PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

HERCULES, INC.

PREPARED FOR
PICATINNY ARSENAL

AUGUST 1973

DISTRIBUTED BY:

ΑD

in the second

022892

PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

Final Report

APPENDICES FOR VOLUME I

(Unclassified - Department of the Army)

N. W. Steele

J. A. Doyle

M. G. Whippen

August 1973

Prepared for

DEPARTMENT OF THE ARMY PICATINNY ARSENAL Dover, New Jersey 07901

Contract DAAA21-71-C-0193

Reproduced From Best Available Copy

HERCULES INCORPORATED Wilmington, Delaware 19801

Distribution of this document is unlimited

NATIONAL TECHNICAL INFORMATION SERVICE

PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

manners Hattage French

Final Report

APPENDICES FOR VOLUME I

N. W. Steele J. A. Doyle M. G. Whippen

HERCULES INCORPORATED KENVIL, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army position.

TABLE OF CONTENTS

		l'€3€
APPENDIX I	PHASE I INFORMATION (LABORATORY, ENGINEERING, ECONOMIC AND TECHNOLOGY STUDIES)	I-1
	Appendix I-1. Packed Bed Model	I-1
	Appendix I-2. List of Program (Continuous Packed Bed Reactor Model)	I-17
	Appendix I-3. Continuous Stirred Tank Model	I-27
	Appendix I-4. Listing of Program (Continuous Stirred Tank Reactor Model)	I -34
	Appendix I-5. Cost Studies	I-40
	Appendix I-6. Mathematical Reactor Printouts	I- 57
APPENDIX I.	PHASE III, PART 1 (GUANIDINE NITRATE PILOT PLANT OPERATIONS) - FIGURES AND TABLES	II-1
APPENDIX III	PHASE III, PART 2 (RESOLUTION OF CATALYST POISONING PROBLEM) - TABLES	III-1
APPENDIX IV	HAZARD EVALUATION AND RISK CONTROL FOR KENVIL GUANIDINE NITRATE (Reprint of Summary Report)	IV-1
APPENDIX V	LITERATURE SEARCH - RELATED TO PRODUCTION OF GUANIDINE NITRATE FROM UREA	V-1

Preceding page blank

APPENDIX I - PHASE I

LABORATORY, ENGINEERING, ECONOMIC AND TECHNOLOGY STUDIES

Appendix I-l	Packed Bed Model
Appendix I-2	Listing of Program (Continuous Packed Bed Reactor Model)
Appendix I-3	Continuous Stirred Tank Model
Appendix I-4	Listing of Program (Continuous Stirred Tank Reactor Model
Appendix I-5	Cost Studies
Appendix I-6	Mathematical Reactor Printouts

APPENDIX I-1

PACKED BED REACTOR MODEL

In this section, a detailed description of the packed bed reactor model is given. The method of numerical solution of the ordinary and partial differential equations is also treated.

Model Development

The model for the packed bed reactor is based upon material and energy balances for the system. By considering an annular ring of differential size, the following ordinary and partial differential equations for the concentrations and temperature at every point in the reactor may be written:

(6)
$$K = \left[\frac{\partial^2 T}{\partial x^2} + \frac{1}{x^2} \frac{\partial T}{\partial x}\right] - 4 \frac{\partial T}{\partial z} - 4 \frac{\partial T}{\partial z} - 4 \frac{\partial T}{\partial z}$$

$$= H_R \cdot R_{GN} \cdot P_B$$

$$(3) \quad \phi = C_{2} \cdot L' + C_{4} G'$$

(11)
$$\psi = C_1 \cdot \underline{dL'} + C_0 \cdot \underline{dG'}$$

$$\underline{dZ} + C_0 \cdot \underline{dG'}$$

The definition of the variables used in these equations can be found in the List of Symbols included at the end of this section.

Equations (1), (2), and (3) are the material balances for guanidine nitrate, urea, and ammonium nitrate and describe the variation in mole fraction for each component in the axial direction. The mole fractions have been assumed uniform in the radial direction. This is a reasonable assumption in packed bed operations since the catalyst particles contribute to a lateral movement of fluid leading to mixing in the radial direction. In addition, the time associated with convective transport of material in the axial direction will far outweigh any contribution due to radial concentration gradients. The first term on the right-hand-side of Equations (1), (2), and (5) accounts for the production or removal of material by chemical reaction. The rate expressions used here and defined by Equations (7), (8), and (9) are those obtained through the analysis of the kinetic experiments of this project as presented in last month's report. The second term in the material balance equations accounts for the effect of the change in melt volume due to chemical reaction on the variation in mole fraction with axial position. Equation (4) is obtained by summing Equations (1), (2), and (3) and recalling that Equation (12) also applies. Equation (5) describes the rate of production of gas as a function or axial publicion and assumes that the gas is generated only by those reactions that

produce guanidine nitrate, and that an insignificant amount of gas is generated by side reactions. This is in keeping with the experimental results of this project in which no gas other than that going to ammonium carbamate was detected.

Equation (6) is the energy balance for the packed bed reactor and describes both the radial and axial variation in temperature. Axial and radial temperature profiles are important, since the reaction rates are a strong function of temperature. The yields, conversions, and concentration profiles will be directly affected. In addition, the maximum allowable radial temperature difference will determine the maximum diameter of the packed bed reactor.

The first term in Equation (6) accounts for the energy transfer in the radial direction by conduction. All resistances to heat transfer in the radial direction inside the bed are included in the effective thermal conductivity, K_E . These resistances include thermal resistance at the wall, thermal resistance of the particles and of the contact area between the particles, thermal resistance of the liquid and gas between particles, the thermal resistance from the particles to the liquid, thermal resistance from the liquid surrounding the particles to the bulk of the gas, and the thermal resistance of both liquid and gas at rest and in motion. In a system such as the guanidine nitrate system, in which gas is generated continuously along the length of the reactor, the effective thermal

conductivity will vary with axial position. A correlation due to Weekman and Myers (Ref. 4) is used to predict the effective thermal conductivity at each axial position and is discussed below.

The final term of the energy balance is the heat generated by chemical reaction. The heat of reaction and the rate are assumed to be those associated with the quantities nitrate reaction.

To evaluate the reaction rate expressions for use in the material balance equation, the average radial temperature at each axial position was calculated by Equation (13).

The set of boundary conditions necessary for the solution of these equations is:

1. at
$$Z = 0$$

$$x_{GN} = x_{GN}$$

$$x_{U} = x_{U}$$

$$x_{AN} = x_{AN}^{f}$$

$$L = L^{f}$$

$$G = G^{O} = 0$$

$$T(r) = T^{f} \text{ for all } r$$

where superscript f refers to feed conditions.

2. at
$$\mathbf{r} = 0$$

$$\frac{\partial \mathbf{T}}{\partial \mathbf{r}} = 0 \quad \text{for all } \mathbf{Z}$$

3. a. ~ ~ ~ ~ ~

$$2\pi r_T K_E \frac{\partial T}{\partial r} = -U(T_W - T_1) 2\pi r_{iii}$$

for all Z

The presence of the flowing gas phase in the guanidine nitrate system greatly increases the effective thermal conductivity in the packed bed reactor when compared to the effective thermal conductivity that would be expected from the liquid phase alone. The primary effect of the gas is to increase the velocity of the liquid phase. Weekman and Myers (Ref. 4) have proposed and tested the following correlation for predicting the effective thermal conductivity of a packed bed with concurrent gas-liquid flow:

$$\frac{K_{E}}{k_{1}} = \frac{7.03}{k_{1}} + 0.000285 (N_{RE})_{1} (N_{PR})_{1}$$

where (N_{RE}) is the Reynolds number based on the actual cross-section area available for flow:

$$(N_{RE})_1 = D_t L''$$
.

 $R_{\rm L}$ is the fraction of the void volume occupied by the liquid. This definition of Reynolds number follows directly from the liquid mass velocity based on the actual area available for flow of the liquid:

$$L_{ACT} = L$$
 $\in R_L$

Weekman and Myers have tested this correlation for various size spherical packings ranging from 0.149" to 0.255" diameter and over a wide range of

gas and liquid flow rates. They found that this single correlation satisfactorily predicted the thermal behavior of the packed bad. They observed that the amount of heat transferred did not appear to be a function of the tube to particle diameter ratio when this ratio was varied from 11.8 to 20.0. The Reynolds number was therefore based upon the tube diameter. For the Houdry silica beads used in this project, the tube-to-diameter ratio for a 4" column would be approximately 16, which is within the range tested in Ref. 4.

To complete the model, R_L, the fraction of void volume occupied by the liquid must be predicted at all axial positions. This can be done by utilizing the correlation proposed by Larkins et al. (Ref. 3). In this work, they were able to relate the two-phase friction loss for flow of a liquid and gas through a packed bed to the single phase losses and the fraction of the cross-section occupied by the liquid. For a variety of packings and with gas-liquid systems having a wide range of fluid properties, the following equation was found to apply:

$$\log_{10} R_{\rm L} = -0.774 + 0.525 (\log_{10} \chi) - 0.109 (\log_{10} f)^2$$

where

The terms \mathcal{S}_1 and \mathcal{S}_g are the friction losses for the single phase flows of the liquid and cas. These can be predicted by the Ergun equation

(Ref. 1) for pressure drops in packed beds:

$$S \cdot \left(\frac{g_{c} \rho D_{p}}{\mu^{2}}\right) \left(\frac{E}{1-E}\right)^{3} = N_{EE} \left(\times + \beta N_{EE} \right)$$
where
$$N_{EE} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

$$N_{ee} = \sum_{i=1}^{N} \frac{1}{N_{ee}} \left(\times + \beta N_{ee} \right)$$

The ratio of the liquid to gas phase losses will then equal:

Numerical Solution

The mathematical model equations were solved on an EMR 6130 digital computer. The ordinary differential equations, Equations (1) through (5), were integrated by utilizing a fourth-order Runge-Kutta routine (Ref. 2). The energy equation however is a partial differential equation and a finite difference method must be used. A Grank-Nicholson 6-point implicit form (Ref. 2) was utilized in generating the solution to the distributed parameter system. This technique was selected over

the singular explicit methods because of its increased accuracy and because of its property of guaranteeing numerically stable solutions.

The step sizes and mode identifications are defined in Figure

A-1. In using the Crank-Nicholson method, the temperature derivatives

are defined as follows:

$$\frac{\partial T}{\partial z} = \frac{1}{4k} \left[(\overline{I_{n+1,s+1}} - \overline{I_{n-1,s+1}}) + (\overline{I_{n+1,s}} - \overline{I_{n-1,s+1}}) \right]$$

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{2k^2} \left[(\overline{I_{n+1,s+1}} - 2\overline{I_{n,s+1}} + \overline{I_{n-1,s+1}}) + \overline{I_{n+1,s+1}} + \overline{I_{n+1,s+1}} \right]$$

$$T = \frac{1}{4k} \left[(\overline{I_{n+1,s+1}} - 2\overline{I_{n,s+1}} + \overline{I_{n-1,s}}) \right]$$

$$T = \frac{1}{4k} \left[(\overline{I_{n,s+1}} + \overline{I_{n,s}}) + \overline{I_{n-1,s}}) \right]$$

When these difference equations are substituted into Equation (6) and the boundary conditions at $\mathbf{v} = 0$ and $\mathbf{v} = \mathbf{v}_T$ included, a set of tridiagonal linear equations is obtained of the form:

Figure A-1. Description of Nomenclature for Crank-Nicholson Numerical Integration Method

Cn: In+1,5:1 + Bn In,5+1 + An-1 In-1,5+1 = i)m

where,

Cn =
$$\frac{KE}{2h^2}$$
 + $\frac{KE}{4hA}$

$$B_n = -\frac{\cancel{k}}{k^2} - \frac{\cancel{d}}{\cancel{k}} - \frac{\cancel{f}}{\cancel{2}}$$

This tridiagonal matrix set of equations is solved at each axial position by the Thomas (Ref. 2) algorithm.

SYMBOLS FOR

PACKED BED REACTOR MODEL

A = cross-sectional area of the reactor, inches

 C_G = specific heat of the gas, calories/(mole)-(${}^{\circ}$ K)

 $C_{I.}$ = specific heat of the melt, calories/(mole)-(O K)

 D_t = tube diameter, inches

 D_p = diameter of catalyst particle, inches

 $\frac{d(\cdot)}{dZ} = \text{first derivative in the axial direction}$

 E_i = activation energy for component i.

G = molar flow rate of gas, moles/minute

G' = molar flow rate of gas based on the empty tube area, moles/(inch)² - minute.

 H_R = heat of reaction; taken here as the heat of reaction for guanidine nitrate production, calories/mole

 K_E = overall effective thermal conductivity, calories/(min)(in)-($^{\circ}$ K)

 k_i^0 = specific rate constant for the formation of component i, moles/(gram of catalyst) - (minute)

L = molar flow rate of melt, moles/minute

 N_{pR} = Prandtl number

 N_{RE} = Reynolds number

 $R_{T_{i}}$ = fraction of the void volume occupied by the melt.

r = radial position, inches

 r_{pm} = log mean radius = $(r_{OD} - r_{T})/\ln(r_{OD}/r_{T})$

V _ op = outside radius of tube, inches

 $\mathbf{v}_{\mathbf{r}}$ = radius of the reactor tube, inches

 $T = temperature, {}^{O}K$

 T_1 = reference temperature; taken here as the feed temperature, O_{K} .

 T_{avg} = area weighted average radial temperature, ${}^{O}K$

 T_i = jacket temperature, ${}^{\circ}K$

T., = wall temperature, OK

U = overall heat transfer coefficient at wall calories/ $(in^2) - (min) - (^{\circ}C)$

 x_i = mole fraction of component i.

Z = axial position, inches

 ϵ = fraction void space in the bed

= density

B = bulk packing density of catalyst, grams/cu.in.

= viscosity of the liquid

 $\frac{\partial}{\partial a}$ = first partial derivative in the a direction

= change in meltiand gas volume due to chemical reaction = $\frac{\text{cal/min}}{(\ln 3)(O_K)}$

REFERENCES

- 1. Ergun, S., Chem. Eng. Prog., 48, 89-94 (1952)
- 2. Lapidus, L., <u>Digital Computation for Chemical Engineers</u>, McGraw-Hill Book Company, Inc., 1962.
- Larkins, R. P., White, R. R., and D. W. Jeffrey, AIChe Journ.,
 7, 231 (1961).
- 4. Weekman, V. W. and J. E. Myers, AIChE Journ., 11, 13 (1965).
- 5. Terman, G. L., et al., Agr. and Food Chem. 12, 151 (1964)
- 6. Hauck, R. D., and Stephenson, H. F., Agr. and Food Chem. 12, 147 (1964)
- Mechalas, B. J., et al., "A Study of Nitrification and Denitrification", Program #17010DRD, Contract #14-12-498, July, 1970. U. S. Govt. Printing Office.
- 8. Spasskaya, R. I., and Kazarnovskii, S. N., Zh. Prikl. Khim., 35, 1842 (1962), and 34, 3079 (1961).

Appendix I-2. LISTING OF PROGRAM

CONTINUOUS PACKED BED REACTOR MODEL

```
PACKED FED PEACTOR MODEL --- V. J. Chago
       REAL MOLGAS, MULLIO
       DIMENSION CONFUT(500)
       DIMENSION A( 4. A) , H( A) . O( A) . A MUM ( A) . A DENC A)
       DIMENSION AK (6,4), FUNC (6), YY (6)
       DIMENSION YOU ALLY ( ALLYOLD (AL
       PEMERSIAN CAT(S), WM(A)
       PIMENSION WERACLAS
       DIMENSION YWOLKS
       MIMENSION TO1(51), TR2(51)
       BIMENSION OPPINT (IN)
       DIMENSION SAVE (3.80)
      COMMON FREOGRAFREDUS FONSEUS HULKS VOIDS TEMPS AREA SOLANDUS TOPLS
          HR. CML, CMC. TO, MOLGAS, OPART, RISRS, US
       K:1=2
      RENIUM KH
      NN=51
      firlat 1
      C 4(4 = 1 0 . i)
      041 #45.0
      49#28000.n
      PT=5.1416
\Box
      READ IN THE RUNGE-KUTTA "DENER" SOR THE COFFETOTENTS.
      READ (5.1) M
      no tot Isommt*a
      READ (5,100) (ANHM(T), TEL,M)
      READ (5.100) (ADEN([).[=1.4)
  100 FORMAT (HF10.5)
      no ini IMmi. M
  101 A (TROW, TM) = ANUM (Th) /ADFA (TM)
      READ (5,100) (ANUM(1),1=1,4)
      READ (5,100) (ADFN(1), [= 1,0)
      no jos imeiam
  103 6 (14) = 1 MHM (14) / A NEW (14)
      READ (5,100) (ADDM(F), T=1,5)
      READ (5,100) (ADEN(1), [=1,")
      nu 105 1 = 1 ...
 102 C(1M) #ANOM([")/ANF"(Thi)
      READ (5.1) NOAPOS
      FORMAT (110)
      SC#20 * NCARDS
      PEAR (5.2) (COMENT(1).1=1.50)
      FORMAT (2084)
      READ (5.6) H.MINT. MINP. TIME
      FORMAT (F20.10,2110,F20.19)
      READ (5.1) N
      PEAR (5,3) (YO(1),1m1,0)
 3
     FORMAT (4F20.19)
      READ (9,2000) (CAT(1),1=(,5), RULK, VOIO, DPART
2000 FORMAT (544,3F10.5)
     READ (4,2001) DIAM, 0, TO. WI. K2.05
2001 COPMAT (REIOSE)
     FF FO (4.2010) FFFOSS, FSI, FSE UIL, FI
```

```
2010 CUBMAL (ALSO 10)
             -M(3)=80.0
             → **(A) = 60.0
            3 M(5) = 122 a 0
            YO([])#YO(1)+453.6/(YO(3)+x*(3)+YO(4)+x*(3)+YO(*)+x*
             YA(1) = YA(1) / HO.
            4 \text{ MOmYO}(3) \text{ MYO}(1)
            -10=Y0(4) +Y0(1)
            マスレモ人い (アナギ人の(干)
             19270(5)
             TOTAL =0.0
            50 7010 Tabab
JOIN THTAL STOTAL + YO (T) + WM (T)
            DO 2011 1#3,5
70[[ YKD(T)*YD(])*K*(T)/TDT4[
            MOT BASEK2.1*(TEMP+273.0)/14.4
            POLLTO#3.92
            ARPASSIANTAMASSIA.O
            *#175 (6.51) (COMENT(1),1=1.NC)
           FORMAT (1H1, (2Y, 20A4))
            2011年 「FORMAT(71×355473×31日 K - Oだからますが、中で行っつった。 ついがりんじょう しょしょくきょう
         1 TVOTO FRACTION #1,F5.3)
            SPITE (14.2012) DIAM
2012 LORMAT (14, THOS HIAMFTER #1FA, 2, 1 TOOLS SEL
            TEMPERO(6) - 273.0
            WRITE (18.2013) TEMP
SOLA FRANKT (18, FFEFO TOUFRATHEF #1, Fb.) . ( . 1)
            9 2 1 TE (13, 30 10) TE, 61
ROOM FORMAT (18,1) ACKET TEMPERATURE #1, FR. 1,1 C. 1./1.
                INVERSALL HEAT TEAMSFER COFFETSTENT # FFF. 2. ! CM . /Su. 19. - mt - . - C. !
         ント
            Trafe + 273.0
            - RITE (14.2003)
PROBLEM PROBLEM PROBLEM PROBLEM PROBLEM CALLEGE FOR STANDAR SECTION OF THE PROBLEM PRO
                                     - ! TEMPERATORE! / PX_ * TMPHES!.
                 -64, tMOLESZOTO: TEL, 55, tAUDOLI 191, 65, toogal, 24, toogal 11, 1864,
              DALL OF REACTIVE GALLERY BEST OF THE CO. T.
                1.4
                               REAL TAIL
          DEBEORY THE CALLOCATIONS OF BUILDING THE LITTLE CO. TITONS.
           POST FREE
           Y(1) = Y 1(1)
           30 76 1#1,30
           てい もくしょおとしんし
           ブロン(1) *T~1(1)
           TTOTAL #0
           いりに入事はずけ
           15 MOR 1 (M) 4 $73.6
           KRTYK ([4,2037] TIME, C.Y(T), Imlan, 51,6030, 191, 1816
```

```
2004 FORMAT (359.3.27.5(1x.59.4).7X.67.1)
        ITAPF = 0
        ヨカダト まんりえち
        ITAPESTTAPE + 1
        ARTTE (KEE) TTOF. (TRZ(J), Jml, No., NO.()
        P1 #1 _ 0
        RELIDENTA
        SOTTE (KIL) WE PEFFE
        BEGIN THE INTEGRATION.
        TOOUNTED
        TO IS TOTAL #1, MTHE
        no q1 3=1.6
   91
       it) Y=(t) n ln Y
       CALL RUNGE (ASH, C.Y. TIME, H. AKSE (INL. YY, M. ).)
       PKEH
       CALL RADIAL CYTED Y WE THE THE PREPRESE IT . . . . . . .
       TIMESTINE + H
       IF (ITOTAL .FO. HTOP) GO TO 1010
       FETTOTAL .(7. 5) GO TO 1010 1010
       IFCIENDAL . NE. MINTE GO TO 53
       TODGMT#N
 JOHN COUPTAINE
       C\cup A = \{\cup O = A(A) + A(A)\} \setminus A\cup B
       YIEL 9m(Y(5) a Y(1) - 6 Y(0) / (60 - Y(4) a Y(1))
       TEMP# Y(n) # 273.0
       *RITE (11,2014) TIME, ( Y(1), 1 = 1,5), ( - V, Y1E 10, TE-P
       ITAPE STARE + 1
       #RITE (KO) TIME (TR2(J) # (#1 #1 #10 # ) HE()
       ARTTE (KU) REPRESTO
 SOOD FORMAT (18,1182 #1, (10812,4))
  A3
      CHAITTNIE
       nn 8n 1=1.5
C
       IF (DARS (Y(1)) . 1. 1. 1.00+60
                                       . A . 1.
                                              - (A. (C. ((1))) . (1) . 1.03-60)
            GY TO AT
      "BITE (A.RIE
      FORMAT (////
     27/2X, FOAGNITORE OF YOUR AMMRONDAMEN TOP LIMIT OF THE MACHINES TAY
      THE TO MY
 1. ()
     300 A T T 912 1
 15
      CONTRACE
      *PITE (18,2014) FFF DW. (YWO (1), 1 = 3,5)
2015 FORMATCHIY, THELT FEED BATE MISERS AT LOS / HEST
       TIX STEED WETCHT FRACTIONS . AMADUL SM STRATE MIFT. 4.
        138x, THREA mIFT. 4/25x, 16865101 OF GITWATE EIFT. 4)
      PRODERO, 04Y(1)+(Y(3)+WM(3)+Y(4)+XM(4)+Y(5)+XM(5))/455.6
      TOTWOOD
      no 2035 1**,5
      *FRA( (1) #Y( ; ) * . * ( ] )
2 (35 TOT=TOT + 4) PAU(1)
      P7 2040 1=3.5
```

```
TOTY (1) JARTHAR (1) TABRIC ONDS
     WRITE ((H, 2036) PERD, (WEGAR(I), (m5.6)
CARE THREE FOLIANT (14) SELECTION OF THE STEE STEE STEEL STREET SHEET FARRES ARECA ARECA
    ITIONS - AMMO THE HITHATE STEP. 4/41x, FUREA STEP. 1/
      - 25%, GHANIDINE NITEATE #187.41
     PLATERSE VARIET HALLON
     TATH (18.2016) WEAT
POLK PORMATERA, TOTAL CATALYST REIGHT #1, F4, 2, 1 384 /51)
     HYTHE EARFARTIME/(YO(1)+801/1, [O)
     4817F(16,2017) BYTME
2017 FIRMAY(LY, INDATMAL RESTOR (OF TIME #1,F7,2, 1 FIGHES!)
     ARTELLIBAROLIMINOLIBARATOLETO
2015 FORMATELY, "MOLAR VOLUME OF GAS WIF9.2. CO. IL. / S. WYOLE ! / 14. I TOLAK
    TYOLUME OF LIGHTO =1,F6.2,1 CH. IN. /6-"OLF")
     19174 (18,2010) H
2010 FORMAT (14, "INTEGRATION SIED SIZE #1, Fh. 2)
     WRITE(18,2020) FREDE , FGK , FREDU, EU
2020 FIRMATCIX, TRATE CONSTANT FOR 60 - 1/54, TEME OFFICE FACTOR #1812, 4/5x
    INTACTIVATION ENERGY # FIRE 4/1x PRATE CONSTACT FOR ORFA DECIMINATION
    19NIZONA IFREQUENCY FACTOR WIE12.4ZSXAIACTIVATION EXPAGY WIF12.4Z
     PHWR1/5,0
     Ph 74 3=1.6
    (1-1) TAG | 12+H9#(E) TN [QQU
     PRITE (IMATE) (REPRINTITE) TELLS)
                    (1444,//1x, 14187AACE+,28x, 18AB1AL
                                                           TE "PERATURE
    118FS174X, 6(3x, R = 1F7, 3,2x)/)
     AFRIMP KH
     -ハーファー 「エミュ」エルドド
     HEAD (10) TIME, (122(1), Tat, 14, NEPL)
     "FAR (+4) RI .FF(1)
     SAVE(1=1)=TIME
     SAVF (2.11#R)
     SAVE (3.1) #REL TO
     nd 79 faladoannet
    TR2(!) = TH2(!) - 274.0
19
17
     PRITE ([4,7k) TIME, (TC)(1), T#1, '5, NEEL)
    FORMAT (FU. 3. + (F12. 3. 4Y))
1 4
     · witte like onl
    FORMAY (141, 164, TTTMF", 19x, 1911, 15x, 130) INTA
     BO ON TELETANE
    - PITT ((A.97) (SAVE(J.1).J#1.3)
UK
    FORMAT (3F20.4)
1,7
42
    CHATTREE
    F \rightarrow h
```

```
SHIRDHITTS SYST (XY, YY, CO. T. )
   SEAL MAGAS, "HITT
   STARBETON NAC 122 STOLES
    TRAMPINE FOR ONL ARIOR STATES OF THE PROPERTY OF THE WAR THE STATES OF THE WAR AS A STATE OF THE
The Magazine on a tage of BASA PARES AND AREA . S.
   SOUTH SERVICE STATE STAT
   Confainte (or the policy (AA(v)))
   @((n=qpn/**Y/1)*YY/3)
    2 1 m = CD 1 + YY ( / ) + YY ( / 1 ) + + 2
   す 目がじ (1) 立てけるいとこ ちゅうにだか
    FINC(2)=3. 144 - 4411 K +451 A
  1 1 1 1 MI # F 1 1 MI ( 1 ) +
OF FULLS
     £ 4110
```

```
STOREGIETE CONTROL (A. P. C. C. L. T. T. F. W. AND FOR TO A VENEZA CO.
             THE SURPORTINE INTERNATES A SET OF MANT A V REFERENCE THE EXCLATIONS
               OVER OME STEP BY A GENERALIZED EXPLICIT OF GENERALIZED OF BUILD.
               THE RUNGFORUTTA COFFEED FATS NOST OF PROJUCE AND ALL AND A CONNECTABLE
               FOR EVALUATION THE SYMPH FORATTO S.
0
             THE CHAPTER BOARD IN THE PROPERTY TO THE PROPERTY OF A RE-
             A SECOND PROPERTIES OF ACTION OF ACTION OF THIS PROPERTY OF A COMP. FOR A SPECIAL CO.
                   CAR'S.
            THOUTE BLATER (A-A, 0-7)
            ## 1 1 F 1 C 1 1 1 A ( N = 0 ) = 1 ( 0 ) = 1 ( 0 ) = 2 ( 0 ) = 2 ( 0 ) = 2 A ( 0 = 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 ) = 1 ( 0 )
17
            " " FUCE ATHRE
            TO ME WHERE OF PROCESSOR FLARONTIONS IN 1965 OF SEMESTIC FRANCE
\Gamma
            A = APRAY OF STMENSTONE S X 1.
           IN # VECTOR OF PIMERSION ".
            O & VECTOR OF HIMPHSIDS H.
            THE SHOWER OF SYSTEM FOUNTIONS IN ALL INSCOTE
            Y = VECTOR OF MARKETON OF MERPENDE T VALISHED.
            " = INTEGRATION STEP SIZE.
            YIME = INDEPENDENT VARIABLE.
            SET ERAL TIEN, WILLIAM WALLTING WEIGHTSENTATE OF H
                                                                  5 ( S . 2 )
                        C(1) | A(1)
                        n(2) | 1 (2) | 1 |
                        1 (1) 1 (1) 1
                                    1 8(1) - 8(2), , . . . . .
                                                                                                                   . ( ** )
                   order to be
                                 Kow How Pilly ( ) \chi is then \chi \chi ) to \chi in \chi ( \chi is the \chi
                                YO #1 # YIN * 1 11000 (** )
           CALCHLATE THE -15.
           1 1 1 1 1 4
           10 2 11=1.7
           ា នាទីទី១២៣០.២
           10 (15 .00. 1) 30 7) 2
           filetic = 5
           to the parent which the
          ARTHURAL PROPERTY OF STREET
```

FUNDATE THE SYSTEM CHILATTICS. C XXETTME + CITHIAN CALL SYST (XX. YY.F (INC. L.) C 20 4 1 mg , N .\$ AK (IN. IN) SH . FINC (IN) CONTINUE C CALCHIATE THE PROBBICT OF THE KIS AND ATS. C 110 5 15#1 N $n_0 r_{PRH=0.0}$ BB 6 TMRIAM DOTPROMAR(TNate) + H(14) + DOTPRO Y(TM) #Y(15) # HOTPRD C 4411744 F ALTE

```
ROBERTHEON COMMENSATION OF A CREEK A CONTRACT OF THE STOREST CONTRACT OF THE STOREST CONTRACT OF THE CONTRACT 
     HEAL MOLDAS, MILLIE
     9146N&1U4 (414) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*) ***(*)
     DENEMATION XXX (A)
     መንያመጠቀት ያቀደመጡ ያምትይመነያቸው ያደነው እየተለከተከታቸው ነው እንደልቀመችለው ነውቸው PTs
            CLESHED THANGERAF TOWNERS CONTRIBUTED AND SHIP ON
     つつ アーナギしょりだ
7 TREETINETROOMS
     FRANCE FOUNTIONS
     VISL = VISL1 + 2 . 5 1 + 5 . 5
     7150mV1501*2.54*0.6
     2404525.07(00) 445*(6.4)
     GET 1#Y(E)*(*(3)****(3)*Y(3)*X(4)*X(5)**(5)***(5)*/**E*
     GRASav(2)+26.11/ARFA
     3F(10± *PART=3(1)2(V)3(*(1,0=V((1)))
     ったいものまりわんなす。ひょうからノしがすらひゃ()。いっかむすっ))
     TIFF F TO MERFE FOR ( ALDHA 4 IF TANDEL TW) *** HOGE # ( TS) **>
     A KORTH LORGER FORTHON
     CHIESORT (DELLITOZDELGAS)
     TEACHT. F. SC. OF GO TO 5
    41 =1.0
    1.17 717 ~
5 Plan.7/4+0.525+Alagin(CHI)+4.197+(Alligi)(CHI)++2
    51 #10 * `***!
* 1 75 1 1 20 P
    OF KYA'
    ドドレイの乗りするの無信じ キャノ (シキらじゃがり) ニュット )
    COSTRATATION
     1004 = VISL1 + 2 - 42
    BOANIN BUPFARE HIZER IT
    FILK=/.03+2.45F=94+0FL1+02-10 (F+20)
    ト 5 F K <u>w</u> 5 E f K m 1 a 1 4 f N F m 1 4 m / a / a 5 1 m m / a 1
    TETRIA (** SE SYSTE*
     ふいのい無わりようはたましょり(モビスケノダ(い))
    といいまといとひわすし おらしゃといくんしゃり
     - (C) # S(F- ) * Y ( 4 ) * Y ( 3 )
    · シェーベレー・とくろりゃと(4)・・フ
    1 1 = 12 11 + 1-11 | K
    トンさく ひゃんじいゃいけん
    CHIm(U, I *A(I)*U*U*A(S)) ) \ \ i = V
    いっしゃしゃしゅじょ・じょいゅじつ
    ているされなもちじかさいけ デーひとしゃしい
    PIERIJELOATE N-11
    TallNul
    5 5 46 Ja2.94
    ろりいきひりゅとし ひとしくしょりつ
    こにもて1m~とをもベノロハルルフゃかい「ノバトルリストノフ。バ
    れる(1mg)=EFFK/(2。0aのい**2)mFUE*/(3。い*Pい*5))
    ○無じむむ(ま)
```

```
SameEker/(bha45)+bhl/bkmb21/5*!
   ( ) - L ) AA & A
10 DD(J)==T91(J+1)+C=TR1(J)+H=TR1(J=1) ±A+E45
   UB(1)==2.04FEFK/PH**2=PHI/PK=251//.0
   ひひ(1)=2.0=EFFK/PH++2
   0=00(4)
   BE-2. B+EFFK/PH++2+PH1/PK-P51/2.11
   79(1)==TR1(2)+C=TR1(1)+G+RHS
   PATISPHOFF CAT ("No.1)
   RENM=(P2-R1)/ALOG(R2/R1)
   TERM=2.0*PH+HS*R! NM/(FFFK+WAD)
   BR (NN) #= FFFK / PH + + 2 = PH 1 / PK = PS 1 / 2 = 0 = 1 FF + + + (FFFK / (2 = 0 + PH + + 2)
  1+FFFK/(4.0*PH+RAD))
   AA (Num1) mEFFK/0H++2
   PTI(NN) == TR1(NN) = (=FFFK/PH++2+PHI/PK=PSI/2...)
  1 -TR1(NN-1)+(FFFK/PH++2) + RHS
  2-2. 0+TFRM+TC+(FFFK/(2.0+PH++2) + FFFK/(4.0+PH+RAH))
   CALL TRIDAG(AA, BR, CC, DD, NN)
   TO 11 Tal, NN
11 TR2(J)=ND(J)
   SHHENGE
   10 15 1=2,4N
   TAV=(THP(J)+THP(J=1))/2_0
   RANI=PH +FLOAT (1-2)
   WATIZEPHEFF DAT (J-1)
15 SHM#SHM+TAV#FT#(RAD2##Z#WAH[##2]
   XXX(6)=SUM/(PIaRAN2++2)
   RETHAN
   FNN
```

APPENDIX I-3

CONTINUOUS STIRRED TANK MODEL

A detailed description of the continuous stirred tank model is presented in this section. The method of solution of the discrete difference equations is also given.

