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Preface

In the midst of the successftl Apollo moon miasions, I became

interested in astrodynamics. Fcrtunately, after being sent to AFIT,

I had the opportunity to take the servmnce of astronautical courses.

Soon after taking an astrodynamicai guidance course, this thesis topic

caught my eye. Now, after trying m, own hand at spacecraft guidance

schemes, even though only in two-dimensions, I can really appreciate

the complexities that must be involved in a &oon nission.

I wish to express appreciation to my adIvisor, Major James Funk,

Department of Electrical Engineering, AFIT, for his advice and help

in the completion of this thesis. In addition, the aid of Captain

David South, AFFDL, who provided me with many refererce papers, it.

gratefully acknowledged. Special thanks go to two of my fellow

students, First Lieutenants Phil Hollister and Deir " Navin, for the

many hours of companionship, humor, and advice during rhe thesis

qtarters.

Helvin L. Nagel
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Abstract

The feasibility of a re-entry guidance scheme that utilizes ballistic

flight to attain a variable surface range is investigated. The equations

of motion are derived, and the re-entry trajectory is divided into four

phases: pull up, skipout, ballistic, ar-d terminal. The pull up, skipout,

and terminal phases are inside the atmosphere, while the ballistic phase

is outside the atmosphere. The conjugate gradient optimization methid is

used in the skipout phase to determine the re-entry vehicle control meeded

to achieve the desired initial ballistic phase conditions. The cost function

uses the errors between the actual trajectory and a reference trajectory

which is obtained by projecting a ballistic path into the atrmosphere. The

equations for the reference tr'ajectory are presented. Ballistic theory is

discussed and a paramettic selection technique is developed as a means ef

determining the ballistic parameters needed for a specific range. An op-

timal control solution is found for one set of ballistic initial conditions.

Ix51o-4o



47117

/GCE•E/7 3-10

1. Introduction

.0

Consider a spacecraft orbiting the moon, prior to a rettarn flight to

Earth. The time of departure from lunar orbit is dependent upoa many

variables, one of which is the Earth's rotation, That is, the location of

the landing site moves with the Farth. The spacecraft must enter the at-

mosphere within a certain time period so that the landing site will be

within range of its guidance capabIlities. In the case of the recent

jApollo missions, the maximum attainable surface range was approximately

22at nautical miles (nn) (Ref 1). Alternate landing sites were available

for the Apollo splashdowns, but every alternete site requires the use of

additional recovery ships and other resources.

&0 o eliminate the need for excessive backup landing areas, it is de-

sirable to have a guidance scheme that will allow a re-entry vehicle (RV)

more flexibility in surface range. Ideally, a spacecraft returning from

the uoc-e weould be able to land at one fixed locaLion, independent of the

distance invtlved, including cireumnavigation of the globe.

One method of attaining more surface range is bf including a segment

of ballistic flight in the re-entry crajectory. If the spacecraft is made

to skipour o' the atmwsphere after initial entry, it would then be on a

ballistic trajectory. Assuming the craft re-enters the atrosphere due to

the Earth's gravitational influence, the surface distance traveled dkring

ballistic flight would depend only upon the state of the vehicle at atmos-

riheric exit (skipout conditions). The skLipoit conditions, i1 turn, would

be a function of the total range desired. (VWnen the term range is used

alone, it will mean surface range).
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Purpose and AScpe

The purpose of this thesis is to investigate the feasibility of a

re-entry guidance scheme that will utilize ballistic flight to achieve a

variable surface range. The surface range refers to the total distance

between the initial point of re-entry and the target point above the

landing site.

The main emphasis of this study is placed upon 1) finding the skipouc

conditions ior a desired ballistic trajectory, and 2) optimally driving

the states of the RV tc those skipout conditions. The control necessary

to obtain the corre't states is found by an optimi'-ation scheme.

Tha only type of re-entry considered dizectly in this study is one

resulting from a lunar return flight, but extensions to other types could

be made. Also, the g forces and the vehicle nose beating are not directly

constrained.

•ethod of Analysis

The problem was attacked by dividing the trajectory into four dis-

tinc- phases. The theory of ballistic flight was then considered in order

to establish the necessary skipout conditions. It was decided that the

normal method of calculating ballistic range fsee equation (10)) would

not suffice for the problem at hand, becsuse ti;.f range was dependent upon

two arbitrary variables. Consequently, a linear stepping technique was

devised which would allow ballistic range, and hence the skipout conditions,

to be an indirect function of only a stepping variable. Then, to simplify

the analysis, the terminal phase was arbitrarily assigned a fixed value

cf range. This vfas done by assuming that a terminal phase guidance scheme.

could land the RV for a realistic range of state conditions occurring

after ballistic flight.

