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MATHEMATICS IN MILITARY OPERATIONAL RESEARCH 

by 

Brian W. Conolly 

ABSTRACT 

Mathematical models and their analysis are the basis of many 
operational research investigations, whether for civilian or 
military applications.  They provide a rationale which, when 
validated, yields insight into the structure of the processes 
at work, and the material for decision making«  It has been 
found that the peculiar mathematical analyses that arise in 
military situations are less well documented than those that 
arise in civilian situations.  This volume is, accordingly, the 
first contribution to a reading programme that beginners in 
military operational research might be interested to follow, and 
to which the writer feels it is a duty of practitioners to 
contribute. 

In the first part a stochastic model is formulated to represent 
a brief campaign in which major naval units sojourn in a given 
area for the fulfilment of a certain mission, and are subjected 
to submarine attack by the enemy.  The analysis is confined to 
the elements likely to be basic to a full-scale study of such an 
operation for military decision making.  The point is also made 
that, while the problem seems complicated, it is nevertheless 
amenable to an analysis that has the capability of revealing the 
structural dependence of the quantities of interest on the para- 
meters of the problem more clearly than would be the case if 
computer simulation were the only tool available. 

The second part is also of stochastic nature and describes the use 
of probabilistic methods in an aspect of mine warfare.  The model 
is capable of providing material for decision-making by both the 
offence and the defence.  The problem is characteristic of harbour 
defence and is concerned with shallow waters. 

In the third part the problems considered are geometrical in nature. 
They are divided into three categories:  (a)  Geometrical 
Probability:  The statistics of distances between points on a line 
and in an area, with some consideration of their maxima and minima 
in the linear case.  Applications to patrols and mining situations 
are mentioned;  (b)  Closure:  Collision course;  probability of 
hitting a target of finite length with a salvo of straight running 
torpedoes;  some weapon homing systems — pursuit, pursuit with lead, 
line of sight guidance;  probability of closing and detecting a sub- 
marine located at a remote datum;  (c)  Location:  Principally the 
mathematics of some bearings-only methods. 

Following the general introduction to the series there is a list 
identifying unclassified items from the SACLANTCEN Bibliography, 
and elsewhere, recommended for further reading. 



MATHEMATICS IN MILITARY OPERATIONAL RESEARCH 

GENERAL INTRODUCTION TO SERIES (PARTS 1-3) 

by 

Brian W0 Conolly 

Increasing numbers of younger practitioners of military Operational 
Research will have followed an Operational Research course at the 
University level, but these courses, consisting usually of lectures 
in a number of disciplines commonly held to be recurrent themes in 
0,R. practice, with the addition of case studies, will rarely have 
had any military flavour.  This raises the question of the desira- 
bility of offering preparatory courses in military Operational 
Research,  Many workers of an older generation will assert that they 
came to the subject by accident and that certainly they had no 
preparation.  They had to learn on the job.  Anyway, any theory that 
occupies more space than the back of an envelope should be regarded 
with suspicion.  There is no room for long-haired young mathematicians, 
thinking they know every thing, tossing off long-winded and incom- 
prehensible theories.  Half the time a fellow can not understand even 
the first line.  And what about the man in the ship/tank/aircraft? 
What is he going to think when he finds out that defence budgets are 
being eroded by this sort of thing?  What is needed is bigger bangs... 
Many of us have heard views of this kind expressed.  Fortunately they 
are becoming increasingly rare and by and large they can be ignored. 
So, accepting that some preparation for the practice of Operational 
Research is desirable, what remains to consider seriously is whether 
additional orientation towards military Operational Research is 
advantageous. 

The answer seems likely to be affirmative.  Such preparation is given 
at least in the U.S., U.K., and in France.  And since, in the cases 
known personally to the writer, public money is involved, little room 
for doubt is left as to the existence of a demand and the evidence of 
its satisfaction.  A similar inference may be drawn from activity on 
the international plane.  In NATO the Office of the Assistant Secre- 
tary General for Scientific Affairs has for more than ten years 
conducted a vigorous and distinguished educational programme with 
some military content through its Advisory Panel on Operational 
Research, and through current organizational changes there appears to 
be a broadening of activity with identification and isolation for 
special treatment of the military aspect.  It seems then that it is 
the plain duty of military O.R. practitioners within NATO to support 
the Scientific Affairs Division whereever and whenever they can. 
An obligation thus devolves upon suitably qualified scientists within 
the two NATO laboratories where military O.R, is practised. 



Fulfilment of the obligation can take many forms.  Just doing the 
job well is part of it, but particularly taking care to write clear 
and well documented reports that can be widely diffused and used by 
students for collateral reading.  In this connection special attention 
must be given to careful and lucid explanation of novel methods, or 
novel applications of well known methods.  To do this adequately may 
mean writing two reports on a single project, one destined for the 
customer and the other for the student:  in addition, opportunities 
should always be seized to give suitable work the wider publicity 
afforded by the open literature. 

It is in the spirit of offering some student-oriented material that 
the present series, "Mathematics in Military Operational Research", 
has been initiated.  The contributions have the flavour of "leaves 
from the analyst's notebook", and were intended to be a reading- 
companion to a series of lectures.  They are frankly didactic and 
not specially original either in content or presentation.  Their 
distinction is solely in having genuinely been used personally by the 
author in the course of military Operational Research work.  It is 
to be hoped that colleagues at SACLANTCEN may volunteer contributions 
to the series, which could ultimately form a valuable addition to a 
rather scanty military O.R. literature. 

In conclusion it seems worth while to use this opportunity to 
identify SACLANTCEN unclassified Reports and Memos considered to be of 
use for collateral reading.  These follow with comments, which like 
the views expressed here, are the author's own. 

SUGGESTED SACLANTCEN DOCUMENTS 

Technical Reports 

T.R. 60  Conolly, B.W. (1966) 
An Unrestricted Linear Random Walk with Negative 
Exponentially Distributed Step Lengths. 
Comment:  An account is given of the theory of a doubly 
infinite linear random walk in which step lengths have a 
negative exponential distribution and the direction of 
each step is not necessarily equiprobable,  The problem 
of first passage time is also studied.  The theory was 
developed in connection with a study of random linear 
anti-submarine patrols. 
Also published in Annales de 1'Institut Henri Poincar£, 
2, 1965, 173-184. 

T.R. 117 Bresson, M. (1968) 
The ASW Role in the Logistic Support of Ground Forces. 
Comment:  On the basis of the observed slowing-down of 
land offensive, a model is developed to explain the 
logistical constraints that impose an upper limit on the 
tactical or strategic capabilities of ground forces. 
The model is then generalized to cover not only the space/ 
time constraints within the land theatre itself, but also 



those constraints that are imposed by the availability 
of supplies.  This leads to the development of a global 
model showing the interactions between land and naval 
battles for conditions in which the main source of supply 
of large land units depends on the safe arrival of 
transport ships.  The role of ASW in the logistic support 
of ground forces is thereby demonstrated. 

T.R. 144  Conolly, B.W. (1969) 
A probabilistic Theory of Antisubmarine Warfare Models 
Developed in Terms of Congestion Theory. 
Comment;  This report, which is methodological, develops 
a probabilistic theory that has direct application to both 
antisubmarine warfare and congestion models.  The theory 
is expressed in congestion terminology because of the 
presumed wider knowledge and appeal of the field.  This 
results in a simplified presentation of the general theory 
of infinite service facility systems with specific 
application to M/Y/«  and X/M/»,  some of which have 
already been studied by Takacs and Khintchine.  A new 
result is given for the output of the latter process.  The 
analogy between certain infinite service facility systems 
and a single-server system with queue length dependent 
service is exploited to provide results for the latter 
process.  A further new result for the busy period of such 
a process is quoted.  The antisubmarine applications are to 
the formally similar models of the number of units present 
in a geographical area, and to the attrition of an  enemy 
submarine force subjected to a steady threat from an anti- 
submarine barrier that geographical or other constraints 
compel it to transit. 

T.R. 178  Diess, H.G. (1970) 
A Game Theory Solution to an Aiming Problem. 
Comment:  This paper discusses the game theory solution to 
the following aiming problem: 
An attacker receives information about the location of a 
target and launches a weapon.  It is assumed that, at the 
moment it is supposed to be hit, the target may be any- 
where within an annulus with radii R^, R£, which depend 
on the weapon delivery time and the target evasion 
manoeuvres.  Using a polar coordinate system R, 8, the 
assumption is made that the target is uniformly distributed 
in 9 f   but chooses R between the limits Ri and R2 in order 
to maximize its chance of escape.  The attacker will then 
distribute the weapon aimpoihts uniformly in the angle 8 
(over its range 0, 2 #').  For a single weapon  6=0  is 
chosen arbitrarily and the problem is reduced to the choice 
of the radial coordinate X for the aimpoint.  The pay-off 
for this two-person game, where both players have continuous 
strategies, is expressed by the probability that the 
distance of the target from the impact point is less than 
the effective damage radius, e, of the weapon.  Pure and 
mixed strategy solutions are discussed and conditions are 
derived from the normalized parameters  2e(R2-Ri)  and 
R2(R2""^l)  that allow one to determine the type of 
strategies for a given set of values of the parameters 
e, R^ and R£. 



T.R. 207   Fabry, C. (1972) 
Entrance Time Distribution and Limiting Transition 
Probabilities for Continuous-Time Markov Chains, with 
Applications to Stochastic Combat Models. 
Comment;  The methods presented in this report make 
possible, in stochastic combat models, the determination 
of victory probabilities, distribution of the number of 
survivors and moments of the distribution of the combat 
duration.  More generally, when applied to continuous- 
time Markov chains, the same methods provide the limiting 
transition probabilities and the moments of the distri- 
bution of the entrance time into the set of all absorbing 
states. 
The computation time required to obtain numerically the 
quantities of practical interest is very small in compa- 
rison to the time that would be necessary to solve the 
huge system of differential equations describing a 
combat stochastically. 