Model Development

Consider the series of stirred tanks depicted in Figure B-1. The material balances for guanidine nitrate, urea, and ammonium nitrate can be written for the nth tank:

(1)
$$F^{(n)}$$
 $F^{(n)}$ $F^{(n)}$

The notation is defined at the end of this section. Notice that both sides of each equation have been divided by the molar feed rate to the first vessel, F^O , so that the factors $F^{(n)}$, $F^{(n-1)}$, and $W^{(n)}_C$ are all expressed on the same basis of one mole/minute of feed to the first reactor. The rate expressions are given by:

FIGURE B-1 CASCADE OF IN STIRRED TANKS

Wc - grams of catalyst in reacher in

(4)
$$R_{aN} = \frac{1}{N_{u}} \cdot \frac{1}{N_{aN}} \cdot \frac{1}{N_$$

By summing Equations (1), (2), and (3), the following equation relating the flow rates results:

Equations (1) through (7) are solved simultaneously for each tank in sequence.

Numerical Solution

If Equations (5) and (7) are substituted into Equation (2), the following cubic equation results:

 $(1) \left(\frac{kn}{kn} \right)^{3} - \left(\frac{kn}{kn} \right)^{2} - M \frac{kn}{kn} + M \frac{kn}{kn} = 0$ where $M = \frac{f(n)}{kn} \frac{kn}{kn} \cdot \frac{kn}{kn} \cdot \frac{kn}{kn}$ $kn = \frac{f(n)}{kn} \cdot \frac{kn}{kn} \cdot \frac{k$

All terms with superscript (n-1) are known and those terms with superscript (n) are unknown. Therefore, before Equation (8) can be solved for $x_{\rm u}^{(n)}$, an Equation for $x_{\rm AN}^{(n)}$ must be provided in order that M can be specified. By substituting Equations (6) and (4) into Equation (3), the following quadratic expression results:

(a) (Kin) 2 NNAN + PNAN =)

where

$$N = he^{(n)} \frac{(n)}{\log x} \cdot \frac{(n)}{\ln x} + \frac{(n)}{2}$$

$$W_{c}^{(n)} \frac{(n)}{\log x} \left(\frac{(n)}{2} \right)^{2}$$

Equations (8) and (9) are simultaneous functions of the unknown $x_{AN}^{(n)}$ and $x_{u}^{(n)}$. These equations for the nth reactor were solved by the following iterative algorithm:

- 1. Assume a value for x_{AN}^n . A convenient first assumption is $x_{AN}^n = x_{AN}^{(n-1)}$
- 2. Solve the cubic equation, Equation (8), for $x_u^{(n)}$
- 3. Using this value for $x_u^{(n)}$, solve the quadratic equation, Equation (9), for $x_{AN}^{(n)}$

4. Check whether this value of x_{AN} is equal to that assumed in step 1. If it is, the solution for x_{AN} and (n) x_{U} for the nth reactor is complete. If not, repeat this procedure from step 2 using this newly generated value of x_{AN} .

Using this procedure, no convergence difficulties were encountered for any of the cases treated. A listing of the computer program for solving the stirred tank model is included in Appendix I-4.

SYMBOLS

FOR

TIRRED TANK REACTOR MODEL

- E_i = activation energy for component i.
- $F^{(n)}$ = molar flow rate of stream (n) per mole/minute of feed
- k_i^{O} = specific rate constant for the formation of component i, moles/(gram of catalyst)-(minute)
- $R_{i}^{(n)}$ = .ate of formation of component i in reactor (n); moles/(gram of catalyst)-(minute)
- $W_{C}^{(n)}$ = weight of catalyst in reactor (a)
- $x_i^{(n)}$ = mole fraction of component i in stream (n).

APPENDIX I-4. LISTING OF PROGRAM

CONTINUOUS STIRRED TANK REACTOR MODEL

```
CONTINUES STIRRED TANK RESULTS SHIFT ---- 1. C. CO.
                                                              OFFENSION COMENT(60) * CAR(5) * TECR(5) * COT( ) * CAT( )
                                                       ተሄ «ቦርና) » X 18 (ዓ) «ሃይዩይ ከርዓ)» X / TE (ዓ)» (ዓ) (ዓ) » የቀርቀ)
                                                             アルエト エルギリ・ブラ
                                                             Prtrayen.s
                                                               PEAN (O. F) WINDAUKS
                                                             FAD (Q.S) (WCAF (I Y. tel. GIACKS)
                                                             SETU (OF FREMIENAS) DEVENAS
                                                            1 0 = 2 1 + 1 ( A 17 11 5
                                                             2\Gamma\Delta \cap \{0,2\} (0) \cong \Gamma(T), T=1, r(0)
                                                            역FAN(이•2000)(PAT(1)•[#1•[사)•바만[사고본다유나] Y
                                                           WEAR (Gas) (TETO(T) atminute was)
                                                           PEANTO POLOTION ASTUDIANT SUPERFOUNT
                  995 PEAB (9.3.5 18=499) (x0(f).1=1.3) > FF
                                        1 | F ) 2 M A T ( B T 1 0 )
                                        2 102441120441
                                         3 FORMAT (AF20.10)
          2010 100MAT (5A4,3110,5)
          2010 FORMAT(AF20,10)
                                                         PHIATPLETE A OF
                                                        マロレイチョニメビ&T(キョック・6つブ(550(ドッコフジト・1)
                                                             ~~(!)=**!!•!!
                                                         · (12)=60.0
                                                         ~**(3)=122。1
                                                        TOTAL HOLD
                                                         93 K 12135
                                  \leftarrow \neg \neg \neg \neg \neg \land \vdash \Rightarrow \neg \neg \neg \land \vdash \rightarrow \neg \neg \vdash ( \top ) \Rightarrow \neg \vdash ( \top 
                                                       # 1 7 1#1a3
                                    7 - 8 - 14 1 4 4 4 ( 1 ) # 2 4 ( 1 ) / 1 1 1 1 1
                                                     ナドドロ・コンドトログ・チョイムしゃくとつ。ロメオらく。ル)
                                                       Y-7141 = FFFFHM
                                                       Y . 1 ( 1 ) # F F F N W
                                                              with (15,31)(CDMF_{2}(1)_{2})
                          41 F 32M47 ( 1 H ) . ( 2 x . ( 20 A d ) ) )
                                                    #41TF (18,2011) (CAT([1,1*1, 1), 0, 0, 4, For 5, 1)
     1 20000Cliv #41.2,1 / 4.20(1.1)
                                                                - 178 (19.501 )
    WOLL HALL
                                                                                                                                                                                                                          TRATE OF A PARTIE OF THE PROPERTY OF THE PROPE
                                           THE AND PRODUCT FLOW MATER AND MINENEYS A FAITH OF MELTING TO THE
                                         A LECT - ATT TO THE PERST PROPERTY
                                                  11 4 1 ml . 1
                                                  ゴドドドロ(1) #メコヒリ)
                                                   On 50 helpura iks
                                                  VCATERIATENIATENIATENIA CHELINA CONTRA CONTR
                                                  MINI GAL WYOLLKIND AN
                                                       PITE (THE SOUTHER SHEAT (K) SVOAFSTE 1P (K) + 2 H (K) + 2 H (K) + 2 H
 SOMO PINMAT (IZZIX, PREACTORI, 12,5%, ICATALY SI SI, 1,0,1 CIA S. S. S.
                                                             TOLAR CALLININA THE SPENATURE ETRESS IN COLUMN
                                                              THORITAN VOLUME WINED AND CO. FINE NAME OF CO.
                                                         > 1 TF (18,50 11) X > 0 (4), (Y > )(1), 1 = (, 4)
TO BOTH IN THE PORT OF THE POR
                                      また およられた おんんじましゅつけんはいましゃ いっこうごうまれ ってい ままれてままり ストナリ のもく 無けらえるタ
                                          I-34
```

```
2524 TOHAMENT'H HITRATE =167.4)
     WRITE(18,5002) XO(4),(YP(1),1#1.5)
SOUS FURMATIVION . ILEET FEED MATE STEF. 4. 1 COSES COT COLET. 1 18.
    2504 BHANTHIME NITRATE #167.4)
     SPGN#FREGGN#FXP(#E3N/(TEMP(K)+273#0))
     SplimEdeallatab(atil/(ltbub(k)+273.0))
     TOBUNT#(I
     X-1=-1.1
     XAMEYO(1)
  53 ICOUNTAICOURT+1
     A = 1 . O
     C=1_0
     CmmXJ(c)/(HCVI(K) # dbH # XV 4)
     DamCaxG(2)
     CALL ( BIC(A.F.C. D.XX.XTF(2).ITYPE. NOFAL)
     \Delta = (1 - 1)
     RESPONDED TENDERS (A) TATE (2) **>
     C = -uCAT(K) + SPGN + YTF(2) + XP(1)
     D=XU(Y)=XU(Y)
     CALL CHRICE ARACARAXYAYTE(1) ATTIPE AND CHALL
     IF (ABS ( (XTF (1) - XAM) / YAM) . GT. 1. HE - 05) GO TO 51
     [F(ALS((XTF(2)-XH)/XH),GT.1.0E-05) 3 + TH 51
     99 70 52
  SI XHEXTE(2)
     XA " = XYF (1)
     THE CECOUNT LT. SOLE OF TO SA
     wotth (18,54) XII axth (21,44 Na XTE (1)
  84 FORMATIV// TERATION IS I IT COLVERGE STAFF 2.1)
     CALL FXIT
  52 YYF(4)=XO(4)=xCAT(K)+SPH+XTF(1)+YTF(2)++2
     XTF(3)=(1,0/YTF(A))+(XO(A)+XD(A)+WDAT(K)+SD(A+XTF(A)+XTF(A))
     たけやV##CONV
     Y1F1 h= (XTF (3) * XTF (4) - XFFF 0 (3) * XFFF n (1)) /
        (YTF(2) * XTF(A) - YFFE 0(2) * XFFF 0(4))
     Y 1 E | 1 | 1 = ~ Y 1 F | 1 | 1 | 1
     GASES TANE AT (K) +SPGN+XTF(1)+XTF(2)
     TOTAL MO.O.
     BO 9 1 1 1 3
   Q TOTAL = TOTAL + XTF(1) + w 1(1)
     00 10 1=1.3
  IN XWTF(I) #XTF(I) #WM(I) /TOTAL
     YWTF (4) = XTF (4) + (60,0/453,6) + 101 AL
     WRITE(18,5003)XWTE(4),(XWTE(7),[=),3)
5003 FORMATI/10%, PRODUCT FLOW BATE #1F7,4,1 13.7HE. 1.14X.
    ITWEIGHT FRACTIONS 1/53x, 144401 TOS WIT-ATE = 167,4715x, 18864 #167,47
    2524 FRUANTHINE WITRATE #167.4)
     w@ite(18,5000)XTF(4),(XTF(1),1=1,3)
SODA FORMATIVIOX, PRODUCT FLOW MATE #157, 1,1 100 FS/MT18TF 1,111.
    1 THOLE PRACTIONS LONG AND AND ATTHATE # F7. 476 AY - THEFA # FF7. 47
    2528 . ICHAMININE MITRATE = 117.6)
```

VRITE(18,5005) 165

```
$005 FORMAT(194; 1045 FLOW HATE #*FY.6; * MOLES/YTOTE!)

WRITE(18,5006) COMM, 4]FEE

$006 COMMAT(104; 1; 164] CONVERSION #*FZ.4; * MEN THEN THEN HER FOR FORE FORMOLE WERE

{ FFOLKINX, 1 OTAL MILL #FEE OF MULES ON MULES ON MULES OF MER HE TEN!)

WRITE(18,2020; FRESO #FREODINFO

2020 FORMAT(10X, 1465TE COMBINATE FOR GNIMINED

2020 FORMAT(10X, 1465TE COMBINATE FOR GNIMINED

201106/140X, 166FOUR; OM FACTOR #*FIZ, 47154; *ACTIVATION FURFA HECCOPS

2011106/140X, 166FOUR; OM FACTOR #*FIZ, 47154; *ACTIVATION FURFA HECCOPS

3 F(2,4)

MOLITE(18,301)(COMFMIT(1), 1#1, MC)

50 COMPTHUE

GOTTO MCA

990 CALL FMIT

FMO
```

```
SUBBRIGHTER CHARGE (A.H.C. N. XY, XHEAL STIYPES NORMAL)
       SHEHTTON OF CHAIR AND DHARRATEC F. ATTOMS.
C
       DIMENSION YX(3), IROUND(3)
       CHRRT (ARG) =SIGN(ARS(ARG) **(1.0/3.G), CAR)
       nn 5nn f#1.3
  SON TROUND (T)=1
       1F(A)200.110.200
  110 TE (R) 140 . 120 . 140
  120 TE(C) + 30, 999, 130
  130 X==0/1
       x = (1) x x
       1TYPE=1
       BO TO TOO
  140 P==C/(B+P)
       シューリノバ
       化单位单位单位
       16 (8) 160 - 150 - 150
  150 YESTSHIAMS(P) + SURTIPIAP)
       Y m m Q / Y
       XX(:)=4
       XX(5) = Y
       ITYPE=>
       GO TO TOO
  ( Na Yashrian)
       YY(1) = [ ]
       \chi \chi(S) = L
       YY( 1) = Y
       1 T Y P ( = 3
       691 64 69
  200 (F(0)340,210,550
  210 7180.0
       11 (0)230,220,230
  220 Y2m0.0
       Y 1 # m ti ノ ハ
       RO TO 350
  230 PmmH/(5+1)
       Om =C/A
       できむすりもこ
       Tr(R)250*210*240
  240 Y) #P+9 FT(P)
       メンキわキシェメ;
       19 TO 550
  250 Y=43HT(=11)
       60 TO 350
  400 P#8/(3.0+A)
       Dat / (7, 0 a 1)
       AL BHARGER +P
       PRETAMAL PHA +P+1.5+ (P+1+4)
       HAMMARAL PHARAL PHARAL PHARAL TANKE IA
       IF (GAMMA, GT. 1.5-5) GO TO 340
       IF (GAMMA, GT. -1.F-R) GO TO 320
```

CAPPLAGE THAT THE THE TILE

```
PHIMATAN2 (SOT, PFTAI/S.A
     PERSONAL PROPERTY (SEAL PHA)
     11=0+045(P4])+0
     THP1=2.0+3.1416/3.0
     14912=2,04[H4]
     40=0+015(PH)+14P()-P
     * *=0 *[ ^ (PH[ * 1HP| 2) = P
     00 TO 330
 320 CHIE = 50PT (-41 PHA)
     X1 == Lilivi = Lildr. = 0
     インコレニンド でも
    YTEXP
 430 4X(1)=x1
    XX(2) *X2
    ¥ ₹ ( 3 ) ± ₹ 5
    ITYPE
    no to tea
 CAMMAN) TROPETOR OAK
    F = ( III PT ( KE YA 4 SOT )
    FECURRI (NETA-SUT)
    Y 4= F + F - P
    Pantala (F4F) wP
    Y=0.865+(F=F)
350 XX(1)#43
    AA(5)=D
    YY( 4) * Y
    1 T Y E # 11
    an to the
OGO CONTINUE
    WETHER
  1 FORMATIAFZO.U.
  5 FORMATIONS, SEELS, 10x, 11 TOFAR FROMITY OFF
  A FORMATERIX, SELL, S. TTAO REAL GOVERN
  7 FORMATELIX.3FIL.5.114.2FIL.5.1 +13
  M FORMATIZETT.51
  Q { 10MAT(7F11, %, 1 +1)
   tintl Lymnit
THE FORMATIONS TO THE CATES BY IS REAL PART AND USITS INAUTOACT BART OF
   I COMPLEX PAIRTON
JOH CONTINUE
    INTITYPE . ED. I .OR. ITYPE . FO. OF NOFAL #1
    TELLARY (C.O.) ARFALMO
    TELLTYPE . CO. 21 NYEAL #2
    IT (STYPE .FO. 4) NWFALES
    no sat tetanineat
SOI HERXICE . GE. O.O. . ASE. XXII) .LF. 1.05 IV 051611#1
    TO MINTER
    00 502 141 har 41
1002 11 (100 000(1) .10. 1) 1000 1=1(0.001 + )
    AND OF THE PROPERTY OF THE STATE OF
    マルイナシ (イヤッシログ)
THE FORMAT LINE SOUT RETARES IN AND LED
```

CALL EXIT
503 ON TO (601,602,603), ICOUNT
604 NO 505 1#1,996AL
IF (IHOUND(I) , NF. 1) ON TO 505
XREAL#XX(I)
505 CONTINUE
RET(IDN
602 MRITE (18,506) (XX(I),I=1,3)
506 FORMAT (//,'IWO REAL ROOTS RETWEEN II AND 11,3812,4)
CALL EXIT
603 WRITE (18,507) (XX(I),I=1,3)
507 FORMAT (//,'IHREE REAL ROOTS RETWEEN O AND 11,3812,4)
CALL EXIT
FNII
EDE

APPENDIX I-5. COST STUDIES

ODER STODY - GUANIDIAN VICCARE

Basic Case

MAR 30.101

Basis: Cont. Process; 1 hr. reaction

AN/U/Cat. = 2/2/1.7

U Yld. = 80%; U Conv. = 64.5%*POOR CONT. = 32%

HLANT CAPACITY	80.0 00 64/14		\$6.5k ×	8851 F151	₽¥
				e 17	Gov't
	UNITS	RATENET	$-1 \rightarrow \mathbb{L} Y$	OHARGH	Acctg
INCHSTMENT (MM \$)					_
BATTERY LIMIT			3 • 21 €		6.42
OFFSITE AND ALLO	CATED AUX.		1.00		1.20
TOTAL (MM 5)			1.60	1!	7.62
POCCESSING COST (C	JENTSZLR)				
DEPRECIATION		10.00 800 100	وخوده	1 \	
20 and 34		5.0 POLICE	:/,:(1)	.24
OPERATING LABOR	15.00 AFN	8600.0 47.0	•1/	13116	.17
CHEVICAL CONTROL	4.00 医乳次	10000.0 1/80 - 1 -	· 16	700	.05
Tubesticing	4.00 MEN	12000 • 0 - £/5/03 = Y	· 110	¬₩.≯	.05
ELECTRICITY	•20 MAHZLB	1.0 CVI/5	• 994	→ > 1	.20
\$ 14 0 g	4.00 LB 7LB	75.0 Cv(/ L.	 (€1) 	111	.30
SI A TI EIP	10.00 GALZLE	10.0 (50.7.64).	. 1 11	10 Feb. 3	.10
माना∟	•O1 GALZLH	7.0 CAL CAL	• 10	··· · · · · · · · · · · · · · · · · ·	10
TOTAL (CENTS/L	,R)		1 . A !)		1.22
MAY MATERIAL COST	(CENTS/LD)				
CREA	1.93900 LPZLA	20 • (10 · (1) · · · · /) · ·	1.0 3.5)	4.93
ARMONIUM NITHATE	•65600 L3763	Section of the State of	1.67	C,	1.64
CVIVEACL	•90100 LBZER	150.00 0 170.0	• 1 15	1.2 4	.15
TOTAL (CENTS/L	.11)		C.70		$\frac{.15}{6.72}$
HANT GUFRHFAD (CF	ENTSILEO		• 1 ·		.18
TOTAL MILL COST CO	FNISZLA) FX BY-	PRODUCT CONTEST	9 • 3 1		<u>.18</u> 8.12
-37-PRODUCT CHEDIT	(CENTS/L+)				
•		•On C 1/,	6111		.000
TOTAL (CENTSZE			→ (3) 3		.00
TUTAL MILL COST (C	FAISHLAD INC HY-	PROTOCT CONTINUES	• 1		8.12
				Fringe	1.69
			Price	-	n 9.81¢/lb
* 10 YEAR PLANT	LIFF, FXISTING S	ITE	1110	C 0 /0 14/14/1	5.017/10

PERCENT CHANGE NEEDED TO AFFECT SETONAL OF STRUCK-TAGE BUILDIS

(1) 50% is maintenance material

OFTEN COLCULATIONS

51745 L 17 103 C	÷.	7.6	•
Cores allega	į	•	
San Albert Charles	•	1 • 1	
101 14 355 445	1	1.11	٠٠٠,

} ~*:	ICH FL	300 - 18 C	17.1	i .	11.	Oravi - Zlas
} · · ·	ICE FO	я . 20 г	914	7.1		Charazina.
μį	TON BU	Da 30 3			/ • •	13 15 / W

¹⁵ PCT INDIPECT

COST STUDY - GUANIDINE NITRATE CASE NO.102

Basis: Cont. Process; 1 hr. reaction

AN/U/Cat. = 2/2/1.7 U Yld. = 80%; U Conv. = 64.5% AN Yld. = 100%; AN Conv. = 32%

*PRODUCTION COSTS

HANT CAPACITY	80.0 WW FBNAH		** 5	FNSITIVI PCT	TY Gov't
	UNITS	RATEVILLE	LIKFLY		Acctg
INVESTMENT (MM \$)		•			3
BATTERY LIMIT			2.78		2.78
OFFSITE AND ALLO	CATED AUX.		•90		.90
TOTAL (MM \$)			3•68	10	3.68
PROCESSING COST (SENTS ALBO				
DEPRECIATION	2000	10.0 PCT INUST	1.84,		
MM AND BL		5.0 PCT INVST	.95(1	L)	.46
	12.00 MEN	8600 • O • SZMAN-YP	•52	126	.52
CHEMICAL CONTROL	4.00 MFN			325	. 20
SUPERVISION	4.00 WEN	12000 • 0 \$ZMAX-YA		357 2 7 9	.20
ELECTRICITY	• 50 -RAHNEB		• 21)	406	. 24 . 20
STEAM	4.00 LB /LB	- · · · · · · · · · · · · · · · · · · ·	•	270	.30
WATER	10.00 GAL/L3		•10		
FUEL	•01 GALZLB		•10		.10 .10
TOTAL (CENTS/L		TOTAL CONT.	Δ ₊ Δ9	113	2,12
					2,14
MATERIAL COST	(CENTS/LB)				
FIREA.	1.23200 LBZLR		4.93	16	4.93
AMMONIUM NITRATE	•65600 LBZLB	9.50 CAT/LP	1.54	48	1.64
CATALYST	•00100 LB/LB	150.00 CNT/LB	•15	530	.15
TOTAL (CENTS/L	.8)		6.72		6.72
HANT OVERHEAD (CE	ONTS ZERY		. 45		. 45
	- · · · · · · · · · · · · · · · · · · ·	PRODUCT CREATIS			9.29
(C COMMON COMMITTEE	11.000		3.23
RY-PRODUCT CREDIT	(CENTS/LB)				
AMMONIUM CARBAMAT	°F •60000 LBZLR	•00 CVIND	•00		.00
TOTAL (CFNTS/L			• 111		00
TOTAL MILL COST (C	ENTS/LA) INC HY-	BHODOGI CREDITS	11 • 58		9.29
				fringe	2.02
# 10 YEAR PLANT	lier evication o	The state of the s	Price	n% Return	n 11.31¢/lb
" IU TEAK PLANT	LIFE, EXISTING S	111		o /o ice tuit	

** PERCENT CHANGE NEEDED TO AFFECT RELIGIOUS OF A CHARLEST DOLLARD

$(1)_{50\%}$ is maintenance material

15 PCT INFIRECT

RETURN COLD LANGUE

PLANT INCEST	5.	31 • 7	٠. ٧,
COMP AUTOR	- ∱	• 1	٧,٠,
WORKING CAP	₹.	• 41	177.177
PUT HP ASSETS	4 .	/i = 1	

PRICE	FUR	ı)	PCT	MEDICAN	13.6	じゃ VISノロゼ	
PRICE	FUR	20	PCT	nringa-	14.6	CESTENDA	
$b \sim 1.0 e^{-}$	FOR	30	PCT	38411 (3)	11.14	CENTSALB	

AND STODY - GUANIDIAN MIRRATE Basis: Cont. Process; 2 hr. reaction No. 10.010

AN/U/Cat. = 2/2/1.7

U Yld. = 87%; U Conv. = 88% Yld. on AN = 100%

96 017 0110 v 00510

ALCSI CAPACITY	MO • O YEL LHIMYH	***General Healthy ***Gov't			
	ALLS	MATER CALL	: 1 - 41 - 7	11/1	•
INVESTMENT (MM \$)	(VI I . V			.,	3
SOLLERY LIGHT			5. /		4.84
OFFSITE AND ALLCO	TAPED ADX.		1.00		1.00
TUTAL (MM 5)			× ₩ ¼	11	5.84
AUCESSING COST (C	CFNTS/LH)				
DEPRECIATION		10.0 PCI 15051	1.00		_
MM AND RL		5•A POI 15 9:	. 19(1)	.37
OPERATING LABOR	12.00 MEN	8600.0 1/00/-70	•26	0115	.26
CHEVICAL CONTROL	71. 00 → F ^N *	10000.0 S/YO Y -	• 1 ()	~ →()	.10
SUPERVISION	4.00 KEN	10000.0 4740~45	•19	1.10	.12
FLECTRICITY	•20 K #H/L/?	1.0 011/000	زرد، ♦	305	. 20
STEAM	4.00 L3 /L3	75.0 CVIZE SE	• (4)	013	.30
√ ን ⊈ዙማ	10.09 GAL/LR	10.0 CATZ - BAL	• 1 (3)	551	. 10
<u> यसम्ब</u>	•01 GALZLH	7.0 CNTZ GAL	•10	$c \circ \gamma$.10
TOTAL (CENTS/L	.B)		· • · · /		1.55
MATERIAL COST					
CONTRA	1.13000 FHATH			1 4	4.53
ASSUNIUM NITRATE		2.50 ChiZun	1.54	.4 /	1.64
CATALYST	•00200 FB/FB	150 • 00 C \ \ ZE\	• (414)	1111	.30
TOTAL (CENTS/L	,A)		• 17		6.47
HLAST CUFRHFAD (CE	(FJNZTM		• 18		28_
TOTAL WILL COST CO	CHATS/LD) EX 67-	PROBUCT CHREATS	10.12		8.30
-R-POCDUCI CHEDIT	(CENTRALE)				
AnnONIDE CARBAMAI	F .60000 L4700	*1) 1 1 1 1 1 1 1 L	• 13.44		.00
101AL COPATS/L			• 11.3		.00
TOTAL MILL COST (C	FUTS/LO) INC HY-	Permitti Cashitas	1 3 • 1 9		8.30
				Fringe	1.78
# 10 YEAR PLANT 15 PCT 1 (1)1886	LIRE» FYICTIAN G	1 î.e.	Price	0% return	10.08¢/lb

DENGENT CHUZCE SERDED IS UPERCL PRIDE CONTRACTOR OF PROPERTY OF A

(1)	50%	is	mainterance	material
-----	-----	----	-------------	----------

TRAIN & CALC BATTERS

$122.0 \times 1 \times 1 \times 70\% 1$	1	55 • 25 · 545	
CELLED CONTROL	t	 ★ 3 - 15,3% 	
which is to be to be		\bullet $\phi = \phi_{\phi} + \phi_{\phi}$	
POT ON ASSESSED	:	6.66	•

