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ABSTRACT 

The three-dimensional compressible, boundary-layer equations are presented in a 
general Crocco-variables form, and particularized to the windward symmetry plane of a 
spherically blunted axisymmetric body at incidence under hypersonic conditions. Through 
the use of an eddy transport coefficient hypothesis and a streamwise intermittency factor, 
both transitional and fully turbulent boundary layers may be treated, in addition to laminar 
boundary-layer flow. A scheme is presented for determining the outer-edge boundary 
conditions to be applied to the boundary-layer equations, based on a mass flow balance 
treatment of the boundary-layer entrainment of the inviscid flow. A finite-difference 
technique is described for solving the set of partial differential equation governing the 
boundary-layer flow, and for treating the streamline-swallowing phenomenon. The method 
of treating the problem is validated by the good agreement obtained between results from 
the present method and both experimental data and other methods of calculation. 
Comparisons with experimental data are shown for both laminar and turbulent flow under 
hypersonic conditions and include cases where streamline-swallowing effects are large and 
cases where crossflow influences should be strong. 
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SECTION  I 
INTRODUCTION 

In the calculation of the boundary layer over a body in supersonic or hypersonic 
flow, the specification of the outer-edge boundary conditions to be applied to the 
boundary-layer equations is complicated by the fact that the local flow conditions along 
the outer edge of the boundary layer depend upon the inclination of the bow shock 
wave to the free-stream velocity at the point where the fluid at the outer edge of the 
boundary layer crossed the bow shock. This problem is often referred to as streamline 
swallowing, in reference to the entrainment by the boundary layer of the inviscid flow 
over a body. The problem of streamline swallowing by the boundary layer on blunt bodies 
in supersonic or hypersonic flow is one which has received considerable attention in the 
cases of both two-dimensional and axially symmetric flow, e.g., Fern (Ref. 1), Mayne 
and Adams (Ref. 2), and Mayne and Dyer (Ref. 3). In addition to these two-dimensional 
and axisymmetric flow situations, the phenomenon of streamline swallowing by the 
boundary layer on a sharp axisymmetric body at angle of attack has been considered 
by Mayne (Ref. 4). In this latter case, the influence of streamline swallowing on 
boundary-layer calculations was through the entrainment by the boundary layer of the 
lateral flow around the body; the analytical treatment of this problem required the 
application and solution of the full three-dimensional boundary-layer equations. 

Streamline swallowing also influences the calculation of the boundary-layer flow over 
blunt-nosed axisymmetric bodies at angle of attack as noted by Fannelop and Wald man 
(Ref. 5), and it is the treatment of this problem, for the flow in the windward plane 
of symmetry, which is the subject of the present report. The extension of this work to 
the flow over the remainder of the body can, in principle, be performed by the technique 
of Ref. 4, but such an extension is not a trivial effort. 

For the case of flow over a two-dimensional blunt body or an axisymmetric blunt 
body at zero incidence, the streamline-swallowing phenomenon may be demonstrated by 
first considering that in the classical treatment of the associated boundary-layer calculation, 
the outer-edge conditions for the boundary-layer equations are taken to be the conditions 
at the body surface computed by assuming inviscid flow over the body. This is equivalent 
to assuming that all of the fluid along the outer edge of the boundary layer crossed the 
normal portion of the bow shock wave. In actuality, however, as the flow proceeds along 
the body, and the boundary layer entrains fluid, the portion of the flow which crossed 
the blunter forward part of the shock is "swallowed" by the boundary layer, as indicated 
in Fig. 1. The fluid along the outer edge of the boundary layer on the aft portion of 
the body will have passed through an oblique part of the shock wave and will be at 
a different state than had it passed through a normal shock wave. Naturally, the use of 
outer-edge conditions resulting from considering the streamline swallowing yields solutions 
to the boundary-layer equations which differ from those solutions obtained using the 
classical treatment of the outer-edge conditions. References 1, 2, 3, and 4 show significant 
effects of the streamline swallowing on computed boundary-layer profile data, surface 
heat-transfer rate, and skin friction. 
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Boundary Layer• 

Shock Wave 

Typical 
Streamline 

Fig. 1   Streamline Swallowing on Blunt Axisymmetric Body 
at Zero Angle of Attack 

For the case of a blunt axisymmetric body at incidence, the streamline-swallowing 
phenomenon is basically the same as that for the body at zero incidence. However, because 
of the existence of crossflow in both the boundary layer and in the inviscid flow, the 
relatively simple global mass-balance treatment of the streamline swallowing which can 
be used in the zero incidence treatment (as in Ref. 2, for example) must be replaced 
by a local mass balance between the boundary-layer flow and the inviscid flow when 
streamline swallowing is to be considered on a body at incidence. In the work reported 
herein, this has been accomplished through particularizing the streamline-swallowing 
treatment of Ref. 4 to the windward plane of symmetry of a spherically blunted 
axisymmetric body at incidence. The governing equations are presented for the case of 
an arbitrary spherically blunted axisymmetric body, and results are presented showing the 
effects of streamline swallowing on windward-plane-of-symmetry solutions to the 
three-dimensional boundary-layer equations for cases of hypersonic flow over spherically 
blunted right circular cones at angle of attack. Using the eddy viscosity-intermittency factor 
approach described by Adams (Ref. 6), laminar, transitional, and turbulent boundary-layer 
flows are treated. 
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SECTION II 
GOVERNING EQUATIONS 

In this section are presented the governing equations for three-dimensional 
compressible boundary-layer flow and a discussion of the boundary conditions required 
to solve the equations, including their determination through the consideration of the 
streamline-swallowing phenomenon. The boundary-layer equations are presented in a 
Crocco-variables form which is the same as that used in Ref. 4 except that in the present 
work the Prandtl number is not required to be a constant. (A variable Prandtl number 
is permitted in order to allow the consideration of turbulent boundary layers through 
an eddy-transport concept.) In order to permit their application to any desired body, the 
equations presented in this section are not based on a particular body geometry. 

The gas under consideration is assumed to be both thermally and calorically perfect. 
The governing partial differential equations for three-dimensional compressible 
boundary-layer flow (given by Mager (Ref. 7), for example) are the continuity equation, 
a longitudinal momentum equation, a lateral momentum equation, and an energy equation. 
The Crocco transformation is used to eliminate the component of velocity normal to the 
body surface as a dependent variable and, thereby, to reduce the number of partial 
differential equations which must be solved from four to three. 

2.1     THE  BOUNDARY-LAYER  EQUATIONS 

The boundary-layer equations are given in the orthogonal (j-, 17, f) coordinate system 
indicated in Fig. 2, where £ and n are orthogonal coordinates defined in the surface over 
which the boundary layer flows. The coordinate f is normal to the body surface; in this 
report f = 0 on the body surface. The symbols u, v, and w represent the nondimensional 
velocity components in the £, 77, and f directions, respectively. For this coordinate system 
the general element of length is 

Fig. 2   Orthogonal Coordinate System 
and Velocity Components for 
Boundary-Layer Equations 

(d?)2 = F,2 (dO2 + F2
2 (dn)2 + H32 (dC): (i) 
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where a bar over a quantity denotes a dimensional quantity. It is assumed that hi and 
h2 are functions of only £ and 77; this is equivalent to neglecting transverse curvature 
in axisymmetric boundary-layer flow. The metric coefficient I13 is a function of £, 17, 
and f; h.3 dj" is a differential element of the physical distance normal to the body surface, 
i.e., H3"  d? = dy. 

