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ABSTRACT 

A mathematical characterization of nonlinear interpolating spline 

curves is developed through a variational calculus approach, based on 

the Euler-Bernoulli large-deflection theory for the bending of thin 

beams or elastica. Algorithms previously used for computing discrete 

approximations of nonlinear interpolating splines are discussed and 

compared. The discrete natural cubic interpolating spline is discussed. 

An algorithm for computing discrete natural cubic splines is given and 

analyzed for discretization error and computational difficulty. Finally, 

a new algorithm together with its Fortran implementation is given for 

computing discrete nonlinear spline functions. 
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1. Introduction 

Vor  the past 25 year" and particularly the past decade, the subject 

of spline functions has been an area of great mathematical interest. The 

name spline comes from a very old technique in drafting in -which a long 

thin strip of wood, called a draftsman's spline, is used to pass a smooth 

curve through a set of points in the euclidean plane. The points of 

interpolation are called knots and the spline is secured at the knots 

by means of lead weights called ducks. The wooden (and now plastic) 

splines and lead ducks are still manufactured; however, less expensive 

modern drafting tools are generally used today. 

The mathematical model of a spline is a special case of the elastic 

line, or elastica, the first problem of any importance treated by the 

theory of elasticity. Its treatment began with James Bernoulli in 1705, 

Daniel Bernoulli (17I+2), Euler (ifkh),  Kirchhoff, and many others. The 

history and theory are summarized by A.E.H. Love (192?); however, research 

papers on the elastica have been published more recently. 

Perhaps the simplest way to characterize a spline mathematically 

is with the fact that a spline assumes a shape which minimizes its 

elastic strain energy. Daniel Bernoulli (17^2) first suggested that the 

strain energy is proportional to the integral of the square of the curva- 

ture taken along the curve. He suggested in a letter to Euler that the 

differential equation of the elastica could be found by making the integral 

a minimum. Euler (17^), acting on this suggestion, was able to find 

the differential equation using techniques now known as Calculus of Var- 

iations and Lagrange multipliers, (it is interesting that Euler did this 

work when Lagrange was a small child.) 

..■:.■».,,., ■.-.■W.„l.l„.»ai>„.,llf..n»- ■M,.,^...,..^,^^^.^^.^^.-.-^-^^»^^.-^-^.^.^.^......^ m      m m „.,..,., ..^Mmtltt 
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Since a modern development of Bernoulli's discovery could not 

be found in the literature, one is presented here.    The reader is 

referred to Y.  C.  Fung (1965) for discussions of the basic concepts 

of solid mechanics used in the following discussion. 

Assume that the spline is made from a linearly elastic material 

with coefficient of elasticity   E .    Let the spline be initially straight 

and assume that every cross section of the spline which is initially 

perpendicular to the major axis remains plane and perpendicular to the 

principal axis at all times.    Let   ds   be the differential arc length 

along the neutral axis.    When the beam is bent into a curve of radius 

R , the length of a filament,  initially of length    ds    and parallel to 

the neutral axis,  is changed by a factor of    1 + T]/R , where   T]    is the 

distance from the neutral axis to the filament measured in a direction 

away from the center of curvature, as shown In Figure 1.1. 

Figure 1.1.    A spline element 

Thus,  the strain is    Tl/R , or   Tin , where    H    is the curvature. 

If   dA   represents the cross-sp.ional area of the filament,    ETlndA 

is the force (tension) acting on the filament.    The resultant moment 

"•-'—,i-'-'" "' -,:---».-         .:.-. --., .,.    1||    l      M m   ,„.,.      .,....,..,.^^..-,„   .   .. 
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of forces acting on the spline at the cross section is 

M =  A-ETlKdA = EH/*Tl2dA  . 

A A 

By definition, the moment of area of the cross section is 

I ^   I Ti2dA . 
■/' 

A 

Therefore, 

M = EIH . 

The angle through which the cross section rotates is    nds  .    Hence, the 

work required to bend a segment    ds    of the spline to a curvature   H    is 

given by 

W.k = (El/2)H2ds  . (1.1) 

There is a longitudinal force acting on the ends of the element.    However, 

the strain energy resulting from this force is negligible.    Hence, inte- 

grating throughout the spline, we have the strain energy 

I 

.../ ElH2ds  . 

0 

If the material is homogeneous, and the spline is of uniform cross 

section, then ^ 

•/■ 
u =^r-/H2ds . (1.2) 

0 

Now let   1r    denote the potential energy of the system.    In the 

general case 

t =  / Wdv - / f.u.dv - / t.u.dS 

V V s 

"■WimniMiiiiMH 
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where W is the strain energy function, f. are the body forces per 

unit volume, t. are the surface traction forces per unit area, and 

u. aro the displacements. The repeated subscript is the usual tensor 

notation for summation over all possible values of the subscript. Wo 

are assuming that the f. = 0 . Now, for this case, the t. correspond 

lo the forces acting upon the spline at the nodes. But the spline is 

constrained at each node, so that either u. = 0 , or u. is orthogonal 

to £. . Thus, since the nodes cannot apply torques to the spline, they 

can do no work on it, or 

/ 
t.u.dS = 0 

Hence, 

'V =  f   Wdv = U . 

V 

=/ 

The principle of virtual work states that when a body is in equilibrium, 

W = 0 . 

Therefore, 

or 

6U = 0 , (1.3) 

I 

I* 2 
ds = a local minimum . (l«^) 

0 

Of all the continuous curves which pass in turn through a given set 

of ordered points in the euclidean plane, having continuously turning 

tangents, and piecewise continuous curvature with discontinuities in 

curvature permitted on only a finite set of points, those satisfying 

{l.h)  are referred to as nonlinear interpolating spline functions, or 

- ~-—'—^- 
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simply, nonlinear splines.    Birkhoff and de Boor (1965) gave an example 

vvhich denies the existence of nonlinear splines in general.    (See Section 

3.2 for a discussion of this example.)    It is an open question whether 

uniqueness holds for a given set of interpolation points.    This question 

is complicated by the fact that the value of (l.h) can be made as small 

as desired by introducing large loops between supports, which modil'y the 

topology of the spline.    The only known existence results for nonlinear 

splines are given in Section 5.2. 

For deflections of the elastica which result in small slopes, 

H s y"    and    ds = dx  .    With this well known linearizing approximation, 

Equation {l.h) leads to  the linear fourth-order ordinary differential 

equation known as the beam equation.    The corresponding problems of 

interpolation have unique solutions called natural cubic spline functions. 

These solutions satisfy the natural boundary conditions of zero second 

derivatives at the ends.    Existence and uniqueness for "linear"  cubic 

splines follow from basic theorems of linear elasticity. 

As one would intuitively expect, nonlinear splines are invariant 

under rigid rotations of the    x-y    coordinate system.    However,  the 

linear cubic splines are not invariant under rotations of the    x-y    coor- 

ainate system, and hence they are not well suited to fitting geometrical 

data in a euclidean plane, or other data where rigid rotations of the 

coordinate system make sense.    On the other hand, nonlinear splines are 

not invariant with respect to changes in the    y    coordinate only, while 

linear splines are  (see Podolsky and Denman (1964)). 

As pointed out by Lee and Forsythe (1973), the term nonlinear 

spline has been used variously in the literature.    However,  in this case, 

the term indicates that the spline satisfies nonlinear Euler equations 

._U-. ■■- -^   ■  '-'■ -^—-—-:-.■-—. 
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vihich vill be derived in the next section. 

Little of the classical work on the elastica is directly applicable 

to nonlinear spline theory. The earliest known paper on iionlinear splines 

is that of Birkhoff and de Boor (1965). Early reports were written by 

Fowler and Wilson (196.?) and Birkhoff, Burchard and Thomas (1965). 

Methods for computing nonlinear splines have been published by Glass (1966), 

Larkin (1966j, and Woodford (1969). Mehlum (1969), in his Ph.D. dissert- 

ation, discusses nonlinear splines and presents an &lf',orithm for approx- 

imating a nonlinear spline by a succession of circular arc?. Hosaka (1967) 

describes how to solve (l.h)  and generate nonlinear spline functions on 

a differential analyzer. Some of these algorithms will be aiscussed in 

Section 3. 

Methods for conputing nonlinear splines nave applications in the 

design of aircraft, ships and automobiles. A piece of sheet JC •«tal which 

is bent into an axially-symmetric configuration has a cro,-.s sec Lion which 

behaves lite a nonlinear spline. 

mjmmmmtmm 



2.    A Variational Formulation of the Large-Deflection, Small-Strain 
ProFlem of Interpolating"llastica 

Given a fixed sequence of points P,, Pp, ..., P , ve  define the 

interpolating elastica as the function P(s), a function of arc-length 

s, which satisfies the equilibrium conditions for a thin beam, of con- 

stant cross section and constant linearly elastic properties, passing in turn 

through the n points P. and acted on only by workless constraints 

at the points P. . As we shall see, the natural boundary conditions 

resulting from the variational formulation will indicate exactly what 

kinds of boundary conditions are admissible and what combinations of them 

result in well-posed problems. We will also see that the forces f. acting 

on the elastica through the points P  must satisfy certain restrictions 

which are entirely consistent with the assvunptions of Section 1. 

It is natural to specify each P. by a pair of Cartesian coor- 

dinates (x.,y.); however a more efficient coordinate system for the 

development of the problem is (0,s), where s is the arc length and 

0 = 0(s) is the angle made at s by the curve P(s) with some refer- 

ence line. The curvature of the elastica at any point s is given by 

H(S) = dG/ds . 