OUST STUDY - GUANIDINE NITHATE CASE NO.220

Basis: Cont. Process; 3 hr. reaction

AN/U/Cat. = 2/2/1.7

U Yld. = 88%; U Conv. = 98%

Yld. on AN = 100%

*PRODUCTION CUSTS

FLANT CAPACITY	40 • 0 · WM LBVYR		YTIVITIPARR			
				PC I	Gov't	
	ONITS	PATHNOVII	LIEFLY	CHANGE	Acctg	
INVESTMENT (MM \$)						
BATTERY LIMIT			5•61		5.61	
OFFSITE AND ALLOCA	ATED AUX.		1.00		1,00	
TOTAL (MM \$)			6 • 61	10	6.61	
PROCESSING COST (CE	ENTS/LP)					
DEPRECIATION		10.0 PCT 103ST	1.65		-	
MM AND RL		5.0 PCT INUST	• ৪३		.42	
OPERATING LABOR	12.00 MEN	8600 • 0	• 26	557	.26	
CHEMICAL CONTROL	4.00 MEN	10000•0 \$/MAN-YS	• 10	5K5	.10	
SUPERVISION	4.00 MFN	18000•0 47407-8~	•13	1187	.12	
ELECTRICITY	•30 KAHNFB	1.0 Calza n	•30	365	.20	
STEAM	4.00 LB /LB	75.0 CATZA LA		21:11	.30	
WATER	10.00 GAL/LB	10.0 CWTZer TAL	•10	731	.10	
FUEL	•01 GALZLB	YOU CATZ GOL	• 10	496	10_	
TOTAL (CENTS/LE	3)		3.66		6.56	
HAW MATERIAL COST	JENTS/LB)					
UREA	1.11800 LB/LB	4.00 CAT/EN	4.77	16	4.47	
AMMONIUM NITRATE	•65600 LB/LB	9.50 CNIZER	1.64	71.71	1.64	
CATALYST	•00300 LB/LB	159 • 90 CATZLE	• #5	159	.45	
TOTAL (CENTS/LE	3)	•	6.50		6.56	
PLANT OVERHEAD (CEN	ITS/LB)		•31		31	
TOTAL MILL COST (CE	ENTS/LA) EX BY-	PRODUCT CHENITS	10.53		8.47	
HY-PRODUCT CREDIT (CENES/LB)					
		• 011 CM. ZGM	• 33		.00	
TOTAL (CFNTS/LE	()		• (1-)		.00	
TUTAL MILL COST CCE	NTS/LUD INC BY-	PROFUCT CHEBITS	10.53		8.47	
				Fringe	1.87	
			Price	0% return	10.34¢/lb	

- 10 YEAR PLANT LIFE, EXISTING SITE 15 PCT INDIRECT
- ** PERCENT CHANGE NEEDED TO AFFECT PETODA BY O PERCENTAGE POINTS
 - (1) 50% is maintenance material. RETURN COLONALIONS

Palch For a portable of the charge of particle palch for an abstract of the charge of particle particle for an abstract of the charge of the c

I-43

COST STEDY - GUANIDINE WITHATE ONSE NO.301

Basis: Cont. Process; 1 hr. reaction

AN/U/Cat. = 2/2/1.7 U Yld. = 80%; U Conv. = 64.5%

Aqueous Workup

*PHODUCTION COSTS

H.ANT CAPACITY	40 . 0 MM LAZYR		<i>u i</i> w €;	# . 31 () 51	
				का प्	Gov't
11111111111111111111111111111111111111	UNITS	RATEXIBITE	al San T	CHAY OF A	Acctg
INDESTMENT (MM \$)			9.63		3.69
BATTERY LIMIT OFFSITE AND ALLOC	SATED ALLY-		• 111		90
TOTAL (MM \$)	SHIED HVS.		5 • 55 · 5	11	4.59
10145 (114 1)			• , ,	11	1100
POCESSING COST CO	CENTS/LB)				
DEPRECIATION		10.0 POT 1899	1.15.	- 1	_
MM AND BL		5.0 PC1 10/31	, (1)	.29
OPFRATING LABOR	10.00 MEN	8600.0 \$75.45-30	• 14	190	.21
CHEMICAL CONTROL	4•00 «ዚህ	10000•0 \$280\-Y	• T : 3	21.1.25	; 10
SUPPROISION	4.00 MEN	19000.0 \$78.0 0-47	• 1 3	14.20%	.12
FLECTRICITY	•10 KHALR		• 1 (1	593	.10
STFAR	5.00 LB /LB	75*0 CXIZE NA	• 👯 🖍	137	.37
PATER	8.00 GALILR		• 199	65.	.08
,]माम्	•01 GAL/LB	7.0 CALZ GAL	•10	10.912	.10
TOTAL (CENTS/L	.13)		* * • * * * * * *		1.37
A SALEMAIAL CUST	(CENTS/LB)				
HIPEA	1.23200 50758	4.00 05.763	9.414	1)	4.93
APROXIUM NITRATE	•65500 LAZER			31	1.64
CATALYST	•00100 DR/LR	150.00 CARZES	.1 ~	(4/1)	.15
TOTAL (CENTS/L	,H)		1.		6.72
FLANT OUTRHFAD (CE	CP.JNPTMT		• • •		. 24
BUTAL MILL COST CO		BECHACL CARLATA	9 • 11		8.33
Y-PRODUCT CREDIT	(CF UTC ZEB)				
OWNENTH CARBAMAT		•00 CS3743	• 1111		.00
TUTAL (CFNTS/L			• 1		.00
TOTAL MILL COST (C		PRODUCT CRENTS	1.1		8.33
			F	'ringe	1.73
			Price 0º	% return	10.06¢/lb
•	FILE EXICATIVE C	175	TITCE U	o letuin	10.004/10
15 PCT INDIPEC	7				

PERCENT CHANGE MEEDED TO AFFECT PRIMARY BY SOURCESTAIN WEIGHT

(1) 50% is maintenance material

RELIEV COPICE POSTS

PLANT INVEST	ż	• 7	ı
CORP ALLOC	₫.	• 1	
WC 841 V6 COF	į	• 4	
TUT OF ASSET.	·	1	٠.

PRICE FOR 30 POLESTING 11. CHARLE PRICE FOR 30 POLESTING 1.00 CONTRACTOR

I-44

COST STUDY - GUANIDINE NITRATE CASE NO . 501

Basis: Cont. Process; 1 hr. reaction AN/U/Cat. = 2/2/1.7U Yld. = 80%; U Conv. = 64.5%Agitating reactor; melt workup

*PRODUCTION COSTS

PLANT CAPACITY 40.0 MM LB/YR			**SENSITIVITY_		
					Gov't
	UNITS	RATHAGAL	LIKELY	CHANGE	Acctg
INVESTMENT (MM \$)					0.00
BATTERY LIMIT			3.00		3.00
OFFSITE AND ALLOC	CATED AUX.		1.00		1.00
TOTAL (MM \$)			4 • 00	11	4.00
PROCESSING COST (ENTS/LB)				
DEPRECIATION		10.0 PCT INUST	1.00	_	-
MM AND BL		5.0 PCT INUST	.50	1)	.25
	12.00 MEN	8600.0 \$ZMAN-YF		1/13	.26
CHEMICAL CONTROL	4.00 MEN	10000 • 0 SZMAN-YR	•10		.10
SUPERVISION	A-OO MEN	10000-0 47501-40	. 10	308	.12
ELECTRICITY	•83 KWHZLB	1.0 CNTZRNH	• 23	201	. 23
STEAM	4.00 LB /LB	1.0 CMTZR / F 75.0 CMTZR LR 10.0 CMTZRCAL	• 30	154	.30
WATER	10.00 GALZLH	10.0 CNTZ8.04L	•10	462	.10
FCEL	•01 GALZLB	7.0 CUTZ 14L	• 10	440	iiŏ
TOTAL (CENTS/L			2.71		1.46
WIL MAMPINEAE COPP.	AGENTS A DA				
AW MATERIAL COST		4.00 CN1/LR	4 30	0	4.93
		2.50 CNIZLO			1.64
		150.00 CHIVLH			- 15
TOTAL (CENTS/L	.H)		6 • 78		6.72
HANT OVERHEAD (CE	NTS/LB)		•23		23
TOTAL MILL COST (C	ENTS/LB) FX BY	-PRODUCT CARDITA	9.66		8.41
SY-PRODUCT CREDIT	COENTS A B)				
		•00 CATZLA	- :00		.00
TOTAL CENTS/L		2000 000 1940	• (10)		.00
		-PRODUCT CERDICS	9.56		8.41
TOTAL CLAP COST CO	THE TRUSK STATE OF THE STATE OF	The Control of the Co	•	Fringe	1.74
				•	
2 10 YEAR PLANT	LIFE, WEISTING S	LITE	Price (0% return	10.15 ¢/lb

10 YEAR PLANT LIFE, WEISTING SITE

15 PCT INDIRECT

PERCENT CHANGE NEEDED TO AFFECT RETURN MY IN TO PENTAGE POINTS

(1)	
(1) 50% is maintenance material	RETURN CALCULATIONS

PLANT INJEST	3	4.0	(*)
CORP ALLOC	ţ,	• 1	[*;[*]
WORKING CAP	÷	• 6	MM
TOT OP ACCEMS	,	4.7	No. 44

 PRICE FOR 0 PCT RELOW
 11.4 CENTRALB

 PRICE FOR 20 PCT RELOW
 14.1 CENTRALB

 PRICE FOR 30 PCT RELOW
 15.5 CENTRALB

 1-45

COST STUDY - GUANIDINE MITHORE Basis: Cont. Process; 1 hr. reaction CASE 50.610

AN/U = 0.75; aqueous workup U Yld. = 71%; U Conv. = 66.5%

*FPODUCTION COSTS

HLANT CAPACITY	40 • 0 · 05 · EHZYH		be self.	1V11224	IY Gov't
	77.17.7	11. ((V.W.L.V ())	1. [Y	•	
INUFSTMENT (MM 5)	188 4 4 8			· · · · · · · · · · · · · · · · · · ·	110019
HATTERY LIKIT			4.67		3.57
OFFSITE AND ALLOCA	ATED AUX.		• 911		90
TUTAL (MM \$)			4.47	1 1	4.47
PROCESSING COST (C)	その ナミノ レリン				
DEPRECIATION		IN A PUT IN POR	1.13	4-5	_
MO AND BL		5.9 PCT 1 3.51	3.6	(1)	. 28
OPERATING LABOR	10 • 99 এই	8600 • 0 · \$ / 80 \ - 7 3		1 1	.21
CHEMICAL CONTROL	4.00 350	10000.0 4780 -50	• 10	20 1 1	.10
ZOIPINS #4015	1.07 .FN	12000 • 0 • 7 • A1 • Y	.10	37.3	.12
PLECTRICITY	•10 RVH/LB	1.0 001/5 5	• 1 3	51.4	.10
STEAS	5.00 LP /LP	75.0 CHEZA LA	• • /	1 37	.37
	8.00 GAL/LH	10.0 C 17 900	• * *	<i>-</i>	.08
FireL	•01 GALZER	7.0 Call Som	• 1 • 1	4. 1.3	.10
FUTAL (CENTS/L	3)		11 • <i>f f</i>		1.36
HAR SATERIAL CUST ((CEATSZEB)				
(4 - h.,	1.38KOO LAZEO	71.110 C.17L	. • · · · · · · · · · · · · · · · · · ·	9	5.54
AGECOVITIES WITHAIR	•6560A LHZLB	9.50 Oraza	1.600	< 1	1.64
CATALYSI	•00100 LAVER	150 . 0 1 C . " / .	• 1 5	11.50	.15
TOTAL (CENTSIL)	3)		≠ * * *		7.33
HANT OUFRHEAD (CF)	ITS/LN)		• • •		23
TUTAL WILL COST (CT		PROFUCT COMPLYS	₹ 3 • 3 • 3		8.92
	CHMTS/LK)				
ABRUNIUS CARBAMATE		•1141 (113 Z), 1	• 1		.00
TOTAL (CENTS/LE			• + 5		.00
TOTAL MILL COST COR	CALENTAL TOWN - A-	proceedings to Book 101 (C)	1		8.92
			1	Fringe	1.86
4 10 YEAR PLANT I	IFF, FYIGHTOO S	I TE	Price	0% return	10.78¢/lb

15 PCT INDIRECT

48 PERCENT CHANGE NEEDED TO AREECT OFTHIN STYLE TO PRODUCE TO SELECT OF

(1) 50% is maintenance material

Section of the particular to

I-46

WST STUDY - GUANIDINF NITRATE Basis: Cont. Process; 1 hr. reaction CASE NO.620

 $A_N/U = 0.56$; aqueous workup U Yld. = 62.5%; U Conv. = 68%

*PRODUCTION COSTS

PLANT CAPACITY	40.0 No. LBZYR		张松 C	HWSITIVI	ìY.
				PCT	Gov't
INVESTMENT (MM 5)	UNITS	BATEVIDUT	LIKELY	CHANGE	Acctg
BATTERY LIMIT					
	5 A 400 00 00	•	3 • 50		3.60
OFFSITE AND ALLOC	PATED ADX.		• 90		90
TOTAL (MM \$)			4.50	1 1	4.50
PROCESSING COST (C	triaine ir is s				
PEPPECIATION	(ERIZZNER)				
NM AND RL		10.0 PCT Lynch	1.19,	. 1	***
		5.0 PGT Iviat	.56	1)	.28
OPERATING LABOR	10.00 MFN	8600.0 47.408-76	• 21	194	.2ĭ
CHEMICAL CONTROL		10000.0 \$7.47	•:0	418	.10
SUPERVISION	4.00 MEN	12000.0 47.0/-70	• 1 9	348	.12
LECTRICITY		1.0 02378 H	• 1 ()	500	.10
STEAM	5 · (1) LR /LA		• 3 /	19	.37
WATER	8.00 GALZER		316.		.08
FUFL	•01 GAL/LB	7.00 Cat/ Bal.	• 1 1	498	.10-
TUTAL (CENTS/L	3)		7.74	-	1.36
AN MATERIAL COST	COENTR A. AN				
AMMONIUM NITRATE	1.57600 LB/LR		6 • 30	8	6.30
CATALYST				31	1.64
TUTAL (CENTS/L)	•00100 LRVLR	150 +00 CalvE		371	15
TOTAL CURNISALI	9		£2 • (}·)		8.09
PLANT OVERHEAD (CEN	UTSZI.B.)				
TOTAL MILL COST (C)	FATCALLA EV DOZE	SHODOCL GERMAN	•94	-	. 24
	SOLIETION DW STAF	Site 314 (C.1. 414) 34 1 4 4	11 - 11		9.69
HY-PRODUCT CREDIT (CENTSZEBO				
AMMONIUM CARRAMATE	FINAL DOODS.	•00 CL.NI.6	- 0.0		6.0
TOTAL (CENTS/L	3)	Control Control Control	• G (3		.00
		RODUCT CONTILLS			00
			11+11		9,59
				l'ringe	1.99
4 10 YEAR PLANT L	IFE. FXISTING SI	TF	Price	0% return	11.68¢/lb

¹⁵ PCT INDIRECT

(1) 50% is maintenance material

KETTEN DOLD WOLLD IN

PLANT INDIAT 10 . Oak TOT OP ASSETS 4 - See 355

DO FOR THE OWNER OF THE STATE OF THE STATE OF FOR THE REAL 20 SHIP CARLES Tree of the Darker Called Sim 30 Production of the Commence

1-47

PERCENT CHANGE NEEDED TO AFFECT RETURN BY BOUNDS KINDE POINTS

Cont. Process; 1 hr. reaction MAN/U = 0.5; aqueous workup U Yld. = 59%; J Conv. = 68.5%

*PRODUCTION COSTS

HANT CAPACITY A	10 • 0 XX 73XXS		នងប	wwellia	Gov't
	11½ 1 TC	PATEZBALT	LINELY	PCT CHANGE	
INVESTMENT (MM \$) BATTERY LIMIT OFFSITE AND ALLOCA TOTAL (MM \$)	TED AUX.		** 57 *90 **407		3.57 90 4.47
TOTAL CHA BY			2 4 7 1 7	1 1	~.·~!/
PROCESSING COST COE	INTS/LA)				
DEPRECIATION		10.0 PC1 INGS+	1.10	1)	
MM AND RL		5.0 PCI INUST			• 28
		8600 • 0 • 245 ··- • Y ··			.21
		10000 • 0 \$ / w/\ \ - \ \		417	.10
SUPPRUISION		12000-0 32444-7-		27.74	.12
FLECTRICITY STEAM		1.0 CNTZA B		A 113	. 10
		75.0 CMIZE L: 10.0 CMIZE 66		13) 65)	.37
4119 F		7. (*) 7. (0)			.08
TOTAL (CENTS/LB		/ · · · / · · · · · · · · · · · · · · ·	. 7	-77	$\frac{.10}{1.36}$
na MATERIAL COST (CESTENDA				
		4.00 C · ZL	6.41	-3	6 67
		0.60 3777			1.64
		150.0 + 0.472		901	.15
TOTAL CEENTS/LB		2,7,0,7,0,7,0	se · ser.		8.46
ALANI ÖVEHHFAD CCEN	TSZ'.53)		. Y. S.		23
WIND FILL COST COF		Propost Deficiency			$\frac{.23}{10.05}$
Y+P (COMOT CREDIT (OFMTS/L-O				
OSAUGIUS CARRAMATE		• 4. 1 C. 1 C.			.00
TOTAL (CFATS/LB			• 1 1		.00
BUTAL BILL COST CCE		Bachacl cerebla	11.00		10.05
				Fringe	2.03
- 10 YEAR PLAK! L		ITF	Price 0%	& return	12.08¢/lb
		r interior to any a second.		. (

PROCEST CHANGE WEEDED TO AFFECT SETUNG BY O PROCESSO IN MALESTA

(1) 50% is maintenance material approved controllars.

COMP STAGE OF THE STAGE OF THE

1-48

QUST STUDY - GUANIDIAL ALIRAIN Basis: Cont. Process; 1 hr. reaction CASE NO.640 AN/U = 2; aqueous workup U Yld. = 99%; U Conv. = 55.5%

*PRODUCTION COSES

HLANT CAPACITY //	1.0 >> PHYAB		अर्थक ज्	FNSITIVI	
***************************************	118.1.1.2	"VLENE (LL	LINELY	POT CHANGE	Govt Acc t y
INVESTMENT (MM \$) RATTERY LIMIT OFFSITE AND ALLOCAT	or to a real		5 • 16		5.16
TOTAL (MM 5)	H I 1 + 2 + 1 ⊀ ♣		1 • 0 0 6 • 1 6	1)	$\frac{1.00}{6.16}$
PROCESSING COST COFA	TSVLE)				
DEPRECIATION BM AND RL		10.0 PC1 1 151 5.0 EC1 1 151	1.54	1)	.39
OPERATING LABOR	19.00 FR	86000 + 0	• • 1	253	.21
CHEMICAL CONTROL	4.00 MEN	10000.0 \$700 V-YO	• 1 ()	544	.10
SUPERVISION	4.00 350	15000.0 • 0 • 4ו 0 /- 4/-	• 1 '	454	.12
FLFCTRICITY	•30 KWHVL3		• 20	'4 /i()	. 20
STEAM	6.00 LB 7LB		• 1.5	151	. 45
	10.00 GALZER		• 1 ()	681	.10
H,114,F	· 110 GALLYLK	7.0 Car wat	• 1 /1	4216	. 14
TUTAL (CENTS/E3)			3 . 1. 3		1.71
SA F MATERIAL COST CO	FNTSZLHD				
THEFA	•30<00 Pushin		2. 38	1.7	3.98
AMMONIUM NITRAIF	· KSKNII LIVELI	2.50 C (21)	1 . 7 /4	7(1)	1.64
CATALYST	•00000 FeAFA	151.00 Calzba	• 30		.30
TOTAL (CFNTANLS)			5.90		5.92
HANT OVERHEAD (CENT	K/LA)		• + + x i		. 28
TOTAL MILL COST CCEN	LUNDER BA HA-	PROPRICT CORPUS	1.871		$\frac{.28}{7.91}$
PRODUCT CHEDIT OF	FNTT/LH)				
AMMONITH CARBANATE	· Follow Layle	• (1.1) (3.1. /1)	• 1 .		.00
TOTAL (CENTS/LR)			• (1))		.00
TOTAL MILL COST CCEN	TSVLBD INC BY-	8600000 Jebb 14111	9.44		7.91
			r	ringe	1.76
				-	
10 YEAR PLANT LI 15 PCT INDIRECT	FF. EXISTING C	I T H	Price 0%	return	9.67¢/lb

* PERCENT CHANGE WEEDED TO AFFECT RETURN WY FIRE CARTAGE POINTS

(1) 50% is maintenance material PATTING CALCULATION

PLANT IN HIM I I HAVE NO TOTAL OF ACTORS OF THE

TOTAL HO 30 POT HE TO 17.7 CH. PAZING T - 49 COST STUDY - GUANIDINE NITHATE Basis: Cont. Process; 1 hr. reaction

AN/U = 1.5; aqueous workup U Yld. = 92.5%; U Conv. = 60%

*PRODUCTION COSTS

HEAVE CAPACITY	20) • () (May 1, 177)		4 卷 ① 1	e visit pilot	Lir Govt
	9511S	2004.68	LI SLY		_
INGERTMENT (MM S)	•			•	_
HALL YEATING			. •		4.26
OFFSITE AND ALLO	CATED AUX.		· 1965		95
TUTAL (MM \$)			5.01	1.1	5.21
PROCESSING COST (CENTS/LB)				
DEPRECIATION		10.0 POT INVEST	1.50		4.
MM AND RL		5.0 PGT INVA	, _{7 %} (1)	.33
OPERATING LABOR	10.00 EEN	8600 . 0 . ± Z x A v = x v	• 0 1	→! 7	.21
CHEMICAL CONTROL		10000.0 578.07-70		41.4	.10
SUPERVISION	4.00 MEN	12000 • 0 \$ZKA: -Y		9749	.12
FLECTRICITY	•15 KJH/LH		•15	જ્ઞાસ છું	.15
STEAM	5.00 LH /LS		-	155	.37
WATER	9.00 GALZES			5 936	.09
POINT.	•02 GALILB	7.9 CM7 (M)	• 10	1: 117	.12
TOTAL (CENTS/	LA)		4.10		1.49
MY : KAMERIAL COST	(CENTS/LP)				
A PEV	1.06400 1.371.3	21.00 C Z	4.600	10	4.26
ANNUMIUS NITRATE	•65500 Lavea	9.30 C.FZI,	1.61	-24	1.64
CATALYST	•00150 FRMPG	150.0 + 0 //	• t ··	217	.18
TOTAL COMUTEZE	_8)		(• +1 ↔		ñ.08
HANT OVERHEAD (CE	PNISZLO		• 11		.26
TOTAL WILL COST (C	DENTSZER) FE HY-	PRUDUCT CONCLES	1.45		7.83
W-PRODUCT CREGIT	(CENTS/LH)				
- AMMONITIM CARBAMAT		• On C 120,00	• (15)		.00
TOTAL COENTS/L	_B)		• + 1 +		.00
TUIME MILL COST CO	FVISZEB) INC HYT	PREDUCT CONTIC	•		7.83
			F'r	ringe	1.65
			Price 0%		9.48 ¢/lb
* 10 YEAR PLAUL	LIFE, TRICTING S	ITE	070	ic turis	3.40 Y/ID

¹⁵ PCT INDIRECT

(1) 50% is maintenance material

HEALDS CVICATIVE

Phana Is a	•	-5 • • •	
Ct 1 April	i.	• • •	20
Constant	1	• (*	
Add Car		6	

PERCE	h 1	A Garage		11.1	Charles ZE
POICE	F (20 - 1			13. 11. 11.
PH 16%	F	30	er e e		1. 1. 1. 1.

ME PROCENT CHANGE OFFICE TO APPECE OFFICE OF A PROCENT OF A 1935

COST STUDY - GUANIDINE WITHATE CASE NO.810

Basic Case
Basis: Cont. Process

The state of the second of the

*PRODUCTION

AN/U/Cat. = 2/2/1.7

U Yld. = 80% U Conv. = 64.5% AN Yld. = 100% AN Conv. = 32% By-Prod. Credit = 1¢/lb.

FLANT CAPACITY	40.0 MM LBZY9		\$ \$ C	FNSITIVI	
				PUT	Gov't
	UNITS	NV North	LISELY	CHANGE	Acctg
INVESTMENT (MM 5)					
BATTERY LIMIT			4.00		4.22
OFFSITE AND ALLO	CATED AUX.		1.00		1.00
TOTAL (MM 3)			5.99	1 1	5.22
PROCESSING COST (CENTS/L3)				
DEPRECIATION		10 • 0 201 1 1 777	1.30	•	
MM AND RL		5.0 POR LAMOT	• 65	(1)	.33
OPERATING LABOR	12.00 MEN	8600 • 0 \$/Mod-YR		182	.26
CHEMICAL CONTROL	4.00 MEN	10000.0 \$/x4n=Y10	•10	469	.10
SUPERVISION	4.00 MEN	12000 • 0 & Z • A · = r	• 1 ?	391	.12
ELECTRICITY	• 20 KAHALB	1.0 C.I/c	0 ن •	273	. 20
STEAM	4.00 LP /LB	75.0 000/ 000	• 30	195	.30
WATER		10.0 CATZ - CAL	• 1 0	58 6	.10
FUFL	•01 GAL/LB	7.0 Coll 10	•10	558	.10
TOTAL (CENTS/	L8)		3 • 1/4		1.51
MAN MATERIAL COST	(CTNTS/LR)				
THEA	1.23200 LBZL5	オ・りり ぐり (ZE)	4.73	1.2	4.93
	•65600 LB/LB		1.60	3.5	1.64
CATALYST	•00100 LRZLR	150 • 00 C * 7L *	•15	383	.15
TOTAL (CFNTS/	LB)		6.70	_	6.72
PLANT CUPRHEAD (C.	ENTSZLYO		•07		. 27
ROTAL MILL COST (CENTS/LA) EX EY-	beobed condition	10.10	_	8.50
PY-PRODUCT CREDIT	(CENTS/LH)				
		1.00 CA. /L	• E 3		.60
TOTAL (CENTS/			• 40		.60
TOTAL MILL COST CO	CENTANTIO INC DA-	PROPUCT CONSTITUTION	9.59	•	7.90
]	Fringe _	1.68
A UPAR DI AND	TIPE ENTERING &	T m to	Price	0% return	9.58¢/lb
- * IO ARVR BPV ZL	LIFE, FXISIING S	1 ! "			,

¹⁰ YEAR PLANT LIFE, EXISTING SITE 15 PCT INDIRECT

(1) 50% is maintenance material

CARTINA CALCULATIONS

PLANT INDEST 4 8.0 MM
COOP ALLOC 4 ... MT
OOKING COP J. ... 6. MT
TOT OF ASSETS 4 6.0 MM

PRICE FOR 0 PCT FFTO 11.0 CHARS/LD PRICE FOR 36 PCT FFTO 15.6 CENTS/LB

I-51

>> PEPCENT CHANGE NEEDED TO AFFECT RETURN OF THE RECENTAGE POINTS

ODST STUDY - GUANIDINE NITRATE Basis: Cont. Process (ASE NO.820)

AN/U/Cat. = 2/2/1.7

U Yld. = 80% U Conv. = 64.5% AN Yld. = 100% AN Conv. = 32%

By-Prod. Credit = 2¢/lb.

HANT CAPACITY 40+0 MM LAZYM			**OF7,917 T U		
				Part P	
	noTak	RAIRZIMIE	GT FLY	自由性 计结束	Auctg
INVESTMENT (MM \$)					4 00
BATTERY LIMIT	A GIFTIPL A FILE		10 - 13 - 13		4.22
OFFSITE AND ALLOC	HIND MIX.		1.00		$\frac{1.06}{5.22}$
COTAL (13.5 \$)			. • .	: 1	5.22
PROCESSING COST (C	FNTS/LB)				
DEPRECIATION		10.0 POT 1877	1 . 311		-
AW AND OL		5.0 PCY (A.M.	. 45(1)	.33
OFFRATING LABOR	12.00 MF3	8600.0 9710-42	•36	121	، 26
		10000.0 \$/200-13			.10
SUPEDVISION	4.00 GFN	12000.0 \$7.0 ~~	• 1:1	300	. 12
		1.0 CNTZ1 1			.20
		75.0 Corres Le			.30
WAITHO		10.0 CATZACAL		Sect	.10
FORL		7.9 CET / CAL	• 10	~ ~ ~	.10
TOTAL (CENTS/L	图)		9.10		1.51
TA / SATERIAL COST	CORNIES AL DIN				
		1400 CVIVI	n_04	10	A 93
		9.50 CTVI			1.64
CATALYST					
TOTAL (CFNTS/L			A. 70	•	$\frac{.15}{6.72}$
• •					31,2
LAST OVERHEAD COF	NTSZLRO		• 07		.27
ROTAL WILL COST CC	ELTISZLOD BER 1874.	PRODUCT Certify			8.50
THE PRODUCT CREDIT					
		O . HA BOOK ON THE			1.20
TOTAL (CENTS/L			1 • 20	_	3.20
MILL COST (C	ENTS/LB) INC BY-	PRODUCT CONSIDE	21.30		7.30
			,	Fringe	1.58
9 10 YEAR PLANT	LIFE, EXISTING S	T ማ ኤ	Price	0% return	8.88¢/4b
15 PCT INDIREC		L I Es			3,001, 20
13 FOR INDIREC	4				

ME PERCENT CHANGE WEEDED TO AFFECT METURN MY OF PERCENTAGE OF COLUMN

(1) 50% is maintenance material

CONFORMATION AND AND STREET

PLANT I BOSE	v • *	
CO was properly	•	
0.4.1	•	
THE 107 A 1 10 A		

PHICE For 0 DCT PUT 1 10.0 TO 10.12 PM 10.10 PM 1 1 1 . . . Th (1 1/2) . COST STUDY - GUANIDINE NITRATE Basis:

CASE NO -830

Cont. Process

AN/U/Cat. = 2/2/1.7

U Yld. = 80% U Conv. = 64.5% AN Yld. = 100% AN Conv. = 32%

By-Prod. Credit = 3¢/lb.