The variables in the boundary-layer equations are nondimensionalized according to 
the following scheme: 

hiT 

h, = — 

where 

h3 

h3 JBe 

L 

u _ Ü 

V 
v_ 

w 
w   vfie 

v s V 

P 
P - 

^.ü-2 

P ■ 
Vm 

T = 7'P 
_2 

H 
ff 

u 

v 
00 

(2) 

P. U. L 

Re =  (3) 

The Reynolds number factor appearing in the relations for h.3 and w is not necessary 
to nondimensionalize these variables; however, it does serve to eliminate any explicit 
dependence of the resulting equations on the free-stream Reynolds number. 
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The Crocco transformation is accomplished by letting the coordinate normal to the 
body surface be defined to be the longitudinal velocity component, or, in the present 
treatment, a normalized form of the longitudinal velocity. This yields the convenient limits 
of zero and unity for the normal coordinate. (The term "longitudinal" is used to refer 
to the £ direction, and "lateral" is used to refer to the TJ direction. The term "normal" 
refers, of course, to the f direction.) The velocity component normal to the body surface 
is eliminated from the equations by combining the longitudinal momentum equation with 
each of the continuity, lateral momentum, and energy equations. This results in eliminating 
one of the partial differential equations entirely. As a part of the transformation, a form 
of the longitudinal component of the shearing stress becomes the dependent variable 
associated with the transformed longitudinal momentum equation. 

The Crocco transformation is accomplished by first introducing the following 
definitions: 

"e ve 

l - wZ « - H 
J ■ Ü7 e " ^ (4) je ne 

* = n- n3 

where Z is a function of £ and 17 which can be defined for a particular case so as to 
eliminate singularities at a stagnation point or sharp tip of a body, or to introduce similarity 
into certain cases. The subscript "e" refers to the value of a variable at the outer edge 
of the boundary layer; quantities so designated are functions of only £ and 17. In order 
for the Crocco transformation to be meaningful, it is necessary that u increase 
monotonically from zero at the body surface to ue at the outer edge of the boundary 
layer. 

The independent variables in the transformed equations are £, T?, and f = u/ue. The 
dependent variables associated with the transformed differential equations are G, J, 0, 
and $, although J is eliminated from the equations. The usual assumption is made of 
a constant pressure across the boundary layer, i.e., 3p/3? = 0. Through the definitions 
of the coordinate f and the metric coefficient h3j <£ is proportional to the longitudinal 
component of the shearing stress. 

The nondimensional temperature may be expressed as 

T = He 6 - 1 U2 ue
2 ♦ G2 ve

2) (5) 
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For convenience the temperature is retained in the transformed differential equations, 
although it is an explicit function of the edge conditions and the primary dependent 
variables.    The nondimensional viscosity is treated similarly. 

The application of the transformations given by Eq. (4) to the {--momentum equation 
permits the determination of the following expression for J, the transformed velocity 
component normal to the body surface: 

j = Irl 1_ I i£   111    v£     T    3j> 
y    ue   p ac "   Y    Ue2 ♦   prvj"  H 

- wZ2 g2   3ue    yZ2 ve c G   a*" (u^) 
" ue» h1    35 ue I h2 3n (6) 

„ uZ2 ve2 G2   fhg 
ue

Z ♦ h-|h2    dc 

The use of Eq. (6) to eliminate the velocity component normal to the body surface 
from the continuity equation yields the following equation, which may be considered 
to be the Crocco-variables form of the f-momentum equation: 

where 

ui = AX(5) *§- + AX(6) *£   - AX(7) 4j- + AX<8) JT ♦I *zT *zT ^zT #Z 

(7) 

a*l = 

a*2 s ° 

«•3-Sr   AX(l)-5-|^-AX(1)+|I 

+ AX(2)|^+AX(2)-1-   ft- «(2) 4-  £ 

2 
+ AX(3)c + AX(4)G - AX{5)2c - AX(5) £-■&■ 

+ AX(5) f-   Ü. AX(6)c   i£   - AX(6)G 1     H H 
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- AX(6) i£ |E + AX(6) tf II + AX(7)2G « 
V      of, I       d£ 3?        . 

2 2 
+ AX(7)^-|^   - AX(7) i- II - AX(8)   IlH. 

«05 = - AX(2) 4- (8) 

Equation (7) is cast into a standard form which is convenient for the numerical 
solution technique presented in Section III. The AX(I) coefficients in Eq. (8) are functions 
of the body geometry and the outer-edge conditions. Since many of them occur a number 
of times, their explicit forms are given later in this section. 

The 77-momentum equation expressed in Crocco variables form is 

32G  , 3G    . r  . . 3G 
^2" + °G1 ac   + °G2 6 + aG3 +   aG4 n 

. 3G   _ n (9) 
+ °G5 3n"      ° 

where 
9 

aGl « AX(5) -£- c2 + AX(6) ^ - AX{7) H6- + AX(8) 

QG2 ■ -AX(10)-£   -«(11)4- 
9   I v   I 

«G3 s Ax<9> ^ - W2) V W *2T ** 

u 
5r 

«G4"-AX(l)^r 

aG5 = - AX(2) £§- 
*'T (10) 
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The Crocco variables form of the energy equation, for variable Prandtl number, is 

a"? 
where 

t? + "»I If +   a«6 + "M + "04 ft + »65 S " ° (1" 

$   I ' T 

-AX(7)^+AX(8,^.JF|p 

oe2 = 0 

«93 ° - AX(13)(l-Pr)(l +^|i]+ AX(13) LifL 

-AX(14)(l-Pr)[||||i+GgG)+(|| 

+ *"«>fcft   IF 
a64 = - AX(1) U£ü 

**T 

Although the grouping of some of the 17-momentum equation coefficients of Eqs. 
(9) and (10) is not unique, they have been formulated analogous to the coefficients for 
the ^-momentum and energy equations, and the groupings presented have proven 
well-behaved in the solution of the equations. 

While performing the Crocco transformation, the density was eliminated from the 
equations through the use of the perfect gas equation of state and the relationship R 
= (7-1 )/T Cp. 

The coefficients AX(1) through AX(14) are functions of only £ and 17, and not f. 
They are essentially made up of body geometry data and data concerning conditions along 
the outer edge of the boundary layer. Their explicit forms are 
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AXO 

AX(2] .   Y   vePz2 

Y-1     h2 

AX(3] = Y^h^H    (h2z"H.> 

AX(4) -ihwfcl    <hlZPve> 

AX(5] 1 " 7T ITj" K 

AX (6] 
_   Y   vepZ2 3£n(uehi) 

Y-1     1*2         3n 

AX(7] _ _y_ ve2Pz2 3h2 
Y-1 ueh1h2 H 

AX(8 , _   Z2    3p_ 
1 ~ hue 35 

AX(9; 
¥   ue2pZ2 ah1 

1 B Y-T veh-|h2 3n 

AX(10 
_   Y   uepZ2   3£n(veh2) 

'    iH   h,       35 

AX(11 |a
   v   pz2_3Ve 

Y-1 h«    3n 

AX(12 | =    Z2    3p_ 
veh2 3n 

AX(13 I      "e2 

AX(14 
V 2 

»    e 

' B He 
(13) 
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In utilizing the results of calculations performed using the Crocco-variables form of 
the three-dimensional boundary-layer equations presented in this section, certain parameters 
are of interest from a physical standpoint. The coefficient of longitudinal skin friction 
may be obtained in the form 

Cfe Z Vl?e = 2 ue{«)?=0 (14) 

where 

c   -tft» 
The coefficient of lateral skin friction can be obtained as 

cfn Z /Re   = 2v0   11 J£ 5f (15) 
C=0 

where 

I» *l 

The Stanton number may be represented as 

st. z ^ - [pr jjgfcq |I] 
't-o 

where 

füEp    3T\ 

st -I Pr *U 
P. U- <VHC-0> 

The distance normal to the surface may be determined from 

7 »He   a      r      w 

i 

(16) 

LZ /        •     ^ (17) 

0 

10 
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2.2    TRANSPORT LAWS 

Equations (7), (9), and (11) are applicable to both laminar and turbulent 
boundary-layer flow if the viscosity and Prandtl number in the equations are considered 
to be "effective" transport parameters. The boundary-layer equations as given by Eqs. 
(7), (9), and (11) are equivalent to an eddy-exchange coefficient treatment of the 
Reynolds-averaged boundary-layer equations for turbulent flow (i.e., time-averaging of the 
equations where each dependent variable is expressed as the sum of a steady and a 
fluctuating component); more specifically, a scalar eddy viscosity is indicated by Eqs. (7), 
(9), and (11). The hypotheses leading to the forms of the transport terms in Eqs. (7), 
(9), and (11), for turbulent flows, are: 