2
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)Emphasis was then placed upon finding a method (guidance scheme) to

attain the various skipout conditionr. Several unsuccessful methods were

initially tried. The first method was an attempt to derive a control law

from the derivative of Q. Equation (7) was solved for the angle of attack

and dQ/ds was defined es thei slope of a straight line between the actual

Q and the desired Q at skipout. This control law failed becaus3 it could

not control the initial p,ý_rt of the flight, lue to the amount of energy

involved.

The second Idea was to hold the derivative of the flight path angle

at zero when the RV, during its upward flight, acquired the needed skipout

angle. The Idea was Gnly partly successful because once the angle began to

stray from the des'-red value, the errors could not be corrected. In an

effort to make this second idea self-corrective, it was converted into

a second order approximation by taking the second derivative of 6 with

respect to range. The resulting coefficient of d6/ds was set equal to

24wa and a control law was found by solving for the angle of attack (which

was contained in the coefficient). The control law operated as a bang-

bang controller in an attempt to function properly. Since a violent con-

trol is undesirable, this method was put aside.

The conjugate gradient optimization techricque was finally chosen as

a suitable means of finding a control that u'ould drive the RV to the proper

cor~itions. The conjugate gradient cost function for this problem~ Is

based upon the differences between the actual states of a re-entry v.ehIcle

and the states of an imaginary ballistic vehicle which is cravelbig 3n a

ballistic path extended into the atnosphere. For a guidance schecpr to

function properly, the actual trajectory should converge to the projected

~7~i path before ballistic flight begins.

3
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Overview

)The mathematical models are set up in Chapter II. The items presented

a.-e the simplifyin4 assumptions, the atmospheric model, the vehicle lift

and drag equations, a summary of the equations of motion (or states) and

the vehicle heating and deceleration equations.

"Chapter III then goes into the problem formulation. A typical re-

entry trajectory is divided into phases and a method of range allocation

for the ballistic phase is developed. Included in the chapter is dis-

cussion of some ballistic equations, development of a reference trajectory,I derivation of the equtitons needed in the conjugate gradient method, and

discussion of the computer requirements.I Chapter IV then covers the results of this study, while Chapter V

contains the conclusions.

10-- There Aire three appendices to this report. The equations of motion

are derived in Appendix A and the conjugate gradient theory is given in

Appendix B. Appendix C shows a plot of angle of attack versus the lift

coefficient.

4
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II. Mathematical Model

AssMtions

The assumptions listed below were made in order to reduce the com-r

plexity of the problem while retaining the most important characteristics.

1. All motion is two-dimensional.

2. The Earth is non-rotating and ici spherical in shape.

3. The only bodies considered are the Earth and the re-entry vehicle.

4. The Earth's atmosphere above an altitude of 400,000 feet is

neglected.

5. Below 400,000 feet in altitude, the atmospheric density is con-

sidered a function of altitude only, as expressed by the model

where po Is sea level density

- 0.0026703 slugs/ft 3

and 8 is an atmospheric constant

B - 0.00C0425211877 ft1

Aerodynagic Model

in addition, it is assumed that control of the re-entry vehicle

wuill be accomplished by directly changing the angle of attack of the

vehicle. The resulting lift and drag specific forces can be represented

as

'L n 1: S o (2)S0 2 (2

4P5
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D , p V2 C (3)
2wM 2D 

(

The inverse wing loading, I s 1.18070 ft 2 /slug. the lift and drag co-

efficlents. for a hypersonic lifting body (Ref 2), are represented as

Newtonian-Flat-Plate drag polars and are as shown.

CL - 1.82 sina coso Isinal (4)

CD - 0.042 + 1.46 jsin3aj (5)

SFor this vehicle model then, (L/D)mx - 2

The assumptions and models are used in the derivation of the equa-

tions of motion.

Equations of Motion

The equations of motion were written relative to an inertial, Earth

centered, coordinate system. The equations (see Appendix A for the de-

rivation) ate represented as derivatives with respect to surface range, s,

and they are listed here fzr continuity.

Sdx - a - tan6 (6)
do ds Re

--- X2 Q:- (tan6 (2-Q) R•S s(7) C)

•,• .•dr, do Re

__:d x3( ( I RO seC 6 CL (8)
ds ds Q 2M Re

6
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iwhere h Is the altitude above sea level Q is an ,uergy parameter (defined

in Chapter III), 6 is the flight depression angle, and R - Re + h.

