strain jump at s = 0. '^ reduces to an ordinary function

d2N = l((c, 0) = 1(e) =
O 01~b(c) (5.227b)

In order to find an expression for the velocity of an acceleration
wave, w; will use (5.46b). We require a relation between the jump
in stress rate and the jump in strain raze. The required relation can
be obtained by differentiating the constitutive equation (5.222a).
Noting that e = -(Xt) and obtaining the partial derivative with
respect to t at constant X by using the chain rule and (5.224a), we
obtain
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00

:-' a +  G'(e, s))]--e (s)ds (5.228)
0

Now, we recall that the strain history was defined as c (s) = c(X, t-s)
for all s such that 0 s < oo. Using the chain rule we obtain

at as at a
Using this relation, we see that the term in the integrand of (5.228)
can be written

QsbEts as ) e'(s) I)

With this result, the integral in (5.228) may be integrated by part,
to obtain

a t- ( c"'5 + 1 G'(e, 6) e2 - e)
00

+ J 1 ~G(c, q) c(s) 12 -E'(s)] ds(52)!i o 2 -(5.229)
0

where we have used (5.222c). At an acceleration wave, the stress
rate and strain rate suffer jump discontinuities, but the strain itself
is continuous. Consequently, if we apply (5.229) to eithor side of
the acceleration wave, and subtract the results, we are left with

[at (5.230)

Combining this result with the acceleration wave relation (5.46b),
the following expression fior the intrinsic velocity of an acceleration
wave is obtained

PR 'ia2 (C, 4) (5.231)

This result may be compared to (5.225a). If we restrict attention to
acceleration waves propagating into material in a natural reference
configuration, then these results show that the acceleration wave
speed correspcnds to the high frequency limit of the acoustic wave
speed. The results suggest that this is true for arbitrary strain
histories also.

In order to investigate the growth and decay of acceleration
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Ws, we will use (5.5 1). We require a relation between the jumps
in te second derivatives of stress and strain with respect to time.
1'he'desired relation can be obtained by differentiating (5.22,9) and
ifttegTating by parts, as before. Subtracting across the discontinuity,
tie r sult Is

(5.232a)

wh'tre (5.127a) has been used and where

G'(e, 0)(1 -- e -G'Ve, 0) d(2

+J . Gic s'() [ c(sld (.beh
00

Inserting (5.232) into the amplitude equation (5.51) we obtain
with the 0aid of (5.231)

(it %(jfe ef, a , elf Dil (5.233

This resuif, may be simplified if the acceleration wave is propagating
into mzterial w~hich is at rest in a homogeneous reference

coiiration, f )and has been so fralps ie
(;=0, 0 -- s < .~.We denote

N11t 0),0) 0) (5.234a)

and see from (5.232b) tnat, if we denote- G (0,s) G,(s) then

From (5.27) and (5.4 1) we also see that [(3 e/3 t)2 I 3 ca/3 t1 -

a2. Furthermore, the wave speed is constant, dV0 /Idt=0. Thus,
(5.233) ,reduces to an ordinary differential equation for the
acceleration wave amplitude

dt-~ -~.(5.235a)
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where 3 and a,. have been defined by

a. N (5.235b)

The differential equation (5.235a) is the Bernoulli equation, which
has the general solution

+(t) .. . .
a. (5.236)

where ao is the initial amplitude at time t = 0. For an accelerati3n
wave propagating into material which has always been at rest in a
homogeneous reference configuration, the amplitude is governed
solely by the initial instantaneous moduli MI and N1 and theinitial slope of the relaxatior function G;? (0).

If Gh (0) = 0, then we see that (5.235a) reduces to (5.102). In
this special case, the material is elastic, at least in its reference
configtration. It is immediately evident, by comparing (5.236) with
(5.103), that the behaior of an acceleration wave in a viscoelastic
material is much more complicated than in an elastic material. If we
adopt the same restrictions as those required for the existence of
stcd,, ,wv, i. M,. > 0, GkL(0) < 0, then 3 > 0 and the sign of
a. is determined by the sign of Nn.

Consider a compressive acceleration wave a > 0 propagating in a
convex material NIT? > 0. If the initial amplitude ao < a,, then the
amplitude will decay to zerc, a -* 0 as t - . However, if ao > ac,
then the amplitude will become infinite in a finite time given by

In( -(5.237)

If ao = a,., then the amplitude will remain constant as the
acceleration wave propagates. Analogous results can be read off for
expansive waves a < 0 and/or concave materials NI R < 0.

The above result,- imply that there exists a critical acceleration
wave amplitude c,. For the case considered above, waves of lesser
amplitude decay, waves of greater amplitude experience an
unbounded growth. As before, we surmise that unbounded growth
or an acceleration wave leads to the formation of a shock wave. In
an elastic material we found that all compressive acceleration waves
in a convex material grow into shocks in a finite time. Dissipative
mechanisms in a viscoelastic material cause acceleration waves
below the critical amplitude to damp out. However, for waves
above the critical amplitude, dissipation is not suffi,'ient to
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overcome the effects of material non-linearities which tend to cause
a~celeration waves to grow.

Experimental evidence that such behavior occurs in real
materials has been presented by Walsh and Schuler (1973). They
used the constitutive equation for PMMA evaluated from steady
wave measurements by Schuler (1970a) to calculate the time
required for shock formation t. as a function of initial amplitude
a,. They found that observed shock formation times were
commensurate with these predictions.

Another application of the acceleration wave analysis involves
unloading wave behavior. Schuler (1970b) has made measurements
of unloading waves propagating into shocl-compressed PMMA in a
series of plate impact experiments. The leading portion of the
unlo.ding wave can be represented as an expansive acceleration
wave moving into uniformly precompressed material. Again, using
the constitutive relation evaluated from steady wave expriments,
Schuler wds successful in predicting the propagation speed of these
expansive dcceleraion waves for a range of initial stroins.

When the instantaneous stress-strain curve is linear, NR R 0
then from (5.235a) the amplitude equation becomes simply

a (t) ao exp(- pt) (5.238)

Since > 0, every acceleration wave in a linear viscoelastic material
decays monotonically to zero. This behavior is identical to that of
infinitesimal sinusoidal acoustic waves in the high frequency limit,
since it is not too difficult to show that the attenuatien coefficient

given by (5.235b) corresponds to the attenuation coefficient
(aIR VIR ) given by (5.220b) when the reference configuration is a
natural state.

Finally, we note results for transverse acceleration waves. As for
the case considered in Section 4.4, all of the above equations are
valid also for transverse acceleration waves if the components of
tensor quantities are correctly reinterpreted. If the reference
configuration into which the wave is propagating is a natural state,
then material symmetry implies that N1 R = 0, and all transverse
acceleration waves are governed by (5.238). All transverse
acceleration waves propagating into a homogeneous natural state
decay.

7.7 Shock Waves

The general theory of shock propagation in materials with
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fading memory has beea developed by Coleman, Gurtin and Herrera
(1965) and by Chen and Gurtin (1970). Growth and decay of shock
waves in a Maxwell material has been considered by Ahrens -nd
Duvall (1966). We will again give a one-dimensional treatment
within the framework of finite linear viscoelasticity.

Throughout the discussion, vwe will assume that !he shock wave
propagates into material which has been at rest in a homogeneous
reference configuration for all past times, i.e., in the region ahead of
the shock c" = 0. Then from (5.29)

t;' e] = C = a, = ]::5XJ ay ] (5.239a)

The stress jump across the shock is o1 & - o: where o is the
stress corresponding to the equilibrium history c = 0, while a' is
the stress corresponding to the jump history

()=0 0 < .S < ¢
:-(5.!39b ,

From (5.190) we can deduce that, in one dimension

-= (0) (5.240)

where we have used the fact that &1(0) : (0) from (5.223).
Using these results in (5.32b), the intrinsic spee(. of the shock is

given by

Ph = (5.241a)

where

_ (f- 01(0)
f 5.241b)

The quantity L, is termed the ;nstantaneous secant modulus, ,and it
represents the slope of the Rayleigh line w. ich connects the points
on the instantaneous stress-strain curve representing the states
immediately in front of and behind the wave.

We will limit consideration to compressive shocks moving into
material with a convex instantaneous stress-strain curve.
Specifically, for the jump history (5.240) we require M, and N,
defined by (5.224b) and (5.227b) to be positive
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l- -"(-) > 0 .- N1 (-) > 0 (5.242a)

It i clear that Mf MI R k, (0) > 0. These restrictions imply that

All- < L, < MA- (5.242b)

From (E.231), (5.224b) and (5.241a) we deduce that the velocity
of the shock is always greater than that of an acceleration wave
ahead of the shock, but less than that of an acceleration wave
behind the shock.

As in the case of an elastic material, we note that the shock
relations (5.30) and (5.31a) provide means of evaluating the
instantaneous stress-strain curve from shock wave measurements.
We -have already noted this fact in connection with steady waves
containing a shock, but the method can clearly be used for
non-steady shocks as well.

In order to study the growth and decay of shock waves, we will
use (5.40). This differential equation involves the time rate of
change 'of the shock velocity, and the jump in the stress rate acro-
the shock. In order to calculate the former, we differentiate (5.241)

d V jll - L, da
dt 2pRVsa dt- (5.243)

Sc.f. (5.107). Since M- > L, by (7.242b) and we choose V > 0, the
shock velocity will increase. dectease or remain the same according
to whether the shock amplitude is increasing, decreasing, or
remaining the same.

The jump in stress rate at the shock may be found from
(5.229). Ths expeession must hold on either side of the shock.
Inserting the equilibrium history in front of the shock, (5.228)
provides (ao/3t)+ = 0. Behind the shock, using the jump history
(..239b)

a- - G'(c, 0) -(2 C) (5.244)

We may now obtain an explicit expression for the amplitude
equation (5.40). Using (5.243) and (5.244) and simplifying, the
result is

da = - (\ it - -
dt 3 , + 1 Qt) (5.245a)
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where is a cur atur. ! parameter, defined as ir (5.107b) by

= M7IL, (5.2,15)

and as is defined by

-- G'! , 0) a(2 - a) (5.245c)
2L, ( j 1)

For M, > L, > 0 and G'(e,0) - 0, it fokLows that , > 1 and a. > 0.
Alternately, the result (5.245a) may be expressed in terms of the
strain gradient behind the shock by using (5.110). The result is

d -- 2.. 1) o \ s (5.246)

dt + -- 3- )

Note that, if GV'(',0) 0, then as = 0 and (5.245) and (5.246)
reduce to the elastic equations (5.109) and (5.111).

As in the elastic case, the growth or decay of the shock amplitude
depends on the strain gradient immediately behind the shock. A
closed form solution is not, in general, possible, since the strain
gradient behind the shock is not known independently of the entire
flow field solution. Nevertheless, (5.246) provides an indication of
the behavior to be expected. For Vs > 0, > 1, and for as > 0 the

shock amplitude will grow if the strain gradient behind the shock is
less than - as / Vs, decay if the strain gradient is greater
than -a ,/V and remain the same if the strain gradient equals
-a/s .We conclude that a,./Vs is a critical strain gradient which
controls the growth and decay of shock waves. Similarly, in view of
(5.245a), a, may be termed the critical strain rate. Analogous
results can be deduced for expansive shocks in a viscoelastic
material with a concave instantaneous stress-strain curve. While the
above rema.rks are qualitative, Nunziato and Schuler (1973) have
used the shock amplitude equation (5.246) to obtain quantitative
estimates of shock wave attenuation in certain problems.

If the strain gradient behind the shock is equal to the critical

gradient -a 8 iV 8 , the shock propagates without change of
amplitude. This occurs in a steady wave. Thus, the critical gradient
can be determined experimentally from steady wave measurements.
Using steady shock wave profiles of different amplitudes measured
by Schuler (1970a) in PMMA, Schuler and Walsh (19711 have
evaduated as(a), and found that these results compared favorably
with predictions based on (5.245c).
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In the case of weak shock waves, Chen and Gurtin (1970) have
shown that the shock amplitude equation (5.246) reduces to

da Oda (5.247a)

where 0 is defined in (5.235b). This equation has the solution

a(t) = a0 exp( 06 (5.247b)

Tnus, the amplitude of a weak shock decays exponentially to zero
as t - :-. This is exactly the same type of behavior predicted by the
linear theory of viscoelasticity. Due to the linearity of the governing
field equations, the attenuation of shock and acceleration waves in
linear viscoelasticity obey the same formula, c.f. eq. (5.238).

It is also of interest to note that as defined by (5.245) has the
limit

Lim as = 2a,
a~-. 0'

where c. is defined in (5.235b). This result has been derived by
Chen and Gurtin (1970) and shows that, as the amplitude of the
shock wave tends to zero. the critical strain rate as has as its limit
twice the critical amplitude a, of -an acceleration wave propagating
into a homogeneous reference configuration. This su;,gests that if
one could extrapolate to zero strain the function as(c) evaluated
from steady shock wave experiments, then one could determine the
critical amplitude of acceleration waves. However, the
determination of as(c) from experimental data is subj , to some
difficulty and an extrapolation to zero strain entails large
uncertainties. This is evident from the results of Schuler and Walsh
(1971).

7.8 Summary

In this section, we have considered the behavior of materials
with fading memory, which exhibit viscoelastic respunse., In order
to avoid mathematical difficulties, we have restricted attention to a
very special class of such materials called finite linear viscoelastic
materials.

The constitutive equation of finite linear viscoelasticity has
been obtained as an approximation to the functional constitutive
equation of a material with memory. If elasticity is viewed as a
zeroth-order approximation, applicable in equilibrium situations,
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then finite linear viscoelasticity may be regarded as a first-order
approximation in dynamical processes for materials whose
dependence on the past history is small.

Another view is possible. The constitutive equation of finite
linear viscoelasticity may be regarded as an exact description of the
response of a class of idealized materials. Since the constitutive
equation is frame indifferent, it is suitable for the description of the
response of materials subjected to finite deformations. Of course, it
is not to be expected that all non-linear viscoelastic materials will be
describable in terms of the special theory of finite linear
viscoelasticity over a wide range of conditions. Other equations
with a more complicated dependence on the strain history may be
required for many purposes. However, finite linear viscoelasticity
has allowed us to illustrate the qualitative behavior exhibited by
materials with fading memory, and appears to be useful in the
description of the behavior of polymeric materials.

In dis.ussing the different types of wave propagation, we have
again l-.;en motivated to consider certain restrictions on the
response functions in order to obtain real wave speeds, positive
dissipation, and existence of steady waves. As in the other theories
which have been considered, the precise form of these restrictions,
and their relation to stability and un'iqueness of solutions to initial
and boundary value problems, have n'ot been establ;shed in the
non-lincar case. For ifinitesimal disturbances, the non-linear
constitutive equations reduce to those of clas-ical linear
viscoelasticity.

The wave propagrJion behavior predicted by the non-linear
viscoelastic theory which we have considered appears to be
physically reasonable. Acoustic wave speeds and attenuation
coefficients remain finite, acceleration waves, shock waves, and
steady waves all may exist and exhibit characteristics which are in

qualitative agreement with observations. Acoustic waves,
acceleration waves, shock waves and steady waves all offer means
for the experimental evaluation of the constitutive functions. The

experimenter has a range of methods at hand. Use of several of
these can provide redundant data which may serve as valuable
compatibility checks on the constitutive equation.

The treatment in this section has been limited to a purcly

mechanical description. Shock waves which may occur will entail

ent.-iopy changes. Of course entropy changes may be small if shock

waves are weak. However, internal dissipation in viscoelastic
materials leads to entropy inreases even in smooth motions. While
the mechanical theory of this section may be used as an
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approximation for motions in which disturbances are small, its
range of validity is jikely to be considerably more restricted than in
the elastic case.

The general t2rmodynaniical theory of materials witb fading
memory has been developed by Coleman (1964a,b), Col,,Tnan and
Mizel (1967) and Gurtin (1968). It is found that the entropy
inequality demands existence of an equilibrium equation of state in
precisely the same form as that considered in Appendix 6, and
places restrictions on the internal dissipation. Thermodynamic
influences on the propagation of acceleration and shock wa.'es in
materials with fading memory have been. studied by Colem-'x. and
Gurtin (1965b,c, 1966).

The general thermodynarnical treatment of Coleman et al. could
be carried through in the specific context of finite linear
viscoelasticity. However, this problem is not trivial. Steps in this
direction have been reported by various authors, for example,
Lianis (1968) and Nunziato and Walsh (197i). The latter authors
considered, in particular, thermodynamic influences on steady wave
propagation. For a more complete discussion of the application of
non-linear thrmodynamical viscoelastic theories to stress wave
propagation, see the survey article by Nunziato, Walsh, Schuler,
and Barker (1974).

Finally, it should be noted that a number of viscoplastic
formulations lead to equations of the same form as those discussed
in this section. For example, Gilman (1968) uses a generalized
Maxwell equation which is a one-dimensional form of (5.206)
specialized to infinitesimal strains. The Sokoloski-Malvern
equationS of vscoplhsticity as extended to three-dimensional
motion by Perzyna (1963) also have a form similar to (5.206) and
most of the theory of the present section should apply with minor
modification. A review of work in elastic-plastic wave propagation
has been given by Herrmann (1969).

Appendix 1

Notation

In most instances, vectors will be denoted by lowcr case letters
with the tilde (e.g., a) or singly subscripted letters (e.g., at). Upper

cas letters with the til"e( (e.g., A) or doubly subscripted letters
(e.g., Aus) will be Lised to d!note second order tensors. However,
common usage dictates some exceptions.

The principal invariants of a second order tensor A will be
denoted I)y
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'A 8 5tA tr A

',A = A ! [(tr A)2 . . tr(A:-
- 2! 2

"A rit i i k dt

where the 5's are the K-onecker deltas.
Ordinary functions will generally be denoted by the same

symibols as their values. Fo. instance if

B =b(A)

the iunction f will be distinguished from its value B when it is
necessary to indicate that the function is meant, otherwise the
symbol for its valu6 B mill be used.

As in the above example, the values of functions, as well as their
arguments, may be tensor quantities. A linear tensor-valued
function of a tensor argument will be denoted by

or in indicial notation

Here L may be regarded as a linear mapping of the space of second
order tensors into itself, or simply as a constant fourth order tensor.

Functionals will be denoted by upper case script letters, for
instance

B -tjx)1 a < x < b

Here (f may be regarded as a rule of correspondence, assigning a
particular set of values to the components of B for a given tensor
function A evaluated for a < x < b.

Analogous functions and functionals of severa variables, where
values as well as arguments may be scalars, vectors or teasors, will be
introduced. A calculus of functionals will not be required, but
dAfferentiation of ordinary tensor functions is needed.

As an aid to readers not familiar with direct tensor notation, the
following operations and their counterparts in three-dimensional
Cartesian coordhmiates are listed.
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Vector Operatbns

Scalar Produ6

it a lit

(art 4, by) I'-v all IV bv - t)*

Vector froduct.*
w ux v wj =  .,U1

x =-VXU

,(a it + b i ) x w = a .U x w + b v x IV

/

C rient
= grad a Il -aloxi

A grad u Aij= (u,1/x,

*iergence
a div u a =  lulilxi

Curl*
w = curl u wV ilp Col,11,lxk

Magnitude

Tensor Operations

Inner Product (Composition)\P = T S Pjij TiTk. Sk j

(aT+ bS) R a TR+ b S R

T2 TT' r

*Here cijj is the permutation symbol and has the value +1 (.-1) when its indices are an

even (o dd) permutation of 1, 2. 3.

L
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(+ S )T TTr + ST

Trace
a tr T

tr (T I-S) tr T' tr S

tr (T S) tr (S T)

tr (')=tr ('

Scalar Product
a T-S tr(TVhS) a Tjj

T- (SR) (TI? )S =(Sr T)1-?

Magnitude__
aI_11v'jT a

Determinant*
a = det Ti aI 3 ! jjkrstTirTjsTkt

det (a7T) a'det(T)

(let (MS) =det (ST) det Tdet S

det T)- det (T)

det WT") det (T)

Inverse*
R ?7 r i -. Eijp kC. 

T j.s TI?

*Here cifl. is the permuzation symibol.
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V,' T" T T T

(TS " =S-" T "

det (T " ) (det T)"

? , (T )-t =(T-1)

Appendix 2

Frame Indifference and Material Symmetry

In this appendix we consider the requirements of
frame-indifference, i.e., invariance properties required of tensor
quantities and expressions under the general transformation (5.9)

, ! ~~~~X* : ll+ tI o
r (Al

t* t - to

An indif,'erent scalar is one which does not change it.; value under

the transformation (Al)

b= (x*, t*) b(, t) (A2 )

An i~adifferent vector is one which does not change in either
magnitude or direction under (Al). For example, if we define a
vector v ; . y where x and y are positions in space, then under
(Al) the same vector is v x* - y* By (A) v* Q(x -- y) or

Qt (A3)

Thus, an indifferent vector transforms as in (A3) under a change of
frame. A. second-order tensor may be regarded as a linear mapping
of vectors. An indifferent tensor is one which maps indifferent
vectors irnto indifferent vkctors. Consider the mapping =S ,.
Under th2 transformation (Al) v* = Qv, w* = w, and we require
v S* w*. By substituting the first three into the last expression

qv S*Q - Q -v

Since thi:; is to hold for all indifferent vectors v, w, we infer that
S* Q-- S or since Q is ,rthogonal so that Q '
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=NW (A4)

Thus an indifferent tensor transforms as in (A4) under a change of
frame.

To determine if a quantity is indifferent, it is necessary to
determine if it transforms as above under a change of frame. For
example, consider the motion (5.1). Under the transformation (Al)
we h ve

x* 6(t) + Q(t) X(X,t - to) - X*( , t*) (Ah)

the last being a definition of x*. Taking both and X* with respect
to the same reference configuration, and differentiating, 'we obtain

F*= QF (A)

Since this does not correspond to the requirement (A4), the
deformation gradient F is not frame-indifferent. Using the polar
decomposition (5.10) in (A6) pro :ides

SU* QR (A7)

Since (Q R) is orthogonal and the polar decomposition is unique, it
follows that

!.i R * =  Q R U * : = U E
* QE.LP... .E (A8a)

the last result following from the definition of Green's strain (5.12).
In order to investigate the transformation characteristics of V, we
use (5.10b)

V* =F*F*T = QFFrQ T =_QV:QT (A8b)

and thus conclude that V2 is frame indifferent, but R, U" andE are
not. On tne other hand, the Cauchy stress tensor is derived from a
consideration of contact forces assumed a priori to be indifferent
acting on units of area within the material which are also
indifferent. Thus we must have

= QQT (A9)

We may now attempt to find a suitable reduced form for the

constitutive equation (5.8). Using (5.8) and (A6) the left hand side
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of (A9) is

'f(F t *) '. OF,

where Q' is the history of Q up to time t, while the right hand side
is

Qa Q = _Qf(FQ T

Thus, we may conclude that the functional Y must satisfy the
requirement

F =(AlO)

Using the polar decomposition theorem (5.10), and noting that Q"
=Q

t(F) QTY(QeRfUt)Q (All)

Since this equation is to hold for all Qt, Rt and rt, it must hold for
the particular choice Q' = (R')T. Noting iha' this also implies that
at the present time, Q ='RT, (All) can be written

'f(P) = ' R VWt-R (A12)

Conversely, if 'f is assumed to be of this form, consider an arbitrary
rotation history Qt. Since £Q1 Ft = (Q' RI) U

so that (AlO) is satisfied. Therefore (A12) gives the general
solution of the functional equation (AIO). Consequently, the
constitutive equation (5.8) for a simple material reduces to

a = R (U ')R T

There are infinitely many other reduced forms for the
constitutive equation (5.8). For example, using (5.12) in the above
expression, one such form is

RUU' 1 - 2' )U' UR T

By defining a new functional
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B JU f( )U'

we obtain the form

F;(E)P' (A13)

Using the definition of Piola stress (5.13) this reduces to

= (E) (A14)

. This is the frame-indifferent form of the constitutive equation for a

simple material, reproduced in (5.14). Many other forms can, of
course, be obtained by analogous means.

We have noted that the reference configuration, in which the
positions of material particles are denoted by X, can be chosen
arbitrarily. The response of the material should not change if a
different reference configuration is chosen. We will now investigate
the transformation properties of the constitutive functions under a
change of reference configuration.

XR

F FRXN xx0 

'%

FN

Figure 5.8 Rererene? Configuration.

First, (Figure E.8) we wvill choose a specific reference configuration
in which the positions of materia7 particles are denoted by XN. The
current positions of material particles x are related to their
positions in this reference configuration by

-! : ., ( :'. ) E, =  , .a ,(A 15a)

Now we choose a new reference configuration, in which the
positions of material particles are denoted XR, related to the first
reference configuation by
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-;N 01 E..V 3',~a

Y~~~( 1. 5 (lc)

~ ~I~:~ . ~to~ ~it is seen that

-Je-imn bjY use of the chain rule provides the composition
~ ~onationgradients

~N-E~h)(A17)

i ,Wo define C'reen's strain with res-Dect to the two reference
Ic'i ndtions, from (5.19), b%

andefine th e strain between the two reference confiuain by

2 ~( -0FFO

irw..rtng(A17?) ir the expression for ENv, and using the expressions
E.,? and E,) we find that

,Jjz t'70F~R (A18)

'I-his, relation is the transformation law for Green's strain. Cauchy's
I e C.-Fis defined in terms of contact forces acting on elements of

a-rca in the current configuration, and is independent of the choice
o~reference configuration. However, Pinla's. stress is given by

15.18). For thle two referen ce con figu rations

-jRBRFJ

%whIere .Z y is taken with XN as reference, and '-rR is taken with X,
;reference. Here JN = det.FN While JR =det FR. Using (A17) this

vi(eId the relation governing the trans fo rmatilon of Piola's stress
undcr a change of reference configuration
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-2 J= F o (A19)

where J0 det FO J /JR
.. The constitutive equation for a simple material was given in

(5.8). Consider that (5.8) ha.; been expressed in terms of the
reference configuration XN, and use the subscript N to denote this,
fact. If we now change to tile reference configuration X,?, Cauchy's
stress a is unaltered, but the deforma .ion gradient changes as in
(A17). Conseque.Iy, w must have

,)} : (Fj,) (A20a)

where ' N is the response functional vihen the XN reference
configuration is used, and , defined by (A20a), may be
considered to be the response functional when the reference
config.,ration XR is used. Thus. the rule of transformation of
response functional under a change of reference configuration is

(1 (/ ) & ." !,, ,(A20b)

Using (A18) and (A19) in (5.14) we obtain a corresponding rule for

the response functional t

... F..(E F'oE't EO)FT (A21)

We note that the choice of reference configuration is
completely arbitrary, in that a configuration' may be chosen which
need not correspond to one which is actually occupied by the body
during a particular motion. In fact, in considering the response of a
particular material particle, it is only necessary to consider a local
reference configuration, defined a-s the equivalence class of all
reference configurations giving the same deformation gradient at
that particle. The local reference configurations for the various
material particles in the body need not fit together to form a single
continuous coilfiguration for the body as a whole. A full discussion
has been given by Truesdell and Noll (1965).

We are now in a position to explore the restrictions on the
constitutive functionals imposed by material symmetries.
Intuitively, if a material has some symmetry properties. then one
would expect that its response would be unaltered if the material is
subjected to certain rotations and reflections. This concept has been
rendered precise by Noll (1958) and Coleman and Noll (1964) as
follows.
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Equation (A20) provides the relation between response
functio-als f? and fN e:p~',ed with respect to two different
reference configurations. Materal symmetries imply that the
response functional is unchanged by particular changes of reference
configuration representing certain rotations and reflectigns.
Rotations and reflections are represented by deformat(,ns which
are density preserving, I det Fo I = 1. Thus, in this case 'it and f N

in (A20) are the same functional, so that for some set S of F0

'. j(Fi kt))(.\22ak)

This relation amounts to a restriction on the response functional
R with resject to the particular reference configuration XR.

We note that we could equally well have started by expressing
(A20b) as

N = , (A22b)

Consequently, if (A22) holds for Fo then it holds for F-' .The set
, of Fo forms a group, termed the isotropy group of the material,
with respect to the reference configuration XR .

Note that -fR in (A22) depends on the choice of reference
configuration. If (A22) is valid for the particular choice of reference
configuration XI , then it is obviously valid for a reference
configuration obtained from XR by a deformation with a gradient
F0 which is a member of the isotropy group. However, if F0 does
not correspond to a member of the isotropy group, then we must
deal with a functional fN related to LR by (A20). The restrictions
on .N due to material symmetry will not, in general, take the
simple form (A:2).

Coleman and Noll (1964) have tabulated the isotropy groups
for various point symmetry ciasses, including the various crystal
classes. We will restrict attention here to a single example. An
,isotropic material is one whose response is unchanged by all
rotatirns and reflections of the reference configuration. Thus, the
isotropy group contains the full orthogonal group, that is, S
contains all i'0 Q with Q = Q?, I det Q { 1. If we set F 0 

= Q in
(A22) we obtain

(F') : ''Q) = : t Q'

where we have dropped the subscript on F. If this holds for the
deformation history F', then it must hold also for the deformation



NONLINEAR CONSTITUTIVE EQUATIONS 237

history that is

TEQ' = , (-QF' Q,

In addition to obeying this restriction imposed by isotropy, the
constitutive functional 'f'R must obey the restriction (A10) imposed
by frame-indifference. We can combine these restrictions into a
single expression as follows. If we choose the special rotation
history Qt = Q for all s and t, then (A10) becomes

11?Q Rf,(F)I Q'

Combining the previous two equations we obtain

r (QFQT ) (A23)

This equation expresses the restriction on the form of the
constitutive functional 'f 1 taken with respect to the reference
configuration X, imposed by isotropy and frame indifference.

The analogous restrictions on the constitutive functional n
can be found as follows. From (A13) and (A20a) we obtain the
identify

Noting (5.12), this result can be written
(Fl t) P (F T~ P-1 F F"'F

_ FR 2K - - 2

If this holds for the deformation history E', then it mus. hold also

for the deformation history E FQ , i.e.,

t(QFtQT) =(QQ T )Q TQT

We can also see that

9R( (F eQ, (E') TQT

Uing the last two results in (A23) we obtain

Thiseuati exp s th rstrts o(A24a)

This equation expresses the restrictions on the form of the
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constitutive functional CR taken with respect to the reference
configuration XF,, imposed by isotropy and frame indifference.
Note that since the stress and strain are both symmetric, this result
may also be written as

Q~s(Et) -- uQ Q)(A24b)

More specific restrictions on the response functional emerge
when a specific functional is inserted into (A23) or (A24), s will be
seen later. Here we will note only the specific restrictions when the
response functional reduces to an ordinary function of the present
value of the strain C .(') = Z (E). In this case (A24) becomes

-E Q (QTEQQ (A25)

A tensor function Z obeying (A25) for all orthogonal Q is termed
an isotropic tensor function. A theorem given by Rivlin and
Ericksen (1955) states that if Z is an isotropic tensor function of a
symmetric tensor argument E then i may be expressed in the form

-iE) 4--,i + eE ± eE (A26)

where the coefficients eo, e,, and e. are scalar functions of the
principal invariants of E.

If C,'R is a linear function of E, ((E)=CR E and (A25)
becomes

E' QC 'QE Q} Q (A27)

Since this it to hold for all E, we see that, in indicial notation
R -- C

R

I Q,, QjiQhrQ:. ,,,,, (A28)

A theorem quoted by Thomas (1961) states that in this case C1
reduces to the form

O"" M,/5,5:v + 1(5ih1S.' + siv p.) (A29)

where X and p are scalar constants. Multiplying both sides by E, we
see that, since E is symmetric

Cl'k :'M '*) .+ 2pEi (A30a)
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or, reverting to direct notation

2E X (trE)l + 2.iE (A30b)

We re-emphasize the fact that the representations (A26) and
(A30) hold only for certain reference configurations of an isotropic
material. These reference configurations are termed undistorted
referenco configurations. In the reference configuration E = 0.
Thus, from (A25), the stress in the reference configur.tion will be

!Z0= (0) Q r  Qo T (A31)

Thomas (1961) also shows that this is possible only when Oo is a
scalar multiple of the identity tensor ao = po 1. We term Po the
hydrostatic pressure. Thus, the stress in an undistorted reference
configuration of an isotropic material is always a hydrostatic
pressure.

AppendLx 3

Conservation Laws

For convenience, the equations expressing conservation of mass,
momentum nd energy and the equation expressing irreversibility
will be summarized in this appendix in the particular forms required
in the text.

Conservation of mass of a finite part TP of the body -9 states that
the rate of change of the mass of T? is zero.

~df
d-t fpdv = 0 (A32a)

where dv indicates a volume element in ,P
Conservation of momentumn states that the rate of ch.ange of

momentum of P is given by the net force on 1' due to the stress
acting on the boundary of 'P, and due to an external body force b
per unit mass acting over its interior. If the Cauchy stress tensor is
denoted by a, taken positive in compression

df Pydv= f oQnda +f pbdv
dt -- d . d (A32b)

where a,,' denotes the boundary of , is the outward normal on
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the boundary, and da indicates an element of area of a?.
The equation expressing conservation of angular momentum

will not be written do,a. It leads merely to the fact that the stress

tensor o is symmetric for the ca4se under consideration here.

Conservation of energy states thAt the rate of change of kinetic

energy and internal energy & per unit mass is given by the rate of

working of the stress on the boundary of I'll, the rate at which
energy is flowing into ' through its boundary due to heat

conduction, the rate of working of the external body force b within
P, and the rate at which energy is being added by external radiative

heat sources q within :?. If the heat flux vector is denoted by h
taken positive when directed outward from, aP, then

d f + 8)dv
dt 2- (A32c)

- f (uu-+ h1) nda A- pQ.ujb 4 q)dv

The principle cf irreversibility or Clausius-Duhem inequality states

that the rate of increase of entropy in T is not less than that due to

heat conduction through its boundary and that due to external heat

sources within?'

d f ~v -f #jlvnda 4f p4d, (A32d)- 9f

The mass equation (A32a) implies that the mass of is the same

for all configurations of the body, including the current one, and

one which might have been chosen as reference. In the reference

configuration we denote the density by pn and a volume element

by dV. rhus, (A32a) implies

Jodv JpdV (A33)

We expedt this to hold for all parts of the body. This can be true

only if

PR- dv j (A34)
p dV

from (5.3). This equation is identical to (5.4). Equation (A34) may

be differentiated with respect to time at the particle X.
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3 -.. .. SnnJ (A35)

wher, the superposed dot denotes the material time derivative
taken with X held constant, and the second result above follows
from the rule for differentiating a Jacobian, see fo, example
Truesdell and Toupin (196C), § 76. Using (A34) and (5.2) we
obtain the local mass equation in the form,

p P = - pdivu (A36)

where the divergence is taken with respect to x.
We note that (A33a) may also be writteni as

J pdv =jdm

where dm is an element of mass of T. If this is used in the left hand
side of the momentum equation (A32b), and we note that the mass
is invariant, then we can take the time derivative under the integral
sign and obtain

[ d--tf pudv df fdrn

In order to simplify the momentum equation further, we note that
the first term on the right may be recast into a volume integral by

means of the divergence theorem

Inda =  divrdv f 1divdm

On using these results the momentum equation (A32b) takes the
form

f ( +-diva - dm =0

This can hold for all parts P of ,'A only if

= - 1 diva + b (A37)

at every material particle X in !.
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We may proceed in precisely the same way in the energy
equation (A32c) to obtain

ul 11 + + -div(zOu + divh - u-b -q 0

We note ' hat, in component form

E- ! u) -N -+

or, returning to direct notation

div(ciu) u -diva +I a* -L

where L is the velocity gradient L =grcad it. Thus, rearranging, the
local energy equation becomes

F. + -a-L +-divh--- qu y -4!div

or, in view of the momentum equatioa' (A37)

-lL - 1 divQ + q (A38)
I'P-- P

Finally, a similar series of steps performed on the equation of
irreversibility provides the local entropy inequality

We note a useful result which hiolds by virtue of the chain rule

so that - -xt- 4 (,t)=L

L =gradu PF'(A

In order to develop the one-dimensional forms of the
conservation equations, we first consider plane longitudinal motion
represented by the deformation field

1 (X 1 , t) X, = X2  X., = .,(A41)

The corresponding deformation gradient F is given by
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0i (A4 2)0 0 a
where F1  3 /3X 1 . By (5 3) and (5.4)

d-tF F1, PR/P (A43)

It is usually convenientWt define the engfieering strain c by

c. F, 1 I pli l (A44)

where c is positive in cor-.-pression. It may he noted that a density
change always accompanies a plane longitudinal d~formation.

For plane longitudinal motion the equation expressing
conservation of mass (A32a) may be integrated for a finite segment
of material between particles XA and X13

B fXBf pd j ,~dX(A45)
X,1 XA

where XA an ~are the piaces occupied by particles XA and XB
respectively at time t. Using (A45), the one-dimensional forms of
the equations of momentum and energy conservation, and of
irreversibility (A33), (A34) and (A35) become

t:f pad fp bX (A46)

A XA

d (i
dti (l + O2dX = -u, (TAuA1)

+Ii f p.) +u + qWdX (A47)

XA XA

where we denote by unsubseripted variables the appropriate
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longitudinal components of vector and tensor quantities, e.g.
u = u,, a = 1, etc., and where UA = a(XA,t) etc.

If all quantities are continuous, thin at every point in the
one-dimensional segment the local forms of these equations must
hold, i.e.,

3u -1430 b
at pO3X (A49)

-1 u 1 - q (A50)at PR c)X pl? a}x

a)S i T ) q (A51)

at j XT 7
where we have used the fact that aFfit = 3u/aX. Th -se are the
material forms of the one-dimensional equations of conservation
and irreversibility, in which the independent variables are
understood to be (Xt).

If on the other hand quantities undrgo a jump discontinuity at
a material particle X = Y(t) within the segment X, > Y > XA, then
a different procedure must be followed. We note the following
formulation of Leibnitz's rule: if 4J(Xt) and a /ot are jointly
continuous in X,t everywhere except at Y(t), then

d j X/I dXXJ a dX dY 10(A 2d T+n... atd +d- l, (A52)
X A  XA

where I q] is the jump in ip across Y, cf. (5.24). If Leibnitz's rule is
used in the integral conseiwation laws (A46) and (A47) and
equation of irreversibility (A48), and the limiting process XB '* XA
is performed, then one obtains the jump relations

P,?V[U] [o] (A53)

PV[ +1 1 4 [g] + i [] (A54)

PRVII > TLI(A55)

where V = dY(t)/dt is the intrinsic velocity of the discontinuity. It
has been assumed that the external body force field b(Xt) and
external heat source strength q(Xt) are continuous at Y.

In order to compare these jump relations with those used in
fluid mechanics, it is necessary to introouce the wave velocity U. If
the wave is located at the point X =(t) at time t, the wave velocity
is given by U = dy(t)Idt. We will assume that Y(t) is smooth. Then,
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if we approach the shock from the continuous region on the right,

use of the chain rule at X = Y(t) prcvides the relation

u(t t + O-

A similar relation is obtained on approachng the discontinuity
from the left. Using (5.2) and (A43), we obtain

U P .- _V + 14 (A56)

or rearranging
p+ p- %

V -U -- u =) . (U u (A57)
Pf? PR

When these relations are introduced into (A53) through (A55) the

jump relations used, for example, by Serrin (1959) are obtained in

the special case when the material is a non-conductor (h = 0).

We now consider plane transverse motion represented by the

deformation field

x= X , x X, + ,](X,ft x.1  (A58)

The corresponding deformation gradient F is given by1x 0 .0
F =F:, 1 1 0(A59)

" 'LO 0 1

where F, = (..aX,. By (5.3) and (5.4)

detF 1 PR tP (A60)

Consequently a plane transverse motion involves no volume change.

In this case it is convenie.t to define the engineering shear strain y

by

= - F21  (A61)

If we now denote by unsubscripted variables the appropriat.

transverse components of vector quantities u = u2 and b = b2 and

the apy-ropriate shear components of tensor quantities F = F 2 i,
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0"o the". dh one-dlimensional forms of tihe. equations of
11oni1'1LUn- t111an energy cCon.-crvatiori, and of irreversibility (33)
(A381) and (A3\5) again take on~ precisely the same f.-ms ;Ls before,
i.e., (A ),(A17 ) and (A-48). No~t( however that the longlitudinal
(c01p00!ent of heat flux is required h--h

If all qLo m-tties are con tillu oil , then local form-is identical to
(1),(.A50) and (A51) are obtained. Consequently the result11S

arlsins. from these equantions illi apply equally Nvell. to a
ont-d inlellsionlal transverse motion. We Nvil I not consider first-order
shear diiscontinuities, which correspond to slip stream s or vortex
SheOL;. Consequently equations corresponding to (A53), (A54) a
(A55) for plane transverse motions will notA he required.

Appendix 41

Linearization of the 'Equation of Motion

We w;li consider iiA this app~endix i.firtiteshrna.] dis p I c ellnei Us
fro.-m a configuration which has heen obtained from a homnogeieous
natuLralI stte by an arbitrarily lar:ge static initial dleform-at-on. In
Section 4l.2 we have developed the constitutive equations ai plicable
to this case, uising the initially deformed state as reference
con figuration. Here we wvish to express these same equations lusing
the natural state as reference.

In order to avoid con fusion, we wvill henceforth denote the
positions of material particles in the initially deformned state b~y Xu

adadd a ubscript R to all quantities in which this 'nitiAlly
d.eformed Configuration is used vs reference (Figure 5.9) . We will

<N k9

Figure 9 t!,itiaII\' Def'ormed Ref'ei4nce Cin figuration.

denlote the positions of material particle-s in the natural state by
, Nand add the- subscript N to all quantities using this state as
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reference. The gradient of the initial deformation from XN to XR
we will denote by F0 . The equations (A20) and (A21) allow us to
introduce the chang- of reference configuration into the
constitutive eqdation.

Since the displacement d x -- XR of the current configuration
from the initially deformed state X11 is infinitesimal, we can
introduce some simplifications. From (5.77) we see that Green's
strain referred to the initially deformed configuration is

E = e+ 0(Z) (A62)

Green's strain referred to the natural state is then, from (A18)

= E + 0FoE + 0(--' (A63)

where Eo is Green's strain associated with the gradient of the initial
deformation F0 .

We denote Piola's stress, referred to the natural state, by N
F" The constitutive equation governing material response (5.66) can te

expressed with the natural state as reference

ZN= Z E (A64)

Since EN is given by (A63), and e is of 0(c), we can expand (A64)
in a Taylor series about the initially deformed state

-N - (' k 0 !-P 01,6) (A65)

where 1o = (Eo ) is the stress and Co C(Eo) is the elasticity,
both referred to the natural state but evaluated in the initially
deformed state.

The Cauchy stress is related to Piola's stress by (5.13). The
Cauchy stress in the initially deformed state is

('a ,, = J aFoi (A66)

where J0  det & PN IPo. Here pN is the density in the natural
state, Po is the density of the initially dformed state. The Cauchy
stress in the present cnfiguratiof, is

JNVFN'=xx (A67)

where JN = det F,, P N/. Using (A17) and (5.75) this may be
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written as

=. JEU( - F'(1- ) (A68)

Inserting (A65) this becomes

o P (1 H) F 7'(1
PN.

+ -- - H"' + O(2)i (1N -- -H "-G E 0. Q (A69)
PN'

In order to reduce this expression, we first observe that

P _PPo = (1 + t e)J'
PN Po P0(

where (5.77) has been used. Noting that H and e are of 0(c). and
using (A66), we find that (A69) becomes

-C + J-1 F 0c0{Fe F E - 0(E:2 ) (A70a)

where we have defined a, oy

2 = -o + ao(tre) Hco Zot (A70b)

This is the required linearized constitutive equation governing
infinitesimal displacements from an initially deformed
configuration, using the natural state as reference. We may compare
(A70) with (5.78). The !atter is the constitutive equation governing
infinitesimal displacements from the ' initially deformed
configuration, but using the initially deformed configuration as
reference. We conclude that the elasticities CO and CR are related
by

CR J-'1n"nF f%(A1

J 0F FkJF Q.mnr (A7)

We now turn to the problem of linearizing the equation
expressing conservation of mor ntum (A37). Written in
component form in the absence of body forces, (A137) is

= °(A72)iixj
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For infinitesim:l displacements d x -X from the initially
deformed coi', iguration XR,

S- Xx - ,, + H,- 0(.) (A73)

where we have used (5.75). From (5.77)

p po(1 + 'tre) 4 01C) (A74)

Furthermore, differentiating (5.73)

= (A75)

Combining (A72) through (A75), we obtain the linearized
momentum equation appropriate for infinitesimal displacements

from the initially deformed state

podi - (tr e) -'! A UL 0(C (A76)

In order to obtain a single equation of motion for the case
under consideration, we can combine the linearized constitutive
equation (A70) and the linearized momentum equation (A76).
Expanding the latter into component form, using (A71) and
differentiating the result, we obtain

+ CR + 0of2) (A77a)
aX'R a ~ X

where
- ao e,J, _-

_9. -_ -, I m (A77b)

We first note that each term in. (A77) is of 0(a).' When (A77) is
inserted into (A76), we will therefore expect to obtain first order
teims only from the first term on the xight of (A76). Next, we note
that, from (5.74) and (5.76)

Mii 32[} di

aX,, 3 XY (A78a)

+1 fr- 0+  (A78b)
2 \XI)X , a

We insert (A78) into (A77) and contract to obtain

S BXX + 0(-) (A79a)
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* where we have defined

Q - (A79b)

and the s~ mmetries of a0 and CO have been used. This result may
*now be inserted into (A76) to obtain the final linearized equation

governing the motion

Podj B IjdI. O(E2) (Sa

Using (7)Bcan be expressed as

B =j, J; F 'FF% C - (ASOb)

Appendix 5

Reduction for Itreversibility

The reduced entropy inequality has been given in (5.115) as

p(A +0 1+ L + -h 0 A1
~,1I ~ T-~~ Ai

N w, we have assumed in (5.113) that the free energy

Ai(E,T~g) Consequently, differentiating

ATL+ T + (A82)

This result may be inserted into (A 81) in order to obtain the

M5 */ A +P- P + 4 +ST +a(FF)

8A (AF3)

where (A40) has been lised to eliminate L from the third term.
The, iniequality (A83) is to hold for all inotions. It is always

possible to find. functions Xand T in (5.1) and (5.15) such that their
derivatives E, F, T. , jCP Ihave arbitrary values. Then values of ~,S
fi, A and the derivatives of A are determined by the constitutive
equations (5.11,2). Now k appears only in the first term of (A83).
The rem iining terms may be given arbitrary values by suitable
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choices of F, T, 1, and C which we will consider for the moment
to be fixed. Then for the inequality to hold for all it is cl' ar that

ulA
0 (P.84)

ag o

since p > 0 by continuity. Thus, the free energy function must be
independent of i.e.

A = A(F, T) (A85)

Continuing in the same way to the second term, it is evident by i
similar argument that

,-- S P, 7'(

if the inequality is to be satisfied. Using (A84) and (A86) in (AS3,
the inequality now reduces, after some rearrangement, to

[FY -1T + - -h 0 (A87)

where the commutation properties of the scalar product of tensors
4"* t have been exercised. Clearly this is satisfied for all F only if

7- 3- 1

or, on rearranging

- a-F7' 6 (F, T) (A88)

With (A88), the entropy inequality (A87) reduces to

1. _0(A89)

where 3 defined by (A89) is termed the internal dissipation. These
resfflts are collected in equations (5.116) and (5.117).

We will now consider the case considered in Section 6. There we
have assumed that the free energy A = A(F, T T, g). Consequently,
differentiating, we now get

aA 3,A jA,
A '- + 3A +T 3A (A90)
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If this result is introduced into the reduced entropy inequality
(A81), we obtain

3A. [A~ aAF ~p 'g 4- +
P p a V

a 1 (A91)+ + P E+ g50

Now, by arguments identical to those used previously, it is
obvious that consideration of the first term leads to the result
(A84) Similarly consideration of the second term leads to

aA
-A (A92)

We can therefore conclude that A must be independent ofFP andg,
i.e., (A85) holds. Consideration of the third term of (A91) then
leads directly to the result (A86).

Using the results obtained so far, we again find that the entropy
inequality reduces to the form (A87). We cannot proceed now as
easily as we did before, since the stress is a function of F, that is
o T(F , ', ). Consequently, if we fix F, T, andk, but allow Fto
vary, then a will also vary, and our previous arguments fail.

In order to proceed, we no*- that if (A87) is to be true for all
values of F and C, then it must bc true also for F replaced by aF,
and A replaced by 00, where a and 3 -re arbitrary scalars. Therefore
(A87) can be written

~ ~''-v"+ 3 +, +'C r<{et[i (..,) + p T + _ -(A93)

where a and 1 are function of (F, aF, T. 96g).
We now hold F, F, T and j fixed, but vary a and 0. It is clear

that the left-hand side of (A93), viewed as a function of a and 0 has
a maximum at a = 0, g 0, since it is negative for all other values of
a and 3. Consequently, if we differentiate the left hancd side with
respect to a, and evaluate the result of a 0, 0 = 0, we obtain

(F) + p F 0

where a = (F, , , 0). Since thia must be true for all F we
conclude as in (A88) that

aF- (A95)
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We are therefore led to introduce a stress a e defined by

if (jF, T) (F,, T, 0) (A96)

which is termed the equilibrium stress, and an extra stress g
defined by

(F. )FT, g) (, F, T, - QFT (A97)

From its definition At is evident that gvanishes when F =0, =0,

We now return to differentiate (A93) with respect to j3and
evaluate the result at a = 0, ~1=0, whence we obtain

. i h(F, 0,T, 0) -g 0(A99)

This mu-t be true for al~ Since T > 0 we conclude that

IF0, T,O0) 0 (A100)

rZ Using (A94) through (A99), the, entropy inequality (A93)
reduces to

6 g * 0 (A101)

where 6 is again termed -the internal dissipation. The above resuits

are coltected in equations (5.156) through (5.160).