In Section 1 it was shown that stable configurations of the elas- 

tica correspond to local minima of the functional 

/ 
0 

Z 
2, 

H ds , (2.1) 

where i    is the length of the elastica and the integral is ttken along 

the deformed configuration.  Note that l    is allowed to vary in minimizing 

- - - - ———.——-^————~i—i MMMMMi 



(2.1).       It is equivalent to say 

/ 
fi I H ds = 0 . (2.2) 

For the trivial case of collinear P. and all f = 0 , the value of 

(2.1) for the equilibrium state is 0 . To find the function 9(s) which 

satisfies (2.2) for a nontrivial set of P. , the additional 2n-2 side 

conditions 

.1 

I 

I 
h 

i+l 

cosS ds = x. +T - x. j i—1^ ••• >  n-1 

(2.5) 
;i+l 

sinq ds = yi+1 - yi , i=l, ..., n-1 , 

must be added to (2.2), where A.    denotes the value of s at P. . 

Using Lagrange multipliers, the constraints (2.3) can be added to (2.2) 

yielding 

n-1   ^    /i+l 

!?[/ (H    + X.cos fi + (x.sin 9)ds x i 

•Xi(xi+1 " xi) " ^i(yi+l * y .,]!... 
Now since certain kinds of constraints at the P. allow the elastica to 

slide, the lengths &.    are allowed to vary as well as the function 0 . 

8 
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Taking continuous variations, intccrating by partü and rourranping tomm 

gives 

n-1       £i+1 

\       I -2 — - X.  sin 0 + n    cos 0    fiGds 

i=l   li 

+ 2H"6e  - 2H?"6e1 n    n 11 

n-1 

2 N ^(H' . H+)6e. 

i=2 
-x2 

+ [(H")    + \      cos 0" + ^    nsin e"]6je v n' n-1 n       n-1 n     n 

- [(K})    + X^O'- fi^ + ^sin 6^]6£1 

(2.M 

n-1 

2 1<Ki)2 " (Ki)2 

i=2 

+ \ .    cos 9. + p,.    sin 67 
i-i i       i-l i 

whe 

- \ .cos 9.   - a.sin 0.]6£.  =0  , 
i i      pi ii ' 

re the notation    ?.    denotes    lim ?(^.+c), and    %'.    denotes    lira 5(^.-«) 
1 i-tO        * 1 c^o '  1 

by the fundamental lemma of the Calculus of Variations, the integral 

term in (2.4) yields 

dx. 
-2 ^- - x .sin 6 + p.-cos 9 = 0 , JK. < s < Ä. n , 

ds   i      i i      i+1 (2.5) 

for i = l,...,n-l . Using (2.^), Equation (2.5) can be integrated for 

each open interval yielding 

+  Xi        ^i 
K(S) = Ki - T (y^) + — (x^) ,  i=l,...,n-l .        (2.6) 

Equation  (2.6)  also results from the static equilibrium moment relation for 

a segment of spline to the right of the i-th knot (see Figure 2.1). 

-- - ■- ■■"■'- juaam tttmmmm 
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Figure 2.1. A segment of spline to the right of the i-th knot 

Hence, the Lagrange multipliers are scaled force components acting on the 

+ 
spline at Z.   . 

The Euler equation can be deduced by differentiating (2.5) which gives 

d H 

ds2 

So, if K / 0 , 

d 
ds 

or 

(-*)■(+■ 

cos 0 - 

"i 

— sin 6 I H , 

COS Q j «, = -H 

(2.7) 

dn 
ds 

ds i»5* ^*}0- 
Hence, for H / 0 , 

2 
^ -~- = -^H2 + ci , Ai < s < £.+1 , i = l,...,n-l , (2.8) 

ds 
'i+1 

for constants c. depending, in general, upon the interval i . 

The remaining terms of (2.U) yield the natural boundary conditions. 

Since each of the 6ft. and bl.    are arbitrary (for i=l,...,n), the knots 

of the spline can be modeled by frictionlessly rotating sliders, as shown in 

Figure 2.2. 

10 
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Figure 2.2. Frictionlessly rotating slider 

The terras 

2Mh6fln - 2K16fi1 

in (2.U) give the natural end conditions of zero curvature.    The terms 

n-1  -   + 
2 2 (K - H )6fl 

i=2  1 

demand that the curvature be continuous across each interior knot. If 

the angle 0 is taken with reference to the x-axis, we have f:"om (2.7) 

T(s) 
1 d^K 

«da2' 
(2.9) 

where T(s) denotes the (scaled) force transmitted along the spline. 

(Tension is positive.) Thus, the terms 

KO2 + ^ -.cos e" + Ui„ ^sin e~]ßj2, 
^ vn-l n n-r n  n 

-[(H*) + X^os 6^ + ki-j^sin ö^jö^ 

in i2.k) give the additional natural end conditions   Til,)  - T{l  ) =0 . 

That is, the ends of the spline have no longitudinal forces applied to 

them.    Similarly, the terms 

n-1 
S    [(O2 - (<)2 

i=2 

+ Xi_1cos fl^ + M-j^.^in 0? 

- X.cos fl.   - u.sin 6.]8fl. i i     ri i      i 

11 



rcquirp that the forces T{i') = T(£.) (i=i;,... ,n-l) , that is, the longitud- 

inal force transmitted by the spline is continuous across each interior knot, 

The constants of integration c. (i=l,... ,n-l) in (2,8) can now be 

+ + 
determined for the natural open spline.    Since    T(J4  ) = K    = 0 ,   (2.8) 

evaluated at    I      gives    c.  = 0  .    Both the curvature and the longitudinal 

force are continuous across each of the interior knots, hence we have 

v,   --■ 0    for    i=2,...,n-l  .    Thus we obtain the Euler equations 

i^ + iH5=o,   je.<s< ^i+1 , (2.10) 
ds 

for    i=l,...,n-l  , which, in view of (2.7), must  be satisfied by the spline 

at  every point within each open interval.    Equations (2.10) were first 

published by Birkhoff and deBoor (1965). 

The above analysis shows that the nonlinear spline having friction- 

lessly rotating slider constraints corresponds to the least-constraiut 

interpolating elastica.    Any further constraints on the elastica must be 

consistent with {2.h) and will produce a larger value of (2.1) unless they 

are also consistent with the nonlinear spline.    For example, Hermite con- 

straints arc consistent with (2.^)  since they imply    66.   = 0  ,   (i=l,...,n)   . 

However,  for  this  case,  curvature is not necessarily continuous acrosc the 

interior knots and, hence,  (2.10) no longer holds.    Numerous combinations 

of more restrictive boundary conditions are admissable according to (2.U). 

These include such things as fixed ends and pinned joints.    We will only 

be '-on^erned with the least-constraint,  natural boundary conditions of the 

nonlinear interpolating splines. 

Closed nonlinear splines have been studied by Lee and Forsythe  (1575). 

In this case,    x    = x      ani    y,  = y    .    However,  to avoid having to pres- 

cribe the total  length of the spline,  the variations    bl , and    f>i      are taken 

12 
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as unequal. Since elements of the curved arc are Inserted into or deleted 

I'rom the spline at P = P , the variations at l.    and I     must satisfy ^       In' In * 

1   11   n  n n 

The corresponding natural boundary conditions are 

Hl = Hn 
and 

It follows that (2.10) also holds for the case of closed nonlinear splines, 

15 

mi—«^MMUM—M—^—■ mm—mmmm 



F^^^^^^^^^^—^— I WI I 

5. Methods for Computing Open Nonlinear Spline Functions 

A number of methods for computing nonlinear Interpolating splines 

have been published during the past six years.    In this section these 

results are briefly reviewed in chronological order.    Also, two interesting 

results due to Larkin, which concern the existence of finite equilibrium 

solutions, are treated in Section 5»2. 

3.1       Glass' method 

The first published method for computing discrete approximations 

to the nonlinear interpolating spline is that of Glass (1966). 

Glass uses Cartesian coordinates (x-y) and considers the Euler 

equation analogous to (2.10): 

y(iv) =   5(y//)3 ^OyW   .   35(y/)g(y//)5 (3 ^ 

2[i + (y')2! sUMy')2]2 

The knots are represented by their coordinates (x.,y.), i=l,2,...,n . 

Since the curvature 

[l * (y')2l5/a  ' 

and ds = */ 1 + (y')  dx , the energy given by (2.1) becomes 

n-1   xi+1 

E(y) =  >   /   (y7g 5/0 ^ ' (3.2) 
Z-J j   [1 + (y7)2]572 

i=l  x. 

Glass first considers the problem on one panel [ x.jX... ], with the 

end points y. and y. . prescribed. He assumes the end slopes y.' 

and y/   are also prescribed and proceeds to develop a method to solve 

Ik 

 — J 



the ordinary differential equation (3.1), subject to these four boundary 

conditions. Using a Taylor's series expansion of (3.1) about an approxi- 

uate solution y  , he arrives at a linear differential equation in the 

correction to y^ ' to obtain the better approximate solution y^ ' . 

Using central difference operators over a mesh of N points in the inter- 

val (with constant mesh size H), he obtains a system of linear difference 

equations in the correction terms at each mesh point. This 5-band system 

of linear algebraic equations is solved at each iteration until convergence. 

The solution of the fourth-order boundary value problem is carried 

out in each ponel for a given set of slopes at the knots: y.' , i=l,2,...,n , 

written y'. The functional (3.2) is approximated using this discrete 

solution and is now considered to be E(y') . Glass then proceeds to a 

solution with an outer iteration which minimizes E(y/) using a gradient 

method. He uses differencing to obtain partial derivatives and then rounds 

them to 1, 0, or -1.  He uses an unusual heuristic method for choosing 

the step parameter \ for moving in the direction -grad[E(y/)] . 