PLANT CAPACITY	40.0 NM LB/YR		** 0	FNSITIVI	
	UNITS	RATEZITAR	LIKHLY	PCT CHANGE	Govt Acctg
LAVESTMENT (MM 4)					-
BATTERY LIMIT			ル・ラウ		4.22
OFFSITE AND ALLOC	CATED AUX.		1 • 110		1.00
TOTAL (MM \$)			5.98	1 1	5.22
PROCESSING COST (C	ENTS/L8)				
DEPRECIATION		10.0 POT INJET	1.30.		-
MM AND RL		5.0 PCT 1.20T	•65(1)	.33
OPERATING LABOR		8600.0 \$Z89K=Y~	.26	181	.26
CHEMICAL CONTROL	4.00 MFN	10000.0 SZSAK-YE	•10	466	. 10
SUPERVISION	4.00 MEN	12000 • 0 EXXAW-7 :	•12	3 88	.12
ELECTRICITY	•80 KAHATB	1.0 CATZS of	• 20	291	. 20
STFAN	4.00 LB YLB	75.0 CMT/x 64	• 30	194	.30
WATER	10.00 GAL/LB	10.0 CATZ3501.	• 10	582	.10
FUEL	•01 GAL/LB	7.9 CRIZ GAL	•10	554	.10
TOTAL (CENTS/L	9)		3 • 1 4		1.51
HAW MATERIAL COST	(ድምህተር ALB)				i A F
UREA COST	-	4.00 CKTVLR	4.93	12	4.93
AMMONIUM NITRATE	•65600 LB/LB			3.5	1.64
CATALYST	•00100 LB/LB		*15	386	.15
TUTAL (CENTS/L			5 · 78	.,,,,,	6.72
			,		, , <u>, , , , , , , , , , , , , , , , , </u>
HLANT OVERHEAD (CE	NISZLAD		• 2.7		. 27
TOTAL MILL COST (C	FNTS/LB) EX BY-	PRUDUCT Carbitis			8.50
					\$
W-PRODUCT CREDIT					1
		3 · OU CATZLA	-		1.80
TOTAL (CENTS/L			1 • 80		1.80-
NOTAL MILL COST (C	ENTSZLB) INC BY-	PHODUCT COMPLES	8 • 39		6.70
				Fringe _	1,48
። ነበ ሃ ድልዩ <u>የ</u> ፒልክፕ	LIFE, EXISTING S	176	Price 0	% return	8.18¢/lb
15 PCT INDIREC		1 1 7			
- · · · · · · · · · · · · · · · · · · ·		T BETHRA BY -> SERBCE	സംസകരിയും ത	TAME	
** PERCENT CHANGS.	MEGGERS IT GERRET,	I tak I tried at a transfer to the action?		. 7 .0 1 2)	

(1) 50% is maintenance material RETURN CALCULATIONS

PLANT INUNEL CORP ALLOC 1.11. WORKING CAP • 65 Buch TOT UP ASSETS 9 5.9 9

PHICE FOR O PCT RELOW! THOM SENISZLE Tread Sparson PRICE FOR 30 PCT OF CHAN TANK CHATSZER

1-53

CEST STUDY - GUANIDINE NITHATE CASE NO. 910

Basic Case

Basis: Cont. Process

AN/U/Cat. = 2/2/1.7

U Yld. = 80% U Conv. = 64.5%

HAME CAPACITY	40.0 8% DEZY		# \$ C	A CHILDI	TY Govt
	2 L 1 Z t	F91FN: 11	1 T	PC (*) Change	Acctg
INVESTMENT (MM 8)			***************************************	*241/4/3/23/0	
BATTERY LIMIT			9.00		4.22
OFFSITE AND ALLO	CATED AUX.		1 • 10		1.00
TOTAL (Mm 5)			5 . 20	!)	5.22
POCKSSING COST C	CENTS/LB)				
DEPRECIATION		10.0 PCT 1590	1. (3.) /	• •	-
we AND RL		5.0 POT 1000	1 • 30) • 45	(1)	.33
	10.00 MEN	8600 • 0 · 5780 > • 4	·46	177	.26
CHESICAL CONTROL	4.00 EFN	•	• 1 13	1.111	.10
SUPERUISION	ሳ •ባሳ - ለቸጠ	12988.0 \$200-2	• 1 * 1	74 A †	.12
ELFCTRICITY	•80 KWH/LG	1 • 0 Charze 3	• 271	345	.20
STAM	N.OU TH YER		 □ R(I) 	1,71	.30
39 1 E.C.	10.00 GVENER		• • 1	5/0	.10
P 1.	•01 GAL/L	7.0 GA 7 66	• ! ;	2,72	10
TOTAL COUNTSM	-80		1 a 1 1		1.51
A ATEPIAL COST	(CFATS/LP)				
The Feat	1.93200 LBZLR	3. '. Zi.	• · · · ·	• 4	2.46
ASSOCIUM NITRATE	—		1.00	•	1.64
CATALYSI	•00100 LBZLB	150 • 00 € € € Zum	• 1 °	373	4.25
TOTAL (CENTS/	.13)		4.05		4.25
ALANT OVERHEAD CO	TNTS/LB)		• ' /		. 27
TOTAL MILL COST CO	CENTSILED FX HY-	PRODUCT CAFFITT	1.66		6.03
PY-PRODUCT CREDIT	(CENTS/LF)				
- AKRONIUM CARBAMAT		• A 1 C (//L			.00
TOTAL (CENTS/L			• 111		,00
FORAL MILL COST CO	EMICATED IFU BA-	BSODUCA CARRICA	1.00		6.03
			F	ringe	1.34
		•	Price	0% return	7.37¢/lb
F IN YEAR PLANT	LIFE, EXISTING S	ITE	1,100	, c/o icidili	, . G , T / AD

¹⁰ YEAR PLANT LIFE, FXISTING SITE 15 PCT INDIRECT

** PERCENT CHANGE NEEDED TO AFFECT METURY MY - PROCE OF THE MALES

(1) 50% is maintenance material

RETURN COLD-11, 17110 05

PLAST INSEC	to a constant
Com appoint	· () (3)
Million I to CAL	• n
101 00 4	τ,

CASE NO. 920

Basis: Cont. Process

AN/U/Cat. = 2/2/1.7

U Yld. = 80% U Conv. = 64.5% AN Yld. = 100% AN Conv. = 32%

Urea = 3¢/lb.

*PRODUCTION CUSTS

PLANT CAPACITY	40.0 MM LAZYD		* \$ 0	FASITIV	ITY
				PCT	Govt
	GNITS	HATELLIT	".I NFLY	CHANGE	Acctg
INVESTMENT (MM \$)					•
BATTERY LIMIT			4.92		4.22
OFFSITE AND ALLOC	CATED AUX.		1.00		_1.00
TUTAL (MM \$)			5.00	1.1	5.22
PROCESSING COST (C	ENTS/LB)				
DEPRECIATION		10.0 PCT INDSE	1.30		_
NM AND RL		5.0 PCT INVET	•65	(1)	.33
	12.00 WEN	8600 • 0 EZNAN-YH	• 26	180	.26
CHEMICAL CONTROL		10000 • 0 \$ZYA~-YI		464	.10
SUPERVISION	4.00 MEN	12000.0 \$7.0042		387	.12
FLECTRICITY		1 • 0 C v 1 Z v 201			.20
STEAM		75.0 CHIZE LA			.30
WATER		10.0 CATZACAL			.10
FOEL		7.0 CMF/ Gall		559	.10
TOTAL (CENTS/L			3.14		1.51
MATERIAL COST	(CENTE / D)				
UREA	1.23200 LB/LB	3.00 CATALS	2.70	15	3.70
		0.50 CYINTH			
		150.00 CTVL9	•15		1.64
TUTAL (CENTS/L		Lean • 40 C . (NEW	• ↓ ⊃ູ ५ • 4 •)	379	<u>- 15</u>
TOTAL (CENTS)L	n,		2 • 49		5.49
PLANT OVERHEAD (CE					27
TOTAL MILL COST CC	ENTS/LB) FX BY-	PRODUCT CARLITY	11.89		$\frac{.27}{7.27}$
PY-PRODUCT CREDIT	(CENTS/LB)				
		•00 CHIZE	• 1) (1		.00
TOTAL (CENTS/L		277 O 176 (• 90		.00
		PRODUCT CP#11 rs	મ•સન • <i>ો</i> ટ્રા		7.27
	· ·				
				Fringe	1.61

¹⁰ YEAR PLANT LIFE, FXISTING SITE 15 PCT INDIRECT

Price 0% return 8.88¢/lb

(1) 50% is maintenance material

RETURN CALCULATIONS

FRICE FOR 0 POR FIRE 11.8 ONN FORDER POLOR FOR 30 POT DWGO & 10.7 PROPORTS

PERCENT CHANGE NEEDED TO AFFECT RETURN BY TO REACH CLACK POINTS

(ASE NO.710

COST STUDY - GUANIDINE NITHATE Basis: Cont. Process; 1 hr. reaction

AN/U/Cat. = 2/2/1.7

Aqueous workup, 3-stage agit. reactor U Yld. = 80%; U Conv. = 64.5%

*PRODUCTION COSTS

FLANT CAPACITY	20.0 MM L3748		କ୍ଷଣ	FVSLTIVI POT	Gov't
	DAITS	RATEVILLE	1.1341.7	CHAXGE	
INUFSTMENT (MM \$)				2	
BATTERY LIMIT			2.09		2.49
OFFSITE AND ALLOC	ATED AUX.		• 20		90
TOTAL (MM \$)			3 • 39	1 1	3.30
PROCESSING COST CC	ENTS/LB)				
DEPRICIATION		10.0 PCT 1870"	• 45	- \	-
SE AND RL		5.0 PCI 137	. 15 (1)	.21
OPERATING LABOR	10 • 00 水平区	8600+1) \$Z34Y1	10.	1.48	.21
CHEMICAL CONTROL	4.00 MEN	10000 • 0	• 10	319	.10
SUPPROISION	76 • O O - 20 F 20	12000.0 FXXAV-Y×	• 1 3	256	.12
FLECTRICITY	•13 KWH/LB	1.0 CWIZK //	• 1 3	3 11	. 13
STFAM	5.00 LB /LB	75.0 CNEXX 625	• 37	116	.37
WATER	8.00 GALZER	10.0 CVT/NGAL	• 1) i*	4 116	.08
FUFL	•01 GALZLB	7.6 CV17 SAL	• 1:1	Come of	,10
TUTAL (CENTS/L	3)		₹ • 201		1.32
A & MATERIAL COST	(CFNTS/LP)				
THEFA	1.93200 LBZLB	11.00 C. V. (Zi.)	1.19%	3+	4.93
ASSOCION NITRATE			1.60	4.1	1.64
	•00100 LB/LP		.15	70 ZE 3	. 15
TUTAL (CHNTS/L	H)		(• 10		6.72
HJAAT OVERHEAD (CF)	NTSZLII)		• (*()		20
WHAL MILL COST (C)		Bisiding) Costalling	• • * *		8.24
Y-PRODUCT COFPIT	(CETTES/LIV)				
AXTONIUM CARBAMAT		•00 C . (Z)	. 1/1		.00
TOTAL (CENTS/L			• • •		.00
WIAL WILL COST (C)		Pacifif Company	1 · · · · · · · · · · · · · · · · · · ·	Fringe	8.24 1.68
			Durk	_	
			PTICE	0% return	9.92¢/lb

¹⁰ YEAR PLANT LIFF. EXISTING SITE

PERCENT CHANGE MEEDED IN AFFECT MEDITION WY A MEMORINA OF THE TOTAL

(1)	50%	is	mai	nte	nance	material
-----	-----	----	-----	-----	-------	----------

OF PARK CALC MATTERS

DIMOR IN FOR	:	·· • /1	٠, , ۴
COSP AND C		• 1	v •
SOLVING CONTRACT		• 4	
THE CALAMATER	÷	• 1	

 Police with 0 and 0

¹⁵ PCT INDIRECT

APPENDIX I-6. MATHEMATICAL REACTOR PRINTOUTS GUANININE NITRAIF PUNIEFT PACKES HEN THRULAR REACTION

DARBALL MEAT TRANSFED COFFETTETT TON CAL. ARG. 12. - HILL BULN BENSITY . 7.37 SPANGIFIE, IN. VAIR FRACTION = .4X7
TIME DIAMETER = 2.00 INCHES
FEED TEMPERATURE = 190.0 C.
JACKET TEMPERATURE = 195.0 C. HOUDBY READS

PISTANCE	HULAH FI	OH RATES	S IVH	FUAFIINES	8	CONVERSION	41615	TEMPERATURE
LICHER	S	HINITE	Lift Freider, &	HUFA	GUANIBINE	A IL MEAC	1 GN/	116.92
	MELT	5 7 13	11881		3140114	A U SEP	4. II WEAC	:
C	£ 14.	. nan.	.4759	47.50	0840	6000	6.0011	0 461
005.	412	100.	. 1746	. 4556	6949	4710.	.2862	~
ů.	2	400.	1474.	. 444.	7640.	.0344	.2474	184
č	4	300.	41114	4461	46.70	71.40	2005	T XX
e.	402	. e.	. 47 K'1	0456.	เรากา	06590	2904	T. 94
ç	20	, o 1	たなおを 。	ロンパロ.	#141.	.180.	2020	A X X -
6	K	V.7.C.	. 4861	1 52 1	-11612	1516	.2084	- x a -
C.	177.	370	4922	.4123	0490.	.2155	2408.	184.2
ć.	145.	from *	1 6 9 7 4	45.02.	1001.	.275R	.3115	₹. ¥.
7.50	•	, nk2	6 Line	1744	.1235	4532	314.5	
3.00	3.4	. ny A	4407	6848.	1.58.5	5844	5255	1 H K . 7
ŗ.	F.	1 XC.	1003	4477	51.50	0184	3.57.5.	- 88 -
0.00		, na.		1014.	.1242	47.54	4655	- 0 er -
2.39	*11.	1 3 -	. 5137	3030	18.81	7514	. 346.5	× 7.8.
5.00	, 307	,	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1446	2 H C .	.5422	.55.42	2.08-
7.30	C	174	1515.	1172	C) 17.	にんがく。	4145.	184.7
n	0	. 1 . 4	* £	. 2254	8117.	. 513R	. 448.0	2
٠,٠	ď		, 1 L .	\$ C F C .	4780.	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.475.5	1.61
5	•	1.1.	.181.3	Pocc*	* * * * * *	F. P. A. 1	. 38 50	
7.50	ď	1.44	.512.1	1717.	1711 / 60	ploy.	×1.02.	۲ • • • • • • • • • • • • • • • • • • •
·.		. 44.	1113.	*2"56	35 40.	.7115	2/65.	1.6.5.1
٦. ۲	.772	.174	. *.O.K.	1 70.1	6404.	5 FF 5.	404.	7.07.1
c c		- 4 - •	**U**	. 1 x 4 5	A 12 12 15 .	.1172		- 60 -
ç.	, 25.5	: X -	47.0.3	1754	V1158.	AC.17.	4416	7.101
000°K7	∢		1115	1749	.3250	.76.55	4100) · I > L
AS TOURCE POTAL FEED FEED AFTER FEED AFTER		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HOUSE AND A STATE OF THE STATE	# # # # # # # # # # # # # # # # # # #		سا سا س	L CATALYST WEIGHT = 1 NAL RESIDENCE TIME = CONSTANT FOR GR ACTIVATION FNERGYRE CONSTANT FOR HOFA DE REFOURNCY FACTOR = ACTIVATION FIREGORY	111.37 22.62 22.62 1.111. 1.111. 1.111. 1.111. 1.111. 1.111.

BUANTOINE WITRATE PROJECT PACKED BED TUBULAR REACTOR

<u>z</u>		
HOURRY BEADS BULK DENSITY = 7.37 GPAMS/CH. IN.	TARE DIAMETER = 2.00 INCHES	JACKET TENPERATURE - 195.0 C. OVERALL KEAT TRANSFER COEFFICIENT B 1.08 CAL./50.12412C.

DISTANCE	MOLAP FLOW	OH RATES	MOLE	SPORTONA	S 7 C 1			
のいまいまし	40163/	TINITE I	NO. TOWN	1.01				ARCHARACA
,	HELT		TAGT		HITKATE	TO PEAC	A. C. KEAC	n⊭G. c.
000	.831	100	4730	47.30	440		9	!
5	Œ						110011	3,06.
		C 000	10 / E .	X = / *.	4000		. 285.E	189.7
֓֞֞֜֜֜֜֝֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡	٧.	٠ •	.4746	*****	9550	0174	, 2865	1 2
30	32	6 U O •	.4743	4464	11543	0251	2872	
6	444	ر. د -	.4741	4643	7050	7720	0.00	P
50	4	0.14	47.4	46.22	0 4 3		7	
9	790					C 7 8	. XXX	3° XX+
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. A 3 C D	# 74B*	- T & U •	.202	188.4
	C - C - C - C - C - C - C - C - C - C -		. 4835	1777	.0745	.1172	-2052	C. A. A.
ָ מים	17.	150,	.4865	4323	. 0A12	4101.	20x4	1 - X
2.50	. 758	, O64	ARG4.	4228	6.00	1847	4101	• (
5.00		. 07A	.4022	4129	CVCT	2168	0.00	N
7.50		000	3707			66120	7 P C C .	~~~~
0	133		T .	75 C F	5 C C C	.2472	.3082	N. XX.
	77.	201.	1 200.	3936		.2756	4118.	, C
00°7			4007	. 3×4:	.1162	3052	2.4.4	7
c .	740	.1%	501v	744	1235	7.12.5	7 8 7 7	7 3 7
7.50	069.	136	ስ5'US°	3657	5031	20.45	7 7 7 7	
00.0	1580	147	X C C C	24.40			\ 1 \ 0 •	
2.50	5					7. E 4.0 0	.3252	* x & -
				/ 4000	7 (2)	4 4 1 4 4	. 30gz	r. T.
	100.		104.	3477	.15.52	4310	5 63.2 3	3 X X X
) i	7.5	C &C	,	.32KR	.1407	4545	2500	1 0 M +
00.0	779.	201.	1117	3200	.1582	4754	4015	- 0
2.50	484.	.20.	4512x	.3114	1758	1041	27.73	- 3 - 3 - 3
۹.	~	116.	. 5137	3030	**	,		*
47,500	124.	166.	25.144	2747	# CO			S • F C
•	Ţ	221	12.0	1507	3 6 0 1			e . 7 (
		•	•	•	:			
MELT FEFT	RATE . A.	מאו לאן שט"י	_		17	FITAL CATALYST	METONT .	1111,37 GRAMS
	FRACTIO		ATACTIC MILIOCATA	F 0 - 4		NUMINAL RESIDENCE TIME	# BHIL BOWS	AA. SI MINUTES
				3000		ATE CONSTANT	NO GCT	
						FREGUENCY FACTOR	FACTOR =	-1.511F 15
PADDUCT PA	ATF = 6.715	-				ACTIVATIO	CTIVATION ENERGY/RE	311 31241
•	GH7 F10	THE SECTION		•	49	PATE CONSTANT	CONSTANT FOR UPEA I	NFENMPOSTTION
		•	- -	• •	/ u.o.	FREDIENCY FACTOR	FACTOR #	2009F 14
			•	1	64179	ACTIVATION	BU/AUGUST POLICE TAVILLE	
		•	LIVAL TO THE TOTAL TOTAL	N	*. v. v.	, , , , , , , , , , , , , , , , , , , ,	X	

BUANIDINE WITHATE PROJECT PACKED BFD THRULAR REACTOR

· .

	JACKET TFA OVERALL HE	rature a Perature At transf	1900,0 C. 1950,0 C. 1958 COEFFICIENT	Ku" # 17410		9-*NIH-*NI*05/* 149	.•		
### ### ### ### ### #### #### ########	STAKC NOHES	HOLAG FL	# 8475 WITE GES		7 34 34 34 34 34 34 34 34 34 34 34 34 34	VI :: 1 V	CONVERSION Mail REACA Mail FED	-	(- L)
1000	00	*		ช บบร •	anna.	unnu.	00011	Š	•
100		7 7		5025	4752	4500°	0130	.2711	E 681
### \$100	0000	?		2900		1000		C 2 7 2 0	•
2 500	2,000	-	510°	5081	0144	0016	.069B	1272	•
1906	2,590	Ţ	¥10.	.5100	4774	10.24	.0454	2763	2 60
7.500	F. 000	30	526.	**!.	. 456 R	. 0.24A	1590	2824	187.6
0.000 .370 .055 .5547 .4155 .0494 .2892 .2049 .1020 .3970 .0649 .5447 .5749 .0654 .3474 .5049 .2049 .1054 .3474 .5049 .1057 .3409 .3079 .1067 .3590 .3151 .1060 .359 .2049 .1057 .3500 .3151 .1060 .359 .2049 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .3594 .1057 .3500 .350	7,500	8	. n.	.5276	4141	1350	.2265	2886	187.6
2500 357 1069 574 574 574 4012 6073 4015 5015 11 11 11 11 11 11 11 11 11 11 11 11 1	10.000	\$.450	.5.547	4155	9640.	2892	2949	3.74.
\$5000	12.500	9	, C.A.a.	1105.	5749	.0654	3474	3015	2.781
7.500	13,000	Z	C # C.	1.48.1	3745	.0773	4012	3082	1.88.1
2.500 315 115 5.522 3160 1212 5.539 3.522 115 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 15 5.500 3.394 3.594 15 5.500 3.394 3.594 15 5.500 3.394 3.594 15 5.500 3.394 3.594 15 5.500 3.394 3.	17,500	Section .	C50.	4850°	35.45	116u	1500	1515.	- X
2.500 .316 .11% .5624 .3160 .1212 .5599 .3394 14	20.000	. 325	\$06.	51,187	3 140	P501°	4954	. 5222	
\$ 000	22,500	414	· = .	*5×2×	3160	.1212	5.540	3294	188.7
7.500 .300 .134 .5445 .2404 .1511 .4183 .3448 .3448 .1500 .300 .300 .3544 .144 .2670 .2540 .1540 .54614 .3544 .1560 .2647 .3544 .1560 .2640 .3544 .1560 .2640 .3544 .1560 .2640 .3544 .1560 .2671 .2634 .1460 .6640 .3541 .1560 .2640 .3541 .157 .2714 .2714 .2714 .3734 .3744 .1740 .2744 .2714 .3740 .3744 .1740 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2744 .2747 .4028 .1111.37 .2650 .264 .2744 .2744 .2744 .2744 .2747 .4028 .1111.37 .2744 .2744 .2747 .4028 .1111.37 .1744 .2744 .2747 .4028 .1111.37 .1744 .2744 .2747 .4028 .1111.37 .1744 .2744 .2747 .4028 .1111.37 .1744 .2744 .2747 .4028 .1111.37 .1744 .2747 .2747 .4028 .1111.37 .1744 .2747 .4028 .2747	26,000	# 0 P	***	. 566.	X 202	1.55.1	5756	.5366	
293	27,500	400	47.4	SHAC.	V404	. 1511	F.01.4	.3440	0.08-
2,500 .287 .156 .5711 .2484 .1480 .6940 .3561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5561 .5661 .6661 .6	30.400	0	. 142.	CH7.5.	2640	C . 41.	6414	3514	V
5.000	12,500	ď	**************************************	1175.	2444	. 18 15	46.34	.358/	A 9 8 5
7.509	35.100	~		. 571.4	9 53 K	0471.	0404.	.3661	0.081
0.000	37,500	7	× 2.1.	0 6.3	1066	U60~*	717	. 57.54	1 061
2.500	40,000	23	.182	Pana.	2073	8666	7.58	ACES.	5.4061
5.000 .245 .104 .4464 .1743 .2440 .7734 .3044 10 7.550 .242 .205 .4024 .1724 .2615 .7839 .4028 10 7.550 .242 .205 .4028 .1724 .2615 .7917 .4028 10 7.550 .241 .207 .5437 .1724 .2619 .4028 10 7.7744 CATALYST WFIGHT = 1111.57 7.7744 CATALYST WFIGHT = 11111.57 7.7744 CATALYST WFIGHT = 11111.77 7.7744 CATALYST WFIGHT = 111111.77 7.7744 CATALYST WFIGHT = 1111111.77 7.7744 CATALYST WFIGHT WFIGHT WFIGHT WFIGHT WFIGHT WFIGHT WFIGHT WFIGHT WFIGHT WFI	42.400	7	161	. 4484	1355	1857	7570	3876	1911
7.550	C	2	****	*****	. X A S.	1440	1738	3946	7 - (1-5)
Renon .241 .247 .1724 .2457 .1724 .4028 .1711.37 .4028 .1711.37 .2462 .1741 .4028 .1711.37 .4028 .1711.37 .4028 .40.01 .4	38.	2	202°	1847	1743	\$192	7839	4014	0 0
TOTAL CATALYST WEIGHT = 5111,57 INFA = 5214 TOTAL CATALYST WEIGHT = 5111,57 THEN TOTALYST WEIGHT = 5111,57 ACTIVATION FOR HRZA DEFINEDS.	0 · K	\sim	707.	<u>ک</u>	-	26.00	101	.4028	100
DAGIGMT FRECTIONS & RAPONING WITDATE & SAIA NAMED PESTENCE TIME & ROOM NAMED PESTENCE TIME ROOM NAMED PESTENCE TIME NAMED PESTENCE TIME NAMED PESTENCE TIME ROOM NAMED PESTENCE TIME NAM	3 4 5	4 1 E .	•			111	TA 7 A 7 A 7	•	
DATE ON STANT FOR GN CHAUSING MITGATE = JOHN FREUENSTANT FOR GN 13111 ACTIVATION FNERGY R 14544 FEEGHT FRACTIONS = AMMINISTRATE = JOHN 1180 SAIF CONSTANT FOR HRZA DEFONCACI	13,000	1 Take 1		LIN WELL	•		PFSIDER	1 1 KE	
CONSTRUCTOR ANTICATE SOUR SALE SALES ACTIVATION FRACTOR SALES ACTIVATION FOR DRIVE SALES SALE CONSTANT FOR DRIVE SALES S				A 7 3 1 1	•		STARI	. Z	
PATE B 3,025 IP./LO. FURTHER WITHAIT B. SIAS SAIF CONSTANT FOR DRIVE BUTTON BONDIENT FOR DRIVE BUTTON BONDIENT FOR SAIP					•	•	FRFOIENCY F		
AND THE THEORY THE COLUMN THE COL		*	1 1 P. / 40				ACTIVATION	FNFOCY	165.5,6 0.5
# COLORN SCHOOL OF THE R		•	. V.		×	4		_ Y /	
						-			アニート・プロロシステ

BUANIDINE NITRATE PROJECT PACKED NED THRULAR REACTOR

MOUGRY BEADS

BULK DEMBITY = 7.37 GRAMS/CII. IN.

VOID FRACTION = .437

TUBE DIAMETER = 2.00 INCHES

FEED TEMPERATURE = 190.0 C.

JACKET TEMPERATURE = 195.0 C.

SACKET TEMPERATURE = 195.0 C.