Shearing Stress Terms 

- 9u _ -   3U  . —       du V — ■ U,  — + MT      — 
37     * ay      's   ay 

_ av _ _ j}y.   _    av. 
u 3y = vl 37 + UT   ay 

and 

where 

"h  " "Tn =  "T 

-     au        -  -r —i 
UT   — = - p   irvr 

5 37 

uT   — = - p   v1" w' 
11 ay 

(18) 

Energy Flux Terms 

Irr   ay     ay    I      c      / J 

IK     IT |   ah"    ,_     -    a    U2 + v* 

\CP    zpl   ay       £ ay 

where 

(19) 
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In Eqs. (18) and (19) the prime superscript refers to the fluctuating component of 
a variable, and the tilde refers to a time-average of a fluctuating quantity (quantities not 
otherwise indicated are time-averaged values). From Eqs. (18) and (19) the effective 
transport properties for momentum and energy may be seen to be 

v * vt + JTT 

iL. JL+ L 
^"Cn Cp 

or 

where 

"T ^n PrT = J—& 
1 k 

(20) 

In the present work the turbulent Prandtl number was assumed to be constant at 
a value of 0.9, and the laminar Prandtl number was assumed to be 0.7. The laminar viscosity 
was obtained using Sutherland's law. 

The specification of the turbulent viscosity has been done using the mixing-length, 
invariant-turbulence model as applied by Adams (Ref. 6) and Hunt, Bushneil, and Beckwith 
(Ref. 8) 

■^ 
a?]2 

37/ m 1/2 
3V 

ay 
(21) 

The mixing length, £m, was obtained using a two-layer model, with exponential damping 
near the wall as recommended by van Driest (Ref. 9). The variation of fim was obtained 
from the recommendations of Patankar and Spalding (Ref.  10) as 

\'Km" 1 - exp /rr 
v A* 

for 

0 < y 77 < 
m *J*m 

12 
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and 

£m = xm yi 

for 

with T, p, and /i evaluated at local conditions in the boundary layer. 

The values used for Km, A*, and Xm were 0.435, 26.0, and 0.09, respectively. The 
value of y at the point in the boundary layer where the velocity was 0.99 of the outer-edge 
velocity was used to define yg. 

In order to treat boundary layers undergoing transition from laminar to turbulent 
flow, an intermittency factor, X, was introduced into Eq. (20) to give 

v = V^ + * Vj 

u     _ __ »k P ^p 

or 

PF " PF" + X PF" (23) 
I T 

The intermittency factor is the fraction of the time that the boundary layer is turbulent 
at a given location; X is zero for laminar flow and one for fully turbulent flow. In the 
present investigation, the intermittency-factor distribution determined by Dhawan and 
Narasimha (Ref.  11) was used; this has the form 

X = 1 

where S represents Jhe distance along the body surface, St is the distance to the beginning 
of transition, and Sj is the distance to the end of transition. In order to use this form 
of the intermittency-factor distribution, it is necessary to let X be somewhat less than 
unity at S = Sj; in the form given, it is assumed that X = 0.97 at S = Sj. 

In the calculations made in this investigation, no attempt was made to compute or 
predict the locations of the beginning and end of transition; instead, experimental data 
were used to specify St and Sj  for each case considered. 

13 
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2.3    BOUNDARY CONDITIONS 

The appropriate boundary conditions necessary to solve the set composed of Eqs. 
(7). (9), and (11) depend upon the nature of the equations. This matter has been considered 
in detail by Raetz (Ref. 12), Der and Raetz (Ref. 13), and Wang (Ref. 14). In considering 
the situation for a general point P in the boundary layer, the concept of zones of influence 
and dependence have been developed as illustrated in Fig. 3. The partial differential 
equations are of an elliptic nature in the f direction, and the conditions at point P affect, 
and are in turn affected by, the conditions along the entire line which is normal to the 
surface from f = 0 to J = 1 and passes through P. This elliptical nature is due to the 
diffusion phenomena which occur. Downstream of P there is a zone of influence bounded 
by the surfaces called the "outer and inner characteristic envelopes". These characteristic 
envelopes are generated by the normals to the surface emanating from the projection on 
the surface of the streamlines having either the minimum or maximum angular displacement 
from constant-Tj surfaces. The conditions at point P affect the conditions at all points 
within this zone of influence. Upstream of P there exists a similarly defined zone of 
dependence such that the conditions at P are dependent upon the conditions at all points 
within the zone of dependence. 

Fig. 3  Zones of Influence 
and Dependence 

Raetz's influence principle, based upon the concept of zones of dependence and 
influence, is essential in determining the appropriate boundary conditions and even a 
solution technique for solving general three-dimensional boundary4ayer problems. 
Application of this principle is discussed in Refs. 4, 12, and 13. For the present problem 
of flow in the windward symmetry plane of a spherically blunted axisymmetric body, 
the governing equations degenerate to a two-point boundary-value problem at the stagnation 
point and to a two-dimensional parabolic system for the remainder of the windward 
symmetry plane. (The zones of dependence and influence degenerate to sections of the 
windward symmetry plane.) Were the boundary-layer flow to be computed over the entire 
axisymmetric body the windward symmetry plane results of this investigation would be 
necessary to continue the solution of the governing equations over the remainder of the 
body. 

14 



AEDC-TR-73-166 

In general, the boundary conditions to be imposed on G and 6 at the body surface 
(f = 0) and at the outer edge of the boundary layer (f =  1) are: 

at c ■ 0: G = 0 

e ■ [eU.n)]j-=o» prescribed 

at c ■ 1: G = 1 

6 = 1 

(24) 

The  surface boundary condition on 0  could also be the  equivalent of a prescribed 
heat-transfer-rate distribution, although that possibility is not treated herein. 

The surface boundary condition on 4> is obtained from evaluating Eq. (6), the 
Crocco-variables form of the {--momentum equation, at f = 0, where G is also zero. The 
resulting expression yields 

£ 
5=0 

^T *£ + AXl8) t (25) 
-«5=0 

The factor J in Eq. (25) would be used to include surface mass transfer effects if 
transpiration or suction were being considered. 

The outer-edge boundary condition on <& may be obtained from the definition of 
4> as 

/A\ I  u Z       du 
c-n.o  U*TuA 37 (26) 

/ — 5=1.0 

where 

In the classical treatment of boundary-layer theory, the term (du/dy)f= i o is set equal 
to zero. In the present treatment of the problem, however, where streamline swallowing 
is being considered, this term is equated to its value at a certain point in the inviscid 
flowfield. It should also be noted that ue, ve, and their variation with % and n must 
also be determined in an appropriate manner from the inviscid flowfield over the body. 
This matter is considered in the next section. 
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2.4    TREATMENT OF STREAMLINE SWALLOWING 

In this subsection, the technique used to determine the boundary-layer outer-edge 
conditions through the treatment of the streamline-swallowing phenomenon is presented. 
Basically, the boundary-layer outer-edge conditions are determined on a line in the 
windward symmetry plane of the inviscid flow field which separates the flow entrained 
by the boundary layer from that not entrained by the boundary layer. The location of 
this line in the inviscid flow field is obtained by means of a mass balance between the 
boundary layer and the inviscid flow field. In the actual computations, the location of 
this line is coupled to the solution of the boundary-layer equations and is obtained in 
an iterative manner in conjunction with the solution of the boundary-layer equations. 
It is assumed herein that boundary-layer displacement effects on the inviscid flow field 
are negligible, and no such effects have been considered in this investigation. Also, it is 
assumed that there is no surface mass transfer; consideration of surface mass transfer would 
require modifications to the scheme described in this subsection. 