T.R. 217   Fabry, C. (1972) 
On Taking Sequential Decisions in Changing Environment. 
Comment:  An attempt is made to extend Walds's sequential 
decision theory to the case where the state of the system 
being observed can change during the observation-decision 
process.  Most of the results obtained concern systems 
that can have only two possible states and are based on 
a partial differential equation which describes approxi- 
mately the evolution in time of the probability ratio 
(or likelihood ratio).  In particular, the following 
elements can be deduced from that partial differential 
equation for a sequential decision procedure with constant 
thresholds:  mean number of observations before a terminal 
decision is taken, probabilities of errors, and expected 
loss . 

T.R. 220  Mjelde, K.M. (1972) 
A Time Dependent Stochastic Model for a Combat between 
Submarines and Defended Convoys. 
Comment:  A situation where submarine attack merchant ship 
convoys is analysed stochastically.  The convoys are 
defended by surface and air screens and by antisubmarine 
area defences.  Submarines» encounters with convoys are 
described statistically and differential equations for 
the expected values and variance of the losses on both 
sides are given.  They are valid for all times after the 
start of the battle and for both small and large numbers 
of submarines engaged in combat.  Lower bounds of the 
variances are expressed in terms of mean values.  Expected 
value equations that have been used in previous SACLANTCEN 
studies are given. 

• •• i 



Technical Memos 

T.M. 82   Knight, J.C. (1964) 
Digital Computer Simulation of Tactical Situations. 
Comment;  This memorandum is a summary of work done in 
the field of simulation at the SACLANT ASW Research Centre 
during the period 1961-1963.  The emphasis is on methodo- 
logy rather than results.  The techniques described are 
extremely simple, and should be easily adaptable to a wide 
variety of problems which cannot readily be tackled by 
analytical methods. 
The memorandum is in two parts.  Part I contains a general 
discussion of the simulation method adopted.  Part II 
contains flow diagrams of the more important programmes 
and subroutines which have been writen. 

T.M. 88   Conolly, B.W. (1964) 
On the Digital Computer Simulation of a Tactical Game. 
Comment:  Of particular interest is the emphasis given to 
checking the mechanics of the simulation. 

T.M. 95  Conolly, B.W. (1965) 
On the Distribution of the Lead in a Chase. 
Comment:  More details on checking aspect of T.M. 88. 
In a series of tactical studies a problem arose which can 
be described in the following terms. 
A runner. P moves with constant speed along a straight 
line.  At negative, exponentially-distributed time 
intervals the position of P is communicated to a second 
runner S who then tries to reach that position.  Interest 
centres on the lead that P has over S at the instants when 
information is given to S. 
This memorandum is devoted to the derivation of the pro- 
bability distribution of the lead.  Some numerical tables 
are appended. 

T.M. 139  Conolly, B.W. (I968) 
Experiments with P6lya Processes. 
Comment;  Certain events are habitually observed in naval 
exercises.  Their interest lies in their nuisance value, 
which it is required to eliminate.  When considered as time 
series, the event sequences appear to cluster by comparison 
with a Poisson sequence.  This report arises out of an 
investigation of the P61ya process as a possibly better 
statistical description of the observation. 
The central problem was the estimation of the two parameters 
of P6lya processes, but only a brief mention is made of 
the problem of estimation in this report.  Some theory is 
given and this is supplemented with numerical results of 
digital computer experiments intended to illustrate some 
startling behaviour that P6lya processes appear to exhibit, 
and which it is believed are not well known.  Subsequent 
reflection leads the author to the view that the Pölya 
process is not the most adequate model for the phenomenon 
originally under consideration. 



T.M. 155    Fabry, C. (1970) 
Nested Bounds for Solutions of Differential Equations. 
Comment;  For a particular class of ordinary differential 
equations, an iterative procedure is described that gives 
a sequence of nested pairs of lower and upper bounds for 
the solution.  Simple conditions are found under which 
the bounds converge to the solution.  The method is used 
to study equations of Lanchester's type, which have 
applications to the deterministic description of situations 
in naval warfare. 

SACLANTCEN Memos 

S.M. 1     Mjelde, K.M. 
Extensions of a Time-Dependent Stochastic Model for a 
Combat Between Submarines and Defended Convoys. 
Comment;  A time-dependent stochastic model for the 
losses of convoyed ships due to submarine attacks has 
been extended in three different ways to cover the 
following cases: 

1. A non-zero time to complete an attack on a convoy. 
2. Different kinds of weapons. 
3. Different types of targets. 
Several tactical options are included in each extension. 

OTHER SUGGESTED READING 

Morse, Philip M. & Kimball, George E.  1951. 
'Methods of Operations Research', New York:  Wiley. 

Zehna, Peter W., ed.  1971. 
'Selected Methods and Models in Military Operations 
Research', Washington:  Office of Naval Research —US 
Government Printing Office, 

Saaty, T.L.  1959. 

'Mathematical Methods in Operations Research', New York: 
McGraw-Hill. 
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MATHEMATICS IN MILITARY OPERATIONAL RESEARCH 

PART 1:  A THEORY OF SUBMARINE OPERATIONS AGAINST A MAJOR, 
ESCORTED, SURFACE TARGET IN THE PRESENCE OF ARMED DECOYS 

by 

Brian W. Conolly 

ABSTRACT 

This is the first in a brief series of expositions of the use of 
mathematical analysis in some military operational research problems. 
A stochastic model is formulated to represent a brief campaign in 
which major naval units sojourn in a given area for the fulfilment 
of a certain mission, and are subjected to submarine attack by the 
enemy.  The analysis is confined to the elements likely to be basic 
to a full-scale study of such an operation for military decision 
making.  The point is also made that, while the problem seems 
complicated, it is nevertheless amenable to an analysis that has 
the capability of revealing the structural dependence of the quan- 
tities of interest on the parameters of the problem more clearly than 
would be the case if computer simulation were the only tool available. 

INTRODUCTION 

Mathematical models and their analysis are usually the basis of 
operational research studies, whether in civilian or military con- 
texts.  They provide a rationale which, when tested, yields insight 
into the structure of the processes at work, and the material upon 
which decisions can be made. 

The application of operational research to military situations, has, 
however, been found to be less well documented than the civilian 
counterpart.  We advance no explanations for this situation but, 
accepting it as a fact, we believe that, to remedy it, it would be 
useful to potential practitioners to document some accounts of models 
that have been developed and analysed in the military, and, in par- 
ticular, naval connection.  This is the reason for planning the short 
series of SACLANTCEN Memos of which this is the first. 

We emphasize that the Memos are not case studies, but that in every 
instance they describe the kind of research work that has to be done 
in the first phases of operational research studies. 

A shortened version of this paper was presented to the NATO Advisory 
Panel on Operational Research Conference on Modern Developments in 
Lanchester Theory held in Munich, 1967.  The relevance both of the 
techniques and of the subject matter to modern antisubmarine warfare 
preserves the interest of the paper which, at the time of writing for 



the Munich Conference, emphasized the technical aspect.  The reader 
will nevertheless guess that the problem itself, idealized though 
the setting may be, arose from a real life scenario.  An added 
justification for offering the paper now is the continued and lam- 
entable failure to appear of the proceedings of the Munich Conference. 

An analysis of the following situation is provided.  Two major naval 
powers are at war.  In a relatively short duration (days rather than 
months) phase of the campaign one power deploys major surface units 
U  (e.g. cruisers, battle-ships, aircraft carriers), one at a time, 
in a certain area to carry out a prescribed task. 
The unit deployed is provided with close escorts for protection 
against the submarines, S,  deployed by the enemy for the purpose of 
destroying U.  In addition, the major surface-unit power deploys 
decoys scattered uniformly throughout the operational area.  Their 
role is to simulate  U  and thereby to lure the  S  (assumed to rely 
on passive methods for detection) away from the real  U,  and then 
to attack and destroy as many S  as possible.  In this scenario 
the "U"  force is granted air superiority and no direct account is 
taken of the use of aircraft by either side. 

The task of a deployed U  requires it to remain essentially 
stationary in the operational area which we shall treat as a rectangle 
of dimensions  L  km long and  B km wide.  The enemy, with  N 
submarines available to put to sea, divides the area into  N  strips 
parallel to the long side and therefore each of width W=B/N km. 
Each submarine is instructed to patrol a strip back and forth 
parallel to the long side and not to stray from that strip.  Then if, 
on behalf of U,  there are  D decoys it follows from the assumption 
of uniformity that each strip contains D/N = n decoys. 

In what follows we shall model mathematically the  S  vs.  U operations 
in that submarine patrol strip containing U.  When this has been done 
it will not be difficult for the reader to devise a (simpler) theory 
to deal with the N-l strips containing no  U.  Reference to  U  will 
henceforward be taken to mean its close escorts as well, 

A crucial simplifying assumption made on theoretical grounds is that 
losses can be, and are, instantly replaced on both sides.  The 
statements made by the theory about the statistics of the lifetime 
of a  U,  of an S,  and of the losses on either side, are therefore 
distorted.  This is of less concern because of the supposed short 
duration of this phase of the campaign.  In addition the statistics 
are meaningful for planning purposes.  For example, the continual 
instantaneous replacement of  S  means that  U  is subjected to a more 
sustained threat than is really the case.  From U's point of view 
estimates of U's survivability are therefore pessimistic.  The enemy 
may, of course, draw a similar conclusion concerning the fate of 
submarines.  The theory can be thought of as supplying the basis for 
estimating upper limits of force requirements. 