Re a 20925738 ft

is the radius of the Earth, taken from Bate (Ref 3).

Heating and Deceleration Equations

Although vehicle nose heating and deceleration forces were not directly

constrained, they were observed to insure that the magnitudes were reason-

able.

The total heat was obtained by integration of tne heat rate

dq 12 R8a
d-s 'Cheat p2V sec6- (8a)

7 12 1 1
where Cheat 2 x 10-8 BTU-sec /ft slugs

is the heating coefficient.

Deceleration was computed from the time derivative of velccity, I.e.,

d.v IL. sin5 - D (62)

]•"]dt R2

where p - 1.407654 x i0 1 6 ft 3/sec 2 (from Ref 3) is the Earth's gravita-

tional constant.

7
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III. Problem Formulation

Phase 1Definition

To simplify the problem analysis, the re-entry trajectory is separ-

ated Into four dIhtinct phases which are shown in Fig. 1 and are defined

below. A flat Earth representation is used in the figure for ease of

illustration.

1. PuL up Phase - - That part of the trajectory from initial re-

entry at 400,000 feet to the point where the flight path angle, 6, ini-

tially changes sign (from positive to negative).

2. Skipout Phase - - That part of the trajectory from the point

where 6 changes sign, as mentioned above, to the point where the RV leaves

the atmosphere. The guidance scheme is used in this phase.

3. Ballistic Phas2 - - That part of the trajectory occurring above

400,000 feet, wnere ballistic theory governs flight. The state values at

the beginning of this phase are referred to as the skipout (so), or skip,

conditions.

4. Terminal Phase - - That part of the trajectory following ballis-

tic flight. It begins at 400,000 feet and ends with a landing on Earth.

Ballistic Theory

Ballistic, or free flight theory is not new. Equations describing

ballistic motion indicate that ranges up to halfway around the globe

(approximately 10,800 nm) are possible for values of Q., < I. For Q., > 1,I greater ranges are possible (see Ref 3).

Q is a non-dimensional parameter defined as

Q V2__ R(9)

8
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The values of Qso and 6so (skipout conditions) are used to predict the

range attainable for a particular ballistic flight, Since many different

valuea of range are possible for the many different combinations of Qso

and 680, the ballistic phase is where moet ý,f the range adjustments will

be made.

An important feature of a ballistic trajectory is that it is symmetric

(see Fig. 5). If Q and 6 are known at the beginning of free flight, the

reflected skipout conditions will exist at the end of free flight, pro-

vided the initial and final radii are equal. The vehicle in this study

will leave and enter the atmosphere at the same altitude, so the states

of the RV at the end of the skipout phase must be a reflection of the

states at the beginning of the terminal phase.

Range Allocation

0 It was mentioned in the previous section that variation of the skip-

out conditions causes a range variation between the beginning and end

points of ballistic flight. The free flight range angle, *, is normally

calculated from

* - arccos I - Q COS 2 6 s(1)
1/1+ Q so(Qso - 2)cos2 6 so

However, equation (10) depends upon two variables, 060 and 6S,. both of

which may be arbitrarily varied. Also, there is no unique combination of

Qso and 6so for many choices of desired range angle.

Finding a unique solution is possible by, in effect, reducing the

number of variables to one. This is accomplished by using a linear

stepping technique, which was arbitrarily selected in the form shown be-

low.S10
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QsO w Ql + (Q2 " Q1)A (11)

so 61+ (62 S6I)A (12)

9 &a1 alternate to equation (12) could be written

680o- 62 - (62 A (13)

where A is a parametric stepping variable that ranges fror, 0 to 1, and

the numerical subscripts refer to the upper and louer bouned on Qso and

680.

After selecting upper and lower bounds, the values of Qlo and 6so

necessary for a desired range angle are dependent only upon the value of

(1 Equations (11), (12), and (13) are plotted in Fig. 2 for an arbitrary

choice of values. i.e.

• • ' Q1 " "9 <so <- 1.4 ,Q

6, -2 * < 6so < 7 0 - 62

Notice that only the magnitude of the flight depression angle is needed

for this discussion. In Pig. 2, tne symbol 'x' corresponds to equation

(12), the'symbol '0' corresponds to equation (13), and the small symbol

-'A' corresponds to equation (11).

Using the stepping variable to find values of Qs. end Sso, from

equations (11) and (12) or (13), corresponding values of range angle are

:1 11
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generated from equation (10). The range angles, as a function of the

stepping variable, are plotted in Fig. 3. In that figure, the cymbol 1x'

is associated with the 'x' in Fig. 2, and similiarly for the other axis.