Gliiss doesn't present the actual program; however, he claims that his 

method requires only about five gradient searches for satisfactory answers. 

He presents an example with nine panels (n=10), but does not mention the 

value of N or how the initial y' was obtained. For this example, 

Glass' method took approximately 10 minutes on the IBM 709^. 

In addition to the "enormous computation time," Glass mentioned that 

instabilities occur in problems where the spline turns too rapidly. 

He suggests a technique for overcoming the instabilities at the 

expense of a substantial increase in computation time. The computational 

difficulties increase drastically for larger numbers of data points. 

15 
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5.2    Larkln's method 

I.arkin (1966) presented perhaps the most interesting study of non- 

linear spline functions in a rather obscure unpublished report.    His results 

and suggested computational method are summarized here. 

Larkin first shows that (3.1) may be reduced to 

K = d9 
ds = \i \cos(e-7jl , j^i < s < Jt i+1 ' (3.3) 

where the \.    end «. are constants of integration.  Equation (3.3) 

is precisely the- energy integral of the equations of motion of 

Kirchhoff's kinetic analogue of a pendulum given in Love (1927), p. ^01, 

which may also be written as 

K" = Ai cos 0 + Bi sin 9 , J^ < s < |   , (3.4) 

where the A. and B.  are the constants of integration. Equation (3.4) 

is easily shown to satisfy (2.10) if there are no points of inflection. 

Larkin integrates (3.3) to give x(s) and y(s) in terms of elliptic 

integrals. To obtain equations which can be used for computation, he needs 

a separate treatment for the case where the spline has a point of inflection. 

A  point of inflection occurs when the curvature vanishes, i.e. where 

e  ^ e. + "/2 
1 — ' 

(3.5) 

Larkin's complete algorithm is quite complicated and goes roughly as 

follows: 

Step 1; Estimate values of 9 at the knots (i.e., 9. , i=l,2,...,n). 

Step 2; Determine the parameters X. and «. , for each panel. This 

requires the evaluation of three complicated functions, each involving 

elliptic integrals, as well as several trigonometric functions. Based 

upon the values of these functions, it can be determined whether or not a 
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point of inflection occurs in the interval, and if so, which one of two 

cases it corresponds to. The value of f. is then determined by finding 

the zero of the appropriate complicated transcendental equation. The 

value of X. is then obtained by the direct evaluation of a similar 

equation. 

Step 3; Scan through the knots to find the one at which the largest dis- 

continuity in curvature occurs. Replace the value of 6. there by a value 

which makes the curvature continuous. This requires solving for the zero 

of another transcendental equation, and the values of «. and \.    must 

be recomputed in each of the neighboring panels. Step 5 is repeated until 

the largest discontinuity in curvature becomes smaller than a specified 

tolerance. 

The above algorithm was implemented on a KDF9 computer and graphs of 

a few solutions are included in Larkin's report. No mention is made of 

running times, or computational experience. However, it appears that 

the method is probably quite slow due to the large number of transcendental 

functions which must be evaluated. 

The most interesting results in Larkin's report are contained in 

the following two theorems: 

Theorem 3.1 (Larkin): A necessary condition for the existence of a finite 

equilibrium solution is 

lei+l " eil - " ' i^»2.---»11-1 • 

Proof: From Kirchhoff's analogy (3.5), 

2   2 
K = x.. cos (e -«.) > o . 

X 1    ^^ 

(3.6) 

Thus, cos (9 - t.) > 0 . Therefore, at I      and I        ,    we have 

17 
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and 

|ei+1 - «il <TT/2 + Sqn , 

where p and q are integers. The only cases of interest are those 

where p = 0 , and f.  is evaluated so that p = q = 0 . So we have 

Ke^-fi) - {\ -«i)! < le^-.J Hoi - ej , 

or      l^i+i -eil - " ' I 
Unfortunately,  this  theorem doesn't provide a way to determine a 

priori whether a given set of knots has a finite equilibrium solution. 

However, this result is useful in an algorithm for determining when a 

solution is diverging.    The cases where (5.6) is not satisfied correspond 

physically to a spline which continues to slide through the supports while 

reaching lower and lower energy values.    An example of this is given in 

Birkhoff, Burchard and Thomas  (1965).    The knots in this example have the 

Cartesian coordinates  (l,0),  (2,0),  (0,2),  (0,1),  with the spline 

threaded through tiiem in that order.    The spline never reaches an equil- 

ibrium state, and continues expanding to infinity.    A lucid explanation 

of this example is given in Lee and Forsythe (1973). 

Theorem 3.2  (Larkin):    A necessary condition for the existence of a finite 

equilibrium which possesses no point of inflection is  that there exists an 

integer   m    such that 

lin (P^e.^) < t|r.  + mn < max (6^8^)  , mm (3.7) 

where    \|r.    is the inclination of the straight line connecting the    i-th 

and the (i-H)-th knots. 

18 

  



Proof; Roughly, this theorem follows from the fact that 9 Is a contin- 

uous function which must vary monotonically from 9^ to 9,., in tho 

case that there is no point of inflection. And (3.7) is untrue only if 

9 is not monotonic. For a detailed proof, see Larkin (1966), Appendix A. 

3.3 Woodford's method 

The only published program for computing nonlinear splines is an 

Algol procedure given by Woodford (1969)« His method appears to be con- 

siderably simpler and faster than those of Glass and Larkin. 

Woodford uses cartesian coordinates and applies the calculus of 

variations to obtain (3.1). He notes that (5.1) can be reduced to 

(Z)2 = (A^' +8^(1 + (y')2)5/2 (3.8) 

which is merely another form of Kirchhoff's kinetic analogue given by 

(5.3) and (3.4).    He uses (3.8) to obtain an expression for the energy 
n-1 

E = 2]   IV^+l-V +Bi(Xi+l-
Xi)|   ' (3.9) 

i=l 

which is easily derived using (3.4) and (2.1). 

Woodford discretizes the intervals with a uniform mesh and 

starts with an initial solution y^ ' provided by solving 

which gives the usual natural cubic interpolating spline. He uses the 

method of quasi-linearization and proceeds with an iteration based on the 

same Taylor series expansion about the current solution that Glass used. 

To solve this linear multi-boundary value problem, Woodford uses a deriv- 

ative replacement scheme based on expressing yk+1> y-u+y»  K+i» and Vv+i 

with Taylor series expansions about the point y , immediately to the 
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(iv) left, and retaining all terms up through those in   y      '  .    This results 

In a 9-band linear algebraic system of equations to solve at each iteration. 

The iterations are terminated when the energy given by (3.9) on two succes- 

sive iterations is nearly the same. 

Woodford gives an example using seven data points:    (0,0), (1,1.9); 

(2,2.7), (3,2.6), (U,1.6),  (5,0.8),  (6,1.2), and a mesh size of 0.025 

(l^O points per panel).    Convergence occurred after four iterations.    His 

example will be discussed again in Section 5*    A listing of a Fortran trans- 

lation of Woodford's Algol procedure follows. 
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SUBROUTINE MEC(N, ORD,  H,  K,  A,  B,  C,  D, EPS,  *) 

THIS SUBROUTINE COMPUTES POINTS ON THE MINIMUM-ENERGY CURVE 
(SOMETIMES CALLED A NONLINEAR SPL WHICH PASSES THROUGH 
THE N DA"A POINTS WITH ORDINATES ORD(i),  1-1,,.. »N, AND 
EQUIDISTANT ABSCISSAE.    THE SOLUTION IS PRODUCED BY A STEP-BY- 
STEP METHOD BASED ON TAYLOR SERIES.    THE NUMBER OF STEPS BETWEEN 
CONSECUTIVE PAIRS OF DATA POINTS IS K, AND H IS THE LENGTH OF 
EACH STEP.     USUALLY THE NUMBER OF STEPS K SHOULD BE AT LEAST  10 
PER UNIT INTERVAL.    THE PARAMETER EPS CONTROLS THE CONVERGENCE, 
USUALLY EPS  SHOULD BE OF THE ORDER 1.E-5.    THE SOLUTION Y AND ITS 
DERIVATIVES ARE STORED IN THE ARRAYS A,  B, C, ANDD.    A(I) 
IS THE VALUE OF Y AT THE I-TH POINT,  1-1 K*(N-1)+1.    SIMILARLY 
B(I)  IS THE VALUE OF THE FIRST DERIVATIVE, C(I)  THE SECOND 
DERIVATIVE AND D(I)  THE THIRD DERIVATIVE.     SINCE WE ALLOW FOR 
DISCONTINUITIES IN THE THIRD DERIVATIVE AT EACH INTERNAL DATA 
POINT,  D(I)   FOR I - K+1,   2K+1,   ....   (N-1)K+1  IS THE THIRD 
DERIVATIVE TO THE IMMEDIATE RIGHT OF THE DATA POINT. 
D((N-1)*K+1)   IS LEFT UNDEFINED.     THE    SUBROUTINES BANDET AND 
BANDSL MUST BE SUPPLIED FOR SOLVING A 5-BAND LINEAR SYSTEM 
AT EACH ITERATION.     THE SUBROUTINE EXITS WITH A RETURN 1  IF 
THE PROCEUDRE BANDET FINDS A ZERO PIVOT OR IF   THE   ALGORITHM 
HAS NOT CONVERGED AFTER  10 ITERATIONS. 

THIS SUBROUTINE IS A TRANSLATION OF AN ALGOL PROCEDURE GIVEN 
BY C.H.  WOODFORD IN "SMOOTH CURVE INTERPOLATION",  BIT 9  (1969), 
69-77. 