Appendix 6

Equilibrium Thermodynamic Relationships

In this appendix, w,- will consider the properties of the
equilibrium equation oIL sl.ate (5.123)

A A (E, T) (A1O2a)

I. (E, T) =PRyf (AEb
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S -- '(E, T) 3A tA102c)

It has already been implicit!y assumed that (A102) has certain
smoothness and invertibility propelrties. Such properties imply
certain relationships among the alt.ernate forms of the equation of
state and their deriwv.es. It is these rela+ionships which will be
explored here.

The development for the special case of a thermoelastic fluid
given in numerous classical thermodynamic texts. The one most
closely paralleling our development if; that of Callen (1963).
Truesdell and Toupin (1960) have given a very general treatment in
tensor form. We will specialize their treatment to thermoelastic
solids.

We will first make a general smoothuess assumption on the
equation of state. Specifically, we will assume that A° in (Al02a) is
continuous mad possesses continuous derivatives through second
order. This smoothness assumption is sufficient to ensure the
commutation of mixed second partial derivatives of .4

'A as 1 a a2AE

a E(";T E PR 3,C T3E

where we have u,:ed (AI.02b) and (Al02c). Since second derivatives
are used frequently in applications, they are assigned names and
symbols. In indicial notation

dA (AlO3a)
a 1 - T

a:+ =: aL = o_, __ 1 " (AlO."b)
I1 a~ _ 1 (AlOac)

aEiAE, . pl aEp Pa

The quanti'ties - , E and C , defined by (A103) are termed the
specific heat at constant strain, the stress-temperature tensor, and
the isothermal elasticity, respectively.

Be.ore proceeding, we note that the stress Z and strain E are
symmetric second-order tensors which have, in general, six
independent components. Instead of representing their components
by 3 x 3 matrices ,_j,Ej (ij = 1,2,3) we may represent them as 6
dimensional vectors Z(, Ea (a,o = 1,2,. .. 6). This notation, termed
Voigt notation, has the advantage that quantities such as Cip, v may
have their components represented as 6 x 6 matrices C7'p. Thus,
ordinary matrix representations may be extended to the
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manipulation of fourth-order tensors. By the use of Voigt notation,
(A103) may be written as

~7'2 (A1O4a)

~ 2 A _- -&(AlO4b)

a Ta Ec aE,, pR? 3T PR

-1T (A1Q4c)
aE,,iiE0 PR a~ l

We recall the relation between the Helmholtz free energy A and
K'_,,specific internal energy given in (5.21)

8 A 4 ST (AlO5a)

Now, if (A1O2c) may be inverted in T to provide a relation
T = 2(E.,S), then (AlO5a) may be written as

= AEi'Es)) + ST(E, S) (A1O5b)

we may thus deduce the existence of an alternate form of the
equation of state

(E SA~ ) (AlO6a)
The first partial derivatives of e. may be related to those of Aby

differentiating (AlO5h) with the aid of the chain rule

a. aA aA a 2
=~~~b + -- 4 .-

aE aE a as

Use of (AlO2b) and (AiO2c) provides the results

= (,S) PR ~ (A1O6b)

T (ES)-(AO)as
The necessary and sufficient condition for inversion of (AlO2c) is

0 or~E ~(A107)
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the second result following from (A104a) and the fact T has been
defined to be positive.

Secdnd partial derivatives of may be connected to those of /
by differentiating (Al02b) and (A102c) with respect to S and E
with the aid of the chain rule. In Voigt notation

as PR + 1 " aE,,aS

a2A ai

1--

_ 2A__ a7 Aa
aTr as

aAa2A
0 - .P2aT - T2 a E

If we now use (A106b) and (A106c) we obtain

a T - - 1 (AlG8a)

/ a~ o 2A _ a2A
~EcJS)( \T 2 ) - a- aT(A108b)

_E__a - (: ) ( -) (~ar)/(\EaT) (A1O8c)

We see that, since we have assumed that first and second partial
dmrvatives of A~ are continuous, so are thoce of and the mixed
second partial derivatives of commute. Using this fact and
(A106), we may write the seconid partial derivatives of as

a2  .. _ T (Al09a)
aS2  aS A

E" i a EO a __

A1 (A109b)

aSaE aE , PR s p

(a - IcS (A109c)
--aE p aE PR

where s and a defined by (Ao9b) and (Aso9c) are termed the
stress-entropy nsor and isentropic elasticity, respectively. The
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result in (AlO9a) follows directly from (AlO4a) and (A 1O8a).,
Inserting the notation for the second partial derivatives of A and
defined in (A104) and (A109) into the second two equations in
(A108), we obtain

Tea (All~a)

-T T TRE (All10b)

The transformation from A to 9A may be viewed as a

transformation of independe~nt variables from (f,T7) to (E, 3A /a T).

Such a transformation is known as a Legendre transformation. The

transformation is involutary, since a similar series of steps

performed on 4, S) leads directly again to 8 (E, / TS).,
The possibility immediately suggests itself of picrforming a

transformation to the independent variables (8M/8E, 7'). This may

be accomplished by defining a quantity

G A (Allia)
PR

termed Gibbs' free enthalpy. Now, if (AlO2b) is invertible in E to

provide a relation E E (Z, ), then (Allila) becomes

-4 ,V 1 1 Vlb

G =A(EC( , T), T) - -~ E(Z, T)(Alb
PR

Consequently, we deduce the existence of an altzrn-ate form of the

equation of state

G G(, F (All2a)

E E E(2, T) = aG (Al 12b)

a G
S S('-, T) =(All2c)

the last two relatiqns following on differentiation of (Allib).'The

necessary and sufficient condition for inversion of (AlO2b) is

:k 0 or detIC"i 1 (A13

where we have used (AlO4c) and the fact that p > 0.

* The Smoothness properties of A are again transferred to G so

that the mixed second partial derivatives of G commute. Using this
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fact and (A112), the second partial derivatives of G' may be written
a2  as

G S

~j) P (A1l4b)

-~ -~ ~ a~1 J PR

where o z, and V defined by .(A114) are termed the specific
heat at constant stress, the thermal expansion, and the isothermal
compliance respectively.

The second derivatives of G may be related to those of .1 by
precisel.y the same steps that led to (A1O8). If the notation
introduced in (A104) and (A114) is used in the results, then we
obtain the relations

T' C - (All5a)

cT (All5b)

INE KT Ipo (A-t15c)

Finally, one might transform (A102) to the independent
variables (ail/aE, /a 7j)). We may use the previous formalism to
accomplish this by defining a quantity

H = G + ST (A116)

termed the enthalpy. If (All2c) is invertible in T, then there exists
a function T = T(Z, S). When this is inserted into (Alit13) we see

that thf.re exists an alternate eqxtiono tt

H H H(2S) (All7a)

E (E S) = - (All7b)

T M;,S) (All7c)

The invertibility condition in this case is

0 or 0~# (A118)
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The second partial derivatives of fl are

3-f H aT _T

ajr as 8 (All9a)

asa~ _ =(All9b)

- -- (All9c)
Pu

where K~ is termed the iseritropic con~pliance. The quan'uty hac
been inltroduced for convenience but is unnamed. If the second
d('rivatives of H are expressed in terms of those of G as before, then
we obtain the result i-1 (A1l9a) and the additional two relations

(A12Oa)

T
ArKs,,, (Al2Ob)

The equatin)n of state form (A11l7) could just as easily have
* been obtained by staiting wvith the definition

tI= -- Y (A121)

If (AlO6b) is invertible in E' so that E E(,S), and this is used in
(A121), then (A117) is obtained. The invertibility condition in this
case is

0 or ~det(C' ,)4-0
oraE (A122)

The relations between the second derivatives of H1 and E are useful.
Obtaining them as before, and using (M(59) and (A119) we rind
that

Ks CS(A123a)

(A1l23h)

The four alternate equation of state functions A, !1, G and H
are potential functions for the thermodynamic quantities E, 12, T
and S. If any one of the potential functions is known, the~n all of
the equation of s.ate forms (A102). (A106), (A112) and (A117)
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can be found by processes of differentiation and inversion.
Unfortunately, the thermodynamic potential functions are

difficult to evaluate from experimental data. The equations
(A102b) and (A112b) relate the measureablequantities stress, strain
and temperature

(IE, 7') E E(!:,T) (Al124)

They may be termed thermal equations of state. They may be
evaluated, at least in principle, from static isothermal experiments.
The equations (AlG~b) and (All7b) relate the stress, strain and
entropy

" (E.S) E k (!,S) (A125)

Th-ey may be termed entropic equations of state. They may be
evaluated, at teast in principle, from dynamic isentropic
experiments.

The thermal and entropic equations of state do not share the
properties of the thermodynamic potential functions, in that all of
the thermodynamic functions cannot be obtained from them by
processes of inversion or differentiation. In fact, the
thermodynamic potentials themselves may be found from them only
by integration from suitable initial data. Additional information is
usually needed to supply the initial data. These data may be sought
in such other measureable quantities as specific heats.

A basic problem in thermodynamics is to deduce information
about the potential functirins, which is needed in the solution of
boundary value problems, from measurable quantities. Of
fundamental importance in this connection are the relations among
second derivatives of the potential functions (All0), (A115),
(A120) and (A123) which follow directly from out smoothness
assumption. Any desired relation among thermodynamic derivatives
introduced so far may be read off from this set of relationr. T3 give
an example we will deduce some well-known relations.

For example, we may use (A115a) and (All5b) in (All5c) to
obtain

, -- --- : (A126a)

Performing a similar operation on (Al10b) and multiplying the
result by K7. we obtain
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C: K PF .,(A126b)

If we take the determinant of this expression, we obtain

d ut-4() = I I C (A126ci

P

Comparng (A126a) and (A 126c) we obtain the result

,'% dt(C )(A127)
8 ' det(CUr1

The invertibility conditions necessary for the existence of the
alternate equations of state are (A107), (A113), (A118) and
(A122). We have already noted that the equation of state must be
subject to some restrictions in connection with a discussion of wave
propagation. In fact, if the material is ir. its natural state, then
inequalities of the Coleman-Noll type (5.89) applied to the
isothermal and isentropic elasticities would imply that, in Voigt
notation, for any Al

C! AJ > 0 ,.,O,> 0 (A128a)

If CT and C. are positive-definite, their determinants are positive,
and (A113) and (A122) are satisfied. 'f we are prepared to assumn
that the specific heats are positive

' > 0 ,, > 0 (A128b)

then (A107) and (Al8) are satisfied.
Coleman and Greenberg (1967) and Coeman (1970) have

obtained restrictions analogous to (A128) for the case of a simple
fluid from arguments concerning the stability of equilibrium, thus
establishing Gib!'s stability postulates in 'specific terms.
Unfortunately, similar arguments are lacking for the case of a sohd.
When the material is subjected to an arbitrarily large deformation
from the natural state, the generalized Coleman-Noll inequalities io

longer imply (A128a) directly. The precise inequalities applicable to
solid materiats are not known at present. Truesdell and Toupin
(1960) note that the restrictions (A128) may be too strong, in
general, and term them conditions of superstability.

The equation of state forms discussed so far by no means
exhaust the- possibilities. Many other forms may be obtained by
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processes of inversion and substitution of those already given.
Forms which are particularly useful in the representation of shock
wave data will be mentioned. Since T # 0 by definition, we see
from (A106c) that (A106a) is invertible in S, i.e., there exists a
relation S (E, L). If this is inserted into (A106b) and (A106c)

(E, T !'(E, ) (A129a)

which 'may be termed energetic equations of state. The derivative

i -. (A129b)

where. is termed the Griineisen tensor, is of importance in fitting
data. We may connect r with previously defined thermodynamic
derivatives as follows. The chain rule of differentiation provides the
sequence

- af.a as

From (Al04a), (A104b), (A106c) and (A129b), this becomes

0F' =R C.o, (A130a)

Using (Al 15b) this may be placed in a more useful form

l', -(A13cb)

Another equation of state form is also useful in connection withshc.k wave data. We see that since T: 0, (Al17c) implies that

(Al17a) is invertible in S, i.e., there exists a relation S = S(T, H).
When this is inserted into (A1iTb) and (All7c) we obtain

E = k 11Z ) T 1:]'Z H) (Al31a)

which may be termed enthalpic equations of state. The derivative

aE; _ _(A16-b)

an
plays a role analogous to that of the Griineisen tensor. By the
chain rule

- -H aS a'
3T 5 7r§a
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whence, by (A1I.4a), (All4b), (A1l7c) and (A13ib) we obtain

Note that we have made no assumptions regarding
non-singularifty of thermodynamic derivatives other than the
invertibility conditions (Al.07), (A113), (A118) and (A122). An
important. special case arises when the thermal expansion vanishes.

0 (A132a)

From (A11O), (A11.5), (A120), (A130) and (A132a) and the
lnver'ibility conditions we see that in this case

TQ
(A132b)

A material for which (A132) holds is termed piezotropic. From
(AlO3b) and (A1l4b) we see that

- o (A133a)3T a

so that (AlO2b) -and (All2b) reduce to

= (E) E =E( ) (A133b)

In a piezotropic material there exists a unique invertible striss-strain
relation. From (AlO3h) and (AlO9b)

as_ 70 0 (AI.34a)

so that (AlO2b) and (All2b) reduce to

S =S(T) T TOS (A134b)

in a piezotropic mazerial there exists a unique entropy-temperature
relation. From (A106) it follows that

(E~4) + o(S) (A135a)

where
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dE T = (A135b)

S dE (IS

In a piezoi.ropic material, the internal enern, may be split into a
thermal portion & T and a substantial portion of & E. Thermal and
mechanical processes are completely decoupled in a piezotropic
material, since changes in temperature and entropy cannot, affect
the stress, while chznges in the stress and strain cannot affect the
entropy.

Finally, we will specialize some of the equations of this
appendix to forms suitAble for one-dimensional motion. We will
consider only a pure longitudinal motion described by (A41). Note
that such motions are not possible in general in aeolotropic
materials, but may occur only in certain directions of material
symmetry.

From the definition of Green's strain (5.12), Piola's stress
(5.13) and the deformation gradient appropriate to pure
longitudinal motion (A42) we see that the normal physical
components of stress and strain in the direction of mction are

I
Ell~~ F21) Ol F

Introducing the epgineering strain c defined by (A44), and using
(A43) we see that

) -1c) _ o (A136)

where a = all. Noting that El I is the only non-zero component of
E, we may introduce (A136) into (A102) to obtain

A = A[c(1 - 1)T = A (e,T)

d1 !; ,I(cl (1 0, T) = a(c. T)

By use of the chain rule to relate derivatives of A to those of A1, we
see that (A102) becomes

A (C, 7') (A137a)
aA

a = &(c, T) = Pu (A137b)
ai

S S(c, T) a (A137c)
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Using the chain rule to relate second derivatives, we obtain
+i{7 <~' A '): ' , A

(1Ei, ;T- (Ai38a)

A . (1 -) . (A138b)
o T-,aE,

i _A A (A138c)

Now, using (A137), we intioduce the notation
& 8A 1 05 1
(E2 )J? a Pit' (1 39a)

8 ... ,(A139b)

IN'E (A139c)
"" ST 77'

From (A103), (A138) and (A139) we see that

MT (-L-) CT,, - (Al4Oa)
Pl .T,' (Al40a).

-' = _ + "(Al40b)

P

where we have used (A44). If we write out the longitudinal
component of (5.92) with the aid of (A44), then we see that
MT = D, ], the latter interpreted as an isothermal elasticity. Note
that if the material is hi a natural state, which is taken as reference=T , =CT,
configuration, then I = ,P=PR and MT -CI, t.

We may treat the other thermodynamic potentials in precisely
the same way. The one-dimensional analogs of (A106) through
(A123) may be developed as needed. Note that if the matcrial is in
a natural. state taken as reference, then the relevant one-dimensional
forms can be read off directly. Some care is required, however, wi-h
equations in which terms are sumied, as for example (Al15). The
one-dimensional form of (All5b) is

7 T + (Al.4la)

Of course, the number of terms on the right is reduced by material
symmetry. In particular, if the material is isotropic and in its
natural state, then 7' = 1, a and CT has the representation
(A30). Then (Al41a) becomes

(3Xp + 2-)a (A141b)
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Other equations may be expanded likewise for the particular
symmetries which are of interest.

Appendix 7

Properties of the Equilibrium Hugoniot

It has been seen in Section 5.5 that shock waves in
thermoelastic non-conductors are governed by the Hugoniot
equation 7(C',S) 0 -r alternatively H(E',o-) = 0. These equations
describe all P ' "' , states reachable in a shock jump from a fixed
initial state (E+,S ) or (e4 ,o * ). They implicitly define Hugoniot
curves in entropy-strain or stiess-strain spaces respectively. At this
point we cannot say yet if these curves are monotonic, or even
single-valued in one of their arguments. In this Appendix we will
examine some geometrical restrictions on the possible shapes of the
Hugoniot curves.

That the Hugoniot curves are single-valued in some small
neigbborhood of the fixed initial state may be seen as follows. For
simplicity of notation in this Appendix only, we will denote the
fixed initiad state by 0, and use the subscript o for quantities
evaluated there, e,=, el, co = a', etc., but leave quantities in the
state behind the shock, which will be considered variable,
unsubscripted. Note that we do not assume that the state ahead of
the shock is homogeneous, undisturbed, or a reference
configuration.

We consider the function H(.,S) defined by (5.145), find its
partial derivative with respect to S, and evaluate the result at the
initial state 0

IDS (, o() =  t(eo,S 0 ) = To > 0 (A142)

by (5.135c). Since the partial derivative is non-vanishing at 0, and ft
is continuous by smoothness assumptions on the equation of state,
then H is invertible in S and there exists a function

S = S,,(e) (A143)

in some small neighborhood of e0 . By (5.135b) there then also
exists a function

o o(C, S1,(c)) al 60,,( (A144)
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in some small neighborhood of67~
We will note for future reference that (5-135b) implies theexistence of a function

=(eso)=() (A145)
The curve described by (A145) in stress-.strain space is termed anisentrope through 0. of course other isentropes may beconstructed with different constant values of S. From (5.136) wesee that e

- d2(Cd) Ns os() (A146)
are the slope and curvature of the isentrope with entropy S. Werecall that Ms > 0, so that isentropes are monotonically increasingIn th e whole stress-strain space. In most of what follows, we willlimit consideration to materials for which Ns > 0, so thatisentropes are convex in the whole stress-strain space. Thestress-entropy modulu3 ps and Griinei-en ratioFaxk eindb(5.146) and (5.151b). 

ardfndb

~ acS) F(A147)
We recall that the Griineisen ratio vanishes only for a piezotropicmaterial In most of what follows, we will limit consideration tomaterials for which r > 0. Since p > 0, T > 0 this implies thatps > 0. Thus, isentropes for higher entropies lie above isentropesfor lower entropies in the entire stress-strain plane. The restrictionsA's > o, r > 0 are special constitutive assumptions. Interesting anduseful results follow for the cases NV5 < 0 and/or r < 0 by meansidentical to those used here, but they will be left as an exercise forthe reader.

We will first develop a few selected properties of the Hugoniotin some small, neighborhood of the initial state 0. In particular, wewill consider shock strengths, a [c) such that

slip) aj I <C (A148)
where c is sufficiently small that the explicit Hagoniot functionl(A143) exists. We note that in this case, successive strain derivativesof H vanish,

do
~,*1 (A149)
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Using (5.145) the first derivative is

(C --- (A150)
de 2 ode

where we have used (5.135b) and (5.135c). Differentiating this
expression twice more, and evaluating the results at 0 we obtain

d0 S - d3S I d2 o, (AI51)

dc 0  de2  de3  2pTo dEc

Now, repeated partial differentiation of (A144) using the chain rule
and (A145) provides at 0

dill das,di1 _ --~ M_

de de

d 2 61  d 2  Ns d3  d' ds (A152)

dc - de2  dc d - 2 N 5°

where we have used (A147). Thus, we see that the stress-strain
Hugoniot amd isentrope have identical Drst and second derivatives at
0.

We may expand the entropy S,, in a Taylor series about the
initial state. With the aid of (A151) and (A152) we obtain

Is] Ns o a3 O(a4 ) (A153)

Thus, the entropy jump is of third order in the shock strength.
Now in the absence of heat conduction, (5.35) requires that

[S] _> 0. For a convex material, Ns > 0 we see that since p > 0,
T> 0 only compressive shock waves are allowed; a > 0. It may be
verified that for a concave material Ns < 0, only expansive shock
waves are allowed; a < 0. This result does not depend on the sign of
F.

We may also expand th stress &H about the initial state. Again
with the aid of (A152) we obtain

[a] = +dNsa2 I + +O 3 4 0(a 4 ) (A154)
2 6 dc 12

If the stress on the isentrope as given by (A145)is expanded in the
same way, we see that the first three terms coincide with the first
three terms of (A154). Consequently subtracting, we see that
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I01vso 30 0,( - - a + 0(a4 ) (A155)

Thus, the offset between the stress-strain Hugoniot and isentrope is
of third order in the shock strength. For Ns > 0, a> 0, and P > 0
the Hugoniot lies above the isentrope, for P < 0, below. Conditions
for N5 < 0, a < 0 are identical

The above properties apply only for weak shocks subject to
(A148). Geometrical arguments may be used to allow these
properties to be extended to the entire Hugoniot for arbitrary
shock strengths. We will examine the properties of the Hugoniot
function H(E,c) in the entire (a,e) plane, in order to deduce the
position of the Hugoniot curve H,= 0. The discussion will be limited
to the case Ns > 0, P > 0, although results from Ns < 0 and P < 0
foflow diiectly, and have been given by Nunziato and Herrmann
(1972).

As a first step, we examine the value of the Hugoniot function
t long the isentrope through the initial state 0. Denoting this
isentrope by . o, we note that the condition Ns > 0 implies that A o
is convex. An alternate statement of convexity is that 4
everywhere lies above its tangent, except at the tangent point,

(a - 0) < AMs(C.Sc)(.) - C0 ) (A156)

* for all c e0. If we differentiate (5.145) with respect to e at
constant S = So, then

- g(o - Oo) - (ESo)( - c) (A157),.. " 2PR

From (A156) it is evident that

aHe, So) <0 (A158)

This implies that H decreases with strain along .o. Since H = 0 at 0,

H < 0 along the compressive brach of .4 0, e > e0 , and H > 0 along
the expansive branch, e <

Now consider a secant from the origin 0 to a point P on the
compressive branch of the isentrope 40,, as shown in Figure 5.10.

Since isentropes are convex, points on the secant lie above io. In
fact, OP will be tangent to exactly one isentrope I as shown at Q,
and :I will lie above :(,l. If r > 0, then the entropy on 4l will be
greater than the entropy on J., Along the secant OP, we may
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011

0

Figure 5.10 Secant from Origin to Point on Compressive Branch of Isentrope.

parametrize stress and strain, and by virtue of the fact that
S = S(e,a), the entropy by the path length s from the origin 0, i.e.,
we may write

J ~s 0^ (R) S =S(S) (A159)

Differentiating (5.145) with respect to s, we have that, alongt the
secant OP

d
Hs1 (C(s), S(8)) (A160)

dS l 1 do dc.n
Sds 

2 PR ds ds

For a given choice of P, the slope of the secant, given by

L = - (Al6la)

is fixed, so that

di, dc 0 (.4161b)

Since c co, It follows from (A160) and (Al6lb) that, along the

dii dS
ds ds (A162)
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Now, it is obvious from the sketch that, as we traverse the secant
OP outward from 0, i.e., as s increases, the entropy increases
monotonically between 0 and Q, decreases monotonically between
Q and P, and hg-q a maximum at Q. From (A162), the same is true
of H. Now H =10 at 0, therefore, H > 0 at Q. We have shown above
that H < 0 on the compressive branch of 4,o, e.g. at P.
Consequently, there is one and only one point at which H = 0, and
this point must lie between Q and P. This is true for all points P on
10, so that the compressive branch of the Hugoniot must be above
A,, but below the locus of tangent points Q. Since such shocks entail
an entropy increase, we have proved that compressive shocks can
exist in a material with Ns > o, r > O.

Now consider a secant from the origin 0 to a point P on the
expansive branch of.i0 (Figure 5.11).

0

/0

Q

n7

0

Figure 5.11 Secant from Origin to Point on Expansive Branch of Jsentrope.

Identical arguments apply, so that H increases monotonically from
0 to the tangent point Q, has a maximum at Q, and decreases
beyond Q. However, we have shown above that H> 0 on the
expansive branch of :10, i.e., at P. It is obvious that H = 0 cannot
occur between 0 and P, and that the Hugoniot must lie below :0.
The entropy below :t0 is less than that on 1 0 and an expansive shock
would entail an entropy decrease. This is expressly forbidden by the
entropy inequality (5.35) in a thermoelastic non-conductor. Thus,
we have proved that expansive waves are impossible in a material



272 W. IERRMANN end J. W. NUNZIATO

with Ns > 0, 1, > 0.
A number of properties o fhe JlHugoniot are geometricallyobvious from the above construction. Returning to the case of acompressive shock, the secant OP intersecting the Hugoniotcorresponds to a Rayleigh line. The Hugoniot can intersect a givenRayleigh line only once, Indeed, since H decreases monotonicallybetween Q and P without stationary values, the Hugoniot cannot be

tangent to a Rayleigh line.
Now consider properties along the Hfugoniot curve itself. Wemay parametrize the stress, strain and entropy along the Hugoniot

by the path length r from the origin, i.e., we may write

c J(r) a = u(r) S = S (r (A163)
The path length r increases monotonically as we traverse outward

from the origin on the Hugoniot

(lr), S~r)) = 0 (A164)
Differentiating (5.145) with respect to r, we see that by (A164)

TdS - 1 (C - 0 1dLdr .2pR dr (A165
where we have used a relation similar to (A161, ained bydifferentiating (A161a) with respect to r. Now, in ti, inity ofthe origin 0, the entropy increases with strain according A153)and hence dS/dr > 0. From (A165) if dS/dr = 0, then dLldr = 0 andthe Hugoniot would have to be tangent to the Rayleigh line. Wehave shown that this is not so. Consequently, dS/dr 0 0, and in factsince it is positive near the origin, we conclude that dS/dr> 0everywhere along the Hugoniot. We have proved that the entropyincreases monotonically with path length along the Hugoniot. From(A 165), dL/dr> 0 along the Hugoniot. Thus, by (5.143a), itfollows that the shock velocity also increases monotonically with
path length along the Hugoniot.

We now investigate the relation between the secant modulus Land the modulus Ms. Since L increases monotonically along theHugoniot, and the ilugoniot lies entirely above the isentrope
i, through the origin, it is obvious that L is greater than the slope of
.1,t at 0. If we denote Ms(co,So) = M', then

L > (A166)
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In order to investigate the relation of L to the soeo h snrpwith entropy S behind the wave, consider figure 5O12 Lhet isethe

A

Q

/

Fiue512Rltol rL// Soeof noe
H~ oit ih R ylihlne0 ~ heietop h ogh A wt

of tanentpigure Q. ReIf o oB is to ineseop of j a't-'f the

convexity of .A implies that

whre = MS (CA ,5A) is tile slope of J I at A. Now B lies oil 'Tand is a point at which a Rayleigh line 0P, is tangent to :1, . Sincewe have shown that the slope of the Rayleigh line increasesmonotonically as the Hugoniot is traversed outward from 0, it isevident that the slope of OP is greater than that of 01"

L GOA > B- -aGO (A168)
CA -Co CB CO

it is geometrically obvious from the sketch that (A168) implies that

- > -(A169)
CA -C 11 CA - 0
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Consequently, from (A167) and (A169)

Ms > L (A1.70)

In view of (5.143a) and (5.138), the relations (A166) and (A170)
imply that intrinsic velocity of the shock is greater than the
intrinsic velocity of an acceleration wave ahead of the shock, but
le.s than that behind.

One final result will be obtained to relate the slope of the
Hugoniot itself to the isentropic modulus. Again, differentiating
(5.145) with respect to the path length r along the Hugoniot, the
result may be written in the fnrm

du _ 2pr TdS [a]de (A1.71)
dr a dr -a dr

Differentiating (5.135b) wit? t , e aid of (5.136) and (5.1,16)

dcF=M dc dS (A172)

dr sdr dr

Combining these two equations using (5.32b), (5.143a) and (A147)

da 2 z - f -de
dr 2 a dr (A173)

where M-/L. Wfe see that (A173) provides a parametric
expression for the slope of the Hugoniot in term; of the slope of
the isentrope at the same point.

Since the slope of the Hugoniot has been shown to coincide
with the slope of the isentrope at 0, which is positive, and the
Hugoniot can never be tangent to a Rayleigh line, then 'if the
Hugoniot has extrema, the first extremum must be a strain
maximum. This occurs if al' = 2. The slope of the Hugoniot may
be negative beyond the strain maximum if

2 < al' < 2" (A174)

From (A147) and (5.146) we note that I' = F(c,S) while S is related
to strain along the Hugoniot. Since we have not made any
assumptions thF,.' is monotonic in e and S, or that S is single-valued
in e along th.v Hugoniot, the implicit equation tti'(a) = 2 may have
multiple so'utions, so that it is conceivable that several strain
extrema -ay exist. If a- = 2 " then a stress extremum will occur.
Since . = M./L and M and L are functions of the state behind the
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wave, it is conceivable that the implicit equation afl(a)/Ik(a) =2 may
have 1iultiple solutions, and thr't several ntress; extrema may occur.
Little further can be said witb out specifying the explicit form of
the equation of state.
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List of Symbols

a sound speed
!' , i.i,ciJ,di coefficients in system of partial differential equations

: :A , Bj, Ajj coefficient vectors in system of partial differential

equations

A, B, C- combiuation of coefficients in differential equations

A',B',C*,D' matrix of coefficients

c sound speed

C1 dilatational wave speed in an elastic solid

c. shear wave speed in an elastic solid

Ci ith characteristic curve

e.' £. e, unit vectors in coordinate directions

E, comnbination of terms in partial differential equations

F specific internal energy
general function

g ratio of the magnitudes of the discontinuities in a
linear system

h specific enthalpy

length factor along the kth characteristic curve
N unit normal vector
p 1, s dependent variables in a system of equations with throe

independent variables (p oo/3r, q = 313z, s = a/it)

Preceding page blank
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p, q, non-dimensional stresses in dynamic elasticity

equations

P. Q, R general tunctions of u, x, and t in conservation law

P pressure

R1  term in system of partial differential equations

R, R' regions of integration

s .k arc length

s specific entropy

Ui dependent variables in partial differential equations

U particle velocity in one-dim,,nsional motion

u, V velocity components in x and y directions in
two-dimensional motion

U wave speed

v test function

X, Y,T; r,z,t independent space and time variables

&angle between r-axis and projection of A onto te ?"rz

plane

factor used to form linear combination of equations

arc length parameter along C, and C, characteristics
(characteristic coordinates)

local coordinate system

unit vector along a bicharacteristic

yratio of wave speeds c,/c 2

yt constant in ideal gas equation of state

unit vector normal to X and

l" initial value curve

longitudinal strain in one-dimensional motion

0 dependent variable

X curve parameter (arc length)

7(1,X,,t) unit vector normal to characteristic surface

P unit vector

characteristic slope, non-dimensional stress

p density

[f] jump in variable f on line of discontinuity

f average value of f between points 1 and 2, 1/2(f, + f2 )
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V gradient operator

A finite - difference operator

* All vectors will be underlined by he tilde in this chapter rather than the conventional
bold face because of the use of Greek symbols for certain unit vectors.

6.1 Introduction

Second order partial differential equations are usually
classified as hyperbolic, parabolic, or elliptic. This classification is
important since the kind of initial and boundary conditions which
-rc- required to produce a unique solution depend upon the type of
equation. For example, to solve Laplace's equation, which is
elliptic, the dependent variable or its normal derivative must be
.pecified on the entire boundary of the region. In contrast, the
wave equation, which is hyperbolic, can be solved at points in the
region when the dependent variable aiid its time derivative are
specified over only a portion of the boundary. The classification of
equations is al~o important because it identifies the kind of
functions which may be solutions. For the wave equation, initial
discontinaities, if present, will propagate as discontinuities, but, for
the heat equation which is parabolic, initial discontinuities are
immediately smoothed.

A single second order equation with two independent variables
can be classified as hyperbolic, parabolic, or elliptic depending upon
whether there are two, one, or zero real characteristic curves passing
through each point in the -ilane of the independent variables. More
general systems of equations can also be classified by the number of
real characteristic curves. One method for classifying systems of
equations with two independent vaiiables will be described in this
chapter.

Beside classifying partial differential equations, the concept of
characteristic curves leads in a natural way to a numerical method
of solving hyperbolic equations. The method of characteristics has
been used extensively to solve one-dimensional wave propagation
problems. It has also been uzed, in a more limited way, to solve
unsteady two- and three-dimensional problems. Examples of these
numerical methods are presented in this chapter.

In section 6.2, systems of first order equations involving two
independent variables are analyzed. First, the characteristic curves
and compatibility equations are derived for a system of two
equations with two unknowns. Later the derivation is generalized to
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include an arbitrary number of equations. To illustrate some
properties of characteristic curves, these derivations are given by
two different methods. The first method uses the property that
along a characteristic curve a linear combination of the equations
can be formed such that only derivatives interior to the
characteristic curves appear (interior derivative approach).
Characteristics are then alt.erwatively defined as lines along which
the prescribed variables together with the system of differential
equations do not suffice to determine all partial derivatives (line of
indeterminacy approach). We next show that, for first order
systems, jump discontinuities in first or higher derivatives may exist
across characteristic curves. This "line of discontinuity" property is
another popular way of defining characteristic curves.

Many problems in wave propagation involve waves which
contain jump discontinuities in the dependent variables themselves.
In order to treat these cases from the point of view of differential
equations without applying governing physical principles, we
introduce the concept of weak solutions. Using this concept, we
show that, for linear equations, disconitinuities in the dependent
variables propagate along characteristic curves. Also, the magnitude
of the jump is shown to satisfy an ordinary differential equation
which indicates that if a jump discontinuity is present, it will
remain.

The definition of weak solution is then extended to systems of
quasilinear equations if the equations can be written in the form of
"conservation laws". By applying this definition, the jump
conditions for conservation laws are derived, and it is shown that
these jumps do not propagate along characteristics. These
discontinuities propagate with a velocity which is different from the
characteristic velocity and dependent upon the particular solution.

The "method of characteriztics" for the numerical solution of
hyperbolic systems of equations is then outlined. In this method,
he finite-difference approximation is applied to the compatibility

equations and to the characteristic curve equations rather than to
the original partial differential equations. For numerical methods
which are based upon integration along characteristics, the concept
of the "domain of dependence" and "region of influence" are
particularly important, and these concepts are therefore introduced.
Illustrations of numerical solutions for linear and quasi-linear
systems are then presented. Applications of these methods to
practical problems in wave propagation are briefly described and
referenced.
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In section 6.3, problems involving three independent variables
(two space dimensions and time) are discussed. Since the
characteristic surfaces and compatibility equations become
cu.,lbersome for the general case involving three independent
variables, these quantities are first derived for the specific case of
the linear wave equation. Then these same concepts are applied to a
general system of n quasi-linear hyperbolic equations for n
unknown functions. Numerical techniques which are currently
being used to solve problems of this type are then illustrated for the
simple case of the linear wave equation. Applications of these
methods to practical problems in wave propagation, both linear and
non-linear, are then briefly described and referenced.

6.2 One-dimensional Unsteady Problems

6.2a Systems of Two Equations for Two Unknowns

To introduce the concept of characteristics and compatibility
relation, we consider here the following first order system of two
partial differential equations for two unknown functions i, (x, )
and a 2 (x, t).

(at a u, 23u2 au2
a, +a bHi at I ja 4- b1

... +.R(6.1)
:.a-2 b b , I t +  a22 , x +  b 22  Rt= /2

The ai, bij and Ri(ij1=,2) may be functions of u, , u2, x, and t. The
more general case of an arhitrary number of equations will be
discussed in section 6.2b. Equations (6.1) are therefore linear in the
first derivatives and we termed quasi-linear. If the coefficients aij
and b i are functions of x and t only, the system is semi-linear. And
if, in addition, R1 contains u1 and i 2 in a linear way, the system is
linear.

Interior Derivative Approach

The characteristic curves of Eqs. (6.1) may be defined by a ew
alternative methods. We call the following method, which was used
by Courant and Friedricks 16.1], the "directional derivative" or
"interior derivative" approaclh. A linear combination of the given
system of equations is formed in such a Nay that the partial
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derivatives in the resulting equation form directional derivatives in
one direction only. This direction is then defined as a characteristic
direction. A curv, which has this characteristic direction at every
point is then a characteristic curve. Since the combined equati3n
then involves only interior differentiation along these curves, it can
be written as an ordinary differential equation. This si.iplification
is an important step in the solution of Eqs. (6.1).

To form the linear combination of Eqs. (6.1), multiply the first
equation by an undetermined factor a, and the second equation by
a 2 . Addition of these two equations yields

aul, all, 3 U
(a,a ,, + aca21 ' 4- (alb, + aC2b 2 ,)t 4 (aja12 + C,.a22)

+ (akb,2 + a2 b 2 2 )t aR 1 + a2R (6.2)

Now consider a .curve C in the x,t plane described by a
parameter s; i.e., x = x(s) and t = !(s). Given a function, f (x,t), we
can write the derivative of f with respect to s as

df _ f dx +a) fdt
ds x ds at ds

If the parameter s is arc length along this curve, then df/Js is the
directional derivative of f. It gives the rate of change of f with
respect to "distance" in the direction tangent to C. In vector
notation, this may be represented by

df -'ds

where Vf is the gradient of f and p is the im, vector in the s
di-ection tangent to C. This direction is given by (dx/ds)/(dt/ds) =

dx/dt.
More generally, any linear combination

Aa[ + Baf
ax at

represents derivation of the function f(x,t) in the direction (dxldt)
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A/B. The above derivative is related to the directional derivative.
as follows

+ ~af (~2 + B 12df.63
aix + tA 63

The first two terms in Eq. (6.2),

(a~a,, + a2 a i~U + (alb11 + a aul

are proportional to the directional derivative of u, in the directienl
given b

a II+ 02a21  dx
,bI+ a2 b2, cit

and the second two term-s are proportional to the directional
derivai,ef~i h direction

ca,+ a 2 a22 _dx

a, b12 ' + a.b 22 - t

We now require that the derivatives of ul and U2 be taken in the
same direction, or,

dx _alai, + C12 (7.21 ala,2  + 212
dt crlb11 + a2b21  alb12 + a 2

These two equations may be written in the follolwing form.

(a, I 'rb11 )a1 + (a2, - b2 l)a2 =0

(6.4)
((71 2 - b, 2 )al + (a22 -Tb 22)a2 =0

where the notation Tr = dx/dt has been used. Eqs. (6.4) may be
viewed as a homogeneous system of linear equations for the two
multiplying factors a, and a 2 . For a nontrivial solution of a, and
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a, to exist, the necessary and sufficient condition is that the
determinant of the coefficients vanish, i.e.,

(a, I b,I) (a21 - b~1 S0 (6.5)
(a12 - rb 2 ) (a.22 rb22)

This equation then determines the characteristic directions, T, at
any point xt. After expansion, Eq. (6.5) may be written in the
form

a7' 4 br 4- = 0 (6.6)

where

a b,-I b 2 b 2 , . c a .a2  - 1O4zkI

b a2 ,b, 2 : b2,a, - b11a22 -- b2a

Since Eq. (6.6) is quadratic in r, there will be two real characteristic
directions if b2 - 4ac > 0, and Eqs. (6.1) are then classified as
hyperbolic. Eqs. (6.1) tre classified as parabolic if b - 4ac = 0, for
which case one char.acteristic direction exists. If b2 - 4rc < 0, then
no real characteristic directions are possible, and the equations are
elliptic. For semi-linear equations, since the coefficients are
functions of x and t and not functions of uI and u,, the type of
equation depends cnly upon the region (x,t) considered. When the
equations are quasi-linear, the type of equation depends also upon
the solution u, and u2 .

Considering the hyperbnlic case, the two distinct characteristic
direct~ons from Eq. (6.6) are

(dY .. b - 4ac

and (6.7)
dx 1) \/!2 4-..ac
dl 2a

Tiese two directions then define two families of characteristic
curves C, and C2 in the x,t plane, see Figure 6.1.
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ft c{aT 2 } C{fu,

da

x

Figure 6.1. Characteristic !urves C, and C2 and characteristic coordinates Ca
and .

We can now solve Eqs. (6.4) for the ratio a2 /aoI using either r I or T 2

for r. Thus,

7b - all ar~, all

a,,1, - 'rib-, nd I 'r2 02

By substituting (a2 leq1 ), and then (a2 /et1 2 into Eq. (6.2), we
obtain the following two equations

A (T, + +~)~ (B 7 & x+a

-(r1b 2 i a2 l)R1  6-~b1  - a,1 )R 2

(6.8)

aI1, a U. aLL, BU,

A ( 2  ++ (B - ----- ( T 2 +

(T2b2 j a2 ,)RI (T2 b;, -a,,)R 2

where

A a, Ib2, b-1a-

B C! a2b21 b- a2

C aj2a2, a,,a22
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If da, is an increment of arc length akong the C, characteristic, then
the derivatives appearing in the first of Eqs. (6.8) may be expressed
in terms of derivatives with respect to a, i.e., as directional
derivatives along C1 ,

idul 1 u, a1 +

- (T]-dcx V 2  a a at

Also, by introducing do3 as the arc length along C2 , the following
relation holds

du, = 1 au, au,
d 1 :2 ax a t

In the above expressions, da and d3 are taken to increase with,
increasing t. Now, if these expressions for the directional derivatives
are substituted into Eqs. (6.8), we obtain

di, du,AV/1 + T) d  + (B - ) T/1 r2

(rib., - a2,)R, -- (7,b, -- a,i )R 2

(6.9)
du, C 2 du,

AV I + T2 do3 + (B -..- + do

=-.2 b21 - a2, )RI - (r2 b,l - a,, )R 2

The first e'quation holds along the C, characteristic curves which
are determin 2d by the differential equation dx/dt = r,, and the
second holds along the C2 characteristic curves determined from
dx/dt r 2 . Eqs. (6.9) are usually called compatibility equations
since, if initial values of u, and u2 are specified along one of the
characteristic curves, say C,, the initial data are not completely
arbitrary, but must satisfy the first of Eqs. (6.9) if a solution to
Eqs. (6.1) is to exist. Since the compatibility equations are
"ordinary" differential equations, with derivatives taken with
respect to either a or (, the problem of integrating the system of
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partial differential equations, Eqs. (6.1), can be replaced by the
integration of the compatibility equations, Eqs. (6.9), along their
respective characteristic curves, Eqs. (6.7). When Eqs. (6.9) are
integrated numerically along C, and C2 , the technique is usually
called the method of characteristics as opposed to the direct
numerical treatment of the partial differential equations, Eqs. (6.1).

The question of the exact equivalence of, Eqs. (6.9) to the
original system, Eqs. (6.1), has often been raised. For a single first
order quasi-linear partial differential equation in two independent
variables, the equivalence can be proved easily. (See, for instance,
[6.21 page 62 and r6.3] page 18). For the present case oi two first
order equations we may show the equivalence by viewing Eqs. (6.9)
as the conical form of Eqs. (6.1). (See [6.11, p. 44). If we consider
a(x,t) and O(x,t) as a new coordinate system, then if the Jacobian of
the transformation, xe to - xg- ta, does n;t vanish, (ao) may be
transformed back to (x,t) uniquely. Thus, every solution to the
equations in the (a,3) system is a solution to the original (x,t)
system, and vice versa. For a distinctly hyperbolic system, r, 7' r2,

the Jacobian does not vanish, because

1 1 xx

T2 Ti

For systems of more than two equations, the equivalence of the
cnaracteristic system to its original equations has usually been
assumed.

Line of indeterminacy Approach

Another method of defining characteristic curves could be
referred' to as the "line of indeterminacy" approach.. When the
dependent variables, u, and U 2 , are prescribed along some cure C
in the x,t plane, tney usually determine, together with the given
differential equations, all partial derivatives along C. However, for
certain particular curves these initial data and the. differential
equations do not suffice to determine all partial derivatives; such a
curve C is defined as a characteristic.

Again consider the first order system of two partial differential
equations, Eqs. (6.1). and assume that u, and u 2 are specified along
a curie C which is represented parametrically by
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x x(X) and t t(X)

Assuming continuity of all first order partial derivatives, we can
write

du, autdx au, dt
dX ax dx +}d

(6.10)
du2  au 2 dx + u2 dt

dX 3x dX at dX

These equations express the interior derivatives, or directional
derivatives, of the dependent variables along the curve C. Note that
the left hand side of these equations is known from the prescribed
data. Eqs. (6.10) together with the given partial differential
equations, Eqs. (6.1), form a system of four equations for the four
partial derivatives

aut aut a U2  a U-
u and atax a t- ax- a t

These equations may be written as

r b, a,2  b12R

aul - d 6
C~t ,, a = b = -x-aR

dx/d', dt/dX 0 0ax

0 0 dx/d\ dt/dXa b duj

If the coefficient matri): is non-singular, Eq. (6.11) can be solved

for the four partial derivatives, and the curve C is not a

characteristic curve. However, if th'e determinant of the coefficient

matrix vanishes, and if the original equations, Eqs. (6.1), are

consistent, then the four determinants obtained from the
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coefficient matrix by replacing one of its columns with the column

vector on the right side of Eq. (6.11) rrust also vanish. The partial

derivatives are then indeterminate, and the curve C is a
characteristic. Note that since the derivatives become indeterminate
along characteristic curves, the solution in the form of a power
series expansior ab:ut points on the curve cannot be obtained.

The condition that the determinant of the coefficient matrix

vanish yields Eq. (6.6) with r = (dx/dX)/(dt/dX). And again the

slopes of the two characteristic curves C, and C2 are given by Eqs.

(6.7). The condition of the vanishing of the four determinants

obtained from the coefficient matrix by replacing one of its

columL'ls with the column vector on the right side of Eq. (6.11),

yields, for example,

a, bl (1

y~ b2i a,2 R,

dul
dx/dX dt/dX 0 du

clX

0 0 dx/dX du--

or
d u l d - =-A -+ (7B -C)dX dX (6.1.2)

(b, b)- a~,)RI - (Tbil -- a.Ql)R] d I
- dX

Equivalent expressions can be obtained from the vanishing of the

other three imilarly formed determinants. This equation holds for

r = 7, along C, and for r = r along C2. If X is arc length along

either C, o, C,

dX2  dx2 4 dt 2, dxldt 7

therefore,

dx
dX ,1 + 7-

mnd Eq. (6.1 2) can be written as
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AV1l + r +(B -

-(7b 2 i a2 , )RI -Tr I a1 2)R 2

By taking r r~ and X~ =a~, where ce is arc length along the C,
characteristic, this equation becomes identicdl to the first of Eqs.
(6.9). Similarly, by taking r = 2 and X pit becorncs identical to
the second of Eqs. (6.9). We have, therefore, derived the
charmeteristic curves and compatibility equations v'-hich hole. along
those curves by the "line of indeterminacy" approach..

Discontinuity of First Derivatives

We now show that, for a first order system, jump diseconities
in the first deri-vatives may occur across characteristic curves.
Assumne that u I and u2 .are continuous solutions of Eqs. (6.1), and
assume that "exterior" first derivatives of ul and U12 suffer a jump
across a curve C defined parametrically by x = x(X) and t = t')
while the "interior" derivatives (differentiation along the curve,
remain continuous.

Now consider the 6if ferential equations, Eqs.9 (6.1), at pointl:I P,
mid P, on different sides of the curve C as shown in Figure 6.2.

tX)

Figute 6.2. Line or discontinuity, C, in exterior derivatives

1I' the resulting differential equations are substracted from each other
and points P, and P2 approach point P, the following equations
result, since, the continuous, terms vanish,
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aii[31l+ +,[aJ a,2[al + b12[311

a, EXI~ + bl + a22 b22 [01

where: [f I Jim (f, f2) when P, and P2 approach P; it is the
magnitude of the jump in the quantity f across C. Bly writing the
interior derivatives

du, = ui dx al'i dt
A 3xdAX at dX

and

du. U., dx + dt
o\~ x A at d

at points P, and P2 and substracting, we obtain the following
equations as P, and P2 are made to approach P.

(6.1.4)

LoxldX L6t dX

These equations are sometimes referred to as the "kinematic
conditions" of Hadamard. Eqs. (6.13) together with Eqs. (6.14)
form a system of four linear homogeneous equations for the four
unknown jumps. This system may be written as
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all bi, a12 b12 L x

a2a b2i a22  b22  [dU.]

dx/dX dtidX 0 0- = 0 (6.15)

0 dx/dX d/dj t I
dx/dX ~ dtd

A nontlivial solution to Eq. (6.15) for the four jumps in. deyivatives,

_' L i- L' j 'and[ at ],will exist only if the determinant of the

coefficient matrix vanishes. However, this coefficient matrix is
identical to that in Eq. (6.11) and its vanishing will again produce
Eq.(6.6), where r = (dx/dX)/(di/dX). Thus, the type of discontinuity
described above can exist only across characteristic curves;
therefore, the propagation of such a wave will occur along
characteristics.