The major part of the paper deals with the situation in which subma- 
rines are instructed not to attack anything classified as a decoy. 
It was part of the original problem to see what difference would be 
made by the adoption of an aggressive anti-decoy policy, and so, at 
the end, this is considered and shown theoretically to be expressible 
as a simple extension of the non-aggressive case. 



1. PROBABILITY OF AN ENCOUNTER 

In the strip containing U there are  n decoys, and so  (n+1) 
objects providing potential targets for  S.  The density of targets 

is thus ^ w'     targets per unit area*  If  S  patrols at mean speed 

V km/unit time, then the probability of detecting a target in an 
interval of length  6t  time units will be assumed to be Wv6t(n+l)/LW 
i.e.  (n+l)\)6t/L.  The probability of detecting U  in  6t/L  is then 
simply  v6t/L;  and of a decoy,  nv6t/L. 

2. DETECTION, CLASSIFICATION AND ATTACK 

S  is assumed to have a probability of detecting anything encountered. 
A time  tc  is allowed for classification after detection and it is 
assumed that correct classification is certain, an assumption easily 
modified.  If the object is classified U, S  immediately (and ins- 
tantaneously) launches an attack, otherwise it does nothing.  Thus, 
in this part, the role of the decoy is merely one of delay and possible 
attack on  S.  However, it is also assumed that  S  can not be attacked 
by any unit that it has classified before itself attacking that unit, 
implying that classification by S  can be completed before  S  can 
itself be detected.  But if a unit is not detected by S  we allow the 
possibility of its attacking S.  S may also be attacked and destroyed 
in the process of carrying out an attack. 

Under the assumption that  6t  is so small that only one type of unit 
can be encountered during 6t  the situation and its possible con- 
sequences are shown in the flow diagram, Fig. 1.  The expressions in 
brackets beside the branches are conditional probabilities of the 
various eventualities.  They are now listed here for convenience: 

(n+l)v6t/L     probability that  S  encounters a target 
(U or decoy) in time interval  (t,t + 6t). 

p        probability that  S  detects the target. 

A        probability that  S  launches attack which is 
not frustrated;  (1-A is probability of attempting 
to attack, but being frustrated before actual 
weapon launch). 

B        probability that  S  is destroyed after a 
frustrated attack. 

C probability that  U  is destoyed in an attack 
by  S. 

D        probability that  S  is destroyed after attack 
on  i . 

P        probability that  S  is detected by a unit that 
it has not itself detected. 

R        probability that  S  is destroyed by an unit that 
it has not itself detected. 

10 
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3. THEORY 

One purpose of this paper is to show that even when a situation 
appears to be complex there may be hope for the development of a 
'paper theory*, thereby possibly avoiding the tedium and pitfalls 
of a digital computer simulation and, in any case, providing a 
test bed for a simulation, if inevitable. 

Without further ado we proceed to formulate equations for the 
following: 

(ä)  m.(t) - the joint probability that  S  survives to age  t, 
has destroyed k U's in that time, and, in addition, is 
disengaged.  [By Tdisengaged» it is meant that  S  is not 
engaged in classification, attack, or in being attacked. 
Thus, if an encounter were to occur during the interval 
(t,t + 6t)  S  in the disengaged condition would be free 
to pursue it»] 

(b) <tk(t) - the joint probability and density that  S 
survives to age  t  and is destroyed in  (t,t + 6t) having 
destroyed  k U's in its life time. 

(c) f(t)  - the probability density that  U  survives to age t 
and is destroyed in  (t,t + 6t). 

These functions provide all the statistical information we seek. 
mk(t)  is the basis of <tk(t)  and  f(t).  It satisfies a differential 
difference equation of Lanchester type, the attrition coefficients 
being, however, independent of  k by virtue of the instant replacement 
hypothesis. 

4. DETERMINATION OF  mk(t) 

The fundamental differential difference equation for mk(t)  has the 
form 

dmk(t) + a mk(t) - ßmk(t-tc)+ Ymk-i(t-tc)      [Eq. l] 
dt 

for  k ä 1,  and lacks the  mk_^  term for  k = 0.  The initial 
conditions are m0 =1 ,  mk(0) = 0  for k a 1.  a»ß>Y  are all 
independent of t  and will be given presently.  Denoting the 
Laplace transform of mk(t) u> f t . t by Mk(z),  then for all 
k > 0  we have 

Mk(z) = e
Ztc vVCU + a) eZtc- ß]      , [Eq. 2] 

where  t_  is the time for  S to classify. 
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Equation 1 is obtained in the usual way by formulating an equation 
for mk(t+6t)  in terms of the probabilities of the various possible 
situations at  t.  In this formulation time is measured from the 
'birth' of  S  (its entry into its strip).  Thus 'time t' is 
equivalent to 'age t' for the particular  S  considered. 

Now S  is disengaged and alive at epoch t +6t  and has sunk  k U's 
if either: 

(a) it is free  at epoch t, has already sunk k U's,  and 
does not become engaged in  (t, t+ 6t) 

or 
(b) it is engaged at epoch t and becomes disengaged during 

(t, t+ 6t).  At epoch t it may either 

(i) have sunk  k U's already, or 

(ii) have sunk only  (k-l) U's. 

Let O-bt     be the probability that  S  becomes engaged in  (t,t + 6t), 
given that it is disengaged at  t,  and is still alive at  t + 6t. 
Then  S must 

(a) encounter something in  (t, t+ 6t); 

(b) detect it and therefore begin classification; 

(c) not detect it and itself be detected, and therefore come 
under attack, but not itself be destroyed in the attack. 

Then, 

a = (" 
+ 1)V (p + q PR) [Eq. 3] 

where  q = 1 - p, and the contribution of (a) to mj^t+öt)  is 
mk(t) (1-ast). 

Let ybt     be the probability that  S encounters  U  in 
(t-tc, t-tc + 6t)  and successfully completes its destruction in 
(t,t+6t)  while not itself being destroyed. 

Then 

Y = ^ AC(l-D), [Eq. 4] 

so that the contribution of (b) (ii) to mk(t+6t)  is  mjc_-^(t-tc)ybt. 

Finally, the contribution of (b) (i) depends on whether the encounter 
and detection in (t-t_, t-tc+6t)  (accounting for its engaged 
condition at t) was  U  or a decoy.  If it was a decoy  S  simply 
becomes disengaged in  (t,t+6t),  and because  S  detected the decoy 
there is no question of attack on  S.  If it was  U  the outcome must 
not be destruction of U.  So either the attack must be frustrated, 
but  S  not destroyed, or the attack may be launched, but unsuccess- 
fully, and  S  not subsequently destroyed. 
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The  contribution to     mk(t+6t)     is     ß6t  mk(t-tc)     where 

ß   =     SiiE +  V£  [(l-A)   (1-B)   +  A(l-C)   (1-D)] 
l_i Lt 

[Eq.   5] 

Figure 1 will be found helpful in showing clearly the construction 
of &,ß and y. 

It follows that 

mk(t+6t) = mk(t)(l-a6t) +mk(t-tc)ß 6t +mk_1(t-tc)Y6t  [Eq. 6] 

from which [Eq. 1] follows immediately for  k ü 1,  Obviously the 
last term does not enter when k = 0.  Recalling that- mo(0) = 1 
and noting that  mk(t)  must be identically zero for  0 <t <tc  we 
may apply easily Laplace transformation to [Eq. lj to yield [Eq. 2]. 
In the general case where t~ ^ 0,   [Eq. 2] may be inverted 
numerically to provide  mk(t),  thus yielding a statistical des- 
cription of the life of an  S  and of the number of its victims. 

5.    DETERMINATION OF  tk(t) 

It is recalled that  -lk(t)  is the joint probability and density 
that  S  survives to age  t  and perishes in  (t,t+6t),  having 
destroyed a total of  k U*s.  -tk(t)  is constructed from mk(t) 
as follows: 

^k(t) = x mk(t)+y mk(t-tc)+z nik_l(t-tc) [Eq. 7] 

for  k ^ 1,  and without the last term for  k = 0. 
be given below.  The argument is as follows: 

x,y and z will 

(a)  S  is disengaged at epoch  t  and has already destroyed 
k U's.  Probability mk(t).  In  (t,t + 6t)  it must perish.  Its 
demise can not be the consequence of itself detecting a target, which 
would require time  tc  for classification.  Hence it must itself be 
detected and destroyed.  Altogether the contribution to  ^(t) 
is  xmk(t),  where 

x = (n+1) y q PR [Eq. 8] 

(b)  S  is engaged at epoch t.  Thus  S must have encountered 
and detected a target in  (t-t , t-t +6t).  This target must, 
however, be  U  for otherwise classification would reveal it to be 
a decoy which, by the rules, is not subject to attack by S,  nor 
attacks  S.  If at  t-tc  S had already destroyed  k U's then the 
attack on  U  in  (t,t + 6t)  must fail, but  S must be destroyed, 
the contribution to -tk(t)  being  y mk(t-tc),  where 

y = *  p[A(l-C)D+(l-A) ß] . [Eq. 9] 
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But if  S  had destroyed only  (k-1)  U's at  t = tc the attack 
on U  in  (t,t + 6t)  must succeed, but again  S must be destroyed, 
The contribution to l\^(t)     is then  z m^_-^(t-tc)     where 

z = ^ p ACD 
1 

[Eq. 10] 

It can easily be confirmed that 

x + y+z = a _ (ß + Y)  . [Eq. 11] 

Writing L
k(u)  for the Laplace transform of t^(t)     we obtain 

Lk(u) = x Mk(u)+y e"
utc Mk(u) + z e"

utcMk_1(u)       [Eq. 12] 

for  k s 1.  It is convenient for the purpose of obtaining moments 
to introduce generating functions  M(s,u),  L(s,u).  Then, from 
Eq. 2, 

M(s,u) = £  sk M. (u) = [u + a _(ß + Y s) - z t^-,-1 
ksO 

]"j    [Eq. 13] 

and hence 

-ut< 
T (        \          V   k T (   \        x + e~  c (y + zs) L(s,u) = L,     sK Lk(u) =  £-* ' 

k^O u + a_e"
utc(ß+Ys) 

[Eq. 14] 

Equation 14 contains much valuable information: 

(a) by putting  s = 1  we can find the moments of the life 
time of an  S  irrespective of how many IPs destroyed. 