Reierring to Fig. 3 and choosing efther 'x' (equation (12)) or '0' (equa-

tion (13)) for a particular range derends upon the range desircd and the

slope of the range curves.

For short ranges, equation (12) would be used to find 6aoo and for

long ranges, equation (13) would be used. For any intermediate range, the

range curve with the least slope would dictate which equation would provide

the least sensitivity to terminal errors in 6ao* Therefore, a logical

division of ranges is shown in Fig. 4, "ahich is merely Fg. 3 with certain

segme-ts deleted. Given a Jasired rangt., Fig. 4 indicates wh'.ch equatioz.

is needed for calculation of the flight path angle since the syirbol x

C implies use of equation (11) and the symbol '0' implies use of equation

(12).

By examining Fig. 4, and the computer printout of data (not shorn),

one can find that the ballistic range for the current choices of QI, Q2,

61, and 62 is 34.5* (2070 rm) to 346* (20,760 nm).

The total ranga angle, a, is dependent upon how much distance the

remaining three phases can add. For simplicity, it would be desirable

for one or more of the other phases to have a fixed value of attainable

range.

The terminal phase is singled out for this purpose, because the only

item of interest here is how much range can the terminal guidance scheme

cover. For the purpose of this study, it is assumed thaz a guidance

scheme exists which will provide a nominal range-of 100 °,m (choseu

arbitrarily). The assumed guidance muist be able to use, a4~ initiel conditions,

12

--M"k-
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tb~e values of Q and 6 iihich exist at the beginning of the terminal phase

due to free flight symmetrI.

The range contributed by the pull up phase and the skipout phase are

-. j determined later from computer data.

Reference Trajectoryv coe o h

The cost function chsnfrteopt imization method is based on

errors between the actual trajectory and a reference trajectory. (The

cost fwnction is presented in the next E.'ction).

- -~ The purpose of this section is to present the equations used to ob-

tainl a reference trajectory for the skipout phase of flight. This refer-

ence path is simply defined as the projection, into the atmosphere, of the

desired ballistic phase trajectory (see Fig. 5).

To project the ballistic flight, one can use classical, two-body,

orbital mechanics (Ref 3) and the fact that the ballistic trajectory forms

part of an orbit. First, the values that remain constant for a particular

orbit (orbital constants) must be found. The orbital constants are:

specifiz mechanical energy, E*,

2 R

specific angular momentum, h*,

h* R V cos6 (5

the eccentricity, e*,

e* in1~ Eh 2 (16)

and the length of the semi-latus rectum, p*,

P* h2 (17)

16
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The angle from pe-riapsis to the position radius vector is v.

or8CCO8 ij - ( P - I I

If the values of Vso, Rso, a., are used in equations (14), (15), and (18),

the values of E*, h*, e*, p*, and vso are then known and can be used as

shown next.

Let a, be the total range angle covered by the skipout phase. Let

02 be the actual range angle traveled by the RV at an, point in the skip-

out phase (see Fig. 6). Then, as the RV travels along, it has a particu-

lar value for R, Q, and 6 for each value of 02. For the same value of

a2, a corresponding R, Q, and 6 can be found for an imaginary vehicle

traveling along the projected ballistic trajectory. The equations used

tu calculate the states of the imaginary vehicle are given below.

0
_vb vso - (01 - 02) (19)

Rb (20)
1 + e* cos vb

Vb, -q32(E* +!) (21)
Rb

v2a

b M V(22)

Sb " arccos I (23)
Rb Vb

18
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The differences between the states of the two vehicles (one imaginary)

are the errors used in the cost fun~ction.

Cojugate Gradient Equaions

The equations necessary to apply thz conjugate gradient method to

the skipout phase are derived in this section, using the theory which is

explained in Appendix B.

The cost function to be minimized is

J - .5 [e-A + (A)OB(•l)Jds + [.5 eF -] (24)

- The term added to the intetral is a penalty function on the terminal

iconditions. The sytabol 8a is t'ie change in control, and the vector e con-

tains the errors between the states of the actual and the referenLe tra-

jectory.