DISTANCE	HOLAR FLOW	PATES	HUF	FRACTIONS	SNOI	CONVERSION	V151.0	TE MOFHA ILINE
3	F3/K	INUTE	EL SCHE	4 341	SHININE	/ J 7 2 8 1 1 1	120	
		5 7 5	*ITPATE		WITRAIE		M. II PEAC	•
0		906.	יטטט.	1506n	0000	0000	0000	= -
00	5.4		\$125°	# 40 F.	4100	7210	27(16	40 40 40
0	7		.5029	49.37	.0034	0240	2716	: 0 : 0 : 0
1.500	ď.	ر آ د •	5886.	4307	00.51	0356	2725	x 8x-
00.	2		4505	4477	.0n57	0440	27.34	, xe -
.50	2		. 5050	7 4 4 A	.0083	0650.	.2742	288.
.00	-	usu.	.5130	4074	.0153	11100	.2784	187.8
ŝ.	0	1964	**	4568	10244	1530	2824	A. V. B.
0	3		243	64.50	.0328	2046	2855	\$: NS #
2,50	3.5		. 529K	4203	0411	2479	2007	187.7
00.	R.		. 347	4155	8040	2×32	2049	5 N. St
7.56	4		\$ 5.394	6109	48.0.	3295	2003	187.9
9.00	3		. F.A34	13881	190	36.58	3037	
2.50	5	120	1885.	3745	6773	4012	2808	1000
5,00	Ç	132	n 2 5 5 n	3511	CHSO	4334	3128	0 T T T T
. 33	9	146	. 5588	3470	4400	46.55	.3174	200
00.0	4	¥ 55 00 00 00 00 00 00 00 00 00 00 00 00	. 5.5.8.7	3349	1004	PY30	3222	1 () () () () () () () () () (
2.3	† 3		4143.	3220	.1152	35734	3260	188.
8,00		A X I .	11 \$ 4 13	\$605	.1252	55510	A 1.5	** 3%
7.50	. 44.	× = -	2.5.6.9	* 17.7.	1351	5759	3356	0.08.
	282.	100	× 6 7 %	ノエイニ	. 144 :	5032	3415	7 0 0 0 0
.50	.447	, oc.	5.501	2744	1550	27.72	3465	~ (7, 7, ~
•		.210	4,702	2540	9641.	A 1 4 C .	0145	7.02
ç,	P.	57.0.	6.7 EH	25.35	1557	\$6.05	.3563	
46,000	E 5.9 *	23.6	0125	P146*	.1776	6664	.357.5	4.34-
ودو	GATE . A	99 I E				TOTAL CATALYON AFRONIA		1111.57
# E #	k. p.	2 10003 Y 4 100		A / A / A / A / A / A / A / A / A / A /	.	PATE CONSTANT FREQUENCY	TENCH CLUT TENCH GN Y FACTOR =	. 14115 13
PRODUCT RA	TE . 4.71	3 -	•		•	4	CTIVATION ENFRONKE	
PROPUCT #8	FORMS EMBEL	* 5704	- 2	W W	. 1838	RAIF CONSTANT FREDERICH ACTIVETOR	FOR UR FACTOD W ENFOR	######################################
			AND AND THE REST OF THE PARTY O		.2523			•

GUANIDINE NITRATE PPRISELT PACKED BED TUBULAR REACTOR

. **

				DVERALL MEAT TRANSFER CHEFFICIFNT # 1.03 CAL./SO.INMINC.
				#
EULK DEMBITY = 7.37 GPAMS/FII. IN.	TUBE DIAMETER . 2,00 INCHES	FEED TEMPERATURE = 190.0 C.	JACKET TEMPERATURE . 145.0 C.	ER CHEFFICIE
	2.	# #	TURE	MORTH
BULK BEADS BULK BENSITY = 7.37 VOID FRACTION = .437	AMETER	HPEPATU	TEMPERA	HEAT T
MOUDRY BEADS BULK DENS! VOID FRACT	TUBE DI	FEED TE	JACKET	OVERALL

DISTANCE	MOTA BAJOM	OM RATES	A JOH	FRACTIONS	540	CONVERSION	77511	TEMBERA TURE
INCHES	183704	HINUTE	HII NORTH	IBFA	BUILLINE	M.U REAC!	I	
	MELT	5 4 5	VITBATE		VITRATE	M.U. FER		•
000*	790	υυ···•	.5000	הייטב.	0000	0000	0000	100
906	. 860	¥ 6 C .	1104.	4076	10013	4600	270	
٥,	ម្ដា មា ព	Y00.	. 5022	4952	,0026	76.U	-	- 37
	.852	. a s a	5032	4420	egou.	0220	22718	1.0.1
٠.	. 548	.014	5942	4497	1600.	n356	2	* X6-
r,	.844	4.0.	5505,	4484	6663	.0452	.2731	\$ 00°
۰.	.827	÷ee.	0015.	A776	.0124	0856	.274.5	188.0
'n,	. 811	. n 4.	54.6	6472°	. 1183	.1232	2794	187.7
۰,	704	1058	X 87 ? •	.486E	. 0244	1590	2	187.4
2.5	.780	.072	.5230	.4965	£1304	1011	. O 20 C C	187.6
€0	.756	480.	45270	4361	0.350	2253	.2886	187.A
7. 5	*	. 00	4304°	4764	04.33	25.44	1100	167.7
.00	2	111	5.547	4155	4014	2832	2000	1 R 7 . K
2.50	,72h	× >	F R.F. C.	40.50	0565	3.1.88	2982	2.181
°.	714	.134	5417	5765	116.54	3474	, W.	187.
7.50	.762		. 5.650	1447	\$ 0 / 0 .	3749	3048	= + × × × = + × × × = + × × × × × × × ×
0,90	.491	. 160	SAN!	3784	.0773	6104	3082	- xx
2.33	089.	.:72	1164	35.44	68.30	4756	3115	7.00
5.00	. 440	* 4 ~ *	. 534	3545	1169.	06.48.	. 315	
7.50	A.50	45.	4466	3446	1.505	14741		2
00.0	Š	702.	. 5×7	3340	1054	4944	. 5222	
. * 0	F. A. B. J.	.21.0	25 0 14 15 18	3254	11.38	5177	12257	
00.	8	082	*6.62M	3150	613	5.590	3294	, £x
'n.	. 421	.241	. 5.4.5	A YOUR	1887	5574	3330	x 600
000.	~	.24%	* 5 4 6 %	3050	1302	2195.	.3137	3° 44.
ברג נננט	RATE .	c - 1	.•			TAL CATALYST		1.37 GRAMS
FEED WEIGH	T FBACTION	* •	<u>x</u>	# .5714 # .4786		ָרָהָ <u>,</u>	MENIDENCY TIME & STATE & STATE FOR GN	44.52 AINUTES
a	A76 & A 274	THE ALL SE	HILL PETOATE	נוטווט •		ACTIVATION	FACTOR B	. 1414 13 1655 05
* TOURD	1 L L L L L L L L L L L L L L L L L L L	1 NO.	alfalle ella est.		25.04 PA			
		Š			7506	FREGUENCY FACTOR ACTION	FACTOR #	1489F AT
		•		•	-		¥	

APPENDIX II

PHASE III, PART 1

GUANIDINE NITRAGE PILOT PLANT OPERATIONS

Figure 11-3 Treathermin Minrate Melt and Feed Systems

Figure II-5. Guanidine Nitrate Catalytic Tubular Reactors

Firure II-6. Reactor Product Aquecus Quench Tank

Figure II-10 Guanddin Sitrate Drying System

The state of the State of the state of the Feed Recycle

TABLE II-1

REACTOR PERFORMANCE (Operating Conditions and Calculated Results)

Run No. 1 (6/8/72 -+ 6/29/72)

			,		C7/0	5/16	6/21	6 /21	6 /21	6 /31	(1/)			
Sample No. Calculations Eased On	5.1	\$2	3.	S	23	5	č		17()	17/0	17/0	17/9	6/22	6 /22
					.	;	ñ	S 2	S 3	7 S	SS	S6	\$1	
ı) (1)	5 050	0,770	1520	2200	04.00	0010	0400	0800	1300	1800	2016	ě	
<u> </u>												6107	0115	0990
Reactor Steam Pressure, psig	170	163	160	16.0	192	190	190	120/190	001	ç	6			
Effective Mo. of Tubes	7		2	2	4	2	, ,	2.5		00 7	607	190	225	225
Z U, Feed Froduct	28.77	41.5/	39.8/	28.57	76 97		,		^	7	i-2	2	1-2	1-2
	16.9	25.6	29.3	20.6	14.3	70°07	43.47	42.6/	43.1/	36.7/	39.3/	34.8/	45.2/	76.95
L AM, Feed Product	61,47	\cdot 3.	52.97	14.82	63 77	/ 0 70	•		•	:	6.11	5. 4.3	2.4.5	•
	7.09	8.5.	53.8	57.6	52.8	35.6	41.6	50.1/	52.7/	50.1/	55.6/	57.37	48.87	/9.87
I OK, Feed Product	ex		ć	:	;			;		0	7.66	5.00	50.5	
	22.0	13.9	11.1	7. 1. 3/	31.1	3.2/	5.5/	3.5/	4.8/	4.2/	2.47	10.9	5.8/	~
	,				:		13.1	8.73	24.6	22.1	14.9	13.7	20.0	14.9
		Trace	C.	7.0	1.3	9.25	0.19	0.62	0.41	0.29	0.15	01	,	C
Feed Este. In Ar	, A	ij,	C C	ن د	i de	4	ć	ä	•			:	•	7 7.0
G Jeolathons							0 .	Ĵ.	06	0 6	90	06	96	
•														
AND C. Modern.	<i>x</i>	٠		:	1.43		19.0	5.882	0.916	1.19	8	1 23	 G	,
では、10年 (800) (800)	<u>r</u>	64 5	-		67.	.2.	0.432	9,76.0	ć			(3.1	.01	
On It Feed M.	\$	276170	25.00.0		0 1760			96.7	7	54.0	:/7.4	0.222	0.182	0.155
					000	500.0	0.237	9.116	0.173	9.152	0.1!1	0.0605	0.0913	0.0836
***************************************	.70.		٠	1.2:7	0,281	0,0189	6.007	0.045	0.022	0.0173	0.0122	0.0275	0.026	0100
Flant Froductivity, 18 Age	1 ~	6.3	2.3	56.6	6,8	\$	21.6	10.5	15.5		10.0	27.5	, a	20.0

Feeding Reactors R200.33 After Orifices in R204.37 Failed

Feeding to Bractory R2/20->7

11 12 13 14 15 15 15 15 15 15 15	Set o	14	5.22	9	6723	6/23	6/27	6 /27	6177	96/ 7	,					
1111 15.3 17.3 17.4 17.4 18.4	Sample No. Calculations Based On	ŝ	.9	Ş	çs	Ş	Ü	í		0 1 10	97/0	97/9	6/28	6/59	67/9	6/58
15.1 12.1 12.2 12.2 12.2 13.4 13.4 13.4 13.4 13.5 13.4 13.5 13.4 13.5 13.4 13.5 13.4 13.5 13.5 4 13.5 13.	À	:	;	•		S	,	70	es S	S.3	25	83	\$ \$	8.1	\$2	83
### 12. 12. 12. 12. 12. 19. 19. 19. 19. 20. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19		•	ĵ.	36	:23 ₀	0830	 S	06,00	0800	0200	0020	1100	1400	0200	96	6001
	1818														3	7000
190 190	Reaction Steam Presente, psig.	:;	24	√: [} []	č.	195	Sel	200	6							
12.2 17.7 18.48 24.57 28.64 32.07 -7 28.57 33.27 34.64 24.48 17.3 18.49 22.58 22.7 19.66 13.56 13.57 13.77 13.27 34.64 24.48 17.3 18.49 22.58 22.6 19.66 32.07 -7 16.66 13.7 20.7 21.0 24.48 24.59 24.57 25.66 24.67 24.67 24.67 24.67 24.67 24.57 24.57 24.57 24.67 24.67 24.67 24.67 24.67 24.57 24.57 24.57 24.67 24.67 24.67 24.67 24.67 24.57 24.57 24.67 24.67 24.67 24.67 24.67 24.57 24.67 24.67 24.67 24.67 24.67 24.57 24.67 24.67 24.67 24.67 24.57 24.67 24.67 24.67 24.57 24.67 24.67 24.67 24.57 24.67 24.67 24.57 24.67 24.67 24.57 24.67 24.67 24.57 24.67 24.67 24.57 24.67 24.67 24.57 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 2	Andreas and the second second		an, t	·	~	. ,			()()2	190	195	190	194	190	190	190
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	A CONTRACT OF STATE O					•	•			·đ	~	3	3	2.5	7	2-3
10.0 13.1		1	÷ .			24.57 18.9	28.23			32.0/	7-	28.5/	32.7/	33.2/	34.6/	33.2/
7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57	A. A. Fred Product	,		•		•				0.47		10.0	15.7	20.7	21.0	25.2
13.			3			11.1	58.6.	6.83 58.9		57.2/	` 5	61.0/	55.5/	57.97	57.5/	62.3/
13. 13. 14. 15. 16.3 17.3 17.4 17.3 17.5 17.3 18.9 17.0 18.9 13. 13. 13. 17.8 17.3 17.5 17.3 18.9 17.0 18.9 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 14. 15. 12. 12. 12. 12. 12. 12. 12. 12. 15. 15. 12. 12. 12. 12. 12. 12. 12. 12. 16. 17. 12. 12. 12. 12. 12. 12. 12. 17. 18. 17. 12. 12. 12. 12. 12. 18. 19. 19. 19. 12. 12. 12. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	2 %. Fred Product	,			•	,				•	: 8		64.3	8.09	59.2	63.7
7. 13. 18.9 17.0 16.3 2. 2. 2. 2. 90 80 80 6.3 0.79 0.58 0.55 0.69 2. 2. 2. 2. 90 80 80 80 125 0.69 3. 1. 2. 1. 1.8 1. 34 N/A 1.61 1.27 1.31 1.24 3. 1.					i a	2 12	10.01 16.9		9.7/	19.9	/-	76.7	72.9	19.4	3.4/	1,4/
2 2 2 2 90 80 60 60 60.55 0.69 1.24 1.24 1.24 1.24 1.31 1.24 1.31 1.31 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.35 1.36 1.36 1.36 1.37 1.38 1.38 1.38 1.38 1.38 1.39 1.39 1.30	I Inschilles, Pr Cart			مون تعر ا ا	ن د د	76)				•	7.	6117	6.81	17.0	16,3	9.1
7. 25 90 80 80 125 50 7. 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.8 1.34 N/A 1.61 1.27 1.31 1.24 7. 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.	一年 一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	ð	ð			•	•		0.31	0.89	0.63	0.79	0.58	0.55	0.69	0.32
	を開発し、中華のコンジの種類と		•	•	5	(T)	2.	2.	25	06	e B	80	80	125	20	180
1.24 1.31 1.24 1.34 N/A 1.61 1.27 1.31 1.24 1.24 1.27 1.31 1.24 1.24 1.25 1.31 1.24 1.31 1.34 1.31 1.34 1.31 1.34 1.34 1.3																
1.24 1.21 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.24 1.31 1.34 1.34 1.34 1.34 1.34 1.34 1.3	AN 1. M. Se Patr.	,		6 g	4.	1.73	<i>\$</i>	1.7.	G.	2	5	:				
7.553 - 0.457 0.195 0.306 0.338 7.557 - 0.457 0.195 0.306 0.338 7.557 - 0.133 0.08 0.306 0.338 7.557 - 0.133 0.08 0.0875 0.1055 7.557 - 0.133 0.08 0.0875 0.1055 7.557 - 0.105 0.056 0.0478 0.0562	一人一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	ı		21 42 **	1.			Ç			4	0.1	1.27	1.31	1.24	1,41
7. 17. 17. 17. 17. 17. 17. 17. 17. 17. 1	1980年 · 1980年 · 1980年	,						•	Ç		,	0.457	0.195	0.306	0.338	0.293
				,	·.		•		0.5665	9.23.	ı	0.133	30.0	0.0875	0.1055	0.0695
					<u>.</u>	613.	i k	.€ 	÷	6.0244	•	0.05		0.0478	0.0562	0.427
			٠,			77.	<i>c</i> '		1.10	21.1		12.0		12.2	5,3	12.5

Fording Fract to 1 271, 272, 203 Tried All Fractors; Problems With Flow distribution, Boilers

Figure II-12. Productivity Vs Time - First Catalyst kin

Figure II-13. Productivity/Hr Vs. Time - First Catalyst Run

Figure 11-14. Productivity Vs. Time - Second Catalyst Run

Figure II-15. Productivity/Hr Vs Time - Second Catalyst Run

Figure II-16. Yield Vs Time - Second Catalyst Run

TABLE II-2

REACTOR PERFORMANCE (Operating Conditions and Calculated Results)

Run No. 2 (7:19/72 -- 8/11/72)

24.5	. 7 e-1		7	i.	77.20	7.23		7/23	7/23	7,73	7 /24	7 /24	1/24		7/25
Campis No. Coloubats ins Based (M.	, . vs	.	à	5.1	3.5	e E Deam		S	83	\$ \$. · · · · · · · · · · · · · · · · · · ·	52	53		Si
Å		Ā	Ş	5E 74		e -		1300	1530	2330	04.30	9830	1300		9736
T 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						ояд								₹3°C)	
Misson Technology American Control	κ.	2.	e	एक र	0+1-4	(g) (g)		110	011	115	110	160	110	81)	150
Estrange No. of Tables	at)	u.	aL.	σc	3,	eap : oo		∞	æ	ω	œ	œ	ω.	gieq	æ
ু পুটার বুলি ক্রান্ত্র বিশ্ব বিশ্র বিশ্ব বিশ্র বিশ্ব ব		. c.	- 4 - 2 - 2 - 3	27.5	35.27	1 c. 	t wear	3.7/	34.9/	33.3/	-/ 33.7	-/	27.4/ 24.6	051 0	•
AST. Fred Product			œ ;	# F	2.7		5 4040	8.17	56.87	59.07 60.5		-/	60.47	snxe t	•
The second part of the second	9. 7. K.	0 et	7 4	, 5° 6° 6° 6° 6°	ij f W m	assbace	раз риг	3.07	6.1/	4.17		8.5	6.27	səid m	
Control of the contro				•			e au	90.0	0.30	0.16		Trace	ħu*0	e91s	ż
A CONTRACTOR OF THE CONTRACTOR	<u>₽</u>		¢ .				qea	100	10)	00	100	100	100	pos	100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						8n[]								Rat	
As I so the Boats	Ň.	J.	5	9	6 ·	ior iot		1.39	1.13	. 33	ı	ı	1,65	- 00	1.34
(1 03/10 (1 30 , 30), 340.0	3 54 54		1.	6.573	******************	्र इ. इ.	ay si	1.251	0.121	0.311	,	•	0.598	· 50	,
	1	· ·		3.13	0.223	₹ :xi:	o (1)	606.6	0.0513	0 0788	•		0.0575	ካፘ/	•
106-12 Le GR F.	. 362	*	*T.00.	7.635	0.017	0.6285 ps	e dna	0.0073	0,044	0.011		t	900-0	L	ŧ
Fant Productions, N. br				•	22.3			υ . 6	5.1	σ. r-	1	Ì	5.8		

NOTES:

Start Joby 17, New Catalyst; First Data 7/19, Flow to All Reactors

Date	7 25	7725	7.23	, -	7/26	7/26	7,26	7/26	7 (36	۲۰/۲	,	;			
Nagyle Wo. Calculations wased Co.	C4 W	ິດ	:5		5.1	\$2	23) }) - (17//	7/27	7/27	1/2)	7/28
7 ame	Asc	1400	17.5.	,	92 0	0530	0,100	, ,	•	. i o	82	\$3	\$	3 ડેડ	,
a . 1867					<u> </u>	i.com	53.50	005.1	1600	0130	ું	0830	1230	2000	1030
Reserve Stram Pressure, poss		, .*.	e gases		Z	Ş	- -								այ
Effective Me, of Tubes	ů.	20	ų,		. '	•	2	155		185	185	185		195	B918
おり 日の 日の 日本 日本 一丁 一大	3, 4		0 0 0					,		œ	œ	80	œ	œ	٠5،
		7.61	23.7	52/1		30.4.		28.5/		,	31.47	31.47	,	,	ג עפיע
T. Aut. Fred Product								0.01			18.7	29.8			ų/¢
	f .	ij	sat.	111	7:37	58.7	ı	16.93	gjsc		58.3/	58.3/	,		s
2. (A) Fred (B) (A) (A)	· ·		ui ui	ue		, q		:	d çg		60.0	57.9			8/5
) *	17.1	1%.	21.	2 ,		•	8.9/ 13. 8	31 (:	4.1/	8.3/		,	03 [W
Tanandumber, Prodect		61	7.32		ç			0.01)] d		18.2	16.4			or4 ots
· · · · · · · · · · · · · · · · · · ·		Á		114	v.			ı	uns		0,40	0.25			oj: .eqt
C1123 1 20.				iaryi Bera		c E	•	100	8944	100	100	100	100	100	e Rai ed Fe
ASS Committee of the second	:4	.:			7	<	,		בָהייוש						15831.
(1988) (208) (ACS) (BA)	*		Acc.					1.53	s pə		_	1.40	,	,	əЯ∖qı ənΣ
Committee of the commit	57.	.4.; () ()	ı	ď	_	1 g	,	7.	duri,		0.357	0.287	,		នៃស្រ ខ្មែ
The Contract of the		64 64		•		•	,	£3	ເວ		0,111	0.076	1	,	oba eq.
नेति। जीतः । ति अवस्य १ क्षा क्षा क्षा अध्यक्ष १ क्ष	į			:				•			0.030	0.035		,	80et
	4	(·		**	¥.04	-1	,	3, 5			11,1	7.0	•		12

1500

8/1

Shit Down. Unable to Pump Through 5 of 8 Tubes

... ...

Buller Problems

11-21

Figure II-17. Computer Prediction

Figure 11-18. Computer Prediction

TABLE II-3

SAMPLE CALCULATIONS FOR DETERMINING REACTOR YIELD AND FRODUCTIVITY

I Step by Step

Basis: Moles Nitrate are consumed.

$$2 U + 1 AN = 1 GN + 2 NH_3 + 1 CO_2$$

(For every mole of AN consumed, one mole of guanidine nitrate is formed.)

Data: Reactor Steam Pressure = 225 psig

Feed Rate = 90 lb/hr

Analyses

		Feed			Produc	et
	70	Lbs.	Moles	70	Lbs.*	Moles**
Urea	25.8	25.8	, 430	16. 9	16.9	. 282
Ammonium Nitrate	63.3	63.3	.791	62.4	62.4	.780
Guanidine Nitrate	7.4	7.4	.0606	18.4	18, 4	. 151
Insolubles	-	**	-	0.38	0. 38	.003

- Arbitrarily based on 100 lbs. of total material
- Calculated moles based on arbitrary 100 lbs. material

Total Moles of Nitrate in Feed/100 lbs. Feed = Moles AN + Moles GN = 0.8516

Total Moles of Nitrate in Product/100 lbs. Product = 0.931

Similarily:

$$\left(\frac{GN_{M}}{N}\right)_{\text{feed}} = \frac{.0606}{.8516} = 0.0712$$
 $\left(\frac{GN_{M}}{N}\right)_{\text{Product}} = \frac{.151}{.931} = 0.162$

$$\left(\frac{AM}{N}\right)_{\text{feed}} = 0$$
 $\left(\frac{AM}{N}\right)_{\text{Product}} = \frac{.003}{.931} = 0.0032$

During the Reaction, then -

$$\Delta \left(\frac{U_{M}}{N}\right) = \left(\frac{U_{M}}{N}\right)_{Feed} - \left(\frac{U_{M}}{N}\right)_{Product} = 0.505 - 0.303 = 0.202$$

$$\Delta \left(\frac{GN_{M}}{N}\right) = \left(\frac{GN_{M}}{N}\right)_{Feed} - \left(\frac{GN_{M}}{N}\right)_{Product} = 0.0712 - 0.162 = -0.091$$

Or a loss of 0.202 moles urea per nitrate mole and a gain of 0.091 moles GN per nitrate mole.

Feed Mole Ratio
$$\left(\frac{AN_{\text{M}}}{U_{\text{M}}}\right)_{\text{Feed}} = 0.791/0/430 = 1.84$$

Yield

Basis:
$$2 U + 1 AN - 1 GN + 2 NH_3 + 1 CO_2$$

or 2 moles U consumed per mole of GN made.

Yield = Moles GN made Moles U consumed/2 x 100 =
$$\frac{GN_{M}}{U_{M}}$$
 x 200 = $\frac{GN_{M}}{\frac{U_{M}}{N}}$ x 200 $\frac{GN_{M}}{\frac{U_{M}}{N}}$

Yield =
$$\frac{0.091}{0.202}$$
 x 200 = 89.0%,

Productivity

Productivity/lb. Feed =
$$\frac{LGN_{M}}{N}$$
 x $\frac{N_{Feed}}{100}$ x 122 =

 $0.091 \times 0.8516 \times 1.22$

Productivity/lb, Feed = Lbs. GN Made/Lb. Feed = 0.0945

Plant Productivity

Plant Productivity = Lbs. GN Made/Hour

 $= 0.0945 \times 90$ lbs./hr.

Plant Productivity = 8.5 lbs./hr.

Insolubles Formation

Insolubles Productivity = $\frac{\Delta AM}{N} \times \frac{N_{\text{Feed}}}{100 \text{ lbs. Feed}} \times M.W. X \text{ Feed Rate}$

= $0.0032 \times 0.8516 \times 1.28 \times 90 \text{ lb/hr}$

 $\approx 0.314 \text{ lbs/hr.}$

Productivity Insolubles/Guanidine Nitrate = 0, 314/8.5 = 0.037

II. Alternative Calculation Procedure

Nomenclature

X _j	1	weight fraction	,	
7:3	moles 1 = fee	d 2 =	= liquid out	Eput
ذ	1	2.	3	4
Campound	GN	AN	U	INSOLUBLES
Mw	122	80	60	ONKNOWN

1.
$$y_{ij} = X_j \chi_{ij} / Mw_j$$

2. $y_{ii} + y_{iz} = \left[\frac{\chi_{ii}}{Mw_i} + \frac{\chi_{12}}{Mw_z}\right] X_i = \left[\frac{\chi_{2i}}{Mw_i} + \frac{\chi_{22}}{Mw_z}\right] X_2 = y_{2i} + y_{22}$

3.
$$X_{i} = \beta \times 2$$

Where: $\beta = \frac{\chi_{ii} + \chi_{i2}}{\chi_{2i} + \chi_{i2}} = \frac{\chi_{ii} + 1.525 \times 2}{\chi_{2i} + 1.525 \times 22}$

Sample Calculations (using data from prior method)

1.
$$\beta = \frac{\chi_{11} + 1.525 \chi_{12}}{\chi_{11} + 1.525 \chi_{12}} = \frac{.074 + 1.525(.633)}{.184 + 1.525(.624)} = .9152$$

7.
$$Y = \frac{-99.36(x_{11}-x_{21}\beta)}{x_{13}-x_{13}\beta} = \frac{-98.36(.074-.184(.9152))}{.258-.169(.9152)} = 89.9\%$$

5. RATIO =
$$-\frac{\chi_{24}}{\chi_{11}/\beta + \chi_{21}} = \frac{-.0038}{.074/.9152 - .184} = .0369$$

APPENDIX III

PHASE III, PART 2

RESOLUTION OF CATALYST POISONING PROBLEM

TABLE III-1

DETAILED DATA FOR HOUDRY BEAD ACTIVITY AND SORBEAD & STIRRED BAICH EXPERIMENTS

		27.6.0	43.6 0.20k 0.429		3,01	1.28	1,0(2)			
S Cons.										
>-1			252							
Poles CM			0.5361				0.182	0.6318 6.1958 0.996	- 0,1490 0,15\$	•
Toles U		201	28		0.3276	1.7:2		1.175	5.84 6.84	,
Final Bector Mair (gm		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			233.7	1.668				
# # (#)			42			13:		4 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		
1 (8)			· · · · · · · · · · · · · · · · · · ·		1 1 2 2	, <u>\$</u>	S			
(54 (146)			<u></u>	e e e j		4.2	· · · · · · ·		,	
			<u>}</u> ••••	;		•				
10.1			gi e e e e		* * *					
Same	- 111	100) - Mag		a a	1 3	. 1.1.	, i .	7.8	
101			12.9	1373	* # # ;	÷	All			
	• ; ; ;			- \$1.5	174	1.3	· Pat		3.3	
X	49 4 1 11 12				• : ; ;	. ;	3.1	5 :		
* * * * * * * * * * * * * * * * * * *	: * : *				144 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	±; ↓ •				
	***			· · · ·				12.5		
	5 jr \$	a. & 4.	ရေး မိန္နာမ်ာ မိန်ရမ် အ		4 5 4	in p				. ;.
					7. 5. 8.	7				
Charge Mrs. 1887.		**************************************	 3	•	· •	<i>;</i> ;				
	à ()	<u>.</u>		* 0 0	h.	* *		•	;	
21	%	à · ·	· 3	ž ·	<u>.</u>			.	<u>.</u>	
3	7	151	\$ \$75.0 \$ \$	\$ 44.5 \$	1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		, \$45. 3	345 3	
AT (FIRE	Mr Muder Badia		Des Bendir Desk Top P. XC	i i i i i i i i i i i i i i i i i i i	Mari Bandry Brain Mary Bandry Top 7 B. 255	The formal of the state of the	Periot :		Markey States (Section 1975) Markey States (Section 1975) Markey Markey States (Section 1975) Markey Markey States (Section 1975)	(See 5 Profes

TABLE III-2

DETAILED DATA FOR GRACE 59 SILICA GEL

						E			450	(VC) 6- 1 B.	reults			* Khts	0.1 (86)									,	
SALEZZA	1 0 1 0	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.10	*		3	5 B		o il ente	* inlaria	3,375	Rinal ing	Carbon-	i		Palance	Reactor	Moles C	K les 🛠	8	<u>.</u> د	Carbonate	ð
								í	,									1 - 1011		-,	F. I Dec G	Tield (T)	Comy, (T)		3
2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	Ž.	<u></u>			•				•			,					,							
3	Ķ					÷	2	;	1 22				-			,			. ,	0		• ;	,	,	
						•		• .		,					,						, , ,				0.0
	27.		,			ď	.*	. A	Surt his	1, 21 00	-			,							2000	17.7	65.1		9,70
		.: 4	S			13.44		An ther Daine of Land All And	0	of Land					B. 4			•				•			ı
	ĸ,								15 1 27						9.	1 New 1	(cr)								
	í.												٠.			,				. 792	1.554	82.5	£3.2		1.25
	. :																			į	1.859	85.5	72.4	,	199
						•	:						ć	•	:	~.	7.8.5	٠, ۲	5.005	5.1-8	2.333	, 64	85.8	0.80	3
3, 400, 000		.1		٠																					•
	:	:	ŧ.	:		• •											,		,			•			
	: :					. :		•				. 1	;					•			•			•	
						. ;							• ;		,		,			1.576	0.3769	47.1	52.5	,	0.276
	i.					,	.:		23			٠, ت:	. •				,			6 177	5.637	5.00	70.2		0.507
1																									
Fresh Louri Land	;	:	Ĭ.		, . 5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Charlener Charges :	i.	4000	-	200	,	;*	,					,	,			,
Account for Second						•		,	,				7							16.531	665.0	1 67	7 07		. ;
ž	¥												:			,				£,	0.970	5) = } 5		
							.:			.		*			1.3	ر د د	¥.	0.58	662.3		8	57.0	62.3	1.63	1 2 0
A STATE OF STATE	,	4				ÿ																			
	:	i	i				٠													,	,			•	
1 1 1 1 1 1 1	:					٠.						•					,		•	27.5	45.7.6	2.6	37.8	,	7
	, ,					. :							;							3.53	0.73	1.12	88.88		3
	•					•						u.	-	, ; cx.			976.3		682.8	1.53	1.6%	37.1	58.8	2.23	0.521
2. 44.5		ě,			9	,																			
21355	;					9													,	,		,		•	,
												· ·	:							2.301	1000	6.04	38.3		9.375
	;					,	,						: .							2.775	9.5	6.97	46.9	•	9.522
	`,											٠,			٠,	,	,			5.8.0		67.1	63.5		1.02
													ŗ	X 5		:		2.3	\$. 974°	1		77.4	73.6	8	1.37
11. THE P. LEWIS CO., LANSING, MICH.	¥	4,	*		2	,				•															
tres and heatent	•					٧															. :	1			
3	•									,	,										010	, R	37.5		5.327
	?					in.		:	47		,						,			2.5	,	::	67.5		0.623
	*;												•	•					. ;		.623	76.5	69.2		1.30
													:		•		i.		e	4.	7.1	æ	77.8	626"0	1.60
* # 62 # 1, 1 # 17		٠,	34		:	٠																			
*** *** **						.*				,									i		. :				
						,				ā	,			. ,								4			*
						٠,	٠,			,												0 0	4 3		9 9
											4		٠.	,								7.07	ю. С		8

TABLE III-3

LABORATORY BEAKER TESTS

Run #1 - X2121-36-1

Procedure - Added 10-15 grams dry'silica get (Grade grade 59) to 275 grams of molten AN/U at 300°F. (2/1 AN/U mole ratio)

- Hand stirred for ten initiates
- Allowed catalyst to settle
- Poured off melt
- Spread wet silica gel on paper towel.
- * (Dried at 165°F overnight)

Observations -

- Bubbling on first contact presumably due to venting of entrained air.
- Wet silica gel on paper towel was very soft. It fractured with the slightest touch.
- Estimated attrition was 5-10%.

Run #2 - X2121-37-1

Procedure - Same as X2121-36-1 except melt contained 5% liquid water.

Observations - Same as Run #1 but with a higher percentage of attrition (10-20%).

Run #3 - X2121-37-2

Procedure - Dropped dry silica gel (Grace grade 59) into boiling water (212%).

- Stirred for ten minutes
- Allowed catalyst to settle
- Poured off water
- Spread wet silica gel on paper towel.

Observations -

- Bubbling on first contact presumably due to venting of encrained air.
- Wet silica gel was softer than the dry silica gel but much harder than recovered catalyst from Runs #1 and #2.
- Estimated attrition was less (5%) than in the two previous runs,

Run #4 - X2121-38-1

Procedure - Dropped dry Houdry beads into a melt of $\Lambda N/U$ as in Run #1.

Observations -

- Houdry beads floated on top of the melt for about five minutes before sinking. After sinking, the beads continued to release vented air for an additional 5-10 initutes.
- Recovered beads appeared to be harder than the original beads. There was no apparent catalyst attrition.