(b) by putting u = 0,  information about the number of U's 
destroyed during the lifetime of an  S. 

First, we note from Eq. 14 that  L(1,0) _ 1,  as it should.  This 
expresses the certainty that under the conditions of the model an S 
will exist for a finite time and during its life will destroy 0, 1, 2... 
U's.  Let  T  be the life of an  S.  Then 

E(Tn) = (-)
n 

and we obtain 

3nL(l,u)1 

Lau"    J u-=0 
[Eq. 15] 

tr +      
E(T) =  (n+l)yp 

a PP+AD+(1-A)B 
P      (n+1) 

[Eq. 16] 

15 



Var(T) - [*.' [ 1 + qPR(n+l)a IAD+(1-A)B| in+(l-A)(l-B)+A(l-D) }]  + 

q(n+l)2PR 
[i- + tc{n+(l-A)(l-B)+A(l-D)}]1 / 

/ 
p 

i + 
qPR(n+l) 

1 AD+(1-A)B } y] [Eq. 17] 

This can in principle be extended as far as desired.  The visibility 
of the dependence on the parameters of the problem is an important 
feature of the theory, and one that is not immediately evident from 
simulation. 
One particular conclusion that follows immediately is that if the area 
be flooded with decoys, so that  n -♦ •,  then 

E(T) 
pt, 

qPR 

Var(T) - ^- (1-K^r)  , 
qPR qPR 

both of which are independent of L, r, A, B, D. From this it might 
be concluded that the continued introduction of decoys tends to have 
diminishing returns, all other things being equal. 

Next we examine the statistics of  k,  the number of Ufs destroyed 
in the life time of an  S.  The moments are obtained by differentiation 
of  L(s,0)  with respect to  s,  subsequently putting  s = l. 

Thus, 

E(k) = 3L(; 
as Js=l 

z+v 
x+y+fc 

[Eq. 18] 

var(k) = <z+YXx*y+v) 
(x+y+z)s 

[Eq. 19] 

Expressed explicitly in the parameters of the model we have, 
for example, 

E(k) = 
p AC 

(n+l)q PR+ P!AD+(1-A)B} 
[Eq. 18a] 
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6.    THE LIFE OF A  U 

It is easy to argue that if T   is the life of a  U then 

E(T ) m  E(T)   . [Eq. 20] 
u    E(k) J 

However, to obtain all the moments of  T   we consider the 
density  f(t)  of the life of a  U  measured, of course, from its 
biirth upon entering the area« 

Now  Tu  can be composed in any one of the following mutually 
exclusive ways: 

(a) the time it takes the  S  in the strip at  t = 0 
to detect, classify, attack, and destroy U; 

(b) the sum of the time taken by the first S to expire 
(with no further kills) and the time required by its 
successor to do (a); 

(c) the sum of the times taken by the first two S's to 
expire without a further kill, and the time required 
by its successor to do (a), etc.  Since the introduction 
of a new U means resetting time to zero we have 

f(t) = ^£
A£[ m0(t-tc)-hn0(t-tc) **/0(t-tc)+m0(t-tc) * -tG

(2 ) (t-tc)+-3 

where  * means convolution and g   (t)  is the convolution of 
g(t)  with itself n-times.  If F(u)  is the Laplace transform of 
f(t)  we have 

F(u) - *PAC Mp(">e-Utc = VPAC e-^c  [E^ 

L[l-L0(u)] Llu+a-x-(ß+y)e-utc} 

It is easily confirmed that  F(0) = 1,  as it should be.  Also, 
in confirmation of  Eq. 20, 

E(TC) » 
1+(Q-X)tc= L+("

+DvPtc [Eq. 22] 
Y + 2       v p AC 

while 

Var(T) = E*(TC) + tc {^^^Hc  | # [Eq# 23] 

If the total numbers of decoys and S*s deployed are D and N 
respectively it follows that 

L+vpt_    Dtr 
E(TC) =  -2-  + —^ [Eq. 24] c     vp AC    NAC 
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This shows that to increase the number of S*s merely decreases the 
expected life of a  U to a fixed value dependent only on L, v» p> t 
A and C,  while to increase decoys is to prolong the mean life of a 
U»  This is hardly unexpected, but perhaps the parameter dependence 
is not immediately obvious. 

c» 

7. CASE WHERE  S  ATTACKS DECOYS 

The case is of interest where  S  attacks all decoys detected instead 
of leaving them alone.  This can be dealt with by a minor extension 
of the foregoing theory. 

For illustration we take a simple case.  The extreme left hand branch 
of Fig. 1 following a detection by  S  looks as shown in Fig. 2. 

Y(nv 6t) 
DECOY? 

N 

ATTACK DECOY 

Y(X) 
—*— DECOY DESTROYED? 

N(l-X) 

REPLACE 
DECOY 

YiBM 

Y(C') 

S  DESTROYED? 
N^l-B') 

REPLACE 
S 

CONTINUE 

S DESTROYED? 
N(1-C' ) 

REPLACE 
S 

FIG. 2   PART OF FLOW DIAGRAM FOLLOWING A DETECTION BY S 
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Consider now the probability mk(t)  as defined in Chap. 3 
and the arguments by which it is constructed.  These lead to the 
equation 

mk(t+6t) = mk(t)(l-a6t) + mk(t-tc)ß' 6t + Vl^^c^ Y 6t » 

where 

a = (n+1) v (p+qPR)/L  , 

ßi= H^£[X(l_Bt) + (1-X)(1-C»)] +^[(1-A)(1-B)+A(1-C)(1-D)] , 

Y = XR  AC(l-D) . [Eq. 25] 

0- and Y  are as before,  ß' differs from the previous ß.  But 
formally mk(t)  is as before and leads to Eq. 2 with  ß'  instead 
of  ß.  [Flexibility has been preserved by introducing probabilities 
X, B1, C  to which of course any plausible numerical values can be 
assigned.] 

Likewise  <tk(t)  can be treated exactly as in Chap. 5   with  x  and 
z  as before, and  y  replaced by 

yt = y+ "VE[xßt + (i_X) C] 

The process of extracting moments is the same. 

8.    STATISTICS OF DECOY LOSSES 

The number of decoys lost is also of interest, and similarly one 
could extend the theory to deal with the life of a decoy both in 
and out of the strip containing U. 
We make just one more excursion and examine first  m-: k(t),  the 
joint probability that  S  by time  t  has destroyed  j  decoys and 
k Ufs, being itself disengaged at time  t,  this to be related 
(of course) to the strip containing  U.  Thens 

mj>k(t+6t) = (l-cc&t) mj k(t) + ß'i 6t mj_1>k (t-tc) + 

+ Y6tm:j,-k_1(t-tc) +ß'a 6t mjjk(t-tc) 

where o.     and  Y  are as always, and 

ß'i = S*2 X U-B') , 

ßt2 = £^£(i_x)(l-C')+^E {(1-A)(1-B)+A(1-C)(1-D)1        [Eq. 26] 

The terms with  j-1  and  k-1  are not present when  j = 0  and 
k = 0,  respectively. 
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If we introduce generating functions of Laplace transforms 

N (y,z) = E  yk n*  (t) 
3 k20        3 

N(x,y,z) s S xj N.(y,z) 
j*0     J 

it is easy to show that 

N(x, y, z) =      *•  [Eq. 27] 
z+a-e rc (ßta+ßtlX+Yy)i 

which holds the key to the moments. 

CONCLUSION 

Thus one may proceed, complicating the model more and more, but 
without complicating the mathematics required to analyse it.  It is 
emphasized that such an analysis as this is an essential preliminary 
to the systematic derivation of conclusions about structure, and the 
provision of military advice on the operation. 
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MATHEMATICS IN MILITARY OPERATIONAL RESEARCH 

PART 2 :  A MINEFIELD MODEL 

by 

Brian W. Conolly 

ABSTRACT 

The use of probabilistic methods for the development of a simple 
model of a minefield is described.  The model is capable of 
providing material for decision-making by both the offence and 
the defence.  The problem is characteristic of harbour defence 
and is concerned with shallow waters. 

INTRODUCTION 

This Memorandum is one of a series presenting mathematical topics 
in military Operational Research studies.  The series has been 
prepared primarily for instructional purposes.  Attention is 
invited to the General Introduction to the series included in 
Vol. I, where a reading list, drawn mainly from SACLANTCEN publi- 
cations, is provided. 

The following describes a simple mathematical model for the sweeping 
and use by shipping of a shallow water channel through a minefield 
constantly replenished with ground mines by an enemy.  The object 
is the development of a "discrete" time theory which will enable the 
main features of the process to be described and which could be 
extended to more complex situations if required.  It should be noted 
that a "continuous time" treatment can also be formulated in terms 
of birth and death processes.  Such a model can be of use to one adver- 
sary for the design of minefields, and to the other for the orga- 
nization of minesweeping and minehunting. 

1.    ASSUMPTIONS 

We assume that the enemy replenishes the field by making lays of 
mines at intervals.  By suitable use of arming delays he can secure 
that mines ripen at a constant rate throughout the field.  We assume 
further that the lays randomly scatter the mines throughout the 
field so that equal numbers tend to be dropped in equal areas. 