MICHAEL A.   MALCOLM 
COMPUTER SCIENCE DEPARTMENT 
STANFORD UNIVERSITY 
AUGUST 16,   1971 

REAL*4 H, EPS, ORD(1), A(1), B(1), C(1), D(1), AL(1000,9), 
* R(IOOO), EN(20), DEN(20), AA, BL, CL, DL, X, W, ZZ, XX, XXI, 
* XX2, WW, WWW, D1, HI, H2, H3, H4, MBAND(1000, 4), NORM 
INTEGER Q, P, INT(1000) 
LOGICAL L, Z 

D1 « 
ITO 
N1 • 
HI • 
H2 = 

1.E10 
'  0 
N-1 
H*K 
.5*H*H 

H3 = H2*H/3. 
H4 « H3*H*.25 
Q •= N1 * (4*K-1) 
Ml » N1*K + 1 
M - M1-1 
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10 

20 

30 

40 

42 

44 

46 

DO  10 1-1,Ml 
A(I)  » 0. 
B(I)  - 0. 
C(I)  - 0. 
D(I)  - 0. 

CONTINUE 
EN(1)  -  0. 
EN(N)  -  0. 
DO 30 1-1,Q 

DO 30 J-1,9 
AL(I,J)  - 0. 

CONTINUE 
1-5 
J - 3 
DO 80 P-=2,M 

L =   (P/K)*K.EQ.P 
Z -   ((P-1)/K)*K.EQ.(P-1) 
AA - A(P) 
BL - B(P) 
CL - C(P) 
DL = D(P) 
11  »  1+1 
12 =  1+2 
13 =  1+3 
14 = 5-1 
15 =  4-1 
16 =  3-1 
17 =•  2-1 
IF  (Z) GO TO 40 
AL(I,J+I4)  = 1. 
J « J+1 
AL(I,J+I4)  = H + CL*H4 
AL(I1,J+I5)  ' •  1. + CL*H3 
AL(I2,J+I6)  » = CL*H2 
IF  (L) GO TO 42 
AL(I3,  J+I7) - CL*H 
J - J+1 
AL(I,J+I4)  = H2 + BL*H4 
AL(I1,J+I5)  - H + BL*H3 
AL(I2,J+I6)  - 1,  + BL*H2 
IF   (L) GO TO 44 
AL(I3,J+I7)  » » H*BL 
J - J+1 
AL(I,J+I4)  = H3 + AA*H4 
AL(I1,J+I5)  = = H2 + AA*H3 
AL(I2,J+I6)  = H + AA*H2 
IF  (L) GO TO 46 
AL(I3,J+I7)  • '  1.  + AA*H 
J = J+1 
IF   (L)  GO TO 48 

I ■ 
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AL(I,J+I4) - -1. 
J » J+1 

A8     AL(I1,J+I5) - -1. 
J - J+1 
IF (P.NE.M) AL(I2,J+I6) - -1, 
J - J+1 
IF (L) GO TO 50 
AL(I3,J+I7) - -1. 

50     BL - DL*H4 
R(I1) - DL*H3 
R(I2) = DL*H2 
IF (.NOT.L) GO TO 60 
IPORD - P/K + 1 
R(I) = BL + ORD(IPORD) 
I = 13 
J = J-2 
GO TO 80 

60     IPORD = (P-1)/K + 1 
R(I) - BL 
IF (Z) R(I) = R(I) - ORD(IPORD) 
R(I3) = DL*H 
I - 1+4 
J = J-3 

80  CONTINUE 
AA - A(1) 
CL « C(1) 
DL = D(1) 
AL(1,5) = H + CL*H4 
AL(1,6) = H3 + AA*H4 
AL(1,7) = -1. 
AL(2,4) = 1. + CL*H3 
AL(2,5) = H2 + AA*H3 
AL(2,7) = -1. 
AL(3,J) = CL*H2 
AL(3,4) = H + AA*H2 
AL(3,7) = -1. 
AL(4,3) = 1. + AA*H 
AL(4,2) = CL*H 
AL(4,7) = -1. 
R(1) = H4*DL - ORD(1) 
R(2) = H3*DL 
R(3) = H2*DL 
R(4) - H^-DL 
CALL BANDET(MBAND, 1000, INT, AL, Q, 4, 9, &150) 
CALL BANDSL(MBAND, 1000, INT, R, AL, Q, 4, 9) 

; STORING CURRENT SOLUTION 
1 = 4 
J-2 
DEN(1) = R(1) 
DEN(N) = R(Q) 
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DO 100 l,-2,M 
X - R(I) 
W - R(I+1) 
ZZ - R(I+2) 
I - 1+3 
IF ((P/K)*K.NE.P) I - 1+1 
XX - X*X 
XXI - 1./(1.+XX) 
XX2 - XXI * XXI 
ww - w*w 
www - ww*w 
IF (((P-l;/K)*K.l.E.(P-1)) GO TO 90 
EN(J) - WW*(XX1**2.5) 
DEN(J) - X 
J - J+1 

90     AA - 10.*X*W*XX1 
BL - (7.5*WW + 10.*X*ZZ)*XX1 - 52.5*XX*WW*XX2 
CL - 10.*W*ZZ*XX1 - X*WWW*XX2*(A0. - 70.*XX*XX1) 

* - 20.*XX*W*ZZ*XX2 
D(P) - -(2.5*WWW + 10.*X*W*ZZ) * XXI + 17.5*XX*WWW*XX2 

* +AA*ZZ + BL*W + CL*X 
AA 
BL 
CL 

A(P) 
B(P) 
C(P) 

100 CONTINUE 
C TEST FOR CONVERGENCE 

X - 0. 
DO 110 1-1,N1 

AA - (EN(I+1) - EN(I))/(DEN(1+1) - DEN(I)) 
BL - EN(I) - AA*DEN(I) 
X - X+ABS(AA*(0RD(I+1) - ORD(I)) + BL*H1) 

110 CONTINUE 
ITO - ITO+1 
NORM = ABS(DI-X) 
PRINT 115, ITO, NORM 

115 FORMATC ITER. NO. ', 14, '  NORM-', G10.3) 
IF (ABS(DI-X).LT.EPS) GO TO 120 
If' (ITO.EQ.10) RETURN 1 
D1 = X 
X - R(1) 
B(1) - 10.*X*R(2)/(1. + X*X) 
GO TO 20 

120 A(1) - 0RD(1) 
B(1) = R(1) 
D(1) - R(2) 
1-3 
J • 
II 
12 

K 

2h 
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125 DO 130 P •= 12,J 
A(P) = R(I) 
B(P) = R(I+1) 
C(P) - R(I+2) 
D(P) = R(I+3) 
I - 1+4 

130 CONTINUE 
J = J+1 
A(J) - ORD(II) 
11 = 11+1 
B(J) - R(I) 
IF   (I.EQ.Q)   GO TO  UO 
C(J)   - R(I+1) 
D(J)   - R(I+2) 
I =  1+3 
J - J+K-1 
12 - J+2-K 
GO TO   125 

140 RETURN 
150 RETURN 1 

END 
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SUBROIITINF BANnKT(M,]DIM,INT,A,N,M1 .M3,*) 
nmFNSION M(TniM,M1) ,INT(IDIM) ,A(1DIM,M.3) 

C 
C M AN NXM1 MATRIX FOR STORING LOWER TRIANCIHAR 
C MATRIX OF LU DECOMPOSITION OF A 
C INT—AN NX1 VECTOR FOR RECORDING ROW INTERCHAVCFS 
C DITRING DECOMPOSITION 
C A AN NX(M1-W2+1) MATRIX WHOSE COLUMNS ARE THE DIAGONALS 
C OF C, THE BAND MATRIX BEING DECOMPOSED 
C A(*,1) - A(*,M1) ARE SUBDIAGONALS OF C 
C A(*,M1+1)        IS DIAGONAL OF C 
C A(*,M1+2) - A(*,M1-»M2+1) ARE SUPEHDIAGONALS OF C 
C N NUMBER OF ROWS IN A 
C Ml NUMBER OF SUBDIAGONALS IN C 
C M3 TOTAL NUMBER OF DIAGONALS IN C , I.E. WIDTH OF BAND 
C M3 - Ml (// SIIBDIAGS) + M2 (/' SUPERDIAGS) +1 
C 
C BANDET AND BANDSL ARE TWO SUBROUTINES WHICH SOLVE C*X » B 
C WHEN C  IS AN UNSYMMETRIC BAND MATRIX ( THEY WILL WORK WITH 
C SYMMETRIC BAND MATRICES BUT TAKE NO ADVANTAGE OF THEIR 
C STRUCTURE). 
C 
C C HAS Ml  SUBDIAGONALS AND M2  SMPERDIAGONALS. 
C THE MATRIX C  IS TRANSFORMED TO A BY MAKING EACH DIAGONAL OF 
C C A COLUMN OF A.     THUS A IS NX(M1-W12+1) WHEN C IS NXN. 
C A TYPICAL A  IS PICTURED BELOW.     C HERE IS  4X4, WITH 
r 2 SUBDIAGONALS AND   1  SUPERDIAGONAL 
C 
CO 0 C(1,1) C(1,2) 
r 0 C(2.1) C(2,2) C(2,3) 
C    C(3,1) C(3,2) C(3,3) C(3,4) 
C    C(4,2) C(A,3) 0(4,4) 0 
c 
C THIS TRANSFORMATION IS THE FOLLOWING, ASSUMING THAT C(I,J) 
C TS A BAND ELEMENT IN C: 
C C(T,J) —> A(I,M1 + 1 + (J-I)) 
r ALL OTHER ELEMENTS OF A ARE 0 
C 
C BANDET FINDS THE LU DECOMPOSITION OF A, STORING 
C THE LOWER TRIANGULAR MATRIX IN M AND NXM1 MATRIX, 
C AND OVERWRITING THE UPPER TRIANGULAR MATRIX INTO A. 
C BANDSL USES THIS DECOMPOSITION TO SOLVE A*X - B WHERE 
C THE RIGHTHAND SIDE IS INPUT IN THE VECTOR B, AND X IS 
C OUTPUT IN THE VECTOR B. 
C 
C THESE ROUTINES WERE TRANSLATED FROM THOSE PRESENTED BY 
C .1. WILKINSON IN NUMERISCHE MATHEMATIK VOL 9, P279 
C TRANSLATOR: BARBARA RYDER 
C 
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25 