Discontinuity in Higher Derivatives

If the functions u, and u2 and the first derivatives are
continuous, but higher derivatives suffer a jump across C, then again
C must necessarily be a characteristic curve. This result follows by
the previous analysis if the original equations are first differentiated
and if Eqs. (6.14) are applied to higher derivatives. Let us form a
second order system by differentiating Eqs. (6.1) with respect to x,
and obtain two second order equations,

32u, 32 u, V u U2 R,
a 1 2 + ,1i a2  ax1+ + + . (6.16)

a2 a2 ___ __U, ha 4- ---
a,-aX +b + a2i U x2 .... ax

Take thc interior derivative of ax/au i and t/ ui gives
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dI bx' ax14 dX bx2f dX

(U 1.,2) (6.17)
(I b t d.X-+ 2 dX

Eqs. (6.16) and (6.17) may be treated as %;ix equations governingt'.e six second derivativesa 2 zi/X, 32ua~t n 2 U,/3t 2 . hs
equations may be written .s

a, b11  0 a,2 2  0 ]L:'
bl 0 a-~ b22 0 .~

I[32~oxd, td 0 0xd d0d, 0 0~1

0 0 01 0xd dt /d N 0td~ L0,j
(6.18)

The vanishing of the coefficient determinant yields again the two
characteristic directions associated wvith Eq. (6.6), and a repeztedi
ex'traneous characteristic directfio-s (,d1tld) = 0, or dt = 0. lnstewi
of Eqs. (6.16), we may form a second order system by
differentiating Eqs. (6.1) with respect to t, or one of Eqs. (6.16)
with respect to t, tho other x. Except for the extraneous
characteristics dx =0 and dt =0, we always obtain the result that
discontinuiiies in second derivatives exist only across the two
characteristic curves.
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Discontinuity in the Variables

The preceding analyses are restricted by the requirement that
the dependent variables u, and u2 must be continuous. However, in
many problems of wave propagation, the behavior of discontinuities
in the dependent variables themselve-s is of prime importance. In
this section, we consider Ill and u2 to be continuous with
continuous derivatives everywhere in a region R exeept across a line
C where jumps in u, and u2 may occur, as shown in Figure 6.3.

For most physical problems, the relations governing the jump in
the dependent variables are usually derived by applying the physical
law directly to a control volume which includes the discontinuity.
For example, in Chapter 2, the jump relations are derived in this
wanner for a shock wave in an inviscid, compressible fluid. if we
choose to start with the differential equations, without I y
reference to the physical laws, we could integrate them over a
region containing the di-veontinuilty, and then apply the divergence
theorem to obtain the jump relation, as done by Jeffrey and Taniuti
16.4]. However, another method of deriving the jump relations
directly from the partial differential equations without application
of the divergence theorem to discontinuous functions makes use of
the definition of a "weak solution", see Courant and Hilbert [6.2],
page 48b. Using this method, we will show that di-srcontinuities
proprgate along characteristics if the equations are linear. However,
if the equations are quasi-linear, discontinuities will not propagate
along characteristics.

First consider the system of linear equations

it, Iax at a,2 ax  + b,2,t + c,,1u + c,:u, + d, 0

Dil 3 1, ait, t
, 1 ab, b 2  at + .11111 +4-

(6.19)

where a~i, bij, c~i and di ,qre continuous functions of x and t only.
Using the matrix notation
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Fai 1 i tb cuIt 2

A'~ D d4 it ' ±D 0(.0

I ax at Cu D

Ri

R REGION R

a

Figure 6.3. Region R divided into two parts R, and I?2 by the line C. The
dependent )Ics possess jump discontinuities on C.

Consider Eq. (6.20) in a region R' where u(x,t) and its first
derivatives are continuous, If w- mukliply (6.20) by an arbitrary,
smooth "test function" v which vanishes outside R', and irtejate
over.R', we obtain
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"iA , '  +  C", + D'.

or

, ff' ax, (Butv) dxdtf t ,B'V) ax (A'v) (Cu -! D')t'}dxdt (6.21)

Using Green's theorem, we see that the left side of Eq. (6.21)vanishes since v vanishes on the boundary of R'. Therefore,

1t - A 'v)  (C d' 1, x M . dt 0 (6.22)

We now generalize the solutions of Eq. (6.20) by Jetting u andits derivatives possess jump discontinuities along piecewise smoothcurves. The function u is defined as a weak solution of Eq. (6.20),in a region R, if Eq. (6.22) is sstisfied for all admissible testfunctions v and all subdomains R' of R. The jump in u across a lineof discontinuity C can now be derived from this definition of aweak solution by applying Eq. (6.22) separately to regions R, andR 2 of Figure 6.3. Here the region R is divided by C into R and R2where u is continuous. Eq. (6.22) yields

( B .hI i

f (C'u DI)udxdt - (C'u + l))t-dd t

or

f at (B'v) o 4 A) 4xddt

at ax (Aim) ldxdt
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f A'" + ~ C' t D' Dtudxd I

+ f~ + B C'u + D" vdxdt (6.23)

The right side of Eq. (6.23) vanishes since Eq. (6.20) is satis fied in
R, 'and R2 where u and its derivatives are continuous. BY applying
Green's theorem to the left side. of Eq. (6.20) and noting that v
vanishes on the boundary of R, we obtain

ftp{'(ut - . dt Y i(u, - u2 )dx~ 0

where ul and u2 -are the vi-Iies of u evaluated, on C when
approached from regions R, and R2 ,..respectively. Since v is
arbitrary, we conclude that

(A' 7B) u 0 (6.24)

where [u] -q u-z and -r dx/dt on C (propipgation velocity (Cs
dis~continiity). Tf thf' Jump ful does not vanish. then

IA' - -B'I 0

or

(a,1  - , ;b1) (izI2  - rb,2)I
I 0 (6.25)

-Tib 2,) (a,, r,

This equation determines the propagation velocity r of the
disco ntinuity, the slope of C. Eq. (6.25) is identical to Eq. (6.5)
which deterMines the characteris~ic direction r. Therefore, for the
linear systern, Eqs. (6-19), d 'p curve C, acr ss which jumps may
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occur in the dependent variables, is a characteristic curve. We
conclude that discontinuities prrpagatc with the characteristic
speed for systems of linear equations.

Also, for the linear systiam, Eqs. (6.19), th-e magnitude of the
jump (the strength of the wave) must satisfy a lin. tr, ordinary
differential equation along the characteristic curve. To illustrate this
feature, we write the compatibility . quaticn, Eq. (6.9), twice, once
along the characteristi.. C, and once dlong C2 . Here C, and C2 are
characteristics of the same family (corresponding to the same root
of Eq. (6.6), say -r, ) except C, and C, lie in region R?, and R2 ,
respectively, as shown in Figure 6.4.

t C(LINE OF DISCONTINUITY)

R2

Figu~e 6.A. Characteristic curves C, and C, on either side of~ the L.haracteristic
C which is a line of discontinuity.

If we now subtract the compatibility equation along C, from the one
along C2 'and allow C, and C2 to approach C, we obtain

4-72 .d ItI+ )/ 2 d U,
Av'1 T1 dotn]

11B (6.26)
E, [u,] + E2[u,]

where

E, =C1,a2, -a,,C 2, + (blC 2, -*~ t~r

E-2 =C,2a2t atC 22 + (blC 22 - 2C2),
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and ful l and [u 2 ] are jumps in the dependent variables of Eq.
(6.19) which exist across C. The jump condition, Eq. (6.24), yields

[u1 1 al .- r_, - a2  - Tb 2- g(x,t) (6.27)

Substituting this relation into Eq. i6.26), we can obtain an equation
for either [ul ] or [u, 1, For [u2 ], we have

{v1 + r (Ag + B

(6.28)

+ d - E1g - E2} [u 2] 0

This equation describes the decay of the strength of the
discontinuity as it propagates. Eq. (6.28) may be written in the
integrated form

[u] Ke " ' (6.29)

and
f,(x,t) ) 1 + 7 g + B - C)

(x, 0 AV11 - dg Eg - E2

and K is a constant. This equation shows tbt if a discontinuity is
initially present across a characteristic C, then it will always remain
in existence as it propagates along C. The previous case of
discontinuities in the first derivatives is amenable to a similar
analysis with corresponding results for the attenuation of
discontinuities in derivatives.

We can now generalize the notion of a weak solution to the
more general case of quasi-linear equations if the equations can be
written in the following form of "divergence equations" or
"conservation laws", see [6.2]
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at ax R 0 (6.3o)

where P, Q, and R are functions of x, t and u. Again, multiplying
Eq. (6.30) by an arbitrary, smooth test function v which vanishes
outside a region R', and integrating over the region R', we obtain

aP + VaQ vR)dxdt 0 (6.31)

or

]f P) + avQ ]dxdt iff( .' Qx - vdxdt 0

When Gauss's theorem is applied to the first integral above it is seen
to vanish, since v vanishes on the boundary of R'. Here, all variables
are assumed to be continuous in region R'. Therefore, if Eq. (6.30)
holds, then

(- a + Q aX V dxdt = 0 (6.32)

Conversely if Eq. (6.32) holds, then we conclude that Eq. (6.30) is
satisfied. A function u is a weak solution of Eq. (6.30) if Eq. (6.32)
is satisfied in all subdomains R' of the region of definition of u.
Here, u is not necessarily continuous, but it may have jump
discontinuities along certain lines in R'.

As'in the previous analysis, the jump conditions can be oLtained
by Considering u to be discontinuous across a curve C, but
continuous elsewhere in R, see Figure 6.3. By applying Eq. (6.31)
to regions R, and R 2 separately and using Eq. (6.32), we obtain

1./v[Pdx- [Q]dt t 0
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If w- intioduce tlhe propagation velocity of the discontinuity, or
shock velocity U dx/dt, we can conclude thdt

EP I U Q] (6.33)

Eq. (6.33) expresses the ichationship between the jump in
P(x,t,u(x,t)) and Q(x,t,u(x,t)) across C and the propagation
velocity (slope of C) of tihe wave. Since P and Q are functions of the
solution u, the propagation velocity cannot be determinecd without
knowledge of the solution as could be done for the case of linear
equations where the wave velocity is determined by Eq. (6.25',
independent of the solution. The curve C given by dxldt = U is not
a characteristic curve for the non-1near equations, Eqs. (6.30).

As an example of the jump relations, Eqs. (6.33), we consid-r
the specific example of shock waves in an in-viscid, compressible
fluid. The equations governing the one-dimensional unsteady flow
in the form of Eq. (6.39) are

t at(pu) 0

(pit) f- (ip l2 + P) 0 (6.34)
atI

+ pE) + 4u{Pjt + PE + P 0

By Eq. (6.33), the jump relations are

[p] U = [P]

[,'] U = [pu 2  P1

2 P(6.35)Pit U+ =  u + pE 4

For the more familia case of , standing shock wave, U = 0, the
above equations reduce to
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p ±t P. p pl2 u2

P1 Ul. + P, P P2U,- + P2

, 2 P2(6.36)
1

2 4 1 2 +E 2 +P2Pt .. 2u P2

where subscripts 1 and 2 refer to quantities on either side of the
shock.

6.2.b. Syztems of n Equations for n Unknowns

The previous treatment of two partial differential equations for
two unknown functions is readily extended to systems of n
equatiois for n unknow-ns ul (i = 1,2,...n).

,a, I + jb1  R, (i 1, 2, ... n) (6.37)
j=1 j=j

If we follow the directional derivative approach to derive the
characterisf.c curves and compatibility equations which hold along
these curves, we first form a linear combination of Fqs. (6.37) by
multiplying each ith equation by a factor ai and then adding. This
summation produces the single equation

E ax at (6.38)

n n n

where Aj aciaii, Bj = c ab1 , and R aZRi

Each pair of terms with the same value of j, for example
A, 1u, 1ax + B, au, lat, is proportional to a directional derivative
of u1 in the direction given by dx/dt Aj/P,. Therefore, if

d.: A, A, A=.... , (6.39)dt = B, B ,
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then all derivatives occuring in Eq. (6.38) are rroportional to
directional derivatives taken in the same direction

dx dxlds
dt diids

Where s is arc length a'ong a curve which has this direction. The
direction dx/dt =,r if, the charact:eristic direction, and the curve C
which has this slope at each point x, t is a characteristic curve. Eqs.
(6.39) can be written as

:.Aj -- B 0 1, = 1 2,.. n)

or

(a -- bij) i = 0 (j 1, 2,... n) (6.40)
i=1

Eqs. f6.40) are a system of n homogeneous, linear, algebraic
equations for the n unknown multipliers aj. The necessary and

sufficient condition for a non-trivial solution, at, is

1%, - ij 0 (6.4L)

i.e., that the determinant of the coefficients of a, vanish. Since i

and j range from 1 to n, expansior of Eq. (6.41) leads to an n" '

degree polynomial from which -r may be determined. The numbe.r
of real characteristic roots T of Eq. (6.41) is an important factor
which indicates the behavior for solutions of Eqs. (6.37). The
number of ral roots of Eq. (6.41) together with the number of
distinct compatibility equations can be used to classify the
equations. A method of classifying equations, which was sugge.ted
by Chou and Perry [6.5], and Benson [6.6]. will be briefly
described following the derivation of the compatibility equations
for Eqs. (6.37).

We assume that at leest some of the roots of Eq. (6.41) are real.
Denote the m real roots by rl, where k = 1 .... m. The equation for
the kth characteristic cuiV:1, Ck, is given by
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dx
'" dt r

Using the root Tk, we can solve Eq. (6.40) for a set of multiplier

cf(k) which, when used in the linear combination, will reduce the

partial differential equation to an ordinary differential equation in
terms of some parameter. Using the set of values Ot(k) and the
notation

Aj a = < (k) aij, B (h) = (h)bij, and R (k) = _ (k) Ri

Eq. (6.38) may be written as

A, .2. + B, . - A2 (k) + B2 (h)
'Ix at at at (6.42)

4. . . A,, + B, , - R (10
ax at

Since, from Eq. (6.39),

Aj(k) B;(k)A4(k) B/k)
A Bi1)

Eq. (6.42) may be rearranged as

A l, au _ I)au A2 h) ( )au, u. . . .. -A - + B , +

at at I ax at

A( + B u-n R (6.43)

'A 1 (i) axa

Therefore, each term in the above equation is proportional to a

directional derivative in the direction dx/dt = A I :(k) . We
can write the directional derivative as

du j A (le ui 4 B, ( ;)aUij
(IN,, M = 2ax

wh er O h A ())2 ± (B ())2] 12
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Equation (6.43) can then be written in terms of derivatives with

respect to s,,

(b;)

/ / "(ll . .. A iifl dsk .... k.. ds,,. .

or d

ds,, (6.44)

Here, sli is arc length along the V'h characteristic curve Ck, and Eq.
(6.44) is the compatibility equation along that curve. In general

there will be one compatibility equation for each distinct real root

Following 16.61, Eqs. (6.37) may be classified s "distinctly

hyperbolic" if all roots of Eq. (6.41) are real and distinct. If al!
roots are real, but not necessarily distinct, then Eqs. (6.37) are

classified as "completely hyperbolic". If Eqs. (6.37) consist of an

even number of equations, say 2n, then, if all roots are complex,
the equations are classified as elliptic. For the intermediate cases
when the roots are neither all real nor all complex, the following

method of classification is suggested. A system of 2n equations is

defined as h-fold hyperbolic, p-fold parabolic, and e-fold elliptic,
where h, p, and e are non-negative integers and h + p + e = n. The

values of h, p, and e are determined as follows: e is one-half the
number of complex roots; p is (2n-2e-c)/2, where c is the number

of distinct compatibility relations; and h is (n-p-e). When the

system consists of an odd number of equations, 2n + 1, the same

classification procedure can be used with the exception that c is one
less than the total number of distinct compatibility relations. A

classification procedure is helpful in prescribing the required initial
and boundary conditions, and it also indicates some- properties of

the solutions, such as the propagation of waves.
The line of indeterminacy approach can also be used to derive

the characteristic curves and compatibility equations for systems of

n equations. We can consider Eqs. (6.37) along with the following n

additional equations

duj . dx "duidt (6.45)
xdX td 1, 2,
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as a system of 2n equations for the 2n paurtial derivatives, ()ujl3t and
au,/ax. Here, X is a pari-,eter which defines the curve C(x=x(X),
t=t(X)), and Eqs. (6.45) represent differentiation along the curve C.

The system of equati ons, Eqs. (6.37) and Eqs. (6.45), can then be

written as

• ou

(1,, bh ....... a,,, R (6.46)
.. .. .. a du

..... 0 0 ...
dX dd

0 0

ax"
dx a l, d,,,,

dX dA dXJ

If the derivatives are to be indeterminate on C, then the coefficient
matrix must be singular. The vanishing of this determinant and the

'introduction of the characteristic slope r = dx/dt yields the same
1h degree polynomial for r as is given by Eq. (6.41). The rcal roots

of this polynomial then determine the characteristic curves. The

second condition of indeterminacy, the vanishing of the 2n

determinants obtained by replacing one of the -olumns of the
coefficient matrix b the column vector on the right side of Eq.
(6.46), yields the compatibility equation, Eq. (6.44).

For the Eqs. (6.37), we can show that, if discontinuities exist
only in the first or higher derivatives, they will propagate along
characteristic curves. This may be illustrated by an ara!ysis
completely malogous to the presentation given in section 6.2.a for

two equations. In the case of an arbitrary number of equations, Eq.
(6.15), wh!ich determines the jumps, could be replaced by
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a, b, aadb2 ,

[ax]
dx dt rau1I

dX d Xd lt

L i -
(6.47)

If some of the 2n jumps in derivatives do not vanish, then the
determiniant of the coefficient matrix must vanish. And, since this
determinant is identical to the one appearing in Eq. (6.46) which
determines the characteristic directions, the jumps (aug/3x] and
[a uj,)t] can only occur across characteristic curves.

If discontinuities occur in the dependent variables themselves,
*ui, the concept of a weak solution must be used if the jump
* relations are to be derived from the differential equations. First

consider the linear syctem of equations

Laj U~L~ ++ =0 ( 1, 2,.. n) (648)

where aij bi cij and di are functions of x and t only. Equation
(6.48) may bo written in matrix notation as

X .+ B'-4 C 11 + D = 0 (6.49)
ax 'at

where
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' - ... b, b-

I nd... Ld U

C ' ... D " = ,u

-

The definition of a weak solution. Eq. (6.22), is independent of the
number of equations; therefore the jump relation for Eq. (6.49) is
given by Eq. (;.-24)

(A' - TB'3[u] 0 (6.24)

if the jump in u, Ju], is not zero, then the coefficient matrix must
vanish,

IA' - B'l = 0 (6.25)

Eq. (6.25) is identical to Eq. (6.41) which determines the
characteristic direction. Therefore, if discontinuities in the
dependent variables exist for the linear system, Eqs. (1.48), these
discontinuities propagate along characteristic curves.

For discontinuities in quasi-linear systems of n equations in n
unknowns, the preceding analysis of section 6.2.a holds if the
equations can be expressed in the form. of conservation laws, Eq.
(6.30). An explicit example of the jump (shock) discontinuities for
a system of three equations in three unknowns has been illustrated
at the end of section 6.2.a.

6.2.c Methods of Numerical Integration

Several numerical methods which can be applied to
initial-boundary value problems in partial differential equations are
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ctrrently available, see for example [6.7]. Many of these methods

are results of applying finite-difference approximations directly to
the original partial differential equations. For hyperbolic equations,
another method of generating difference equations exists. In this
method, the finite-difference approximation is applied to the

compatibility equations and to tie characteristic curve equations,
rather than directly to the original partial differential equations. A
numerical method based on this principle is usually ref-rred to ws
"the method of characteristics". These methods are particularly
appealing for tle present case of two independent variables since
the compatibility equations are then ordinary differential
equations. And, for problems involving only two equations and two
unknowns, the numerical integration of two partial differential
equations is reduced to the numerical integration of four ordinary
differential equations, two compatibility equations, Eqs. (6.9), and
two differential equations, Eqs. (6.7), for the ('-aracteristic curves.

For numerical methods which are based upon integration along
characteristic curves, the concepts of 1he "domain of dependence"
and "region of influence" become particularly important. The
initial value problem for the ,ystem of Eqs. (6.1) lead:; directly to
these concepts. If arbitrary, continuous values of u, and u,
(Cauchy data) are prescribed along a curve I' which is nowhere
characteristic, then the initial value problem is to determine, in the
neighborhood of 1', a solution of Eqs. (6.1), u, (x,t) and u, (x,l),
which assumes the prescribed values on 1'. If characteristic
coordinates, a and 0, are introduced, see Figure 6.5. and if the

18 , -P(a /3)

A-r

a

Figure 5. Initial value curve F in the plane of the characteristic coordinates

compatibility equations and characteristic curve equations are
utilized, a solution to Eqs. (6.1) can be constructed in the
neighborhood of 1" by the method of iterations, see 16.11 and
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[6.21. This iteration process uses integrations which extend only
over the triangular region APB of Figure 6.5. In terms of the
original independent variables, thii indicates that the solution at a
point P(x,t) depends only upon quantities inside the triangular area
APB of Figure 6.6. This region bounded by the outer characteristics

AP(xJt

f C'
B C2

DOMAIN OF A r
DEPENDENCE

X

Figure G.G. Domain of dependence for point P.

is called the domain of dependence of point P. The solution at
point P depends only upon listial data prescribed in I' which lies
between A and B. The region of influence of a point P consists of
all points whose domain of dependence contains P, see Figure 6-7.

RECON OF
INFLUVNCE

C2 F

P

-tire 6.7. R, gion of influence of point P.

The existence of domains of dependence and regions of influence
for hyperbolic equations illustrates that a distinct difference exists
between solutions to these equations and solutions to elliptic
equations. For elliptic equations, the solution at each point in the
region is effected by the solution at every other point. For
hyperbolic systems, the solution in one region may be drastica'ly
different from the solution in another region. These analytically
different solutions, however, must be "patched" together, subject
to appropriate jump relations, along characteristics. These effects
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illustrate the wave propagation nature of hyperbolic equations.
In the above example, the initial value curve r is usually

referred to as a space-like curve. Referring to Figure 6.8, a curve r

t

12

Figure 6.8. Space-like (I )and time-like (r2) curves

is space-like if both characteristics from any point on the curve

enter region R with increasing time. In contrast, a curve 1 2 is
time-like if only one characteristic enters R. The solution tn Eqs.
(6.1) can be uniquely determined in R if both ul and U2 are
prescribed on the space-like curve rI', and in addition, if either u,
or u2 is prescribed on the time-like curve 1'2. The concepts of
space-like and time-like curves may be extended to systems of more
than two characteiistic directions [6.4], i.e., Eqs. (6.37).

To illustrate the computational process of numerical integration
along characteristics, we shall apply this method to the relatively
simple problem of the one-dimensional motion of a semi-infinite,
linearly elastic solid. The governing equations may be written as

-0

ax at .1.50)
au 'ac

- - - 0

where u(x,t) and r(x,t) are the particle velocity and strain in the
x-direction and c2 =(X+2G)/p is a constant of the material. If the
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medium is undisturbed initially, the initial eonditions are

u(x, 0) = e(x, 0) 0 (6.51)

To initiate motion of the medium, we can assume that the
boundary of the solid is pushed with a prescribed velocity;
therefore, the boundary condition is

u(0, t) f(t) (6.52)

Eqs. (6.50) fit into the general form of Eqs. (6.1) with the
coefficients chosen as follows:

a,, = 1, a22  - c , b12 = -- 1, b2, 1,

and the remaining coefficients are all zero. The differential

equations for the characteristic curves, Eqs. (6.7), become

dx dxC, d1t - c,, C-2  d 2 Cl

The two families of characteristics, C, and C2 , are s-raight lines
with the wave speeds of c, and - c,, respectively. The
compatibility equations, given in general form by Eqs. (6.9),
become

du dedc 0 (C. 5 3)

du + c, 0 (6.54)
d dO

where Eq. (6.53) holds along C,, and Eq. (6.54) holds along C2 .
Here, ce and (3 are arc lengths along the C, and C2 characteristics,
respectively. Since Eqs. (6.50) are linear, the characteristics can be
determined without knowledge of the soluticn, and a network of
characteristics can be established in the x,t-plane, as shown in
Figure 6.9. In the present case, the lines can be uniformly spaced
with arbitrary mesh size Ax, es shown. OncP Ax is specified, At is
determined by At = Ax/c,. A numerical solution is established by
determining u and c at each lattice point. The calculations can be
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AC - CHARACTERISTIC

EADING EDGE OF WAVE
C(DISCONTINUITY)

BOUNDARY - I (UNDISTURBED REGION)

POINT ON THE DISCONTINUITY
F-INTERIOR POINT

Figure 6.9. Network of characteristic lines for the linear problem of
one-dimensional motion of an elastic solid described by E-4s. (6.50) - (6.52).

conveniently grouped into the following unit operations:

(1) calculations of points on the discontinuity
(2) caiculation of points on the boundary
(3) calculation of interior points

(1) Calculation of points on the discontinuity:
If there is a jump in the velocity on the boundary at t-0, i.e., if

f(O)=f 0o 0, then for this linear system the jump will propagate
along a characteristic, the leading CI characteristic. Therefore, the
jump in u is given by [u] = f0 at t=O, and the jump condition, Eq.
(6.24), becomes, using the form given by Eq. (6.27),

[ii] C, I

The attenuation of the jump is governed by Eq. (6.28), which
becomes

d
= 0

da

From the above two equations we conclude
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ul = fo= constant

[el = constant

Since u and e vanish ahead of the wave, we find that

u fandc -fo/c,

for all points on the leading C, -characteristic. If f(t) is continuous
for t>0, then for points not on the leading C, -characteristic the
solution is continuous.
(2) Calculation of points on the boundary:

Figure 6.10(a) illustrates the calculation of properties at a

t

t CI \

A A C

x X
(a) (b)

Figure 6.10. aiaracteristic mesh for calculating variables at points B on the
left boundary (a) and at interior points (b).

boundary point B from known properties at point A and from the
specified boundary condition at '=0. Here, UA and EA are known
from previous calculations, and uB is known from the boundary
condition u(O,t) = f(tB) = fa. The remaining variable, CB, can be
determined from the compatibility equation along C2 , Eq. k6.54).
Written in finite-difference form this equation becomes

"1B - ,1 + el (EB  CA) 0,

which can then le soled for cR. In the above expression, the
subscript indicates the point at which the variable is evaluated.

K
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(3) Calculation of interior points:
For determining the solution at a point which is neither on a

boundary nor on a line of discontinuity, bcth compatibility

equations must be used. The finite-difference form of the

compatibility equations, Eqs. (6.53) and (6.54), are

alongC,: uB UA c,(EB -- EA' = 0

along C ,q - uc + c, (e -- ec) 0

where the mesh is shown in Figure 6.10(b). These equations

determine uB and E since the quantities UA, CA, UC, and ec are
assumed known from previous calculations.

By using the above unit operations, the solution can be

determined at all lattice points of the characteristic network if the

points are calculated in the numerica Grder shown in Figure 6.9.

If the system of equations is quasi-linear, the numerical solution

becomes more complicated since the characteristic curve equations

have to be solved simultaneously with the compatibility equations.

As a typical example of the integration method applied to

non-linear equations, we consider the equations governing the

one-dimensional unsteady flow of an invisid, polytropic gas
op al 4 1 b p 0

at ax ax

u an 1 1.
at x . 0 (G.55).

a a E
I .. + ... .... 0
at ox p ax

where p (.y-l)pE is the equation of state. The dependent

variables are p(x,t), u(x,t), and E(x,t); and p can be eliminated from

Eqs. (6.55) if the equation of state is used. The equation for the

slopes of the characteristic curves, Eq. (6.41), becomes

01 .( - 1) - 1)

0 (-Y, ... 1 E (u - )
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or

(u - r), _( _ 1)E] 0

The three roots, yielding the three characteristic curves, are

dx
C1: dt =  u + c

dx
C2 : dt T2 u (6.56)

dx

where c =x-,fJ(--l-)E =  Viu . Here, C, and C2 are usually referred

to as right traveling and left traveling characteristics, and C3 is the

particle path line. From Eqs. (6.44), we obtair the three

compatibility equations

dp du 0

dp _cdu =0 (6.57)

-ds2  PCd'Sdp, c2 = 0

Here dsi represents arc length along the Ci characteristic. The last

equation can be integrated to give pplf = constant along C3 . The

system of Eqs. (6.56) and (6.57) can be numerically solved for the

three dependent variables, p,p, and u, if proper initial and boundary

conditions are prescribed. Assume that the hiitial conditions are

p(x, 0) = p'(x) ,) (x, 0) = p'(x), u(x, 0) = u'(x) for 0<x<xo

and
p(x, O) = Po, p(x, O) = Po, u(x, 0) = 0 for x>xo

If the motion of the left boundary is specified,

XB = f(t)

then Figur. 6.11 illustrates the x,t-diagram for this problem with
only the C, and C2 characteristics shown. For convenience, we
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BOUNDARY
OF MEDIUM -SHOCK FRONTXB= ft )  / \ / dx

XBd--f"M= U

POINT ON SHOCK

BOUNDARY INTERIOR POINT
POINT

P'(x px),,.'(x) XU P0 , po ,/I=O

Figur. 6.11. Network of characteristic curves fcr the non-linear problem of
one-dimensional gas flow described by Eqs. (6.55) and the initial and boundary
conditions.

have assumed that the initial conditiors are compatible with Lhe
existence of a single shock discontinuity at x = x0 . If no other
shocks are present in the flow field, the calculations can again be
conveniently divided into the same unit operations as were used in
the previous example. The solution for each of the three types of
points is as follows:

(1) Calculation of points on the shock front:
Since the shock wave velocity is subsonic with respect to the

flow behind it, the C, characteristics overtake the shock from
behind. This configuration is shown in Figure 6.12. The solution at

t
3

< SHOCK

2
Xslap

Figure 6.12. Mesh used to calculate properties at points on the ., ck, point 3.
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point 3 can be computed if the solution at points 1 and 2 is known
from previous calculations, By the application of Eq. (6.33) to the
flow equations, Eqs. (6.55), the jump relations (Rankine-Hugoniot
relations) which relate the solution on either side of the

* discontinuity may be written as

P3 = P0"l + + ,

Y + (i / (6.58)

P. = PO/1 - - . U:2j]

Point 3 is considered as a point just behind the shock wave, since
ahead of the shock the properties are uniform. The compatibility
equation along the C, charaeteristic, the first of Eqs. (6.57), may
be written in finite-difference form as

-P, u ,-- u ,) 0(6.59)

where

Pet 3 4(pIc, + p 3c3)

To these equations, we must also add the equation of the C,
characteristic curve

dx
dt

and the equation for the shock front

dx U
dt

In finite difference form these equations become

x - x, I(7 *+ 63)(t6 tI) (6.60)

and

X3 x U.(t 3 -- 2) (6.61)
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The system of Eqs. (6.58) to (6.61) is a non-linear system of six
algebraic equaticns for the six unknowns p., U3 , P3, U 3 , X 3 , and
t3 . Actually, Eqs. (6.58) and (6.59) can first be solved for P 3, U 3 ,

P 3, and U3 .
(2) Calculation of an interior point
Figurp 6.131a) shows the configuration for a typical interior

!t

. C BOUNDARY

a C

2x

(a) (b)

Figure 6.13. Characteristic mesh for calculating variables at interior points (a)
and at boundary points (b).

point, point 3. It is assumed t1t14 the variables at points 1 and 2 are
known from either initial conditions or from previous calculations.
The compatibility equations, Eqs. (6.57), writtcn in
finite-difference form, are

P3 p1 4 c~u .- U) 0

P., - P, - (u3  112 0 (6.62)

P3  PI
p3

)  a

The differential equations for the characteristic urves may be
approximated by

.- (i -c ( - t2 ) (6.63)

X .3 - , .( t 3 - t1 )

Since point "a" is located at i.he intersection of the C3
characteristic through point 3 and the straight line between point, 1
and 2, it is not a lattice point of the characteristic grid. Therefore,
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the solution at point a is not known and must be determined by
interpolation. For example, if a linear variation of properties is
assumed c'ong the line connecting points 1 and 2,

X-- X _ t -
-~ (6.64)

we can write

p p + K(p2 -- p)

ii, + K(u 2  - u, (6.65)

P: Pi 4- K(p2 -- p,)

where K (x 0 -x 1 )/(x-x 1 ). Higher order interpolation schemes

involving more than two points may also be useu. Eqs. (6.62) to
(6.65) form a system of ten equations which may be solved for the
ten unknowns, p3, U 3 103t X 3 , t 3 , pa. ,al Pot, Xa, and to by an
iteration procedure.

(3) Calculation of points on the boundary
Figur- 6.13(b) illustrates the configuration of a typical

boundary point, point 3. Since the boundary for this example is a
particle path line, only the C2 characteristic reaches the boundary
from inside the region. The solution at point 3 can be determined
from the C, and C 3 equationr, and from the knowni solution at
points 1 and 2. The equations are

C, "I - c31 (p3 -- PI) 0.

x x -- (u13  c13)(tM - ti)

P.3 P2
C3  . - -

P3 P.

boundary conditions

dfX3 = f(t3). Ill = --- (t3)

These five equations can then be solved for P3, u 3, P3, x 3 ,and
t3

The method of using the left traveling and right traveling
characteristics to define the network is usually referred to as the
"standard technique" of the method of characteristics. Anotber
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method, which was proposed by H-artree [6.8], involves equal t0i1re
increments, In this "constant time technique", the network of
lattice points is formed by 'the intersection of particle pathis and
constant timae lines. For the present pioblem, this network is shown
in Figure 6.14. The calculation for a typical interior point is

t C3  CONSTANT TIME LINES

SHOCK FRONT
t3 '

101 2 T

Figure 6.14. Calculational mesh used to solve one-ciimensional, gas flow
problems by the "constant time technique".

illustrated in Figure 6.15. The solution at a typical interior point,
point 4, may be determined from -the known solutLion at points, 1, 2.

4 t2

1 a 2 b3

x

Figure 6.1-. Mesh used to calculate inter'ior points by the "constant time
technique".

and 3 and from the following difference c'4._ations obtained from
the compatibility and characteristic equations.

C1 1 P4 P., + PC4, (14 1- .) =0, X, (- ±, 4

CZ: P.4 PI- p1, 1)( -- 11b) 0, X1 X- (it 4, r4 -

c3 P .- P? X4 U42x
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Since points a and b are not lattice points, the vtriables at these
points must be found by interpolation between lattice points. The
above six equations plus six interpolation formulas for values at
points o and b are sufficient to determine the twelve variables
P4 ,P 4 ,U 4 ,X 4 ; Pa,Pa,Ua,Xa; Pb,Pl),Ub,Xb •

The solution at points on a shock front and points on a
boundary are schematically illustrated in Figures 6.16 and 6.17,
respectively.

Figure 6.16. ,Mesh used to calculate points on tS',, shoc:k front by the
"constant time technique".

\5 t

i a

Figure 6.17. Mesh used to calculate point. on the boundary by the "Constant
time technique".

When applying the constant time technique, the magnitude of
the time step is restricted by stability '.onsiderations 16.71. For a

\ stable numerical solution, according to the
\ Courant-Finedrnchs-Lewy stability criterion, At mut be chosen such

- : \,that, the domain of dependence of the new pint to be calculated
lies within the domain of dependence of the finite-difference
equations. Assuming that points 1,2, and 3 are used as known
points in* the difference equations, stable and unstable
configurations are shown in Figure 6.18. In these figures, the
domain of dependence of the differential equations, for point 4.,
runs from a to b on the constant timne line, but the domain of
dependence for the difference equations is points 1,2, and 3 on the
constant time line. Note that the standard technique just satisfies

III Iiit
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t 4 4

Io 2 b3 o1 2 3b

x X

(a) STABLE CONFIGURATION (b) UNSTABLE CONFIGURATION

Figure 6 18. Stabio (a) and unstable (13) calculational techniques.

this sta 1iity critenon.
The primary adva.itage of the constant time t-::hnique for

one-dimensional problems is biat the spatial distribution of
properties at various times is automatically available. These
properties at constant time are obtainable from the standard
technique only after lengthy interpolations. However, the standard
technique should be more accurate since it involves one less
interpolation for each point, and it involves the exact domain of
dcpendence of each new point that is calculated. Note that the
domain of dependence is violated in the constant time technique;
however, this violation also exists in standard finit,-difference
methods. For a further discussion of dLese two methods and
comparisons with exact solutions, see 1 6.91.

From the above two example problems, several differences
between the numerical solution of linear and non-lin,-ar system, can
be seen. In the non-linear problem, shock waves which travel with
variable speed are present- while in the linear problem, all wave
velocities are constant and known a priori. Also, the location of
lattice poinLs must be determined along with the solution in the
non-linear case, and the non-llnear differential equations lead to
non-linear algebraic equations wnich must be solved by iteration
procedures.

The preceding methods of solution can be extended to a system
of n equations in n unknowns, if the system is completely
hyperbolic. TFlle k characteristic curves are given by

dX
d 7: (k 1, 2. n

where 1 , is a root of Eq. (6.41). Here, the Tk's are not necessarily
all different, i.e., repeated roots may occur. The eompatibili'y
equations are then given by Eqs. ((.441, and we assume that n
independent relations exist. These cquation , may then he
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approximated by algebraic equations following the method of
finite-differences. Either the standard method, which, uses the outer
characteristics to form the networks, or the constant time
technique, which uses the mesh formed by constant time lines and
.n intermediate characteristic, may be used. These techniques are

illustrated in Figure 6.19 foxr interior points. An additional
discussion may be found in [6.4], section 3.7.

3
t C It 4__2

- * ' tI
Cm C C Aa

2 i 3 2

X X

(a) STANDARD METHOD (b) CONSTANT TIME METHOD

Figure 6.19. Mesh used to calculate variables at an ;nterior point by the
standard method of characteristics (a) and by the "constant time method" (b)
for the cise of several (m) differential equations.

6.2d Applications

Te method of characteristics has been extensively used to solve
for the one-dimensional unsteady flow axid the two-dimensional
steady flow of an ideal, compressible fluid. Most. standard texts on
fluid mechanics, such as the book by Shapiro [6.10), give
numerous examples. A complete description of the use of the
numerical method of characteristics to solve the governing
equations of one-dimensional unsteady flow has been given by
Hoskin [6.11]. In that article, the governing equations in terms of
Lagrangian coordinates are treated by the method of characteristics.
Iteration procedures for solving the non-linear finite-difference
equations are delineated for several types of points, i.e., shock
points, interface points. etc. Also, both the standard technique of
integrating along the main characteristic mesh and the constant
time technique (Hartree's method) are treated. The article also
includes a discussion of the structure of a computer program based
on the method of characteristics.

An appli,ation of these principles is illustrated by Lambourn
and Hartley f6.12] where the motion of a plate s'.bjected to the
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pressure distribution of a detonating exp1 3sIve is studied. The
physical configuration and characteristc networks are shown in
Figure 6.20. In this analysis the standaird technique of the method

-- W

_ EXPLOSIVE

Ca) Physical Configuration

- ETONATIC

~ REFLECTE-

x (ems)

(b) Characteristic Network

Figure 6.20. Method of characteristics applied to a plate acceleration problem
(from 16.12 .

of characteristics is used, and the plate is treated as an idea'. fluid.
The computer code whkh performs the calculations is referred to as
NIP (Normal Initiation Program). Some results of this study are
shown in Figure 6.21 whcre the free surface velocity o. the plate is
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i.u[ 0.3

EXPERIMENT P

W I>
W 0.2

NIP

LU

U- I

0 I 2 3

TIME OF FLIGHT !4/sec)

Figure 6.21. Comparison af NIP with experimenta 1ree surface velocity, from
16,121.

plotted against time for both NIP calculaticns and experiments.
An example similar to the above is the one-dimensional impact

of two plates. The application of the method of characteristics to
this impact problem is discussed by Chou and Allison [6.13].

An example of two dimensional steady flow is given in [6.14].
There the motion of compressible flat plates and cylinders driven
by ,'Ftonation waves at tangential incidence is analyzed. Such
systems have been examined theoretically with the two-dimensional
steady state characteristic code ELA.

The accuracy of the numerical method of characteristics has
been examined by Chou, Karpp, and Hu..ng [6.9]. This estimate of
accuracy was accomri'shed by numerically calculating blast wave
flow fields, and comparing the results with closed-form similarity
solutions of the same problem. These self-similar solutions of blast
waves created by an instantaneous energy release are arong the few
known -xact (satisfying the strong shock relations) solutions of
nonisentropic, unsteady flow. The compacison betwee, exict and
numerical solution3 war made for both the standard technique and
the constant time technique. Figures 6.22 and 6.23 show the error
analysis for the plane shock wave created by the instantaneous
ielease of anergy at x= 0, t= 0. Results obtained by both
techniques are found to be accurate to within 1% for all variables
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Figure 6.22. Comparison between the exact solution to the one-dimensional
blast wave problem and calculation-, based on the standard technique of the
method of characteristics.
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along the shock front after the pressure behind the shock has
decreased by 99%.

An example of the automatic treatment of a large number of
discontinui".;es in plane supersonic gas flows is given by Taylor
16.15]. There, Hartree's variant of the method of characteristics is
used. A study of several test problems revealed that very accurate
solutions can be achieved in relatively short computing times, at the
cost of initial programming complexities.

Many problems in elastic and elastic-plastic flow have been
solved with the numerical method of characteristics. An application
of the method to elastic-plastic flow has been give,. by Lee [6.161.
Thp problem considered is the impact of a cylinder of finite length
against a rigid target. Here, longitudinal motion in the x-direction
only is considered, and the stress and strain are assumed to be only
functions of x and t. The governing equations are formulated in
Lagrangian coordinates. These equations are solved by the standard
method of characteristics, and mediods for determining the
elastic-plastic boundaries are presented.

In [6.17], Clifton has applied the method to elastic,
visco-plastic waves of finite uniaxial strain. Computations are
carried out using a difference method which treats the jumps
explicitly and is essentially a zecond-order accurate method in the
continuous wave region.

An example of the solution by characteristics of an
elastic-perfectly plastic flow problem at relatively high pressures has
been discussed by Burns [6.18]. There the impact of plates of finite
length is studied under the assumption of one-dimensional motion
(uniaxial strain) as opposed to one-dimensional stress discussed in
[6.16]. Thermal variations are also included by using an equation
of state relating pmcssure, density, and internal energy. Figure 6.24
illustrates the main characteristics mesh which was used in the
numerical integration (standard method). The code first calculates
the strength and location of the transmitted and reflected shocks.
Then the rarefaction waves which originate at the free surface are
divided into several segments as shown. The problem is solved when
the dependent variables, pressure, particle velocity, density, and
internal energy, are determined at all lattice points within the time
of interest.

Another method of numerical integration, which is closely
related 1,o the standard method of characteristics, has been used by
Barker ,6.191. In the SWAP code, the one-dimensional motion in
uniaxial strain of elastic-plastic materials, including a varnable yield



336 R. KARP?

TIME (tusec)

0.4-

-PASTIC
WAVE

r: ASTiC 0.3
WAVE \-ELASTIC

WA/E--'

FREE SURrACC
0.2

FREE SURFACE

INTERFACE

/ 0.1
/ - --SH(CK WAVE

SHOCK WAVE-

-012 -0.08 -004 0 0.04 0.08 012 0.16 .0.20

t FLYER PL.ATE TARGET PLATE

X (cm)
Figure 6.24. Mai.. characteristic network used to solve the one-dimensional
impact problem, from [6.181. (all characteristics not inidicated).

strength, is considered. Rather than treating regions of continuous
flow divided by lines of discontinuity, this technique represents all
wave shapes by a series of shock waves. Figure 6.25 illustrates this

U, Cl,
U) in

CC,

POSITION POS;'TION

Figure 6.25. Representation of a continuous wave (a) and a discontinuous
wave (b) by the SWAP Code, from Ref. [6.191.

type of representation for both continuous and discontinuous
waves. Since the shock equations and continuous flow equations
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approach each other in the limit of weak waves, the error

introduced by treating continuous waves as a series of :,mall shocks
is controllable. Therefore, rather than using different equations for
shocks and continuous waves, this method uses the sane equations.

This approximation leads to a simplification in the programming
which is similar to the simplification obtained by artificial
viscosity methods where the flow is considered always continuous.

A comparison of results of the SWAP code and the standard

characteristics calculation (MCDIT-4 code) is given in Figure 6.26

o, (robor)

..020

-. TIME 10,300,usec

- SWAP 9
..- MCOIT 4

-012-

I /

,I I /
I-FREE SURFACE j -FREE

-004 I INTERFACE 
SURFACE

.________...__ J ±1-008 -004 0 004 008 0.12 6.16 0.20

X (cm)

Figure 6.26. Comparison between results of the SWAP Code (discontinuous

wave representation) wit. results of the MCDIT 4 Code (standard method of
characteristics) for !he one-dimensional impact problem.

for the impact problem. Also, for comparison purposes, Figure 6.27
shows results of a standard finite-difference (artificial viscosity)
solution using P-PUFF66 and a solution using the standard method
of characteristics [6.20].

An example of a linear problem solved by the standard method
of characteristics hs been given by Butcher 16.211. In that
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I t -
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Figure 6.27. Comparison between results of the P PUFF 66 Code (artificial

viscosity, finite-difference method) with rcsults of the MCDIT 4 Code
(standard method of rharacteristics) for the one-dimensional impact problem.

discussion, a computer code, STRATE, solves for the uniaxial
motion of a material which is strain-rate sensitive. Other examples of
applications of the method of charactei.sts to wave propagation
problems are given by Ciistescu [6.22].

The relative ad,,ntages and disadvantages of characteristic
codes and standard finite-difference codes have been summ rized

by Lambourn and H..)skin [G.23]. This summary is given in Table 1.
Their general conclus'on is that given both finite-difference and
characteristic codes, one would uza a finite-difference code for
problems where the ultimate state of the material is desired, but not
the details leading to that state, and a characteristic code for
problems where an understanding of the detailed wave motion is
desired.
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Table 6.1 Comparison Between Finite- Difference Codes
and Method of Chiracteristic Codes

TABLE I I from Ref. (6.23)]

Property Finite- Diff~erence Code Characteristic Code

Advantages of a Finite-
Difference Coae

1. Logic Simple Complicated

2. Increase in diffi- Little Great
culty due to rnul-
tiple materials and
variety of problems
(e.g.. shock
formation)

3. Constant time Given continuously Need interpolatio
profiles (for standardll

techniqt'e)

4. Probability of a Good Fair
new problem run-
ning at first
attempt

Advantages of a

Characteristic CodeI
1. Treatment of discon- Smeared, uncertainty Treated explicitly

tinuities and their in positior.
intc-zactions

2. Profiles Noisy Smooth betwaen
discontinuities

3. Details of Poorly defined Good
solutlun

4. Time step Usually detetrmined Variable in space
by stability of and time
smallest mesh

5. Number of meshes Usually fixed. Need Varied during a
within a material a minimum to let problem to give~

shocks form detail where
properly needed

6. Utilization~ of a Poor - many meshes Optimum
computer required for
______________________ ccuracy _____________
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6.3 Problems Involving Three Independent Vwriables

6.3.a Basic Theory

With hyperbolic partial differential equations in two
independent variables, linear combinations of the equations can be
formed such that, at each point in the plane of the independent
variables, differentiation occurs in only a single direction, the
characteristic direction. The linear combinations then become
ordinary differential equations. The advantage of the numerical
method of characteristics is that the problem of numerically
integrating part'al differential equations is reduced to integrating
ordinary differential equations along characteristic curves.

With hyperbolic systems in three independent variable-, linear
combinations of the equations can be forn-ed such that at each
point in the space of the independent variables differentiation
occurs parallel to certain planes, the characteristic planes. The linear
combinations become partial differential equations with
differentiation occurring in two directions only. The problem of
numerically irtegrating equations with differentiation in three
directions is therefore simplified to integrating equations which
involve derivatives taken in only two directions along characteristic
surfaces. Unfortunately, these are still partial differential equations;
the simplification for equations with three independent variables is
not as great as the two variable case. Therefore, relatively complex
numerical schemes are required for the integration of these
equations.

To illustrate the important features, we will first determine the
characteristic surfaces and equations which hold on these surfaces
for the relatively simple case of the linear wave equation

c 2 3T'

For cylindrically symmetric systems, this equation may be written
as

r r r +  2 - (6.66)

where t=cT, and r and z are the cylindrical coordinates. Since the
problems of present interest are usually formulated as a system of
first order equations, we will introduce the following new
dependent variables,
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P q (6.67

Equations (6.66) may now be -eplaced by the following system 'of
three equations for the three unknowns p, q, and s.

as p p) D
at )r r az

as (6.68)
at ar

at az

We now form a linear combination of' these three equations by
multiplying them by Of , C12, *3, respectively, and adding,

+-~ + (6.69)

as as ~ p
C - C + 01 al

Eq. (6.69) may be wiritten in vector notation as

pA 1 .Vp + A 2 .7*q + A 3 .-Vs a, (6.70)
- r

where the following definitions have been used:

A1 I aler + a~et A 2  o ce. +- Ouet

A3  - Cter - o.~e. + CVe v a
ar -a -ata

The unit vectors e and~ are directed along the r, z, and t
coordinate axes.

The derivative of a function p(rz,t,) taken in a directioin
tangent to a curve r = r(s), z = z(s), t =t(s) car be written as

dp ap dr apd dt
da zrd zds a tds (671

If the dimension of the parameter s is length, then n =e, dirids +
e dz/ds + e dt/ds is a unit vector which is tangent to the curve.
Theref ore, n* p has the direction of the unit vectorp. The first
term in Eq. (6.70), A, -v p, can be interpreted as the directional
derivative of p taken in the direction of the vector A I multiplied by
the magnitude of the vector A. The second and third terms in Eq.
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(6.70) have similar interpretations. We now require that the three
directions of differentiation occurring in Eq. (6.70) lie in a common
plane. If X is the unit normal vector to this plane, this requirement
may be expressed as

A,, = A", = A3 " 0 (6.72)

These eq-dations may be written more conveniently as one matrix

equation
-X, xt 0 Cl

0 = 0 (6.73)

where = ',. e. + X, e + . A nontrivial solution for the
undetermined multipliers, &I, a 2 , and a,, will exist if the
determinant of the above square matrix lanishes. This condition
reduces to

+ X2 . 2) 0 (6.74)

Since X is a unit vector, the vanishing of the parenthesis determines
the components of X to within terms of one parameter, a, which
may be taken as the angle between the r-axis and the projection of

i x

'450

a
CHARACTERISTICPLANE

Figure 6.28. Unit normal vector X which defines the characteristic planes.