In Ref. 4 a general method was described for determining the boundary-layer 
outer-edge conditions when considering streamline swallowing in a three-dimensional flow 
situation. The present scheme is equivalent to specializing the method of Ref. 4 to the 
flow in the windward symmetry plane of an axisymmetric body at angle of attack. A 
description of the method of determining the location of the separating line discussed 
in the previous paragraph can be accomplished by anticipating the finite-difference 
treatment used in the solution of the associated boundary-layer problem. The description 
of the method of determining the location' of the separating line in the inviscid flow 
field is, therefore, done from a control-volume point of view which is analogous to the 
finite-difference treatment of the boundary-layer problem. 

The basic relationship used to find the location of the line in the inviscid flow field 
which separates the flow entrained by the boundary layer from that not entrained by 
the boundary layer can be given in terms of the sketch shown in Fig. 4. If that part 

Typical Inviscid 
Streamlines 

Fig. 4  Streamline Swallowing, Showing Control Volume for Mass Balance in the 
Windward Symmetry Plane of an Axisymmetric Body at Angle of Attack 
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of the inviscid flow which crosses the separating line between locations a and b is equated 
to the flow which enters the boundary layer between locations a and b, the following 
equation results: 

»' If ty« VE + 
1 

/ 

P"' Ü' F3 dc 

«b 

F2 j p' u' h3 ds 

5=5. 

?£ 

p* u* dy 

«b 

'Sä 

u* dy 

5=5; 

-* 3v* .-r- 
P* ^- dy h, d5 

(27) 

The prime superscript refers to quantities associated with the boundary-layer flow, and 
the asterisk superscript refers to quantities in the inviscid flow field. The variable "y is the 
dimensional distance normal to the body surface, and ysg is the value ofy on the inviscid 
separating line along which the boundary-layer outer-edge conditions are taken. 

In treating the problem of streamline swallowing by the boundary layer in the 
windward symmetry plane of a blunt axisymmetric body, Eq. (27) is employed in an 
iteration scheme which results in determining ysg (as a function of £) and the associated 
boundary-layer outer-edge conditions in a manner such that the final solution obtained 
for the boundary-layer equations satisfies Eq. (27). This iteration scheme is described in 
Section III. 

The method which has just been described for determining ysg and the outer-edge 
boundary conditions for the boundary-layer equations is applicable along the entire 
windward symmetry plane; however, since the present investigation is limited to cases 
for which the flow over the spherical nose cap is axisymmetric (with respect to the 
free-stream velocity vector passing through the stagnation point) up to the sphere-aft body 
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tangent point on the windward side, a simpler and more conventional global mass balance 
scheme, as used in Ref. 2, for example, has been used to treat the nose region 
streamline-swallowing problem. This method matches the mass flow in the boundary layer 
to the free-stream mass flow in order to determine the inclination of the bow shock wave 
where a given streamline entering the boundary layer crossed the bow shock wave. This 
information, together with the surface pressure along the body, is sufficient to permit 
the calculation of the outer-edge conditions when streamline swallowing is being considered 
in an axisymmetric flow situation. The details of this procedure are described in Ref. 
2. 

The inviscid flow field data used in this investigation were obtained from results 
of the three-dimensional inviscid flow field calculation method of Ref. 15. This method 
computes the flow field properties at points on lines normal to the body at consecutive 
locations along the body, in equally spaced planes around the body which contain the 
body axis. 

In the neighborhood of the body surface the entropy, density, velocity, etc., but 
not the pressure, computed by methods for inviscid flow, change rapidly in the direction 
normal to the body surface. This is caused by the bow shock wave strength variation 
associated with the different streamlines in this region. This region of large gradients in 
the direction normal to the body surface is generally referred to as the inviscid "entropy 
layer" because of its relation to the entropy change across the bow shock wave. These 
gradients (or the associated bow shock wave strength variations) are, of course, the origin 
of the streamline-swallowing influences on boundary-layer data. 

SECTION III 
NUMERICAL SOLUTION METHOD 

The numerical scheme used to solve the coupled nonlinear second-order partial 
differential Eqs. (7), (9), and (11), and the method used to determine the outer-edge 
boundary conditions through the treatment of the streamline-swallowing phenomenon are 
presented in this section. The body under consideration is a spherically blunted 
axisymmetric body with the flow in the windward plane of symmetry being treated. 
Basically, Eqs. (7), (9), and (11) are replaced by a set of consistent linearized algebraic 
equations. This set is of tridiagonal form and is solved by means of an especially efficient 
algorithm. The finite-difference scheme used is an implicit one, chosen because of the 
lack of problems with stability and mesh size, as opposed to explicit schemes. 

The derivatives with respect to £ are replaced by a finite-difference formulation which 
follows that introduced by Crank and Nicholson (Ref. 16). The set of finite-difference 
equations which is developed is uniformly valid to second-order in the mesh spacing of 
the finite-difference grid. In general, the a-terms given in Eqs. (8), (10), and (12) are 
assumed to be known. This results in the uncoupling and linearization of the set of 
equations which must be solved. This assumption is removed by recalculating the a-terms 
in an iteration on the solution to the set of finite-difference equations. In addition to 

18 



AEDC-TR-73-166 

this iteration, there is a second iteration involved in determining the outer-edge boundary 
conditions through the mass-balance treatment of the streamline-swallowing phenomenon. 
Figure 5 shows these iteration procedures in a simplified flow chart of the digital computer 
program used to solve the finite-difference equations at a general point on the body. All 
computations made in this investigation were performed on a Control Data Corporation 
Model 1604B digital computer. 

Apply Streamline-Swallowing 
Mass Balance 

Evaluate a-Terms and Solve 
Finite-Difference Equations 

Fig. 5  Simplified Flow Diagram for Solution at a General Station 

The explicit form of the coordinate system and the metric coefficients used may 
be described with reference to Fig. 6. The spherical nose cap is tangent to the axisymmetric 
aft body, with 6C being the body slope with respect to the axis of symmetry at the 
tangency. The coordinate ? is normal to the body surface and £ is along the windward 
symmetry line of the body surface. Figure 6 actually represents two coordinate systems 
in that for the spherical nose cap n is the angular displacement from the windward 
symmetry plane about an axis containing the stagnation point and the center of the sphere, 
while for the aft body 17 is the angular displacement from the windward symmetry plane 
about the body axis. 
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i)  (for Aft Body) 

Fig. 6  Coordinate System 

If the reference length L is defined to be the nose radius Rn, then for the nose 
region the metric coefficients h\ ahd I12 are 

h1   =  1.0 

h2 = sin e (28) 

The appearance of the group Z2/h2 in the AX coefficients makes the choice Z2 = sin 
£ attractive; however, since $ is proportional to Z over I13, the selection of Z2 = sin 
% would require 113 to be zero at £ equal to zero in order to obtain a nonzero $. This 
situation makes the choice Z = 1.0 more reasonable and, in fact, the AX terms involving 
Z2/h2 lead to no difficulties even when h.2 = 0 at £ = 0. 

For £ greater than 7r/2 - 6C -a, i.e., past the tangent point, it is convenient to continue 
using L = Rn and Z = 1.0. This leads to the following forms for hi and h.2 for the 
aft body 

h1   -   1.0 

h2 = r/,Rn  s    r (29) 

where r is the local radius of the body. 
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The use of two different coordinate systems causes no difficulty, since the overall 
problem is treated in three phases. First, the boundary-layer problem reduces to a two-point 
boundary-value problem (with independent variable f) at the stagnation point; second, 
the boundary-layer flow over the sphere is axisymmetric and the crossflow momentum 
equation need not be solved in this region; finally, the full three-dimensional boundary 
layer must be solved past the tangency point. 

Since the governing equations are parabolic in the £ direction, the entire solution 
can be obtained by a marching technique, with the results from each region providing 
the beginning data for the solution in the succeeding region. The following subsections 
describe the method of solution used for the governing equations (a) at £ = 0, the stagnation 
point, (b) for £ less than 7r/2 - 0C - a, on the sphere, and (c) for £ greater than TT/2 

- 0C - a, on the aft body, and the final subsection of this section describes the application 
of the mass-balance scheme described in the previous section. 