SeQ = x:(s) - (s) (25)

Le6 J Lx3(s) - b(s)J

The weighting matrices are chosen to be

A1  0 0

" A 0 A2  0 (26)

L0 0 A3 J

I' B scalar (27)

20
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0 [O F20 (28)

0 0 P3 ,

Thus, the cost can be written as

stinimize J - .5 fSf(eh Al + eA 2 + e2 A3 + (A)2 ))ds

(29)
.5 e2 F + e2 P 2 S

To convert to a Meyer formulation, the integrand cf the integral portitn

of 3 is wade into a state and its differential equation is

dx 4  2 2 2 2
-5(eh Al + eQ A2 + e6 A3 + (ACt) B) (30)

ds

The other states are repeated here for reference.

dx_ _ R tan6 (6)

de Re

dx 2  (tan6 (2-0) - -S sec6 Q CDI' - (7)
Sds Re

1x (_-1- os_ sec6 CL) 1 (8)

ds Q 2m Re

Forming the hamiltonian from eqaations (75), (30), (6), (7), and (8)

yields

1HIM- Al R tan6
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+ )X2(tan6 (2--n) -Rpo e-Sh -S Q Seca CD) 1
U Re

+ 'X3( 1 Rpo P-Oh SSeca CL.)1

+ X4 .5(e2 A + e2 A + e2 A +(00 2 B) (31)
h I Q 2 6 3

The adjoint's, from equations (76) and (31), are

d - A tan6 + X2 0 Q Seca

+ X3 p §-~ sec6 CL(l-RB)1 1- -X4e A, (32)

2m Re

X 4 eQ A2  (33)

dX [A1 R sec 6 X A(sec 6(2-Q) + Rp j Q C tan6 secd)

+ A3P.~C tan S R~ A e6 ta41(34)

ý14 0(35)
ds

4A4 - constant

The transversality conditions are obtained by~ using equation (77),

wehere

f-( x (Sf + .5(e2 F + !2 F+ e2F(36)
fC 4 fF 1 Q 2  e6 3)

22
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therefore

) (eh F1) (37)

,2(sf (eQ F2 ) 8 .m f (38)

A 3 (sf) " (e 6 F3 ) (39)

A4 (sf) - 1 (40)

Equations (35) and (40) imply that A4 (sf) ! 1, therefore, no integration

- of equation (35) is required.

rfnally, equations (78) and (31) are used to find an expression for

the gradient, which must equal zero for an optimal solution.

JG(e) - -. (8.76 A2 Q sina cosa + 1.82 X3 (2cos 2a-sin 2 a)] (

"*[set6 sina sgn(a) P 0 RI L- + X(Aa)B]2m Re 4
The equations derived in this section were used in the conjugate gradient

algorithvi (Appendix B) to obtain an optimal solution for the skipout phase

of flight.

CoMuter Methods

The necessary computer programs were written in Fortran IV language

and wer& executed on a CDC 6600 computer.

The pull up and skipout phases were programmed separately. For the

pull up phase, the states were integrated forward until the flight path

angle went to zero degrees. The states at that point were used as the

23
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OF&O initial conditions for the skipout phase.

.- For the skipout phase, the conjugate gradient algorithm shown in

Appendix B was used. The state and adjoint equations were integrated using

a fixed step, Runge-Kutta method. A fixed number of points were necessary

to store the state values, which were subsequently used during reverse

integration of the adjoint equations. Good results were obtained using

arrays of 801 points each for the states, adjoints, gradient, direction

of search, coritrol, and perturbated control (used in the alpha search).

The total conjugate gradient program used 42K of core memory.

For a set of skip conditions, the penalty terms were initially set

to aero while the integral term of the cost fiuction (see equation (29))

was inuimized. Then the penalty terms were applied.

The conjugate gradient algorithm was terminated ,;h.n the cost did

not vary in six significant digits.

0
24
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IV. Results

The re-entry conditions of Apollo 10 ware used as the Initial condi-

tions for the pull up phase. A constant angle of attack (control) of

54.74o was applied to drive the flight der~ression angle to zero. This vallie

Sof control produces the maximum coefficient of lift (see Appendi= C).

Consequently, the RV does not penetrate the atmasphere too deeply and the

2 nose heat rate peak tends to be minimized. The pull up phase end condi-

tions are summarized in Table I, where the states are h, Q, and 6. The

value for velocity was calculated froz Q, and the total aoae heat is pro-

vided as a check for those interested in physical limitatitus. The largest

deceleratiou force in the pull up phase was approximately 4 g's, which

occurred as the flight path angle went to zero.

The pull up phase final conditions shown in Table I were used as

initial conditions for the skipout phase. The skipout phase final condi-

tions were found by using a desited ballistic range a-.d the varartetric range

selection equaticns, as explained in Chapter Ii. To make the valuses of

Q.o and 690 come out nice the desired ballistic range was chosen as )6,924

nm or 282.07 deg, therefore, from Figures 4 and 2, 'KAMNE ANCLL IL P-d

'FLT PATH ANGLE I' were used. For the above range, tie stepping variable is

0.4 which gives skipout conditions of Qso 1.1, dso R -4 deg, and of

course hs, - 400,000 ft.