X onto the r,z-plane (see Figure 6.28) or

A = (1/V2)(cosaer + sin ae. + e,) (6.75)

The one parameter family of planes defined by the unit vector X, at
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any point in r, z, t space, are the characteristic paiaies. Here X has
been specified as a unit vector and a positive value for X, has been

chosen. The envelope of these planes is a cone, the characteristic
cone. The characteristic cone through the point ro, zo, t0 is
therefore given by

(r r, I z zo 2  (t - t()r (6.76)

We can now introduce two more unit vectors, lying along the
bicharacteri;tic cruves, which are the lines of intersetion of the

characteristic planes and the cone, and y which is tangent to the
cone and normal to X and 1. This set of three mutually

t
2 (re Zo V 1)

Figure 6.29. The characteristic cone at a point (ro. i). 1o) for Eq. (6.66)

perpenuicular unit vectors, as shown in Figure 6.29, is expressed by
Eq. (6.75) and

S= (1!2-9-(--cos aer - sinae. 4 es), (6.77)

-sin aer + cosoe.

With.the above values for the components of the normal vectorX

Eq. (6.73) can be solved for the multiplying factors a2 la, and

0 3 /a1. The values obtained are a,/aI = cos a and a.%/a 1 = sin a.

Using these values, the linear combination, Eq. (6.70), becomes

op .q .as as +as P
+ COSa + sin- t- -- cosa- - sinaz + .....
a r a a z r a at

or, in terms of the above unit vectors

(cosa)o.VP + (sina)O3-Vq - 0.VJ (6.78)

-V q cosa- Vpsina).y +r

•
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This is the compatibility equation; derivatives in the and
directions appear, but differentiation in the ?, direction is absent.
This equation may also be written as

OS, sdq +s ds l. /1- dq . dp (7

L"')Sn + Sn ~ O' . sina + (6.79)
dI dj3 di ov2 (.d r)

where 0l is arc length along the bicharacteristic curve defined by a.
This equation may be used, in finite-difference form, to numerically
solve the system of Eqs. (6.68). Since Eq. (6.79) contains the
parameter a which may assume values from 0 to 27r, there are an
infinite number of equations which may be written through each
point in rz,t -space.

If the first factor in Eq. (6.74) vanishes, Xr=O, then any plane
perpendicular to the rz-plane will be a characteristic plane. The
envelope of these planes passing through a point ro, zo, to is the
vertical line r=ro, z=zo. Following the above procedure, the
compatibility equation which holds along this line may be written
as

sin ot + C = 0 (6.80)

However, this equation is merely a restatement of the last two
equations of Eqs. (6.68). It is interesting to note that if a :earch for
characteristic surfaces is made using the or:ginal second order
equation, Eq. (6.66), the factor X, in Eq. (6.74) will not be present.
This "extra" characteristic ha. been introduced by the use of the
three new dependent variables p., q, and s.

The preceding method of determining the characteristic surfaces
and compatibility equations on these surfaces can be generalized to
any system of n quasi-linear hyperbolic equations in three
independent variables. This discussion essentially follows the
presentation of von Mises 16.24].

The equations of interest are

(-, '-lx + bji i4 -f ci, { di (i = 1, 2,.. n) (6.81)

where the coefficients of the derivatives and the terms di may
contain the dependent variables us as well as the independent
variables, but not derivatives of u. Using vector notation, Eqs.
(6.81) may be written in the following form

L A'-V us = di(i 1, 2,....n) (6.82)
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where Ai 1  aiie + b1,e, + cjje, Vuj e. ---, + ey + e-

and fx, XY, and gf are unit vectors along the coordinate axes. We
now form a linear combination of Eqs. (6.82) by multiplying eachit h equation by an undetermined factor o and adding the resulting

equations. The result is
1 fl 12

'FI oA8i. ru = d (6.83)

This equatior may be written as

B,.VII + B. .V. + ... B,,.Vu, = B D (6.84)

where the notation

fl i=1BJ ~&,A1 and D aid 1

has been used. Each scalar product in Eq. (6.84) represents the
directional derivative of the dependent variable ui in the direction
of Bi multiplied by the magnitude of .3. We now require that all
dirpztions in which derivatives are taken lie in a common plane, the
characteristic plane at the point considered. If X is the unit normal
vector to this plane, then

X -B= 0 for i =1,2. n

Using the definition of Bi, the above equations may be written as

n
A = 0 for i = I2, ... n (6.85)

j=1

This is a system of n linear homogeneous equations for n unknown
multipliers a. A nontrivial solution will exist if the determinant of
the coefficients of aj vanishes, i.e.

X -A ,, I X-A21 .... X -An,

= 0 (6.86)

This is a homogeneous algebraic equation of degree n for the
components of '. If the system is hyperbolic, then real solutions of
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Eq. (6.66) exist, ano these solutions determine the characterLstic
planes at the point under considerat'on. For the problems of
interest here, Ea. (6.6) usually factors into linear and quadratic
terms. Each quadratic term yields a one parameter family of
characteristic planes which develop a cone, the characteristic cone.
The linear terms produce a characteristic line rather than a
characteristic cone.

When a vector JN( is found which satisfies Eq. (6.86), Eq.
(6.85) may then be solved for the multipliers a. These multipliers
when inserted in the lineir combination, Eqs. (6.83), produce an
equation which contains no derivatives in the direction -
Differentiation in this equation is confined to the characteristic
plane defined by Xtk). This equation is usually referred to as the
compatibility equation since it restricts the arbitrariness of the
values of the dependent variables on the characteristic surface.
These compatibility equations c be used to generate
finite-difference equations which may be used in the numerical
solution.

6.3.b Methods of Numerical Solution

In order to illustrate some methods which are currently being
used to solve hyperbolic systems, we will first apply these
techniques to the simple wave equation, Eq. (6.66). Most
techniques are based on writing the compatibility equations in
finite-difference form along bicharacteristic curves. For the system
of Eqs. (6.68), the bicharacteristic direction is indicated byk in Eq.
(6.77). Therefore, along a bicharacteristic

dr dz = dt
-cosa -sin - 1 (6.87)

The compatibility equation for this system is Eq. (6.79). Expanding
the right side of Eq. (6.79) and multiplying by dO, we obtain the
following compatibility equation,

cosa dp + sina dq + ds (6.88)

_ p_7 . 2 aP r p) 2 c ,

. .2 n - - sinc acosce + 3z + cos a z  r

Here, the differentials represent increments in the bichara::teristic
direction defined by 0, and since do represents arc length along the
bicharacteristic
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where Eq. (6.87) has been used. Eq. (6.88) may be written in
finite-difference form along an arbitrary bicharacteristic between
point i and point 0, specified by a particular value of the angle a, a ,
as shown in Figure 6.30. This may be expressed as,

cosa 1 p + sinaiLq + As (6.89)

ISM --- sinoicosaYi + )z + Cosai + 2(r/ + I

"1 BICHARACTERISTIC

"~I 

1101

r/

ZCHARACTERISTIC CONE

Figure 6.30. Characteristic cone and bicharacLeristic line from point i to point
0

where Ap=po - p, etc. The bar over the partial derivative3 indicates
that an average value between points i and 0 along the
bicharacteristic is to be used. Here it is assumed that the dependent
variables Po, qo, so, are to be determined at point 0, and these
variables are known at points on the base of the cone designated by

Since .Eq. (6.89) still contains partial derivatives, it cannot be
directly used to determine Po, qo, and so. Two methods which are
currently being used to evaluate or eliminate these partial
derivatives, will be illustrated for the present linear problem. One
method, which has been apparently used by Sauerwein [6.25] and
[6.26] for the solution of compressible fluid flow problems, is to
introduce the following additional equations expressing continuity
of the dependent variables

p - Pdr + -Pdz + ad, and dq j'dr + - + q
31, 8 a t
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These equations are written in finite-difference form as

Ar,) + (Zo- Z;)d , t ,
Po 5- (P' =  (to t)-

q( , - (ro r,) - - z,) 4 t ,
r a z

and the average value of the derivatives is written as aplar =
1!2 (ap/rl + aplDrlo), etc. Eqs. (6.89) and (6.90) are then
sufficient to determine the dependent variables at point 0. These
equations may be applied along three bicharacteristics as shown in
Fig. 6.31. We then have nine equations for the nine unknowns Po, qo,

to

Figure 6.31. A numerical scheme utilizing three biciaracteristics

so, 3plarlo, ap/azio/I, aplo/at, 3q]o/?,r, aqIo/az, and aqJ0/at. Here
it is assumed that the variables in the time plane to -At are known.

Another method, developed by Butter [6.271 for the solution
of compressible flow problems and modified by Clifton [6.281 for
dynamic elasticity problems, may also be used to solve the above
linear example. The difference scheme for this method is shown in
Figure 6.32. The compatibility equation is applied along the four

Figure 6.32. A numerical scheme utilizing four bicharacteristics

bicharacteristics as shown. We then have the four equations
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cosi (Po - pi) + sinai(qo qj) + ( -- sj) (6.91)

-A [.s..,-P + + ..... . P o +
a'rr z o + / re rj

where a= 0, r/2, i, 3/2.

These four equations then contain the five unknowns, Po, qo,
So, " plro, and iq/91zlo, since values at the points i=1,2,3,4 are
assumed known. An additional equation can be obtained by
integrating the first of Eqs. (6.68) along the vertical line from point.
5 to point 0, or

= ~-I + -- -1 ,q 10 i (692so .... " = 0  r a z 4 az ( .j

Eqs. (6.91) and (6.92) form a system of 5 equations from which the
derivatives ap/arlo and ,)q/ zlo may be eliminated. The resulting
three equxations may then be solved for Po, qo, and so. The partial
derivatives at points 1 to 5 in the plane to - At may be obtained by
using central difference formulas since the dependent variables are
known in that plane.

By a repeated application of either of the above two techniques,
value.; of the variabV,,'; can be established at points in the plane to
from data at points cn the io - At plane. This procedure can be
extended upward in time until all mesh points within the region of
dependence of the initial data have been calculated.

The points at the base of the characteristic cone, points 1, 2, 3.
and 4 Figure 6.32 and points 1, 2, and 3 in Figure 6.31, must be
selected such that a stable numerical scheme is produced. If Butler's
method is used, Figure 6.33a indicate s a numerical scheme that uses
the bicharacteristics that pass through the mesh points 1, 2, 3, and
4. The results of such a scheme are illustrated in Figure 6.34 where
the variable p is plotted against time for a fixed point rz for a
particular initial value problem. The numerical solution becomes
noticeably unstable in a short time. The Courant-Fri-e!iicKs-Lewy
criterion for a set of first order linear hype:bolic equations is that,
for convergence, the domain of dopendence of the difference
scheme must contain the domain of dependence of the differential
equations. For this exa.,pie, the domain of dependence of the
differential equations is the circle, and the domain of dependence
of the difference scheme is the square indicated by dotted lines in
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0

0

t

t 4
r

(a) UNSTABLE (b) STABLE

Figure 6.33. Unstable (a) and stable (b) numerical schemes

Figure 6.33. For the scheme indicated in Figure 6.33a the above
necessary condition is cleariy violated, and the resulting numeric's
solution was urstable. Figure 6.33b shows that by reducing the
time step At the domain of dependence of the difference scheme
based on the four mesh points a,b,c, and d can be made to enclose
the d,--in of dependence of the differential equations. The results
of a calculation based on this scheme are also illustrated in Figure
6.34. The points at the base of the cone which are used in the

S ISTABLE SCHEME

o - UNSTABLE SCHEME
0

NUMBER OF TIME PLANE

Fig-iie 6.34. Results of calculations using stable and unstable numerical
schemes.
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difference equations, points 1, 2, 3, and 4, are not mesh points, but
the values of the dependent variables at these points may be
obtained by interpolating values at the mesh points a, b, c, d, and 5.

A similar procedure of using the mesh points to interpolate foi
properties at points on the base of the characteristic cone can be
used to stabilize the numerical scheme of Sauerwein [6.29].

6.3.c Applications

An example of a linear problem solved by a numerical method
involving integration along characteristics has been given by Clifton
[6.28]. In order to solve the equations of dynamnic elasticity,
Clifton modified Butler's method [6.27] for the equaticns of
compressible fluid flow. The following discussion is a summary of
[6.28].

For the case of plane strain, the equations of linear elasticity
may be written in the following dimensionless form

, . ,-- = 0

p, q, 0
2

'1 71 iPt - ux -V., - 0
(6.93)

-Yqt -it . -i V = 0

- t, 0

where suiPscripts denote partial differentiation. The dimensioiless
velocities u and v, time t, and coordinate x and y are defined by
u=1/c, u=b/c,, t=bfie,, x=./b, y=5/b where the hat symbol
denotes a dimensional quantity. The dimensionless st'esses are
defined by p = (a, + axy)/2pci, q = (aX - oyy),2pc, I

T = 0,y /pc,, also, = c,/c 2 , where c, is the dilatational wave
velocity and c.2 is the shear wave velocity. Also, b is a characteristic
length.

Application of Eq. (6.86) leads to the following equation for
the characteristic surfaces,

x 2 -- X?-~ (X2C2 0 (6.94)

The first and second quadratic factors produce, respectively, the
two characteristic cones
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2(t t (X X0 )2 + (y yo) 2  (6.95)
C,2

which are illustrated in Figure 6.35. These cones correspond to

/ -SHEAR CONE

E-§DlLAATTIO(AL CN

-8ICHARACTER ISTIC S

Figure 6.35. Two families of characteristic cones (shear cone and dilatational
cone) for the equations of dynamic elasticity (plane strain)

wave propagation speeds of 1 and C2 ICI . In terms of dimensional
quantities, Eq. (6.95) corresponds to the propagation of dilatational
disturbances with velocity c, and Eq. (6.96) corresponds to the
propagation of' shear disturbances with velocity C2 . The
compatibility equation written along bicharacteristics defined by
the angle a on the dilatational cone becomes

cosadu + sinadv + dp + cos2adq + sin2adr

S, - Wadt (6.97)

where

S, (cos2a - 1)CoScaq, 4. (cos2a + 1)sincxq.,

+ (sin2asina -cosa) TN + (sin2cecosa -sina)Tr,

-sin 
2 aju, 12( - cos2a)u,. - co.( avY

+ - (1 cos2a)t, + '~sin 2(t(u,. + L, -- sin2a(u,. + u,)

Along bicharacteristics on the shear cone, an expression of similar
form may be writLen.

The z-olution at a point (t,,. x 0 , yo) is then determined from
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known data at neighboring mesh points on the plane to - At, see
Figure 6.36. The numerical scheme is to use finite-difference

0(X, Y , t)

I h

22

r 
/6

Figure 6.36. Bicharacteristic scheme for evaluating the variables at point 0
from known datt at I-At for the case of two characteristic cones.

equations which approximate the compatibility equations along
bicharacteriscics with a = 0, 7/2, ir, 3 T /2 from to -A t to to. These
difference equations will approximate Eqs. (6.97) in the same way
that the difference Eqs. (6.89) approximate the differential Eqs.
(6.88). This procedure yields 8 algebraic equations, four along each
cone. However, these 8 eqations involve 13 unknowns, u, v, p, q,
r, u,, Uy, V",, 'y, ',, Ty, qy-p.,, qx+px at the point (to, xo, Yo).
Five additional equations may be obtained by integrating the
original system of 5 equations, Eqs. (6,93), along the vertical line

x = Xo, y = y 0 from to-A t to to. Fof example the first of Eq. (6.93)
becomes

uo  - 11, =  t[!-(q.o + qx.) + !-(P.,. + P.,x) 4 (7y, 4- .,,

From this system of 13 equations, the 8 unknown derivatives at the
point (to, x 0 , Yo) may be eliminated leaving 5 equations for uo, vo,
Po, q0 , and ro. Variables and derivat.ves of these variables evaluated
at the 8 points on the base of the characteristic cones appear in
these equations. These variables group together in such a way that
they can be approximated hy using derivatives evaluated at point 5.
These derivatives are obtained by using centered differences based
on values of the variables at neighborirng mesh points. The resulting
scheme involves the 9 mesh points labeled I to 9 in Figure 6.36.
Note that the mesh ratio k/h has been introduced for stability.

At points on a plane boundary which is parallel to a coordinate
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axis, a modification of the above scheme must be used. Usually,
either two components of stress or velocity are Epecified on the
boundary. Then two of the unknowns will be determined at the
boundary poit. Due to the boundary, two equations will be
missing; these are the equations along bicharacteristics which
extend outside the region of numerical solution. Also, centered
differences which are used for interior points must be replaced by
appropriate forward or backward differences.

The numerical scheme outlined above wasv applied to the
classical Rayleigh-Lamb problem of an infinite train of sinusodial
waves in a plate which is infinite in the x-direction and bounded by
free surfaces at y= +b. Initial values for u, v, P, q, and 7 were
calculated from the exact solution at 1=O. The difference equations,
were then used to calculate the solution at later times, and this
numerical solution was compared to the exact soution. The growth
of error in total energy of the numerical solution is shown in Figure
6.37 for various mesh ratios. Not only was the error in total energy

lI
a-

k. i

5 6

R0yei4-Lam.pobemfrm ef.I.. 1

['a

t! ~ ,: 0.8 "-

o h 2
r0.2 //

LIJ

O .- C-L.

k ! 16
__._.__.. . __ ___ -, '" k i.

1 2 '34 5 6

TIME, t

Figure 6.37. Error in the energy balance for the numerical solution of the

Rayleigih-Lalmb problem, from Ref. 16.28 ].
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small, but the local error was also small. For example. the

maximum error in any variable at t=3 was about 0.002 for h=1/16,

k/h=l/2, where the varables had an order of magnitude of unity.

These solutions indicate that the method is quite accurate. Also,

the.e was no sign of instability for n=1/8, k/n=0.8 even after 96

time steps.
The above numerical method for elasticity problems has been

extended to two-dimensional, strain-rate-sensitive, elastic-plastic

materials by Bejda [6.301 and to three-dimensional elastk problems

by Recker [6.31].
An example of the solution of a quasi-linear system of

equations is given by Sauerwein [6.251. In that paper, some results

of calculations of the flow between a detached shock wave and the

surface of a two-dimensional body in unsteady motion are

presented along with the numerical technique. The following

discussion is a brief description of [6.251.

The system of equations governing the motion of a

compressible, inviscid fluid may be written as

ap + Vp) 0
3 t

Dv 1
+ -Vp 0

D t p (6.98)

Dh 1 Dp 0
Dt o Dt

h h(p, p)

where, for two dimensional flow in Cartesian coordinates (x,y),

D_ .- + and v (u, v)

Application of the theory of characteristics results in the following

equation for the unit normal vector X.

+ uX + V\,.)'- 4 u.x +

d ( x '2 + XY)I 0 (6.99)

where the speed of sound, a, is given by
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(ah) a)

In Eq. (6.99), the repeated linear factor corresponds to particle
path lines, while the quadratic factor corresponds to Mach con olds,
The compatibility equation along a particle pa,1h is the third of
Eqs. (6.98), since that equation contains differentiation only along
a particle path. In te-rms of entropy, s, that equation may be written
as

ds

where 0J4 is a coordinate along a particle path. The compatibility
equation along the Mach conoid may be written as

DO~f3, 10 ~ , DO3,, av ~I.3 DO,2  3(3, D1
f2dfL D-- - Yxit + di3, -9yt TY iy tj

1 a F1 I3L3,, Do 30, 30 - 0, a (6.100)
p3,,L' Dt Dt . ax aya) SY-

Figure 6.38 illustrates the Pi~ coordinate system. The Mach conoid is

0

t
INITIAL DATA

(NORMAL TO CONE)

Figure 6.38. Numerical scheme used to sc~lve two dimensional, unst, idy fl'-w
problems by the method of characteristics, from 16.25].
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represented locally by a cone in the numerical procedure. Variables
are to be determined at point 0, and variables in the initial data
surface are known at mesh points. Points 1, 2, and 3 are located on
the base of the cone. The 01 coordinate is normal to the cone. The
(2 coordinate is taken to lie along a line in the cone which connects
any of the base points with point 0. And, (33 can be taken
orthogonal to p and 0,2.

To determine data at an interior point, the location of the new
point 0, (xo, Yo, to ), is determined such that the set of new points
will be regularly spaced. Base points, points 1, 2, and 3, are then
located in the initial data surface. If the initial da'a surface is a
plane t=constant, the base of ''he cone is a circle with its center at
(xo -uo At, Yo-vo At, to--At), where uo and vo are approximate
velocities at the rew point. The circle has radius ao At, and points 1,
2, and 3 may be equally spaced on this circle. Since the three base
points are not mesh points, the properties at these points are
determined by interpolation. This is accomplished by using a 5x5
army of mesh points and orthogonal polynomials to give a second
degree, thrce variable, least square "surface" fit to the data. For
stability, the circle must lie entirely inside the 5x5 set of mesh
points. The exact coordinates of point 0 are n.w determined from
the equation of the Mach cone
(x -- x,) (. .. , + (t - t+)(u2 + v" a2)

- 2(t -- ti) u(x - xi) + v (y -yi) (6.101)

where xi, yi, and t4 refer to points 1, 2, and 3. The compatibility
equation, Eq. (6.100) is row applied along the three lines from
point 1 to 0, 2 to 0, and 3 to 0, In this equation, derivatives of the
form u/302 are approximated by

x + o -- +(Yo+ 0

Also, derivatives of the type au/la 3 are determined by the
coordinate transformation from (x, y, t) to (3,, 12 ,P3). Derivatives
of the form 3., /lu are obtained from

ail alu ax LU a + +u at
... 3 = . 0.... .. ()V - at 0+3
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Hre, expressions like ax!au which is the .average value of the
derivative between points i and o, are obtained from

. ) + (yo
+, y + it(to t,) (i 12, 3)

written along the three lines. For the first step, uo may beapproximated by uo = 1/3 (u. + u2 + u3 ). The entropy is nowdetermined by projecting the particle line back from point 0 to theinitial data surface, point 4 in Figure 6.38. The entrcpy at point 4 isthen obtained by interpolation. These equations are solved for theproperties and location of each new point by an iteration
procedure.

A method for determining a point just behind a shock frontpropagating into a uniform region is also outlined. This routine isillustrated in Figure 6.39. Here the dependent variables are u, v, p, s

SHOCK SURFACE

N0

A -- AINITIAL DATA SURFACE

Figure 6.39. Numerical scheme for obtaining properties behind a shock frontfor two-dimensional, unsteady flow, from [6.25].

and the unit normal vector, N, to the shock surface which isapproximated locally by a plane. Point 1 is a known point on theshock surface, and, therefcre, the shock plane can be constructedthrough this point. The new point to be determined, point 0, islocated at the intersection of the shock plane and the Mach conesthrough points 2 and 3. Variables at points 2 and 3 are determined
as described above. The shock wave equations and the compatibility
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equations written along the lines from 2 to 0 and 3 to 0 are now
solved for N, u, v, p, and s. This procedure is then iterated to obtain
the properties and location of the new point.

The procedure to obtain the properties at point-, on the surface
of a body in the flow field is similar to the above procedure;
however, the shock surface is replaced by the body surface which is
known

B(x. y, t) 0

The new body point is then located at the intersection of the body
surface and the Mach cones from the two base points. The
compatibility equation written along two lines from the base points
to the unknown point is solved, simultaneously with the condition
that fluid does not flow through the body surface, by an iteration
procedure. Reference [6.26] contains results of this numberical
method.

Several other authors have presented numerical methods for
solving unsteady, compressible, fluid flow problems by integration
along characteristics. The original presentation of Butler's method
for solving quasi-linear hyperbolic systems in three independent
variables is given in reference (6.27]. In that paper, results of the
calculation, of the supersonic flow over a delta-shaped body are
'cresen ted.

Richardson [6.32] has applied Butler's method to the solution
of two-dimensional unsteady hydrodynamic problems. In that
article, a description of a computer code and the sequence of
ciculations is given along with the specific numerical techniques.

A numerical technique based on the method of characteristics
has been applied to a hypervelocity impact problem by Madden
[6.33]. in this article, the impact of a right circular cylinder on a
half space of the same material is studied. Both materials are treated
as inviscid fluids. An interesting comparison is given between the
pressure distribution obtained by this analysis and that obtained
from an existirg finite-difference, Eulerian, computer code.

In summary, the method of characteristics has been successfully
applied to systems of hyperbolic equations involving three
independent variables. The method is most easily applied to linear
systems without discontinuities. For this case, the calculational
mesh can be established without knowledge of the solution, and the
dependent variables can be calculated in a direct manner. For



360 R. KARPP

nonlinear systems, the mesh must be simultaneously determined as
the problem is solved, and an iteration procedure must be used. If
surfaces of discontinuity are present, special procedures must be
used. Therefore, solutions to complicated flow problems by the
numerical method of characteristics do represent a programming
challenge.
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CHAPTER 7

FINITE-DIFFERENCE METHODS

R. T. WALSH

SANDIA LABORATORIES
ALBUQUERQUE, NEW MEXICO

List of Symbols

A area enclosed by C

a variable velocity

C counter clockwise closed contour

c a function; positive constant

C7*. longitudinal wave velocity

d stretching

E specific internal energy

f(x) initial conditions

G shear modulus

g(t) boundary conditions at x 0
I, 12, 13 momentum per unit of k-space

J an integer, 1/AX
M mass per unit of k-space

P pressure

Q a function of spatial derivatives of the velocity; correct

density of the conserved quantity
Q* calculated density

t time

At grid spacing

u a function; exact solution; particle velocity
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uapproximation of u

V specific volume

IV rotation

X Lagrangian coordinate having units of mass

AX, AX grid spacing

x1 ,x 2 ,x 3 ,x,y Cartesian cocerdinates
C error

y an eigenvalve

ax principle stress
Co1 asymmetric stress tensor

wo frequency

denotes deviat;ric component

7.1 Introduction

If engineers were restricted to computation with pencil and
paper, then even with the most powerful methods that are known,
they could solve only the simplest problems of impulsive loading.
The primary tool of the modem engineer is therefore the digital
computer, and his mathematical efforts are concentrated on the
development of computer programs that use numerical methods to
solve rirtial differential equations.

The most popular method for deriving numerical methods is to
alter the equations by replacing the derivatives with ratios of
differences. The resulting expressions are called difference
equations, and procedures based on them are referred to as
finite-difference methods.

A difference equation derived for an initial-value problem will
state a relationship between values at neighboring points in space
an,, time. Usually only two different times will be used, denoted for
instance by t" and t"+, resulting in a "two-level" equation. When
the solution of the difference equation is known at t-, a set of
simultaneous equations is then available which may be solved to
obtain values at every point for time t +1 .This process of "taking a
time step" is programmed for a computer which can repeat it over
and over, marching forward in time. Given a space-time grid and
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approprate analogs of initial and boundary conditions, the
difference equation usually can be solved to whatever degree of
prec.sion is required; the importat source of error is the fact that
the solution of the difference equation differs from the solution of
the differential equation.

The space-time grid may be specified in advance, or it may be a
functioI1 of the solution. If the equations aic cast in characteristic
form, then grid points may be determined as the calculation
proceeds so that they correspond to intersections of signals from
previously chosen grid points. The resulting procedure is called the
method of characteristics and is discussed in Chapter 6.

To introduce our discussion of finite-difference methods, we
consider the equation for the transport of a quantity u by the
variable velocity a. A typical initial-boundary-value problem might
have the following form

Ct+ (u. X,t)O = 0 0 < X < 1, t > 0, a > 0
at ax-

(7.1)
u(x, O) f(x) 0 < x <

u(O,t) g(t) 0 < t < T

where f(x) represents the initial conditions and g(t) the boundary
conditions at x = 0. No boundary conditions are required at x = 1.

A difference method might be set up by selecting a grid with
spacing Ax and At in the x and I directions resnectively. In writing
difference equations for u, to approximate u(jAx, nAt), there are
many ways of replacing the. differentials. A popular choice for this
simple transport equation leads to the following difference
equations,

,tni n ,jr. - U

Lt + a Jx, t " -Lu_._ 0 (7.2)

which may be solved at all positive integer values of j and n once
values have been given for j = 0 and n = 0. If a is constant, f(x) =

sin (x) and g(t) = - sin (at), then the solution to the problem given
in equation (1) is u(x, t) = sin (x--at). The difference equation (7.2)
may be solved by letting u0 = f(jAx) and letting ur' =g(nnt). The
approximate solution obtained in this manner is compared with the
exact solution in Figure 7.1.
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Figure 7.1 Solution of ut + au., 0 by a finite-differevice method.

As another example, we consider the wave equati on

C 0 <X 1, 1 > 0 (7.3)

letting c be a function of X but not of ;. 'y mriking the substitution

(7.4)
IV

we obtain the equivalent systemn of equations~

4t OX (7.5)
bV i) IV

=C.--
d ix
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The "usual explicit" method for the wave equation is

10+1 *~j+1vi e

2,At C , -2Ax

(7.6)
Vn 2 _ "1 1V;1 t+

2At -, \ 2Ax

with u;" obtained from
n

,n =Uo +E 2 9' At

If v° is given for even values of] and wj is given for odd values of],

then a solution may be obtained for v at all even values ofj and n,

and for w at all odd values of j and n. Attempting to fill up the grid

and obtain v and w at all values ofj and n by making full use of the

initial condition results in four independent sets of solutions.

However, one can obtain greater accuracy for the same

computation time by retaining the staggered grid and ieducing both

Ax and At. The values of wj are usually obtained from the initial
conditions by means of tile following equation

1 00 0o - W I,, (7.7)- -2 - --- +- -= c (x ) -- : ...
At I 2.Ax

If u(x,O) = sin (x), u(1,t) = sin (1 - ct) and u(0,t) = -sin (ct),

then the solution is u(x,t) = sin (x - ct), representing a sound wave

travelling in the x-direction. A comparison of the numerical

solution with the exact solution is shown in Figure 7.2

Numerical methods have come into such wide use because they

give approximate solutions to even the most difficult problems.

They are not subject to restrictions on the form of material

properties, nor are they subject to restrictions on initial and

boundary conditions. Although the mathematicians have only been

able to prove the methods are applicable in linear cases, they seem

to be equally at home in non-linear situations of any complexity.

On the other hand, purely algebraic methods are highly restrictive

in applicability. Fourier analysis, for instance, requires that the

coefficients be constant. Algebraic methods such is steady-state,
quasi-steady-state and similarity solutions are not applicable to the

truly transient phenomena that are usually associated with shock

waves. It is little wonder that an engineer faced, for example, with
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Figure 7.2. Solution of utt c 2Uxx by a finite-difference method.

the problem of response of an underagound structure to impulsive
loading at the surface when the structure is separated from the
surface by layers of porous and cracked materials, falls back on the
numerical methods as the only real hope of obtaining the necessary
information.

Although the numerical methods are only approximate, the
engineer working with shock waves soon discovers that the errors
associated with material properties are usually far greater than the
errors inherent in the numerical method. Real materials refuse to fit
the simple models that have been invented to allow algebraic
solutions. In order to retain the greatest latitude in representing a
material accurately, it is usually better to give up the restrictions of
purely algebraic methods and &ccept the approximations of the
numerical method.
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However, there are two disadvantages to the use of numerical
methods which must be recognized by the reader. First,
information about the solution is only obtained at a finite number
of points and cannot be considered a complete solution to the flow
field until these data have been interpolated. Secondly, the use of

numerical methods tends to obscure the effects of the individual
parameters that are involved in the problem. When an algebraic
solution is obtained, one can usually see immediately how each
parameter affects the result. To get similar information from
numerical methods, it is usually necessary to repeat the calculation
many times, varying the parameters of interest.

It is always wise for the engineer, keeping all of the above in
mind, to stand back occasionally and contemplate the significance
of his results. The detailed work required to obtain numerical
solutions tends to obscure the real problem. One is, after afl,
obtaining a solution to a partial differential equation. As always,
once a solution has been guessed, and one might consider the
numerical solution as a guess, one can then apply the partial
differential equations to the solution to determine its adequacy.
Frequently when this is done, intuitively rather than exactly, the
engineer is able to see valid approximations which may lead him to
a crude algebraic solution, and he may thereby learn much about
parametric variation without a large expenditure for computer time.

7.2 Theory of Finite-Difference Methods

The recent development of numerical methods was stimulated
by the advent of high-speed digital computers. It was soon found
that seemingly normal difference methods would occasionally give
extremely noisy, nonsensical results. Early emphasis was therefore
centered on determining the requirements for obtaining a
reasonable approximation. Now, however, methods are known
which will give a stable solution to a wide class of problems, and
emphasis is shifting to the criterion of efficiency; that is, either the
minimum error for fixed computer time or the minimum computer
time for a specified accuracy.

Regardless of whether we wish to talk about the adequacy or
the efficiency of the numerical method, we must first define what
we mean by error. The mathematician is sometimes appalled to see
an engineer study a numerical solution for a while and then come
up with a judgment as to whether the error. are reasonable or not.
In most cases, however, the engineer is simply mentally applying
the original differential equation to the numerical solution to see if
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it approximately satisfies the differential equation.
However, a mathematical theory needs a firmer definition of

error before it can proceed. Mathematicians have been able to

determine more about those error functions that are also
"measures," that is, that add and accumulate in a reasonable
fashion. Such concepts as mean error, root-mean-square error, and
maximum error satisfy the requirements of a measure and are
frequently used in the mathematical literature. Of these, the mean
error seems to be most in line with an engineer's intuitive concept
of accuracy. It can be reduced to a percentage error by adopting a
definition such ,as the following:

f ie - uldx
C = _-- - (7.8)

f uldx

where u is the exact solution and i is the approximation.
The first property that mathematicians look for in an

approximation is convergence. To understand this concept, one
must imagine an infinite computer and. a demanding supervisor. If
the numerical method has the property that no matter how small an
error is required by the supervisor, it can be achieved on the infinite
computer by reducing the spacing of the grid, then the method is
said to converge. Suppose for instance that the solution obtained
for the transport equation in Section 7.1 was inadequate ard that
we were required to reduce the error by a factor of 2. We could
accomplish this by reducing both Ax and At by a factor of 2,
thereby obtaining the improved solution shown in Figure 7.3 which
has approximately one-half the error of the original approximation.
Such convergence is called linear or of order one. If the error had

decreased by a factor of 4, the convergence would have been called
quadratic or second-order.

In order to determine convergence or efficiency, it is necessary
to define and examine other properties of the difference equation.
One fundamental property is the order of accuracy, which indicates
how well the differences approximate the derivatives. If the error in
this substitution is proportional to the mesh spacing, the method is

accurate to first order. If the error is proportional to the square of
the mesh spacing, the method is second-order accurate, and so
forth. It is reasonable to expect that a method must be at least

first-order accurate, and consequently methods that satisfy this

criterion are called consistent.
If the solution is sufficiently smooth, the order of accuracy may

be determined by performing a Taylor series expansion of the
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solution about a point and substituting this expansion into the
difference equation. For instance, the Taylor series expansions
aboutu4 for 47~ and 4' are as follows:

2 t ) 2  ( a 2

+ ~3j~l+ o (At) 4] 79

-j (7.9)U;~+
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where 0(h) indicates terms that are smaller than ch, for some finite
value of c. Substituting into two possible difference expressions for
au/at, one obtains

_______ _ aun I _\ Atja2 ,u\nAt _I-7- + Of (At)21
\at! \at2

.(7.10)
u" 1  

- u"' - (u" n (At) 2  a3 1!\ + ot At) 3 ]

21t \at/a

which indicates that the first approximation is first-order-accurate
and the second is second-order-accurate.

The difference scheme whose convergence to first order is
shown in Figure 7.3 turns out to be a first-order-accurate
approximation of the transport equation. As an example of a
second-order-accurate difference equation one might consider the
leap-frog scheme, as follows:

u +1 - n-1 0
U - u -

2At 2Ax

which uses a staggered grid, as was used by the explicit method for
the wave equation. The results using this equation at compared
with the first-order method in Figure 7.4, where it can be seen that
an additional order of accuracy is extremely beneficial.

In both of these examples the order of accuracy is the same as
the order of convergence, and one might expect tha this would
always be so. However, calculating the solution t3 the transport
equation by the same method used in Section 7.1, except that the
ratio of At to Ax is larger, gives the results shown in Figure 7.5.
Decreasing both Ax and At by a factor of two cqmses a substantial
increase in the error.

This phenomenon has been shown to be strictly a property of
the difference equations. Under certain circumstances a particular
mode, however small, will begin to grow exponentially, until it
dominates the problem, and eventually the magnitudes of the
numbers will exceed the capability of the computer to record them.
What we requi1ire of the difference equation is stability, which means
that in calculating to a fixed time T, no matter how small the time
step becomes, the solution at time T will remain within a fixed
bound.

Our example indicates that consistency alone does not
guarantee convergence. Peter Lax has shown, for linear partial
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Figure 7.4 Comparison of first-order and second-order methods for the
solution of ut + aux =O

differential equations, that there are suitable definitions of
consistency, stability, and convergen-e, such that consistency and
stability together are both necessary and sufficient for convergence.
Gilbert Strang [7.11 has extended this result to show that the order
of accuracy and the order of convergence are the same for any
stable method when applied to a problem with a sufficiently
smooth solution.

There have been no extensions to cases containing a shock
wave, but it nevertheless seems to be true fr6m experience that
when a numerical method fails it fails unstably, with an
exponentially increasing error. Therefore one usually operates
under the assumption that consistency and stability are all that is
required in the difference method.

Consistency may be determined by the Taylor series expansion
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Figure 7.5 Unstable method for the solution of u t + aux = 0. As At and Ax are
decreased with constant ratio At/Ax>lla, the amplification of the
high-frequency component increases without limit. Thi3 component is not zero
initially due to rou-,d-off requirements of a finite computer; for purposes of
this example, the initial data were rounded to three de.cimal places.

above, but the search for general necessary and sufficient conditions
for stability has occupied much of modem numerical analysis. The
following sub-section, which summarizes the current status of this
area of research, can be skipped if the reader finds he does not
have sufficient mathematical background.

Stability Analysis. If the coefficients appearing in the
differential equation are constant, then stability may be studied by
Fourier analysis. This leads to the popular von Neumann condition,
which is necessary for stability. The von Neumann condition
requires that no frequency mode be allowed to grow in one cycle
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by a factor greater than one plus a term of order At. The additional
small term permits limited growth when such growth is required by
the true solution but does not permit the unstable behavior that
would destroy the solution.

A complete characterization of stability in the
constant-coefficient case has been given by Heinz-Otto Kreiss. It
requires thic the "amplification matrix" be found for each
frequency mode and that this matrix be transformed into a form in
which the off-diagonal terms can be tested for stability. The
existence of the transformation has been proven by Kreiss, but it is
not practical to determine it during the course of the calculation.
The implication of this result for variable and non-linear cases is
discouraging.

However, for hyperbolic equations, such as those of continuum
mechanics, IKreiss has shown that stability can. be assured by
providing an approprimte dissipation in a difference equation. In
particular, he requires that the eigenvalues of the amplification
matrix be less than 1 by a finite amount, which must decrease with
the frequency wu and the time step At. A difference approximation
is dissipative of order 2r if it satisfies

h17 1 - C(wAt) 2r (7.12)

where y is an eigenvalue and C is a positive constant. Under suitable
additional restrictions, Kreiss has shown that if a method is
dissipative of order 2r and accurate of order 2r - 1, then it is stable.

Most methods for the calculation of shock waves do indeed
introduce some dissipation, but they do not in general conform to
Kreiss' criteria. Consequ,-rttly, his theorem has been helpful more in
confirming intuitive judgments than in providing an exact
procedure.

Another problem that has been investigated recently by the
mathematicians has been that of the proper treatment of boundary
conditions in a difference equation. The problem arises, for
instance, in the application of the leap-frog method to the transport
equation, although we cannily neglected to mention it above.
Assuming that J = 1/Ax is an integer, then when we letj J- 1 in
Eq. (7.11), we find that the value of u" is required in order to
obtain u3 2

' . However, the boundary condition on the right hand
side is not specified in the original problem; and indeed if it were,
the problem would be overdefined. As a matter of fact, it is
generally true of higher-orde. -accurate methods that they require
more boundary conditions than are required by the corresponding



:376 R. T. WALSH

differential problem. Kreiss has been able to show, under very
restricted circumstances, that certain extrapolation procedures for
finding the required additional boundary conditions will avoid new
'instabilities.

However, the theory is far short of indicating the proper
procedure in all cases. One expects that data corresponding to
incoming characteristics will be required for well-posedness of the
differential problem and that this data can be used in a difference
equation. The question is usually how to treat the outgoing
characteristics. One might hope that the outgoing characteristics
could all be treated by extrapolation to the boundary from the
interior, using a method of high enough order to preserve the
overall order of accuracy of the difference method. Numerical
experimentation indicates that this is probably correct.

For further development of the mathematical theory, including
the work of von Neumann, Lax and Kreiss, the reader should
explore the difficult but excellent text by Richtmyer and Morton
[7.2].

7.3 Methods For Shocks in Fluids

For the full set of equations of inviscid fluid mechanics in one
spatial dimension (See Chapter 2), the usual explicit method for the
wave equation may be extended to the following system of
difference equations:

v n.+ 1  
-n+i Un+i

__ __ __ ji J+

At AX

u7• - - P_ I - P'

At Z (7.13)

p-= pl( E, pn + + j_ 1,"

Sj+-9 '~

where X is a Lagrangian coordinate having units of mass, such as
Po Ax 0 , x being the cartesian coordinate, V is specific volume, E is
specific internal energy, p is pressure and u is particle velocity. The
last two equations must be solved simultaneously by iteration for
E"+ 1t/2 and p7+11/2 This method will give a second-order-accurate
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approximation to a smooth solution, but in the presence of a shock
gives a result such as thit in Figure 7.6. The shock speed is

15
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Figure 7.6 Solution of the difference equations without added dissipation for
the case of a steady hydrodynamic shock (from Reference [7.2]).

incorrect, and the solution is dominated by a spurious
high-frequency signal in the shocked region. However, the method
is not unstable; the solution remains bounded as AX and At are
decreased with constant ratio.

From the mathematical point of view we can trace the
difficulty in Figure 7.6 to the fact that the eigenvalues of the
amplification matrices are all exactly one, so that the method has
no dissipation. From the point of view of the physicist, the problem
is simply that the energy equation allows only adiabatic processes
and therefore could not possibly treat a shock wave.
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One approach to the calculation of problems containing shocks
is to use the Rankine-Hugoniot jump conditions (see Chapter 2).
These equations, together with the equation of state and one of the
differential equations in characteristic form, must be solved
simultaneously to obtain the new values of the thermodynamic
quantities at the shock and to determine the shock velocity and the
new position of the shock front. There are a total of six
complicated nonlinear equations, and they must be solved by an
iterative procedure. If the finite-difference grid is fixed in the
material or in space, there are additional complications as the shock
front passes each grid point. Because of this and because of the
need for a characteristic form of the equations, this method of
"shock fitting" is usually used only with the method of
characteristics and is discussed further in Chapter 6.

In any case, shock fitting is expensive in computer time and, in
spite of the cost, still will not solve all problems because shocks
may occur spontaneously within the fluid. Consequently, virtually
all practical finite-difference methods make use of an artificial
dissipative term and retain the original differential equations. The
basic idea is to replace p in the differential equations with p + Q,
where Q is a function of spatial derivatives of the velocity and has
the form of a viscosity. By providing additional dissipation, the Q
eliminates shocks from the solution, with the result that all
approximate solutions are smooth. If the Q is proportional to
(AX)P , where p is at least as large as the order of accuracy of the
difference method, then the modification to the differential
equations allows one to retain the order of accuracy of the method
whenever the true solution is sufficiently smooth.

Such ase of the viscosity was originally proposed by von
Neumann and Richtmyer, and their form of the ,6scosity is still the
most commonly used:

(aAX)2 (-)Min (0,K )  (7.14)Q .... t ..

where a is a dimensionless constant. It has the effect of smearing
the shock over a region of constant width 2 to 3 times AX. Because
Q is quadratic in the velocity derivative, it disappears rapidly away
from the shock, so that the Rankine-Hugoniot conditions must be
satisfied across the shock region.

The introduction of an artificial viscosity into the difference
equations requires a modification of the stability condition. This
modification is usually approximated by making the contradictory
assumption that quantities are almost constant in the vicinity of the
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shock. For the von Neumann- Rich tmyer artificial viscosity, this
leads to

1< 1

in Spite of its unpromising origins, this conditionl seems to work
adequately in all cases, but does not seem to be much more
str-ingent than the exact condition. Attempts to compute with
larger time steps usually cause an immediate- instability.

The result of applying the von Neumann-Richtmyer method to
the calculation of a steady shock is shown in Figure 7.7 for various

\L 0f.3453

S oc speed C-05% lo

I{ L

Figure 7.7 Similar to Figure 63, but with three differenlt values of thlecoefficient of viscosity (fromn Reference 17.21)
values of tecoefficient a. This figure is from Richtmyir andMoron 7.21, which includes further discussion of various methodsfor reaing hocs. s a increz-ses, the shock is spread over a large
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number of zones, and the solution is less noisy. Most users prefer to
use a value of two in most situations.

For numerical solutions of hydodynPanic problems, it is
customary to specify either the pressure or velocity as a function of
time at the boundary. If the velocity is specified to be zero o2 a
constant value, it is called a reflecting boundary. A free surface is
treated by specifying that the pressure be zero for all time.

The boundary condition to be used must be considered when
the grid is specified. If a velocity is to be specified at the boundary,
then the boundary point must be a point at which velocity is to be
calculated. Otherwise, it must be a point at which the pressure is to
be calculated. Because of the simple form of the hydrodynamic
equations in Lagrangian coordinates, no other form of boundary
condition is required in practice.

7.4 Methods for Solid Mechanics

Difference Equations. For t1'e full set of equations of
continuum mechanics in one spatial coordinate (see Chapters 2 and
5), Eq. (7.13) remain the same except that p is replaced by the
principai stress, a,,. The complications of nonhydrodynamic
behavior are not seen with only one spatial dimension unless the
symmetry is spherical or cylindrical rather than plane. In the
spherical elastic case, the difference equations become

e1- X7 n U nI +

At

-- nx ) _ ( x .)

X +1J

(7.16)
n+ - n-%, [p (a)nu - u "  -2 P; -V. - P; + (0x 11.7

,at (X"I - ,n)/V7; 1/2 + (Xn -

6[{n) + n,:°
+ J+ _ _ _-_

(.,+ x i)/ 2 + (Xn + Xjn
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where d is the stretching, 0 the shear modulus, and" "denotes the
deviatoric component. For an elastic-plastic material, the equation
for a, is modified to reflect the constraints of a yield surface. These
are the equations used in the WONDY program [7.31 and are
similar to the equations used in other one-dimensional programs.

Artificial Vscosity. For shock waves in solids, many engineers
are not content with the results obtained by adding the quadratic
von Neumann-Richtmyer viscosity to p (Figure 7.8). Most methods
incorporate an additional linear 'viscosity as follows:

x1nn+yy- = (17

n+ .2-X+I X \;+' y+i -/I

"Q y+ , At(Vj",' + V j)/2

cX+ + 1 V,-/

where c;'+ v, is the longitudinal wave velocity determined by P! +,
and E ' +,,, and the quadratic term has been generalized to a form
suitable for spherical symmetry. This viscosity is set to zero
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Figure 7.8 Effect of linear artificial viscosity [adapted from Walter Herrmann
and Evelyn Mack, WAVE II, An Improved FORTRAN Program for Calculation
of One-Dimensional Wave Propagation, Massachusetts Institute of Technology
ASRL Report No. 1005 (1962)].

wvhen ever V'7 is greater than Vy +, .

The linear term provides the additional dissipation required to
obtain smooth solutions, but also tends to broaden the shock, and
the shock width becomes a function of the strength of the shock.
As a result of the varying shock width, the Rankine-Hugoniot
conditions are not exactly satisfied in the case of a decaying shock.
Aside from uncertainties in the material properties, this is probably
the largest single source of error in one-dimensional solid mechanics
calculations. Users of these methods learn to be alert for such errors
and to estimate their effect.

The time step must be modified when the linear viscosity is
added, and the new.time step is given by

+ -4- 2 A (7.18)



FINITE-DIFFERENCE METHODS 383

where - = 0.06c - (1.2)2 Ax(aV/at)/V. The derivation of the
sta.ility condition rests on the same shaky ground as that for the
quadratic viscosity alone, but it shares with that stability condition
the feature of apparently working in all circumstances without
undue restriction on the time step.

Another disadvantage of the linear viscosity is its effect on
problems with smooth solutions. Because the linear term is only
first-order in the step size, it introduces a first-order error even
when the solution is continuous. In most computer programs the
coefficient of both the linear and quadratic viscosities can be
adjusted by the user, and the linear viscosity can be eliminated
when the user knows that it is not necessary.

Material History. The primary difficulty that arises in going
from hydrodynamic to more general materials is that the stress
tensor in a solid is a function not only of its present state but also
of its past history. Because of this, the finite-difference method
must carry and update quantities that record or evaluate the history
of the material. The most common way that this is done is by
saving the previous value of the stress tensor. However, it is often
necessary to calry additional numbers to indicate, for instance, the
amount of work hardening that has been done, or the extent to
which the pores in a porous material have closed, or whether or not
a material has spalled. The use of Lagrangian coordinates takes on
an added importance in such cases. If any other coordinate system
is used, then the equations for these quantities must include
convective terms, and assumptions must be made about "continuity
of history.."