Attention is now fixed on a channel through the field*  For simplicity 
and definiteness we assume this is used by shipping leaving and 
entering harbours in the following way.  First the channel is swept 
by a succession of  s  sweepers, and these are followed by a succession 
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of t  ships,  A single sequence of  s  sweepers and t  ships will 
be called a cycle, and cycles are assumed to follow one after the 
other. 

We now assume that one mine arms, or ripens, in the channel at the 
end of every cycle so that the sweepers and ships of the n^h cycle 
have to contend with one new mine as well as any residual left over 
from the (n-l)tn cycle.  In general we shall suppose that all mines 
are equipped with a ship count device such that  N impulses are 
needed before the mine explodes (on the N^*1 and last).  Interest 
centres on the partition of explosions between ships and sweepers 
and in spite of the fact that an explosion may wreck a ship before 
it has run the gauntlet of the whole channel we shall nevertheless 
assume that all the ships and sweepers do pass right through the 
channel.  Explosions caused by ships can be interpreted as ship 
sinkings, and, though this will not be strictly correct it will be 
a satisfactory first approximation. 

The above assumption that one mine ripens per cycle is a matter of 
convenience, and the actual number of explosions per cycle can be 
scaled up or down linearly according as the ripening rate in the area 
of the channel is greater or less than one per cycle.  In investi- 
gations of the effect of mixed lays with different ship count 
settings the result for a single fixed setting N is basic* 

Finally, we suppose a "steady state".  This means that the distri- 
bution in the channel of mines of different counts is identical at 
the end of any prescribed cycle with that at the end of the preceding 
cycle.  It means moreover that the total number of explosions per 
cycle is constant, and the partition of explosions is always the 
same.  Obviously, if the number of mines in the channel reaches a 
steady value, then as many explosions must occur in a cycle as fresh 
mines are added, viz, one, 

2.    FORMULATION 

When the stream of s sweepers passes down the channel each mine 
therein may receive 0, 1, 2, ,,, s actuating impulses. Let the 
associated probabilities be  fr(0 < r < s),  with 

-ft *r 

and let the generating function of the  f  be 

s 
F(x) ^ E  fr x

r  . 
r*=0 

Similarly, let the probabilities of  r(0 < r < t)  actuations by the 
ships be  gr , with generating function 

t 
G(x) =  £  gr x

r 

and 

G(l) = 1 . 

0 
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Let  (UJJ, UJJ_I, ... u2j u±)     be the distribution of expected 
numbers of mines of counts  N, N-l, ... 2, 1  left in the channel 
at the end of a cycle (i.e. after the last of the ships has passed). 
Then the distribution at the beginning of the next cycle is 
(U'JJ, 

UN-1> ••• u2» ul^  where  u'« = ujj+1.  Moreover, let the 
distribution of mines after the sweepers have passed be 
(vN> VN-1»  ••• V2> »].)• 

We now formulate sets of difference equations for the  u  and v , 
first in the simple case of  N = 1.  Thus 

vl = u'l fo 

ui = vi e0 = u»! f0 g0 . 

Moreover  since     ufi   =  1 + u^  , 

f„ff~ 
Ul    = 

1 - f o So 

If we interpret  v0  and uQ  as the number of explosions caused 
by sweepers and ships respectively, we have 

v0 = u»! fi   ,        u0 = V! g! 

where 
s t 

fi = S f, ,       gx = £  gk 
k=l  k k=l   K 

Then 

uo + Vo =  u»j_ [fi + f0 gx] 

[1-fo + fo (1-go)]   , 
= ■ = i 

1 - fogo 

as expected, since a steady state has been assumed. 

We now generalize.  Let the newly ripening mine have count setting N. 
For definiteness it will be assumed that  t > s,  and we shall 
formulate the equations in two extreme cases: 

(a) N < s < + t (=M) 

(b) s + t (=M) < N. 
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Intermediate cases can be dealt with in similar fashion, 

(a)  N < s < s + t 

VN   = U'N fo y 

vN_i = u'N f-L + uN-1 fQ  , 

  [Eq. 1] 

vl    = U'N fN-l + UN-1 fN-2 + ••• + ul fo  » 

V0    = u'N fN + UJJ.! fN_^ + ...+u1f1  ; 

UN    = VN g0  » 
UN-1  = VN Si + VN-1 g0  , 

  [Eq. 2] 

ul    = ^N SN_l + VN_! gN_2 +...+Vi«0  » 

u o 
VN SN 

+ VN_! gN-1 + ...+vi Ii  . 

(b)  s + t = M < N 

^N    = U'N fo  » 

VN-1  = U'N fl + "N-l fo  » 

[Eq. 3] 

VN-s  = U*N fs + UN-1 fs-1+ •••+uN-s fo  » 

VN-s-l= uN_x fs  +...+     
uN-s-l fo > 

• •  m 

\>1 = ug+1 fs+ ... +  ui f0  , 

vo   = us f~s+us-1^8-1+•••+UÄ 5 
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UN   = VN gQ  » 

UN-1  = VN 81 + VN_i g0  > 

[Eq. 4] 

uN-t  = VN gN-t + ... + VN-t So > 

"1    = Vt+i gt + ... + S»l  gQ   > 

u0    = \>t  it + Vt-1 it-1 + • • • + Vilx . 

Sets of equations of this type are very familiar to students of 
stochastic processes.  A variety of ways to solve them existsj  an 
excellent reference is Feller [Ref. l]. 

Here we shall proceed introducing the generating function H(x) 
defined to be the product  F(x) G(x)  and therefore a polynomial of 
degree M. Writing. 

H(x) = F(x) G(x) = h0 + hjx + h2x
2 + hM x*

1  , 

we see that Eqs. 1 & 2 can be telescoped into 

uN   = h0 u'N  , 

uN_i  = hx u'N + hQ uN-1  , [Eq. 5] 

ul    = hN-l U'N + ... + hQ UI  . 

and Eqs. 3 & 4 into 

UN    = ho ulN 

UN_I = hx u»N + hQ uN-1 

[Eq. 6] 

UN-M  -  hM utN + hM-l UN-1 + •••+ ho UN-M 

ux 
hMuM+l + hM-luM+'»+ ho ul  • 

From these it follows, in both cases (a) and (b), and indeed for all 
possible combinations, that if we introduce a further generating 
function _ 

A(x)  =  £  aw x
k 

k=0 
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by the relation 

A(x) [1- H (x)] =1 

then, for  0 < k ^ N-l 

uN-k = ak • tEcl« 7] 

This provides an algorithm for the recursive computation of u^. 
(1 < k < N), thus describing statistically the state of the 
swept channel in a steady state at the end (or beginning) of a cycle. 
Another way of putting it is to say that for  0 < k < N-l  coefficients 
a^  are generating by the relation 

A(x) i  [Eq. 8] 
l-H(x) 

Similarly, if we write 

bk   = VN-k 

and 

B(x) . E bu x
k 

k=0  K 

it is easy to show that for  0 ^ k < N-l   bk is generated by the 
relation 

B(x) = A(x) F(x) =   
F(*\ [Eq. 9] 

l-H(x) 

We now proceed to obtain explicit alternative formulae for  u^. 
Take first the case  N < s < s + t.  If in the last member of the set 
of difference equations [Eq. 5] we substitute  un = y

n  for 
1 < n < N-l,  and  ujj = y^,  the equation reduces to 

y = y H(y) , 

where 

H(y) = hQ + hx y + ... + hN-1 y
N-1.      [Eq. 10] 

The theory of difference equations then informs us that if 

H(y) o 1  , [Eq. 11] 

an equation of the (N-l)*''1 degree, has  N-l  distinct roots, 

Tf  
Extension to the case of multiple roots is left to the reader. 

2 6 



say    T) , ri2 ...  T'N_i      then 

un =    E    A, nn. [Eq. 12] n   i=1   x  x 

N-l vr 
u' = E  A. nN. N   i=1   x  x 

where the  (N—1)  constants  A^  are independent of  x. 

These are determined by substitution in the N-l  remaining 
equations of the set [Eq. 5].  For example, we have 

U2 =  hN-2urN + hN-3 UN-1 + •'• + hl U3 + ho U2  > 

and by substitution this gives 

N-l N-l „   .. 

i?!  Ai   ^i    -  £     Ai^hN-2   ""   +hN-3V 
+   '••   + ho  ^ 

- Jl   A.^.CHCn.j^b^n.N-i] 

-   E      A,   r]2. [l-hv .   Ti.N-1! 
.   ,        x      x N-l     x 
x—1 

Thus 

E       A.H.N+1   =  0 
i=l        i    1 

Similarly,   it   can  be   shown that   for     1  <  r  <   N—2 

N+r 
f       Ai   V -  °     > [Eq.   13] 

and 

This set [Eq. 13] of equations determines A..  We note that if 
we write 

N-l 
J(y) «= H(y) -1 =  n  (y-Tl.) [Eq. 14] 

x—1      -1- 
then «j.1 —        i 

Ai =* [l1i    JMn.)]"1 [Eq. 15] 

where the dash denotes differentiation. 
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This may be seen by noting the following partial fraction repre- 
sentation, valid for  0 < r < N-2^. 

r Tl 
__v__=£ L_       . [Eq. 16] 
J(y)   x (y-VJ«(ni) 

Then, if Eq. 15 holds, 

if"1 

i   x x      i  J'^.) 
? 

and the righthand side is seen to be zero for  1 < r < N-2   by 
putting  y = 0  in Eq, 16.  Also 

V   A. nN = 5 [n J»(TI )]-! = _[T(o)]-
1=(i-ho)-

1. 