The conjugate gradient technique was then applied for the selected

end conditions, using an initial guess of control of 71' (constant). The

usual difficulties were encountered in application of the optimal theory

and in finding suitable values for the weighting matrices in the cost

function, equation (29). The problem with the matrices was that they

were sensitive to the akipout conditions and the skipout range selected.

25"" -* 1
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Table -1
- ) 0 Pull up Phase End Conditions

(values rounded)

VasriabL.L I.iclal Final Units
Condition Condition

0.00 389).0o nm

h 400,000.00 218,259.00 ft

IQ 2.00 1.72

a 6.61 -0.00 der.
SV 36,309.0O0 33,871.0O0 ft/see

q 0.00 11,178.00 BTu/ft 2

Table II
Cost Function Weighting Values

Variable Value

Al .1 x 10-10

A2  .1 x 101

A3  .1 x 103

B .1 x 100

F1  .1 x 103

F2  .1 x 1013

F3  .1x101 5

26
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More specifically, a set of weightirgs that minimized the cost under one0
,et of terminal conditions, would not work using another set, i.e., the

alpha search could find no minimum. The weightings finally selected are

showa In Table II, and after a few trial runs, a skipout range of 600 nm

was finally used.

Convergense to the skipout conditions required 40 Iterations, which

took 600 seconds of execution time. The conditiona were reached with less

than 1% error, which resulted in a ballistic phase range error of Approx-

imately +80 nm. The convergence errors are summarized in Table III, and

the optimal states are shown converging on the reference trajectories in

Figures 7, 8, and 9. The optimal control is presented in Fig. 10.

The maximum deceleration in the skipout phase was 8 g's and the peak

heat rate was 385 BTU/ft 2 .sec. Both of these occurred when the control

vent to 90, which gives maximum drag (see Fig. 10), at the beginning of

the trajectory. The total nose heat at the end of the optimal skipout

4rajectory was approzimately 24,400 BTU/ft 2 . The skipout phase time of

flight was 132 seconds.

The approximate surface range traveled for the entire flight is

totaled in Table IV.

C)
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Table III
Conjugate Gradient Terminal Errors

State Desired Actual Z
Value Value Error

h 400,000.0 399,763 0.059

Q 1.1 1.10346 0.31

6 -4.0 -4.03010 0.75

Table IV
Total Surface Range

S(values rnunded)

Range (nm) Range (deg)

Pull up Phase 380 6.4

Skipout Phase 600 10.0

Ballistic Phase 17,000 283.3

Terminal Phase 1,000 16.6

Totals 18,980 316.3

'C)
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V. Conclusions

A rf.-entry guidance scheme that utilizes ballistic flight to attain

more surface range is feasible, although the deceleration forces and the

peak heat rale may be high at the beginning of the skipout phase due to

the sudden application of full drag.

The total surface range available depends upon the values of Qso and

ago selected for the ballistic phase and upon the surface range assigned

to the other three phases. The minimum and maximum ballistic range is

calculated in Chapter III for 0.9 < Qso < 1.4 and 2* < aso i 7*- Using

the other ranges listed in Table IV, the total surface range available

for re-entry is between 67.5' (4050 am) and 379" (22,740 nm). The umx-

imum range is greater than one circumference of the Earth. For different

N boundaries on Qso and 6so in the range selection equations, shorter or

longer total distances are possible.

The conjugate gradient technique is suitable for finding an optimal

control, but the weighting values in the cost function, equation (29),

change as a function of the skipout phase terminal conditions. Consequent-

ly, a significant change in terminal conditions requires changes in the

weighting value-..

However. due to the long execution time involved for convergence (600

seconds), the conjugate gradient method is an unrealistic choice as an

onboard, real time controllar. A real tine controller is needed which is

-• capable of finding the control necessary for the skipout phase. The compu-

tation should be performed during pull up and could be based on expncted

pull up phase :erminal conditions. Adjustments would have to be made for

any errors between the expected terminal conditions and the actual terminal

conditions.

33
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Any further Investigations in this area should be made using an op-

timal scheme that is better suited than the conjugate gradient method, to

meet te-rnal conditions.

34- - - i•
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Appendix A

Derivation of State Equations

'- The equations that describe the motion of an unpowered lifting

body (re-entry vehicle) In the Earth's atmosphere are derived in this

appendix, using the assumptions made in chapter It.