For full elastic-plastic treatments, an incremental stress-strain
relation is used. Usually the pressure is obtained as in the
hydrodynamic case as a function of the density and internal energy.
Then the changes in the stress deviators are calculated elastically
from the changes in the strain deviators. If the elastic increment of
the strain deviators would cause the stress to fall outside of the
yield surface, then the stress is adjusted in the direction normal to
the yield surface so that it will lie on the yield surface. As with any
of the other differential equations, there are a variety of ways in
which this may be done numerically with varying degrees of
accuracy. In some cases it may be desirable to use a smaller time
step in the equation of state than is being used in the numerical
integration of the equations of motion.

Rezoning. Almost all computer programs for one-dimensional
continuum mechanics contain some provision for revision of the
grid during the course of the calculation. This procedure, called
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rezoning, is used to provide greater definition in the area where
things are changing most rapidly and less definition in the quiet
areas, thereby improving the efficiency of the calculation. It is
beyond our scope here to discuss the complications of trying to
properly treat those quantities that represent material history, but
we will try to indicate why the gains are sufficient to offset the
compromises that must be made.

:In problems containing shocks the error is concentrated in the
vicinity of the shock and is proportional to the strength of the
shock multiplied by the width of the shock region. The strength of
the shock is determined by the physical situation, but the shock
width is proportional to the mesh size and can be reduced by
reducing Ax. The error can be halved, for instance by reducing Ax
by a factor of 2.

Because of the stability condition, this requires that the time
step be also reduced by a factor of 2, so that the number of zones
and the number of time steps ace both doubled and the amount of
calculation is increased by a factor of 4. On the other hand, if the
zoning is not uniform then one might imagine reducing the zone
size only in the 5 or 10 zones in the neighborhood of the shock.
This would not cause a significant increase in the number of zones,
and the computer time would only be increased by a factor of 2.
The difficulty here is that this would produce large discontinuities
in zone size which tend to introduce additional errors.

A rezone scheme based on this idea has been incorporated into
a program known as WONDY IV [7.41. Zones are halved or
doubled automatically on the basis of the rate of change of
quantities across the zones. The difference in zone size between two
adjacent zones is never permitted to be more than a factor of 2. For
equal accuracy, WONDY IV is typically 5 to 20 times faster than
the fixed-zone version and has run up to 100 times as fast.

7.5 Two-Dimensional Lagrangian Methods

Limitations. The advantages of Lagrangian coordinates that
were .mentioned in connection with the one-dimensional
calculations become even more important in two dimensions.
However, in two dimensions there is an additional type of physical
discontinuity which may occur - a shear discontinuity, vnd in the
presence of such motion the differential equations, and even the
integral equations,are no longer valid in the Lagrangian framework.
Therefore, two-dimensional computer programs have been written,
not only in Lagrangian, but also in Eulerian and irn more general
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coordinate systems.
Difference Equations. Most two-dimensional Lagrangian

calculations are done with one of two computer programs - HEMP
[7.5] or TOODY [7.6] - both of which use difference equations
which were developed by Mark Wilkins. For elasticity in plane
symmetry, the TOODY equations reduce to
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where w is the rotation and the subscripts, and superscripts are given
relative to n, i and j, as for example V. / 2 instead of Vp' .1 2 i+ 1/ 2

These equations were derived by applying the following
formulas for partial derivatives:

Lim- 1f Tdy

(7.20)
---...Lir 'I- clx

.Y) A - A j
where C is a counterclockwise closed contour containing the point
(x,y) and A is the aea enclosed by C. The limit is approximated by
letting C be the quadrilateral connecting the four nearest points and
using linear interpolation along the sides of the quadrilateral. Yield
surfaces and boundary conditions are treated by straightforward
extensions of the methods used in one dimension.

Slide Lines. Both HEMP and TOODY contain provision for the
incorporation of special slide-line routines. A slide line is created by
specifying that a row of zones be empty and that the sides of these
zones be constrained to lie on each other while tangential
movement is permitted. One side of the slide line is taken as the
master side, and calculation of the motion perpendicular to the line
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proceeds by creation of temporary "zones" on the slave side in
one-to-one correspondence with zones on the master side, with
vMlues determined by interpolation on the slave side. Tangential
motion is calculated on each side by using only the stresses on that
side of the interface. The sides may move completely independently
or a coefficient of friction may be specified. Perpendicular motion
is not calculated on the slave side; instead, the points are adjusted
so that they lie on the lines connecting points on the master side.

One disadvantage of current methods is that they are not
symmetrical with respect to choice of master side. It is generally
prefeiable to have the more dense material on the master side.

Rezone. Attempts to extend the applicability of the
two-dimensional Lagrangian methods have resulted in a wide variety
of rezone features. The methods range from simple provisions for
slight adjustment of a single point in order to permit further
calculation, through addition or deletion of entire rows or columns,
to complete redesign of the integration grid according to a specified
formula. There are two different purposes that rezoning is intended
to serve. The first is to increase the definition in regions where the
physical quantities are varying rapidly, just as in one dimension; and
the second is to compensate for distortions occurring due to shear
and thereby permit further calculation.

Attempting to increase definition by deleting or adding entire
rows or columns generally proves impractical in real problems
because a row or column may represent a very rapidly changing
process in one part of the grid but extend into the quiet region in
another part of the grid. Attempts to compensate for physical
distortions occurring in the solution generally provide only very
small extensions of the time to which the calculation can proceed,
so long as the problem is fundamentally a failure of the partial
differential equations and cannot be resolved by the nuni6rical
methods. As a result, even the most complicated and sophisticated
rezone routines have been disappointing in practice*. Their purpose
may be served better by methods incorporating arbitrary
coordinates, which will be discussed in Sectioli 7.7.

Display. Two-dimensional solutions are difficult to absorb
without some pictorial display of the solution. Figure 7.9 is typical
of the automatic computer plots generated in conjunction with
Lagrangian calculations. Because the integration grid moves with

* An apparent exception. is a rezone developed for TOODY recently by B. J. Thorne
(private communicaton). The equation for A ibove may go negative even without a
shear discontinuity, and Thorne's procedure alleviates that difficulty.
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*i* *PrI~tc0S1 C V.. mc tO FL uc t'*fc ce(t71

r~.9 Comnputer-generated plot of TO')DY calculation. The material on
the right is explo,;ive that has detonated and is causing deforriion of the solid
f1*u1eture 011 the *c-

4t (courtesy of George E. Clark, Sandia Laboratories).

the material, a plot of the grid permits immediate comprehension of
the materil distortion.

7.6 Two-Dimensional Eulerian Methods

Limitations. Once a p-oblem is cast in other than Lagrangian
cootrdifates, the convective terms must appear in the equations, and
some special p.-ovisions must be made for treating material histories.
Thlese prob'pms occur regardless of the choice of coordinate system,
hUt certain computational simplifications can be obtained by using
ain Eulerian coordinate system, and most non-Lagrangian computer
pr-ogramns do use Eulerian coordinates.

In developing Eulerian methods most physicists have not
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thought of convection as a process occurring simultaneously wIh
accelerations. Rather, they have limagineil that the system is
Lagrangian for one time step and that a rezone theni returns h
coordinate system, back to its original position. By also n:glj
quantities to be constant throughout a zone, simple rezwo
equations are obtained, 1)ut Such methods are only atrt o I'l
order.

Another problem wvith the Eulerian coordinate system is I I,
is not suitable for keeping track of the locations of' oii!i I
dlisc on tinuities. Density changes of orders of iiagniitude tend to. 2(1
smoothed out in the Solution, and it is frequently not (lomr whfll
equation Of state, Should he used at a particular point.

Perhaps the worst problem occurring it, Eulerian coorlii't es ik
Ihe diffriculty inl Choosinig a grid that wvill provide the definiti"::
where it is needed. If the zoning is not uniform, nlass iM;V 1110' e
from a region in which it is very wvell deffited into .uiothier reicn
which it is poorly defined. On the other hand, a dAecisioil t-
uniform zoning may, for instance, result i inadequate dsp
of the mnital conditions.

PIC Methods. Some of the difficulties associated with Ehii
methods have been resolved by the use of "particle-in-co'Ti WWI')
methods 17.7] in w.hich the grid is peppered with part I. !c- .1
represent the mass and the quantities that the mass 'is carr :< 1
it. The accelerations are computed by direct differencing-, ie, hI
but the convective termns are, treated by moving the pariouhs., in
accordance with the local velocities and then tiansfei'rinl- a !tit,,
mass, momentum and energy whenever a particle moves- oat or 0.,.
zone into another. The primary advantage of the lparticlos is fini

,-s ~they mnay be used to record material identity and material hist (EH1'

CL ~thereby eliminating artificial smoothing of contact d iswollin ll,,
0 rfevals introduce a dissipation i '" th ifrneeutos whirl;

is equivalent to a viscosity of the form

CU ox

As a result, PlC mnethods are usually used without anl additional
____ artificial viscosity.

The major problem with PlC methods is that they are xeiv
AD) in computer time. In order to obtain accuracy of order V.; iii the

density, for instance, it is necessary to have approxim-ately 100)
p lartic~les for each zone. Each particle mnust be moved dluring~ vach
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time step, and a special computation must be done whenever a

particle passes from one zone to another.

Continuous Eulerian. Seeking to avoid the cost of multiple

computations, Wally Johnson succeeded in finding a continuous

version of the PIC transport. His hydrodynamic code, TOIL [7.8],

is based on the following difference equations:

At 2p ,Ax

A t 2p t Ay

At

Y/~~ i~ ~ -jt1.)&jl- ~~

Ay

,1i+ %12, +/iT A x
(u~~~ 1 4 E(47 (oyaj'I)

(7.21)

;2_ ,ij +\ y/jl

ij Pi,

( 1 - n+ n+lI ,+].

=. ± p ' ; I + j
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At Ax

A.Ax

Q . )n4l ( )+l - 7 ~ +1i lx2+l

id + j ~[z~ i.+2 + 12.j

At At

AAV
ij nnl Q~l)fll -

n~( 1 n+ +A(
21. i+d. R I) ' 2

(722
-O .2 un4 6l1 I ~

0 i~j -2 ( ,+ ~ n+Ia ) n+
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hlast twvo equations have the effect of choosing the 'value from
,h(- zone "donating" the transported quantity.

liy eliminating the particles, Johnson has lost one method of
'e(,piig track of material identification and history. To recover the
idtntification, at least for the case of two materials, he calculates
ilm, aniiount of each material present in each zone. The key to his
iicthod is in the choice of mixture to be transported from one zone
to the next; he lets that mixture be in the same proportion as the
miaterial in the receiving zone whenever possible. This procedure has
been shown to eliminate most of the smoothing of contact
discontinuities that occurs with other continuous methods. His
latest compnuter program, called DORF 9 [7.91, allows nine
matrials (but at most two in a single zone) and treats material
history by convecting stresses and strains, using interpolation in
( artesian space.

:\ccur,,, treatment of boundary conditions is very difficult
On', one has left Lagrangian coordinates. Except for a simple
refneting boundary, no serious effort has been made to provide

-.'neral boundary conditions in the computer programs that treat
en,,ral materials in Eulerian coordinates. The boundaries are simply

1l)aced far enough from the active region so that they have no
til'iuence on the solution. Sophisticated non-Lagrangian boundary
,'Oa(jtions are generally associated with the more sophisticated
•.,nl coordinate methods which are discussed in the next section.

!tezone. In order to keep the boundary comfortably far from
11,w region of interest, Eulerian methods usually incorporate a
):,z)e,, vhich is actually simply a doubling of zone widths in

dirction. After a rezone, the active region of the problem
Lfl*';mpasses at most one quarter of the integration grid with a

,,e qtient loss of accuracy. By the use of stable first-order
, nc, m ethods and the rezone, an Eulerian code will run nearly
, t Hleni without difficulty. For the user who is accustomed to
ii n~ methods, which cease to run whenever the error

i,- -ines great, there is an additional burden of paying greater
a ! ,tion to the details of the calculation to assure that the
reudlting solution is adequately accurate.

D isplav. Figure 7.10 is typical of the computer plots used in
coiijwfion with Eulerian methods. A symbol is plotted in each
zraa that contains more than some minimum mass or density, the
clie v)t' symbol indicating the kind or density of material.
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216

Figure 7.10 Computer-generated plot of a TOIL calculation. A solid ball is
penetrating the second of two plates, following a high-velocity impact

*(courtesy of L. R. H~ill, Sandia Laboratories).

7.7 General Two-Dimensional Methods.

* AFTON. As we have seen,- the equations of motion of inviscid
continluous media achieve their simplest form in a Lagrangian
coordinate system, the terms corresponding to flux via mass
transport being aero. Further, the material history is easily
recorded, because the material is motionles-s with respect to the
coordinate sy!stem. These simplifications permit the use of
difference equations in Lagrangt.n codes that ate more acce"ate and
efficient than those usually used for the general equations.
However, the presence of a shear discontinuity invalidates the
trnnsforrnation from Cartesian to Lar-rangian coordinates. It is then
not possible to obtain a solution with Lagrangien finite-difference

r methods, except when the location of the discontinuity is known in
advance and it& motion is calculated separately.

In the previou-s section we have discussed Eulerian methods, but
Trulio [7.101 has developed a method that is more general; it
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allows the user to specify any coordinate motion. This replaces the
discrete rezoning required with Lagrangian or Eulerian methods by
a "continuous rezoning" which at lea'st smooths out and may
actually reduce the errors due to rezoning, so that they no longer
create obvious anomalies in the answers. The convective terms are
modeled by assuming that quantities are constant in each zone, an
intrinsically first order approximation. As a result, the more the
coordinate motion deviates from Lagrangian, the larger the error
becomes.

In the AFTON code [7.111 based on Trulio's method, an

incremental stress-strain relation is used to model elastic-plastic
behavior. This requires that stress be "t--)vsported" when mass
flows from one zone to the next, which is done by finding
equivalent linear elastic "strains" and assuming that these fictitious
strains satisfy a conservation law 17.121. The arlbitrary moduli used
in this artificial Hooke's Law may be thonght of as arbitrary
weighting factors, and they introduce degrees of freedom that are
not present in the posed differential .problem. Similarly, the extent
of work hardening and of irreversible compaction are quantities
that must be transported, and arbitrary rules for aveaging them
must be introduced.

ADAM. It is not necessary to integrate the material history in
the same coordinate system that is used for integration of the

equations of motion. The material history could be calculated in a
Lagrangian system even when the presence of a shear discontinuity
invalidates the Lagrangian form of the motion equations. It is then
necessary to interpolate back and forth between the two systems,
but the errors in interpolation are not cumulative.

The feasibility of this concept has been demonstrated recently
with a new two-dimensional generalized coordinate program called
ADAM, developed at Sandia Laboratories. Part, of a general plan for
developing a second-order code and based on the seconct-order
leap-frcg difference method, even the present version of ADAM
represents a significant advance beyond previous methods due to
the elimination of irrelevant transport rules in the material
(I 3-scription.

Difference Equations. In an arbitrary coordinate system

(k 1 , k2 , k., t), the equations for conservation of mass and

momentum, in differential form, are as follows [7.131:

F,+ + _+ 0 (7.23)WU 3k.. i k,- 8k3 0
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where

U 4
2 =  1 = li + aA, (7.24)

ilk,
lit"

3-T (X.~ x x (7.25)
A" jiih,

(addition of indices is modulo 3)

(x,, x 2 , x 3 , t) is Cartesian space-time

Al is the mass per unit of k-space

(I, 12, 13) is the momentum per unit of k-space, expressed in the
Cartesian coordinate system

oia is the symmetric stress tensor in the Cartesian coordinate system

In the reduction to two dimensions, 13. u3 , Y 1 , CF3

A 3 1 , A 3 2 , A' 3 and A 2 3 all become zero. Then the vectors become

U= (l) + F=(Iu + + o"Aki i = 1,2 (7.26)
Lu1 + (; 21 k',t + U2Ai/

and the vector 3F.fak3 is zero for plane symmetry, but for the
axisymmetric case with X, the radial coordinate, "F 3 /ak 3 becomes
(0, o 3 3 A 3 3 , 0).

In ADAM these equations are solved by a modified leap-frog
method, as follows (for the plane case):

Uri 4. 1 Un-1

(7.27)
+ n + (F ),.
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- (X2)k 1 .k21 -1] /2

(A , .)h,.k -- (X,)k,.k 2-,]/2

(A2 ,1 ,., ) - [(x2 )h,.h, .1 - (x2 },,-.kJ /2

(A22)k,,k, 
= (xt)k, . - (X,) - ] /2

A.33 = A.2A "- A21,42 (7.28)

(AA 3V3) k, k,
+ ( ,..q A) ,,,/A3k,.k,

d , + )

w= 2\3X2 ax,

qO1 (B,) 2pA3 3d,0 1.5[(d1 )2 + (d 2)2 + (dz)2 ]

where q"O is a tensor artificial viscosity that augments the stress
throughout the method. In a standard leap-frog, the required values
of F would be determined by averaging values at adjacent points.
In ADAM, the quantities M, I, ui and Aia are all averaged
separately, and oa f is determined by interpolation from nearby
Lagrangian points, using an inverse mass weighting that is based oh
a continuity condition.
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For half of the grid points, the momentum is calculated only at
even values of n. The remaining points are evaluated only at odd
values. Special procedures are used to synchronize the data for
output and plotting.

In the Lagrangian system, the volume and energy equations are
integrated arod the material representation is evaluated, using the
following second-order-accurate method:

1. Interpolate for strain rates d" , rotation rate w"4 2 , and Q.

"+! (t ,+1 4 ,14 (7.29)d
2. 2-p ''d + d,, (

... E"(II1 
23 . -- - ----.... - ) r'd Y,:

t +I ...

(7.30)

+ 2(&2 )I,:: /V(pn I )

4. Evaluate material representation, using p" + , E" ', strain
rates, rotation rates and previous history to obtain (0), O .+

I'." 141 - : .... [ ' 'n . n+ !+] d'2
P. 4 - "

L(,,")" : (,,' 41"d7r " (7.31)

4- 2 2 ':) -+ ((a"2 '' I] u~z 1 )

The interpolation is performed simultaneously in space and time,
half of the data in (kt. k, ) - space being at t", and the rest at t"
Although the resulting values will not always be at t' "' /, it can be
shown that the method retains second-order accuracy.

Boundary conditions have been incorporated for free and
reflecting surfaces and along an axis of symmetry. Two options for
grid motion are built into the code, Lagrangian and "smoothed
Lagrangian." The smoothed Lagrangian is considered to be the
standard mode and consists of determining the grid velocity from
Laplace's equation with Lagrangian velocities at the boundaries.
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also permit,, Lagrangian motion at the boundary, thereby allowing
simp~ler boundary conditions. Figure 7.11 isa computer-generated

ADAM T *1.3003E-03 IMPLGF

Fig~ure 7.11 Comnputer-generated plot zNr an ADAMI calculation. A cylindrical
pellet is penetrating a pinte nt inteecmediate velocity (no vaporization). The
initial velocity wans given to the plati- for convenience in plotting.

plot from an- ADAMN calculation.
Future Developments. The goal of a fully second-order-accurate

code seems feasible. It requires, first of all, that the overall error be
defined as the mean error over the region of interest. The use of the
maximum error, or the corresponding requirement of uniform
convergence,, is not consistent with intuitive concept., of err(.r
anyway. Any problem containing an initial discontinuity hsa fixt-i
maximum error after discretization, due to Gibbs' phenomena. This
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is similar to the overshoot commonly seen at shock fronts in
non-dissipative methods. In such cases all workers agree that a finer
discretization is more accurate, even though the maximum errors
are the same.

With some mean agreed upon as the error measure, and a
second-order difference method, the contributions to the first-order
error can be isolated in the neighborhoods of shocks. With a
generalized coordinate system, one can then develop boundary
conditions of sufficient accuracy that represent propagation of a
shock front into undisturbed material. For many problems of
interest, the dominant shock always -propagates into undisturbed
material, so that the only remaining contributions to the first-order
error would be due to the much smaller subsidiary shocks. In such
cases the remaining first-order error term may, for practical mesh
sizes, be smaller than the second-order term, so that convergence is
effectively second-order in ihe regime of interest. True second-order
accuracy may eventually be achieved by the um of shock tracing In
thi Interior,

Eventually iich mathermatical opproneh, 4Ut ro.pbe phyghr.1
argumentx completely in the development of numerical methods,
because physical argument, tend to produce first-order methods
mad to introduce unnecessgay restrictions. With regard to
conservation properties, fcr instance, a useful check of accuracy
may be obtained from the error in conservation

D, =f(Q - Q*)dV (7.32)

where Q is the correct density of the conserved quantity, Q* is the
calculated density, and the integral is taken over the volume of
interest, using some interpolation rule to define Q* between mesh
points. There ,3 a valid error measure

EQ =f IQ .- IdV (7.33)

which clearly cannot be less than DQ. If DQ is large in spite of
mathematical arguments that EQ is small, then either the code has a
bug or the mathematics are faulty. On the other hand, if DQ is
consistently small, there is some inference that EQ is really Fmall.

Physical arguments are frequently used to imply superiority for
rnumeriral methods such as AFTON which, when combined with a
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particular choice of interpolation rule, constrain DQ to be zero.
However, this does not indicate anything about EQ. The inference
drawn in the preceding paragraph, which is based on the
improbability of the positive and negative parts of the integral
always being comparable and tending to cancel, cannot be drawn
here because cancellation has been forced by definition and
removed from the realm of probability.

Acknowledgements. Figures 1 through 5 were generated by
computer programs written by Diane B. Holdridge. The ADAM
program was developed in conjunction with Mrs. Holdridge and
Billy Joe Thorne, who also contributed helpful criticism of this
chapter.
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CHAPTER 8

EXPERIMENTAL TECHNIQUE AND INSTR UMENTA TION

G. R. FOWLES

WASHINGTON STATE UNIVERSITY
PULLMAN. WASHINGTON

List of Symbols

A area

B magnetic field strength

b defined in text (Sec. 8.4.2)

Co rarefaction velocity

Cu, Ca, Cu, CE phase velocities (defined in Sec. 8.2.4)

c sound speed; capacitance; stress wave velocity

cS stray capacitance

D detonation velocity

d defined in text (Sec. 8.4.2)

specific internal energy
h Lagrangian coordinate

I, i current

j 2  slope of the Rayleigh line

k piezoelectric coefficient

1L, thickness (Sec. 8.4.3)

MY Mach number

n index of refraction; number of fringes

P pressure; polarization

Q electrical charge

Preceding page blank
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R resistance
r radial coordinate

S defined in text (Sec. 8.4.2)

TO deposition time

t time

U shock velocity

Ua defined in text (Sec. 8.4.2)

U mass velocity

Ufr free surface velocity

U average surface velocity

V specific volume; voltage

x, y spatial coordinates

defined in text'(Sec. 8.4.2, 8.4.3, 8.4.4)

defined in text (Sec. 8.4.4)

r GrUneisen parameter
7 rate of change of permittivity with mass

velocity
e electro-motive force

e unstressed permittivity
0 defined in text (Sec. 8.4.4)

wave length
p density

a normal stress component in the direction

of propagation

Or radial stress
00 tangential stress

7' time through delay leg of laser interferometer
( )o refers to initial state ahead of shock front

( ) refers to state behind shock front

dV/do1 slope of the R--H curve
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8.1 Introduction

Advmices in understanding of the mechanical and
thermodynamic response of solids to impact loading have been
paced to an important degree by advances in experimental
technique. Accurate measurements at the high-stresses and
short-durations characteristic of non-linear stress waves are difficult
to achieve and each new measurement capability has helped to
focus theoretical efforts onto key problems.The laboratory experiments of principal interest in this chapter

are those whose purpose is to determine the material properties that
influence wave propagation and dynamic failure. Those properties
are embodied in the constitutive relation, discussed at length in
earlier chapters. Constitutive relations, including equations of state,
are difficult to predict from a fundamental theoretical basis and in
most cases a suitable form and the appropriate parameters must be
determined empirically. Experiments on nonlinear wave
propagation thus contrast markedly with, for example, experiments
on e*lstic waves. For linear elastic behavior the pertinent material
properties are readily determined and experiments serve mostly as a
check on the mathematics of wave propagation; the geometries can
be quite complex. For the nonlinear case pertinent material
properties are not so easily determined and experimental geometries
are accordingly made as simple as possible. Plane geometry has been
used almost exclusively, although some experimentation has been
done with spherical, cylindrical, and two-dimensional steady-state
configurations.

At stresses very much larger than the strengths of materials the
deviatoric stresses ar, relatively small and shock wave measurements
yield data on the equation of state. It was for this purpose that
many of the experimental methods to be discussed were originally
developed. With the use of explosive systems and hypervelocity
guns, equation of state measurements have been obtained at
pressures as high as 15Mbar*, or nearly five times the pressure at
the center of the earth [8.11. In this high pressure regime,
extc.iding downward to about a hundred kilobars, the shock
structure is usually relatively simple; the shock front can be
considered as a discontinuity separating two equilibrium states.
Consequently, although the methods for producing the high
pressures are not always experimentally simple, the recording
methods can be relatively straightforward. In a typical experiment

*1 bar 1 6 elym/cti -2 0.982 atm 1 4.,504 psi
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measurements of the projectile velocity prior to impact and the
velocity of the induced shock front suffice to determine a point on

--the equation of state.
At stresses comparable to the yield stress, on the other hand,

the shock structure is less simple. Yielding at the elastic limit gives
rise to a complex wave front which must be recorded in detail in
order to correctly infer the locus of: states experienced by the
material. More sophisticated 'recording methods are therefore
required to study wave propagation and to infer constitutive
relations in the low stress regime.,

In addition to experiments to determine equations of state and
constitutive relations of homogeneous solids, experiments are also
performed to investigate aspects of wave'propagation that depend
importantly on the detailed internal geometry of an inhomogeneous

. 9olid. Thus, for example, porous solids require time for
i quilibration to occur among the inhomogeneities. Transient
behavior during the approach to equilibrium and the scale on which
the material can be considered homogeneous can, in a formalistic
sense, be considered to be aspects of the constitutive relation. From
this point of view, however, each solid of each porosity, grain size,
etc., must be considered as a distinct material. It is therefore
desirable to attempt to predict the effects of the internal geometry
separately from the behavior of the solid itself.

Similar remarks apply to composites, which may be anisotropic
as well as inhomogeneous, and in which the wave structure is in
detail very complex. Simplifications to the complete analytical
problem may be acceptable, however, depending on the scale of
interest compared to that of the internal structure. The
appropriateness and range of validity of proposed simplifications
must, of course, be determined by experiments.

Many impact experiments are performed for purposes other
than determination of constitutive relations. The precise condition
of one-dimensional strain due I 'etry of a plane wave, the
very high pressures attainable act, and the capability for
accurate determination of t' and at least one stress
component - that acting in th, )n of propagation - provides
a suitable environment for dy' high-pressure experimentation.
Physical phenomeita such conductivity, piezoelectricity,
dielectric constant, and oth have been studied under shock
conditions. Techniques specific to those studies are beyond the
scope of this chapter, however. Several recent review articles treat
those aspects of shock wave physics [8.1 - 8.51.

Best Available Copy
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8.2 Theoretical Results Used in Experimental
Design and Analysis

Experimental data on stress waves typically consist of wave
velocities and associated material velocities or stresses normal to the
wave fronts. From these data one wishes to calculate the remaining
parameters to completely define the themodynamic and kinematic
states through which each element of.the material passes as it is
traversed by-the-wave.

n- this section we summarize some of the theoretical results
that are of particular value for the design and interpretation of
experiments. Many of these results have been presented in earlier
chapters and are included here for convenience.

8.2.1 Jump Conditions

Where steady plane shock fronts are present the
Rankine-Hugoniot jump conditions, derived in Chapter 3, can be
applied to relate the states on either side of the front. They are
reproduced in Eqs. (8.1) to (8.3).

V/ 1 - (u - uo)/(U - Uo)(8.1)

i- = p(U - uo)(ul - Uo) (8.2)

El - E0  1(o - 00)(V 0 -V) (8.3)

In these equations V(= p-1 ) is specific volume, u is mass velocity, U
is shock velocity, a is the normal stress component in the direction
of propagation, and E is specific internal energy. Subscripts "0"
refer to the initial state ahead of the front; subscripts "1" refer to
the state behind the front.

If the initial state is known then measurement of two of the
four unknowns of Eqs. (8.1) and (8.2) permits the others and the
energy to be computed. From a series of such measurements on
shock waves of varying intensity a relation, o(VE), unique for each
initial state, can be determined that represents the locus of states
attainable through a single shock transition. It is usually referred to
as the Rankine-Hugoniot equation of state, or R-H curve, although
because of stress anisotropy it does not strictly represent an
equation of state for solids with non-negligible shear strength. The
important features of the R-H curve, including the inherent entropy
changes and stress anisotropies, are treated in Chapter 3.
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The components of normal stress acting across planes oriented
perpendicularly to the shock front (tangential stress) do not enter
.the equations directly; they influence the shock only through the
constitutiveri elation. Since nearly all experimental techniques
determine, directly or indirectly, the stress component in the
direction of propagation, the tangential stress components can
usually only be inferred. Where hydrostatic compression data are
available, comparison with shock data permits the tangential stressto be deduced. Alternatively, measurement of the states obtaining

upon the relief of stress, (via a rarefaction wave) from a shocked
state provides much information about the shear stress under shock
conditions.

The jump conditions apply not only to the equilibrium end
states but throughout the transition region since each portion of the
front is steady. Eqs. (8.1) and (8.2) can be combined to give

U, U0  V (8.4)

Since all parts of the wave travel with the same velocity, U-uo,
with respect to the undisturbed material, the locus of a, V, E states
in the transition must lie on the straight line joining the initial and
end states in the a-V (or u-u) plane. This line is called the Rayleigh
line.

The difference between the Rayleigh line and the R-H curve at a
given volume is approximately the nonequilibrium stress obtaining
in the transition region and is primarily responsible for the entropy
production. If the material is treated as a viscous fluid, the
steady-state shape of the shock front can be derived by relating the
nonequilibrium stress to the stress rate or strain rate [8.7]. Except
at low stresses, however, shock rise times are usually extremely fast,
exceeding the response time of available instrumentation.
Consequently, experimental studies of shock structure must, with
some exceptions, await the development of fast-r recording
methods.

8.2.2 Stability of Shock Waves

In solids a single shock front is frequently unstable and a
compressive wave propagates as two or more shock fronts. The
stability criterion is derived by assuming the shock to consist of two

L
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fronts and comparing their relative speeds (see Chapter 4). The
condition for stability iN

02> at (8.5)
v ---v 2  v Y

where t.he .subscripts "0" refer to the state ahead of the first shock,
subscripts" "1" refer to the intermediate shocked state, and
subscripts "2" refer to the final shocked state.

Graphically, this means that the Rayleigh line joining point
a,, V, with 02, V2 is steeper (more negative) than that joining
a,V with 0o, Vo (Figure 8.1).

55

b4

V 0

Figure 8.1(a) Illustrating Various Regions of Behavior of the Hugoniot Curve
in the Stress-Volume Plane.

Region 0-1; normal behavior, single wave front
Region 1-2;j d < 1, single front unstable, wave propagates as two fronts

Region 3; = 0 2j
dP1dP, ,

Region 4. d o.j2 1 multiple solutions for state produced by plate

dP11
impact are possible

Region 5;j 2 .,X = I + 2M, -- d Dyakov's upper instability limit
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5

U

Figure 8.1(b) Behavior of the Hugoniot Curve of Figure 8.1(a) in the Stress-
Particle-Velocity Plane.

It is important to note that the stability criterion of Eq. (8.5)
applies to rarefaction waves as well as compression waves. For
certain materials, notably iron, as a result of the a-e phase change,
and fused silica, as a result of the anomalous compressibility below
40 kbar, rarefaction shocks develop upon relief of stress from a
compressed state. The interaction of two rarefaction shocks leads to
extremely high tensile stress rates and in iron, for example, fracture
surfaces have been observed that are so smooth as to appear
polished [8.8].

The properties of fused silica have been exploited by Barker to
provide an input stress pulse that is particularly well suited for the
study of constitutive relations [8.9]. The anomalous
compressibility of fused silica (below 40 Kb) leads to uniform
amplitude dispersion of the compressive part of the wave and to a
rarefaction shock at the rear of the wave. Thus, the wave shape has
a long linear rise time in the compressive portion and an abrupt fall
time in the rarefaction portion. This pulse shape is therefore
essentially the converse of the shape usually produced by impact in
normal solids and when transmitted to a normal solid can be used
to emphasize and explore different aspects of its constitutive
relation.

It is interesting to note that there is another criterion for shock
stability. it is evidently of secondary importance since violation of
it has never been observed experimentally. Nevertheless, there
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seems to be no fundamental reason it could not occur, and we
therefore mention it for completeness.

Following D'Yakov we define the negative slope of the Rayleigh
line by [8.10]

= (av- oo)/(Vo - V)

and the Mach number of the shock with respect to the material
behind by,

M = (U- u)/c

where c is the sound speed, given by:

The condition for stability of a sho-k front is then

-I < j2(dV/da,,) < 1 + 2MI

where. dV/dan is the slope of the R-H cuive.
The lower limit of this equation corresponds to the previously

* stated criterion, Eq. (8.5); violation of it leads to breakup of the
shock front into two or more fronts propagating in the same
direction.

The upper limit corresponds to stability with respect to breakup
of a shock front into f-wo or more waves propagating in opposite
directions. It can be shown that, at this limit, a wave of
infinitesimal amplitude incident from the rear on a shock front
results in a large perturbation in the shock state.

The behavior of the R-1H curve in the vicinity of the stability
limits is illustrated in Figure 8.1. Normal behavior of a solid
corresponds to an R-H curve whose slope is everywhere negative
and whose curvature is positive in the a-V plane, so that the
stability limits are not exceeded. Yielding at the elastic limit or
phase transformations can cause violation of the lower stability
limit, however, leading to multiple shock fronts. Under unusual
conditions, for example, when the solid is initially porous, or in the
vicinity of a phase transition, it is possible for the R-H curve to take
on a positive slope. If it is sufficiently positive that 1 < j' 3 ul /3 V,
the slope in the a-u plane becomes negative and the possibility of a
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non-unique solution for the state produced by impact arises [8.11].
At the upper stability limit, j1 (Wva all) = 1 + 2M the slope of the
R-H curve in the a-u plane, dulda,,, is just equal to the negative of
the slope of the isentrope through that state, du/dos, and a small
disturbance causes a large and possibly double valued perturbation
in thd shocked state.

The meaning and consequences of the upper stability limit are
not yet fully understood and are the subject of current research.

8.2.3 Reflections at Interfaces

TFor plane waves the interaction with a boundary of different
shock impedance is characterized by continuity of the stress normal
to the boundary and the mass velocity. For this reason it is
convenient to consider the relations between stress and particle
velocity obtaining in shock transitions and in rarefaction waves.

The shock velocity can be eliminated from Eqs. (8.1) and (8.2)
to give

it, - u0  - (a1 - Uo)(Vo - V1 )

From this relation a family of curves can be plotted in the a-u
plane, once an equation of state is given, that represent. the locus
of equilibrium a, u states attainable by a shock transition from a
given initial state. 'Except for the end states the transition states do
not lie on this curve but on the straight line jotning the end states,
analogously to the Rayleigh line in the u-V plane. Those curves with
positive slope are pertinent to for-ward-facing shock fronts (i.e.,
shock fronts traveling in the +x direction); those with negative slope
pertain to backward facing waves.

For rarefaction waves, which reduce the stress and accelerate
the material in the direction opposite to that of propagation, the
relation between stress and mass velocity is given by the Riemann
integral* [8.12].

where c is the local sound speed.
This relation can also -e represented in the a-u plane as a

family of curves, and as for shocks, forward facing waves are
described by the curves with positive slope, while backward facing
* This result is a conseqtuence of [wLumnine constant entropy and therefore do'se :t hold
acros shock fronts.
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waves are described by those with negative slope.
Where: the effect on the R-H curve of stress anisotropies and of

the ento py change inherent in the shock transition are small the
two families of curves are the same and no distinction need be
made. All transitions from a given initial state must'lie on one of
the two curves passing through that state.

For example, consider the reflection of a forward-facing shock
in material'A at an interface with' material B, assumed to possess
sm;!ler shock impedance than A (Figure 8.2). The initial shock is
represented by a0, u1 and lies on the o-u curve of material A
centered on (0,0). Reflection of the shock at the boundary

A

A'

b B
C',

F-

0'2'U

U fs

PARTICLE VELOCITY- u

Figure 8.2. Hugoniot and Isentropit: Curves in the Stress-Velocity Plane. A
Shock in M'aterial "A" with State (o, u,). Reflects at an Interface with Material
"B" to Produce the Common Stat,'. (o, u. ). The Curves "A"' and "A" are
mirror images when entropy changes can be neglected.
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produces a backward facing rarefaction in A and a forward facing
shock in B. The common state at the interface must lie on the
intersection of the appropriate curves centered respectively on (o,u I ) and (0, 0), i.e., the final state iS (oi U2 )

If material B were a free-surface the reflected rarefaction would
have carried material A to zero pressure and the free-surface
velocity, uf . Note that if the a-u curves for shocks and
rarefactions are the same the free-surface velocity is just twice the
particle velocity prior to reflection. This result is frequently used to
infer particle velocities from measured free-surface velocities for
well-behaved materials.

The a-u plane is an indispensable tool for qualitative or
semi-quantitative analys;s of complex wave interactions and a set of
curves for known materials is to be found in virtually all
experimental laboratories.

8.2.4 Generalized Analysis

For the design and analysis of many experiments the foregoing
fundamental relations; i.e., the jump conditions for steady or
discontinuous shocks and the Riemann integral for isentropic
rarefactions, are sufficient. However, these relations were derived
originally within the context of fluid mechanics, where the
underlying assumptions are generally well satisfied. Stress waves in
solids, on the other hand, frequently exhibit behavior that cannot
be rigorously treated by means of these relations. Thus, for
example, where the yield stress of a solid is significant the plastic
work contributes to entropy increase in the rarefaction as well as
th.e compression portion of the wave. Hence, isentropic rarefactions
strictly cannot exist. Time-dependent yielding, manifested by decay
of elastic precursor waves, leads to compressive fronts that are
neither discont, inuous, steady state, nor isentropic. Large rise times
of compressive fronts are observed in numerous materials, especially
at stress levels comparable to the elastic limit. The stress rate of an
overtaking rarefaction wave may then be comparable to the rise
time of the compressive wave and the jump conditions are then not
applicable.

Clearly such complicated behavior requires additional
experimental measurements than simply, as is adequate for
equation-of-state experiments in fluids, measurements of shock
velocities and the associated particle velocities. For example, there
is no way to determine experimentally whether a shock front is
steady without observing it at more than one location in a
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specimen.
In addition to the requisite greater quantity of experimental

information, a means of reducing the data to yield corresponding
stress, density, and energy values is required. This can be
accomplished using the'fundamentalconservation relations. In this
section we show how the conservation relationscan be recast into a

form that is analogous to the jump conditions, and to the Riemann
integral, but is, almost completely general [8.13]. The method is
not only of interest for data-reduction purposes, but serves to point
out some interesting and not widely appreciated features of wave
propagation in a material with a time-dependent constitutive
relation.

Since experimental measurements are always made with respect
to Lagrangian (or material) coordinates, we consider the
conservation relations (for plane waves) in those coordinates. They Z
are derived in Chapter 3.

p0 (aV/at) - (bu/ah) 0 (8.6)

poau/at) + (aofah) 0' (8.7)

(aE/At) + (o/po)(Maufah) = 0 (8.8)

These equations express respectively, conservation of mass,
conservation of momentum, and conservation of energy. The
Lagrangian coordinate, h, is given by the initial coordinate of a
particle and remains fixed to the particle.

These equations are correct within the assumptions that heat
conduction, body forces, and internal sources and sinks of energy
(as, for example, from radiation) are neglected. In particular no
assumption that corresponding values of a, V, and E represent an
equilibrium state has been made, so that o may include
time-dependent or viscous components. Within the restrictions
mentioned, the equations therefore apply equally to compressive or
rarefaction waves whether dissipative or not, and are independent
or any assumptions about the constitutive relation.

We now introduce phase velocities associated with each
dependent variable; they are defined as:

C, (31713t),,
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withsimilar expression o C , and CF.
Since had t aethe idpnent varales, we can write, for

example,

,(h, 0) and u u(h, 0),

and a standard rule for partial differentiation yields,

(:ala/(a h) (8.9)

= - a/~t/(aaah)(8.10)

-Using these relations we can write each of Eqs. (8.6) -(8.8) in
terms of a single independent variable. Thus, combining Eqs. (8.6)
and (8.9),

00 (a V/at) + C"-I(aulat) =0

or
(au/aV),, poC,, on h const.

The complete set of such relations obtained from substituting
the appropriate phase velocities into Eqs. (8.6) and (8.8) is:

(aoau.)h POI (8.11)j (aD/au (8.14)

-/~ . j2934, (8.12) .(ulaV), =-p 0 CV~ (8.15)

OEa o /poc" (8.13) OEMt /ap0,C (8.16)

These form, a set of compatibility relations that hold
simultaneously on surfaces of constant h: -jqs. (8.11) - (8.13)] or
of constant t [Eqs. (8.14) - (8.16)] an~d which relate measurable,
quantities, to the desired quantities. Of these, Eqs. (8.11) - (8.13)
are the most useful since experimental techniques are available to
measure u(t) and u(t) at constant values of hz. Thus,

d V (I lp,,C,) d i along ii const. (8,18)

dE (o /p,,C',) du *(8.19)
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Thee euatonscanbeapplied incrementally to observed wave
shae t'ed coisponl~fding values of ci, V, and E. Theyar

equivalenti toteRniehuohiot jump conditions, in differential
* form, xcept:.that two different phase'lvelocte utb sd
Figure 8.3 illustrates te stress and ptclveoty profesia

b, N

w t >

'CU(t 2- td

-u

LAGRANGIAN DISTANCE, h

Figure 8.3. Stress (solid curves) and tnass velocity (dashed curves) pr oriles at
three successive tines. Phase velocifies corresponding to given stress or mass
velocity values are different for eftch portion of the wave and the stress an'd
mass velocity profiles are ntvt superimposed.

non-steady wave.
The phase velucities are in general distinct; relations among

them are easily found. Thuis

C, C,, fa) -ah/at) 0 + (hfaut),( It)

C,J1C0 ,i~tU~a~ (8.20)

Similarly,

= 1 --I (3Gmt0VI(aG4t),, (8.21)

and

C1, C,, 1-(Vv )/a/t, (8.22)
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Clearly the phase velocities C and C. will be the same
f whenever a .= (u) since in ithat!,case the numerator of Eq. (8.20)

v .anishes. The denomnnator isi nfinite !for discontinuous fronts and
the velocties are equal Es- in, that case. Similar remarks apply to
Eqs. (8.21) and (8.22). ,

In addition tothese relati6ns [Eqs. (8.20) - (8.22)] another set
can be drived'thiat isinformative as well, as useful for data analysis.
For exa 'p begii -....with Eq. (8.14

PoC" (aa;au), K
with respect to t to get

0(ac,/at R =uta = au at'). ..

But, fr-n Equation 8.20,

(aa/at)u (agr/at)[ I I C,CI

Therefore,

(ac.lat).. [(C0 - cu)(aU/at)h] (8.23)

This equation can be used to determine values of C, when the
experimental data consist of particle velocity profiles. The left-hand
side is given by the curvature of the lines of constant phase.
Denoting this by f(u,t) and integrating we have

f f(u, t)du = F(u, t) = (C, -- Cu)(au/at)h + g(t) (8.24)
0

The arbitrary function, g(t), is identically zero in most cases of
interest. Thus, for a wave propagating into-an undisturbed region
g(t) must be the same there as throughout the wave. In the
undisturbed region, however,

U= (au/at)h 0

Hence, F(u,t) 0 and g(t) 0.
When experimental measurements consist solely of particle

velocity data, therefore, Eq. (8.24) can be used to determine values
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:of Ca and, thence, the complete flow field through Eqs. (.8.17) -

''(8.19).
Other relations similar to Eq. (8.23) can be derived beginning

with each of the other compatibility relations [Eqs. (8.11) -

(8.'16)]. For example,. Eqs. (8.11), (8.12), and (8.14) lead to

) [C, (8.25)
V h Bu

(ac.,

- VBCU- co)(V/athj (8.27)

From these expressions it is easily seen that whenever any one
set of the lines of constant phase are straight lines, then all phase
velocities are the same and, further, from Eqs. (8.20) - (8.22),

0 = 1 (V) " 2 (u). Hence, time or entropy dependence of the
constitutive relation manifests'itself in a plane shock experiment by
curvature of the lines of constant phase.

It is easily shown that Eqs. (8.17) - (8.19) reduce to the
Rankine-Hugoniot jump conditions for wave shapes that are steady
in time or for discontinuous fronts. For steady waves the constant
phase lines are straight and parallel and each phase velocity is eqaal
to the (constant) shock velocity. Eqs. (8.17) - (8.19) then integrate
immediately to give the R-H conditions in customary form when
the phase velocities are replaced by the shock velocity with respect
to the material ahead of the wave (U - Uo).

For discontinuous fronts, from Eqs. (8.20) -(8.22), the phase
velocities are again equal. Moreover, they are independent of a, V,
or u within the front and the same integrations arp valid.

To this point we have been concerned with plane waves because
experiments to determine constitutive relations are performed
almost exclusively in that geometry. It is of interest to note,
however, that the generalized analysis can be applied also to
spherical and cylindrical waves [8.14]. Experiments in spherical
geometry would be of interest for determining more complete
information about constitutive relations because the strain
condition is not one dimensional; consequently, the stresses
tangential to the wave fronts influence wave propagation
differently. In fact, it may be possible to directly determine the
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shear stresses obtaining in a spherical or cylindrical wave.
The conservation relations for spherical 'waves, analogous to

Eqs. (8.6) to (8.8) for plane waves, are:

(a~la (I + Ir2)[ ~ru) 0 (8.28)

(aorf/ar)t + 2(a, ao)/r + P(atIat)h 0 (8.29)

and

POaElat)h + o,(au/ar), + (2u /r) u, 0 (8.30)

In these equations a,. and ao are the radial and tangenitial stress
vectors, r is radius, h(= ro,) is initial radius, and the other variables
are defined as before.

These equations can be written with h and t as the independent
variables by using an alternate relation for the continuity equation
[Eq. (8.28)]1, viz.,

pr'(8rfah), pcrn2' corist.

Eqs. (8.28) to (8.30) then beconme:

(p1?r1p0r-02 )(3u/ah)t + 2pufr + (3 /a),

U8(ur/3h)t + (p0r0 1r2) [2(qr -oo)/pr + (au/at) 1] 0

and

aE/3t + (axjj1p, 2)(au/ah) +(2ufpr)ao 0

Introducing the phase velocities, defined as before [Eqs. (8.9)
and (8.10)1, yields the compatibility relations:

d(Tr (p~r0
2/jr2 )C,Adu + (2/pr)(Or - o)dt] (8.31)

dV/ ) (- r2 /1r,2 )du + (2V/rV0 )udt (8.32)

dE (or/P0q)(r2 /r0
2 )du -(2u/pr~oodt (8.33)

Note that these equations reduce to those for plane waves when
r -'since the terms in dt -> 0 and r -~ ro.

Of particular interest is the term containing the shear stress,
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aro, in Eq. (8.31). Simultaneous measurements of radial stress
and particle velocity profies would permit the shear stress to be
calculated throughout the wave profile. Thus, direct information
about the materialstrength and, hence, yield Criterion pertinent to

spherical wave propagation can in principle be obtained from
measurements on spherical waves. For cylindrical waves the
equations are modified by simply omitting the factor 2.

8.3' Laboratory Production of Stress Waves

8.3.1 Gas Guns

The principal tool for producing plane stress waves for the
study of constitutive relations is the single-stage compressed gas
gun. For precisely controlled impacts at stress levels below a few
hundred kilobars these devices are at present unsurpassed.

Existing guns vary considerably in their design; inevertheless
there are certain common features. They are all smooth bore,
usually having been drilled to close tolerances from a solid forging
or casting. The projectile diameters vary from 21 in. to 6 in. and

* 14

CATCHER TAIGET

TANK CHAAeER

Figure 8. Drawing of a typical gas gun arrangement. Muzzle, target eh nmber,
and catcher tank are nt lower left; breech at upper right. (courtesy. Physics
International Company)
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the barrel lengths from about 10 ft to 100 ft (Figure 8.4). They use
compressed; air,:initrogen, or helium as the driving gas, pressurized
up to about6000 psi. Substantially improved performance -rould
result from the use of hydrogen, but handling and safety problems
have discouraged use of this gas.With projectilesweighing less than a few pounds these guns can

achieve velocities up to about 1.5 km/sec. Higher velocities are
exceedingly difficult to reach in a single-stage gun, except that the
use of hydrogen could increase the velocities to about 2 km/sec. At )
velocities less than about 0.1 km/sec nonreproducible frictional
losses tend to make the projectile velocities erratic. Moreover, 3
increasingly stringent control of projectile attitude is required at
lower velocities to maintai. planar impacts. Consequently, guns are
not entirely satisfactory for very low velscity impacts.

For most studies the projectile diameter is of greater
importance than the velocity capability. Larger diameters permit
longer recording times because the wave is only planar until
rarefaction waves generated at the specimen lateral surfaces can
influence the desired wave. For the study of time-dependent
processes such as plastic yielding or phase transformations recording
time can be extremely important. Some balance between large
diameter, velocity capability, and expense of construction and
operation must of course be struck, and most current guns are
accordingly approximately 4 inches in diameter.