50 

60 
40 
45 

72 
79 

82 

80 
81 

73 
77 

90 
78 
83 

110 
100 
70 

75 

RFAL M 
L-M1 
DO 40 1-1,Ml 

K2-M1+2-1 
DO 50 J-K2,M3 
«(I,J-L)-A(I,J) 
L-L-1 
K2-M3-L 
DO 60 J-K2,M3 
A(I,J)-0.0 

CONTINUE 
L-M1 
DO 70 K-1,N 
X-A(K,1) 
I-K 
K2-K+1 
IF (L.LT.N) L-L+1 
IF (L.LT.K2) GO  TO 81 

DO 80 J-K2 ,L 
IF (ABS(A(J,1))-ABS(X)) 80,80,82 
X-A(J,1) 
I-J 
CONTINUE 

INT(K)-I 
IF (X) 73,75,73 
IF (I-K) 77,78,77 

DO 90 J-1,M3 
X-A(K,J) 
A(K,J)-A(I,J) 
A(I,J)-X 
IF (L.LT.K2) GO TO 70 
DO 100 J-K2 ,L 
M(K,J-K)-A(J,1)/A(K,1) 
X-M(K,J-K) 
DO 110 JJ-2,M3 
A(J,JJ-1)-A(J,JJ)-A(K,JJ)*X 
A(J,M3)-0.0 

CONTINUE 
RETURN 
RETURN 1 
END 
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c 
c 
c 
c 
c 

11 

12 

14 
15 

20 
10 

32 
40 
33 

31 
30 

SUBROUTINE BANDSL (M,IDIM,INT,B,A,N,M1 ,M3) 
DIMENSION INT(IDIM) ,A(IDIM,M3) ,M(IDIM,M1) ,B(IDIM) 

ALL PARAMETERS SAME AS IN BANDET EXCEPT FOR: 
B RIGHTHAND SIDE OF LINEAR SYSTFM C*X - B 

SOLUTION IS RETURNED IN B 

REAL M 
INTEGER W 
L-M1 
DO 10 K-1,N 
I-INT(K) 
IF (I-K) 11,12,11 
X-B(K) 
B(K)-B(I) 
B(I)-X 
K2-K+1 
IF (L.LT.N) L-Lfl 
IF (L.LT.K2)  r.O TO 10 

DO 20 I-K2,L 
X-M(K,T-K) 
B(I)-B(I)-X*B(K) 

CONTINUE 
L-1 
DO 30 II-1,M 
I-N+1-II 
X-B(I) 
W-I-1 
IF (L-1) 32,33,32 

DO 40 K=2,L 
X-X-A(I,K)*B(K+W) 

B(I)-X/A(I,1) 
IF (L-M3) 31,30,30 
L-L+1 
CONTINUE 
RETURN 
END 
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3.k       Mehlum's method 

Even Mehlum (1969),  in his Ph.D.  dissertation, presented an algorithm 

for computing an approximation to nonlinear interpolating splines which 

he has implemented in a computer program called KURGIA (from Norwegian 

"KURveGIAtting"  -- curve fitting).    KURGIA is the basic subroutine in the 

ship fairing program included in the AUTOKON software which has been dev- 

eloped at the Central Institute for Industrial Research in Oslo, Norway. 

The AUTOKON computer software is used for numerical control of drawing 

machines and flame cutters in ship-building.    The ship fairing program 

has been in use since 1965 and by 1969 had been used for fairing about 

150 hulls. 

Mehlum starts with a long derivation of the equation 

2 

(-f-H    = P sin (9 - to) + V (5.10) 

which is yet another form of Kirchhoff's kinetic analogue (5»^)-    He also 

proves the following: 

Theorem (5'5):    Between neighboring knots of a nonlinear spline, there is 

always a direction along which the curvature varies linearly. 

Proof;    This follows from the fact that curvature is proportional 

to the bending moment which can be expressed as a linear function 

of   x   and   y .     (See Equation (2.6)). 

Mehlum makes the assumption that    ") = 0 ,  so that the direction 

along which the curvature varies linearly coincides with the x-axis.    The 

curvature is then represented as a piecewise-linear continuous function 

which changes slope only at the knots.    Mehlum further simplifies the 

problem by representing the linear curvature between each knot by a series 

of steps giving a piecewise constant function (noncontinuous, of course) 
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lor iho curvature.  In other words, he approximates ^ho solution to a 

aoni«»what (iili'eront problom tnan (*'.lü) by a scries ol' arcs oi'  circles 

wliicti 1'orm a cont/inuous JlinctJon with u continuous first derivative, but 

kith d.l:;continuous second dei-ivatives. Combining; this representation 

with ('■'.10) and integrating yields two constants of integration to be 

determined within each panel lor a given set of curvatures specified at 

each knot. His algorithm thus breaks into an inner and an outer iteration, 

The outer iteration first guesses a set of knot curvatures and then tries 

to improve them based upon how close the resulting curves fit the data 

and specified enn slopes. (He is not trying to produce natural 

splines.) The inner iteration then uses the current values for the knot 

curvatures and determines the constants of integration for each panel 

through some simple recurrence formulas so that the function interpolates 

the end knots. The output of Mehluni's subroutine is in the form of center 

coordinates and radii for the circles thus obtained. 

Mehlum claims that many numerical control machines can use output of 

this form directly. 
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k .    The Discrete Natural Cubic Interpolating Spline 

The data points    X.   ,  Y.   = Y(X.)   , i = 1 ,   ...   , n (where 

X, < ... < X ) , may be interpolated as follows:    Let 

H.   — X.   n   -X.   j  i:=l)  ...   .  n-1  . 
i        i+1        i 

Assume that each ol the H.  is an integral multiple of the mesh size psm- 

rneter h . The interval [X, - h . X + h] is divided into a partition L   1 n 

x0 , x1 ,  ...  , xm , xra+1 ,    where 

x.  = X,  + (i-l)h ,i=0,..,,m+l, and 

m = (Xn - X1)/h + 1 . 

Denote by X the set ol abscissa data X. , i = 1 , ... , n , and 

let 

Li = 0 , 

i-1 

.-I II. , i = 2 , ... , n 

J=l 

Tli' discrete natural cubic jpline interpolating the points (X. , Y.) > 

i = 1 , ... , n ir defined to be tne set of points (x. > y.) > 

i= 0 , ... , m + 1 , which minimize the value of S where 

V» (h+i -2yi + yi-iV u 

k I—?—)h 

5i 
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subject to the constraints of interpolation, 

yi = Y    ,    if   i = L./h + 1 . 

Let fi    denote the central difference operator. The mesh ordinates 

y. , i - 2 , ... , m-1 , are computed by solving the linear system of 

equations 

and 

Vi = 0 if x.^X and 0 < i < m , ik.l) 

6\ - b\  = 0 ' 

which arise by setting ds/dy. = 0 , i=0,2,... ,m+l (excluding every 

i = L./h , for j=l,...,n), subject to the conditions 

y. = Y. if i = L./h , i = l,...,m . 

The values of y» and y .. are not explicitly computed, but are 
u      m+i 

introduced into the formulation to accommodate the conditions on the 

second differences rt the end nodes and the first and last of equations 

C+.l). Notice the similarity between this formulation and that of the 

continuous natural cubic spline. 

A useful representation of the above linear system is given by 

Ay = b , 

where ^ "^ ^i ' •" > y ) ' 'the ma'trix A has the structure 
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10    0 

..' ■, -k 1 

1-1*    6-4    1 

1-4    6-4    1 

1 

1-4    6-4    1 

0    0    10    0 

1-4    6-4    l 

1-4    6-4    1 

0    0    10    0 

1-4    6-4    1 

1-4    6-4    1 

1-4    5-2 

0    0    1 

and    b -   (Y1   ,   0   ,   ...   ,   0   ,   ':2   ,   0 ,   0   ,  Y     .   ...   0   ,   Y   )   .    Tht 
5 IT 

row.; of    A    with on*-ü on the main diagonal corr'. opond to thr  aonzoro 

clement^  in the vector    b 

• quatlons 

and 

The second rov; of A combines the two 

6^2 = 0 , 

5^ = 0 

'J5 
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The (m-l)th row of   A   is formed similarly. 

The following analysis provides a way of solving   Ay = b   by solving 

a symmetric band system of smaller order than   A .    A bound on the con- 

dition number of this symmetric matrix is determined and found to be 

independent of the order of the matrix (total number of mesh points and 

knots) but highly dependent upon the number of mesh points between knots. 

A symmetric matrix closely related to the matrix   A    can be deter- 

mined as follows.    Let the matrix   B   have the same structure as   A 

except that the columns of   B   having ones on the main diagonal have 

all of the other components set to zero.    Thus,  the vector   y   can be 

computed by solving the system 

By = b' 

where the vector   b    is an appropriate modification of the vector   b . 