Coordinate System

The geometric relations used are shown in Fig. 11. The coordinate

frame E is a locally inertial, Earth centered frame where axis El is

aligned with the initial point of atmospheric re-entry.

The coordinate frames, in addition to being right-handed, orthogonal,

and cartesian, were chosen such that each vector would be aligne with

"a certain axis. The coordinate frames rctate with their respective

vectors, therefore, they also serve as a reference for the angle of

attack a(t) and the flight depression angle 6(t).

From Fig. 11 the vectors can be expressed in matrix form as

[R
(ra-Jius) R 0 [0o (42)!~ °j

(velocity) VN (43)

(lift) 0 (44)

(drag) DN D (45)

(gravity) M j2 (46)

36
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N 2 2

c~D(t)

Earth

I Fig. 11. Geometry of the Problem
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where the subscript refers to the coordinate frame in which the vector

is measured.

The angular rotation rates are

l[ol

S00

*3f= o (47)
do

d o

L

g 0

0=~O (48)

d6
[dtj

or, in skew-symmrfetric form

o .. da 0
dt

Sd•c 0 0 (49)
E d-

o 0 0J

0
dt

N __ 0 0 (0
HM dt

0 0 0

Where the equation w£m is the angalar velocity of the M frame with respect

to the E frame.

The coordinate transformations are

[Cosa -sina 0

CM- s[na Cosa (51)
E0

COSt5 -sin6 01
CN S1116 C086 0 (52)

0o 0 i
38
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where transformation is from the frame denoted by the superscript to the

frame denoted by the subscript.

Derivation of the Time Derivatives

The next step is to equate velocity (acceleration) components ob-

tained through coordinate transformations, with velocity (acceleration)

components obtained by using the theorem of Coriolis (Ref 4: Chap 2).

Therefore, the desired equations are

V M . Ci vN (53)

VMU - M+ M (54)1

aN -Mgm + LN +D (55)

E (56)

aN N+ wN VN

S 0 Using the appropriate forms of equations (42), (43), (47), and (52) to

substitute into the right-hand side of equations (53) and (54), and

equating the results, one obtains

_V sin 
6

V cos 6 - R; (57)
SL 0 0

From the first row of equation (57)

R = -a -V sin 6 (58)
dt

- I Likewise, the second row yields

d6 n V cos 6 (59)
0dt R

Following the same procedure for equations (55) and (56), one obtains

90

• "-•-39
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06 + L + V +

i O[: ~ L. S:R2 (60)

* Use of equation (59) and rearrangement of row 1 provides

O -= d .Lcos 6 V-cos 6 . (61)
dt VR2 R V

The final equation, which is given in row 2 of equation (60), is

L dV- M-sin 6 - D (62)
dt R2 in-

I. The equations just derived represent the motion of a re-entry

vehicle with respect to time, The equations will subsequently be r•-

I-- ferred ro as the state equations or states, and they are summarized

j- dh -V sin 6 (58)
dt

du . V cos 6 (59)
Sdt Rf d.V sin 6 - D (62)

d6 . cos 6 VCos 6L (61)

Sidt wR2 Rv

where, in equation (58), it was decided to use altitude rather than

radius. Since R - R + h, the time rate of change is the same for either

variablk.

Change of Independent Variable

Time is the independent variable in the states above, but In the
-- 0 problem formulation, surface range, s, is of interest. Conversion from

40
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time to range as the independent variable is accomplished --sing equation

(59) and the fact that

S- a Re (63)

Also, the range angle, a, in equation (59) does not appeor in any other

state equation, so it can be eliminated as a state.

The inverse of equation (59) is

dt . R (64)

do V cos 6

or

dt - --A- do (65)
V cos 6

The derivative of equation (63) is, after rearrangement

do - do (66)• Re

Substituting for do, equation (65) becomes

fdt- ds (67)
V cos 6 Re

Repiazing dt in equations (58), (61), and (62), and after wultiply-ng,

the new states become

dh R tan 6 (6)do Re

•dV V. ( tan 6 -R )1 (681,

ds R V V cos 6 Re

d_6 .) (-_ L (69)
ds V2R V2 coO 6 Re

with surface range as the independent variable. Since the time of flight

is not of primary interest here, the equatIons are now in a more useful
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form. Also, the nuabe: of equations to be integrated has been reduced

frt% four to three. However, one -.hange remains to be made.