Seigel has performed an extensive analysis of the gas dynamics
in guns of this type and the performance of a given gun design can
be predicted with reasonable accuracy from his curves [8.15). A
typical curve is shown in Figure 8.5, in which the projectile
velocity, normalized by the initial sound speed (ao) of the driver
gas, is plotted against the ballistic parameter, P0oAx/mao . In this
expression P0 is initial gas pressure, A is barrel cross-sectional area,
X. is barrel length, m is projectile mass, and ao is the initial sound
speed of the gas. Note that the effect of chambrage (DoID,) is
small, with slightly larger velocities predicted for larger chambrage
values.

For a given gun design and driver gas, Do/DI, A, x., and y are
all fixed, and a more convenient plot can be made. A typical one
derived for the gun at Washington State University is shown in
Figure 8.6 [8.161. The points represent observed velocities and
indicate the extent of the agreement typically found between
theory and experiment. The reproducibility is commonly 1 to 2%
and this degree of control, together with the continuous range of
velocities available, is an important advantage for impact studies.
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Figure 8.5. Typical perfortritnce cu-ic for compremcd gas Curia. Curife shown
are for ratio of mass of comprese gas, b 0 ",to mass (fprojectile eM, qual
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Figure 8.6. Calculated and observed projectile vrelocities for W hington State
U~niversity gris gu.n (wrap-around breech) (a) H-eliumn d-iver gas.
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Figure 8.6. Calculated and observed projectile velocities for Wahington State
University gas gun (wrap-around breech) (b) Nitrogen driver gas.

The breech design is a key element in the design of a gas gun; it
must provide for reliable, fast opening of the reservoir into the
barrel to achieve maximum velocity of the projectile. An indication
of the need for quick opening times is shown by a calculation by
White [8.171. A variety of breech opening mechanisms has been
used including burst diaphragms, differential pistons, gate valves,
shear pins, and a type often referred to as the wrap-around breech
18.181. Each of these has advantages and disadvantages and no
single design has yet been universally adopted.

The gun recoil can be a significant problem because vibrations
preceding the impact can distort the precise alignment of the target
with the projectile. Some type of shock isolation is usually
employed, including separate mounting of the gun from the target
so that some degree of barrel motion can be tolerated.

The barrel is evacuated ahead of the projectile to prevent a gas
cushion from distorting the impact wave shape. Hard vacuums are
evidently not necessary, howtv r Barker was able to detect no
effect at residual gas pressures up to about 0.6 Torr in the Sandia
3-meter gun [8.191. I npact with the target usually takes place an
inch or two in front of the muzzle to provide space for expansion
of the projectile while still maintaining a maximum degree of
alignment of projectile and target.

The tilt angle between the projectile and target must be
precisely controlled if true plane waves are, to be produced,
particularly at lower impact velocities. The angle of the wavefront
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with respect to the target surface can be an order of magnitude or
more larger than the misorientation of the projectile with the target

because of the large differences between wave velocity and impact

velocity (Figure 8,7). Lare tilt not only produces two-dimensional

a

TA RGE

PROJEC11 LEV

Figure 8.7. Illuxtration of efftct of nmimligfnient of projectile end target.
From geometry. 0 'n- t (Usinalp).

flow but reduces. the time resolution of the recording
instrumentation. Thus, if the reco~rding gauge has finite dimensions
in the plane parallel to the impact surface, the effective time
resolution may be limited by the time required for the wave front
to sweep across the gauge.

In practice, angular misorientations of a few tenths of a
milliradian are achieved. A tilt of this magnitude would typically
result in a time resolution, for a gauge whose lateral dimension is 5
mm, of about 5 nanoseconds. This resolution is comparable to that
attainable from fast oscilloscopes.

Guns that use gunpowder as, the propellant are in limited use.
Although they can be shorter for a given projectile velocity and are
therefore less expensive, the high recoil forces, make them
somewhat less desirable for studies of constitutive relations.

For very high velocities, two-stage light-gasq guns can be used
[8.201. In these guns the first stage is the pump tuhe and is filled
with hydrogen gas (Figure 8.8). A relatively large plastic piston is

GUN PLASTIC
P50WDER TPISTON THYDROGEN --SHEER PIN

PROJECTILE

PUMP TBE_ __LAUNCH TUBE -

Figure S.S. Schematic of two-stage light gos gun, Ext.rusi(,n of the plasiic
piston inZo the convergent section prevents rebound of the piston and enhaneps
projectile velocity.
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accelerated by gunpowder in the pump tube, compressing the
hydrogen between itself and the projectile. The projectile, smaller
in diameter than the pump tube, is held in position by a shear
flange at the juncturp between the pump tube and launch tube.
When the hydrogen pressure reaches a critical value (in some guns
up to 100,000 psi) the shear flange fails, launching the projectile.
The transfer of energy from gunpowder to hydrogen permits much
higher projectile velocities to be achieved than from gunpowder
alone because of the higher escape speed of the hydrogen.

With relatively small projectiles a few millimeters in diameter
and weighing a few grams velocities in excess of 11 km/sec have
been achieved, but the projectile diameters are too small for plane
shock measurements. Other two-stage guns, however, that launch
Larger projectiles to somewhat smaller velocities have been
successfully used for equation-of-state measurements at pressures
up to 5 megabars [8.20]. Table 1 shows the range of velocities and
associated projectile diameters currently available from existing
one- and two-stage guns.

8.3.2 Explosives

High explosives can be quite accvrately controlled and are
useful for producing shock waves in plane or other geometries. In
plane geometry they can provide combinations of pressures and
diameters that are currently inaccessible with gas guns; in spherical,
cylindrical, or two-dimensional steady-state geometries wave
propagation - and constitutive relations - can be studied under
conditions in which the strain configuration is controllable but not
uniaxial. In studying a material, use of a variety of geometries
wculd presumably lead to more complete knowledge of its
constitutive relation than is attainable through plane waves alone.
With a few exceptions, however, nearly all experiments to date have
been performed in plane geometry.

The simplest type of explosive plane wave generator (the
mousetrap) is illustrated in Figure 8.9. With a g:ven choice of the
explosive and drivr plate materials and thicknesses, the angle, a, is
chosen so that the driver plate impacts simultaneously over its
surface. The complete generator consists of two elements in
sequence.

In practice the mousetrap suffers from several defects. Edge
effects cause the available plane area. to be appreciably less than the
initial area of the plate. Furthermore, high manufacturing precision
is required for good results. Consequently, this generator is useful
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TABLE I

Velocity Capabilities of Gas Guns*

Bore. Diameter velocity Range (mmhlisec)
Gu yeinches Min. Max.

Tye2.5. - 0.1 1.5

Compressed Gas, 4.0 -011.5
Single Stage 6.0 - 0.1 -0.6

Lig2 G-s -11.0
Lih a,1.2 2.0 8.2

Two Stage 2.0 1.4 6.5
2.7 104.C

* Vm. Isbell, Private Communication.

N,-METAL PLATES

DETONATOR

Figure 8.9. Mouse trap planp wave initiator.

only where a rough approximation to planarity is required or where,
plane waves of large lateral extent are necessary.

The most wvidel1y used plane wave generator is in tile form of a
two-explosive lens, as illustrated in cross section in Figure 8.10. Tlh.-

, (COMIP 8)

(BARATOL)

Figure 8.0. rwvo-expjosive plane wave ten,;. of sin-1 (D2 IDI).
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angle, at, is chosen so that the higher velocity detonation in the
outer explosive initiates a detonation in the inner explosive that just
keeps pace with the outer )ne;i.e., D2 t D, Sin a. A frequentlyused len of this type employs Composition B for the high velocity

explosive and Baratol for the low velocity explosive. Deviations
from simultaneous arrival of the detonation over the face of the
lens normally amount to less than 0.1 psec. The pressure pulse
duration is not uniform over the face, however, so that when the
lens is used to propel a flat plate some distortion of the plate
occurs. A thick pad of explosive is often placed between the lens
and the target or flyer plate to minimize the non-uniformity of
impulse or to alter the pressure transmitted to the target.

The pressures attainable in a solid target upon reflection of a
plane detonation wave in adjacent explosive can be calculated once
the equations of state of the reacted explosive products and the
solid target are known. The same impedance-matching procedure is
used as for solid-solid impact described in Section 8.2.3. Table 9.1
shows some pertinent detonation parameters for several explosives.
The reflection adiabats together with shock Hugoniots for
representative materials are shown in Figure 9.1.

The pressure range available from explosives can be extended by
using a plane wave lens to accelerate a flat plate that, after a short
distance of travel, impacts the target. Flyer plate velocities up to
about 5 mm/usec have been achieved in this way, producing
pressures up to about 2 Mbar in heavy metals 18.211. Russian
workers have reported pressures produced by plate impact as high
as 15 Mbar in tungsten. but the experimental arrangement was not
described 18.11.

Geometries other than plwie have been utilized to a limited
extent. One Pxrange,,nent is the two-dimensional, stady-state
geometry illustrated ih Figure 8.11 18.22]. In this arrangement the
shock wave induced in the sample is nearly plane but attenuates
with distance from -ihe explosive interface. Measurements on the
exit face provide data over a range of press-res in a single
experiment. Some complications of data recording and analysis
arise because of the lack of strict planarity, however, and the
required sample sizes are large. Conseouently, this arrangement is
useful only for certain materials and for a limited class of problems.

Experiments, in spherical and cylindrical geometry have also
been performed and are of interest because the strain configuration
is different than for plane waves. Available measuring techniques
are at present more limited than for plane waves, however, and the
required sample sizes are very large. Extensive work in these
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8.3.3 Exploding Foi

An arrangement that uses a high-energy electrical discharge to
accelerate a flyer plate is shown in Figure 8.13 [8.24], In this

SPECIMEN

CURRENT 'PROJECTILE PLATE
LEA-- -TU EL

FOIL
""BACKING PLATE

SPARK TRIGGER
S GA P TRANSFORMERSWITCH ..

POWER
\SUPPLY" r"-'}JCA FCITO R- T;

C ANKr ' FOI TRIGGER_BANK FOIL GENERATOR

Figure 8.13. Experimental arrangement and circuit for exploding foil experi-
ments. [After M. E. Graham, et al (8.24)l

arrangemeut capacitor banks storing up to about one megajoule at
20 kV are rapidly discharged through a thin foil between the
electrodes. The resulting joule heating of the foil causes it to
vaporize, shearing the projectile plate from its holder and
accelerating it to high velocity. The projectile plates are typically
mylar or plexiglas, 1 to 2 inches square and 0.005 to 0.05 inches
thick. Plate velocities are in the range 0.1 to 5 mm/psec.

The principal advantage of this technique is that, because the
flyer plates are thin, shock pulses of very short duration can be
achieved (from about 50 nsec to I psec). Consequently, shock
attenuation studies can be made on relatively small samples at
relatively small cost.

Disadvantages to the foil discharge system include: (1) the
electrical noise environment is high so that electronic recording is
difficult; (2) flyer plate planarity is less accurately controlled than
in gas guns, although it is comparable to that attainable from high
explosives; and (3) the small flyer plate dimensions impose
restrict'ons on the space and time resolution required of the
recording instrumentation.

A variation of this method has been used by Fyfe to generate
cylindrical waves [8.25]. In his experiments a wire is placed in the
center of an axial hole in the specimen. Rtpid discharge of a large
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capacitor bank (20 kv 30 f) through the 'wire causes it to vaporize
nearly simultaneously over its length.',The rapid application of
intenal pressure Create a cylindrical wave whose propagation
characteristics are then studied, Presrres up to about 20 kb have
been achieved with a 6000 J ule discharge.

8.3.4 Radiation

Pulsed radiation sources can be used to generate stress waves by
means .:.of thermoelastic coupling. Lasars are: in laboratory use[8.26, 8.27], aid some results from undergrou d nuclear

explosions have been published by Russian workers [8,28]. Most of'the work published to' date, however, has been done with pulsed
electron beam machines [8.29, 8.30]. These machines produce
electron energies tip to about 5 Mev and fluences of several hundred
calories per square centimeter with pulse durations of a few tc ns of
nanoseconds. The area over which the beam is approximately
uniform amounts to a few square centimeters.

The stress waves are generated by extremely rapid heating of
the sample at depths in the material which cannot be relieved
during the deposition timc by a rarefaction wave from the en:posed
surface. At depths greater than CO TO where T0 is the deposition
time and Co is the rarefact'on velocity, the pressure can be
calculated from

p = dE

V

or, assuming the Grineisen parameter, P V(oP/E)v, to be a

T- function of volume only,

P = poF(Vo)AE

This expression must be modified of course for regions that are
partially relieved during deposition.

Some typical values of po0'O(V0 ) are shown in Table II,
together with values of sound speed, denity, and approximate
pulse duration for 2 Mev electrons. The absorption depth depends
very strongly on the density so that the specific energy density is
nearly indepenient of the material. Thus, column 1 of Table 11
represents the relative peak pressures produced by a 2 Mev electron
pulse of given fluence, and the product poCoTO is constant. The
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peak pressures indicated in column 1 are those obtained when the
radiation deposition time is less than TL).

TABLE 11

Properties of Typical Absorbers 18.291I

1 2 '3 4.
P0F10  Co P0 TO (2 Mev electrons)

Material bar gmn cal- mmn e gin crd-1 psee

x-cut Quartz 82 5.72 2.65 0.59
Z-CUt QUartz 6s6 6.36 2.65 0.53
z--eut Al, 03 237 11.1 3.99 0.20
6061-T6AI 236 6.32 2.70 0.52
11111 Si _ .42 9.36 2.33 0.41

Fj gI,rv . I.(QUi rt-C;C Of st rt-;s ptjlse pro'duced in aluminumn by 2 Mev
Elect rwi beam.i peak st rws, amnplitude)FIV kb., sweep rate, 200 ~;m

U (rI V, I A. G(;m 2 I
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Because the radiation transports very little momentum, the
resulting stress pulse in the sample propagates into the unheated
portion with an approximately symmetrical shape. A typical record
for aluminum is shown as Figure 8.14; a schematic drawing showing
the development of the transmitted pulse shape is shown in Figure
8.15. :

i 9 ] DISCONTINUITY ;!

9

1 3 SHOCK

4 2/

4 2

6

9

Figure 8.15. Develop)ment of stress pulse due to uniform, instantaneous,
radiation deposition to depth, XD.- (a) Time-distance plant. Contact
discontinuity mark boundary between heated and unheated material.
(bi) Stress-mass-velocity plane. Numbered, points correspond to those of (a).
Spallation may occur before tension rvaches state 9.

The tensile portion of the wave. transmitted may develop
sufficient tension that the material strength is exceeded and
"front-surface" spallation occurs. For thin targets the deposition
can he essentially oniform throughout the thickness and the tension
developed at the center plane, resulting from the interaction of two
rarefaction waves, is approximately twice that developed in a thick
target.
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Diagnosis of the characteristics of the incident beam is a
difficult problem. Totally absorbing graphite calorimeters can beused to determine the total energy, and a series of stacked

aluminum foils whose temperatures are individually monitored
provides a measure of the spectrum [8.30]. The best diagnostic
method at present, however, makes use of elastic absorbers in which
the input conditions can be inferred from the measured transmitted
stress profiles [8.29]. Unfortunately, none of these measurements
can be made simultaneously with the irradiation of a sample so that
the beam reproducibility controls the accuracy with which the
input is known. At present the error attributable to lack of
reproducibility is about ± 15%.

8.4 Measurement Techniques

8.4.1 Introduction

In section 8.2 it was pointed out that in order to infer
constitutive relations from plane stress wave experiments, two
quantities associated with each portion of the stress wave must be
measured. These, combined with the jump conditions - Eqs. (8.1)
- (8.3) - or, more generally, the compatibility relations - Eqs.
(8.11) - (8.16) - permit the other pertinent quantities to be
calculated. Where both the flow and the constitutive relation are
time-dependent the measurements must be made at more than one
location in a specimen in order to determine the curvature of the
lines of constant phase. This information is needed for calculating
both of the phase velocities, C, and C,,.

The quantities that can be most accurately measured at present
are particle velocity (or free-surface velocity), and the normal stress
ccmponent in the direction of propagation. Measurement of either
of these at more than one location in a specimen then permits wave
velocities to be determined. (Impact time can obviously be used as
one of these measurements.)

In contrast to high pressure equation of state experiments in
which the shock front is nearly discontinuous, the shock structure
is frequently complex at the lower pressures of primary interest for
studies of constitutive relations. The interaction of the incident
shock with a free-surface therefore causes distortion of the shock
structure that is difficult to analyze without prior knowledge of the
constitutive relation one wishes to measure. Hence, for many
problems measurements that can be made inside the material have
distinct advantages over those that are restricted to observations of
free-surface motion.
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the input conditions can be inferred from the measured transmitted
stress profiles [8.29]. Unfortunately, none of these measurements
can be made simultaneously with the irradiation of a sample so that
the beam reproducibility controls the accuracy with which the
input is known. At present the error attributable to lack of
reproducibility is about 15%.

8.4 Measurement Techniques

8.4.1 Introduction

In section 8.2 it was pointed out that in order to infer
constitutive relations from plane stress wave experiments, two
quantities associated with each portion of the stress wave must be
measured. These, combined with the jump conditions - Eqs. (8.1)
- (8.3) - or, more generally, the compatibility relations - Eqs.
(8.11) - (8.16) - permit the other pertinent quantities to be
calculated. Where both the flow and the constitutive relation are
time-dependent the measurements must be made at more than one
location in a specimen in order to determine the curvature of the
lines of constant phase. This information is needed for calculating
both of the phase velocities, C, and C,.

The quantities that can be most accurately measured at present
are particle velocity (or free-surface velocity), and the normal stress
ccmponent in the direction of propagation. Measurement of either
of these at more than one location in a specimen then permits wave
velocities to be determined. (Impact time can obviously be used as
one of these measurements.)

In. contrast to high pressure equation of state experiments in
which the shock front is nearly discontinuous, the shock structure
is frequently complex at the lower pressures of primary interest for
studies of constitutive relations. The interaction of the incident
shock with a free-surface therefore causes distortion of the shock
structure that is difficult to analyze without prior knowledge of the
constitutive relation one wishes to measure. Hence, for many
problems measurements that can be made inside the material have
distinct advantages over those that are restricted to observations of
free-surface motion.



EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION 437

The relative accuracy with which the shock variables must be
measured in order to yield a prescribed accuracy for the
constitutive relation can be derived for a steady shock from the R-H
-jump conditions.

The jump conditions; Eqs. (8.1) and (8.2), are: (a0 = uo 0)

1 -V/Vo = u/U
and

a = P0 Uu

The errors in the measured state resulting from errors in the shock
and particle velocity are therefore,

- 8V/VO =U/U(6u 8(U)
and

60/a = u/u + 6(1/U

We are primarily interested, however, not in the total error in
the measured state but in the error in the R-H curve. That is, we
wish to know the error in stress at a given specific volume.

If the true slope of the R-H curve is dc/dV, the quantity of
interest is Aa/= (- du/dV + 5a/6 V7) 5 V/la, where A a is the error
in stress at a given specific volume (Figure 8.16).

0P,

P I

V

Figure 8.16. Error in stress, Ac, at given volume, when errors in state
rn.asurement are ba, 8v. Point P is true state, Point P' is measured state.
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This can be reduced to,

=o [U -V-' 1-+- [1+ dodV

or, with the definition of j2 introduced earlier,

ala ufi2av/au, I U 2av/a +/

Consequently, for normally behaved material, i.e., P a V/aoH < 1,
an error in shock velocity leads to a larger relative error in stress
and, conversely, an error in particle velocity ieads to a smaller
relative error in stress. It is for this reason that the accuracy
requirements are usually higher for shock velocity than for particle
velocity measurements. For relatively incompressible materials at
low pressures the .curvature of the R-H function is small and,
approximately,

i2 -1

Then na/a 2 6 U/U and the measured curve is relatively
insensitive to errors in particle velocity.

The corresponding relation if a and U are the measured
quantities is,

_ s ____ [2 a vl'

*j2 6aia

Again yielding,
A° 8U , j. aV

- -- 2'Uwhen - - - I

The remainder of this section summarizes the principal
experimental techniques in use for measuring stress wave
characteristics. The discussion presents the major features of each
technique and is intended to be representative rather than
exhaustive. Variations of each technique are to be found described
throughout the literature.
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8.4.2 Optical Methods

Some of the optical methods will be discussed in this section.

High Speed Cameras
Most high speed impact events occur on a time scale of

microseconds and to adequately record the details of the process
the instrumentation should be capable of resolving time intervals of
0.01 ps or less. Photographic recording therefore usually requires
special cameras with extremely high writing speeds.

For qualitative or semi-quantitative information, still
photographs taken with a conventional camera and a very short
duration light source or an external shutter such as a Kerr cell, are
useful. The source must be extremely intense to provide sufficient
exposure; several suitable sources consisting of exploding bridge
wires or small explosive charges have been designed. A series of
several cameras and light sources of this type with individually
timed sequential flashes constitute the so-called Cranz-Schardin
framing camera.

The rotating mirror framing camera, illustrated in Figure 8.17,

STATIONARY FILM

-COPYING LENSES

00

ROTATING OBJECTIVE OBJECT
MIRROR LENS

Figure 8.17. Schematic of rotating mirror framing camera.

avoids one disadvantage of the multiple source camera in that all
views are recorded from til same perspective. Rotor speeds as high
as 10,000 rps have been achieved, resulting in framing rates of
approximately 8,000,000 frames per secord, and providing 24
pictures of the event. These cameras are eithcr synchronous,
requiring accurate timing of tle event with the positicn of the
rotating mirror, or continuous writing. Both synchronous ,in(t
continuous writing carr ,ras require a relatively short duration light
source or an external shu cter to prevent rewriting on the film dur; Mg
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successive revolutions of the rotor.
Electronic (image converter) cameras are coming into increasing

use. These provide higher time resolution and require lower
intensity illumination than optical cameras, but with some sacrifice
of recording fidelity.

Although framing cameras are valuable for viewing complex
events, wherever it is appropriate the streak camera yields better
quantitative data. In the streak mode individual pictures are not
formed; instead that portion of the image that passes through a
narrow slit is swept at a known rate across a stationary film. The
film thus records only the intensity of the light at each point of the
slit as a function of time. The operation is illustrated in Figure 8.18.

~STATION ARY
v'1 FILM

SLIT,
ROTATING OBJECT
MIRROR LENS

Figure 8.18. Schematic of rotating mirror streak camera.

The width of the slit is usually made as small as possible (normally
the image is diffraction limited) to improve the time resolution.
With a rotor speed of 10,000 rps the writing speed on the film can
reach 27 mm/ps and a slit width of 0.05 mm yields a time
resolution better than 0.01 ps. As for framing cameras, both
synchronous and continuous writing cameras are available. Image
converters can also be operated in a streak mode to provide higher
writing speeds - up to 100 mm/ps'.

Numerous modifications to these basic designs have been made
to reduce the expense of manufacture or to provide combined
framing and streak recording. None of these modifications has
found wide acceptance, however. A thorough account of recent
work in this area is given by Dubovik [8.311.

Flash Gaps. One of the earliest photographic methods for
measuring shock and free surface velocities is the flash-gap
technique, illustrated in Figure 8.19 [8.321. The flash gaps are
typically a few thousandths of an inch thick and are filled with
argon gas. The argon flashes brilliantly when it is clos I by the
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LUCITE BLOCK
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SPECIME N' CAMERA SLIT
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GAPS

-PLANE SHOC SHIM "
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Figure 8.19. Argon flash gaps for recording shock and free-surface arrival
times.

free-surface motion of the sample and the relative time of each flash
is recorded with a streak camera. With a stepped specimen, as
illustrated, both shock and free-surface velocities can be recorded.

This method is simple and direct but yields unambiguous data
only when the free-surface velocity is constant in time. It is
therefore of limited value for observing multiple shocks resulting
from phase transitions or plastic yielding. Nevertheless, some phase
transitions have been detected from measurements of this type and
the transition pressures inferred [8.33]. The flash gap technique has
been used exclusively with explosive systems principally because it
is most valuable at the higher pressures available from explosives
where the shock structures are relatively simple.

Inclined Mirror Method. Changes in the intensity of the
reflected light from an impacted mirror surface provide the basis for
several techniques for recording free-surface motion. One of these is
the inclined mirror method, illustrated in Figure 8.20 [8.34].

DRIVER PLATE
SILVERED
URFACE CAMERA

SLIT
PLANE-WAVE MIRROR

EXPLOSIVE
LENS INCLINED TO CAMERA

MIRROR

DETONATOR
SILVERED
SURFACE

aSPECIMEN

MIRROR

Figure 8. 20. Inclined mirror technique.
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VACUUM CHAMBER\ LUCITE MIRRORS

QUA~r PEI-ETS ALUMIf'J V DRIvEP Pl-AE

Figure 8.21 (a). Photograph of Experimental Assembly

Figure 8.21. Streak camera photograph of shock and free-surface arrivals in
Quartz uising inclined mirror teeik, 'que

Shock arrival time at specimen-drive plaite interface
-Shock -arrival times at outside sufa ces of thin and thick speciniens

i Arrival of second shock.

18.351 They reflect the light initially from the insidle surface of' the
mnirror at an angle greate r than the critical angle for total reflection.
When impac-ted by the specimen Surface a distinct change in
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Transparent mirrors silvered on their inside faces are placed in
contact with a driver plate and with the free surface of the
specimen. The mirrors on the driver plate are flat against the plate;
the mirror on the specimen surface is inclined at a small angle, a.
The assembly is illuminated by an intense light source and viewed
through the slit of a streak camera, as shown. The arrival of the
plane shock at the free surface of the driver plate is indicated by an
abrupt change in the intensity of the light reflected from the two
outside mirrors. When the shock has propagated through the
specimen, the free surface of the specimen is accelerated to the
right and it begins to collide with the inclined mirror. The point of
collision is indicated on the film by a change in the intensity of the
light reflected from the mirror. The apparent velocity of the point
of collision is evidently related to the free-surface velocity by

Ufs = U"sina

where a is the angle of inclination of the mirror to the free surface,
and U0 is the velocity of the point of collision.

For this -method to give reliable results U, must exceed the
velocity of the shock waves induced in both specimen and mirror
by the collision or, more accurately, must be great enough that the
flow in both media is everywhere supersonic. Otherwise,
disturbances due to the collision could influence the apparent
velocity of the point of collision, or even cause jetting. This
requirement, then, restricts the usable mirror angles to values less
than the critical angle for supersonic flow.

This technique allows the free-surface motion to be monitored
continuously with time; hence, it is particularly useful where the
wave in the sample consists of more than one shock front. The
method is sensitive to tilt and to nonplanarity of the shock so that
good plane wave generators are essential to its successful use.

An experimental assembly and a streak camera record obtained
for quartz with such an arrangement is shown as Figure 8.21. In this
photograph, to, represents the time of arrival of the shock front at
the driver-specimen interface, indicated by the change in reflectivity
of the inside, silvered surface of the quartz; similarly, t, represents
the time of first motion of the specimen free-surface. The slope of
the free-surface trace is seen to abruptly increase shortly after the
time of first motion, t2 . This acceleration is due to the arrival at the
free-surface of a second shock front.

Eden and Wright have reported a modification of this technique
that improves the clarity of the records and enhances the reliability
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reflectivity occurs due to diffuse reflection from the specimen.
Aluminized mylar tightly stretched over the surface of a porous

sample exhibits an abrupt change in reflectivity that can be used to
indicate shock arrival time; silvered quartz discs can be used for the
same purpose. Figure 8.22 is a streak camera record using these
techniques showing shock arrival times in porous soil.

# I 2

POROUS SOIL .SAMPLE
WITH ALUMINIZED
MYLAR ON SURFACE

]SILVERED ."-]" IV R ,

QUARTZ - - QUARTZDISCS ON , T lDISCS CIN
DRIVER ,DRIVER PLATEI P L AT E " "' -- - '\" -], "- "

/I LUCITE ,/

Al SPECIME REING

WITH SILVERED
QUARTZ DISC Al DRIVER PL,*flI -
ON OUTSIDE
SURFACE

Figure 8.22. Experimental arrangement (a) and streak camera photograph (bI
of equation of state experiment on porous soil. Camera was used with two slit;
so that regions of the film are doubly exposed.
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Figure 8.22. Experimental arrangement (a) and streak camera photograph (b)
of equation of state experiment on porous soil. Camera was used with two slits
so th:a regions of the film are doubly exposed.
to, t2 - Shock arrival at specimen-driver plate interface recorded by slits #1

and #2 respectively.
t- Shock arrival at outside surface of aluminum specimen
t3 Shock arrival at outside surface o' Jorous soil specimen.

Optical Image Methods. Where the surface to be observed can
be polished, and where it does not seriously lose reflectivity upon
shock reflection, specular reflection methods can be used. Two such
schemes have been reported. The first of these is based on the
principle of the optical lever and is illustrated in Figure 8.23
[8.361.

POLISHED

SPECIMEN:
0 SURFACE

U CAMERA SLIT DIRECTION

12 I CAMERA APERTURE

Ii U~0.. ... ....... ip f - '-- r

IFiotrv 9.2:1. Principle, of o ptica l Ivver reco rding techriiqlw.
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In this method point light sources indicated by S are positioned
a known (normal) distance, d, from the polished free surface. The
shock wave, U, is incident at a known angle, 0, on the free surface,
and the point of intersection of the shock front with the free
surface, indicated by A in the figure, travels along the surface with

Ivelocity, Ua, given by

Ua= U/sinO

Before the arrival of the shock the streak camera views the
image, I,, of the light source reflected in the polished surface. As
the point of intersection, A, sweeps down, the surface is rotated
through an angle, a, given by

a 2 sin (ufs/2Ua)

In the rotated surface a new image, 12, of the light source, S,
appears, displaced from I, by a distance, b.

For small angles, a, this displacement is given by

b = 2da;

hence, measurement of b and d determines a. This, in turn,
determines ufs once U, is known. The method of obtaining velocity
U is described with reference to Figure 8.24.

This figure shows a portion of a record obtained with the
optical lever method. Time is increasing from left to right and each
bright line is the image of one of the sources S in Figure 8.23. This
record is obtained from the wedge lace of a two-dimensional
experiment like that shown in Figure 8.11, and the amplitude of
the shock wave is decaying from top to bottom of the record. The
angle of the wedge is chosen so the wave is first observed at the
bottom and the. point A of Figure 8,23 sweeps from bottom to top
of the wedge face. Two waves are seen in this case. The first
deflection at the left of the record is produced by an elastic wave
that precedes the plastic shock, which exhibits a more continuous
displacement. The apparent velocity can be obtained from such a
record by measuring the slope of the line connecting the same wave
break in successive traces, since writing speed and distance scale are
known. For the elastic wave of Figure 8.24, the ends of all the
undeflected traces lie in a straight line. For the shock, a trace by
trace measurement must be made to determine the instantaneous
slope.
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Figure 8.24. Optical lever recording of elastic and plastic wave arrivals in Al.

The elastic brea,. in Figure 8.24 illustrates a peculiarity of the
optical lever method. Each trace is double for a short time near the
break. This 'can be understood by reference to Figure 8.25. It is

REGION OF VISIBILITY
12".. OF 12 . -..-. B

I. CAMERA OBJECTIVE

REGION OF "VISIBILITY OF "CII

Figure 8.25. Regions of visibility of two images of single light source.

apparent that each flat portion of the mirror acts as an aperture so
that 11 can be soen only from a region below the line /, AB, and 1,
can be seen only from a region above the line, IAC. As point A
sweeps down tle surface, 12 is invisible to the camera until IAC
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sweeps down past the camera objective, and I, is visible until 11 AB
sweeps past. It follows that, for any source distance and free-surface
rotation, there is a finite time in which both images are visible in
the camera. If the change in slope at A is not a discontinuity, the
overlap of images is less apparent, and this, in turn, provides a
means for estimating the finite rise time in a wave.

It will be noted that where U. is constant the displacement of
the images is proportional to the free-surface velocity. Since
velocity is the desired quantity, differentiation of experimental data
is required only for the determination of U0.

By using a number of light sources this technique provides a
continuous mapping of the shape (curvature) of the free surface
with time. Hence, it can be used to observe shock waves which are
neither plane nor uniform [8.37]. Further, it can be made
extremely sensitive by increasing the distance, d. The main
limitation in observing non-uniform shocks results from curvature
of the surface caused by variations in free-surface velocity.
Curvature tends to distort the images because the light from each
image reflects from some finite region of the surface determined by
the angle subtended by the camera aperture and the distance, d.

The optical lever method requires that the shock wave to be
observed be incident at some finite aingle on the free surface. In
some cases, particularly for anisotropic crystals, this is undesirable.
A method which does not have this requirement is illustrated in
Figure 8.26 [8.38]. A thin Wire is suspended a small distance from
the polished free surface, and the camera views both the wire and
its image reflected in the surface. Illumination is provided by a
diffuse light source. When the shock reflects from the free surface,
the image appears to move towards the wire with a velocity equal to
twice the free-surface velocity. The camera records only a
component of this motion because of the viewing angle, 0. Thus.
the velocity, v, recorded by the camera is,

v 2ulsin0

In using thismethod the space resolution of the streak camera
must be increased by the use of rai. auxiliary, expendable lens which
effectively converts the camera into a microscope. Because the
object distances of the wire and its reflection are different, the
optical system must have a reasonably large depth of focu, and its
f-number must. be correspondingly large. The light requirements for
adequate exposurk, become increasingly severe at higher
magnifications: over-all magnifications of systems in curr.nt u, are
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insensitive to shock CH1.
Laser Interferometry. Interferometric measurements provide

the highest time and space resolution currently attainable. For these
methodls a laser is not only convenient as a coherent light source
hut is necessary in order to achieve the requisite high light
intensities.

Two schemes have been reported; both were developed by
il;trkewr 18.1 9, 8.391 . The first of these uses the laser *in a
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conventional Michelson interferometer arrangement and is shown
schematically in Fgure 8.27. The 'portion of the laser beam
reflected from the miror surface of the specimen is compared with
that reflected from a stationary miror. Fringes are thus formed at
the detector, each of which cor ponds to a displacement of the
surface of one-half wavelength and the spatial resolution is
therefore of the-order of 0.3 micron.

The laser beam is focused on the specimen mirror surface in
order to minimize the effect of projectile tilt. This surface can
either be a polished free surface,. in which case the problems of
relating free-surface velocity to mass velocity are the same as in
many of the techniques mentioned above, or it may be a mirror
surface plated on an internal surface of a transparent specimen. In
this case a direct measure of mass velocity is obtained. In either case
impact stresses must be limited to those for which the mirror

PROJCTILE TARGET
NOSE

FREE SURFACE

iFREE -B8EAM SPLITTER

M2

L1 L2

FILTER

/- PHOTODETECTOR

LASEH

Figure 8.27. Laser interferometer. Fringes developed by interference of beam-
reflected from moving and stationary mirrors record displacement of target
free-surface. I After Barker (8.39)].

retains its integrity.
When measuring the dif, placement of an internal surface a

correction is required for the change of index of refraction of the
shocked "window." The relation that best fits current data is the
Gladstone-Dale formula 18.191:
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dp dn
p n-i

where p is density and n is the index of refraction. The uncertainty
introduced, by lack of complete independent knowledge of the
density in the shock (which is one of the parameters one wishes to
determine) does not produce serious errors because the density
changes involved are usually small.

The principal disadvantage to the technique described above isthat the spatiel resolution is generally too high. Consequently, for !

mass velocities greater than about 0.2 mm/ps the fringe frequency
exceeds the capabilities of current recording systems
(approximately 600 MHz).

By means of a clever modification of the above technique the
space and time resolution can be adjusted over a wide range;
moreover, the fringe frequency is proportional to the acceleration
of the mirror rather than to its velocity [8.39]. Each, fringe then
corresponds to a velocity increment of predetermined magnitude.
In this modification, the "velocity interferometer technique,"
interference fringes are formed by superposition of two portions of
the laser beam reflected from the specimen surface at different
times. The earlier signal is delayed a predetermined amount with
respect to the later signal. The arrangement is shown in Figure 8.28.

The operation can be understood by referring to Figure 8.29. If
the time through the delay leg is r = t2- t1 and the distance
travelled by the mirror surface in that time is S, then

S -ffr

where 5 is the average surface velocity over the interval r. The signal
reaching the photomultiplier at time (t2 + t,), where t, is constant,
is thus composed of the signal reflected at time t2 plus that
reflected at time tl . If the velocity of the urface is constant in time
the separation of the surfaces, S = x(t2 - x(t1 ), is constant and the
fringe frequency is zero. If the surface accelerates, however, fringes
will appear at the rate

X dn dS dii
2dt dt it

or, since n is zero when ii is zero,

u n(t)
2T
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TARGET
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900 REFLECTING PRISM 7

BEAM SPLITTERS

L I
PROJECTILE

- - - -i " L-DELAY LEG

q...- PHOTOMULTIPLIER

- LASER

Figure 8.28. Velocity interferometer. Fringes are developed by interference of
reflected beam with that reflected from same surface earlier in time. Fringe
counting rate is proportional to acceleration of surface. [After Barker (8.39)].

where n is the number of fringes counted.

The resolution of the system is controlled by the delay leg. For

very small delays the number of fringes per velocity change is small
and the resolution in ;elocity is correspondingly reduced. With a
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MIRROR SURFACE

S=G

U (t) U(1Q)

x(t1) x(t)

Figure 8.29. Diagram showing displacement of target surface during delay
interval.

typical delay leg of 10 nsec and a wavelength of 6328 A the
coefficient,

d U
- 31.64 m/sec/fringe.

dn

The time resolution, on the other hand, is equal to the delay time.
This can be seen by observing that the technique effectively
measures the separation of two surfaces displaced in time by r.
Consequently, a constant velocity, for example, will not be
observed as constant until both surfaces move with constant
velocity, i.e. until the specimen surface has travelled with constant
velocity for a time r.*

The balance to be struck between these two resolutions depends
on the experiment. The values indicated above, however, show that
reasonably good resolution of both time and velocity are attainable.

An example of a record obtained by use of the laser velocimeter
and its interpretation is shown in Figure 8.30. In this experiment

* Clifton has given . detailed analysis (if the meaisur(ment obtained with the velov-itv

interferometer 18.401.
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Figure 8.30. Laser velocimeter record and reduction to particle velocities.
Fused silica specimen impacted with tungsten carbide plate. [Courtesy L. M.
Barker (8.9f].

performed on the Sandia 3 meter gun, a fused silica sample was
impacted with a plate of tungsten carbide [8.91. The groups of
fringes correspond to the initial compressive portion of the wave
and to two rarefaction waves generated by reverberations of the
tungsten carbide plate. The ramp portion of the compressive wave,
referred to earlier, is evident at particle velocities below about 0.25
mm/ps.

8.4.3 Electrical Methods

Electrical methods have certain advantages and disadvantages in
comparison to optical methods. They are generally less expensive
since they do not require the substantial investment of a streak
camera. Also, greater flexibility in amplification of signals,
multi-channel recording, synchronization, etc., is available.
Disadvantages are the relatively less direct nature of the recording
instrumentation and, in some cases, the necessity for completion of
a circuit through the sample under investigation.

Pin Contactors
"Pin'" is the name commonly used to denote an electrical

cOntactor connected to a simple pulse-forming circuit so that the
circuit (lischarges when the contactor is closed 18.411 . A simple
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arrangement for measuring shock' and free-surface velocity for
metal specimen is shown in Figure 8.31. Pin No. I consists of ,!

di NO. 2

TO PULSE CIRCUIT

N.3
SHOCK

RLROUNDED METAL
SAMPLE

Figure 8.31. Pin contactors.

small diameter wire enclosed by an insulating sleeve and inserted in
a narrow, flat-bottomed hole drilled to a depth, d1 , in the sample.
The pin is pushed in until it contacts the bottom of the hole, and is
then withdrawn slightly. The gap should be as small as will stand off
the pin voltage, which may be from 50 to 300 volts. The delay
between first motion of the 'surface and shorting of the pin is equal
to the gap thickness divided by the free-surface velocity, and if the
free surface is moving at 0.1 mm/psec, the gap must be less than
0.01 mm to provide a closing time less than 0.1 gsec. Since these
numbers are comparable to the times of interest in such
experiments, it is clear that considerable precision is required for
pin placement.

Pin No. 2 is a bare wire placed at the plane surface of the
sample to record the arrival time of the shock there. Its closing
time, with that of No. 1, provides the measure of propagation
velocity for the oncoming shock. With pin No. 3, and the measured
distance d2 , it provides the measure of mean free-surface velocity.
There are many variations on pin design; another widely used design
consists of a small ferroelectric disk cemented to the end of a thin
brass rod. It has the advantage of being electrically passive until
impacted.

Slanted Resistor
The slanted resistor technique is the electrical counterpart of

the slanted mirror technique described above. A thin resistance wire
or ribbon is stretched between two pins at a predetermined angle, a,
to the free surface, as indicated in Figure 8.32. As the (conducting)
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Figure 8.32. Slanted Resistance Wire Technique (a) Schematic.
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Figure 8.32. S'anted Resistance Wire Tcchnique (b) Record and reduce d.!

Ti- m~ r sa nl'-1 CoUr", ',jy -*,_1 (8',, ]



EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION 457

free surface strikes the wire, that portion of the wire up to the
point of impact is electrically shorted. Measurement of the voltage
drop between the two pins thus indicates the position of the point
of impact, and, through the known angle of inclination, the
free-surface displacement [8.421.

The same limitation of the angle, a, viz. that the point of
impact travel with supersonic velocity in either of the colliding
surfaces, applies to this technique as it does to the inclined mirror
method.

Some precautions are necessary to insure that the wire is
straight, that it has constant resistance per unit length, and that
contact resistance is negligible. One advantage of the method is that
several wires can be used on a single specimen to record the motion
over different intervals, or to provide redundant measurements as a
check of consistency. Figure 8.32 shows a record obtained with this
method on titanium [8.43].

Condenser Microphone
If the sample to be measured has an electrically-conducting

plane surface, a portion of this surface can be made one plate of a
parallel-plate condenser, and any surface motion results in a change
in capacitance which can be measured by standard electrical
methods. Several variants on this principle have been used for
measuring the velocity imparted to a free surface by an incident
shock wave;, the one shown in Figure 8.33 is that described by Rice
18.44].

In operation the scope essentially measures the voltage, V,
across the resistor, R (reduced by the amplification factor of the
cathode follower). Rice shows that since c/c 0 < 1 and V <K E0 ,

dV de,
R(c + C)-- + V RE( dt

dt d

where Cs is the stray capacity in parallel with R. Measurement of V
and d V/dt from the scope trace thus determines dc/dt.

Since,
dx

_l, dt (dc/dt)/(dc/dx)

reduction of the signal to the desired result, tf.,, requires knowledge
also of dc/dx. This quantity is determined by calibrating the
condenser ahead of time using a balance to measure the force of
attraction betwe.-en the condenser plates as a function of the applied
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Figure 8.33. (a) Capacitor technique [After Rice (8.44)].
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Figure 8.33. (b) Typical circuit [After Rice (8.44)].

voltage. The free-surface velocity, uf,, is then determined by
numerical integration of the output signal, V(t).

Electromagnetic Method
When the sample to be studied is an insulator, electromagnetic

techniques can be used to measure particle velocities and stresses
directly. The electro-magnetic technique was first used in the
velocity mode to measure detonation parameters in explosives. Its
use in inert solids was first reported by Dremin who used it to
determine the behavior of glass under shock loading [8.451.
Ainsworth and Sullivan bh, ve also reported extensive measurements
on rocks up to 30 Kbar 18.46].

In the velocity mode a fine wire or foil is embedded in the
sample in a plane oriente l parallel to the shock front. A steady
magnetic field is oriented parallel to the shock front and
perpendicular to the wire as illustrated in Figure 8.34. The motion
of the wire in the field generates an EMF that is proportional to its
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J TO SCOPE

RONT

Figure 8.34. Electromagnetic velocity gauge technique.

velocity. If the field strength is B, the length of the foil
perpendicular to both B and the mass velocity is 1, then Faraday's
law gives the EMF as,

0
E= - -tB.dA BQu (8.34)

Thus, to the extent that the wire motion is the same as that of
the sample, the measured EMF is proportional to the particle
velocity of the sample. No calibration is required since the
measurement is direct, and there is no fundamental limitatioti on
the range of shock amplitude for which it can be used, except at
extreme shock pressures where the conductivity of the sample may
increase sufficiently to short out the signal.

The sensitivity of the method is obtained by inserting typical
numbers into Eq. (8.34). With an easily attainable field strength of
1 kilogauss and a wire length of 1 cm, the sensitivity is

E/u = 1 millivolt (m/sec)"

This sensitivity is quite adequate for most experiments.
Recently, a modification of the electromagnetic technique has

been reported which provides a direct measure of momentum (and
stress) rather than particle velocity 18.471. By inserting the active
portion of the wire at an angle to the shock front as illustrated in
Figure 8.35, the measured EMF is proportional to the momentum
between the ends of the element. The time derivative of the EMF is
then equal to the stress difference between the two ends.

The change in area of the wire loop in an int-,rval of time, dt, is
given by

d2 A - dxdY i ud d.v
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Figure 8.35. Electromagnetic stress gauge technique. (a) Prior to shock arrival

(b) During shock transit of sensing element.

where x and y are spatial coordinates as indicated in Figure 8.35.
Denoting the material (Lagrangian) cocrdinate in the direction of
propagation by h,

hi ho

whence,

dy = ho)

and,

d2 A ....udt dh

The limits of integration are independent so that the order of
integration is immaterial, and

dAI _I 6 A.-
dt fl.
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The measured EMF is therefore,

e =  BdA/dt = u(h, t)dh

To interpret this integral in' . terms of. the stress difference
between the ends of the gauge we recall the equation of motion in
Lagrangian coordinates, Eq. (8.7),

3a/ah + p au/t 0

Upon integrating, this becomes

a(hi,,t) - a(h0 , t) 05- Lhu(h, t)dh]

the final result is therefore

a(h ) a(h 0 , t) (h h),d

:  If h0 is a free-surface, a(ho,t) 0, and the time-derivative of the
output signal is a measure of the absolute stress. An interesting
feature of this technique is that it can measure stress in tension as
well as compression. It should therefore prove valuable for studying
spallation.

A typical experimental arrangement for electromagnetic
measurements with a gas gun is shown in Figure 8.36, and some
records obtained for plexiglas using electromagnetic gauges in both
the velocity and stress modes are shown in Figure 8.37. Each
experiment contained two identical gauges so that there are two
traces on each record.

The inherent precision of the stress gage is less than that of the
velocity gage because it requires differentiation of the recorded
signal. On the other hand, no knowledge of propagation velocities is
required ,as is necessary, for example, to convert particle velocities
to stresses. Hence, the stress gage should prove especially useful for
time-dependent materials that would otherwise require the more
elaborate analysis presented in section 8.2.4. The theory of the
gauge operation assumes that the oblique cut in the sample, along
which the sensing element is placed, not p_,,urb the wave being
studied and that no slippage occur between the specimen material
and the gauge. Limitations due to these possible effects are not yet
established.
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Fiue8,36. Typical arrangemnent for electromagnietic rec rdin~g with 4-inch'

gas gun. (S.'47). (a) Prior to target insta atiof.

Thgure .3. Typical arrangemenlt fcor plectromafiletic recording -ith I-inch

gas gun (8.47). (b) With target and cable., installed.
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Figure 8.37. Electromagnetic records of shock profile'in plexiglas (8.47).
(a) Particle velocity profiles (b) Stress profile, sweep rate, 200 nsec per cm.

Quartz Gauges
One of the most convenient and widely used techniques for

measuring stress profiles below about 50 kilobars is the quartz
gauge [8,48]. The gauge consists of an x-cut quartz crystal whose
flat surfaces are plated, usually with gold; a circular groove is cut in
the plating on the back surface to form a guard-ring configuration.
The lateral surfaces may be plated or not (Figure 8.38). The quartz
is placed with its negative face in contact with the specimen.

As the incident shock wave in the sample is transmitted into the
quartz, the piezoelectric response of the quartz causes a current to
be developed across the load resistor. This current is measured by
the deflection of the oscilloscope and is related to the stress-time
history at the specimen-quartz interface.

Assuming the electric polarization to be a function of the shock
stress, the shock front in the quartz divides it into two regions -
one undisturbed and the otheir polarized. The electric moment of a
volume element dr is P7-, where P is the polarization, and the
integral is equal to the total charge, Q, on the face of the disc times
its thickness, L. The increment of charge in time dt is then,
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Figure 8.38. Plated quartz gauge with guard ring.
(Courtemy R, A. Graham)

where A is the~ tirei of the difi Inside the guard ring.
The external resimtor Is small compared to the internal resistance

of the quartz 'so that the current is effectively the same as for the
short circuit case and,

-A,~ f" ~dx
cli L. f t

To a good approximation the polarization is proportional to the
stre ss, and the wave in the quartz propagates as an elastic wave.
Hence,

P ho, and o u(x ct)
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where k is the piezoelectric coefficient and, c is the velocity of
propagation of the stress'wave. Then,

- kPt(x.- ct) - kco'(x - ct)

thus,
-/Akc\

oct) -a(' -ct)]

Until the wave reaches the outside face of, the quartz,
a(L - ct) = 0 and the output of: the gauge is proportional tothe
stress at the interface; ,the gauge is normally used only during thisinterval. A quarter inch thick quartz disc then provides about 1 psec

of recording time.
The proportionality between stress and current holds

reasonably accurately, although an improved fit is obtained by use,
of the linear relation, h = (2.011 + 0.0107a) x 10" couljcm /kb.
This relation is valid within+± 2.5% to stresses of 25 kb, and applies
with reduced precision up to about 40 kbars. Shear failure of the
quartz occurs at higher stresses and although the quartz continues
to respond, the behavior is erratic and not simply related to stress.
Consequently, quartz gauges are most useful below 25 kb.

At stresses above about 15 kb the response of quartz to the
rarefaction portion of a short pulse becomes erratic, presumably
because the high electrc fields cause breakdown and the shocked
region of the quartz becomes conducting. This breakdown does not
adversely affect the response to the compressional portion of the
wave, however.