Now since   B    is a symmetric matrix, its condition number is the maximum 

ratio of the magnitudes of its eigenvalues.    By expanding the determinant 

of   B - XI   along any row or column of   B   having a one on the main 

diagonal,  it is obvious that    X  = 1    is a multiple eigenvalue of   B . 

These eigenvalues may be eliminated from   B   by dropping the rows and 

columns with    1   on the main diagonal,  leaving the matrix 

5^ 
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B = 

'j  -k    1 

4 6 4 1 

14 6 -U 1 

14 6 -k   1 

4 
1 

6 4 
4 6 
1 4 

1 

4 
6 1 
16 4 
4 6 
1 4 

1 

4 1 

6 4 1 

14 6 -k   1 

14 6 4 
1 -k   5 

where each eigenvalue of B* is an eigenvalue of B . In practice, the 

unknown components of the vector y are computed by solving a linear 

system having B* as the coefficient matrix. Now 

B* = C + D , where 

C = 

S 

m 
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D = 

1 1 
1 1 

1 1 
1 1 

and each   C.    is a square matrix of order   H./h-l   of the form 

C   = 
i 

5   -h     l 

.k     6   -k     l 

1-4     6   -U     1 

• • 

1-1+     6-4     l 

1-4     6-4 

1   -4     5 

The matrix D has eigenvalues 0 and 2 . If the eigenvalues 

X.(B*-) and \.(C),i = l,... ,m-n, are arranged in a non- 

36 

immilM——MM—M«M^^—« «■MaaalMMMMHMM 



irxL-reasing order, then by a corollary of the Courant-Klsher theorem 

(see Wilkinson (1965), p. 101), 

V8*) > Xi(c)  >    i = 1 >   •••   , m - n . 

The eigenvalues of C are simply those of the C. , i = 1 , ... , m 

2 
Now the C. can be written as D.  , where 

-2  1 

1-2  1 

1-2  1 

1-2  1 

1 -2 

The characteristic polynomials of the upper-left hand minors of D. 

satisfy the same three-term recurrence relation as the Chebyshev poly- 

nomials, namely 

T^U) = 0 , 

T0(X) = 1 , 

Tk+1(X) = (-2-\)Tk(X) - T^X) , k = 0,1,... . 

It follows that 

X^D.) = -2(l.cosill. ) , j = 1 , ... , v , 

where 

v = H^h-1 . Thus, 

min yc.) = Ml - cos ^ f  , 

and therefore, 
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hn v2 
min |X,(B)| > min   Ml - cos ~- ) 

.1       J i Hi 

By Gerschgorin's theorem, 

max |X (B)|  < l6  . 

This proves 

Theorem ^.1: cond (B) < 
min (1 - cos =- ) 
i        Hi 

16 

min ( rr- ) 
i    i 

< 2max [h 

Thus, for many problems, the linear system resulting from the finite 

difference formulation is reasonably well-conditioned. More importantly, 

the bound on the condition number of B is independent of n , the 

number of data points. 

The purpose of the following discussion is to analyze the difference 

between y and the restriction of the continuous natural cubic spline 

function interpolating the points (X. , Y.), i - 1 , ... , n , to 

the abscissae x. , i = ],..., m . We call this difference the dis- 

cretization error of y and will now bound a certain norm of it. 

Consider the neighborhood of X. : 

.       .      -2    -1 

0 

• • 

4-h-» 
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For convenience, the mesh nodes are now numbered   ...,-2,-1,0,1, 

2  ,  ...   ,    such that   x- = X.   . 
k 

Since   6 y. = 0   for    i = ...  ,  -2 , -1 ,    it follows that the 

points    y.  ,    for   i = ...  ,  -2 ,  -1 , 0 , 1   lie on a cubic polynomial. 

Similarly, the points   y.   ,    for   i = -1,0, 1,2,  ...   , lie on a 

(generally different) cubic polynomial.    These two cubics coincide at 

the points    -1,0, and   1 .    Let 

^i = ai + M + cil? + di^  '    where    ? = x - ^ » 

denote such a cubic for   x« [X.  - h , X.+1 + h] .    The coefficients    a.  , 

b.   , c.    and   d.  ,    i = l,...,n-l,  can actually be computed by 

observing the following:    ty," is linear.    Let   ^(x) = ^(x)    if 

xe[X.,X.+1]  ,    i=l,...,n-l.    Thus, 

V(X)   = Yi" +    XH.Xl     (Yi+1 " <)   ' ^'^ 

where H. was previously defined as H. = X. .. - X. , i=l , ... , n-1 . 

Note that V"(x) is continuous at each knot X. since 

8% 

for each cubic (V. •,    and   V.)  in the interval [X.   - h , X.  + h]   . ^i-l i ii 

Integrating (U.2) gives p 

^(x) = V + Y.-U - x.) + (Y;+1 - Y'!)   (X "H^     ,       (U.3) 

where      Y'    is a constant of integration, and 

(x-X.)2 

^.(x)  = Yi + ^(x - X.) + Y^  2^  {k.k) 

Y"       - Y 

i 
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Here     Y'    denotes   Vi(Xi )  •    since   y'    is not necessarily continuous 

at the knots,    "Y'   will be used to denote   ^'(X ")  .    Evaluating (h.k) 

at   X.+1   gives 

Y        - Y 
+Y/    =    i+1       i 

i H, 

Hi 
{"    —=- 

i    5 

H. 
Y" i+1 (^.5) 

Replacing    i    by    i - 1   in (4.5) and evaluating it at   X     gives 

H 
r    = "^Y'        + (Y'        + Y'M — ■i        1 i-1      K1 i-1     1  y     2 

i-1 (4.6) 

Now, for   y    , 

yi ' y-l 2 
2h = bi + dih 

and for   y        , 

2h       2h k    [ai.l + bi.l (Hi.l + h) + ci.l (Hi-1 + h)2 + di.l («i-l + h)' 

1 " bi.l («i-l - h)   " Ci(Hi.l " h)2  " di(Hi.l " h)3] 

= b.   T   + 2c.   nH.   n  + 3d.   T  H?  n   + d.   n   h
c 

i-l i-l i-l i-l    i-l i-l 

= "Y. ' + d.   ,  h 
i i-l 

40 
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Thus, 

'h'• \'* ^h - hJ 
Combining {k.j)  with (4.5) and {h.6)  gives 

(4.7) 

^'i-l Hi-1 + ^'i (Hi-1 + ^  + ^i+l Hi + 6h (di - di-l) ^'^ 

= 6(Äi+1 - Ai) , i = 2 , ... , n - 1 , 

where 

Ai = (Yi " Yi.l)/Hi-1 ' i=1 » • • • > n . 

The conditions 6 y. = 0 at the ends require that Y n = Y n 
= 0 

Equations {h.k)  and (4.5) give 

a. 
i 

b. = 

Cj = 

d. = 

Yi' 
(^.9) 

Yi+1 ■ Yi Y' 
1    3 

Hl 
-Yl+1    6      • 

(4.10) 
Hi 

Y"J2  ,    and (4.11) 

Y i+l " ^ i 
» 1=1, ...   , n - 1 . (4.12) 

6H. 

Substituting (4.12) into (4.8) gives a linear system of equations in the 

unknowns   Y" .   , i = 2 ,  ...  , n - 1 ,    the solution of which can be used 

to compute the coefficients   ai » W  > ci  > an<i   d^,i = l,,..   ,n-l, 

using (4.9) - (4.12) . 
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A practical method for computing the coefficients of the continuous 

cubic spline interpolating (X. , Y.) , i = 0 , ... , n , can be formulated 

by following the above steps and replacing {k.S)  with the continuity- 

conditions 

'Yi = +Yi  '    i = ! » ••• ' n " 1 • 

This leads to a system of equations for Y'' which is identical to (k.Q) 

without the 6h (d. - d. ,) tet-m. Thus we have the same system of equations 

// 2 
for Y. in the discrete case as in the continuous case, except for an 0(h) 

perturbation of the coefficient matrix. 

Let s" denote the vector of second derivatives (Y") for the 

continuous case and let y" denote the vector of second derivatives for 

the discrete case. Also, let 

a = y s" , 

A = 

2(H1+H2)  H2 

HU 2(H + 

H « n-2 

H .    2(H 0+H J n-2    v n-2 n-l' 

and 

k2 
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6A = hc ^     "{^V   4 

N 

n-2 

EL        («n-a + «n-l j 

Let   ß    = 6(Ai+1 - Aj^)  .    Then from (1^.8), 

(A + 6A)   (s" + a) = B . 

So, 

a = [(A + 6A)"1 - A"1] 8  . 

Setting B = A + 6A in the identity 

B"1 - A"1 = A'1(A - B) B"1 , 

and substituting gives 

a =  -A':LßA(A + ÖA)'1 B = -A"16A(s'/+ a) 

Taking spectral norms gives 

^3 
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or 

.-1, ||a||< ||A 11 llflAJI ||s" +»11 , 

((»II                   ,  x   l(«A|| 
    <    cond(A)   
(!/(( II A(| 

Now, by Gershgorin's theorem, 

and 

Thus, 

min (jq + K. j)  < X(A) < 3 max (^ + Hi+1) 

\(6A) < max 2h2 (—• + ^—1 < max ~ . 
i      \ l     i+l /     i   l 

cond(A) < 5 max (H. + Ki+1)/min  (^ + Hi+1) , and 
i i 

((<*(( hh' 
.,  //,, —  (min H.) rain(H. + H. ,, ) 
l|y (I      i  1  i ^   :L+1 

Since  the uniform norm of a vector is at most equal to the spectral norm, 

l^jl ^ H . min(H. +H.i1) » J = 1 , ... , n - 1 . 0    mm . x i   i+l' 
i 

The coefficients    a.   . b.   . c.   , and    d.    are linear functions of the 

Y".  , hence the difference between the continuous and discrete splines 
p 

is    0(h )   .    More precisely, denoting the continuous spline by    s(x)  , 

equations (k.9) -  (h .12) yield 

Theorem h.2\ 

16    cwW2 

x ■nmin    .   N 1        i+l' 

kk 
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Theorem k.2  tells us that the discrete natural cubic interpolating 

spline coincides with the continuous natural cubic spline in the limit 

as the mesh size h is decreased to zero. As the mesh size is decreased, 

the error in approximating the continuous spline decreases at least as 

fast as the square of the mesh size. However, Theorem h.l  tells us that 

the condition number of the coefficient matrix of the linear system may 

k 
increase as fast as h . On a given machine, it should thus be possible 

to calculate a reasonable discrete spline approximation; however, problems 

with fine meshs could be difficult, if not impossible, to solve. 