Run #5 - X2121-39-1

Procedure - Same as Run #1 but using preheated silica gel (350-400°F)

Observations - Same conclusions as noted for Run #3.

FOUR-INCH-DIAMETER REACTOR SUMMARY

(a)

 The Reactor (R-200
 Houdry Vacroporous Silvea by a 4s
 Herevice I Brigori Bragent Grad (AV, Ohn U)
 Receil Some 1111

1			Ī			assis Teeli	p	
		÷	Read TOT Medi	4.4 68.1 28.2	0.073 0.852 0.231 1.683 0.067	Calc. Basis Theo. Fee i 0.431 0.213 0.495 90.0	8.3 8.3	
	1-39-73	4:30 P. M. 13	77acc. 35	27.3	0.455 0.906 0.909 0.498	y Dawi		
			1.1.1 N. 1ual 35	1		Cole, busis Actual Feed		
			Reactor Melt	7.6 68.5 23.7	0.126 0.856 0.194 1.050 0.120	Calc. Basis Thro. Ford 0, 378 0, 185 0, 490 98, 0	7.2	
	1-30-73	1:00 P.M. 9.5	Theo.	27.3	0.455 0.909 0.209 0.408			
	.i.		Teed Actual 35	•		Calc, Basis Actual Feed		
			Mest 0 AM -	plant liters, ind high	jacket.	Cas Passe Bro. Dave		
	1-30-73	1:00 A.M. 8.5	Fig. 0.	on due to lure (mc etc.) drained a	reactor	1		
	·	0:1	Neuga Paro, Mes	steam failure (melters, feed line, e.c.) Rector drained and high steam pressure main-	tained on reactor jacket.	Manage Bress		
			18: 40:40; 34:24;	800 800 800 800 800 800 800 800 800 800	0.141 0.816 0.220 1.036 0.136	0.362 0.362 0.212 0.575 115.0		
r - None	1-29-73	10:30 1'. Ni. 6	30	27.3	0, 455 0, 909 0, 909 0, 909 1, 909 1, 909 1, 909 1, 909 1, 909	-1		
4. Recaele - None	1-3	101	30	26.2 71.7 3.2 0.5	0,437 0, 0,8% 0,018 0,018 0,47% 0,020	Actual Fred 0,345 0,191 0,540 0,020 0,020 0,030		
			10 mg/m	2. 17 m 2. 15 m 1 0 01	0, 1655 0, 842 0, 182 1, 034 0, 166 0, 186	0.338 0.338 0.550 0.550 110.0	9	
	-73	7:50 P. M. 3	30	27. 5	0,455 0 0,606 0 0,606 1 0,408 0			
	1-20-73	5 55	30	61 0 0 0 0 0 0 0 0 0	0.474 0.856 0.025 0.851 0.531	0, 371 0, 425 0, 425 0, 173 0, 173	5. 18 5. 18	
		7 ::5		- Annual Control Contr	Antonial Continue and Continue a	:		
				9 			## KU SE	
	-	the second of th		大き インファン			CONTRACTOR (CONTRACTOR) CONTRACTOR (CONTRACTOR) CONTRACTOR (CONTRACTOR)	
	1 -	 : : :		ب ب ب			전화실 기간	

Basis:

Ine Reactor (R-200
 Houdry Macroporous Silica Beads
 Hercules' Donora Reagent Grade AN, Olin U
 Recycle - None

		Reacron	6.0 65.0 29.4	0, 100 0, 100 0, 818 0, 241 1, 059 0, 092	Calc. Basis Theo. Feed 0.406 0.228 0.561 112.2 0.253	ი «
	1-31-73 7:30 Å, M, 28	Feed Fortunal Theo.	26.7 27.3 69.7 72.7 2.4 -	0.445 0.455 0.809 0.019 0.891 0.909 0.498 0.498 0.498 0.021 0.021	Calc. Basis O. 407 0. 207 0. 509 101. 8	7. 9
		Reactor	5.4 70.2 24.8	0.090 0.877 0.203 1.030 0.083	Cale. Basis Theo. Feed 0.415 0.188 0.453 90.6	
	1-31-73 4:30 A. M. 25	Feed Actual Theo.	72.7	0.455 0.909 0.909 0.498	Calc. Basis C Actual Ford	
		Reactor	4.7 65.6 26.2	0.078 0.872 0.214 1.086 0.072	Calc. Bas is Thro. Feed 0, 426 0, 197 0, 462 92, 4 0, 218	7.6
	1-31-73 1:30 A.M. 22	Feed Actual Theo.	27.3	0.455 0.909 0.909 0.909 0.498	Calc, Basis C Actual Feed T	
ne	M.	Reactor Meh	5.9 70.1 24.8	0.098 0.878 7.208 1.081 0.096	Cult. Basis Thro. Feed 0.402 0.188 0.466 93.2 0.208	7,26
4. Recycle - None	1-30-73 10:50 P. M. 19	Feed Actual Taco.	27.3	0,455 0,909 0,909 0,498	Calc., Basis Actual Feed	
	•	Reactor	4.4 69.7 26.9	0.073 0.872 0.220 1.092 0.067	Coic. Basis Theo. Feed 0. 431 0. 202 0. 470 94. 0	7.8
	1-30-73 7:30 P.M.	Leed Actual Pheo.	22.0 27.3 75.2 72.7 3.4 -	0,367 0,455 (.940 0.909 0.028 - 0.908 0.908 0.379 0,498 (.629	Cate, Basis Actual Feed 0, 312 6, 173 0, 555 111, 0	1
	tare Dased Feed Time (hrs)	Rate (the hr.) 35			6. 9 17(17X) (B. 17X) (A. 17X) (B. 17X)	Programmer (D. C., h. c.) (Provactivity N. Cord Batch
	1144			9. Un. 1, AMn. 2, GMm. 1 No. 1 189 No.	400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 å 2 å

33818

the Reactor (R-200
 Houdry Macroperous Silica Bands
 Hercules' Donora Reagent Grade AN, Olin U.
 Recycle - None

	i-31-73 11:00 P.M. 43.5	Feed Reactor Med. Melt	7 27.3 5,0 3 72.7 69.3 4 - 27.1 3 - 0.05	0.455 0. 0.909 0. 0.908 1. 0.498 0.	Feed Theo, Feed 0, 422	
		Referor Act	27.3 5.5 24.7 72.7 (7.8 71.3 3.4 7.9 0.8	0.092 0.848 0.228 1.076 0.085	Calc. Basis Theo. Feed Actual Feed 0, 413 0, 212 0, 514 102, 8 0, 235 0, 189 0, 189 0, 235 0, 189	
	1-31-73 7:00 P.M. 39, 5	r Feed Theo.		2 0,909 2 0,909 11 0,909 10 0,909	Calc. Basis d Actual Ford 56 51	
	1-31-73 4:00 P.M. 36.5	Actual Theo. Melt 25 25	- 27,3 4.8 72,7 65,5 30,8	0.455 0.080 0.909 0.819 - 0.252 0.909 1.071 0.498 0.070	Cole, Basis Actual Feed Theo, Fred 0,428 0,236 0,236 0,551 110,2 0,262 0,262	
4. Recycle - None	1-31-73 1:00 P.M. 33.5	Actual Theo. Meli	- 27.3 5.0 72.7 61.4 - 32.7	0,455 0,083 0,909 0,767 - 0,268 0,909 1,935 0,498 0,080 - 0,258	Culc. Basis Cab. Basis N. 624 Feed Thro. Freed 0, 418 0, 253 0, 256 0, 286 0,	
	1-31-73 10:00 A.M. 30.5	Actual theo. Mel:	28.6 27.3 5.1 67.0 72.7 63.7 3.3 - 52.0	0, 477 0, 455 0, 085 0, 085 0, 027 0, 027 0, 262 0, 876 0, 908 1, 059 0, 545 0, 458 0, 248 0, 248	Colc. Basis Action 1 red 0.462 0.217 0.248 0.470 0.232 0.274 7.9 9.33	
	Control of the Contro	(a) (b) (B) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	C. Institution		2 (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	

(R-200	
Reactor	
914	
Basis:	

(9)

			4. Recycle - None	- 						
	2-1-73	V	2-1-73		2-1-73		2-2-73	,	2-2-73	
. Hapsee cod Jane (hrs)	45, 5		(:30 F. M.		10:30 F. M.	•	1:30 A. M. 54	M•	4:30 A.M. 57	
Nate on Br. Nat. Nat. Nat. N. N. N. H. A. H. C. In-olubles Nat. C. N	Actual Fluo. Mel: System down 1:00 AM 2-1-73 until 5:00 PM 2-1-73 due to plant steam shortage. On startup, changed from 2/1 to 1/1 (N/U) ratio.	Negron Melt O AM O PM ant steam tartup, /1 to 1/1	[9]	4.8 65.4 31.8 - 0.080 0.261	٥١	2	* (c	~ I	701 '	Reactor 111 17 6.8 45.8 45.5 - 0.270 0.113
			0.805 1.000 0.033 -	0.074 0.242	0. 805 1. 000 0. 033	0.084 0.309	0.805 1.000 0.033	00 0.138 0.246	0.709 0.715 0.958 1.000 0.025	0.945 0.120 0.394
100 V 00 V 100 V 1	Cole, Basis Vitual Foot	Cafe, Basis Theo, Cook	Calc. Basis O.731 0.209 0.286 57.2 0.105	Cate, Basis, Theo, Pred 0, 926 0, 242 0, 261 52, 2	Culc. Basis C Artual Feed 1 0.721 0.276 0.382 76.4 0.258	Calc. Pashs 70. Pecu 6.916 6.309 6.337 67.4 0.294	Calc. Basis Artual Feed 9, 667 0, 213 0, 320 64, 0 0, 198 5, 4	Calc. Basis Theo. Feed 0.862 0.246 0.286 57.2 0.214	Calc. Basis Actual Feed 0.838 0.368 0.440 88.0 0.318	Calc. Basis Theo. Feed 0.880 0.394 0.448 29.6 0.344
Used 1630 P. M., 2/1/73 feed analysis	feed ana ¹ ysis									

Houshy Macroporous Silica Bands
 Hercules' Donora Reagent Grade AN, Olin U.
 Recycle - None

Hasis:

Che Reactor (R-200
 Houdry Macronorous Silica Bands
 Hercules' Donora Reagent Grade AN, Olin U
 Recycle - None

	Reactor Melt	9.6, 44.6 46.4 0.160 0.558 0.380 0.938 0.171	Calc. Basis Tree. Feed 0, 620 0, 487 0, 487 97, 4 0, 352 5, 7
2-2-73 10:30 F.M. 75	Feed Actual Theo. 27.5	40.0 42.9 55.4 57.1 1.5 0.667 0.715 0.039 - 0.732 0.715 0.910 1.000 0.930 1.000	Calc. Basis Actual Feed 0.736 0.352 0.476 55.2 6.314 8.7
	Reactor Melt 27	14, 4 45, 9 39, 5 1, 260 0, 574 0, 324 0, 898 0, 389	Calc. Basis Theo. Feed 0.711 0.361 0.507 101.4 0.309 9.3
2-2-73 7:30 P. M. 72	Feed Actual Theo.	40.0 42.9 55.3 57.1 2.4 - 1.5 0.667 0.715 0.020 - 0.711 0.715 0.938 1.000	Calc. Basis C Actual Feed 1 0, 649 0, 333 0, 515 103.0 0, 289 8, 7
	Reactor Meit 27	9.9 45.0 43.6 0.165 0.357 0.919 0.179	Cale, Basis Theo, Feed 0, 821 0, 389 0, 473 94, 6 0, 338 10, 2
2-2-73 1:30 P. M. 66	Feed Actual Theo.	- 42.9 57.1 0.715 0.715 0.715	Cole, Basis Ca
	Reactor Meti 29	9.3 44.5 45.7 - 0.155 0.556 0.375 0.375 0.316	Cale, Basis 1700, Feed 0, 402 0, 483 96, 6 0, 351 10, 5
2-2-73 10:30 A.M.	Feed Actual Th-o. 30 30	- 42.9 57.1 - 0.715 0.715 0.715	Actual Feed
	Reactor Melt	6.8 44.1 51.2 - 0.350 0.113 0.552 0.972 0.972	Culc. Basis 17hvs. Ford 0, 432 0, 488 97, 8 0, 377
2-2-73 7:30 A. M. 60	Feed Actual Face. 29 29	- 42.9 57.1 - 0.715 0.715 0.715	Calc. Basis Artual Feed
L. Buta C. Dive T. Especid treed Time (Bris)	is Rate (dp. fb.). J. Nables (C)	₩ , U / ₩ U	III-6

(£)

Rasis:

1. (me Reactor (R-200
2. Houdry Mucroporous Silica Bads
3. Hercules' Donora Reagent Grade AN, Olin C

	ν.	Reactor Med. 18 10.7 43.9	0. 178 0. 549 0. 365 0. 914 0. 195 0. 400	Calc. Rasts Theo. Feed 0. £05 0. 400 0. 457 0. 348 0. 348
	2-3-73 10:30 P.M. 99	1. ced 1. ced 26. 5 26. 5 - 42.9 - 57. 1	0.715 0.715 0.715 1.000	Cute, Basis
		Reactor 719-119 119 14.9 44.9 45.5	0.168 0.561 0.373 0.034 0.130	Calc. Basis. Theo. Ford 0.326 0.326 0.329 0.527 0.526 0.526
4, Recycle - None	2-3-73 4:30 P.M. 93	Feed Actual Theo. 27.5 27.5 27.5 41.4 42.9 54.8 57.1	0.590 0.715 0.685 0.715 0.015 - 0.700 0.715 0.986 1.000 0.021 -	Calc. Basis Actinal Freed 0, 806 0, 378 0, 468 6, 322 8, 322
		Met 18 18 8.9 45.7 45.6	0.148 0.571 0.374 0.945 0.156	Cofe, Basis Ths o, Peed 0, 844 0, 370 94, 6 0, 346 0, 346
	2-3-73 10:30 A.M. 87	26.5 26.5 39.6 42.9 56.3 57.1 2.7 -	0.660 0.715 0.704 0.715 0.022 - 0.726 0.715 0.909 1.000 0.030 -	Cate, Basis Co. Actual Feed Th. 0, 743 0, 366 0, 492 0, 354 0, 354 0, 35, 5
		No. 18 18 9.8 40.9 48.7	0.163 0.511 0.400 0.911 0.179	C.d., Basse Vista, P. ed. 0, 839 0, 533 100, 6 6, 382 10, C
	2-3-73 7:30 A.M. 84	28, 5 28, 5 42, 9 57, 1	0,715 0,715 0,715 1,000	Variation of the second of the
		Mesetor Mest 17 11.3 44.1 43.7	0.1889 0.358 0.208 0.374	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2-3-73 4:30 A.M. 81	28.5 28.5 28.5 28.5 57.1	0.715 0.715 0.715 1.000	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	United Teachers (Inc.)	e na e tibe Bille al Audres (ce e A e A e Hy e Hy	27 77 77 77 77 77 77 77 77 77 77 77 77 7	

Basis: 1 One Reactor (R-200 2. Houdy; Macroporous Silica Beads 3. Hercules: Donora Pergent Grade AN, Olin U

		Reactor Molt ARILY ED -73	Theo. Feed
		Feed React Actual Theo. Med RUN VOLUNTARILY TERMINATED 2:30 P.M. 2-4-73	Actual Feed
4. Recycle - None		Reactor Medical St. 1	Calc. Dasis Theo. Feed 0. 388 0. 457 9. 38 6. 5 5. 8
	2-4-73 2,30 P. M. 115	Feed Theo. 26 26 26 27.1	Calc. Basis Actual Fred
		Reactor Viels 24 7.7 46.0 46.9 0.128 0.575 0.384 0.959 0.134 0.400	Culc. Basis 11.00, Fred. 0, 462 0, 462 0, 348 0, 348 0, 348 0, 348
	2-4-73 10:30 A.M. 111	5 42.9 4 57,1 5 8 0.715 18 0.715 57 0.715 70 1.000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	27	39. 37. 11. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
	Ţ.	Neut 16 17.5 47.4 45.0 6.125 0.368 0.960 0.1383	Catal Bases Three Frid 8 333 9 440 0, 440 0, 330 0, 450 0, 300 0,
	2-4-73 7:30 A.M. 108	Acteal fluo. 27 37.7 37.7 42.9 57.9 57.9 57.1 0.628 0.724 0.724 0.756 0.766 0.766 0.766 0.766 0.766 0.766	0.554 0.554 0.554 0.554 0.51 0.51
		9.8 43.4 46.3 - 0.163 0.379 0.421 0.421	2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
	2-4-73 1:30 A. M. 1:02	Actual Pr. 1. 25 25 25 25 25 57.1 0.715 0.715 0.715	
	for the control of th	A CONTRACTOR OF THE CONTRACTOR	

APPENDIX IV

HAZA EVALUATION AND RISK CONTROL FOR KENVIL GUANIDINE NITRATE

(Reprint of Summary Report)

This is a final summary report on the work completed during Phases I through III of the Hazards Evaluation and Risk Control on the Kenvil pilot plant for the productio: of guanidine nitrate via the Boatwright-McKay-Roberts (BMR) process.

Objectives

Phase I

- 1. Assure safety of bench scale operations.
- 2. Secure basic sensitivity data (initiation, transition, propagation) for pilot plant design, for engineering analysis and pilot plant Fault Tree Analysis.
 - 3. Construct preliminary Logic Model (Fault Tree) of the pilot plant.
 - 4. Coordinate safety data with engineering design.

Phase II

- 1. Perform a preliminary engineering analysis on equipment chosen for pilot plant operation with regard to potential hazards and safety margin.
- 2. Determine transition capability of the reactor mixture in a 4 inch by 12 foot reaction tube.
 - 3. Refine logic model for simulation.

Phase III

- 1. Final engineering analysis of selected pilot plant equipment.
- 2. Perform a risk analysis of the pilot plant operation and conduct trade-off design modifications should an unacceptable risk be encountered.

Summary and Conclusions

Data from sensitivity tests indicate that materials in the pilot plant process are relatively insensitive to impact, friction, ESD and thermal stimuli.

It has been determined that no material in the pilot plant equipment will transit from burning to explosion. In other words, the pilot plant system is not capable of acting as an explosive shock donor to process materials.

December 19, 1972

Krupko, Jones - Author Summary Report

Two materials (reaction mixture and guanidine nitrate) will propagate an explosive reaction if sufficiently boostered. The critical diameter for each is less than one inch. Other materials in the pilot plant will not sustain an explosive reaction in the one inch interconnecting pipelines.

A detailed engineering analysis of selected pilot plant equipment for possible nazards and safety margins has shown no hazards for normal operating conditions. Abnormal occurrences; such as, metal/metal contact between impellers and pump cases or mix blades and tanks would cause initiation. However, transition data show that only a fire would result.

Computer simulation of the logic model (Fault Tree) yielded 152 potential initiation modes, 21 of which were considered to be critical or most probable of occurring. The simulation was performed over 800 hours of operation with no maintenance or repair and resulted in a probability of initiation of 4.6 x 10^{-3} or a corresponding probability of no initiation of 0.9953. This is an acceptable risk (initiation only) since the losses due to initiation during operation of the pilot plant would be minimal when compared to the cost of reducing the probability of initiation by (1) scheduled maintenance, (2) replacement of designated equipment on a regular basis, or (3) redesign of equipment. However, if the presently designed pilot plant were to be scaled up to a production plant operating over a span of years where any downtime or interruption of the process would have a significant effect on the safety, cost and productivity of the facility, a recommendation for scheduled maintenance, repair or redesign might be warranted.

DISCUSSION

Material Sensitivity

Initiation testing of materials was completed during Phases I and II of this contract. These tests consisted of subjecting in-process materials to impact, friction and ESD (electrostatic discharge) stimuli and obtaining threshold initiation level (1) (IIL's) for each material. Results of the tests are summarized in Table 1. An inspection of Table I shows that the materials in the BMR process and selected combinations are relatively insensitive. Many of the samples tested could not be initiated at the limits of the standard test machines and are so indicated when a greater than or equal sign (5) precedes a data point. For impact, the failure to initiate a sample by dropping a 2 kg weight from a height of 120 cm (over a known impact area) is the limit of the impact machine. The energy input is calibrated periodically.

(1) Level above which initiation can occur as a result of 20 consecutive failures at that level.

December 19, 1972

Krupko, Jones - Authors Summary Report 4

A friction TIL value was obtained for AN/GN/U = 45/40/15, all others exceeded the limits of the test. The maximum pressures tested at a given velocity (1 inch slide distance) are in Table I.

The TIL values for ESD ranged from 0.075 to 1.26 joules, a spread of only two test levels, and are considered to be high. They are above the energy region that could be available from a human being (0.013 joules max).

In all sensitivity testing, the Model 300 Lira Analyzer was used to determine if initiation occurred. The Lira is a precision instrument that analyzes selected components of a gas mixture to determine their presence and concentration. The Lira analyzes a sample gas by comparing its infrared absorption characteristics with the constant infrared absorption characteristics of a known gas. The Model 300 is modified to operate as a detector of the decomposition gases CO, CO_2 , NO_2 and NO. Therefore, initiation does not necessarily mean that a flash fire or smoke (visual indication) will result, but rather that some decomposition occurs which produces gaseous products detected by the Lira. This is a much more critical definition of initiation.

Results of the Differential Scanning Calorimeter tests are shown in Table II. Relatively high temperatures (266 to 295°C) had to be reached before any exothermic reaction occurred.

All samples (except the pure ingredients) subjected to the various initiation sources were stoichiometric mixtures (balanced to ${\rm CO_2}$, ${\rm H_2O}$, ${\rm N_2}$) that represent the "worst case" conditions that could occur in the process.

Transition Testing

Transition tests were performed to determine the effect of initiation on the ability of a material to transit from flame initiation to an explosive reaction in terms of material height under specific environmental conditions.

Critical height (transition) test results are shown in Table III. Tests on the reactor mixture were performed at both ABL and Kenvil. Initial tests were run in containers smaller than pilot plant reactor tubes with the intent of extrapolating data to determine if the reactors would transit to an explosion if the material was initiated. However, no reaction occurred in a 1" x 48" container. Therefore, a 2" x 12' test was performed at the Kenvil Plant in which no explosive reaction occurred. Since material height required for explosion to occur increases as the diameter increases, it was concluded from the Kenvil tests that an explosive reaction would not occur in the 4" x 12' pilot plant reactors if initiation occurred.

Transition tests were also performed on guanidine nitrate and no explosive reaction occur in a 1" x 24" container. Again after considering pilot plant eq at dimensions, it was concluded that no transition hazard exist a pilot plant equipment handling guanidine nitrate.

Propagation Tacts

Propagation tests determined in terms of a material in terms of a material in terms of a stimuli. Results of these sts are shown in Table III. The results show that guanidine nitrate and explosive reaction, since the interval of their critical diameters are less than one inch. However, it are the remembered that the transition tests demonstrated that these materials are not capable of supplying a shock stimuls for propagation to occur.

Propagation tests performed on other samples show that no propagation will occur in the one inch piping used in the pilot plant.

Dust Explosibility

Dust explosibility tests were performed in an effort to determine the minimum concentration and minimum energy required to initiate guanidine nitrate in a dusty atmosphere. The guanidine nitrate was screened to < 53 micron and two different sources of initiation were used. Initially a continuous sparking electrode was attempted, however, no initiation of a GN/air dust cloud could be obtained. The test was rerun using fibrous nitrocellulose as an ignition source which is a more violent source of initiation than the sparking electrodes. In both cases, the guanidine nitrate dust/air mixture could not be initiated at the standard test limits of the machine (4.1 oz/ft³).

A possible explanation of this unexpected result can be obtained by an interpretation of the DSC data and applying it to a dust cloud ignition sequence. In order for a dust cloud to ignite and sustain ignition, dust particle(s) must be raised to their ignition temperature and the heat released by their ignition must be sufficient to ignite adjacent particles and thus result in a sustained reaction. From the DSC trace, 3N helts in the range of 210 to 220°C while absorbing 30-35 cal/gm. An exotherm occurs in the range of 285-316°C liberating 90-120 cal/gm. (By comparison, RDX and nitroglycerin burn and liberate about 1200-1500 cal/gm at first exotherm). The amount of heat released is enough to raise the temperature an additional 100°C or to approximately 385 to 4%5°C. (GN dust cloud ignition temperature ranges from 390°C (ABL data) to 800°C. (7) Therefore, it could be reasoned the ignition of GN dust particles does not result in the liberation of enough heat to ignite adjacent dust particles to sustain ignition in the dust cloud.

Based on the inability to ignite or sustain ignition of a GN dust cloud up to the concentration limits of test apparatus (4.1 oz/ft³), it was concluded that no dust explosion hazard existed.

Shipping and Storage Classification Testing

Testing in accordance with TB-700-2 was conducted on guanidine nitrate by ABL. The data from these tests are shown on Table IV. The government has used a combination of these data and its own in-house data to tentatively classify guanidine nitrate (less than 25% water wet) as Class 7 for storage and as an oxidizing agent for shipping.

Hazard Evaluations

The engineering analysis performed on selected equipment was performed from equipment drawings, specification and maximum operating parameters furnished by Kenvil and the Research Center. Since no on-site measurements (i.e., forces, pressures, and velocities) were made, tensile strengths or yield points of materials involved (1-3) were used to obtain safety margins. In general, the safety margins found on equipment are representative of "worst case" condition, so the analysis would be conservative from a safety point of view.

In the process where equipment handles a water slurry, the analysis was based on water-free material response data, since testing was not done with water slurries. The use of water-free material values would render conservative results, since the water would most likely act as an extinguisher for any initiation. This type of an analysis, using water-free sensitivity data, would apply to start-up or shut-down modes of operation or a process "upset condition" in which a sufficient amount of water would not be present.

Some of the items in the process were not analyzed. The densitometer and evaporator had no mechanical or moving parts. The pump in the cooling system of the crystallizer was not analyzed since it will pump water containing only a small amount of ammonium nitrate (0.1% of AN). Finally, the level controllers were not analyzed, since they had low velocity movement $(\sim 0.06 \text{ ft/sec})$.

A hazards evaluation was performed on pumps, mixers, reactors, valves, centrifuges, a crystallizer and a dryer in which in-process potentials and material response data (expressed in similar engineering terms) were compared to obtain quantitative safety margins for normal and abnormal conditions. As an example, a 3450 rpm centrifugal pump with a carbon/ceramic mechanical seal was selected to pump material to the crystallizer. The velocity of the rotating seal parts was calculated to be 16.9 ft/sec with a normal pressure of 30 psi (manufacturer's specification) and an abnormal pressure of \sim 8000 psi (yield point of carbon). Figure 1 shows a triction profile of the material being pumped (less water). By a straight line extrapolation, no

positive safety margin is realized at 16.9 ft/sec. The straight line extrapolation is conservative since friction profile curves take an asymptotic form. To obtain a positive safety factor, a data point at 17 ft/sec would have to be obtained or the pump speed reduced by reducing the rpm rating. Since testing above 10 ft/sec would result in damage to the friction machine, it was recommended that a pump with a reduced rpm be used. Such a change did not adversely affect the pilot plant operation and a 1750 rpm centrifugal pump with a teflon pack gland was selected. The in-process potential for the pump was 24 psi (normal) to ~5,000 psi (abnormal) at a velocity of 8.6 ft/sec. By referring to Figure 1, material response at 8.6 ft/sec is ~43,000 psi. By comparing the in-process potential to the material response data safety margins of 8.6 to 1797 are realized.

A similar analysis has been completed on designated pilot plant equipment. A detailed discussion with summary tables of all engineering analysis has been previously reported. (4-6) In general, all normal and some abnormal operations have adequate safety margins. Abnormal occurrences such as impellers or mix blades breaking and hitting metal parts would cause initiation (no safety margin), but as discussed in the risk analysis of this report, such events have probabilities 5×10^{-4} to 5×10^{-5} of occurring over the time of pilot plant operation.

Logic Model (Fault Tree)

The logic model is a concise and orderly description of various combinations of events that can lead to a predefined "undesized" event. The logic model is presented in a diagram or blueprint form and results in an engineering capability to identify and evaluate the overall effect of component failure, controls or human actions on the system.

To understand and follow the logic model, a basic knowledge of the symbols used is required. A list of the symbols used and their meaning is illustrated in Table V. The use of transfer symbols (triangles) deserves some comment since they are used in two ways: (1) for transferring a section of the model that has been previously developed under identical circumstances from another section, and (2) transfer similar logic from one piece of equipment that applied to another piece of equipment. Use of transfers in this second method means that only the logic or events are the same, but probabilities of the events may be different since it is a different piece of equipment handling different materials.

The uses of transfer symbols may be best explained by using an example for each of the ways they are employed. On page A-4 of the logic model, an event for possible friction initiation. "Impeller hits tank wall" is developed. Under this event a transfer symbol 20 is shown. On the same page for possible impact initiation, the same event in the same tank "Impeller hits tank wall" is shown. Since the event was already developed, it is transferred by use of the symbol 20 .

Krupko, Jones - Authors Summary Report

On page A-8, another event "Impeller hits tank wall" is shown. The logic to develop this event is the same as that on page A-4, but applies to a different mixer. Therefore, a transfer 20 is used to show such a transfer. Table VI lists all transfer used and their origination point in the logic model.

Risk Analysis for Guanidine Nitrate Pilot Plant

The logic model constructed in support of this analysis yielded a total of 152 potential failure modes. Of these, only 21 of the modes were considered to be significant or critical. These failure modes would result in, at most, initiation and not transition to explosion.

These failure modes and their respective probabilities of occurrence are given in Table VII. The basic failure modes are impeller, shaft, and/or alignment. As noted, the probabilities of failure are not the same throughout Table VII. These differences arise from a careful engineering analysis of the potential failure modes and the utilization of known failure rates. Also, the probability is calculated such that 800 hours of continuous operation have been assumed.

The probability of initiation then becomes the product of the probability of failure, times the proportion of operating time the failure rate applies, times the material response probability. For example, the impeller, shaft and shaft packing for the Goulds Pump (mixing system) had a combined failure rate of seven per million operating hours (7.10-6). Thus, after 800 hours, the probability of failure becomes 7.10-6 times 800 or 5.6.10-4 as given in Table VII. Multiplying this probability of 5.6 • 10-4 times the proportion of operating time it applies, times material response probability gives an overall probability of initiation, or 5.6 10-4 times 1.0 times 0.98 or 5.6.10-4 as given in the last column of Table VII. The other probabilities of Table VII were derived in a like manner. Thus, Table VII gives the probability of initiation for each failure mode plus the overall probability for the pilot plant, which is 4.6×10^{-3} . It must be emphasized that this probability assumed 800 hours at continuous operation without repairs or maintenance. Any such action within the 800 hours would tend to reduce this probability to a much smaller quantity.