Thus the set in Eq. 13 is satisfied and we have 

LN-k u„ .= £ [TKk+1 Jt(T),)]-1 [Eq. 17] 
i 

for  1 < k <N-1,  together with 

i J 'v'li/-1 u'N = E[TI. J»(n±)]" 

The set [Eq, 17] does provide a practical way of calculating u, . 
For if the N-l roots *]*     are ordered in such a way that 

|ri1| < |TI2|   <   ... <IVil     ' 

then since also  J(y)  and its derivatives are increasing functions 
of  y  it follows that the term of Eq. 17 corresponding to  i = 1 
is dominant. 

It is left to the reader to show that the same^result [Eq. 17] holds 
good also when  N > M(= s+ t)  provided that  J(y)  is replaced by 
J(y) = H(y) - 1  and the T\.     are the  M  (assumed simple) zeros of 
J(y). 

From the numerical point of view an alternative contour integral 
representation of  u., .  is of interest.  In the case  N < M  we 
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have seen that  a^ = u« ^  is generated for  0 < k < N-l  by the 
generating function relation 

A(x) = [l-H(x)]-1 = -[J(x)]-1  . 

Using Cauchy's theorem we then may write 

1   P    dr -    ,on, 3k =  -2Ki ,1   zk+lj(z) LEq. 18] 
c 

where  C  is a closed contour encircling the origin in the 
z-plane and excluding the zeros of J(z).  The direct evaluation 
of contour integrals of this kind is nowadays a well-known process. 
The reader is left with the task of demonstrating the direct 
equivalence of Eq. 18 and Eq. 17, which may be carried out by 
using Eq. 16. 

Before proceeding to practical numerical details it is salutary to 
show, as a check on the theory that indeed 

uo + vo = 1  , [Eq. 19] 

is a condition that must exist in a steady state deriving from 
the appearance of a single freshly arming mine at the beginning 
of each cycle.  As an example we take the case  N < s <  t. 
Then by re-arrangement 

uo - "Wo + %-lfl + '•• + «lfN-l) + 

+ uN-l(iN-lfo + %-2fl + ••• + «lfN-2> + 

+ ... 

+ ulfo«l • 

Now it is easily seen that if 

max k 
hr' & hx ' 

then 
h  = 1  , o      ' 

hl - fo«l + fl  . 

*N = fo«N + f1«N-1 + ''' + fN-l«l + ?N 
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so that 

%  =  UVVV   +  "N-l^N-l-W   +   •'•   +  ul<Vfl> 
N-l 

=   J^  UkKk +  U,Ä "•  vo     ' 

by Eq. 1. 

Hence 

u + v = £  ;  [h,r)0 + h9n. + .. . + hM n . . 
o   o   i=1 T,iN+lji(T1i)   1 2   2 x        N i 

But for 

1 ^ k ^ N-l 

hk = hk + hk+l + ''' + hN 

so that the square bracket is 

d-ni*)     Tf(i)-TiiH( n±)    -» 
h  n. —~— + ■ — - H(I) 

N    x       l-Tli 1-   Hi 

niN+1r(i) 

since 

and 

Thus 

i-n. 

H(l)   +  hN  =   1 

H(ni) = l    . 

N-l 

Uo   +   vo   =  J(D     2     [(1-T1.)   J'dl,.)]""1   =   1 

by Eq. 16.  This provides a check, and should be further checked 
for other critical ranges of N. 

3.    NUMERICAL EXAMPLE 

It is instructive now to give a simple numerical example.  We 
suppose that during each cycle  t = 3  ships have to use the 
channel.  We investigate the effect of making s = 2  sweeper 
passages. 
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Let 

whi'i'i' 

F(x) = (q + px)Z  , 

G(x) = (Q + Px)3  , 

p = 1-q = 0.75 

Q = P = 0.5 

Then it is simple to construct a table of  f., g,  and h,  as 
follows: 

TABLE 1 

COEFFICIENTS IN FUNDAMENTAL GENERATING FUNCTIONS 

k ?k h 8k gk hk 

0 0.0625 l 0.125 1 0.0078125 
1 0.375 0.9375 0.375 0.875 0.0703125 
2 0.5625 0.5625 0.375 0.500 0.234375 

3 - - 0.125 0.125 0.359375 
4 - - - - 0.2578125 

5 - - - - 0.0703125 

Using the generating functions  A(x)  and  B(x)  defined by 

and 

A(x) = 
l-H(x) 

B(x) =  F(x) 

l-H(x) 

we then construct the following table of the first eleven 
coefficients  a.  and b^. 
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TABLE 2 

TABLE OF  ak=uN_k, bk=v^k(alL N) 

k ak bk 

0 1.00787 4016 0.06299 2126 

1 0.07142 4143 0.38241 6765 

2 0.24314 2030 0.60890 9564 

3 0.39915 9113 0.15630 1786 

4 0.37348 0678 0.30979 4601 

5 O.29880 7053 0.38325 7696 

6 0.32221 6593 0.34227 4063 

7 0.34964 4103 0.31076 2946 

8 0.33445 4438 O.4038O 8243 

9 0.327H 2875 0.34753 8778 

10 

• 

0.33372 9833 0.34867 3663 

• 
• 

00 0.33333 3333 0.33333 3333 

The purpose of this table is to supply values of 

u XT = a u, = a 

VN  = bo,   v, 

N-k 

N-k 

(1 * k 4 N-l)  . 

The fact that as  k -» »     both  a,  and  b,  can be seen to 
oscillate with decreasing amplitude about limits is a result that 
can be deduced from Renewal Theory (see Ref. 1, for example). 
We have 

ak 
-• _1_ 

bk 
-» F(l) 

ll 
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where 

and 

h=Skhk=s+t     , 
k 

a  =    S k f k    , 
k 

t  =   £ k gfc    . 
k 

It is also not difficult to show that -»s  N -» » 

u0 -> t/h , >Q  -» s/h 

This can also serve as a fair approximation when  N  is large 
compared with  M. 

In this case 

s = sp = 1.5  , 

t = tP = 1.5  . 

We now utilise the Tables 1 to 3 to examine enemy policy of 
effecting the ripening of a mine of count  N (1 < N < 10)  at the 
beginning of each cycle.  Table 3 gives 

vo * U'Ä + UN-Ä-1 + ••• + ul^l 
(subject to obvious limitations on the indices) and 

uo = 1 " vo 

for  1 < N < 10. 

TABLE 3 

TABLE OF u0 and v0: s=2; t=3i P=0.75; P=0.5 

Mine Count vo uo 

1 0.9449 0.0551 
2 0.6339 0.3661 
3 0.2681 0.7319 
4 0.5111 0.4889 
5 0.5747 0.4253 
6 0.4902 0.5098 
7 0.4702 0.5298 
8 0.5090 0.4910 
9 0.5102 0.4898 

10 0.4948 0.5052 
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It has been explained earlier that  v0  and u  are the steady- 
state proportions of mines exploded respectively by sweepers and 
ships during each cycle.  To illustrate this concept in another 
way let us suppose that the enemy arranges that mine ripenings 
will be at a rate of 5 per cycle (all of count N).  The assumption 
of a steady state means that during such a cycle there will be on 
average 5 mine explosions.  Then  vQ  is the fraction of these 
exploded by the sweepers and the fraction  u0  would be exploded 
by the ships (on the assumption of survival or substitution). 
Remembering that in the numerical example we have used two sweeper 
passages to protect three ship passages,,  if mines with count setting 
N = 5  were used the last Table 3 explains that on average about 
three mines would be destroyed by sweepers and two by ships.  Not a 
very good outlook for the ships!  Excellent for the opposition. 
Hence, in this situation one would obviously step up the minesweeping 
effort, equivalent to increasing  s.  However, it is not as simple 
as that.  Indeed doubling  s  from 2 to 4 gives  vQ 

:: 0.4651  and 
u0 = 0,5349,  even more to the disfavour of the ships 1  There is 
a possibly unexpected oscillatory relationship between  vQ u N 

which is to be seen in Table 3«  A use for models of this 
(>-• 

and 
kind is then that they can be of material assistance in the deter- 
mination of a minesweeping policy.  Conversely they are of help to 
the adversary.  If the latter knows the broad lines of his enemy's 
policy (i,e,  s, t, p and P) then he can calculate easily which 
count setting is worst for the ships.  In our example it is plainly 3» 
In passing it may be remarked that choices of  N  and  s  constitute 
strategies in the sense of game theory, and our model also then pro- 
vides a basis for payoff  calculations. 

The figures given in Table 4 corresponding to  s = 18  sweeper 
passages, covering t = 3,  as before, are instructive. 

TABLE 4 

TABLE OF u0 and v0; s=l8;  t=3; p=0.75j P=0,5 

N vo uo 

1 1,0000 0.0000 

5 1.0000 0.0000 

10 0.9856 0.0144 

15 0.3857 0.6143 

20 0.7962 0.2038 

Protection for the ships is good and consistant at least up to 
count setting 10, but then strange things begin to happen. 
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CONCLUSION 

In conclusion we repeat that the foregoing is a sketch of a theory 
of possible utility in connexion with the tactics of warfare in 
shallow water using ground mines.  It provides an example of a 
simple stochastic problem belonging to the random walk family, of 
interest in military operational research.  The reader is reminded 
that because attention has been focussed on techniques a critical 
discussion of the assumptions made, both tacitly and overtly is 
lacking.  The theory is not fully stochastic:  it would indeed have 
been more satisfying to develop the actual probability distributions 
of mines of different count settings at the beginning of each cycle, 
deducing therefrom conditions for the existence of a steady state, 
and information about the rate of convergence to that steady state. 
These are essential elements in operational research, which the 
customer need not see but should feel can be produced upon demand. 
The research worker for professional reasons must not neglect them. 
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MATHEMATICS IN MILITARY OPERATIONAL RESEARCH 

Part 3 :  SOME APPLICATIONS OF GEOMETRY 

by 

Brian W. Conolly 

ABSTRACT 

The problems considered are of geometrical character.  They are 
divided into three categories:   (a)  Geometrical Probability; 
The statistics of distances between points on a line and in an 
area, with some consideration of their maxima and minima in the 
linear case.  Applications to patrols and mining situations are 
mentioned;  (b)  Closure;  Collision course;  probability of 
hitting a target of finite length with a salvo of straight running 
torpedoes;  some weapon homing systems  - pursuit, pursuit with 
lead, line of sight guidance;  probability of closing and 
detecting a submarine located at a remote datum;  (c)  Location: 
Principally the mathematics of some bearings-only methods. 