The work required to compute discrete cubic splines is consider- 

ably more than that required to compute continuous cubic splines. The 

primary reason for studying them here is to gain insight into the algo- 

rithm for computing discrete approximations to nonlinear splines, dis- 

cussed in the following section. In view of the difficulty in analyzing 

linear discrete splines, it comes as no surprise that the nonlinear 

case has not been analyzed. The proofs of this section rely upon special 

properties of both the discrete and continuous cubic splines. Hence, 

few, if any, of the arguments would carry over to the nonlinear case. 

Discrete cubic splines and generalized discrete splines have been 

characterized by Mangasarian and Schumaker (1971)• They prove existence 

and uniqueness. Some weak convergence results for discrete splines have 

been published by Daniel (1971). Theorem h .2  appears to be the only 

rate-of-convergence result for discrete splines. 

^5 
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5.   A Finite-Difference Method for Computing Open Nonlinear 
Spline Functions """"""""'^ ~ ^—— —— 

In this section, an iterative method is presented for computing 

a discrete approximation to the nonlinear spline interpolating the data 

points (X.jY.) , 1=1,...,n . 

As in the previous section, we assume that X < X2 < ... < X , 

and the interval [X, - h , X + h] is partitioned into a uniform mesh 

x0 , x1 , ... , xra+1 , «here 

x, = X + (i-l)h , 1=0,1,...,m+l , 

and 

m = (Xn - X^/h + 1 , 

for some mesh size parameter h . For simplicity, assume that the 

X^^ (1=1,...,n) are equally spaced with k mesh intervals between con- 

secutive data points, i.e., 

k = (X.+1 - Xi)/h , i=l,...,n.l . 

We compute a discrete approximation y = [y, ,...,y ] to the func- 

tion y which minimizes the functional 

X 
r n 

E(y) = f  — 
J      [i 

'M2 IT) 
[i + (y'n 7^37^ dx  . (5.1) 

The functional (5.1)  is approximated by substituting a summation for 

the integral, 

h"262y. « /(x^   , 

and 

(yi+i" yi-i)/2hÄi y'K) • 
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This gives the function 

h  , (5.2) 

to be minimized subject to the interpolation constraints 

yi = Yj  , if   xi = Xj  ,  i=l,...,m . 

Again, the fictitious ordinates    y-    and   y +1    are introduced to accom- 

modate the first and last terms of (5.2). 

A necessary condition for   E. (y)    to achieve a minimum is 

^- E^y) = 0 ,    for all    i / 1 (mod   k)   . 

This yields the nonlinear system of equations 

62y1 = 0 , 

62ym - 0 , 

h-l^i - ^i-l + H-^ - 2?i(yi+l " ^i + ^i-l) 

+ Ji+i
(yi+2 ■ 2yi+i 

+ yi) 

"^i-i^i ■yi-2) +xi+i
(yi+2 -yj =0 > 

(5.3) 

where 

^ = (i * (y1+1 - y^/wfr5'* , 

(for    i = 2,...,m-l , except    i = 1 (mod    k))   . 

The System (5.5) can be solved in many vays.    A simple,  though 

probably not the fastest way is a Picard-type iteration described as 

1^7 
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l'ollows.    We will compute a sequence of iterates    y        , y      ,-•■   • 

Let 

e[J) = ^(y^)   , and 

For the first iteration set 

^0) = 1 , i =2,...,m-l , 

I: ' = 0 , i = 1,... ,in . 

At the j-th iteration, the five-band linear system 

62y1 = 0 

62y = 0 
ra 

(J-l)(y(j) . 2y(j) + JDs   _  2?(j-
1)(y(J) . 2y(j) + x^h 

i-1 K¥i yi-l Vi^'     ^i       ^i+l  ^yi  + •'i-l^ I 

+ ?(M)(y(j) . 2y(J) +y(J)) 
H+l    vyi+2   yi+l  yi ; 

. X(M)(y(j) . y(J)) + ^-VfyW   .   y(j)) = 0 , xi   kyi   ^^i^-1  xi+l ^yi-t2  yi ^    ' 

(i =2,...,m-l , except i=l (mod k)) , 

is solved for y^ . Notice that y^ ' is the discrete natural spline 

discussed in Section k. 

This algorithm is implemented in the Fortran subroutine SPLINE 

found at the end of this section. 

A Cholesky method is used for the solution of (5.^). This choice 

is based on computational experience. The coefficient matrix of (5.^) is 

usually positive definite. Cases in which the coefficient matrix is in- 

definite appear to correspond to those in which either no single-valued 

solution exists or the outer iteration becomes unstable due to large 

slopes in the solution. 

 — —i        -- —-J^----- —  ^ —_._ 
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Various experiments have been curried out using both SPLINE and 

MEC given in Section 3.3.    The first of these used the Woodford data 

given in Section 3.3.    For this  case,    n = 7  •    Figure 5-1 shows times 

required to  compute splines of similar accuracy or an IBM 360/67 for 

various values of   k .    These runs used EPS values of    10      .    Figure 

5.1 indicates that both SPLINE and MEC require time proportional to    k  , 

though spline appears to be about an order of magnitude faster for this 

problem.    For values of    k    greater than kO,   MEC failed - though this 

could be partly due to the fact that MEC is programmed in single precision. 

SPLINE worked for values of   k    as large as 140.    Values of  (5-2) are 

given in Table 5.1 for solutions given by MEC, SPLINE and the natural 

continuous cubic spline,  for Woodford's data and various values of    k  . 

The values of    E, (y)    for the discrete cubic spline agreed with those 

for the continuous cubic spljne to three significant digits.     The last 

column of Table 5.1 indicates that the results of SPLINE and MEC con- 

verge uniformly to one another as    k    increases.    The nonlinear spline 

interpolating Woodford's data is shown in Figure 5.2 as plotted by a 

Versatec electrostatic plotter. 

An experiment to determine the dependency of computation time 

upon    n , the number of data points, was constructed as follows.    The 

number of mesh intervals between adjacent data points was kept constant 

at    k = 10  .    The mesh size was    h =  .1    giving    x.  ,   - x.   = kh = 1  , 

i = l,...,n-l  .    The ordinates were chosen as 

Y.   = (i mod 2)/5   ,  i = 1,...,n , 

to insure a solution having relatively small slopes and curvatures. 

The parameters EPS were set to 10  . Measured CPU times are shown 

in Figure 5.3 for both SPLINE and MEC. The two values of n shown for 

^9 
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MEC in Figure ^..} are n = 5 and n = 10 . From these two times, MEC 

does not appear to r quire time proportional to n . For values of n 

greater than 10 , MEC failed to converge. SPLINE, on the other hand, 

required relatively small amounts of time which are proportional to n . 

SPLINE performed well for values of n as large as 100. The only res- 

trictions on n for SPLINE appear to be available core storage and 

computation time. 

50 
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15 

Time 
(sec)       10 

IBM 360/67 

n =7 

1^ 
10 

SPLINE 

1 

20 
^1 
50 

l 

kO 

Figure 5.1.    Timing comparisons of MEC and SPLINE 
for Woodford's data 

Discrete Energy 

k MEC SPLINE Cubic Spline || MEC - SPLINE^ 

10 2.53 2.52 2.69 .020 

20 2.53 2.55 2.69 .011 

30 2.53 2.53 2.70 .0C70 

ItO 2.53 2.53 2.70 .0051 

Table 5.1.    Values of    E (y)  for Woodford's data for 

MEC, SPLINE, and the cubic spline,  and a uniform-norm comparison 

of MEC with SPLINE. 
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10 

8 - 

Time 
(sec)    6 

IBM 360/67 

n 

Figure 5.3. Dependence of SPLINE and MEC 
upon the number of data points n . 
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SUBROUTINE SPLINE (N, ORD, K, H, Y, EPS, *) 
INTEGER N, K 
DOUBLE PRECISION    ORD(N), H, Ye!),  EPS 

THIS SUBROUTINE COMPUTES THE NONLINEAR INTERPOUTING SPLINE WHICH 
PASSES THROUGH THE N DATA POINTS WITH ORDINATES ORD (I), 
(1-1,...,N),  AND EQUIDISTANT ABSCISSAE    X(I),   (1-1,...,N),  SATISFYING 
X(1).LT.X(2).LT LT.X(N), AND X(I+1)-X(I)  - K*H,   (1-1,... ,N-1) . 
THE DISCRETE APPROXIMATION Y(I), (1-1,... , (N-1)*K+1) IS RETURNED 
WITH ORDINATES CORRESPONDING TO THE MESH ABSCISSA X(1)+(I-1)*H, WHERE 
H IS THE SPECIFIED MESH SIZE PARAMETER. K IS THE NUMBER OF MESH 
INTERVALS BETWEEN SUCCESSIVE DATA POINTS. THE INPUT PARAMETER EPS 
IS USED TO DETERMINE WHEN TO STOP THE ITERATIONS. ROUGHLY, IF P 
SIGNIFICANT DIGITS ARE DESIRED IN A PROBLEM WHOSE SOLUTION IS 0(1), 
THEN    EPS     SHOULD BE ABOUT    1.D-P. 