3.1    STAGNATION  POINT SOLUTION 

At the stagnation point (£ = 0) and on the spherical nose region where the flow 
is axisymmetric, only the longitudinal momentum equation and the energy equation need 
to be solved, since the crossflow velocity is everywhere zero. Because of this, AX(9), 
AX(10), AX(11), and AX(12) are not needed since they appear only in the crossflow 
momentum equation. At the stagnation point the remaining AX terms have the following 
forms: 

AX(1)   =0 

AX(2)   = 0 

v 3ue 
AX(3)   =^r2p^ 

AX(4)   =  0 

M<«  =^T  Par 

AX(6)   =   0 

AX(7)   =  0 

AX{8)   = iZ 

AX (13)   =  0 

AX (14)   =  0 (30) 
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In obtaining these forms L'Hospital's rule hap been utilized extensively, together with the 
fact that the derivatives with respect to 17 which appear are zero everywhere on the spherical 
nose. Although not rigorously correct, it has been assumed that 3ue/3£ at the stagnation 
point can be evaluated using Euler's equation 

3U£ 1 IE 

to obtain 3ue/3£ as 

e   3£ 

at the stagnation point. This is equivalent to neglecting the effects of streamline swallowing 
on 3uc/3£ at the stagnation point, although certain concessions, mentioned later, are made 
to streamline-swallowing influences at £ = 0. The values used for pe and p at the stagnation 
point were those corresponding to stagnation conditions behind a normal shock in the 
freestream. The second derivative of p with respect to £ was obtained by a least squares 
curve fit of the pressure data obtained from the method of Ref. 15. Specifically, the 
coefficient m in 

h-o 
= cos" 5 

was determined, and the second derivative of this expression used for the required second 
derivative. (A value of m = 2 corresponds to the classical Newtonian approximation.) 

Introducing the AX terms given in Eq. (30) into the boundary-layer equations as 
given in Eqs. (7), (8), (11), and (12) yields the following general form for the governing 
equations at % = 0, where X represents * or 0. 

3   X   ,     Q       3X   ■ — n 
^2+     Xlä?+°X3-° (31) 

where 

aAl = AX(5) Hi- + AX(3) H l*l *2T 

a*3=w{AX<3^ + '^5)[f 3C - 25 

2    . 

V       35 
- AX(8) I   fK. 

U     3? 
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aer^-|f+AX(5)HPnc2 + AX(8)-Ä 

- 1     ifL 

«93 = ° <32> 

The set of equations represented by Eq. (31) is a set of coupled, nonlinear, 
second-order ordinary differential equations. The independent variable is ?, and the primary 
dependent variables are 4> and 6, with boundary conditions known at f = 0 and f = 
1.0. 

In order to cast Eq. (31) into an appropriate finite-difference form, a grid is established 
which divides the region from f = 0 to f = 1 into NZ - 1 equal increments with NZ 
grid points. At each interior point finite-difference forms for the first and second derivatives 
with respect to f are obtained from Taylor series truncation as 

X-xi  - X 
ML - H^1 ♦ °<-2> 

I7)n
= —I? + °(^> (33) 

where Af = 1/(NZ-1), and 0(Af2) means that the lowest order terms which have been 
neglected in the Taylor series development are of the form Af2 times some quantity which 
is independent of Af. The subscript n denotes the grid point under consideration, where 
n = 1  refers to f = 0 and n = NZ refers to f =  1. 

The resulting finite-difference equivalent of Eq. (31) is 

Xn = AX,n Xn+1   + BX,n Xn-1   + CX,n (34) 

The explicit forms of A, B, and C are 

.       _ 2 * "XI,n ^ AX,n " i  

q       - 2 ~ °X1 .n ** 5x,n r2— 

aX3 n A?2 

CX,n " -^  <35> 
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In the evaluation of the finite-difference forms of the a-terms, all of the quantities 
involved are taken from an initial approximation or the previous iteration, and may, 
therefore, be considered known. The quantities involved in the derivatives in Eq. (31) 
are treated as unknowns and ultimately appear as the unknowns in Eq. (34). 

An equation of the form of Eq. (34) is written for each value of n between 1 and 
NZ, assuming that $ and 6 are known at ? = 0 and f = 1; however, for n = 2 the 
coefficients so determined for the <£ equation must be modified to take into account 
the surface boundary condition on 3> given by Eq. (25). For zero surface mass transfer, 
the boundary condition reduces to 

If) - «<«>(*) (36, 

Applying a finite-difference relation of 0(A?2) accuracy to Eq. (36) yields 

Vf   ASAX(8)   U\ +£   *2-l»3 (37) 

where the subscripts represent the grid locations, with the subscript "1" being the node 
on the surface. From Eq. (34) 

*9 a A! o    *o + Bt        *i   + C+ (38) 2       *,2     3       «j2      1        *,2 

where the plus superscripts refer to forms obtained assuming <&i to be known. Eliminating 
4>i from Eqs. (37) and (38) yields the coefficients which may be applied to take into 
account the surface derivative boundary condition on *, 

A+ IR+ 
A       _ A»,2 - ? B+.2 

♦ .2 4    + 
1 " I B*,2 

B*,2 = ° 

C*,2 

-|ACAX(8)(^=OB;>2 + C;>2 

1 -4B+ 

3L*,2 (39) 
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Equation (26) yields an outer-edge boundary condition on <£ of 4> = 0 if 
streamline-swallowing influences are neglected; however, this is not the case when streamline 
swallowing is being considered. Since no reasonable way presents itself for the 
determination of 3> at f = 1, £ = 0 when streamline swallowing is being considered, the 
value of $ used in these calculations was determined on the basis of experience. Although 
the value chosen had no significant effect on the stagnation point solution obtained, it 
was necessary to choose a value which was continuous with that determined for use in 
the solution at succeeding £ locations on the spherical nose. The boundary conditions 
on 6 are those given in Eq. (24). With the introduction of Eq. (39) and the boundary 
conditions just mentioned, the two sets of equations represented by Eq. (34) may be 
solved for the values of 4> and 0 for 2 < n < NZ - 1. The value of <t>i can be determined 
from^Eq. (37) after the values of 4>2 and $3 are found. The value used for 4>i where 
it appears on the right hand side of Eq. (37) was that from the previous iteration. 

The solution of the two sets of equations of the form of Eq. (34) was performed 
by the standard methods for linear tridiagonal algebraic systems. The particular form of 
Eq. (34) is that used by Patankar and Spalding, Ref. 10, and it has the advantage of 
requiring less computer storage than forms which involve four coefficient terms rather 
than three. Knowing the values of the dependent variables at n = 1 and n = NZ 
(corresponding to f = 0 and f = 1, respectively) except for «t>i, which need not be known 
according to the treatment given previously, each of the sets of equations represented 
by Eq. (34) may be solved for X2 through XNZ.!   by applying 

Xn ■ Pn Xn+1 ♦ Qn 

where 

D   - AX.n 

Q    = ?X»n
B

QnV CX>" n     1 - BX,n Vl 

with 

p2 " AXf2 

Q2 = Bx>2 *] + C2 (40) 

The set of P's and Q's can be determined consecutively from n = 2 through n = NZ-1, 
and the set of values of Xn may be determined beginning with n = NZ - 1 and proceeding 
to n = 2. The procedure indicated by Eq. (40) may be considered a special case of the 
Gaussian elimination procedure. 
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After solving the equations represented by Eq. (34), the a-terms are recomputed, 
using the results of the solution, and the equations are solved again. This procedure is 
repeated until the solution converges, i.e., until the difference between successive solutions 
is sufficiently small. 

3.2    SOLUTION  FOR THE SPHERICAL NOSE REGION 

On the spherical nose cap where the flow is axisymmetric, it is necessary to solve 
only the longitudinal momentum equation and the energy equation. The stagnation point 
solution, obtained as described in the previous subsection, provides initial data for a 
"marching" scheme which solves the governing equations at successively greater values 
of £ up to and including the sphere-aft body tangent point. If the outer-edge boundary 
conditions are taken to be the inviscid surface data, then solutions of the classical type 
are obtained. 