1.    SOME PROBLEMS IN GEOMETRICAL PROBABILITY 

1,1   Points on a Line 

Military operational research creates many fascinating and not 
always easy problems in what is technically called geometrical 
probability.  Buffon's needle problem is a familiar and unusually 
simple member of the genus.  We start with an example.  As part of 
a geographically fixed antisubmarine barrier a surface ship patrols 
at constant speed on a straight line of length a between two points 
A and B.  Submarines, using their accustomed tactics of secrecy, 
attempt to traverse the barrier.  In many cases it is reasonable to 
suppose that the projection Q  on the surface of the crossing point 
can not be predicted, while the position P  of the surface ship at 
the time when the submarine is at  Q  is equally likely to be 
anywhere from A to B inclusive.  Clearly the distance  PQ  is of 
interest to the operational authorities and the analyst*s job is to 
provide the statistics of  PQ.  It is a geometrical problem with 
essential probabilistic content. 

We have asserted that  P is uniformly distributed between A and B 
and the same assumption will be made for Q.  Then if  PQ = 5 
(always taken as positive number)  we want basically the probability 
density function (p.d.f.) 

f(X) dX = Pr[X < ? < X + dX] . 
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For generality we write  p(x)  for the p.d.f. that  P  lies at 
distance  x  from A. 
Likewise  p(y)  is the p.d.f. that  Q  lies at distance y  from  A 
and the joint p.d.f. of  P  and Q  is, on the assumption of inde- 
pendence,  p(x) p(y).  Since  PQ  can be of length  §  when either 
Q  is to the right or left of  P  we have to distinguish the two 
cases: 

(a) y > x   and   ? = y - x  ; 

(b) y < x  and  § = x - y  . 

Thus, whatever  p(x)  may be, 

a-? a 

f(5) = p(x) p(x+?)dx+    p(x) p(x-§)dx 

1 
a -5 

=  2 f   p(x) p(x+?) dx 
o 

which gives all the information needed about the separation  PQ. 
In the case of uniformly distributed  P and Q p(x) = a-l, 
a  being the length of the patrol. 

f(S) = -L-(a-S)  , 
a* 

(i.e.   triangular), 

E(5)   = i a     , 

Var(§)   =_L a2   . 
18 

The mean  distance  is  NOT  ^  a,     as   instinct  might   predict,   but   LESS. 

Another  naval  application  is to  mines  in  a  channel.     Two  splashes 
were  heard  during the   night   passage  of  an  aircraft.     What   are  the 
statistics  of their  distance  apart?     With  suitable  assumptions the 
above  theory   provides   an  approximate   answer. 

Indeed it  is an  interesting  exercise  to  look at  the  statistics cf PQ when one of 
the  points  is  fixed  (e.g.   fixed defence  installation).     In that  case  let   the 
fixed point  be  P and AP = X(<^a).      Then  for a uniform distribution of Q 

f(5 )  =| (0< 5 £X) 

= - (X < ? <a - X). a 
Then, for example E( ? ) = (a2 - 2 a X+ 2 X2)/ 2 a   which has value *i a  when 
P= A or B,  and ^ a  when Pis midway between A and B. 
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A generalisation of interest would be: 

Let P,, °2* ""'  n 

be  n  uniformly distributed points on the line  AB  and let  ? 
be the distance P P , always taken as a positive number. m n*     J r 

Let 
m = min ? 

M = max ? mn 

taken over all possible pairs,  m, n, 

What are the statistics of m  and M? 
This problem will be addressed after the following cognate 
preliminary. 

Consider the following problem: 

Two points are selected from a uniform distribution on a line of 
length  a.  We already know that the density  f(?)  of their 
separation is 

f(?) = \  (a- ?) 
a 

with  distribution   function y 

P[?<X]  = F(X)=   j    f(5)d?  = 1- (1-f)    . 

o 

Let the experiment be repeated independently  n  times giving a 
set \%\c\     of  n  distances.  We would like to investigate the 
statistics of 

Mn = max  5k , 
k 

m  = min  ?, . n    ,    k k 

This is in the spirit of the statistics of records. 
In the case of M   we plainly have n 

P[X<Mn <X+dX]   = n  f(X)  Fn_1(X)   dX 

and  for    m n 

= d   |Fn(X)} 

P[X<m    <X+dX]   =n   f(X)   [l-F(X)]n_1   dX 

=  -d[l-F(X)]n   , 
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and the exact distributions are 

P[Mn < X] = F
n(X)  , 

P[mn < X] = l-[l-F(X)]
n . 

These results are independent of the form of  F(X).  Technically- 
then this is a distribution-free result. 

For the record, in the particular case of uniformly distributed 
points, the means and variances are: 

E(M )  =  a[l-, <n' L   ]  J 
n (2n+l)I J 

Var(M )  = a2^- , <"*> , „  ]  ; 
n+1   !(2n+l)!!2 

E<» ) n       2n+l 

Var(m )  - n a2 

(n+1) (2n+l)2 

It can easily be checked that the first results are recovered when 
n= 1. 

These results provide ALSO the answer to the problem posed earlier: 
what are the statistics of  m  and M?  Let us carry out a short 
experiment.  We know that five mines have fallen in a channel. 
What are the statistics of their maximum and minimum separation? 
Let the coordinates of the mines be  x^, X£, X3, XJ, xr  with 
respect to one end of the channel and let the inter-mine distances 
be %l2  ■■     |x1-x2|,  ?!£ 

:  |x1-x3l, ... ?45 =   |x4-x5|,  viz. 
ten of them, so that n-10. 
According to the previous paragraph 

E(M10)  =  0.7297 a 

Var(M1Q) =  0.01786 a
2  (aMlQ = 0.134 a) 

E(m10)  =  0.04762 a 

Var(m,n) =  0.002061 a
2 (a    _   n.r.ft  x v 107 m1Q - 0.04540 a) 
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The experiment is as follows.  We draw x]_, ... xr  from a table 
of uniform deviates in the range 00-99»  Then we form the ten 
values  |xm-xn(  and select the minimum and maximum.  Then we 
repeat the experiment ten times (rather few) to obtain statistics 
of mio  and MlOo  The following will be self explanatory. 

TABLE 1 

Drawing No. *1     *2 x3 x4 x5 

1 17    4S 77 79 31 

2 46    34 63 85 87 

3 94    21 32 92 93 

4 35    45 64 53 93 

5 54    41 4 56 9 

6 70    58 28 49 54 

7 3    27 48 97 41 

8 8    64 71 62 76 

9 12    37 85 36 32 

10 68    97 36 84 30 

TABLE 2 

Distances 
Experiment no • 

1 2 3 4   5   6 7 8 9 10 
§12 28 12 73 10  13  12 24 56 25 29 

§13 60 17 62 29  50  42 45 63 73 32 

§14 62 39 2 18    2   21 94 54 24 16 

§15 14 41 1 58  45  16 3* 68 20 38 

§23 32 29 12 19  37  30 21 7 48 61 

§24 34 51 71 8  15   9 70 2 1 13 

§25 14 53 72 48  32   4 14 12 5 67 

§34 2 22 60 11   52   21 49 9 49 48 

§35 46 24 61 29   5  26 7 5 53 6 

§45 48 2 1 40  47   5 56 14 4 54 

mio 2 2 1 8   2   4 7 2 1 6 

Mio 62 53 73 58  52  42 94 68 73 67 

The mean of the experimental  m^Q  ant* MJQ  
are 64.2  and 3.5 both 

within probabilistically acceptable limits of experimental error 
from the theoretical values of 73 and 4.8.  It is a small experiment 
and has been conducted as an example to the operational research 
worker of how a simple experiment can give confidence in theoretical 
results.  In this case we might feel it desirable to continue the 
experiments. 
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1.2    Points in a Rectangle 

An extension to two dimensions of the fundamental problem of the 
previous paragraphs is indicated if one considers random antisubmarine 
patrols in an area instead of on a line.  Now both  P  and  Q are 
selected from uniform distributions over a rectangle of dimensions 
(a,b) and the problem is to find the probability distribution/density 
function of the always positively measured distance  PQ.  The diagram 
below illustrates the notation 

FIG. 1 

The positions of  P  and  Q  are expressed in polar coordinates with 
respect to a prescribed corner of the fixed rectangle whose sides 
are  a  and  b  in length.  By uniformity 

d Pr[P]oC rdr dB 

d Pr[Q]ccR dR d© 

Then if Q  has polar coordinates  (X,0)  with respect to  P,  and 
their selection is independent, we have 

d Pr[P,Q] cC r dr dB X dX d0   , 

so that the p.d.f.  F(X)  of  X  is given by 

F(X) CC X I r dr d6 d0 

the integration being taken over all values of 
with the particular choice of  X. 

and  0  compatible 

Now it is clear that for fixed values of  X  and of  0 (O£0 <"5) , 
all the possible positions that  P can assume lie in a rectangle whose 
sides are  (b - X cos 0)  and  (a - X sin 0) respectively.  Hence for 
fixed  X  and 

10 : O<0 < A } 
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while for 

fr dr d6 = (b-X cos 0) (a - X sin 0)  j 

TT 
{0 : - < 0 < TT 1 

| fr dr d6 = (b + X cos 0) (a-X sin 0)  , 

with corresponding expressions for the other quadrants. 