It has been shown that no transition is possible for guanidine nitrate material. Thus, the maximum expected losses to be experienced are those related to a localized initiation.

The question immediately arises, are there cost advantages to having a preventative maintenance program to reduce the potential of initiation? The answer to the posed question lies in a trade-off study between the cost of such a program versus the expected loss should initiation occur.

Expected Loss

As indicated, if initiation occurs, it remains local as no transition to an explosion is possible. Thus, the expected loss becomes the product of the probability of initiation times the sum of the following cost:

- (1) Pump or equipment replacement cost.
- (2) Labor necessary to replace the pump, and clean-up from the deluge system.
- (3) Production losses while the equipment is being replaced.

For the pilot plant, a liberal estimate of total cost to be incurred, if initiation arises, is \$5,000. This times the probability of initiation anywhere in the pilot plant gives an expected loss of $5 \cdot 10^3 \times 4.6 \cdot 10^{-3}$ or approximately \$25. It must be pointed out however, that if initiation were to occur, then the minimum loss (\$5,000) would be experienced. The "expected loss concept" is a well recognized means at normalizing cost data in a risk analysis study.

With the minimal expected loss of \$25, any preventative maintenance cost would far exceed the estimated loss. Thus, the answer to the question, is there a cost advantage to a preventative maintenance program is obviously, no. Therefore, over the operating interval of 800 hours, no preventative maintenance program is recommended or warranted. Again, this conclusion arises, primarily, from the lack of potential for transition.

E. J. Krupkoj

M. L. Jones

EJK:MLJ:mjs Attach.

TABLE I

SUMMARY OF SENSITIVITY DATA (BMR PROCESS)

			Threshold Initiation Level**	fon Level**	
Sample (7 by wt.)	Temperature	Impact (ft-lbs/in ²)	Friction (psi/ft/sec)	ESD (Joules)	Materials
AN/U 1/1	Ambient	:	8/900'69 <		Steel/Steel
AN/U 2/1	Ambient	;	8/000/69 <		Steel/Steel
AN/U 4/1	Ambient	> 59.7	> 67,000/8	0.5	Steel/Steel
AN/U 4/1	135°C	84 × 10 ³ *	> 39,090/8		Steel/Steel
AN/GN/U 45/40/15	ე,,09	> 77.6	45,614/8 35,185/10		Steel/Steel Steel/Steel
AN/GN/U 67/24/9	130°C		> 58,870/10		Steel/Steel
GN - Pure	Ambient	≥ 59.7	>122,400/8	1.26	Steel/Steel
GN - Technical Grade	Ambient	31.6	>105,800/8	0.075	Steel/Steel

* ft-lbs/sec k* Level above which initiation can occur as a result of 20 consecutive failures at that level.

TABLE II

DIFFERENTIAL SCANNING CALORIMETER (DSC) TEST RESULTS

AN/U 1/1

Heating Rate (OC/min)	
20 40	Endotherm at 240°C
80	**
	•=

AN/U/Sil Gel 2/2/1.7

Heating Rate (OC/min)	Exotherm Began	Peak Value
20	266°C	280°C
40	276°C	290°C
80	295°C	320°C

GN

Heating Rate (°C/min)	Exotherm Began	Peak Value
5 10 20	285°C 292°C	307°C 316°C

TABLE III

EXPLOSIVE CHARACTERISTICS OF MATERIALS

Critical Diameter < 1" 1" dia - 2980 m/sec 2½" dia - 3980 m/sec	< 1"		> 1"	> 1"
Critical Height > 24" for a 1" diameter pipe	≥ 48" for a 1"(1) diameter pipe	> 12' for a 2"(2) diameter pipe		
Dust Explosibility > 4.1 oz/ft ³				
Sample	Reactor Mixture (200°C)	Reactor Mixture (200°C)	34/38/28 GN/AN/U at 60°C	AN/U at 100°C

Propagation Test for GN in a Tray (6" deep x 12" wide x 24" long)

l" Booster - no propagation 2" Booster - propagation - 2900 m/sec

(1) Performed at ABL(2) Performed at Kenvil Plant

TABLE IV

HAZARD CLASSIFICATION TESTS FOR GUANIDINE NITRATE BY TB 700-2 CRITERIA

Test

Result

Detonation Test (No. 8 Blasting Cap)

No deformation of pressure plate or cylinder

Ignition and Unconfined Burning Test

Burning reaction only

Thermal Stability Test

No color or visible change in

48 hours at 75°C

Card Gap Test

Failure at zero cards

Impact Sensitivity Test

No ignition at 47.3 inches (120 cm)

TABLE V

GLOSSARY OF SYMBOLS COMMONLY EMPLOYED ON FAULT TREE DRAWINGS

Event Representation

The rectangle identifies an event that results from the combination of fault or hazard events through the input logic gate.

Rectangle

The diamond describes a fault or hazard that is basic in a given fault tree, but undeveloped at this level. The reasons for it being undeveloped are, necessary information not available, insufficient consequence or limited scope of analysis.

The house indicates an event that is normally expected to occur.

The circle describes a basic fault event that requires no further development.

Logic Operations

Inputs

"And Gate" describes the logical operation whereby the coexistence of all input events is required to produce the output event.

TABLE V (CONTINUED)

Output

Input

"Or Gate" defines the situation whereby the output event will exist if one or more of the input events exist.

Output

Inhibit gates describe a casual relationship between one fault and another. The input event directly produces the output event if the indicated condition is satisfied.

Triangles

The triangles are used as transfer symbols. A line from the apex of the triangle indicates a "transfer in" and a line from the side denotes a "transfer out."

Similarity transfer of the transfer of logic only from another part of the tree.

TABLE VI
ORIGINATION POINT FOR TRANSFER SYMBOLS IN THE LOGIC MODEL

	Origination			Origination
Transfer	(page)		Transfer	(page)
1A	A-2		4 F	A-10
1B	A-2		4G	A-9
1c	A-2		5A	A-11
1D	A-2	. •	5C	A-11
2A	A-4		5D	A-11
28	A-4		5E	A-11
2C	A-4		5 F	A-12
2D	A-5		6A	A-13
2F	A-5		6B	A-14
2G	A-5		6C	A-15
2H	A-3		6D	A-15
2J	A-3		6E	A-13
2 <u>K</u>	A-3		6F	A-15
2L	A-3		7A	A-16
2M	A-3		7B	A-16
3A	A-6		7C	A-17
3B	A-7		7D	A-17
3C	A-7		7E	A-18
3D	A-6		7 F	A-18
3E	A-6		7 G	A-17
3F	A-7		7H	A-18
3н	A-7		8A	A-20
3J	A-7		8B	A-20
3K	A-7		8C	A-20
4A	A-9		8D	A-20
4B	A-8		9 A	A-19
4C	A-10		9 B	A-19
4D	A-10		9C	A-19
4E	A-10		-	

16		Type of	Fof 1::*0	Proportion of	Material	
TEGE	Failure	Hazard	E _Z (1)	Inme Failure Applies (2)	Response Probability	Probability
Mixer (Mixing System)	Impeller, Shaft	Impact	5.6 x 10-5	1.0	0.98	c c 10-5
		Friction	×	1.0	. 86.0	5.5 x 10-5
Gentas Fump (Mixing System)	Impeller, Shaft, or Shaft Packing	Impact Friction	5.6 x 10-4 5.6 x 10-4	1.0	0.98	5.5 x 10 ⁻⁴
Goulds Fump (Reaction System)	Impeller, Shaft	Impact	5.6 × 10-4	1.0	86.0	5.5 x 10-4
M. C.	or Shall Facking	Friction	5.6×10^{-4}	1.0	0.98 0.98	5.5 x 10 ⁻⁴ 5.5 x 10 ⁻⁴
(Aqueous Quench)	Impeller or Shaft	Impact Friction	5.6 x 10-5 5.6 x 10-5	1.0	0,98	5.5×10^{-5}
Goulds Pump (Aqueous Quench)	Impeller, Shaft or Shaft Packing	Impact	5.6 × 10-4	1.0	0.98	××
X; X; Y;		11073377	5.0 × 10-4	1.0	0.98	5.5 x 10-4
(Crystallizer System)	impeller or Shaft	Impact Friction	5.6×10^{-5} 5.6×10^{-5}	0.5	0.98	2.7×10^{-5}
Goslds Pump (Crystalilzer System)	Impeller, Shaft	Impact	×	5,0	26.0	×
	or shall racking	Friction	5.6 × 10-4	0.5	0.98 0.98	2.7×10^{-4}
Grystallizer (Crystallizer System)	Impeller, Shaft, Bearings or Improper Alignment	Impact Friction	1.9 × 10-4 1.9 × 10-4	0.5	0.98	< ××
Goalds Pusp (Ceptrituge System)	Impeller Shaft or Sh.ft Packing	Impact Friction	5.6 x 10-4 5.6 x 10-4	0.125		6.8 x 10-5
Dryer	Paudle, Shafr or	4 1		0.125	0.98	
Godlds Punp	Shaft Bearings	Tuibact	1.3 x 10-4	1.0	0.7	9.1×10^{-5}
(Evaporation)	impeller, Shaft or Shaft Packing	Impact Friction	5.6 x 10-4 5.6 x 10-4	0.1	0.98 0.98	5.5 x 10 ⁻⁵ 5.5 x 10 ⁻⁵

Estiture rate times 800 hours. Proposition of hours out of 800 the equipment will be operating. (1)

(System) Probability of Initiation (System) Reliability

46.4 x 10-4 0.99536

Figure 1. Friction Profile (Pressure vs. Velocity)

IV-19

APPENDIX V

LITERATURE SEARCH - RELATED TO PRODUCTION OF GUANIDINE NITRATE FROM UREA

APPENDIX V

LITERATURE SEARCH

RELATED TO PRODUCTION OF GUANIDINE NITRATE FROM UREA

by John T. Hays Hercules Research Center

Introduction

Work in progress at Hercules Kenvil Plant and the Research Center on production of guanidine nitrate from urea led to a request for a literature search on this general subject. The objectives of this search were: to make certain that recent literature on the basic process has been covered, and to develop information relative to production of by-products and their possible effects on catalyst performance. Chemical Abstracts was thoroughly checked from 1956 through October 16, 1972 and in some areas from 1947. The information is divided into four general categories: (1) Production of guanidine nitrate from urea. (2) Reactions of urea at temperatures from 100°C. to 200°C. This subject is of interest in connection with formation of by-products in the urea-ammonium nitrate feed, which is held at about 110°C. for extended periods, and in connection with formacion of by-products under the reaction conditions for production of guanidine nitrate. (3) Formation of melamine from urea. This subject is of interest because it has been an active area of research in recent years and because it represents an extension of the type of catalytic reaction involved in production of quanidine nitrate. (4) Silica-phosphate reactions. This subject is of interest because of the indications from licroules work that the diammonium phosphate used commercially to stabilize prilled ammonium nitrate decreases the activity of the silica gel catalyst used in production of quanidine nitrate from urea.

Table of Contents

		Page
ī.	Guanidine Nitrate from Urea	3
	A. Reaction Characteristics B. Reaction Mechanism	3 4
II.	Reactions of Urea	6
	A. Hydrolysis B. Cyanic Acid and Cyanates C. Biuret and Triuret D. Cyanuric Acid E. Ammelide and Ammeline F. NH4NO3-Urea Systems G Boric Acid Systems	6 7 8 9 9
III.	For action of Melamine from Urea	10
IV.	Silica Gel-Phosphate Reactions	11
v.	Summary and Conclusions	12

I. Guanidine Nitrate from Urea

Little information was located in this search which was not already available to those working on the Hercules study of preparation of guanidine nitrate from urea. Nevertheless it seems worthwhile to consider the available information to get an understanding of the factors affecting the reaction.

One of the best sources of information is a report forwarded to us through the British Embassy and Picatinny Arsenal written by F. Armstrong and R. T. M. Fraser¹. This report not only gives new experimental work but also gives a list of 40 references.

A. Reaction Characteristics

Guanidine nitrate is formed from urea and ammonium nitrate by an unusual reaction:

 $2NH_2CONH_2 + NH_4NO_3 \rightarrow NH_2C (=NH) NH_2 \cdot HNO_3 + 2NH_3 + CO_2$

The reaction occurs over a specific temperature range given as 175-225°C.², with 190-200°C. preferred³, and as 160-200°C. with 180°C. giving best yields but at less than maximum rates⁴. Similar information is given by Russian workers⁵. A catalyst is required, with silica gel being preferred, although broad classes of related silica or oxide catalysts are also claimed³-⁵. Small scale batch reactions indicate an optimum ratio for urea:ammonium nitrate:silica gel of 1:1:1³ or 2:2:1¹.

The importance of the catalyst is seen when it is realized that uncatalyzed thermal decomposition of urea gives biuret and triuret at 120-160°C. 6-9,13. At higher temperatures, up to 200°, cyanuric acid is formed in increasing quantities 10-12,14. Heating biuret and triuret in the presence of ammonium nitrate but with no catalyst gave cyanuric acid 15. With silica gel, ammonium nitrate, and urea at 195°C., the main product reported was guanidine nitrate along with 5-12% ammelide and some melamine 15. Biuret and triuret are also converted to guanidine nitrate on heating with silica gel and ammonium nitrate 3,15. There are thus two types of urea decomposition controlled by temperature and the presence of catalyst:

Thermal which gives mainly cyanuric acid at temperatures of 160-200°. Biuret is the main product at lower temperatures (120-160°), but its formation is reversible 16,17. Ammelide and ammeline are formed in the thermal reaction but at much higher temperatures (>250°C.) 19,20.

Catalytic, with silica gel and ammonium nitrate, at 180-200°C., gives mainly guanidine nitrate with small amounts of the triazine by-products, cyanuric acid, ammelide, ammeline, and melamine. Intermediate biuret and triuret are largely broken down under these conditions.

The action of the silica gel catalyst has thus led to formation of guanidine nitrate and small amounts of triazine by-products at temperatures which give cyanuric acid as the main product in the straight thermal reaction.

B. Reaction Mechanism

The first step in the thermal decomposition of urea is generally considered to he²¹:

$$NH_2CONH_2 \rightarrow HNCO + NH_3$$

This is more than a hypothetical picture of the reaction, as proved by isolation of the HNCO product²¹⁻²⁴, direct conversion of urea to alkali cyanates²⁵⁻²⁷, and trimerization of HNCO from urea to cyanuric acid¹⁰⁻¹². Formation of HNCO allows ready formation of the products of the thermal decomposition of urea, i.e., formation of biuret and triuret by reaction of HNCO with urea and with biuret and trimerization of HNCO.

The products of the catalytic reaction require some other mechanism. One attractive scheme is dehydration of view to form cyanamide^{5, 17, 18}, known to form guanidine derivatives readily:

Interaction of NH2CN and HNCO would give ammeliae and ammeliae $^{1.7,\ 1.8}$, and cyanamide is also known to give melamine.

Differential thermal analysis (DTA) data were interpreted to show the presence of cyanamide in urea pyrolysis products²⁸, but more recent pyrolysis work has led to the conclusion that cyanamide is not a primary product of urea pyrolysis²⁹. Infrared work has also led to the conclusion that formation of cyanamide is improbable³⁰. Mackay³ has stated that dehydration of urea does not occur, on the basis that carbon dioxide would have no effect if dehydration were the key reaction in formation of guanidine nitrate from urea and ammonium nitrate. Actually, he found that it was important to avoid CO₂ build-up, which led him to postulate a splitting off of CO₂. Schmidt³¹, considering the analogous formation of melamine from urea, formulates it as a disproportionation of HNCO into CO₂ and carbodiimide, C(=NH₂)₂:

2HNCO
$$\rightarrow$$
 (HN=C=NH) + CO₂

This would fit the observed effect of CO2 and the unstable intermediate would give melamine on trimerization.

Schmidt³ formulates the reaction in the fashion:

Reaction of the complex with NH4NO3 could then give guanidine nitrate.

$$Si_{NH}^{O}$$
 C=NH + NH₄NO₃ \rightarrow -Si + (NH₂)₂C=NHHNO₃

The formation of guanidine nitrate would thus depend on reaction of ammonium nitrate with a catalyst complex. Molecular size of the ammonium salt reactant might be important in reaction with a complex with a specific steric arrangement. Kazarnovskii and Spasskaya⁵ state that NH4Cl and NH4Br also form guanidine salts in this reaction but that ammonium phosphates, sulfate, carbonate, tungstate, vanadate, and salts of organic acids do not form guanidine salts in the presence of silica gel without excess pressure. The type of catalyst complex postulated could allow rationalization of this observation. The Boatright-Mackay patent² claims ammonium salts broadly, however.

It was also reported⁵ that where best yields of guanidine were obtained with a 1:1:1 ratio of urea:NH4NO3:silica gel, decrease of silica gel to less than 0.8 led to formation of cyanuric acid along with guanidine salt. Thus it seems necessary to provide sufficient active catalyst sites to complex the HNCO in order to avoid the "thermal" trimerization to cyanuric acid. Blocking of active -OH groups by esterification completely deactivated the catalyst¹. Formation of -OR groups on silica gel by this method has been reported in detail³². Decreasing the ammonium nitrate to stoichiometric proportions also decreases yield⁵ as might be expected on the assumption that dissociation of the catalyst-HNCO complex must be avoided.

Experiments with \$^15NH4NO3\$ and \$(NH2)_2C=^{18}O\$ showed considerable \$^15N\$ in the ammonium carbamate recovered but less \$^18O\$ than would be expected if all the CO2 were derived from urea. The \$^15N\$ result suggests that the reaction: NH3 + $^{15}NH4NO3 \rightarrow ^{15}NH3$ + NH4NO3 occurs, presumably through catalyst interactions. The loss of ^{18}O suggests exchange of surface oxygens of the catalyst through HNC 18O in the manner postulated for the disproportionation to CO2.

Although the specific mechanism accepted may not be critical, it is apparent that production of guanidine nitrate from urea-ammonium nitrate depends on the specific function of the catalyst to direct the reaction of the initial decomposition products of urea toward formation of guanidine nitrate and to avoid the thermal conversion of these intermediates to triazines.

Additional references on this subject were noted $^{3.3+3.7}$.

II. Reactions of Urea

The reactions of urea have been discussed in the first section as they pertain directly to the preparation of guanidine nitrate. Specific reactions will be discussed in more detail here in relation to by-product formation.

A. Hydrolysis

Hydrolysis of urea is the most important reaction of urea in the presence of water at elevated temperatures:

$$NH_2CONH_2 + H_2O \longrightarrow CO_2 + 2NH_3$$

This reaction will generally be superimposed on other urea reactions if water is present. Thus the formation of guanidine nitrate:

$$NH_2CONH_2 + NH_4NO_3 \rightarrow (NH_2) C=NH \cdot HNO_3 + H_2O$$

becomes:

$$2NH_2CONH_2 + NH_4NO_3 \rightarrow (NH_2)_2C=NH_1HNO_3 + CO_2 + 2NH_3$$

Hydrolysis is more rapid than biuret formation at 80°C. 38 and this is also undoubtedly true at the somewhat higher temperatures (ca. 110°C.) at which the urea-ammonium nitrate feed is stored in current Hercules work on production of guanidine nitrate from urea. The hydrolysis reaction causes yield loss but reactions to form urea condensation products could cause product contamination.

General references to urea hydrolysis are listed 39-44.

B. Cyanic Acid and Cyanates

The dissociation of urea into cyanic acid and ammonia has been discussed as the first step in reactions of urea at elevated temperatures. This section will discuss references more specific to cyanic acid and cyanates.

The structure HN=C=O in straight line arrangement was indicated by Raman spectra⁴⁵. Existence of HOCN has also been shown⁴⁵. Hydrolysis of HNCO and NCO⁻ to give NH4⁺ and CO₂ and NH₃ and HCO₃⁻, respectively, has been studied⁴⁶,⁴⁷

Conversion of urea to alkal metal cyanates has been cited earlier 25-27,48 as has isolation of HNCO 21-24. Initial formation of HNCO from urea and subsequent reaction to produce biuret and triazine products will be involved in discussions of these materials in subsequent sections.

C. Biuret and Triuret

Formation of biuret from aqueous urea solutions on heating was shown but this reaction was accompanied by hydrolysis.

The rate of formation of biuret from urea increases with increasing temperature up to 170°C.7,38. A maximum was reached initially at 200°C. after which a decrease in amount of biuret occurred. At 170°C. biuret was reported to begin to decompose to urea and cyanic acid. The decrease in biuret was observed at 180 and 193°C.53 and biuret formation was reported to be reversible above the melting point, 193°C.16,17

An important reference summarizes the changes which occur in the thermal decomposition of urea³⁰. Infrared spectra showed that a new band appeared at 2170 cm⁻¹ at the melting point of urea; it disappeared at 160° and then reappeared at 180°C., the temperature at which biuret begins to decompose. This band disappeared at higher temperatures and reappeared at the melting point of triuret. This band was assigned to cyanate ion thus deduced to be present at the melting points of urea, biuret, and triuret. Formation of the cyanate ion (or HNCO) was confirmed by amination of biuret and triuret in an autoclave at 190°C. to give urea as the sole product. HNCO was found 15 the gas phase over melts of all three substances. The authors suggest the following course of the reaction:

Triuret is postulated to form similarly.

Pyrolysis of triuret yielded only 15-20% of urea. It was suggested that the energetically more favorable ring closure to cyanuric acid occurs instead of complete reversal of the condensation.

NHCONH₂ NH-C=0

C=0
$$\rightarrow$$
 O=C NH + NH₃

NH-ONH₂ N - C=O
H

triuret cyanuric acid

The reaction of guanidine with bluret to form ammelide was postulated, supported by increased ammelide yield on addition of guanidine.

biuret

guanidine

ammelide

Triuret is formed on pyrolysis of urea in thin films^{13,56} but more readily in the presence of acid catalysts^{17,54,55}.

Thus any biuret and triuret formed in the guanidine nitrate process could be converted back to urea and cyanic acid; the work cited suggests the additional possibilities of conversion of biuret to ammelide and of triuret to cyanuric acid. If appreciable amounts of biuret or triuret build up in the Hercules urea-ammonium nitrate feed, there would be a possibility of yield loss by formation of ammelide or cyanuric acid. However at the temperature of 110°C., build-up of more than a few percent of biuret is unlikely. Appreciable triuret would not be expected.

Processes of preparation of biuret from urea are described in a number of references, 5,5,5,62. Suppression of biuret formation in urea on storage by the use of NH4 molybdate or NH4H2PO4 as additives has been reported. Biuret has been eliminated from urea by ammonolysis, 54,65. Urea increases the solubility of biuret in the system water-urea-biuret. Biuret forms a borate with H3BO367. Use of biuret as a fertilizer for turfgrass is described; it causes injury for a short time then is a useful source of nitrogen.

D. Cyanuric Acid

As stated earlier, eyanuric acid is formed by thermal decomposition of urea at about 200°C. through the trimerization of HNCO.

$$NH_2CONH_2 \longrightarrow HNCO + NH_3$$

OH

N-C

3HNCO

N-C

N=C

OH

cyanuric acid

Formation of cyanuric acid is facilitated by removal of ammonia. Specific preparations involved: an ammonium halide with urea 49, H2SO4 as a catalyst 11,70, a phenolic solvent 10, a fluidized bed

reaction⁷¹, use of HCl to lower the partial pressure of NH3⁷², and mixtures of cyanuric acid and urea^{12,14}. The reaction was carried out in vacuo at 280-300°C.^{26,73} By-products, ammelide, ammeline, and melamine decreased with decreasing pressure. These by-products were stated to be formed by reaction of cyanuric acid with NH3. This has been verified by reaction of cyanuric acid with NH3 at 270°C./80 atm.⁷⁵

Above 300° cyanuric acid will decompose¹². Temperatures in the 270°-300°C. range for urea pyrolysis give ammélide and ammeline rather than cyanuric acid¹⁹. Temperatures above 350°C. are used in the synthesis of melamine to avoid cyanuric acid formation⁷⁴.

E. Ammelide and Ammeline

The cyanuric bases have frequently been assumed to be formed by amidation of cyanuric acid¹⁷.

cyanuric acid ammelide

ammeline

melamine

These relationships can be demonstrated at temperatures of 250° and above. Ostrogovich and Bacalogu¹⁷, however, demonstrated the independent formation of each of these triazines at temperatures in the range 160-200°C. It thus seems likely¹⁵ that intermediates such as the postulated cyanamide, or preferably a carbodimide complex, react to form the ammelide, ammeline, and melamine at lower temperatures.

Direct formation of ammelide and ammeline from urea at 270-300°C. is reported¹⁹. In pyrolysis of urea at 280-320°C., yields of ammelide and ammeline decreased with decreasing pressure²⁶,⁷³. Preparation from cyanuric acid is described⁷⁵. Usefulness of ammelide as a slow-release fertilizer has been demonstrated⁷⁶. Spectrophotometeric methods of analysis have been reported⁷⁷,⁷⁸.

F. Ammonium Nitrate-Urea Systems

Inasmuch as a urea-ammonium nitrate feed is used for guanidine nitrate preparation, references were sought which would indicate possible effects of one component on the reactivity of the other. The system $NH_4NO_3-CO(NH_2)_2-H_2O$ was studied⁷⁸. Compounds $NH_4NO_3-CO(NH_2)_2$ and $NH_4NO_3-CO(NH_2)_2$ appear to exist in solution. Phase diagrams for $NH_4NO_3-CO(NH_2)_2$ were reported⁸⁰.

Addition of urea decreased the acidity of ammonium nitrate and decreased nitrogen losses $300-500\%^{3}$. Thermal decomposition of ammonium nitrate during its preparation is reported to be inhibited by urea 82. Urea (0.1-0.3%) added directly to HNO3 in the preparation of NH4NO3 from NH3 and HNO3 eliminated the harmful effects of nitrogen oxides and Cl⁻ ions and inhibited the thermal decomposition of NH4NO3 during evaporation 85. The presence of <0.7% urea in NH4NO3 had no harmful effect on physiochemical or mechanical properties. Amounts of urea >1.5% increased hygoscopicity and decreased particle strength 84.

The presence of NH4NO3 in the pyrolysis of urea led to an increase in the content of cyanuric acid and a decrease in the amounts of ammelide, ammeline, and melamine⁸³. The effect was attributed to formation and pyrolysis of urea nitrate.

G. Boric Acid Systems

The presence of boric acid in stabilizers for ammonium nitrate led us to note references of possible interest.

In the H3BO3-CO(NH2)2 system, a compound was formed, H3BO3·2CO(NH2)2, melting point 79.1°C.86

Heating 1 mole of H₃BO₃ and 2 moles of urea at about 60°C. gave a glass which decomposed above 165°C. to give BNO, stable to 1300°C. Passage of NH₃ over BNO at 500-950°C. gave relatively pure boron nitride, BN⁸⁷.

A melamine synthesis catalyst, more or less equivalent to silica gel, termed boron phosphate, was made from 100 g. boric acid and 210 g. phosphoric acid 98. The mixture solidified on standing at room temperature and was converted to catalyst by heating to 350°C.

III. Formation of Melamine from Urea

In recent years, undoubtedly the most active area of research on reactions involving thermal decomposition of urea has been on processes for melamine from urea in eventually successful attempts to get away from dependence on calcium cyanamide and dicyanodiamide, "dicy". The first phase of this work from about 1950 to 1965 involved pressure reactions *6-99,104,105. Then low pressure reactions were developed, first in two steps involving formation of HNCO and leading this over a catalyst 100,101,103,106,110 Direct utilization of urea then followed *1,70,102,107,138,109,111-116.

As mentioned earlier, this reaction is analogous to guanidine nitrate production from urea, with the differences of higher temperature and substitution of NH3 for NH4NO3³¹, ¹¹¹. Thus it utilizes a catalyst such as silica gel (also Al₂O₃, Al silica gel,

and B, Al, Fe, and Si phosphates) which must contain free hydroxyl groups at high temperatures. The first step is formation of HNCO which is complexed with the catalyst. The HNCO then undergoes disproportionation to form CO₂ and the reactive carbodiimide intermediate (HN=C=NH), which trimerizes to melamine.

The initial breakdown of urea and disproportion of HNCO on the catalyst are apparently the same for the melamine and quanidine nitrate processes. Then in the quanidine nitrate process, a large excess of ammonium nitrate and a carefully controlled temperature direct the reaction of the catalyst complex to quanidine nitrate. In the melamine process, temperatures >350°C. are used. The high temperature assures completeness of the urea breakdown and the HNCO disproportionation reaction, presumably increasing the concentration of the reactive carbodiimide intermediate. The high temperature also prevents formation of cyanuric acid and ammelide. The net result is trimerization of the intermediate to melamine with only traces of by-products.

IV. Silica Gel-Phosphate Reactions

It has been determined empirically that decreases in catalyst activity observed in the course of the studies at Hercules Kenvil Plant can apparently be attributed to the presence of diammonium phosphate in the stabilizer for the ammonium nitrate used. A brief search of the literature was therefore made in an attempt to determine whether such effects are known.

No specific references were found to interactions of phosphates with silica gel in the type of system involved. There are, however, numerous references to reactions of phosphates with mineral surfaces but generally with aluminosilicates rather than silica gel. Phosphate fixation by kaolinate (an aluminosilicate) was observed and explained in terms of a two-step precipitation of an aluminum phosphate 117. Silica-alumina gels absorbed both NH4+ and HPO4 from (NH4)2HPO4 solutions 118. Adsorption of phosphate on kaolinite was in other examples attributed to Al or Fe¹¹⁹⁻¹²¹.

Phosphoric acid impregnated silica showed infrared spectra attributed to phosphate interaction with surface hydroxyl groups¹²². Adsorption of orthophosphates on metal oxides was demonstrated; it was concluded that chemical bonds were formed at the reactive metal oxide sites¹²³. A study of the nature of active sites concluded that silica gel acquires ion-exchange capacity and catalytic properties exclusively as a result of substitution of Al for protons in active -OH groups¹²⁴ Surface hydroxylation of silica and the nature of the groups was reported¹²⁶.

Russian workers¹²⁵ studied reaction of PCl₃ with -OH groups on silica gel at 180°C. Each PCl₃ reacted with approximately 3 hydroxyl groups, with about 90% of the surface hydroxyls being susceptible to this reaction. This reaction is the closest to the type of reaction we would postulate to explain the effect of diammonium phosphate on catalytic activity. In fact, if diammonium

phosphate were as reactive as PCl₃, we would have a satisfactory explanation. However, in the present status of our information, we can only conclude that the literature is not inconsistent with surface reaction of the phosphate with -OH groups to inactivate the catalytic sites on the silica gel.