On the windward symmetry line of the spherical nose cap the required AX coefficients 
have the following forms 

AX (1)   = -X- up 
Y-l     e 

AX(2)   =  0 

AX(4)   =  0 

AX 
3U 

«»-iW 
AX(6) =  0 

AX (7) =  0 

AX(8) _ 1      3£ 

AX (13) «e2 

= fie" 

AX (14) = 0 (41) 
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As at the stagnation point, AX(9), AX(10),, AX(ll), and AX(12) are not needed since 
they appear only in the crossflow momentum equation. 

The introduction of Eq. (41) into Eqs. (7), (8), (11), and (12) yields the following 
general form for the governing equations on the spherical nose region 

32X 

i? 
+ °X1 f£ +  °X3 + °X4 f£   = ° (42) 

where X represents <I> or 0. 

The required a terms reduce to the following forms 

o#1  - AX(5) H5?. + AX(8) K 

a»3 "fe<AX(l) *T [u   35       T 95 + AX(3)5 

+ AX(B)[.ft.i|f*i{l]-«(B)Ift} 

a*4 = - AX(1) 4- 

'el 

63 

. (1-Pr)   3* 
* 3? 

1    3Pr 
PF3C + a*l Pr 

AX(13)  (1-Pr)   jl + ff|J   +AX(13)    fc   ||n 

a64 8 %4 
Pr 

(43) 

In order to numerically treat Eq. (42), a finite-difference grid is established over 
the region 0 < £ < TT/2 - a - 0G, if = 0, 0 < f < 1. The grid has uniform step sizes 
in both the £ and f directions, although a constant step size in only f is required for 
the finite-difference scheme which is used. The scheme which is used employs the known 
data at a given value of £ in determining the solution at the succeeding £-grid location. 
If the solution is known at the typical £ location indicated by the subscript i=l and 
is to be found at the £ location indicated by i=2, where Xy indicates the value of the 
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variable X at the % location i and the f-grid location j, then the finite-difference expressions 
needed to cast Eq. (42) into finite-difference form at the point (0,n) indicated in Fig. 
7 are the following 

»o,,-Xl'";'2'"t0"2' 

\vt\       _ x1,n+1 + x2,n+1 - x1,n-1 - x2,n-1    + 0(A2j 

0,n 

(a2x\      _ x1,n+1 + x2,n+1 - 2X1,n - 2X2,n + X1,n-1 + x2,n-1 

■3c 
0,n 

+ OU2) 

2A?' 

(44) 

1,  n + 1 

I 
1,   D   - 

,  n + 1 

2,  n 

,  n - 1 

Fig. 7  Typical Section of Finite-Difference Grid for 
0 < £ < jr/2 - a - 0e 
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where Af is described previously, A£ = (ir/2-a-0c)/(NSPH-l), and NSPH-1 is the number 
of £ increments between the stagnation point and the tangency point. In Eq. (44), 0(A2) 
implies that the lowest order terms which have been neglected are of the form of a 
second-order term in A£ or AJ" times some quantity which is independent of the mesh 
spacing. The forms given in Eq. (44) are consistent with those of Crank and Nicholson 
(Ref. 16), and their introduction into Eq. (42) yields the following general form for the 
corresponding finite-difference equation 

X 2,n AXfn 
X2,n+1   + BX,n X2,n-1   + CX,n (45) 

where A, B, and C are evaluated at (0,n). The explicit forms of A, B, and C are 

Xn 
_   2W 

AC 

aXl 
4A 5 

aX4 
AC 

}X,n 

AC' 

aXl 
41?" 
aX4 
AC 

'X,n 

AC 
X4 

AC 

ll.n i A? 

aX4 
AC 

+ X l,n+l + X l,n-l 

aXl 
*Ä7 

+ a X3 
(46) 

For X equal to each of * and 9 an equation of the form of Eq. (45) can be written 
for 1 < n < NZ, where the surface boundary condition on * is treated as discussed 
previously. The outer boundary condition on 4> is discussed in the last part of this section. 
The boundary conditions on 6 are as given in Eq. (24). The method used for the 
determination of the outer-edge data required for the AX coefficients is discussed in the 
last subsection of this section. These coefficients are evaluated at £ = (£j + %-i)\1. The 
a terms appearing in Eq. (46) are evaluated at the point (0,n) using the forms given in 
Eq. (44). 
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Generally, all of the data required in the a terms are treated as known, using initial 
approximations or results from the previous iteration. Thus, the two sets of equations 
represented by Eq. (45) can be solved by the application of Eq. (40). The iteration scheme 
previously described is used to eliminate the assumption made concerning the a terms. 
Using the solution obtained at the stagnation point as the initial known set of data, the 
solution method may be applied at consecutively increasing values of £, with each solution 
obtained providing the known solution for the next step. The solution obtained at the 
sphere-aft body tangency is used to provide the initial data for continuing the solution 
on the aft body, as described in the next subsection. 

3.3    SOLUTION FOR THE AFT BODY 

On the axisymmetric aft body the coordinate system changes so that n is measured 
about the body axis of symmetry. This was discussed previously in connection with Fig. 
6. Also, on the aft body the crossflow momentum equation must be considered since 
the flow is not axisymmetric past the tangency location. 

The AX coefficients for the windward symmetry plane of the aft body take the 
following forms 

AX(1)   - Jy   Uep 

AX (2)   =  0 

n,   „   v.   L 3Ue x       ap . P"e    ar \ (3) =7=T (p ir+ue H +~ n) AX 

v 9UP 

AX(6)   =  0 

AX{7)   -   0 

AX(3) 

AX(9)   =  0 

AXdO)   -J^v      [I-   (3/^4     ff] 
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M(11> m$T   \w 

3Vp 
AX(12)   =F   ^f/   ^ = i ii 

AX (13)   = ueVHe 

AX (14)   =  0 (47) 

Thus, for £ > TT/2 - a - 0Cj t\ = 0, the governing equations have the general form 

32X 
7?      ~AI   9? 

+ «XI I? + aX2x + aX3 + °X4 If = 0 

where X represents 4>, G. or 6. The a terms take on the following forms 

(48) 

v = 0 

/ r2 \ 
AX(5) 5-   + AX(8) 

+ AX(4)G + AX(5) (-2? 

+ AX(3)c 

£ !f + r!?i-AX(8^ M   35 J 

«$4 

aGl 

aG2 

°G3 

- AX(1)H- 

- AX(10) ü§- - AX(ll) vG 

- - AX(12) JL. 
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aG4 " °*4 

„  = O-Pr) 3*  1  3Pr , ael  —* iz ~ P7 TT    a*l 

ae2 = 0 

Pr 

ae3 = -AX(13)(l-Pr)[l+J||)  +AX(13)^|f 

a94 s a*4 Pr (49) 

The finite-difference treatment of Eq. (48) is essentially the same as that used for 
Eq. (42) on the spherical nose. The same finite-difference grid indicated in Fig. 7 can 
be used, and the basic finite-difference relations given in Eq. (44) are applicable. Application 
of these finite-difference relations to Eq. (48) yields the general form for the corresponding 
finite-difference equation as 

X- - A + Bv -  X- +  C, 2,n " AX,n A2,n+1   T °X,n A2,n-1   T ^X#n (50) 

where 

Xn JL /J_+   51] 
(.n   U«2       ^l 

XX1 
X'n_DM   IS?"   W 

C
X,n = AX,n xl,n+l + Bx,n Xl ,n-l 

'X,n 

*X2       °X4       1 
'1 ,n     2 AC M 

,   +   a 

2 X3 

where 

i       - J_    Ü2.    "X4 
JX,n ~ Lj2~   2   "as (51) 
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The equations represented by Eq. (50) are solved for X2>n (1 < n < NZ) by the 
application of Eq. (40). The a terms in Eq. (51) are evaluated at the point (0,n) indicated 
in Fig. 7 through the use of Eq. (44). The a terms are treated through the iteration 
scheme described previously. 

The boundary conditions on G and 0 are those given in Eq. (24), and the surface 
boundary condition on <£ is treated as discussed in connection with Eq. (36). 