The stress history recorded is that of the interface between the
specimen and the quartz, The unperturbed profile in the s-necimen
must then be deduced by an impedance-matching procedure as
indicated in section 8.2.3. The correction is small for materials of
similar shock impedance to quartz such as aluminum or the alkali
halides. For heavy metals. however, a transducer of higher shock
impedance is desirable, such as sapphire. Figures 8.39 and 8.40
show some typical quartz gauge records obtained on ARMCO iron
[8.491, and on a 30% Ni-70% Fe alloy [8.50].

Sapphire Gauges
Some recent work has been devoted to developing sapphire as a

transducer [8.51]. it is used in similar fashion to the quartz gauge,
but depends for its operation on the change in capacitance due to
the change in dielectric constant and to the reduced electrode
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Figure 8.39. Quartz Gauge Record of elastic wave in armco iron (25 Mltz
timing wave). (Courtesy W. B. Benedick)

separation resulting from shock compression.
The current developed by the gauge is a function of the mass

velocity of the impacted surface; the relation is linear at low
velocities and is expressed ws:

i(t) VAU 0 < t < V/U

In this expression i(t) is the observed current, V is the 'initial applied
voltage (of the order of 2 kilovolts), A is area of the disc, ) is the
thickness of the disc, U the shock velocity, c, and y are the
unstressed permittivity and the rate of change of permittivity with
mass velocity.

At higher impact velocities the relation becomes non-linear, but
can be readily expressed in terms of measurable constants of the
material.

Sapphire in the 600 orientation seems to be usable at impact
stresses up to 100 kbar in the sapphire. Because its shock
impedance is relatively high it provides a reasonably good
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Figure 8.10. Guard ring quartz gauge measurement of elastic-plastic wave
profile of 30% Ni-70% Fe alloy. [Courtesy R. A. Graham et. a]. (8.50)].

impedance-match to heavier metals, such as iron. The principal
disadvantage is the short recording time available from reasonable
crystal thicknesses, caused by the high shock speed. This time is
typically 0.25 psec. Figure 8.41 is a sapphire gauge record obtained
in spheroidized 4340 steel [8.51].

Other materials, such as, ruby and Z-cut quartz have also been
examined as possible gauges of this type [8.511. The lower yield
stress of ruby, however, limits it- usefulness to stresses below about
40 kbar. Z-cut quartz is not suitable at present because it exhibits
internal conduction and noise.

Piezoresistive Gauges
Nlanganin wire was first used as a pressure transducer in
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Figure 8.41. Record obtained with sapphire gauge on spheroidized 4340 steel.
Peak amplitude - 75 kbar. duration of record -2.50 1,.. (Courtvsy R. A.
Graham).

hytdrostatic apparatus b~y Bridgman in 1911. 18.521.- It is desirable
for this purpose because it exhibits a positive pressure coefficient of
resistance and at the same time a very small temperature
coefficient.

In 1964, Bernstein and Keough [8.53)~, and Fuller and Price
18.541, reported experiments in which a fine manganin wire was
imbedded in an epoxy disc. The disc was used much as is a quartz
gauge; it was placed against the free surface of a sample and the
change in resistance monitored as the pressure pulse, transmitted
into the epoxy by an initial pulse in the sample, passed over the
wire (Figure 8.42). These experiments established that the
fractional c.-hange in resistance is linearly proportional to pressure
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v ).TAGE LEADS
TESTr WIREC

Figure 8.42. Manganin pressure transducer. Four Pi-sahped manganin wires are
shown imbeded in epoxy. The change in voltage is monitored as the shock
passes over the wires. Current is held constant. [After Keough (8.55)].

up to about 300 kbar.
Numerous dynamic experiments have yielded pressure

coefficients in the range [8.55]

iAR 2.0 to 2.9 x 10( 3 /kbar
~RAP

The statically determined value is 2.6 x 10- /kbar.
The reason for the variations has not yet been fully resolved;

the values seem to depend on the supplier of the manganin and/or
the calibration technique. For this reason some investigators use
manganin gauges at present primarily as interpolation gauges
between pressures established independently [8.56]. For
commercial manganin a value near 2.9 x 10 " seems to be most
widely observed [8.57]. Little or no temperature dependence has
been observed so that the calibration should not depend on the
material in which the manganin is imbedded. There is some
indication that there is a hysteresis effect so that the coefficient
may be different when measuring the compression part of a pulse
than when measuring the rarefaction portion. It is uncertain
whether this effect is real, however, or what physical mechanisms
might be responsible. In spite of these difficulties it seems
reasonable to expect that, as development proceeds, a reproducible
gauge with a well-determined coefficient can be fabricated.- Because
of impedance mismatches between the sample and the insulating
material in which the gauge is imbedded, the gauge used in this
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mode has the same limitations mentioned above when an
undisturbed wave profile is desired.

More recently, experiments have been performed in which the
manganin is imbedded directly into the sample material [8.58]. In
this mcde a relatively undisturbed record of the shape of the
pressure pulse is obtained. A variety of thin elements have been
developed for this purpose. They are typically 0.001 inch or less in
thickness and frequently are in the shape of the grid in order to
increase the resistance of the active part of the gauge while
maintaining small lateral dimensions. It is desirable of course to
keep the thickness as small as possible in order to increase the
inherent time resolution, which is dependent on the reverberation
time through the thickness. Small lateral dimensions are also
desirable to minimize losses in time resolution due to tilt of the
wave front with respect to the plane of the gauge.

When the sample to be investigated is an insulator, a gauge of
this type can be inserted directly into the sample with only a very
thin layer of cement to fill the voids between the grid elements. If
the sample is a conductor, however, thin insulation must be added
to prevent premature shorting. Insulating materials such as mylar,
mica, glass, and Lucalox have been employed. Of these, Lucalox is
attractive because it has high electrical breakdown potential, and it
has high shock impedance so that the impedance match with metals
is improved over, say, mylar. Because of its low compressibility the
change in capacity between the element and the sample is also
minimized. A disadvantage is that fabrication of thin films is
difficult; plasma sprayed films are one possible solution.

The time resolution of these gauges wnen used in metal samples
is somewhat poorer than the time resolution of quartz gauges, for
example, principally because of the insulation thickness. If the total
gauge thickness in(cluding insulation is several thousandths of an
inch and several reverb,!rations of the pressure pulse are required to
establish equilibrium between the gauge and the sample, the time
resolution can be of the order of 30-50 nanoseconds.

Recording durations of gauges of this type are normally several
microseconds and for laboratory Use ;M: generally larger thank the
times for which one-dimensional flow can be maintained. Careful
treatment of the leads is important for longer recording times since
shearing of these is the uqual cause of premature failure.

Experiments with vapor plated manganin grids and with other
materia's such s calcium, lithium, and ytterbium show considerable
promise for improving the low pressure sensitivity of gauges of this
type. Calcium, for example, exhibits a pressure coefficient roughly
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ten times as great as manganin at pressures at least up to 28. kbar..
However, it has much higher temperature sensitivity [8.58].' A'

reod' obtainied With" i~a ... n... gauge imedded in aluminum. is
shown as Figure 8.43 [8.59].:

I MAPACTOR T ARCT t NAI II

- GAGE

ILI

. : tSHOIT 3E3 " r.51 I

.. [D. - . ? -...,.. •

Figure 8.43. Stress pulse in recorded with mranganin gauge. [Courtesy Win.

Isbell (8.59)].

8.4.4 Flash X-Ray Methods

Flash radiography is used extensively in explosive experiments
to obtain shadowgraphs of dense objects that are otherwise
obscured by smoke from the detonation. It has proved very useful,
for example, in studying the formation of shaped charge jets. Figure
8.44 shows some flash radiographs of explosively driven flyer
plates. To a limited degree radiography has alse been used for the
direct observation of the density changes due to shock compression
and for the observation of high speed projectiles prior to impact.
Very recendy, x-ray diffraction experiments under shock
conditions have been reported [8.601. Most existing flash x-ray
systems deliver a single flash lasting about 0.1 ps at energies of 100
to 600 Key; the Phernex system at Los Alamos, however, operates
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Figure 8.44. Flash radiographs of explosively driven plates. (b) Radiograph
showing spalled flyer plate.

the influence of free-surfaces. Figure 8.46 shows a photograph of
the shock compression of porous foam plastic using silver marker
foils. For this configuration quantitative data can be obtained by
measuring the angle of the shock and the associated angle of the
foil. ThuN, denoting the angle of the shock front with respect to the
horizontal by a, and the associated angle of the foil by 0, and
assuming steady flow at the detonation velocity, D, one easily
derives the relations:

U Dsincy

u D sin /co .- ... '

These velocities togetier withi the jump con(litions determine Z
series of stress-density states behind the shock, i.e.. th, l(-nnio.
relation.



474 0. Rt. FOWLES

II-oU DEFORMATION:

STEP 'WEDGE !
PRECURSOR

Figure 8.45. Flash radiograph of two-dimensional shock in dense polyure-
thane. Elastic Precursor is just Visible preceding main shock.

The capability for making x-ray diffraction measurements under
shock represents an important advance, especially for the study of
shock-induced phase transformations.

Conclusion

The variety of methods available to the experimentalist for
producing well-characterized stress waves and accurately recording
their behavior is clearly rich, and is increasing. As methods improve
n-:ore complex features of the wave structures can be observedl and
more complex materials Studied. Because of the often severe
distortion of the shock structure by reflections at interfaces the
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EXPLOSIVE AND FLYER PLATE'
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DI
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Figure 8.46. Flash radiograph of two-dimensional shock in porous plastic using
silver marker foils.

techniques that appear to hold the best promise for future advances
are those that can be imbedded in the material, such as
piezoresistive gauges, electromagnetic gauges, and, for transparent
substances, laser interferometry. Piezoelectric and dielectric gauges
should be added to this list where the shr-ck impedance of the
sample is closely matched.

Some of the outstanding challenges to the experimentalist at
the present time include: (1) observations of the shock structure for
large amplitude shocks - the details of the shock transition are
poorly understood at present, and in general cannot be resolved
experimentally, (2) recording of wave structures in composite and
other heterogeneous materials, (3) experiments in non-planar
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geometry to explore dynamic constitutive relations in other than

one-dimensional strain conditions, and (4) measurement of other

physical quantities such as temperature and electronic and optical

effects.
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List of Symbols

A area
C sound speed

d thickness
D detonation velocity
F force

R? mass
N the number of moles of gas
p pressure

Q heat of reaction

r radius
R? Universalj;as constant

t time
T temperatuare (p. 483), transit timie (p. 492)
U partick-, velocity

UP particle velocity
shock velocity

v speed
V specific volume

a drag coefficient

ratio of specific heats
p densitiy
00 yield stres '
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9.1 INTRODUCTION

Applications of the mechanics and physics of inpact are
extremely wide ranging. They extend throughout science and into
much of engineering; they have widespread commercial
implications; they are natural accompaniment to the violence
associated with war. Military needs have led to development of
much of the understanding of impact, processes, but presently the
importance of constructive applicatfons in science and technology
may exceed that of the military. A few applications of various kinds
are desc ibed here in some detail and others are mentioned. To do
more would require a separate text. References for further reading
are given where possible, but unfortunate:y much of the material on
applications is buried in non-public files.

9.1.1 Detonation

Earlier chapters of this book have not dwelt on the properties
of explosi.,es and the detonation process. Since many applications
of dynamic loading are insepara'ble from detonation, a brief
descrintin, will -1c given here.

A detonation wave is a shock in a chemically reacting material.
Passage of the detonation shock through such a material increases
pressure and temperature to the reaction point; reaction proceeds
to completion in a sonic region behind the shock front and is
followed by a rarefaction wave in the detonation gases. Detonation
is very different from combustion. The latter propagates
subsonically through the combustible mixture, and the pressures
generated are not large, except through the effects of the confining
container. Most bf the explosions occurring in industrial accidents
are due to confined comnustion, e.g. dust explosions. But
nitroglycerii-,-, dynamite, PETN, RDX, etc, detonate. Their
destructive effects are not substantially altered by confinement.

A simple and rather effective model of detonation is the
Chapman-Jouguet model. It is not physically exact but is a good
first approximation for calculating detonation pressures and other
properties. The detonation front is assumed to be discontinuous in
pressure, temperature, etc., and the detonaticn reaction is assumed
to take place in a zor.e immediately behing the shock front. Flow is
assumed to be sonic at the plane where chemical reaction is
complete:

u + c, =D (9.1)
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where subscripts "1" denote values at the end of the reaction zonz

and D is detonation velocity. If the detonation gases satisfy an Abel
equation of state [9.1]:

p = NRTp(1 -ap), (9.2)

Eq. (9.1) can be combined with the jump conditions to provide the

followin> relations at the Chaprn-n-Jnuguet plane, i.e., the plane
where E,( (9.1) applies:

ol,' = ( 4- apo)/(1 + y) (9.3)

u/D (1 -- apo)/(1 - y) (9.4)

C,/D = PoIP, (9.5)

P, P0D 2 (1 - apo)/(1 + -Y) (9.6)
2

D2  2(y ' - 1)Q/(1 -apD) '9.7)

p, 2po(i - )Q/(1 - apo) (9.S)

where subscript "0" refers to the undisturbed state, y is the ratio of

specific heats, a is "co-.olume" of the gases and Q is heat of

reaction at VO, Po. p, is called the "Chapman-Jouguet pressure" of

the explosive. To a good approximation many solid explosives

satisfy an ideal gas equation of state with a = 0 and - -- 3 [9.2].

Some properties of commonly used explosives arc given in Table
9.1.

Table 9.1

Properties of Some Common Explosives*

131, U1 . D, Po, PI, 7
Explosive kbar mm/psec mm/psec g/cc g/cc

RDX 338 2.21 8.6.4 i.767 2.375 2.90

TNT 189 L6C 6.94 1.637 2.153 3.17

64/36- 292 2.13 8.02 1.713 2.s31 2.77
RDX/TNT
(Comp. B)
717/23- 312 2.17 8.25 1.7.13 2.366 2.80

RDX/TNT
(Cyclotol)

• W. E. I),,ul, J. Chem. Phys. 27 (Sept. 57), 796-800
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Isentropic expansion from the Chapman-Jouguet state isdetermined by combining the equation of an isentrope,

p(V a) constant, (9.9)

with the Riernann integral

U -U, ±fdppc

The result is

U, 
(9.10)

~2h'p 1 (V, a)) 2[(p/pW(Y-l)12Y- 1/y 1

A shock wave running into the Chapman-Jouguet state satisfies a(P,u) relation

-2(p -pl) (V1  fpy±1 +.pl(,y-1)

The pressure induced in an inert solid by a Plane detonatio~n wavenorrrv11y incident on the interface is determined by the intersection
of the (p,u) curve for a backward facing wave in the explosive,obtained from Eqs. (9.101, and (9.11), with the Hugoniot of tileinert. Some examples are given in Figure 9 1.

The Chapman-Jouguet state in an explosive is always followedby a rarefaction [9.31. so the shock wave induced in a sample is notfolliwved by a uniform state. However, the uniform state can beapproached very closely by making the explosive pad very thick (cf.Chapter 8). In this case it must also be made very large in diameter,so the amount of explosive involved increases as the cube of thesignificant experimental dimension.
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Figure 9.1. Shock waves induced by high explosives.

9.2 Scientific Applications

These are extremely varied and few have been investigated in
great depth. Reasons for the importance of shock studies in science
are two-fold: the shock wave provides a relatively easy method for
producing very high pressures and reasonably large compressions.
Since pressure has some influence on all material properties, it is
natural to try to explore such effects. Secondly, the very rapidity
with which stress is applied in the shock process represents a

variation from the usual scientific experiment, which is static or
quasistatic at best, and it is a matter of great interest to determine
whether or not laws of physical behavior inferred from such
experiments can be reliably extrapolated to dynamic situations. The
techniques and principles outlined in earlier chapters can be
combined to yield the results that rate effects between about
10 s /sec and 108 / se c can be investigated in shock experiments and

that phenomena which equilibrate in a microsecond or less can be
studied under essentially equilibrium conditions.

9.2.1 Solid State and Materials Science

Problems which have been studied under shock conditions
include equations of state, electrical and magnetic properties,
interatomic potentials, hardening of metals, phase transitions,
dynamics of mechanical faiure and constitative relations. We shall
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examine particularly phase transition measurements.
The most notable success in the study of phase transitions by

shock wave techniques is the discovery of the transition from body
centered cubic to the hexagonal close packed phase in iron at 130
kbar by Minshall in 1954 [9.4]. It was thought to be a transition to
the well known face-centered cubic phase (y) of iron until 1961
when Johnson, Stein and Davis [9.5] showed by shock techniques
that the p-T phase line is thermodynamically inconsistent with
transition to the y phase. Identification of this hitherto unknown
phase was accomplished by x-ray diffraction studies at high static
pressure, directly stimulated by the shock wave experiments. This
initial foray into the study of pressure-induced phase transitions has
led to excursions and to some unanswered questions about the
mechanisms of rapidly occurring transitions.

Some equilibrium p-V curves for a first order solid-solid phase

transition are shown in Figure 9.2. OAB is an isotherm for which
( P/a V)T = 0 in the mixed phase region. OCD is the isentrope
through 0. Point C is a cusp with a discontinuity in slope;
()p/ V)s < 0 on CD, but not by much. OEF is the Hugoniot
centered at 0. It too has a cusp at the phase boundary, and if the
final shock pressure is greater than p, but less than P2, two shocks
are formed. Above P2 a single shock is stable.

-p
P2

"~ISENTR0PE
HUGONIOT

F

I SOTHEM- B
C')

IZIP

0~ 4 HASE

BOUNDARIES

0
SPECIFIC VOLUME,V VO

Figure 9.2. p-V curves for a solid-solid phase transition.
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Two procedures can be U~ed to dotIecL shock-induc'ed phase
transitions: one is to drive the shock with final pressure between p,
and p2 so as to pirodUCe a doub~le wave. Thec amplitude of the first
wave, ignoring the elastic precursor, is then the stress for transition.
If measuremnents made on samples of different thickness --how no
chan~e in the first wave amplitude, it is presumed to be equal to the
stress of static transition. It means, more precisely, that the rate of
transition at, this pressure is too slow or tot) fast to be detected in
the experiment. Experience has indicated that. very often at least, it
is the static transition pressure.

'Fhe second procedure is based onl cruder experimental
techniques, but is nonetheless effective. 'rhe -flash gap" technique,
described in Chapter 8, is indifferent to the preset-ce of multiple
waves. From each experiment only a single shock arrival i,.
recorded, eorresponding to the transition pressure. If a graph is
m-ade of U., vs U1,, as in Figure 9.3, a region is found in which U,
remains constant while Up, increases. This corresponds to the region

1L
p=2.20g/cm

:E~ 1.(PYROLYTIC)
~L B RIDGMA N
4

0 *1 2 3 4 5
Up (mm~n//p sec)

Figure .3U Ucre ogrpiehowing phase transition at 400 kbar

between P~ and p, in Figure 9.2 it, wvhich only the first shock
arrival is recorded. Because P is no', varied conltinluously, it often
happens that the plateau in U , is not observed; there is only a breaik
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in slope in the U,-Up diegiam, and this break in slope is U.ken to
. be the transition pressure. The technique is limited in accuracy by

spacing of the experimental points. Materials in which phase
transitions have been studied by shock techniques inc.ude iron and
its alloys 19.7], various rocks and minerals [9.8], biLrmuth [9.91,

* germanium [9.61, various alkali halides [9.10i and numerous other
materials [9.111. A particularly interesting shock-induced transition
is that from graphite to diamond. The mechanics of this are not
understood. The transition pressure lies between 100 and 1000
kilobars, depending on the initial density of the graphite, and the
recovered diamonds are polycrysta'line particles, most of which are
a few microns or tens of microns in diameter, composed of
crystallites the order of a few hundred angstroms diameter [9.121.

One of the effects of phase transitions is to change the
conductivity of the material. There has long been an interest in the
metallic phase of hydrogen and calculations of the transition
pressure range from less than one to the order of twenty megabars.
Such a transition is not apt to be achieved in shock waves, but other
transitions from molecular to atomic forris should exist, as in the
halogens, and may well be accessible to shock wave experiments.

9.2.2 Geophysics

Geophysicists have responded eagerly to the availability of
shock wave techniques for study of high pressure and impact
phenomena. This response is due to interest in composition of the
earth and its core, where pressures exceed three thousand kilobars,
and in the properties of meteor craters, which are produced by very
high speed impact.

The problem of earth co',pos'tion is to determine comabinations
of materials which arc naturally abindant and geologically probable
and which reproduce the average density of the earth, its moment
of inertia, and measured vaiiations of seismic wave velocity with
depth [9.13]. The increase of temperature with pressure in the
interior of the earth is thought to resemble that occurring in shock
compression of rocks, so Hu-oniot data can be comp.-, .d directly
with model values [9.14]. Such comparisons have led to the
conclusion that an iron-silicon mixture is compatible with
composition of the earth's core, and that the mechanical properties
of olivine, a mixture of magnesium and iron silicates, are
compatible with known properties of the upper mantle [9.8],
[9.141].

A very recent and exciting development is the discovery that

N'
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shock compression of rocks produces permanent changes which can
be used as shock kadicators when studying the microscopic
properties of tcrrestriaj, lunar or other rocks. This field, which has
gr.wn rapidly, is now known as "shock metamorphism."

After development of a space program in the United States,
following the launching of the first Sputniks in 1957, the attentions
of rather large numbers of scientists were turned for the first. time
to close consideration of characteristics of other planets in our own
solar system and of our moon. Among questions which received
'particular attent ion is that which concerns the role played by
meteoritic impact in determining the surface structure of the moon:
to what extent are visible craters on the moon due to meteorite
impact rather than, say, volcanism? These questions led, in turn, tc
more detailed consideration of the physical consequences of
meteoritic impact, then to studies of shock effects on rocks and
mincrals, and finally to the realization that the best source of
infoimation on this subject may lie on our own earth. If we can
understand the extent to which meteoritic impacts have influenced
surface structure of the earth we may be able to understand the
surface of the moon and rely on moon missions only for
conflimation of the theory.

Through studies on rocks from craters, which began in 1872,
aid recent experiments using shocks from nuclear and chemical
explosions, certain characteristic features of rocks have been
reasonably well established as being due to the passage of shock
waves [9.15]. These fi'.'atures are different for iron and for stony
meteorites. The majority of meteorites found and identified on
earth are iron, for obvious reasons: an iron meteorite is malleable
and is apt to stay in one p:iece during and after impact. Stony
meteorites shatter and mingle with the surrounding natural rocks. It
is therefore quite possible that the bulk of meteorites striking the
earth are stony, but unidentified.

The minimum velocity with which a meteorite originating
within our solar sytem may enter the erth's atmosphere is about
eleven mm/psec. Assuming the meteorite to enter the atmosphere
with minimum velocity, to be spherical with radias r and density p,
no mass to be lost be erosion, and a uniformly dense atmosphere,
we find its velocity at the surface of the earth to be approximately
11 exp (-375 a/pr) where a is drag coefficient, approximately
equal to unity for supersonic velocities [9.161. Iron meteorites of 5
cm radius or less should reach the earth at their terminal velocities
in free fall, about 7500 cm/sec. Smaller meteorites will slow more
or burn, larger meteorites will slow less. Velocities of some larger
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meerites at the surface of the earth, assuming they have entered
tho atmosphere at eleven mm/psec are given in Table 9.2.

Table 9.2

Velocities of Iron Meteorites at the Earth's Surfaces

radius, cm: 10 15 20 30 50 100

vlocity, cm/sec: 9400 4.6 x 104 10s 2.26 x 10 4.3 y 105 6.8 x l0 s

iron striking anorthosite at .095 mm/ppec produces a shock of
about 10 kb. At 1.0 mm/gsec, the impact pressure is 120 kb and at

m nm/psec it is 800 kb. For stony meteorites the pressure
torresponding to the same impact velocity will be 50 to 70% of
'alues obtained vith iron. So a great range of shock pressures,
extending to over a 1000 kilobar, can be expected in various
meteoritic impacts. Physical changes in rocks and minerals
subjected to such impact are high pressure effects, such as phase
transitions, high strain rate effects involving the restructuring of
grains and crystallites, and high temperature effects, primarily
melting [9.15].

In iron meteorites, which are composed of a and y iron, nickel,
carbon, reS, Fe3 P, Fe 3 C and traces of other materials, shock
indicators are very prominent. They include "widmanstitten"
patterns, attributable to the 130 kb a-c transition in iron,
recrystallization above about 600 kb and formation of martensite
or pearlite from shock heating. The FeS changes crystallitc size and

orientation and may melt under strong shock. Fe3 C recrystallizes
and carbon may appear as both graphite and shock-induced
diamond. The latter consists of crystallites of a few hundred
argstroms diameter bound into aggregate particles a few tenths
millimeter in diameter 19.17].

Identification of craters produced by stony meteorites is more
aifficult than for iron meteorites and depends to a large extent on
microscopic analysis of materials collected from the crater. General
featu:es of a crater are it- circularity and certain characteristic
folding and faulting, together with "brecciation" of fine ,laterial,
i.e., compaction of loose soil into rock [9.151. "Shatter cones"

may be present. These are cone-shaped pieces of rock showing
evidence of brittle fracture on their surfaces and believed to be

formed by passage of shock waves and subsequent rarefactions
through large rock structures. Microscopic studies reveal the
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presence of coesite and stishovite, these being high pressure forms
of quartz, and of quartz grains containing lamellae similar to
crystallographic twins. The presence of maskelynite is common, this
being an isotropic form of feldspar. Selective melting of mineral
constituents and the presence of glassy fragmyents are also observed.
By these means, understanding of the role of meteoritic impact onl
earth surface structure has been greatly expanded since 1960 when
coesite was discovered. This is illustrated by Figure 9.4, which
shows the number of identifiable craters discovered since 1925.

130- 130

'1
100-

90
METEOR~ CRATER,

NUMBR OF80 / HAVILAND, TUNGUSKA
STRUCTURES 70-

60-i NEW OUEC

50 WOL-F CREEK1 SIKHOTE-ALINi
.iojOIENABURY 4

30 WABAR 0

20. KLJAR -26

-- DALGARANGA 1
Q AMP0 DEL CIELO

1 5 1;5 1104 5 1 155 1965 1975
1930 1940 1950 1960 1970

YEAR

Figure 9.4. Terrestrial meteorite craters digcovered since 1 92.). The lower
curve represents conformied craters; the upper curve includes probable craters.
Coesite was discovered~in 1960. [9.151.

Some recontly identified craters are the order of 36 miles in
diameter, and it, has ben suggested that major features uha h
Gulf of St. Lawrence and Hudson Blay Arc miy even b~e of
meteoritic origin 19.15].
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Since return of the Apollo 11 and 12 missions there has been
intense study of the lunar rocks collected. The lunar surface appears
to be composed largely of fine dust to considerable depth with
outcroppings of sQlid rocks on the heights 19.181. There is strong
evidencP of meteoritic impact in the form of brecciation and
melting. Few lamellar markings in quartz or other indicators of
intermediate shock have been fovind; the overwhelming evidence is
from melting 19.191.

9.2.3 Miscellaneous

The principal application of shock wave and impact techniques
in solid state chemitry is to the initiation of detonation. These
studies have been motivated primarily by safety considerations and
only in recent years by desire and need to know more about the
process of initiation itself. Explosives have been beaten by
hammers, crushed by falling weights, dragged over rough surfaces,
dropped on the decks of battleships, drilled, poked, squeezed,
pressed, burned, and otherwise mistreated, all in the interests of
safety. The result is that an extensive lore of initiation has
developed with very little real understanding. In the 1950's there
started various experiments designed to shed some light on the
mechanical and chemial processes involved in initiation. These
have taken various forms, but have all been intended to ex'lose the
solid explosive to a plane shock wave for a known time and to
determine the extent of reaction which occurred.

An experimental nrrangemnent designed to measure the initiation
of detonation by a sustained shcck is shown in Figure 9.5a. The
flyer plate is accelerated across a g-p by an exp!c.sive system and
strikes one face of an explosive sample. The arrival time of the flyer
at the left surface of the sample is recorded by pins "A"; arrival of
the detonation wave at the right surface of the sample is recorded
by pins "B". The difference between these times, Tu-TA, is the
transit time through the sample, T. The thickness of the sample, d,
and its steady detonation velocity, D, are known. The quantity
t = T --dD is called the 'excess transit time" and is a measule of
the time required to start a steady detonation for the particular
shock generated by this impact. A "time to detonation" can be
defined as

tb Dt/(D -

where U. is a mean value of sho,:k velocity in the sample. The
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Figure 9.5. (a) Experiment to initiate detonation in sample with substained
shoik. (b) Ditto for sl'irt duration shock.

results of SUChL a set of experiments are shown in Figure 9.6 for a
particular explosive mixture known as HMX 9404-03 [9.201. As
the flyer plate velocity inceeases, the time required to initiate,
detonation decreases. A difficulty encountered in interpreting such

experiments is that the Hugoniot of the unreacted explosive is
generally unknown [9.211.

When the thick plate is renlaced by a thin foil, as in Figure 9.5b,
the excess transit time, t', is grea.er than t. The effect is shown in
Figutre 9.7. It seems clear that obtaining information of this kind
repreOsents a step tow-.rd understanding of these particular solid
state reactions. It seems equally clear, however, that quantitative
understanding is far off, particularly When the likelihood of
three-dimensional effects influencing even plane detonation,. is
considered [9.221.

Another interesting application is to the production of very
high magnetic felds [9.23]. This is accomplished by first
establishing a large static field in a configuration containing a short
cicuited conductor, then explosively accelerating the conductor.
Magnetic flux, whic!, is equal to the product of magnetic induction
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Figure '.6. Effect or impact velocity of thick flyer plate on initiation of
detonation 19.201.

and -area, remains constant through the induction of eddy currents,
area diminishes, so magnetic ind :,.tion increases. Fields the order of
10 gauss have bfeen generated in this way.

9.3 Engineering and Commercial Applications

These include explosive forming and welding, impact sintering
of granular materials, explosive devices such as bolts, switches,
timers, detonators, and electrical pulse generators, demolition and
construiction techniques for moving and fracturing rock, synthesis
of new materials, such as diamornd and BN, impact drillir.,, etc.

9.3.1 Impact Bonding

Explosive welding is a major area of application of impact
mechanicf. It was initially suggested by knowledge that matals can
be permanently bonded under static pressure if two clean surfaces
are brought together under high pressure and held for long enough
to allow diffusion to take place. It seemed reasonable to suppose
that the high pressures produced by high velocity impact might
serve to produce diffusion welds, even though the available time at
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rem-oved from the bonded surfaces during impact -.o prior cleansing
is niot required. Bonding is accomplish:?d most rtladily in the
conlfiguration illustrated in Figure 9.8 [9.24]. The two metals to be
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Figure 9.8. Configuration for impact bondinin .f two metals.
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bonded are inclineci at an anglr a. If the velocity of the point of
impact as it sweeps a- ross the plates is supersonic, a steady shock
configuration originates at the impact point and flow in both
materials is stable. Bonding occurs most readily if the velocity is
subsonic, a condition achieved by adjusting a. Then flow is unstable
about the impact point aid stress waves run ahead in one metal or
both. One manifestation of unstable flow ;i this configuration is
jetting [9.251 and theories of welding have b-':i based on this
hypothe.gis [9.261, [9.27]. Bonding may be produced whether air is
allowed between the plates or not. If the system is evacuated the
welds are more uniform and can be formed at lower impact
velocities. The minimum irpact velocities at whicI alunminum can
be weldpd to aluminurm and copper to copper are about
.12mmn/psec and 23 mm/lisec respectively. Some micrographs of
explosively-bonded specimens using the above tchnique, with
subsonic flow, are shown in Figure 9.9. Ripple marks at the
interface are characteristic of the impact bond, but ire occasionally

a m'o

Figure 19.9. Micrograrhs of impact bonds formed from the configuration of
Fig. 9.9 (obta;ined through the courtesy of Stanford Research Institute),
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absent. The scale of ripples is determined by the materials involved,
impact velocity and _mpact angle.

Principal difficulties encountered in applying the above
technique to commercial processes are in setting the pieces at an
angle a > 0 and in evacuating the space between them. Both these
problems can be avoded by placing the mctals in loose contact and
compressing tUem with an explosive which has a detonatio.
velocity less than the elastic velocity in either metal. If the
explosive is detonated at one end, the detonation, and therefore the
point of impact, sweeps across the metal interface subsonically,
thus satisfying the conditions for unstable flow.

Tbere still remain many questions to be answered concerning
the mechanics of impact bonding, but these do not prevent its
application; it is presently being used, for example, to produce
nickel-clad copper used in U.S. coins. It has been reported that
bonding can be achieved btween two plates in contact using
sufficnt explosive of high detonation velocity even though the
sabsonic condition is violated [9.281. And the occasional formation
of butt welds between adjacent pieces overlaid with explosive has
also been reported [9.29]. In neither case are the conditions for
unstable flow satisfied.

9.3.2 Shock S:vnthesis of Diamond

One oi the most fascinating commercial or near-commerical
* applications of shock generaion procedures is synthesis of

diamonds from graphite [9.30]. There has been speculation about
the synthesis of diamond in explosive assemblies for a very long
time, and it is quite possible that some early experiments actually
succeeded in producing diamonds, though positive identifications
were not possiblL [9.31]. The first successful, verified effort was
reported by De Carli and Jamieson in 1961 [9.12]. The principal
problem they encountered was not in the making of diamond, that
turned out to be quite easy; but rather in its separation from the
graphite in which it was formed. Individual crystallites were found
to be the order of a hundred angstroms in diameter, so rather high
co-,centrations are necessary before, positive identification can be
made by x-ray diffraction. A phase diagram for diamond, which is
quite speculative, is shown in Figure 9.10. The shaded region
labeled "shock wave synthesis region" represents the range of shock
pressures and temperatures in which De Carli has succeeded in
producing diamonds. In these experiments temperature and
pressure variations are associated with variations in the shock driver
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Figure 9.10. Phase diagram of diamond [9.301.

system and in initial graphite density. Graphite can be shocked
either by placing explosive in direct contact with graphite or a
container of graphite or by using explosive to drive a flyer plate
against graphite or graphite container. When ,raphite density is
increased in a given explosive system, shock pressure usually
increases but shock temperature may go down. Introduction of
porosity in a sample at fixed shock pressure causes temperature to
increase rapidly. Because of this interdependence of temperature,
pressure and porosity, it is a difficult matter to determine the (p, T)
region in which shock synthesis occurs. The situation is further
complicated by variations in duration of shock pressure in various
experiments. By and large it can be said that duration of the shock
pulse diminishes as amplitude increases. Then if the transformation
from graphite to diamond is a rate process, the rate of
transformation diminishes as temperature decreases. So the amount
of transformation which occurs in a given experiment may diminish
as the pressure increases. Moreover, there is most likely some
rcversal of the transformation on release of shock pressure. De Carli
reports [9.32] some indication that shock synthesized diamond
whi-ch has been allowed to cool slowly after being shocked contains
larger crystallites than samplas which are rapidly quenched. This
seems rather odd, since graphite is the stable phase at atmospheric
pressure; it is one more indication that shock synthesis of diamoncd
is a very complicated process and that our understanding of it is still
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very limited.
Before any reader rushes out with explosive and graphite to

manufacture a diamond bauble for his lady, he should be warned
that the product is blackish or silvery, very hard to separate from
graphite, polycrystalline, and very small. Some of the larger ones
are shown in Figure 9.11.

•S

Figure 9.11. Polycrystalline diamond formed from graphite by shock com-
pression. Largest dimension 700 microns; thickness 10 microns. Courtesy of
P. S. DeCarli, Poulter L,tboratories, Stanford Research Institute.

Shock wave synthesis of valuable materials may turn out to be a
fruitful area for application of shock wave technology. It is difficult
to assess the present commercial status of shock-synthesized
industrial diamonds, but at least two companies are involved in the
process and presumably hope that it will be profitable. There may
be other substances which can be synthesized this way which will
prove to be equally or more profitable; very small particles -f cubic
boron nitride have been produced in shock, and other candidates
may appear.

9.4 Ordnance Applications

The fundamental processes of war are destruction of property
and personnel and protection from destruction. Of various
destruictive processes which exist or can be invented, destruction by
violent mechanical means is certainly most common; and this leads
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directly to problems of impact and shock wave propagation. It has
been emphasized in previous pages that applications of shock wave
studies are not limited to the military, but there is no denying that
they are important to military matters. Many ordnance applications
are ob-fious and well known, Other applications are newer and may
relate to subjects discussed earlier in this chapter. Impact
considerations are involved in penetration of armor plate,
fragmentation of shells, acce!eration of particles by explosives,
explosive dispersal of liquids, blast effects of explosives and
demolition, nuclear weapon design and many other problems. Here
we consider design of i ,Jdd dispersal devices and armor
penetration.

9.4.1 Explosive Dispersal of Liquids

An idealized version of an explosve device for dispensing
liquids is shown in Figure 9.12. The central sphere, region 0,
contains explosive; the spherical shell, A, separates material to be

B

0
A-

Figure 9.12. Schematic cross-section of idealized chemical burster.

dispersed, in B, from explosive, and the outer shell, C, encases the
device. Practical letails, such as placement of the initiator and its
leads are ignored. In the ideal case the explosive, 0, is initiated at
the center and a spherical detonation wave travels outward.
Impinging on the shell A, it produces a series of shocks which are
transmitted to the filler, B. These shocks tend to coalesce by the
usual shocking-up process as they move outward, and a single shock
will normally impinge on the outer case material, C. There will
usually be a shock reflected into B from C and one driven forward
into C. When the latter shock reaches the outer free boundary of
the case it reflects as a rarefaction, accelerating the case outward
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and driving a rarefaction back into the filler in B. After multiple
reflections in C, the filler and case achieve a common outward
velocity. This expansion of the case induces hoop stresses which
eventually cause it to fracture. From this point on, spherical
symmetry is destroyed and the behavior of the system becomes
very difficult to describe. Filler B is ultimately dispersed in droplets
throughout a volume the order of a thousand times its initial
volume and then further dispersed by diffusion and convection in
the atmosphere. Various steps in the early process are illustrated in
Figures 9.13 and 9.14.

6 6

4 4

I (a)

x

C
B

/CASE /AGENT

0 3 5 7 9
LII

Figure 9.13. Shock wave incident on shell bounded by void (a)x-t plane,
(b) p-u plane.
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Figure 9.14. Ideal~zed behavior at inner shell boundary. (a) x-t plane, (b) p-u
plane.

In Figure 9.13 is shown the effpct of a uniform shock wave in
the filler, B as it impinges on the outer case, C. The case is assumed
to have higher impedance than B, as shown in Figure 9.13 (b). The
points labelled 1, 2,, 3, ... in Figure 9.13b correspond to the
regions 1, 2, 3, ... in Figure 9.13a. The states 3, 5, 7, ... are all
zero pressure states corresponding to the condition that the outer
region is a void. The final velocity, uf is reached by the ringing up
process shown. In practice the incident shock is not uniform but is
followed by a rarefaction with states lying along OC in Figure
9.13b. This means that the states 4, 6, 8, etc. do not lie on a single
cross curve of material C as shown, but on a succession of cross
curves, each lying below the previous one. Then the final velocity is
less than ur and is reached in a time which depends on the rate of
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decay of the wave behind the initial shock. Clearly it takes a longer
time to reach the final state if OC is very steep.

In Figure 9.14 is illustrated the somewhat more complicated
situation at the inner shell, A. Here again it is assumed that the
icident wave is a uniform shock and the geometry is plane. To take

the real situation into account is straightforward but tedious. The

final state reached in this case is found just as in the previous
problem, but instead of ringing up to states along the p = 0 axis, the
material in A rings up to uf on the Hugoniot of B, which is assumed

lire to lie below A. Here, too, the effect of the rarefaction

following Lhe incident shock or detonation wave is to replace the
single cross-curve 1, 2, 4,.... by others lying successively below one

anothr until a final state to the left of ut is reached on OB.
The analyses shown in Figures 9.13 and J.14 ar- reasonably

applicable to a burstor in which th-e cases are very thin. Then the
rise tiie associated with ringing up can be ignored. Otherwise the

more complicated analysis taking account of rarefactions as

indicated above is required.
Although it is helpfu to break the problem into pieces and

analyze these by characteristic methods, any detailed calculations
are better done by direct numerical integration using a Q-code of

the kind desciibed in Chapter 5. Such calculations are useful in

describing the early stages of burster behavior, but they are useless

beyond the point of fragmentation of the outer shell. Then

considerations beyord those discussed in this book control the

situation and, in fact, thc later behavior is very poorly understood.

9.4.2 Penetration of Armer by Projectiles

Protection of a target by armor and penetration of armor by
projectiles are very complicated problems, and their complete

understanding requires much more in the way of mechanical and

physical consideration thar is the subject of this book. However,

impact and shock do play major roles in the process of penetration,
and by using the concepts developed in preceding chapters we can

gain some understanding of the process.
First of all we note that there are three possible modes of

failure for any armored target. The one which predominates when

large, slow projectiles impinge on it is structural failure. In the case

of a simule plate this occurs initially by bending, then by stretching

and, finally, fractures may occur. At high velocities, penetration is

controlled bhy local impact effects without involvement of bending

or gross ctructurai failure. Roughly speaking this will occur when



504 G. E. DUVALL

the time requirpd for the projectile to penetrate the target is small
compared to the time for a bending wave to reach the nearest
support member. At intermediate velocites, both local and structure
effects are important. The third mode is spall, associated usually
with direct attack by explosive in contact with the armor, although
it may result from high velocity projectile impact: if a layer of
explosive of thickness 1/16 to 1/2 the thickness cf steel armor plate
is placed in contact with the plate and detonated, a layer of
thickness the order of half the explosive thickness or greater and of
area somewhat less than the explosive area will be ripped off and
projected inward at high velocity. The mechanisms of spall have
bpen di';cussed by Rinehart [9.33] and others and will not be
considered here.

Low velocity penetration is apt to be controlled by bending, as
indicated above. In a simple approximation we can suppose that the
plate is subjected only to membrane forces and is supported at
radius c. If the target has been stressed to its yield point, 0o, then
the force resisting penetration is

F, auoordhsinO -oordlix/c (9.12)

where d, h, x, c are defined in Figure 9.15. Then if perforation of

~d1

X h

2C

Figure 9.15. Low velocity penetration.

the plate occurs at displacement xo, the energy required for
peiforation is

2W i rqoodch(xo/C) (9.13)
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Equating this to the kinetic energy of the projectile having mass m,
we get for the minimum velocity for perforation,

2V d/ -o m x/,c- (9.14)

At somewhat higher velocities the force resisting penetration
will be augmented by shear resistance of the plate itself. In Figure
9.16 we envision a situation in which penetration of the target is

F--.dc x

:?ri

Figure 9.16. Shear resistance to penetration.

achieved by the projectile pushing out a plug of the same diameter.
We again suppose that the target is stressed to the failure point Oo
and that the shear represents a drag stress acting on the projectile:

F2 = rdoox (9.15)

The work done in pushing out the plug is

W2 = irdaoh 2 /2 (9.16)

Adding Eqs. (9.13) and (9.16) yields the expression
S W, + W 2

d --..... -- --- S(hc 4 ah2 ) (9.17)

where S = nOo (xo/c)' and a = c' /2xo . Supposing that roxo/c is a
constant of the target material, we find that Eq. (9.17) yields a
reasonable representation of the threshold energy required .o
penetrate stee! plates up to 0.3 inches thick with flat ended rods for
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W/d vp to 1500 ft-lbs/inch [9.34]. This is within the range of
incidence one might expect for reactor control rods ejected by
accident and incident on the protecting shell of the re,,ctor
complex. If the projectile is very long, the time required for
penetration of the target may not be large compared to the time for
a wave to travel from one end of the projectile to the other. In that
case, it is appropriate to match the wave impedance of the rod to
that of the plate instead of coi.,idering it a rigid mass. For example,
suppose the rod is infinitely long and penetration is resisted by a
force F(x). Then the resistance generates a simple wave in the rod,
and the equation ot motion becomes

dx/dt = u, -- c/pv = u. - 4F(x)/nid'pv (9.18)

For F(x) given by F, + F 2 in Eqs. (9.12) and (9.15), this yields

x = (uo/a)[1 - exp( - at)1 (9.19)

where a = 4oo(l + /c)/dpv

p = density of projectile

v = speed of thin bar waves in projectile

110 = initial velocity of projectile

If uo is sufficiently large x = x 0 for finite t and the projectile
penetrates with some residual velocity. Figu'e 9.17 is a micrograph
of a target which has not been completely penetrated by a
projectile. Both the shearing out of the .plug and bending of the
target are evident.

At still higher velocities complete perforation of a thin target
may be easily achieved, but the velocity of the projectile is
significantly reduced. This reduction can be estimated from the
forces of Eqs. (9.12) and (9.15) and from momentum exchange
with the target. As projectile velocity increases, momentum
exchange dominates and the final velocity can be calculated simply
by equating the initial momentum of the projectile with the final
momentum of projectile plus a plug from the target having the same
area -s 'he projectile. Then the velocity loss for initial velocity vo is

o= (1 + a) (9.20)
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Figure, 9.17. Micrograph nf 1/4" steel target partially penetrated by 1/4"
diameter steel sphere. Target Material - 4130 tempered mar ensite. Projectil.
- 2100 steel at t.24 am/psec. Courtesy of Marvin E. Backman, USN Ordnance
Station, China Lake, California.

This micrograph is reproduced through the courte.,; of Dr. Marvin Backman
of the Naval Weapons Center, China Lake. An analysik is contained in a paper
by Dr. Backman to be published in the Proceedings of the Conference on
Metallurgical Effects at High Strain Rates, held February 5-8, 1973,
Albuquerque, N.M.

where a = pAh/m

p = target density

A = cross section of projectile

1 = target thickness

m = projectile mass.

The priucipal mechanism of energy absorption for slow
projectiles is probably plastic bending of the target plate. On impact
a plastic bending wave radiates outward and the radius affected
after a time t is rroportional to VIE As projectile speed increases,
time for penetraLton decreases and the plate area subject to berding
gets smaller. Thus, bending becomes less important as projectile
speed increases. From these concepts, one can understand why
pointed projectiles penetrate more easily than flat ended ones. As
the pointed end penetrates into the target it generates bending
waves, but these bending waves travel outward at a slower rate than
the projectile radius increases, therefore the mechanism of oending
is removed or effectively reduced as a source of energy absorption.
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So far we have been discussing ideal situations in which the
projectile is undeformed by the impact and subsequent penetration.
This approximation is reasonably accurate up to velocities of a few
thousand feet per second at most, and it may fail well below a
thousand feet per second. Sir Geoffrey Taylor has described the
process of projectile distortion for flat-ended steel projectiles on
armor plate [9.351. By allowing the impact to generate
elastic-plastic waves in the projectile, with elastic waves reflecting
between the plastic wave front and the rear of the projectile, he was
able to describe mushrooming of the projectile at a few hundred
feet per second. At the order of a thousand feet per second the
approximations in his theory failed as distortion became more
extreme. In general it can be assumed that the contact area between
projectile and target will be increased by plastic distortion.

At velocities of six to ten millimeters per microsecond
hydrodynamic behavior of both projectile and target can be
invoked. Then the penetration procedure becomes analogous to
digging into the earth with a garden hose: a hole is "washed" in the
target and the projectile is consumed in the process. The mechanics
of jet penetration, treating both projectile and target as
incompressible fluids was first developed during World War II
[9.361. When applied to a semi-infinite target as in Figure 9.18, the

-- V

Figure 9.18. Penetration of semi-infinite target by high veloiy jet. v = jet

velocity, U = penetration velocity.

theory yields depth of penet,'ation, d, in term. of the projectile or
jet length, L:

d = L\/p)Ip_

where pj density of jet material and p = dpnsity of target material.
This theory has been widely used in connection with shaped charges
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and is reasonably successful for ductile materials with high melting

points. It does not work well for glass or for lead.
At extremely high projectile velocities, say 50 mm/gsec, new

phenomena come into play. A small pellet stri:ing a thick target

can be expected to come to rest very quickly and at a short distance
into the target. Its total energy has been given to the target in this
time and is confined to a voidme bounded by the stopping time and
the shock propagation velocity. The latter limit expresses the
inability of the target material to carry energy away from the

impact point as rapidly as it is delivered. Consequently the energy
density in the target may be very high; much higher, for example,
than in a chemical explosive, so the effect of the impact on the
target is the same as a very intense, nearly point explosion.

In this discussion of penetration an effort has been made to

describe the kinds of physical and mechanical behavior which can

be expected in various material and velocity regimes. The formulae

given are at best approximate, but the idea that penetration results

from competition between mechanisms for carrying energy away

from the impact point and rate of delivery of energy in impact is

sound. Unfortunately, implementation of this idea is not simple.
It has been tacitly assumed, for the most part, that both

projectile and target are ductile. If they are brittle, crack

propagation must be added as a mechatsism for energy transport.

The penetration problem is not fundamentally changed in .his case,

but effects on both projectile and target can be dramatic because of

the large Hugoniot elastic limits and compression moduli which car

be obtained in brittle materials. This is well illustrated by a program

being carried on at the Lawrence Livermore Laboratories by Mark

L. Wilkins and his colleagues [9.37 - 9.41]. They are concerned

with the penetration of ceramie-faced two-component armor by

sma.lcaliber projectiles with impact ,elocities from about 1000 to

3000 ft/sec. They have conducted parallel numerical atid

experimental studies which have led to a new understanding of the

penetration process ancd to new concepts in armor design.
The geometry of their experiments is shown in Figure 9.19.