V. Summary and Conclusions

Little new information was found on the process for guanidine nitrate from urea and ammonium nitrate, but reaction characteristics and reaction mechanisms have been reviewed. The catalytic reaction with silica gel leads to the formation of guanidine nitrate and small amounts of triazine by-products at temperatures which give cyanuric acid as the main product in a straight thermal reaction. The mechanism appears to involve: (1) formation of HNCO from urea; (2) complexing of HNCO with the catalyst, followed by disproportionation to CO₂ and a reactive carbodiimide-catalyst complex; and (3) displacement of the carbodiimide by ammonium nitrate to give guanidine nitrate.

The current Hercules procedure of holding the urea-ammonium nitrate feed at about 110°C. for extended periods can be expected to involve the reactions: (1) hydrolysis of urea to give yield losses and (2) formation of biuret. An experimental check should be made of the biuret formed, but amounts in excess of 5% would not be expected. Formation of biuret is readily reversed at reaction conditions so that its formation in small amounts would not be a serious problem. Significant amounts of triazine products would not be formed at the feed temperature.

Cyanuric acid, ammelide, ammeline, and melamine can all form at the guanidine nitrate process temperature. Maintenance of catalyst activity, optimum reactant ratios, and temperatures as low as compatible with practical rates can be utilized to minimize these by-products.

Recently developed processes for production of melamine from urea and ammonia appear to involve the same initial steps as production of guanidine nitrate from urea and ammonium nitrate, namely, formation of HNCO from urea and disproportionation on the catalyst. The melamine process is run at temperatures >350°C. which avoid formation of cyanuric acid, ammelide, and ammeline and give high concentrations of the reactive intermediate which then trimerizes to melamine.

Information on possible reactions of phosphates with silica gel was sought in view of the finding at Hercules Kenvil Plant that diammonium phosphate in the ammonium nitrate stabilizer decreases the activity of the catalyst. Adsorption of phosphates on mineral surfaces has frequently been reported but generally appears to involve Al or Fe in the mineral clays. Phosphoric acid-impregnated silica showed evidence of chemical reaction of phosphate groups with surface hydroxyls. Chemical reaction between PCl₃ and hydroxyl groups of silica gel has been demonstrated and V-12

offers an analogy to what appears to happen with diammonium phosphate. Specific references have not been located for reaction of phosphates with silica gel under conditions of the guanidine nitrate reactions. However, the information in the literature is not inconsistent with surface reaction of phosphate to inactivate the catalytic sites on silica gel.

Bibliography

- I. Guanidine Nitrate from Urea
- F. Armstrong and R. T. M. Fraser, Explosive Research and Development Establishment, Ministry of Defense, Waltham Abbey, England, "The Silica Gel Process: Small Scale Studies. Part I - Comparison of Catalysts. Labelling Experiments". This report was received by C. H. Nichols of Picatinny Arsenal through Dr. Pearson of the British Embassy, Washington, D. C. on Feb. 24, 1972 and forwarded to Hercules on Feb. 25, 1972. (Unclassified)
- L. G. Boatright and J. S. Mackay (American Cyanamid),
 U.S. Patent 2,783,276 (1957).
- 3. J. S. Mackay (Pittsburgh Coke & Chemical Co.), "Guanidine Compounds", U.S. 2,949,484, Aug. 16, 1960. C.A. 55, 9288 (1961).
- 4. E. Roberts and T. Martin (to Minister of Aviation in Her Majesty's Covernment of the United Kingdom of Great Britain and Northern Ireland), U.S. Patent 3,043,878 (1962).
- 5. S. N. Kazarnovskii and R. I. Spasskaya, "Preparation of Salts of Guanidine from Urea and Ammonium Salts in the Presence of Silica Gel", Zhur. Priklad. Khim. 34, 2079-84 (1961). C.A. 56, 2326 (1962).
- A. Sonn, "Biuret and Triuret from Urea", Ger. 726,290, Aug. 27, 1942. C.A. 37, 6281 (1943).
- 7. R. C. Shen (U.S. Ind. Chemicals Co.), "Rate of Biuret Formation from Urea", J. Agr. Food Chem. 7, 762-3 (1959). C.A. 54, 3195 (1960).
- 8. L. Jaeger, J. Gottfried, J. Nyvit, and J. Sura, "The Kinetics of Biuret Formation from Urea", Chem. Prumysl 15(1), 4-7 (1965). C.A. 62, 13004 (1965).
- C. Merli, C. Galipo, and D. Ferroni (Montecatini), "Preparation of Biuret of High Purity", Ital. 698,339, Nov. 18, 1965.
 C.A. 67, 108269 (1967).
- L. J. Christmann (American Cyanamid Co.), "Cyanuric Acid from Urea", U.S. 2,822,363, Feb. 4, 1958. C.A. 52, 10223 (1958).

- 11. N. I. Malkina and S. N. Kazarnovskii, "Synthesis of Cyanuric Acid from Urea. I.", Zhur. Priklad. Khim. 34, 1583-7 (1961). C.A. 55, 27362 (1961).
- 12. H. A. Baskin (W. R. Grace & Co.), "Production of Cyanuric Acid from Urea", U.S. 3,236,845, Feb. 22, 1966. C.A. 64, 15901 (1966).
- 13. R. I. Spasskaya and S. N. Kazarnovskii, "Triuret", U.S.S.R. 252,327, Sept. 22, 1969. C.A. 72, 54820 (1970).
- 14. F. Suzuki and T. Tosen (Japan Light Metal Co., Ltd.),
 "Cyanuric Acid by Thermal Decomposition of Urea", Japan.
 69 00,234, Jan. 8, 1969. C.A. 70, 87858 (1969).
- 15. R. I. Spasskaya and S. N. Kazarnovskii, "Reaction of Urea with Ammonium Salts in the Presence of Silica Gel", Zh. Prikl. Khim. 35, 1842-6 (1962. C.A. 58, 6828 (1963).
- 16. K. Alaminov, A. Vblcheva, and St. Georgieva, "Formation of Biuret and Possibilities for Its Decrease in the Production of Carbamide", Khim. i Ind. (Sofia) 32, No. 3, 71-4 (1960). C.A. 55, 3426 (1961).
- 17. G. Ostrogovich and R. Bacaloglu, "Kinetic Study on the Thermolysis and the Subsequent Transformations of Ursa. II.", Rev. Roumaine Chim. 10(11), 1111-23 (1965) (Ger.); Studii Cercetari Chim. 13(11), 1165-76 (1965) (Rom). C.A. 64, 15700 (1966).
- 18. G. Ostrogovich and R. Bacaloglu, "Kinetic Study on the Thermolysis and the Subsequent Transformations of Urea. III.", Rev. Roumaine Chim. 10(11), 1125-35 (1965) (Ger.); Studii Cercetari Chim. 13(11), 1177-86 (1965) (Rom.). C.A. 64, 15700 (1966).
- 19. L. J. Beckham (Allied Chemical & Dye Corp.), "Ammelide and Ammeline", U.S. 2,572,587, Oct. 23, 1951. C.A. 46, 6163 (1952).
- 20. N. P. Shishkin and A. I. Finkel'shtein, "In Vacuo Pyrolysis of Urea", Tr. Khim. Khim. Tekhnol. 1969, (1), 188-90. C.A. 73, 24736 (1970).
- 21. Oesterrichische Stickstoffwerke A.-G., "Cyanic Acid from Urea", Belg. 621,602, Feb. 21, 1963. C.A. 59, 1307 (1963).
- 22. E. S. Roberts and L. J. Christmann (Carbogen Corp.), "Cyanic Acid", Ger. 1,159,411, Dec. 19, 1963. C.A. 60, 10254 (1964).
- 23. Oesterreichische Stickstoffwerke A.-G., "Cyanic Acid from Urea", Neth. Appl. 6,500,131, July 15, 1965. C.A. 63, 17916 (1965).

- 24. A. Schmidt, F. Weinrotter, and W. Mueller (Lentia G.m.b.H.), "Process for Cyanic Acid from Urea", Ger. 1,204,643, Nov. 11, 1965. C.A. 64, 3096 (1966).
- 25. E. Inaba, S. Uesugi, and Y. Enoeda (Shinetsu Chemical Industries Co.), "Alkali Cyanate", Japan. 4030('55), June 14, 1955. C.A. 51, 14217 (1957).
- D. O. DePree and K. L. Lindsay (Ethyl Corp.), "Metal Cyanates", U.S. 2,801,154, July 30, 1957. C.A. 51, 18507 (1957).
- 27. F. O. Barrett and J. Kamlet (Emery Industries, Inc.), "Conversion of Urea to Metal Cyanates", U.S. 2,899,198, June 2, 1959. C.A. 53, 17449 (1959).
- 28. A. G. Koryakin, V. A. Gal'perin, A. N. Sarbaev, and A. I. Finkel'shtein, "Thermographic Analysis of Urea and Products of Its Pyrolysis", Zh. Org. Khim. 7(5), 972-7 (1971). C.A. 75, 54200 (1971).
- 29. J. Gisbier and J. Koch, "Pyrolysis of Urea in a Low-Temperature Plasma", Z. Chem. 11(12), 465 (1971). C.A. 76, 63932 (1972).
- 30. V. A. Gal'perin, A. I. Finkel'shtein, and N. P. Shishkin, "Mechanism of the Thermal Decomposition of Urea, Biuret, and Triuret", Zh. Vscs. Khim. Obshchest. 17(3), 359-60 (1972). C.A. 77, 93348 (1972).
- 31. A. Schmidt (Oesterr. Stickstoffwerke A.-G.), "Reaction Mechanism for Melamine Formation from Isocyanic Acid", Monatsh. Chem. 99(2), 664-71 (1968). C.A. 68, 95792 (1968).
- 32. R. K. Iler (Du Pont), "Esterifying the Reactive Siliceous Surfaces of Supercolloidal Substrates", U.S. 2,657,149, Oct. 27, 1953. C.A. 48, 2336 (1954).
- 33. G. W. Watt and R. G. Post, "Guanidine from Urea and Ammonia", Ind. Eng. Chem. 45, 846-9 (1953). C.A. 48, 1276 (1954).
- 34. J. L. Boivin, "The Preparation of Guanidine from Urea, Ammonium Chloride, Aluminum Sulphate, and Ammonia under Pressure", Can. J. Chem. 33, 1467-72 (1955). C.A. 50, 11246 (1956).
- 35. R. I. Spasskaya and S. M. Kazarnovskii, "A Continuous Method for the Production of Guanidine from Urea", <u>Phin. Prom.</u> 1963(7), 488-91. C.A. 60, 1580 (1964).
- 36. R. Bacaloglu and G. Ostrogovich (Romania Chemical Plant), "Catalyst for the Thermal Dehydration or Disproportionation of Amide-Type Compounds", Rom. 51,080, July 24, 1968. C.A. 70, 41266 (1969).

37. R. Bacaloglu and G. Ostrogovich (Romania, Chemical Combinate), "Catalyst for the Thermal Dehydration or Disproportionation of Amide-Type Compounds", Rom. 51,083, July 19, 1968. C.A. 70, 41267 (1969).

II. Reactions of Urea

A. Hydrolysis

- 38. C. E. Redemann, F. C. Riesenfeld, and F. S. LaViola, "Formation of Biuret from Urea", Ind. Eng. Chem. 50, 633-6 (1958).

 C.A. 52, 11317 (1958).
- 39. O. Alpaut, "The Rate of Decomposition of Urea", Communs. fac. sci. univ. Ankara 7B, No. 1, 28-44 (1956). C.A. 52, 19939 (1958).
- 40. W. H. R. Shaw and J. J. Bordeaux, "The Decomposition of Urea in Aqueous Media", J. Am. Chem. Soc. 77, 4729-33 (1955). C.A. 50, 3045 (1956).
- 41. Y. Kauko and O. Alpaut, "Decomposition of Urea", Naturwisenschaften 42, 390 (1955). C.A. 51, 17760 (1957).
- 42. Same as reference 39.
- 43. R. B. Moodie and D. W. Farlow, "Hydrolysis of Amides, Esters, and Related Compounds in Acid Solution. III. Ureas", J. Chem. Soc. B 1971, (3), 407-10. C.A. 74, 111207 (1971).
- 44. H. L. Welles, A. R. Giaquinto, and R. E. Lindstrom, "Degradation of Urea in Concentrated Aqueous Solution", J. Pharm. Sci. 1971, 60(8), 1212-16. C.A. 75, 107915 (1971).

B. Cyanic Acid and Cyanates

- 45. L. Birckenbach, H. Kolb. and J. Goubeau, "Pseudohalides. XXIX. Preparation, Reactions and Tautomers of Cyanates and Cyanic Acid", Ber. 68B, 895-912 (1935). C.A. 29, 4687 (1935).
- 46. M. B. Jensen, "Kinetics of the Decomposition of Cyanic Acid", Acta Chem. Scan. 12, 1657-70 (1958). C.A. 54, 2906 (1960).
- 47. J. R. Marier and D. Rose, "Determination of Cyanate, and a Study of Its Accumulation in Aqueous Solutions of Urea", Anal. Biochem 7(3), 304-14 (1964). C.A. 60, 8334 (1964).
- 48. D. O. De Pree and E. B. Oldenburg (Ethyl Corp.), "Metal Cyanates", U.S. 2,729,541, Jan. 3, 1956. C.A. 50, 6001 (1956).
- 49. N. Groving and A. Holm, "Alkyl Cyanates. V. Existence of Cyanic Acid, HOCN", Acta Chem. Scan. 19(7), 1768-9 (1965). C.A. 64, 6059 (1966).

Also see references 21-27.

C. Biuret and Triurct

- 50. T. Nukada, "Aqueous Solution of Urea and the Biuret Reaction", Japan. J. Pharm. Chem. 23, 391-2 (1951). C.A. 46, 10107 (1952).
- 51. S. N. Kazarnovskii and N. I. Malkina, "Mechanism of the Reaction of Thermal Decomposition of Urea under the Pressure of the Gases Formed", Zhur. Priklad. Khim. 31, 452-8 (1958). C.A. 52, 17104 (1958).
- 52. N. I. Malkina and S. N. Kazarnovskii, "The Study of the Mechanism of Formation of By-Products During the Synthesis of Cyanuric Acid from Urea", Trudy Gor'kovsk. Politekh.

 Inst. 13, No. 5, 32-6 (1957). C.A. 54, 1538 (1960).
- 53. A. Baranski, E. Blasiak, and Z. Matuszewski, "The Reactions of Synthesis, Decomposition and Condensation of Urea", Chim. Ind. (Paris) 93(4), 408-12 (1965). C.A. 63, 11306 (1965).
- 54. G. Ostrogovich, R. Bacaloglu, A. Nemes, and M. Moraru,
 "Kinetic Study on the Thermolysis and the Subsequent Transformations of Urea. I.", Acad. Rep. Populare Romine, Baza
 Cercetari Stiint. Timisoara, Studii Cercetari, Stiinte Chim.
 8, No. 1-2, 59-78 (1962). C.A. 59, 2628 (1963).
- 55. R. Colin Haworth and F. G. Mann, "Some Properties of Urea, Biuret and Friuret", J. Chem. Soc. 603-6 (1943). C.A. 38, 1475 (1945).
- 56. E. V. Lassak, "Autocondensation of Urea at 105-110°", J. Proc. Roy. Soc. N. S. Wales 100(3-4), 179-80 (1966). C.A. 68, 87276 (1968).
- J. Harmon (Du Pont), "Biuret Production from Urea",
 U.S. 2,145, 392, Jan. 31, 1939. C.A. 33, 3399 (1939).
- 58. M. Mikhailov and K. Alaminov, "Corrosion of Some Stainless Steels and Al during the Pyrolysis of Urea in a Hijh Boiling Oil Medium", Khim. Ind. (Sofia) 38(1), 19-21 (1966). C.A. 65, 401 (1966).
- 59. D. G. Shipley (ICI), "Urea Pyrolysis", Brit. 1,155,907, June 25, 1969. C.A. 71, 60784 (1969).
- 60. R. Bacaloglu and G. Ostrogovich, "The Synthesis of Biuret from Urea", Rev. Chim. (Buchanest) 11, 332-4 (1960).
 C.A. 57, 12315 (1962).
- 61. A. F. Beale, Jr., and J. M. Lee (Dow Chemical Co.), "Biuret from Urea by Pyrolysis", Ger. Offen. 2,049,294, Apr. 22, 1971. C.A. 74, 141038 (1971).
- 62. A. F. Beale, Jr. and J. M. Lee (Dow Chemical Co.), "Biuret Manufacture by Urea Pyrolysis", Fr. 2,065,102, Aug. 27, 1971.
 C.A. 76, 126431 (1972).

- 63. Stamicarbon N.V., "Suppression of Biuret Formation in Urea", Dutch 94,646, June 15, 1960. C.A. 55, 14314 (1961).
- 64. E. Sacher (Oesterreichische Stickstoffworke A.-G.), "Femoval of Biuret from Urea", Austrian 219,051, May 24, 1960. C.A. 56, 12749 (1962).
- 65. V. I. Kucheryavyi, L. N. Al'mshuler, L. N. Erastov,
 "Ammonolysis of Biuret in Aqueous Solutions of Urea",
 Zh. Prikl. Khim. (Leningrad) 41(9), 2097-8 (1968). C.A. 70,
 19319 (1969).
- 66. M. DeMalde, "The System Water-Urea-Biuret", Chinica e industria (Milan) 38, 571-5 (1956). C.A. 51, 61 (1957).
- 67. V. I. Bairak, M. S. Malinovskii, and E. A. Makarova, "Biuret Borate", U.S.S.R. 298,533, Mar. 16, 1971. C.A. 75, 88155 (1971).
- 68. R. W. Starostka and K. C. Clark, "Greenhouse Evaluation and Nitrification Characteristics of Biuret and Urea-Biuret Mixtures", Agr. Chemicals 10, No. 10, 49-50, 103-4 (1955). C.A. 50, 520 (1956).
- Also see references 7, 8, 13, 16, 18, 30, and 38.

D. Cyanuric Acid

- 69. J. S. Mackay (American Cyanamid), "Cyanuric Acid", U.S. 2,527,316, Oct. 24, 1950. C.A. 45, 2513 (1951).
- 70. W. F. Marzluff and L. H. Sutherland (American Cyanamid Co.), "Cyanuric Acid", U.S. 2,768,167, Oct. 23, 1956. C.A. 51, 4665 (1957).
- 71. A. Schmidt, F. Weinrotter, and W. Mueller (Lentia G.m.b.H.),
 "Cyanuric Acid from Urea", Ger. 1,179,215, Och. 8, 1964.

 C.A. 62, 4042 (1965).
- 72. F. J. Schiltknecht, "Reaction Mechanism of the Pyrolysis of Urea to Cyanuric Acid", Promotionsarb. (Zurich) 3403, 92 pp. (1963). C.A. 63, 5647 (1965).
- 73. N. P. Shishkin, A. I. Finkel'shtein, "Formatio: of By-Products During the Preparation of Cyanuric Acid from Urea", <u>Zh. Prikl. Khim.</u> (Leningrad) 42(2), 47:-5 (1969). <u>C.A. 71</u>, 22115 (1969).
- 74. A. Schmidt, "Chemical Research in Austrian Industry.

 I. Technical Processing Problems in the Production of
 Melamine from Urea at Atmospheric Pressure", Oesterr. Chem.—

 Ztg. 68(6), 175-9(1967). C.A. 67, 116874 (1967).
- 75. V. A. Gal'perin and A. I. Finkel'shtein, "Reaction of Cyanuric Acid and Its Amides with Ammonia", Khim. Geterotsikl. Soedin. 7(7), 1002 (1971). C.A. 76, 14504 (1972).
- Also see references 10-12, 14, 19, and 26. V-18

E. Ammelide and Ammeline

- 76. G. L. Terman, J. D. DeMent, C. M. Hunt, J. T. Cope, Jr., and L. E. Ensminger, "Crop Response to Urea and Urea Pyrolysis Products", J. Agr. Food. Chem. 12(2), 151-4 (1964). C.A. 60, 11334 (1964).
- 77. V. A. Gal'perin, T. N. Roginskaya, "Determination of Amino Oxo Derivatives of Symtriazine and Nitrate Ion Present Together", Zavod. Lab. 34(11), 1324-5 (1968). C.A. 70, 64144 (1969).
- 78. S. G. Farrow, S. R. Hill, and J. M. Skinner, "High Precision Spectrophotometry. II. Determination of Ammelide, Ammeline, and Melamine in the Thermal Decomposition Products of Urea", Analyst (London) 97 (1150), 42-51 (1972). C.A. 76, 80876 (1972).
- Also see references 15, 17, 19, 73, and 75.

F. NIi4NO3-Urea System

- 79. C. S. Pande, "Formation of Complex Compounds Between Ammonium Nitrate and Urea. The System: NH4NO3-CO(NH2)2-H2O (Conductivity and Viscosity)", Z. anorg. u. allgem. Chem. 280, 157-60 (1955). C.A. 50, 1510 (1956).
- 80. D. Trandafelov and T. Kovachev, "Molten Salt Systems with Ammonium Nitrate as the Main Component. I.", Izv. Inst. Obshta Neorg. Khim., Bulg. Akad. Nauk. 5, 25-36 (1967).
- 81. S. Popov, V. Vasilev, and A. Angelov, "Lowering Ammonium Nitrate Settling", Khim. Ind. (Sofia) 43(10), 463-5 (1971). C.A. 76, 156207 (1972).
- 32. Y. Kil'man, "Inhibition of the Thermal Decomposition of Ammonium Nitrate", U.S.S.R. 191,498, Jan. 26, 1967. C.A. 68, 31636 (1968).
- 83. N. P. Shishkin, A. 1. Finkesl'shtein, and V. I. Zagranichnyi, "Effect of Acid Additives on the Pyrolysis of Urea", Zh. Prikl. Khim. (Leningrad) 45(2), 433-4 (1972). C.A. 77, 4646 (1972).
- 94. Y. B. Gradinar, "Effect of Urea Additives on Physicochemical Properties of Ammonium Nitrate", Tr. Nauch.-Issled. Proekt.

 Inst. Azotn. Prom. Prod. Org. Sin. 1971, No. 6, 351-6.

 C.A. 77, 64085 (1972).
- 85. Y. I. Kil'man, G. S. Barkhatova, and M. A. Kuzina, "Thermal Decomposition of Ammonium Nitrate in the Presence of Urea", Tr. Nauch.-Issled. Prockt. Inst. Azctn. Proc. Prod. Org. 5in. 1971, No. 6, 321-33. C.A. 77, 607/1 (1972).

G. Boric Acid Systems

- 86. V. G. Skvortsov and I. G. Druzhinin, "Solubility Polytherm of Boric Acid-Water and Potassium Metaborate-Water Binary Systems and the Phase Diagram of CO(NH₂)₂-Boric Acid", Uch. Zap., Chuvash. Gos. Pedagog. Inst. 1969, No. 29, 150-63. C.A. 74, 116570 (1971).
- 87. T. E. O'Conner, "Synthesis of Boron Nitride", J. Am. Chem. Soc. 84, 1753-4 (1962). C.A. 56, 3061 (1962).

Also see reference 98.

1II. Melamine from Urea

- 88. Monsanto Chemical Co., "Melamine", Brit. 644,374, Oct. 11, 1950. C.A. 45, 4274 (1951).
- 89. W. F. Gresham (du Pont), "Titanium Apparatus for Manufacture of Melamine", U.S. 2,644,820, July 7, 1953. C.A. 47, 9070 (1953).
- 90. R. S. Hood (Monsanto Chemical Co.), "Melamine", U.S. 2,776,284, Jan. 1, 1957. C.A. 51, 6107 (1957).
- 91. Bergwerksgesellschaft Hibernia Akt.-Ges., "Melamine", Brit. 754,720, Aug. 8, 1956. <u>C.A.</u> 51, 7671 (1957).
- 92. Suddeutsche Kalkstickstoff-Werke A.-G., "Melamine from Urea", Ger. 836,354, Apr. 10, 1952. C.A. 51, 11759 (1957).
- 93. M. Mikhailov and K. Alaminov, "Preparation of Melamine from Urea", Khim. Prom. 1961, 319-25. C.A. 55, 25351 (1961).
- 94. M. Mikhailov and K. Alaminov, "Preparation of Melamine from Urea", Khim. Prom. 1961, 805-6. C.A. 57, 11200 (1962).
- 95. A. Brenman and M. Weinberg, "The Synthesis of Melamine from Urea", Rev. Chim. (Bucharest) 12, 652-5 (1961). C.A. 56, 15114 (1962).
- 96. G. Naumov, "Synthesis of Melamine from Urea", Khim. Ind. (Sofia) 33, 190 (1961). C.A. 57, 16619 (1962).
- 97. Z. Jezic, "Preparation of Melamine from Urea", Croat. Chem. Acta 34, 203-9 (1962). C.A. 58, 11362 (1963).
- 98. O. B. Claren and L. Unterstenhoefer (Badische Anilin- & Soda-Fabrik A.-G.), "Cyanuric Acid", Fr. 1,363,760, June 12, 1964. C.A. 60, 14693 (1964).
- 99. V. I. Zagranichnyi and O. S. Rukevich, "The Reaction-Equilibrium in the Formation of Nethanike from Grea", Khim. Prom. 1965(3), 188-90). C.A. 62, 1735 (1965).

- 100. Oesterreichische Stickstoffwerke A.-G., "Melamine from Cyanic Acid", Neth. Appl. 6,412,596, May 2, 1966. C.A. 65, 8936 (1966).
- 101. A. Schmidt (Osterr. Stickstoffwerke A.-G.), "New OSW Process Makes Melamine Direct from Urea", Hydrocarbon Process. 45(11), 146-50 (1966). C.A. 66, 10906 (1967).
- 102. A. Schmidt, "Preparation of Melamine from Urea at Atmospheric Pressure", Chem. Ingr. Tech. 38(11), 1140-4 (1966). C.A. 66, 18700 (1967).
- 103. W. Boehler, W. Mueller, A. Schmidt, and F. Weinrotter, (Oesterreichische Stickstoffwerke A.-G.), "Melamine from Cyanic Acid", Brit. 1,047,095, Nov. 2, 1966. C.A. 66, 18727 (1967).
- 104. E. E. Jackson (Cominco Ltd.), "Preparation of Melamine from Urea", Can. 743,956, Oct. 4, 1966. C.A. 66, 28801 (1967).
- 105. Nisson Chemical Industries, Ltd., "Continuous Manufacture of Melamine from Urea", Fr. 1,483,116, June 2, 1967. C.A. 68, 13007 (1968).
- 106. Inventa A.-G. fuer Forschung und Patenverwertung, "Two-Stage Preparation of Melamine from Urea", Fr. 1,484,358, June 9, 1967. C.A. 68, 13008 (1968).
- 107. S. W. Tribit (American Cyanamid Co.), "Preparation of Melamine from Urea", U.S. 3,377,349, Apr. 9, 1968. C.A. 68, 105252 (1968).
- 108. E. K. Watson and J. M. Witheford (American Cyanamid Co.), "Melamine", U.S. 3,377,350, Apr. 9, 1968. C.A. 68, 114657 (1968).
- 109. G. Hamprecht, M. Schwarzmann, "Synthesis of Melamine from Urea by a Pressureless Single-Stage Process", Chem.-Ing.-Tech. 40(9-10), 462-4 (1968). C.A. 69, 27388 (1968).
- 110. M. Manes (Chemical Construction Corp.), "Synthesis of Melamine", U.S. 3,386,999, June 4, 1968. C.A. 69, 27463 (1968).
- 111. M. Schwarzmann, "Make Melamine at Atmospheric Pressure", Hydrocarbon Process. 48(9), 184-6 (1969). C.A. 71, 112893 (1969).
- 112. R. F. Hazelton (Allied Chemical Corp.), "Melamine", U.S. 3,470,163, Sept. 20, 1969. C.A. 71, 112990 (1969).
- 113. S. Furutani, K. Narizawa and M. Tanaka (Tohoku Fertilizer Co., Ltd.), "Melamine from Urea", Japan. 69 28,910, Nov. 26, 1969. C.A. 72, 31844 (1970).
- 114. S. Furutani, K. Narizawa and M. Tanaka (Tohoku Fertilizer Co., Ltd.), "Melamine from Urea", Japan. 69 28,909, Nov. 26, 1969. C.A. 72, 55512 (1970).

- P. Ellwood, "Lower Investment, Easier Operation to Make Melamine", Chem. Eng. (New York) 77(23), 101-3 (1970). C.A. 74, 66116 (1971).
- 116. O. Rukevichand V. I. Zagranichnyi, "Reaction Equilibirium of the Formation of Melamine from Urea. I.", Zh. Prikl, Khim. (Leningrad) 44(5), 1132-7 (1971). C.A. 75, 76750 (1971).

Also see references 31 and 70.

IV. Silica Gel-Phosphate Reaction

- 117. P. F. Low and C. A. Black, "Reactions of Phosphate with Kaolinite", Soil Sci. 70, 273-90 (1950). C.A. 45, 4387 (1951).
- 118. C. J. Plank, "The Adsorption of Ions from Buffer Solutions by Silica, Alumina, and Silica-Alumina Gels", J. Phys. Chem. 57, 284-90 (1953). C.A. 47, 6214 (1953).
- 119. G. C. Russell and P. F. Low, "Reaction of Phosphate with Kaolinite in Dilute Solution", Soil Sci. Scc. Am., Proc. 18, 22-5 (1954). C.A. 48, 6636 (1954).
- 120. A. G. Scholten, "The Reaction of Phosphate with Mineral Surfaces and Iron Oxide Gels", Univ. Microf In:, Order Nc. 65-6238, 254 pp.; Dissertation Abstr. 25(12), 6949-50 (1965). C.A. 63, 10975 (1965).
- 121. R. M. Barrer and D. J. Marshall, "Chemistry of Soil Minerals. II. Reactions of Phosphates with Kaolin and Faujasite", J. Chem. Soc. 1965(Nov.), 6621-8. C.A. 64, 1853 (1966).
- 122. M. J. D. Low and P. Ramamurthy, "Infrared Study of the Surface Properties of Phosphoric Acid Impregnated Silica", J. Phys. Chem. 72(9), 3161-7 (1968). C.A. 69, 89965 (1968).
- 123. D. R. Vissers, "Sorption of Orthophosphate on Crystalline Metal Oxides", J. Phys. Chem. 72(9), 3236-44 (1968). C.A. 69, 89966 (1968).
- 124. K. G. Miesserov, "Nature of Active Sites of Aluminosilicate Catalysts", J. Catal. 13(2), 169-85 (1969). C.A. 70, 71378 (1969).
- 125. R. J. Passarelli, "Self-Diffusion Coefficients of Strontium in Agar Gels as Functions of Concentration and Temperature", Diss. Abstr. B 29(8), 2388 (1969). C.A. 70, 91108 (1969).
- 126. C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell, and J. A. Hockey, "Surface Hydroxylation of Silica", J. Phys. Chem. 73(11), 3947-53 (1969). C.A. 72, 6453 (1970).

John G. Hay