The method used to determine outer-edge value of $ and the values of ue, 3ve/37j, 
etc., is discussed in the following section. Basically, the location of the inviscid separating 
line is initially approximated in some manner, and the necessary outer-edge conditions 
determined. The boundary-layer equations are then solved, and that solution used to 
determine again the location of the inviscid separating line and the concomitant outer-edge 
conditions. This procedure is repeated until a converged value is obtained for the location 
of the inviscid separating surface. 

3.4    NUMERICAL TREATMENT OF STREAMLINE SWALLOWING 

In Subsection 2.4 a mass balance scheme is presented which allows the boundary-layer 
outer-edge conditions to be determined in a manner which considers the entrainment of 
the inviscid flow by the boundary layer. The crux of the scheme is in the determination 
of the height above the body surface of the line in the inviscid flow field which separates 
that part of the inviscid flow which is entrained by the boundary layer from that which 
is not entrained by the boundary layer. An approach is described which is applicable 
along the entire windward symmetry plane; however, a simpler method is discussed for 
use over the spherical nose region where the flow is axisymmetric. 

The global mass-balance method used to treat the streamline-swallowing phenomenon 
in the axisymmetric flow region was described generally in Subsection 2.4, and has been 
described in detail in many other reports (for example, Refs. 1, 2, and 3). In the present 
formulation, however, there is one consideration not usually treated elsewhere. This is, 
that in order to evaluate the outer-edge boundary condition to be applied to <&, as given 
by Eq^ (26), a value of du/dy is required. The value used is essentially the value of du/dy 
in the inviscid flow field on the inviscid separating line. In the axisymmetric flow region 
this has been done by considering the numerically evaluated velocity gradient between 
two closely spaced streamlines, with one being that crossing the inviscid separating surface 
at the given value of £ and the other slightly displaced from the first. 

The specific inviscid flow field data used in determining the outer-edge conditions 
over the aft body (obtained using the method of Ref. 15) are: (a) u, p, and 3V/3T7 

as 

functions of y/Rn (at a series of values of y/Rn, beginning with the body and ending 
with the shock wave) at a series of discrete consecutive values of £, beginning at the 
tangency point, and (b) p and 32p/3?j2 as functions of \ only, at the same % locations 
as in (a). The method of solution for axisymmetric flow is continued up to and including 
the tangency location; beyond this location the three-dimensional nature of the flow must 
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be considered. The value of ysfi at the tangency location can be determined from knowing 
the mass flow in the boundary layer at that point from the axisymmetric region solution 
and finding the value of ysj2 which matches the inviscid mass flow up to that height 
to the boundary mass flow. This quantity is needed in order to proceed down the body 
with the streamline-swallowing calculations. 

In applying Eq. (27) to determine the outer-edge conditions at % = &,, where ysg 
and the boundary-layer solution at £ = {fa have already been obtained, the first step is 
to assume some approximate value of ysg at % = &> (see Fig. 4 for £a and £b). This 
value allows the necessary outer-edge conditions to be determined from the inviscid 
flow field data, and the boundary-layer equations can then be solved. Having a solution 
to the boundary-layer equations at £ = £b, Eq. (27) can be applied to determine a new 
value of ysg at (• = £t>- This is used to obtain new outer-edge conditions, etc., and the 
entire procedure is repeated until ysg at £ = &> converges to the desired degree. 

Equation (27) is treated numerically by using a straightforward trapezoidal rule 
integration for the single integrals, and the double integrals are treated similarly as 

f(x,Odx   gU)<te 

a     o 

5b 

B ja+Jb_  f    gU) dc 

J5a 
(52) 

where 

ja = 

X 

f f(x, 

Jb = 

5) dx 

5 =5S 

f f(x, 5) dx 

5= 5. 
(53) 
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Since g(£) in the integral on the right-hand side of Eq. (52) is just hi, this integral 
can be evaluated exactly; the integrals in Eq. (53) are treated by trapezoidal rule integration. 
After being operated on in the manner just discussed, Eq. (27) has in it two integrals 
of the form 

f 
I        dy 

?=5K (54) 

If a solution to the boundary-layer equations is available at &>> then all of the terms 
in Eq. (27) can be evaluated except those of the form of Eq. (54), where ys£ at £b 
is not known. These integrals can be evaluated as a function of y at ft,, and that value 
of y which satisfies Eq. (27) is the value of ysfi at &> which can be used to continue 
the streamline-swallowing iteration cycle. 

In developing the nondimensional forms of the governing boundary-layer equations, 
the Reynolds number Re was eliminated as an explicit parameter, and the resulting partial 
differential equations were independent of the value of Re. If the boundary conditions 
and the auxiliary relations (equation of state, viscosity law, etc.) are also independent 
of Re, then the resulting solutions of the boundary-layer equations are independent of 
Re. This situation occurs for the case of laminar boundary-layer flow when the normal 
shock or inviscid body surface conditions are used as the outer-boundary conditions (this 
is the classical, or at least more conventional, method of treating the outer-boundary 
conditions). For turbulent flow, the transport laws used herein are not independent of 
Re, and the resulting solutions to the boundary-layer equations are, independent of 
streamline-swallowing considerations, functions of Re. When streamline swallowing is 
considered, the outer-edge conditions and the resulting solutions to the boundary-layer 
equations are dependent on the value of Re, even for laminar flow. 

SECTION IV 
RESULTS OF CALCULATIONS 

In this section are presented the results of numerical experiments concerning the 
behavior of the solution method described in the previous section and comparisons of 
results from the present method with experimental data and the results of other methods 
of computation. 

4.1    NUMERICAL EXPERIMENTS 

A series of calculations was performed to investigate grid spacing, convergence criteria, 
and other factors involved in applying the finite-difference solution technique described 

35 



AEDC-TR-73-166 

in Section III. The results of the calculations made in this investigation were augmented 
by the results of similar considerations described in Ref. 4. 

It was determined that a practical value for the number of J" grid lines was 51, yielding 
a value of A? = 0.02. Typically, 50 to 100 constant A£ steps were used between the 
stagnation point and the tangency location. Beyond the tangency location, the £ step 
was gradually increased (with {•) to some value and then held constant so that at a value 
of (• = 20; for example, a A£ of 0.5 was reached, and A| was held constant beyond 
that £ location. 

The convergence of the iteration resulting from the linearization involving the a terms 
was determined by testing the change in the solution between successive iterations. The 
iteration was deemed sufficiently converged when the surface value of 3> varied less than 
0.01 percent between successive iterations. 

The convergence of the iteration used for the determination of the height of the 
inviscid separating surface above the body surface was determined through a comparison 
of the values of the height of the inviscid separating surface obtained from successive 
iterations. This iteration was deemed to be sufficiently converged when successive values 
differed by no more than 0.5 percent. 

Following experience obtained in the investigation reported in Ref. 4, a 
straightforward "bootstrap" iteration scheme was not used in solving the boundary-layer 
equations. Instead, at each stage in the iteration procedure, the solution obtained was 
weighted with the results from the previous iteration before proceeding with the iteration. 
This treatment served to stabilize the iteration procedure, especially at the stagnation point. 

4.2    COMPARISONS WITH EXPERIMENT AND OTHER CALCULATIONS 

A preliminary test of the present method was to compare results with calculations 
made using the first-order Levy-Lees variables method presented in Ref. 17 for the 
treatment of laminar boundary-layer flow. The particular case treated was that of a 9-deg 
sphere-cone at zero incidence in a Mach 10.9 flow. The value of 0 at the body surface 
was 0.25, and a value of Re = 1.81 x 106 was used, although, since these test calculations 
omitted any streamline-swallowing influences, the results presented in similarity form in 
Figs. 8 and 9 are independent of the value of Re. 