_ fas a State

The states are currently written in terms of R, V, and 6, but the

charts and equations which cover ballistic theory are written in terms

of Q and 6 (see Chap III). Consequently, it is advantageous toe have Q

as a state rather than V. 'ha derivation of dQ/ds follows, starting with

the definition of Q.

Q m V2Rhs (9)

The derivative with respect to range is

VI(v2 #+R+ dV ) (70)
do P do ds

Substituting equations (6 ) and (68) for the derivatives on the right

side, and rearranging, yields the final forme.

i _,L- (t= 6 (2-• -p 1%se: 6 Q CD) "--(7)

de a Re

The value of velocity, if nteeded, is found from squation (9), i.e.

Sv. Ac , (71)

Equatitos u 68) and (69) must now be rewritten In terts rý thw nev

state, Q. The fi£al form of the stat, equationu used for simul•.tion ore

sotarized here amd -1a Ch~pter 11.

S- - -- tar. SL6)
as ds Re

!L dO Q "&( -0 -;t• a .C'4. 1 1c

do ToW
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N'•Z+ • - •+ € •-- o -S s_ ec 6 % .,8

do ds Q 2 Ie
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Appendix B

Con ugafe Gradient T.eory

The general theory of the conjugate gradient minimization technique

"is covered in this appendix. Alao, the computational algorithm usead to

fiun the optimal control is presenctd. Much of the material below is

"-ken directly from Ref 5.

Cen c-rU

rs•e..ient. • :!ol I- -s a uinimizacion .echnique

that can be applied to optimsl control problems. A -_'Iution reouires

knowledge of the gradient trajectory, its nora, and the actual direction

of search. The search direction is found by use of the norm to modify

___• the gradient direction, consequently, each search is in the conjugate

direction. Thus, even for a poor initial guess of the optimal control,

the method tends to ccnverge.

There are a couple of disadvantages to the conjugate gradient tech-

nique. First, the methcd applies only to unconstrained problems. How-

ever, if terminal conditions or inequa.ity constraints are present, pen-

alty functions can be used to convert the problem to an unconstrained

form. A second disadvantage is that it is unable to distinguish between

a local and a global minimum, which is a fault common to most minimiza-

tion schemes.

The general problem formulation is for the Meyer form of an optimal

control problem.

minimize J - *(x(t f)) (72)

-f

subject to x - f(x,u,t) (73)

i(to) & constant (74)
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where x is an n-order state vector, u is an &-order control vector, and

the initial time to and the final time tf are fixed. Subsequent dixcussion

of u irl1I consider only mu).

The Hamiltonian is

H I Ai f i (75)
i-i

where the adjoluts are

d- -(76)

and

lj,(tf) 9n 77

a1 tintf

The gradient is

C(u) - (78)

A necessary condition for x to be an optimal state trajectory is

that the gradient equal zero for the optimal control trajectory. Thus,

the optimal control minimizes the Hamliltonian. The algorithm described

in the next section is an iterative process used to find that control.

CoRMutatonal Algorithm

After the Hamiltonian, adjoint, and gradient equations have been

derived, the optimal control can be found by following the steps listed

below. The subscript i refers to the previous value.

1. Selact an arbitrary control trajectory (often chosen as a con-

stant) and use it to integrate the state equations forward. Proceed to

step (3).

2. Perform an alpha search. This consists of finding a distance
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*I, such that

J(ui+l) m J(u 1 + a' si) (79)

is minimized. This requires forward integration of the states until

equation (79) is satisfied.

3. Integrate the adjoint equations backwards as a function of the

final state values.

4. Compute the gradient from the states and adjoints.

5. Calculate a new direction of search s' according to

8•- +~ ' '(80)iS+l ' G+1 Bi+1 s. 80

with

i+l' - IIG +l l/ilc ll (81)

where the norm is defined as

IGi - tf G2 dt (82)
i t0

to

For the _.dtial iteration, s! G,

6. Repeat steps (2-5) until the value of cost in step (2) changes

less than some tolerance. The current value of control tE step (2) will

be the optimal control.

- - C)
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III~mni ... •Append ix C

Plot of Lift Coefficient versus Angle of Attackj This appendix contains a plot of the coefficient of lifL versus

the angle of attack (see Fig. 12). The equation for the coefficient of

lift is found in Chapter It and is repeated here.

CL - 1.82 ainZ coss Isin•l

The maximum value of CL occurs at an angle of 54.74 degrees.

I

K 0

-M

C2,

O.Q0Z.0O 40.00 60.00 50..00
PNGLE OF RTTRCK (DEG)

Fig. 12. Lift Coefficient vs. Angle of Attack
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