THE ERROR RETURN IS TAKEN IN THE EVENT THAT A RESULTING LINEAR 
SYSTEM IS TOO ILL-CONDITIONED TO SOLVE. 

K    MUST BE AT LEAST 5. 

DOUBLE PRECISION    KZ(IOOO),  C(1000,3),  B(1000), NORM, H2, DIF 
DOUBLE PRECISION    F8H2, LZ(IOOO),  Y1 
DOUBLE PRECISION    DABS 
INTEGER    M, Ml, MM,  K2, N1,   I,  J,  L,   J2 

C 
C 
C 

C 
C 
C 

C 
C 
C 

H2 - H+H 
F8H2 - 5./(8.*H**2) 
M - K*(N-1)+1 
Ml  - M-1 
K2 - K-2 
N1  - N-1 

INITIALIZE    Y 

DO 5  1-1 ,M 
Y(I)   -  0. 

5 CONTINUE 

SET DATA ORDINATES  IN Y 

J - 1 
DO 10 I-1,M,K 

Y(I) - ORD(J) 
J - J+1 

10 CONTINUE 

INITIALIZE KZ TO ONES FOR THE FIRST ITERATION 
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c 
c 
c 

DO 20 1-2,Ml 
KZ(I) - 1. 
LZ(I) - 0. 

20 CONTINUE 

KZ(1),KZ(M),LZ(1), AND LZ(M) ARE SET TO 0. TO SIMPLIFY BOOKKEEPING 

C 
c 
c 

c 
c 
c 
c 

c 
c 
c 

KZ(1) 
KZ(M) 
LZ(1) 
LZ(M) 

0. 
0. 
0. 
0. 

GO DO FIRST ITERATION 

GO TO 50 

BEGINNING OF MAIN LOOP, 
RECOMPUTE NEW KZ AND LZ VECTORS 

30 DO 40 1-2,Ml 
Y1 = 1. + ((Y(I+1)-Y(I-1))/H2)**2 
KZ(I) - Y1**(-2.5) 
LZ(I) - F8H2*(Y(I+1)-2.*Y(I)+Y(I-1))**2*KZ(I)/Y1 

40 CONTINUE 

SET UP COEFFICIENT MATRIX AND RIGHT-HAND SIDE 

50 L - 0 
DO 80 1-1,N1 

L - L + 1 
MM - (I-1)*K 
C(L,1) - 0. 
C(L,2) - KZ(MMfl) + LZ(MMfl) 
C(L,3) - KZ(MMfl) + 4.*KZ(MMf2) + KZ(MM+3) - LZ(MMf1)-LZ(MM+3) 
B(L) - 2.*(KZ(MMf2)+KZ(MM+1))*Y(MMf1) 
L - L+1 
C(L,1) - 0. 
C(L,2) - -2.*(KZ(MM+2) + KZ(MM»-3)) 
C(L,3) - KZ(MMf2) + 4.*KZ(MMf3) + KZ(MMf4) - LZ(MMf2)-LZ(MMf4) 
B(L) « -(KZ(MMf2)+LZ(MM+2))*Y(MMf1) 
L - L+1 
IF (K2.LT.4) GO TO 70 
DO 60 J - 4,K2 

MM - (I-1)*K + J 
C(L,1) - KZ(MM-I) + LZ(MM-I) 
C(L,2) - -2.*(KZ(MM-1) + KZ(MM)) 
C(L,3) - KZ(MM-I) + 4.*KZ(MM) + KZ(MMfl) - LZ(MM-1)-LZ(MMf 1) 
B(L) - 0. 
L - L+1 

60   CONTINUE 
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70   MM - l*K 
C(L,1) - lC^(MM-2) + LZ(MM-:0 
C(L,2) - -2.*(KZ(MM-1) + KZ(MM-2)) 
C(L,3) - KZ(MM-2) + 4.*KZ(MM-1) + KZ(MM) - LZ(MM-2)-LZ(MM) 
B(L) - -(KZ(MM)+LZ(MM)) * Y(MMfl) 
L - L+1 
C(L,1) - KZ(MM-I) + LZ(MM-I) 
C(L,2) - -2.*(KZ(MM-1) + KZ(MM)) 
C(L,3) - KZ(MM-I) + 4.*KZ(MM) + KZ(MM+1) - LZ(MM-1)-LZ(MM+1) 
BCD - 2.*(KZ(MM)+KZ(MM+1))*Y(M>ff1) 

80 CONTINUE 
C 
C SOLVE 5-BAND LINEAR SYSTEM 
C 

CALL CCOMP(L, 3, 1000, C, C, &100) 
CALL COLVE(L, 3, 1000, C, B, B) 

C 
C UPDATE SOLL-'iGN VECTOR Y AND CHECK FOR CONVERGENCE 
C 

L - 1 
NORM - 0. 
DO 90 1-1,N1 

DO 90 J»2,K 
J2 - (I-1)*K+J 
DIP - DABS(Y(J2) - B(L)) 
Y(J2) - B(L) 
IP (DIP.GT.NORM) NORM - DIP 
L - L+1 

90 CONTINUE 
IP (NORM.GT.EPS) GO TO 30 
RETURN 

100 RETURN 1 
END 
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C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE CCOMP(N, M, IDIM, C, L, *) 
INTEGER N, M, IDIM 
DOUBLE PRECISION C(IDIM, M), L(IDIM, M) 

THIS SUBROUTINE FINDS THE CHOLESKY DECOMPOSITION OF THE (2M-1)-BAND 
MATRIX A OF ORDER N WHERE THE MAIN AND M-1 5ÜB DIAGONALS OF A 
ARE STORED IN C AS SHOWN (M-3 IS USED FOR THIS EXAMPLE) 

X 
X 
A(3,1) 
A(4,2) 

X 
A(2,1) 
A(3,2) 
A(4,3) 

A(1,1) 
A(2,2) 
A(3,3) 
A(4,A) 

THE LOWER TRIANGULAR PART OF THE CHOLESKY DECOMPOSITION A - LU, 
WHERE U IS L TRANSPOSE, IS RETURNED IN L.  THE RETURN 1  IS TAKEN 
IN THE EVENT THAT THE MATRIX A IS FOUND TO BE SINGULAR, OR 
NON POSITIVE DEFINITE.  C AND L MAY BE THE SAME ARRAYS, 
IF DESIRED. 

THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60 
PROCEDURE CHOBANDDET BY R.S. MARTIN AND J.H. WILKINSON, FOUND 
IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR 
ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS). 

INTEGER  I, P, R, S, Q 
DOUBLE PRECISION Y 
DOUBLE PRECISION DSQRT 

10 
20 

30 

40 

DO 50 1=1,N 
P - MAX0(1,M-I+1) 
R - I-MfP 
DO 40 J=P,M 

S - J-1 
Q « M-J+P 
Y - C(I,J) 
IF (P.GT.S) GO TO 20 
DO 10 K«=P,S 

Y - Y - L(I,K)*L(R,Q) 
Q « fHI 

CONTINUE 
IF (J.NE.M) GO TO 30 
IF (Y.LE.O.) RETURN 1 
L(I,J) -= 1./DSQRT(Y) 
GO TO 40 
L(I,J) = 
R - R+1 

CONTINUE 

Y*L(R,M) 

50 CONTINUE 
RETURN 
END 
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C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

SUBROUTINE COLVE (N, M, IDIM, L, B, X) 
INTEGER N, M, IDIM 
DOUBLE PRECISION L(IDIM, M), B(1), X(1) 

THIS SUBROUTINE SOLVES THE (2M-1)-BAND LINEAR SYSTEM OF 
EQUATIONS 

AX - B 

USING THE LOWER PART OF THE CHOLESKY FACTORIZATION L OF A, 
WHICH HAS BEEN COMPUTED BY CCOMP. 
B AND X MAY BE THE SAME ARRAYS, IF DESIRED. 

THIS SUBROUTINE IS A PARTIAL TRANSLATION OF THE ALGOL 60 
PROCEDURE CHOBANDSOL BY R.S. MARTIN AND J.H. WILKINSON, FOUND 
IN THE HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II (LINEAR 
ALGEBRA), 1971, J.H. WILKINSON AND C. REINSCH (EDITORS). 

INTEGER S, J, P, Q, NP1, Kl, II 
DOUBLE PRECISION Y 

SOLUTION OF LY - B 

DO 20 1-1,N 
P - MIN0(I-1,M-1) 

Q - I 
Y - B(I) 
IF (P.LT.1) GO TO 15 
DO 10 K1-1,P 

K - M-K1 

Q - Q-1 
Y - Y - L(I,K)*X(Q) 

10   CONTINUE 
15   X(I) - Y*L(I,M) 
20 CONTINUE 

SOLUTION OF UX - Y 

NP1 - N+1 
DO 40 11-1,N 

I - NP1-I1 
P - MIN0(I1-1,M-1) 
Y - X(I) 

Q - I 
IF (P.LT.1) GO TO 35 
DO 30 K1-1,P 

K - M-K1 
Q - Qfl 
Y - Y - L(Q,K)*X(Q) 

30   CONTINUE 
35   X(I) - Y*L(I,M) 
40 CONTINUE 

RETURN 
END 
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