Figure 8 shows comparisons of the heat-transfer and skin friction distributions 
obtained by the present method with results obtained by the method of Ref. 17. The 
results from the two methods agree quite well over the entire length of body considered. 
Figure 9 shows comparisons of the velocity and total enthalpy profiles computed by the 
two methods at a value of £ = 2.5. This figure shows excellent agreement between the 
results of the two methods. (In these and succeeding figures, £ is the surface distance 
divided by the nose radius.) 
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Fig. 8 Heat-Transer and Skin Friction Distributions on a 9-deg Sphere-Cone at Mach 10.9 

±JK 

Fig. 9 Velocity and Total Enthalpy Profiles at £ = 2.5 on a 9-deg Sphere-Cone at Mach 10.9 
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Figures 10 and 11 show comparisons of Stanton number distributions computed by 
the present method with experimental data reported in Ref. 18 for laminar boundary-layer 
flow over a 15-deg sphere-cone in a Mach 10.6 freestream. The value of 0W is 0.27 and 
the angle of attack is 10 deg for both cases. 

0.005 

0.004 

-at 

0.003 

0.003 

Experimental Data, Ref. 

'Calculated, with Streamline 
Swallowing 

Laminar Boundary Layer 

10 15 20 

Fig. 10  Heat-Transfer Distribution on a 15-deg Sphere-Cone in a Mach 10.6 Flow 
at a = 10 deg and Re = 1.1 x 10s 
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Fig. 11   Heat-Transfer Distribution on a 15-deg Sphere-Cone at 
a = 10 deg in a Mach 10.6 Flow with Re = 3.75 x 10" 

38 



AEDC-TR-73-166 

Figure 10 shows results for a value of Re = 1.1 x 10s. The calculation results shown 
in Fig. 10 are based on including streamline-swallowing influences in the calculations. There 
is reasonably good agreement between the computed data and the experimental data up 
to a value of £ of about 10. Beyond £ = 10, the experimental data appear to indicate 
the onset of boundary-layer transition to turbulent flow. The relative maximum in the 
data at a value of £ of approximately S.S appears in both the computed results and in 
the experimental data and can be related to the maximum (with respect to £) of 92p/d7?2 

which occurs there. It is interesting to note that, although the boundary-layer flow and 
the heat-transfer rate must depend on the value of p, the maximum value of p in the 
recompression region occurs considerably past the maximum heating location. 

Figure 11 shows a comparison of computed Stanton number distributions with 
experimental data for a value of Re = 3.75 x 104. These results show a reasonable agreement 
between the experimental data and the results of calculations neglecting streamline 
swallowing, with the results of calculations including streamline swallowing falling some 
8 percent below the experimental data and the other computed results near the end of 
the body considered. No determination has been made concerning the reason for this 
discrepancy. 

Figure 12 shows comparisons of computed Stanton number distributions with 
experimental data for the case of a 7.2-deg sphere-cone at a = 4 deg in a Mach 8 flow. 
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Fig. 12  Heat-Transfer Distribution on a 7.2-deg Sphere-Cone 
in a Mach 8 Flow at a = 4 deg and Re = 34467 
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The flow undergoes transition from laminar to turbulent flow between £ = 125 and £ 
= 200. The value of Re for this case is 34467, and 0W = 0.395. For those regions with 
transitional and turbulent boundary-layer flow, there is reasonably good agreement between 
the experimental data and the Stanton number distribution calculated when 
streamline-swallowing influences were considered. In the turbulent flow region, the results 
computed neglecting streamline swallowing are approximately 30 percent below the 
experimental data. 

The data shown in Fig. 12 for the laminar flow region are similar to those in Fig. 
11 in that the Stanton number computed, including streamline swallowing, lies below that 
computed neglecting streamline swallowing. This is in contrast to the typical result obtained 
at a = 0, where the results computed including streamline-swallowing influences approach 
sharp cone data as £ increases, and he above the results obtained neglecting streamline 
swallowing. One reason for the difference between the results obtained in this investigation 
for a =£ 0 and the typical a = 0 results is that 3V/3T? in the inviscid entropy layer is 
maximum at the body surface, and decreases to the sharp cone level at the outer edge 
of the entropy layer (over the aft part of the body, for, say, £ > 10). Thus, this crossflow 
influence, which is subject to change due to streamline swallowing, actually decreases with 
the consideration of streamline swallowing, and as 3VC/9TJ decreases so does the surface 
heat flux. It is also noteworthy that even though p reaches a value near the sharp cone 
value at £ = 30 and varies little beyond there, 32 p/3r?2 for this sphere-cone case decreases 
to about one-third of the sharp cone value at £ = 200 and increases to only about one-half 
of the sharp cone value at £ = 375. These comments depend, of course, on the validity 
of the inviscid flow field computations, and for this case where the inviscid entropy layer 
is described by only three or four points (in the direction normal to the body surface) 
over the aft part of the body, the validity of the inviscid computations may be suspect. 

Figures 13, 14, and 15 show comparisons of computed and measured Stanton number 
data on 11- and 14-deg sphere-cones in a Mach 8 freestream. Each figure shows the variation 
of St with a at a given £ location. (The £ locations given in the captions of Figs. 13, 
14, and 15 are those in effect at a = 0. Since £ is measured from the stagnation point 
of the flow, the £ value for a fixed point decreases as a increases. The change is only 
-0.35 for a =20 deg). These experimental data were taken in the AEDC/VKF Hypersonic 
Wind Tunnel (B). The turbulent boundary-layer results were obtained with the boundary 
layer tripped at £ locations of approximately 4, 2, and 3, for the data of Figs. 13, 14, 
and 15, respectively. The calculated data for a = 0 were obtained using the method of 
Ref. 3; the calculated data for a > 0 were obtained using the method described in this 
report (calculations were performed for a = 5, 10, 15, and 20 deg). All of the calculations 
included the influences of streamline swallowing on the outer-edge boundary conditions, 
although on these relatively short bodies these effects were not strong. The agreement 
between the calculations and the experimental data is quite good in each of Figs. 13, 
14, and 15 for both the laminar and turbulent flow cases, and for angles of attack up 
to almost twice the cone half-angle, a condition for which crossflow influences should 
be strong. 
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Fig. 13  Comparisons of Computed and Measured 
Stanton Numbers at £ = 11.9 on an 11-deg 
Sphere-Cone at Mach 8 as a Function of a 
at Re= 1.75 x 1(F 
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Fig. 14  Comparisons of Computed and Measured 
Stanton Numbers at % = 7.5 on an 11-deg 
Sphere-Cone at Mach 8 as a Function of 
a at Re = 2.33 x 10s 
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Fig. 15 Comparisons of Computed and Measured 
Stanton Numbers at £ = 9.3 on a 14-deg 
Sphere-Cone at Mach 8 as a Function of 
a at Re = 1.75 x 106 

SECTION V 
RESULTS AND DISCUSSION 

The three-dimensional compressible boundary-layer equations have been developed 
in a Gocco-variables form for treating the flow in the windward symmetry plane of a 
spherically blunted aximmetric body at angle of attack under hypersonic conditions. 
Through the use of an eddy transport coefficient hypothesis and a streamwise intermittency 
factor, both transitional and fully turbulent boundary layers may be treated, in addition 
to laminar boundary-layer flow. A method was also presented for determining the 
outer-edge boundary conditions to be applied to the boundary-layer equations, through 
a mass flow balance treatment of the boundary-layer entrainment of the inviscid flow 
over the body. A finite-difference technique Was presented for solving the set of governing 
partial differential equations and for treating the streamline-swallowing phenomenon. 

The treatment of the problem was validated by the good agreement obtained between 
results from the present method and both experimental data and results from other methods 
of calculation (at zero angle of attack). Comparisons with experimental data were made 
for both laminar and turbulent boundary-layer flow, and included cases where 
streamline-swallowing effects were large and cases where crossflow influences should be 
strong. 
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Recommended extensions to this investigation include validation at higher Reynolds 
number conditions of the method used to treat the three-dimensional turbulent boundary 
layer, and the consideration of treating, for the three-dimensional case, the entire region 
between the body and the shock wave by a single set of equations which would be valid 
for both the viscous and inviscid flow regions. This latter treatment would implicitly include 
both the streamline-swallowing influences and  boundary-layer displacement influences. 
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