Some significant features of a typical calculation are shown in
Figure 9.20. The:e the dark regions radiating from the point of
impact and growing from the interface toward the projectile
represent regions of fracture. This work deals almost exclusively

with ceramic materials which have large Hugoniot elastic limits and

large compression moduli. Consequently the sZress developed at the

point of impact is very much greater than the yield strength of the

projectile, causing it to flow laterally and to be essentially removed
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T-BACKUP PLATE
ALL EGHENY~
STEEL
# 609 /

VCERAM1.36 FA&E :'

Figure 9.19. Geometry of the (LLL) experiments. In some cases the projectiles
wz7e .25" ,nd .45" diameter.

from further consideration. While this destruction of the projectile
tip is occurring, the fracture conoid shown in Figure 9.20 is
spreading toward the interface of ceramic and the backup plate.
The backup plate itself is subjected to a large pressure over an area
approximately defined by the extension of the fracture conoid, and
as a result of this pressure there is a strongly localized movement of
the interface away from the impact surface. This movement arises
from a combination of material compression under the impact
point, deformation produced by strong shearing stresses caused by
the non-uniform leading, and bending response of the backup plate.
The initial deflection produces tension in the ceramic near the
interface. The ceranic is weak in tension, so it fractures in the
region adjacent to the interface and beneath the impact point.

As time passes the region of fracture spreads to encompass the
entire fracture conoid, the local compression modulus is reduced so
that the irrpact stresses lie below the yield stress of the projectile,
deterioration of the projectile tip is arrested and the penetration
proceeds. The ceramic turns out to retain its effective modulus well
beyond the time when fracture is complete within the fracture
conoid. For the case shown, fracture is nearly complete at six
microsecor As after impact, but projectile erosion continues for
approximately 9 more microseconds. The net result of this is thaL
only about 60% of the projectile energy is delivered to the target.
The rest of it is carried away by the eje.ta.

Dramatic evidence of the correctness of the above ideas is
contained in a series of experiments in which ceramic thickness,
backup thickness and materials were varied. Some of the most
germane are briefly described below.
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TIMES + 2.65 TIME =.3.23

FRACTURE CONOUI

= 0 CAL'BRE

STEEL BEGINNING OF
PROJECTI LE AXIA'L CRACK
(VELOCITY'1
2500 ft /See)

TIME +4.15 TiME-+4.90

TIME 2 +6.09

Figure 9.20. Calculation of development of fracture conoid and axial crack in
alumina. [9.391.

(i) 0.34" of Al.2 03j (Coors Ad-85 Alt~nina) wa:; backed by a one
inch plate of tool steel. .P. projectile striking it at 230') ft/sec was
completely destroyed and, except for a few cracks in the ceramic,
radia'.ing frorai the mpact area, the target was intact and
undamaged. Here the axial fracture region resulting from plate
motion was suppressed, so the compressiv- modulus of the ceramic
remained high.
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(ii) Aluminum backup plate thickness, S, was varied while ceramic
thickness, A, was held constant. The ballistic limit, VBtL, increased
steadily with S until S - 0.23"*. At this thickness there was a
nearly discontinuous increase in VBL, and for larger S, VBL
increased only slowly. This change results from a transition of
backup plate response from the bending mode for thin plates to
shear or plug fracture, like that shown in Figure 9.17, for thick
plates.

(iii) Ceramic thickness, A, was varied whia backup plate thickness
was held constant. It was found that VB L /A was constant for any
particular ceramic. The numerical value of the constant depends on
the ceramic material and on the dynamic strength of the backup
material. Surprisingly, the dynamic strengths of 6061-T6 Al and
woven fiberglass roving turn out to be nearly the same, though their
bending moduli are much different. The constancy of VBL/A is
suggested by the following simple argument. Suppose that the
ceramic responds elastically to impact even at these high pressures.
Then the stress produced at any point in the ceramic is proportional
to impact velocity and decreases approximately with distance, r,
from the point of impact as I/r. Then at the ballistic limit the stress
at the ceramic-backup interface is proportional to VBL/A. The
constancy of VBL/A implies that motion of the interface is the
primary reason for failure of the target to dcieat the projectile, and
that this motion depends upon the stress applied to the backup
plate.

(iv) Simulta.ieous measurements were made of positions vs time of
rear surface of the projectile, projectile-ceramic interface,
--eramic-backup interface, and back frace of the Al backup plate
using flash x-rays and streak camera. From these it is evident that
erosion of the projectile continues until almost twenty
microseconds after impact and that penetration into the target does
nct start unti) about that time. In this particular case the projectile
velocity was 2800 ft/sec and the residual length of the projectile,
after erosion was complete, was 0.55 inches. With a fiberglass
backup p.ate, penetration startect earlier, perhaps as early as ten
microseconds, and erosion of the projectile continued until almost
30 microseconds, though the final length was the sane as for
aluminum backup. This difference is apparently due to the lower
bending modulus of tiberglass.

* VBL is he impact velocity at which the prooability of penetration Is 0.5.
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(v) Geometric scaling was verified for Coors Ad-85 Alumina, B, C
and BeO ceramic targets using 0.25", 0.30" and 0.45" projectiles.

When target dimensions were changed in the same ratio, V3 L was

unchanged, indicating that the penetration process does not depend

significantly on dynamic effects such as dislocation motion, and

that it does not involve any characteristic physical lengths.

(vi) The effects of projectile strength were verified by experiments
in which the projectile was both "stronger" and "weaker" than the

target. If the projectile is stronger, it goes through the target with

but little deformation. If it is weaker, it erodes in the fashion

described above, and it makes little difference how much weaker. In

this context, "stronger" means having a larger compression
modul-us, a larger Hugoniot Elastic Limit and a larger yield strength

in tension. The relative importance of these is ill-defined. If the

projectile is weaker than the ceramic, penet-ration seems to depend

primmily on the kinetic energy of the prc.ectile.

From the above discussion it is clear that a high ballistic limit

for a two component armor requires a ceramic with high

compressive strength and modulus which wi:! resist tensile stresse ,

perhaps because of ductility, at the ceramic-backup interface. The

backup plate should have a high bending modulus and strength and

a high shear strength. Since fiberglass and aluminum backup give

similar results, it is apparent that the ability to withstand large

deflections compensates in some way for lack of bending stiffness.

Since VB L /A is constant for a given ceramic, it is clear also that

lightweight c-ramics are advantageous because A is larger for a given

weight and V13 L is thus increased.
A search for new materials, including beryllium-boron

compounds, is underway and it is apparent that this detailed study

will lead to significant improvements in armor.

The computations described above were made with the two

dimensional "HEMP" ('ode [9.421. There are a number of other

two dimensional codes which are suitable for these problems; all

require a great deal of machine time for detailed analysis.
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HYPER VELOCITY IMPACT
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DAYTON, 01110

Impacts at ultrahigh velocities (hypervelocities) have been
studied for the past two decades because of their importance fo
fundamental materials science and their applications to space and
military technology. Shockwaves generated by hypervelocity
impacts compress solids to pres-ures well above those achievable
with any other laboratory technique (typically one to ten
megabars). Under such pressures, all materials flow freely and
exhibit a number of other unique properties. Perhaps the greatest
impetus to hypervelocity impact research arose from the potential
hazard of meteoric impacts to space vehicles. Large-scale programs
were devoted to establishing the damage potential of various
meteoric impact situations to space vehicles and to developing
techniques for coping with identified impact hazards. Finally,
concepts invol.ving hypervelocity impact have been considered
widely as alternatives to nuclear explosions for attacking enemy
space weapons systems.

Before discussing recent developments of hypervelocity
impact research, let us consider some basic iacets of the field. The
deiinition of hypervelocity impact has been the subject of
considerable discussion since the concept was first advanced. The
most generally accepted definition at present is that hypervelocity
covers thLe impact velocity regime where the peak stress induced by
the primary shock wave greatly exceeds the materLtl strengths of
both target and projectile. This definition assures that the projectile
and target material behave as compressible fluids during tle early
phases of the impact process and that the shock stresses may be
treated as pressures. Relatively simple relationships developed to
describe fluid dynamic processes can, thus, be employed to describe



518 IV. I"SWIFT

the early phase of hypervelocity impact processes with considerable
rigor. Of cotrse, the peak shock stresses decay quite rapidly as the
wave propagates outward from the initial impact site, and is
overtaken by release waves emanating from free surfaces
encountered by the primary shock wave. A point is rea,.Jied during
any impact process where the Gtress falls to the point wh;.re
material strEngth must be considered. Analysis of the impact
process from this point onward is complicated both by substitution
of the more complex tensor representation of stress for the
relatively simple pressure concept and the more involved response
of materials to these iapidly-applied stresses - an area of materials
response that is not yet well understood. The simplification
afforded by considering early pa'ts of the impact processes
hydro-dynamic allowed computer codes of manageable size to be
developed more than a decade ago for describing hypervelocity
impacts [A.11. Similar programs have been perfected only relatively
recently for handling strength dependent phenomena well enough
to compute the later stages of hypervelocity impacts effectively or
to consider lower velocity impacts where the initial hydrodynamic
approximations cannot be used.

A problem associated with the above definition of
hypervelocity impact is that the lower velocity limit is materials
dependent. Analysis of impact-induced shockwaves presented
elsewhere in this book show that peak shock stress during an impact
is dependent upon shock impedences of the projectile and target
materials as well as impact velocity. Material strength is also
dependent upon the materials considered, of course. For these
reasons, lower velocity limits of the hypervelocity impact regime
vary typically from below I km/sec for impacts between very soft
materials such as lead and wax through opproximateiy 4 km/sec for
intermediate density and strength materials such as aluminum,
copper, and iron tG probably greater than 12 km/sec for extremely
rigid, low density materials like berrylium.

Descriptions of hypervelocity research efforts up to the past
two to three years have been compiled in a number of sources.
Perhaps the most complete are the proceedings of a group of seven
hypervelocity impact symposia held at regular intervals between
1.955 and 1965, [A.21 to [A.8j. An independent AIAA conference
held during the Spring of 1969 effectively updates this sequence
[A.91. In addition, a group of three conferences were held
discussing techniques used for hypervelo(ity research, [A.10] to
[A.121. A coherent discussion of hypervelocity impact science and
engineering is contained in a book entitled, "High Velocity Impact
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Phenomena," which discusses most subjects of general interesI
currently through sometime in 1969 [A.13].

The remainder of this article is an update of selected topics in
thp overall field of hypervelocity studies covering the period from
1968 -to the pre.ent. Emphasis has been placed upon experimental
investigations since theoretical developments of hypervelocity
impact phenomena covering the same time period are described
elsewhere in this book.

TICK TARGET RESEARCH

Thick target impacts are those where the impact process is not
affected significantly by the rear or sidc surfaces of the target. Early
studies of hype:-velocity impacts hito thick targets concentr.ted
upon establishing the qualitative nature of the impact process and
developing imperical relationships for describing the resulting
crateringa.

Many general attributes of hypervelo-city impacts have been
observed and recorded prior to 1968 of which the following are
examples. Crater shape becomes essentially independent of
projectile shape in the hypervelocity regime as long as no projectile
dimension differs greatly from any other. Projectile strength does
not affect the final crater dimensions for a hyper-elocity impact.
Crater volume is approximately proportional to the k;netic energy
of the projectile, but the proporti -iality constant is dependent
upon both projectile and target materials. The primary factors
controlling this con~tant appear to be the shock impedence of the
projectile material and both the shock impedance and strength of
the target material. Finally, craters from hypervelocity impacts at
oblique angles to the target surface are nearly symmetric about a lire
perpendicular to the target surface at the impact point. The impact
velocity component perpendicular to the target rust exceed the
minimum for the hypervelocity regime for symmetry to be
achieved. This criteria represents an effective approach for
identifying the hypervelocity threshold velocity and may even serve
as an operational definition for the hypervelocity regime.

More recently, emphasis in the study of hypervelocity impact
has shifted to detailed studies of the impact prc cess. These studies
have been rclatively quantitative and have succeeded in resolving
tU i impact event into its various time domains.

An early study that pioneered this approach was carried out
by Geiring [A.14] who used early flash x-ray equipment to
radiograph aluminum targets struck by steel pellets at various timesr
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after initial contact. Exposure times for the radiographs were short
enough to effectively "freeze" the crater growth process. Crater
depth and diameter were measured from these radiographs and
crater volumes were computed. Later, Gehring et. al. extended this
work and included crater growth data from several other target
materials inferred from photographic cinI6 records of the crater
plume growth [A.151.

Recently, Prater expanded this early work using modern flash
x-ray equipment. to carry out an intensive study of crater growth in
a number of aluminum alloys [A.161. Figure A.1 is a schematic of
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Figure A.1. Experimental arrangement ror taking 10 sequenced radiographs of

a crater during its growth. The 4 generators over the target produce radiographs
showing crater depth and diameter: The 6 units behind tne targets provide
measures or c-ater diameter only.

his experimental setup. Up to ten flash x-ray generators were placed
around and behind a cylindrical aluminum target impacted
normally on the center of one face. The generators were fired in
sequenc! and the firing times were measured precisely relative to
initial contact time. Measuiements were made of instantaneous
cwa~er diameter from pic...s n tt"ough the rear of the target,
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and both crater depth and Oameter from pictures taken through
the target side wall. In this way, from ten to forty crater diameter
vs. time points and six co twenty-five depth vs. time points were
accumulated during a series of nearly identical impacts.

Prater discovered that crater dimensions grow approximately
exponentially to their final dimensions. No dinensional overshoot
and recovery of the crater depths or diameters were observed,
although this phenomena had'been reported earlier [A.14]. By
carrying out identical experiments using several aluminum alloys
and 'heat treatments, Prater discovered that all the hyperveloi-ity
craters grew at the same rate for the first part of the impact process,
i.e., independent of target strength. Later, the strength dependence
became evident as crater growth was arrested. Arrestment started
first in the strongest target, and last in the weakest (see Figure A.2).

• I1I00

___ 7075-TO

606 1-T3

7075-T6

2 7.0 km/sec Nominal

Prolectile Velocity

0 10 20 30 40 50 GO 70 80 90 100
t/d (L sec/cm)

Figure A.2. Comparison of crater growth rates in four aluminum alloy targets.

Crater diameter "D" is plotted against time from impact. start "t". Both are
normalized with projectile diameter "d".

Finally, Prater observed that the final crater shape vas achieved
very early in the impact process and was then maintainf'(I until
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crater growth was complete.
The results of Prater's studies --- particularly with regard to

tile effect of target strength upon both early and late phases of
crater growth rates - bore out the widely believed qualitative
concepts of hypervelocity cratering phenomena. More important,
this data has been compared in detail with predictions of several
computer codes tha embody both the most -'?cently developed
theoretical models of the impact process and numerical techniques
[A.16j. Results of these comparisons indicate general agreement
between experiment and code predictions, but significant
differences in detail. The impoytance of the differences - and their
source or sources -- have not yet been determined.

A second area of recent hypervelocity impact investigation
involves determining the peak stresses induced in impacted targets
as a function of position relative to the impact point. Th-,se stresses
are controlled by the peak stress developed near the original contact
point, dhe interaction of the waves with th-2 free surfaces of both
the target and projectile, and the wave propagation characteristics
of the target material. Mapping of stress fields produced by
hypervelocity impacts provides a very fruitful approach for
evaluating and guiding the developr ment of modern impact theories
as well as assaying in detail the damage potential of such impacts.

An early investigation of thes- phenomena was'carried out by
Charest [A.17]. who impacted a series of aluminum plates of
varying thicknless and observed rear surface motions. The peak
velocity achieved by the rear surface of a target as it is subjected to
a shock wave can be related to te peak velocity of the material
behind the shock and to the peak slhock stress via straightforward
analytical techniques presented elsewhere in this book. Charest
argued that the shock wave breakout on the rear surface of a target
directly opposite the impact was unaffected by the remainder ot
the rear surface which had not yet been reached oy the
impact-induced wave; and, therefore, that the stress inferred from
the motion was just that which would have been achieved at the
e'quivalent depth in a thicker target. For thin plates where the
stresses were very large, Charest measured rear surface velocity by
,simply observing the surface edge-on with a high speed cin
camera. This technique became progressively less accurate as thicker
plates were impacted, because the stress levels fell to the point
where target strength effects decelerated the rear surface before its
velocity could be sensed. Charest alleviated this problem by using
clssic pellet fly-off techniques, i.e., pellets of the same material as
the targets were placed flat against the rear surface. When the rear
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surface accelerates to its peak velucity, the pellet is likewise
accelerated andl separates fromr tile surface ag it is decelera' -d by
strength effects. The pellet retains the peak rear surface velocity
which is rnew.ured with a cine camera as thle p~ellet flies.

On the basis of a relatively small study, Charest conicluded
that, pressure in 2024-T3 aluminum targets impacted( by aluminumn
sphei-'us reduced from its peak value directly under the point of
initial contact b~y the -1.6 power of thle dlepth into the target, i.e.

/It \-6

124for R,. > 1 .14 R,, (A.1)
R.34Q0

where o,, ,is the stress at a depth R~, into the target; (.11 's the
one-dimensionAl I lugoniot pressure assochIated Iwith thle im pact; and
1?, is the projectile radius.

----1..

Figure A.3. Experimental setup used to measure rear surface motion of small
halt-eyli nd rical ta rgets. T'he projectii(' ei ttrs from the right and strikes tlhe rilt
face of the target. Rear surface expansion is phot ographed with a fast cine&
camera aligned wvit h the thin wires. (The wires are used to mark thle debris
cI ouil 5s) material di recl.ion can be obsevrved.)
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Prater [A.161 expanded Charest's approach to measure the
peak stiess in all parts of the target. His basic target configuration,
shown in Figure A.3, is half a cylinder struck normally in the center
of the plane defining a diameter. The approximately spherical shock
wave expanding from the impact point reaches all )oints nearly
s3imultaneously on a line across the cylindrical surfacc opposite the
point of initial contact. Cin6 photographic sequences vere
analyzed to determine peak surface velocity which was used to
compute maximum shock stress at one distance from the impact
point but at all angles from the target surface. Cylinders of varicus
diameters were fired to determine dependence of peak shock stress
upon depth into the target. When cylinder radii became large
enough so that peak stresses fell below values where :the target
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Figure A.4. Target design for measuring peak shock stress in large targets. The
rear surfaces are each nurmal to shockwaves from the impact point and, are
equidistant from it. Fly-off pellets and piezoelectric gages are mounted on
these surfaces to monitor peak shock stress.
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strength could be ignored, Lhe shape of the target was changed to
that shown in Figure A.4. These shapes have the property that the
flat rear surfaces are each perpendicular to the shock wave
emanating from the impact and are all the same distance from the
impact point. Fly-off pellets were mounted on these surfaces and
their motions were observed with a high-speed cine camera.
Piezoelbctric pressure sensors of a very simple design were mounted
adjacent to the pellets. In several instances, these gages yielded
stress vs. tim,_, records of the on-coming shock waves.

The results of many of these experiments carried out with
various aluminum alloy targets show that the peak stress of the
shock wave falls with the -1.46 power of the depth into the target
during the early phases of the impact for all of the alloys. A sharp
transition occurs to pressure drop rate with the -2.A3 power of the
radius for each target material tested (see Figure A.5). The3e powers
apply to equations of the same form as Eq. A.1. The -iress at which
this transition occurs and, hence, the position in the target is
dependent upon target material with th, transition occurring at the
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Figure A.5. Measured values of pe :k shock stress are plotted vs. target depth
directly below the impact for 6.2 ,i-n aluminum spheres striking various alloy
aluminum targets at 7 km/sec. NLde the sharp transition in attenuation rate
occurring at stress levels between 20 and 50 Kb.
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lowest stress for the softest alloy and at the highest stress for the
hardest. The stresses at which these transitions occur, however, are
well in excess of any strengths associated with the target materials.
Prater hypothesized that the transition occurs when release waves
from the front target surface overtake the primary shock wave and
attenuate it. The rate at which the release waves move is dependent
upon the strength of the target material.

Prater's data indicates that pressure at a particular radial
distance from the impact point is independent of angle measured
from the normal from the impact point as long as this angle is less
than approximately 450 . At higher angles, peak stresses attenuate
monotonically with increasing angle until they reach zero at 900
(i.e., along the impacted surface). The pressure reductions are
almost certainly caused by the progressively increasing effects of
front surface rarefaction waves. The existence of the transition
between the two rates of stress reduction with depth into the target
was not heretofore expected. Data from earlier experiments was too
sparse to resolve the transition and computer codes did not predict
it although, in at least one instance, such a phenomena was
observed in a code prediction but was interpreted as a numerical
difficulty [A.18].

Again, the principal value of the shock field data lies in its use
for evaluating present codes for investigating dynamic mechanical
processes and for guiding the development of future codes. in the
future, work along these lines is expected to continue with
emphasis being shifted to studying impact situations where
homogeneous metals are struck obliquely and where targets of
non-homogeneous material are impacted. The oblique impact
studies will provide time resolved data for guiding the development
of codes for simulating three dimensional mechanical events and
impacts into composite materials will provide much-needed data
concerning the propagation of shock waves in composites and the
behavior of composite materials subjected to them. Finally, the
currently available techniques for measuring impact phenomena are
still in an early stage of development. Progressive development of
these techniques will provide data of continually increasing
resolution and relevance to the solution of particular theoretical
problems.

THIN TARGET IMPACTS

Impacts with targets as thin or thinner than characteristic
projectile dimensions have been studied extensively as part of both
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basic and applied research programs. Thin target impacts allow the
early hydrodynamic phase of ir-pact processes to be separated from
later phases so that phenomenology associated with hydrodynamic
flow of solids can be investigated directly. Before the
hydrodynamic phase of the impact process is completed, material
from the target and projectile is projected behind the plate as a
debris cloud (see Figure A.6). Residual shock stresses in the

PELL Er
TRAJECTORY

Figure A.6. Profile view of a debris cloud expanding behind a thin plate
impacted by a hypervelocity projectile.

material are relieved within this cloud without affecting the overali

cloud characteristics significantly so that the dynamic
characteristics of the cloud may be considered as "frozen"
information about the original impact process. Cloud characteristics
may be studied over relatively long time periods.

Thin target impact phenomena also control the operation of
extremely effective particle shields developed for protecting space
vehicles from hypervelocity impacts. Whipple originally suggested
placing a thin plate some distance outboard from the hull of a space
vehicle to protect the vehicle from meteoroid impacts [A.19]. An
incoming pellet is destroyed by impact with the plate, and the
material forms a debris cloud which expands rearward against the
vehicle hull. The cloud strikes the hull over an extended surface so
that the areal density of the impulse and energy delivered by the
cloud is much less than that of the original impact, thus providing
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the desired protection. The effectiveness of such particle shields
increases with increases in impact velocity over a wide velocity
range since the violence of the original impact determines the
amount the debris cloud spreads before it intercepts the hull.
Optimized shield designs for protection against simulated meteor
impacts have been shown to be as much as seven times more
effective than homogeneous armor on a weight-per-unit-area basis
[A.20].

Early studies of thin-target impact established engineering
design criteria for two-plate particle shields designed to protect
satellites against meteoroid hazards [A.21]. Later, emphasis shifted
award obtaining a quantitative understanding of the various

plenomena governing shield performance so that shield design
could be optimized in a sensible manner. The most extensive of
these studies was carried out by investigators at the General Motors
Defense Research Laboratory. The results are compiled as a chapter
in Reference A.13.

A number of investigators found that the most important
parameter governing shield performance is the size distribution of
fragments in the debris cloud. Although mean fragment size is
diminished slowly with increasing impact velocity, the largest and
most important changes occur when the debris material changes
state due to material heating by the impact processes [A.221. Large
increases in shield effectiveness have been observed upon melting
and upon vaporizing of the pellet and plate materials [A.231. The
second most important parameter affecting shield performance is
the spacing between the two plates -- which determines the area of
the hull impacted by the debris cloud and, hence, the areal density
of the delivered impulse and energy '[A.201. Many other
characteristics of the debris cloud and hull plate response have been
identified and are described in the cited references.

Computer codes designed to analyze dynamic mechanical
events have a great potential for guiding the development of
two-plate particle shields. Their accuracy and reliability in such
situations must be established before they can be used with
confidence, however. For this reason, considerable interest has been
developed recently for comparing the results of carefully controlled
impacts with computer simulations. In addition, the analysis of thin
plate impacts by such codes offers a unique opportunity to observe
code performance for analyzing the hydrodynamic phases of
energetic events without the results being distorted by later phases
of the events which complicate both the analysis and verifying
experiments.
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A recent study was carried out to investigate the dynamics of
vaporous debris clouds under tle su yervision of the Air Force
Weapons Laboratory, [A.24] to [A.27]. Impacts of cadmium
spheres against thin cadmium plates were considered at velocities
ncar 7.6 km/sec where virtually all the debris from the impact is
vaporized by shock heating. The volume between the front and rear
plate was evacuated for some experiments and filled with
low-density foam for others. The experimental phase of the
:d ogram consisted of analyzing motion of the debris clouds with
'ooth high-speed cin cameras and flash radiographic equipment
and observing the response of various rear plates to cloud
impingement Pressure-time histories at various positions on the
plates were recorded with piezoelectri( gauges [A.26], ard with a
specially-developed photo stress technique,, [A.271.

The impact situations were also examined with a
two-dimensional multiple material code for analyzing dynamic
events called DOR F A.24]. The code calculations provide specific
predictions of the measured parameters. Detailed intercomparisons
between code predictions and experimentl results Ie nov being
made. Initial results indicate good qualitative agreement in most
cases, and surprisingly good quantitative agreement in several
important areas such as peak pressure vs. position on the rear plate
(see Figure A.7).

A more extensive study of debris cloud dynamics has been
conducted at the Air Force Materials Laboratory [A.28]. Debris
clouds made up of vapor, li-quid drops, and solid-liquid mixtures
were produced by impacts against cadmium, copper, and aluminum
plates 'espectively. The projectiles were spheres of like material
traveling at velocities near 7.5 kn/sec. Profiles of cloud material
distribution, velocity, and momentum content were recorded. In
addition, the trajectories of selected cloud segments were measured.
The experimental results were compared with the predictions from
a computer code called STEEP used to analyze identical impact
situations [A.291. The STEEP code is functionally similar to the
DORF code used to analyze the cadmium-cadmium impacts
described above.

As with the AFML study, the code predictions are generally
in qualitative agreement with the experimental results. Many of the
quantitative comparisons are also excellent. Several comparisons
such as material distribution within the clouds and impulse profiles
indicate that the code d(id not provide accurate descriptions of the
clouds in detail. In particular, the predictions tended to
overestimate velocity gradiants between P-ont and rear of the c6oud
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Figure A.7. Comparison of pre.dictions from a computer code with
experimental measurements of peak stress on rigid plate struck by a vaporous
debris cloud. The plate was 15 degrees behind a cadmium plate struck by
cadmium projectile moving at 7.5 km/sec.

and also overestimated the impulse reduction at the center of the
cloud due to cloud spreading radially in planes parallel to the target
sheetg. These difficulties are not severe enough to eliminate use of
codes 2or shield investigations, but they demonstrate that the codes
need further development before they can yield detailed
descriptions of rechanical events - even in 'he fluid dynamic
regime.

The remainder of this section is a short description of the
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AFML thin target impact study. It is included to present the results
and code comparisons in some detail and as an example of a
mo'd2rn research project in this area.

Tile most important techniques used for investigating cloud
dynamics were the selective interception of cloud segments which
allowed the remainder of the cloud to be observed more clearly
[A.30]. A graphic example of this technique is the measurement of
mat .ial distribution within expanding clouds (see Figure 8). The
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Figure A.8. Experimental measurement of material distribution within debris
clouds from hypervelority impacts of thin metai plates. (a) experimental
arrangement; (b) dissecte cloud from a copper-on-copper impact showing that
i t w as essentially a thin bubble; (c) material distribution within aluminum,

Scopper, and cadmium clouds compared with optical photographs and code
~predictions.

~cloud expands against a massive plate per'orated by a slot that
I permits only a slice across the cloud to pass. This slice is flash

radiographed to yield a film record whose exposure level is
, proportional to material density within the original cloud. The

results for typical clouds are presented as plots of material
i boundary position at the time the radiograph was taken. Note that

the clouds are actually empty bubbles with relatively thin shells

I_*
I L
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containing almost all the debris. The forward boundary of the
clouds, observed by an optical camera viewing undisturbed clouds
from identical impacts, are also shown as are the cloud boundaries
as predicted by the STEEP code.

Expansion velocities of individual cloud segments were
measured by intercepting a cloud with a similar plate to that used
to determine material distribution except that fine wires are
stretched across the slot so that the front surface of the cloud slice
is marked. A high-speed cine camera is used to view subsequent
expansion of each marked segment of the cloud slice. Figure A.9
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Figure A.9. Comparison of measured and predicted cloud velocity profiles for
aluminum, copper, and cadmium debris clouds behind thin plates struck by
hypervelocity projectiles.

presents results for the three clouds used in the AFML study. The
crosses about each data point represent one standard deviation of
velocity end trajectory angle as determined from least-squares fits
to the position-time data from the cine camera record. Again, the
predictions from the code are included on the same plot. Note that
the measured velocity of a segment of the leauing cloud edge is that
of all material moving in the same direction since the clouds are
thin shells of material and, therefore, the material does not separate
as the cloud moves.

Cloud momentum profiles were measured by allowing the
cloud material to impinge upon a line of small freely-suspended
metal plates [A.31]. Each plate is launched rearward by the cloud
impulse it intercepts. Measurement of pellet velocities from the
records of medium-speed cin6 cameras and the masses of the
recovered pellets are used to evaluate the momentum they
intprcepted. The role of cloud stagnation in affecting cloud
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momenir. was evaluated by repeating the experiments with the
pellets suspeaided within holes through a solid rear plate. Data from
some typical runs, presented in Figure A.10, show that impulse
intensity falls monotonically with increasing angle from the normal
and that no difference between pellets mounted in the open or in
plates was observed. The impulse profile predicted by the code has
a maximum at approximately 80, and drops to a significantly lower
value at the origin.

The trajectories of various debris elements have been
evalaated with the setup presented in Figure A.11. The debr's cloud
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Figure A.11. Experimental arrangement for measuring the trajectories of
multiple rays of a debris cloud.

is allowed to impinge upon a precision grid of fine wires that
interrupt and scatter the debris striking them. The overall effect is
to produce an "image" of the screen on a witness plate mounted
some distance behind the screen. Triangulation of particular image
points (such as grid intersections) with the positions of the same
points on the original grids allows the trajectory of many individual
cloud segments to be determined precisely. Figure A.12 shows an
isometric plot of approximately 100 such ti.jectories for a typical
cloud as well as their intersection with the target plate. Note that
they seem to be clustered under the projection of the impacting
sphere and do not emanate from the entire area of the final hole.

Future investigations of thin-plate impact will probably
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Figure A.12. Isometric View of Material Trajectories for a Copper Plate
Impacted by a Copper Sphc:e ai-d the Intersections of the Trajectories With
the Rear Surface of the Plate.

include increasing the scope, resolution, and reiiability of currently
available measurement techniques for debris clouds. In addition,
interest in oblique impact of thin targets is likely to increase both
for reasoihs paralleling those for thick target studies, and becaus,!
actual encounters of space vehicles with natural or man-made
pellets will generally be oblique. Perhaps the most important new
area of interest is the study of projectile and target fragmentation
during hypervelocity impact of thin plates. The size distribution of
solid fragments in debris clouds is the most important single
parameter controlling cloud lethality to vehicle structures. To date,
almost nothing is known about these size distributions or the
material shattering processes that produce them; and, no
quantitative results relating such distributions to cloud damage
potential are available.
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Index

Abel equation of state, 483
Acoustic tensor, 155
Acoustic wave propagation, 154
ADAM code, 396
Additive rule of specific iaiterna! energy, 49
Adiabatic condition, 47
Adiabatic sound velocity, 119
Aeolotropic materials, 132
AFTON code, 395
Amplification matrix, 375
Anharmonic vibrations, 111
Anisotropic crystals, 448
Apollo 11 and 12, 492
Area ratio, nonlinear, 61
Armor penetration, 503
Artificial viscosity, 381
Atomic vibrations, 109
Attenuation coefficient, 207

Ballistic limit, 512
Ballistic parameter, 424
Baratol, 430
Bernoulli equation, 219
Bicharacteristic, 346
Bilinear stress-strain relation, 68
Binding Energy, 109
Body force field, 135
Boundary condition, 318, 375
Brecciation, 490
Breech design, 426
Bulk modulus, 66, 93
Bulk viscosity, 68
Bulk viscosity, coefficient of, 35
Butler's method, 358-59
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Calorimeter, graphite, 436
Camera, cind, 522

continuous writing, 439
electronic, .440
framing (see framing camera)
high speed, 439
streak, 440
synchronous, 439

Capacitor bank, 432
Cartesian coordinates, 227
Cartesian indicial notation, 127
Cauchy stres, 132
Cauchy stress tensor, 129
Central symmetry, 188
Ceramic, 509
Chambrage, 424
Chapman-Jouguet model, 482
Charasteristic, 294
Characteristic cone, 343
Characteristic direction. 287
Characteristic line, 346
Characteristic plane, 343
Clausius-Duhem inequality, 240
Cloud characteristics, 527
Coefficient matrix, 294
Coesite, 491
Combustion, 482
Compatibility, 141, 292, 304
Composite materials, 1
Composition B, 430
Compressibility, of fluid, 10

of gas, 11
Compressibility effect, 9
Compressible flow problem, 348
Compression, isentropic, 97
Computer, digital, 4, 364, 369
Condenser microphone, 457
Conductivity, 408, 488
Conservation equations, 56
Conservation laws, 3, 17, 239, 305
Conservation of energy, 17, 22, 60, 135
Conservation of mass, 17, 20, 57, 60, 129, 135
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Conservation of momentum, 57, 60, 135

angular, 17, 22
linear, 17, 21

Consistency, 370
Constant time technique, 327
Constitutive relation, 1, 56, 60, 40-7

bilinear elastic-plastic, 61
elastic-plastic, 56, 65
EPH, 56, 71
formulation of, 1,28
for Newtonian fluid, 35
nonlinear, 127
spherical component of, 65

Continuity equation, 24, 38
Continuity cf history, 383
Continuous flow equations, 336
Continuum, 11, 91
Continuum mechanics, 3, 127, 375
Control volume, 3, 18, 57, 300
Convection, 391
Convective acceleration, 1.4
Convergence, 4, 370
Coors Ad-85 Alumina, 511
Courant-Priedrichs.lewy stability criterion, 328, 349
Crater, 519
Crystals, 150
Cubical dilatation, 65
Curvature parameter, 180

Debris cloud, 534
Debye, P., 112
Debye function, 113
Definite conductor, 168
Deformation, dynamic, 126

infinitesimal, 58
finite, 58

Deformation gradient, 130
Deformation gradient tensor, 128
Delay leg, 452
Determinism, 129
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Detonation, 482
initiation of, 492
time to, 492

Diamonds, shock synthesis of, 4, 497
Dielectric constant, 408
Difference equation, 364
Dilatation, 91, 94, 153

rate of, 34
Dilatational cone, 352
Directional derivative, 289
Discontinuity, of first derivatives, 296

in higher derivatives, 298
in the variables, 300

Dispersion phenomena, 35
Display, 389, 394
Dissipation, internal, 167
Divergence equations, 305
Divergence theorem, 24
Domain of dependence, 315
DORF code, 394, 529
Drag coefficient, 489
Driver plate, 428
Dynamic adiabat, 102
Dynamic elasticity problem, 348
Dynamic failure, 407
Dynamic loading, 482
Dynamite, 482

Earth 'composition, 488
Eigenvalue, 155, 375
Eigenvector, 155
Einstein's notation of summation, 33
ELA code, 332
Elastic compression, 94
Elastic constant, 159
Elastic flow, 335
Elasticity, classical theory of, 156

linear, 70
nonlinear, 126

Elasticity tensor, 149, 157
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Elastic limit, 92, 408
Elastic material, 148
Elastic-perfectly-plastic material, 126
Elastic-plastic flow, 335
Elastic-plastic-hydrodynamic material, 71
Elastic-plastic material, 64, 127, 381
Elastic precursor, 105
Elastic strain, 98
Electrical methods, 454
Electromagnetic method, 458
Electrons, of ionic solid, 109

of metal, 110
of valency solid, 109
of van der Waals solid, 109

Energetic equations of state, 262
Energy, binding, 108

of cold compression, 111
of deformation, 94
free, 166
internal, 90, 92
kinetic, 22, 111
of lattice vibration, 111
potential, 22, 111
specific internal, 22
of zero-point oscillations, 111

Energy equation, 36
Energy states, 112
Engineering shear strain, 162
Enthalpic equations of state, 262
Enthalpy, 23, 90, 92, 171
Entropy, 166, 270
Equation of motion, 24
Equation of state, 41, 90, 108, 115, 169
Equilibrium equation of state, 253
Equilibrium history, 198
Equilibrium Hugoniot, 266
Equilibrium modulus, 21C,
Equipresence, 135
Error, maximum, 370

mean, 370
root-mean-square, 370

Error analysis, 332
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Eulerian derivative, 13
Eulerian methods, 4, 18

two-dimensional, 390
Excess transit time, 492
Expansion, isentropic, 100

plastic, 99
Exploding foils, 4
Explosions, 126
Explosives, 4, 428, 433
Explosive dispersal, of liquids, 500
Explosive systems, 407
Explosive welding, 5, 494

Fading memory, 196
Failure mechanism, 96
Faraday's law, 459
Feldspar, 491
Fiber, 45
Fiber material, 78
Field equations, 3
Finite deformation, 3
Finite-difference equations, 328
Finite-difference methods, 4
Finite linear viscoelastic material, 200
Flash gap, 440, 487
Flash radiography, 471
Flow, incompressible, 27
Flew equations, 321
Flow field, 323
Flow rule, 65
Fluid, perfect, 9

polar, 27
real, 9

Fluid dynamics, 9, 11
Fluid mechanics, 139
Fluid velocity, 2, 10
Flyer plate, 48, 78, 430, 492
Foil discharge system, 432
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Force, body, 14, 136

bouyancy, 14, 22
gravitational, 14, 22
pressure, 21
surface, 14
viscous, 21

Fourier analysis, 367, 374
Fourier's law, 38

of heat conduction, 172
Fracture conoid, 510
Frame-indifference, 131, 230
Framing camera, Cranz-Shardin, 439

rotating mirror, 439
Fringe frequency, 451

Gas flow, 335
Gas gun, 423
Gauss's theorem, 306
Generalized Maxwell material, 204
Geophysics, 4, 488
Gibb's free energy, 90, 92
Gibb's free enthalpy, 257
Gibb's function, 170
Gibb's relation, 99
Gibb's stability postulates, 261
Graphite, 497
Green's strain tensor, 132, 149
Green's theorem, 302
Grid motion, 399
Griineisen parameter, 93, 112, 433
Griinesen ratio, 180
Grilneisen tensor, 262

Hartree's method, 330
Heat, conduction, 23

internal generation, 23
Heat flx, 143, 176
Heat flux vector, 134
Heat source fields, 136
Heat source strength, 136
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Helmholtz free energy, 90, 92, 134
HEMP code, 4, 385, 513
Heterogeneous body, 130
Homogeneous body, 130
Hooke's law, 36

elasticity, 28
linear, 2, 71

Hooke's law equations, 84, 85
Hugoniot, 102, 178, 473, 484

calculation of, 115
high pressure, 119

Hugoniot elastic limit, 70, 75, 96
Hugoniot pressure, 523
Hydrodynamic behavior, 126
Hydrostat, 98
Hydrostatic compression, 94
Hydrostatic pressure, 239
Hyperbolic equation, completely, 311

distinctly, 311.
Hyperelastic m-,2erial, 149, 156
Hypervelocity, 4
Hypervelocity cratering phenomena, 522
Hypervelocity guns, 407
Hypervelocity impact, 517

Ideal gas law, 41
Impact, 126
Impact bonding, 494
Impact loading, 407
Impact velocity, 426
Implosions, 126
Impulsive loading, 1, 364
Inclined mirror method, 441
Initial-boundary-value problem, 365
Initial value problem, 315
Instantaneous elasticity, 197
Instantaneous modulus, 210
Instantaneous response function, 195
Interface bonding, 78
Interface shear stress. 82, 83
Interior derivative approach, 286, 287
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Internal energy, 90, 92
Internal heat generation, 36
Invertibility condition, 261
Inviscid comlpressible fluid, 2
Inviscid fluid mechanics, 376
Irreversibility, 135, 250
Irrotational stretch, 131
Isentrope, 484
!sentropic elasticity, 256
Isothermal bulk modulus, 119
Isothermal condition, 47
Isotropy, 150
Isotropy group, 236
Iteration technique, 51, 358

Jacobian, 128, 241, 293
Jet penetration, 508
Jump discontinuity, 296
Jump history, 197
Jump relation, 30C,

Kerr cell, 439
Kinematic conditions of Hadamard, 297
Kinematical compatibility relations, 127
Kinetic theory of gases, 35
Kronecker delta, 16, 65, 227

Lagrangian coordinates, 3, 330, 417
Lagrangian derivative, 14
Lagrangian methods, two-dimensional, 384
Lagraigin normal strain, 58
Lame's constants, 152
Laplace's equation, 285
Laser, 433
Laser interferomeixy, 4, 449
Laser velocimeter, 453
Lattice defects, 101
Least square surface fit, 357
Left traveling characteristic, 322
Leendre transformation, 170, 257
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Leibnitz's rule, 244
Linear elastic behavior, 126
Linear elasticity theory, 61
Linear elastic medium, 56
Linear elastic solid, 96
Linear stress-strain relations, 361
Linear system, 287
Linear viscoelastic behavior, 126
Line of discontinuity, 286
Line of indeterminacy approach, 286, 293
Local action, principle of, 130
Longitudinal impact, 64
Longitudinal sound velocity, 96
Love, kinematical condition of, 81
Lucalox, 470

Mach conoid, 356
Mach number, 413
Magnetic field, 493
Magnetic flux, 493
Main characteristics mesh, 335
Manganin wire, 467
Martensite, 490
Mfskelynite, 491
Master side, 388
Material derivative, 14
Material history, 383
Mater;al response, 1
Material symmetry, 130
Matrix, 45
Matrix material, 78
Maxwell material, generalized, 204
Maxwell relation, 39, 105
Maxwell's theorem, 1.39
MCDIT-4 code, 337
Meteoric impact, 489
Method of characteristics, 4, 61, 285

standard technique of, 326
Method of Iterations, 315
Mica, 470
Michelson interferomet er, 449
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Micromechanical theories, 137
Mie-Griineisen equation of state, 114
Molecu!ar arrangement, 108
Momentum equation, 38
Moon, 4, 489
Mousetrap, 428
Mylar, 470

Natural reference configuration, 211
Natural state configuration, 149
Navier-Stokes Equation, 35, "6, 187
Newton's second law, 16, 20
Newton's viscosity law, 10
Nitroglycerine, 482
Non-conductor, 168
Normal Initiation Program code (NIP), 331
Normal mode frequencies, 112
Numerical analysis, 4
Numerical solution, methods of, 346

Olivine, 488
Optical image methods, 445
Optical lever, 445
Order of accuracy, 370
Ordinary differential equations, 292

Partial differential equations, second order, 285
Particle-in-cell methods, 4, 391
Pa'ticle path line, 322
Partition f'inction, 92
Pearlite, 490
Pellet fly-off technique, 522
PETN, 482
Phase angle, 207
Phase transition, 435
Phase velocity, 417
Phermex system, 471
Photomultiplier, 45j.
Piezoeiectric coefficient, 465
Piezoelectricity, 408
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Piezoelectric pressure sensors, 94
Piezoresistive guages, 467
Piezotropic material, 133, 263
Pin contactors, 454
Piola-Kirchhoff stress tensor, 132, 148
Planck's constant, 11
Plane wave generator, 428
Plane wave lens, 429
Plastic flow, 92, 96
Plastic wave, 105
Poisson effect, 60
Poisson's ratio, 96
Polar decomposition theorem, 131
Polymer, 126
P-PUFI 66 code, 337

Prandt!, 1U
Pressure, dynamic, 34, 35

hydrostatic, 17, 28
thermodynamic, 35

Projectile tilt, 426, 449
Proportionality factor, 10
Pulsed radiation sources, 433
Pure mode direction, 155
Pure stretch, 131

Quartz guage, 463
Quasiharmonic approximation, 111
Quasi-linear equation, 287
Quasi-statically strained state, 78
Quasis~atic compression, 96
Quasistatic expansion, 96

Radiation heat transfer, 23
Radiation techniques, 4
Rankine-Hugoniot curve, 44, 102
Rankine-Hugoniot jump conditions, 378, 409
Rankine-Hugoniot relation, 141, 324
Rayleigh-Lamb problem, 354
Rayleigh line, 75, 94, 102, 12, 212, 410
RDX, 482



Recrystallization, 490
Reduced entropy inequality, 250
Reference configuration, 233
Region of influence, 315
Relative extension, 59
Relaxation function, 202
Relaxation process, 101
Relaxation spectra, 201
Response function, 211
Rezoning, 383, 389

continuous, 396
Riemann integral, 484
Right traveling characteristic, 322
Rotation, 31, 129

Sandia Laboratories, 396
Sapphire guage, 465
Satellites, 528
ScjAar, indifferent, 230
Seismic wave velocity, 488

Semi-linear system, 287
Shatter cones, 490
Shear discontinuity, 384
Shear flow, 31
Shear modulus, 65, 68, 162
Shear stress, 10, 31, 422
Shock adiabat, 102
Shock amplitude, 163
Shock compression, 94
Shock equations, 3
Shock-fitting, method of, 378
Shock front, 323
Shock Hugoniot, 44, 56, 73
Shock jump, 266
Shock jump conditions, 148
Simple material, 130
Shock metamorphism, 489
Shock structure, 467
Shock wave propagation, 61
Similarity solutions, 367
Simple wave equation, 346
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Slanted resistor, 455
Slave side, 389
Slide lines, 388
Smoothed Langrangian, 399
Solid, amorphous, 108

crystalline, 108
ionic, 109
metals, 109
valency, 109
van der Waals, 109

Space-like curve, 317
Space-time grid, 364
Spallation, 435
Specific heat, 93, 119
Specific internal energy, 136
Specific volume, 49, 91
Sputnik, 489
Stability, 4, 329, 372
Stability ana!ysis, 374
Steady-state solutions, 367
STEEP code, 529
Stishovite, 491
Stokes, 35
Stokes' viscosity coefficients, 187
Strain, infinitesimal, 126

mean normal, 65
Strain density relations, 74
Strain deviation tensor, 64, 65
Strain deviator, 91
Strain gradient, 163, 180
Strain history, 198
Strain maximum, 274
Strain rate, 142
Strain tensor, 2, 33
STRATE code, 338
Streamlines, 46
Stress, mean normal, 65

peak, 522
spherical, 65
yield, 64, 408

Stress deviation tensor, 64
Stress deviator, 91
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Stress-entropy tensor, 256
Stress relaxation, 197
Stress-strain relation, linear, 60
Stress tensor, 25, 27, 383
Structural response, 1

L Subsidiary laws, 17
SWAP code, 337

'Target plate, 78, 430
Taylor series, 151,172, 371
Tensorial transformation, 30
Tensor notation, 128, 226
Tensor operations, 228
Test function, 301
Thermal conductivity tensor, 168
Thermal equations of state, 260
Thermal expansion, 263

1 'e, Thermal expansion coefficient, 93, 133
Thermal history, 134
Thermodynamic potential functions, 260
Thermodynamic principles, 126, 135
Thermodynamics, first law of, 22
Thermo-elastic coupling, 433
Thermoelasticity, 127
Thermoelastic materials, 166
Thick target, 519
Thin target impact, 526
Time-like curve, 317
Time resolution, 427
TOIL code, 392
TOODY code, 385
Transition pressure, 488
Tresca yield condition, 66, 67, 96
Two-dimensional methods, 395
Two-explosive lens, 429
Two-level equation, 364
Two-plate particle shields, 528
Two-wave structure, 61

Ultrasonic experiments, 174
Uniaxial srain, 92, 94, 335
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Uniaxial strain problems, 1, 56, 61
Uniaxial stress problems, 56
Unsteady problems, one dimensional, 287
Upper mantle, 488

Vector, indifferent, 230
Vector operations, 228
Velocity, intrinsic, 138
Ve! lcity gradient. 10, 136
Velocity interferometir technique, 451
Viscoelastic material, 127, 194
Viscosity, 9, 16, 378
Viscous process, 101
Viscous stress, 183
Viscous thermoelastic materials, 182
Voigt notation, 254
VolCanism, 489
Von Mises' presentation, 344
Von Mises' yield condition, 66, 96
Von Neumann condition, 374

Washington State University, 424
Wave, acceleration, 138, 142, 145

blast, 335
compression, 42, 78
cylindrical, 422
detonation, 335, 492
elastic, 3, 407
elastic expansion, 78
elastic percursor, 61, 68, 74
homentropic acceleration, 175
homothermal acceleration, 176
monotonic compressive, 191
plane, 421
plane steady, 190
plastic, 3, 68, 74, 106
rarefaction, 78, 99, 500, 526
shock, 42, 56, 74, 128, 138, 300, 368, 410
spherical, 422
steady, 145
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strength of, 304
stress, 407
thermal, 174
ultrasonic, 190

Wave amplitude, 192
Wave equation, 285
Wave propagation, 137

non-linear, 407
Wave thickness, 192
Wave transit time, 139
Wave velocity, 427

dilatational, 61
Weak solution, 286, 300
Widmanstitten patterns, 490
WONDY IV code, 384
Work of compression, 4

of deformation, 94, 98
of elastic dckformation, 98

Work hardening modulus, 98

Yield condition, 65, 66
Yield point, 68, 126
Yield strength, 336
Yield stress, 2, 64, 408
Yield surface, 383
Young's Modulus, 61

Zone size, 384
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