However, considerations of symmetry show that to obtain  F(X)  it is 
only necessary to integrate "r dr d8   over the first quadrant of 0 

J J 
(having regard to the restrictions imposed by the value of  X)  and 
to multiply the result by 4.  Hence 

£^ OG f  (b-X cos 0) (a-X sin 0) d0 
4X  ^ J 

taken over that part of the first quadrant of 0  which the value 
of  X  permits. 

There are three cases t 

(a)    0 < X < b < a < (a2 + b2) 2 

and in this case   0 < cf < —  • -  v  _  2      , 

(b) 0<b<X<a<   (a2 + b2)2     , 

when  arc   cos    —    <  0  < —     t 
x     ~   v        2      * 

(c) 0 <   b <  a  <  X <   (a2+   b2)2     , 

when arc cos — < 0 < arc sin — < — . 
x -"   — x - 2 

Corresponding to theae three cases we have 

(a)    F1(X) = L-— [1 abir - (a + b)X +^X2 ] 
(4X a^ hz 

for  0 < X < b 

= 0 , b < X < (a2+ b2)2 . 
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(b)  F2(X) =  V-0-C2 ab TT- ^ b2 - aX + a(x2_b2)2 _ ab arc cos £ ] 
4 Xazb^ * 

= 0 

for  b < X s a 

0 < X < b and  a < X < (a2+b2)ä 

(c)  F3(X) =    I        l-^a2 + h2)_lx2 + a{x2_  h2)h  + 
4Xa-'bz 

+ b(X2_a2)2 + ab(arc sin — - arc cos — )] 

for   a < X < (a2 + b2)2 

= 0 , 0 < X < a. 

The n^h moment  E(Xn)  of  X  is given by 

E(Xn)   = 

7      2   A 
b a (aZ+bZ)2 

r   XnF1(X)dX+    f   XnF2(X)dX+   P Xn F   (X) dX 
o b a 

In the  case  of     n =  1     we  have 

5^5     ,2^2. 
E(x)   m  «> + tr>-(«'+b*)7 +   l(a2 + b2}i 

15 a2br 2K2 3 

+ 1  jbiah-l   Ä + a£8h-l   b   }     B 
6  a a 

The following is a table of  E(X)/a.  We write  b = ka   and hold 
a  fixed.  Then 

TABLE 3 

K E(X)/a 

0.0 0.33 
0.2 0.350 
0.4 0.383 
0.6 0.424 
0.8 0.471 
1.0 0.521 
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To continue beyond k = 1  one simply interchanges the role of  a 
and  b.  It is worthwhile to verify the value  E(X) = 1 a 

3 
(as expected) in the degenerate linear case from the general formula. 

One might as in the case of the line patrol investigate maximum and 
minimum separations.  Variances of separations should also be 
considered.  The integrations for these and higher moments are 
tedious, but all can be performed in a finite number of operations 
to yield a closed form. 

1.3   Other Dimensional Problems 

There is a variety of problems of this kind in two dimensions, and 
of course the challenge of higher dimensions is operationally 
meaningful.  We mention the following two dimensional extensions 
leaving the interpretation and proofs to the reader. 

1.3.1 Parallel Lines 

There is a rectangle of dimensions (a,b) with  a > b.  Two points 
P  and Q     are selected from uniform distributions on the two long 
sideso  What are: 

(a) the mean value of  PQ? 

(b) the mean square value of  PQ? 

The answers are: 

3 i 

(a) E(PQ) =4[-(a2 + b2)7-b2(a2 + b2)2+b2a sh"^ + -b3] j 
az  3 b  3 

(and it will be seen after a little work on the  sh~"   term that 
E(PQ) -*  1  a as  b •* 0)  j 

3 

(b) E(PQ2) = i  a2+b2 . 
6 

2  1 
One purpose of this calculation is to see whether  [E(PQ )]2  is 
a serviceable approximation to  E(PQ).  The reader may wish to 
conjecture why one would be interested. 

1.3.2 Distance between Point on Side of Rectangle and Point within 
Rectangle 

This is the two—dimensional analogue of the problem of the mean 
distance between one end of a line and a random point upon it. 
Solution requires care and patience.  Let  P be selected on the 
longer side of length  a.  Denote, as usual, the length of the shorter 
side by  b.  The probability density function  f(X)  of the distance 
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PQ = X  is there- 

with 

Also 

E(X) 

f(X) = fx(x) 

f2(X) 

0 < X < b 

b < X < a 

f3(x) < X < (a2+b2)2 f 

fl(X) = 

f2(X) = 

f3(x) = 

(a TT - 2X) X/a2b  , 

2X(i arr- a cos-^b/X) - b)/a2b  , 

2X | a sin-1(a/X) - a cos-^b/X) + (X2-a2)2 - b | /ab 

(a2+b
2)7  , 

6 a2 
>3        -1 b sh 

6a2  12b     a   3a 
-£-(a2+b2)2 + -£i+5— « . a 

b 

2. SOME PROB1EMS OF CLOSURE 

2.1   Basic Geometry 

The simplest possible problem of closure is this.  A submarine 
which, for the purpose of description may be regarded as stationary 
at a point  S, fires a torpedo at a target  T  whose position, course, 
and speed  v,  are known at the moment of firing.  The geometry is 
shown in Fig. 2. 
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T0  is the position of the target at time of firing.  The range on 
firing S T0 may be assumed to be known to have value  R(metres). 
This plus a bearing (not shown) establishes  TQ.  Conventionally 
the target's track is defined in terms of the initial bearing line 
by the angle  0 on the target's bow.  The speed of the target is 
v(m/s)  and the speed of the torpedo is  V.  This is to be fired 
along  SU,  a track deflected from the initial bearing line  ST 
by the deflection angle  9 ,  to hit the target at  U.  For the 
moment let us confine ourselves to point targets and accurately 
known values of  R,  0, v and V.  Then for a hit the time for the 
torpedo to run from  S  to  U is equal to the time for the target 
to proceed from  T  to  U.  Thus, for a hit, 

SU 

whence the deflection angle  9  is given by 

sin 9 = — sin 0  , 
V 

and this solves the fire control problem.  A course  SU  with such an 
angle  9  is called a collision course. 

Clearly if - sin 0 > 1  there is no possible value (real) of  9  that 

can be selected to yield a hit.  This creates the notion of favourable 
and unfavourable regions for  S.  Thus define an angle  0O  such that 

0v 
„ = arcsxn — (V < v)  , 

2 
(V > v) 

Then a submarine that finds itself in the shaded region of the 
following diagram can not with its assumed weapon limitations possibly 
hit the target • 

FIG. 3 
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This represents a limitation on the approach possibilities of the 
torpedo.  The elementary setting we have chosen characterises a much 
more general situation.  The problem of closure of the torpedo might 
equally well be the problem of submarine trying to reach an attacking 
position with respect to the target, usually requiring closure to a 
prescribed range from which a weapon can be fired and then reach the 
target.  This would be a double application of the elementary problem. 
This raises the next limitation.  Even when  S  is in a favourable 
position the weapon can not possibly arrive at  U  if the range  SU 
exceeds the weapon's endurance.  Thus, given the fire control 
solution — essentially the angle  9, — the geometry of the 
triangle is completely known and 

SU = R sin 0 

sin (9 + 0) 

If this exceeds the weapon's endurance the submarine commander had 
better try to get closer. 

It will be evident that in practice  R, 0  and  v  will all be 
known to the attacker imperfectly.  As a consequence the calculated 
value of  9  will be wrong.  However the target is not really a point, 
so  9  can be wrong but the target still hit.  What is the probability 
that the target will be hit? We have returned to problems of geome- 
trical probability.  But the elementary nature of the model and the 
associated mathematics should not be permitted to deceive the reader 
who does not already know how complicated it is to use analysis to 
make probability statements. 

Torpedoes may be of several varieties:  straight runners;  pattern 
runners;  homers;  combinations of these.  The description "straight 
runners" means just that the weapon tries to follow a straight line 
track.  Pattern runners are designed to follow curvilinear trajec- 
tories, partly to fool the enemy, partly to convert attack from an 
apparently unfavourable point, to one that is more favourable. 
Homing torpedoes run to a point somewhere near the target and then 
proceed to track it down by detecting and locking on some physical 
emanation from the target.  Intermediate between homers and pattern 
runners are the guided varieties of weapon that may be controlled by 
the firing ship for most of their trajectory to the target, and then 
perhaps utilise terminal homing.  All give rise to more or less simple 
mathematical descriptions and much more complicated error analysis 
on the basis of which probability of hitting statements may be made. 
In the next paragraph we shall look briefly at the case of salvos of 
straight runners, and then at some homing and guidance mathematics. 

To increase the probability of hxtting the target salvos (i.e. several) 
of weapons may be fired.  The argument is that if a single weapon has 
probability  p  of hitting then the chance of one or more hits when  n 
weapons are fired independently increases to  1 - (1 - p)n.  This 
calculation is not completely applicable in real life since the weapons 
can rarely be regarded as being fired independently, but the principle 
of a probability increase holds.  How does one go about making a 
probability of hitting statement?  Take the case of a simple straight 
running torpedo.  We have seen earlier that the torpedo must be 
aimed off.  But since the target, a ship, is finite in length, and not 
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a point, a range of values of  9,  not just a single value, 
favours a hit.  In Fig. 4, the target  T_iT0Ti  has length  2L 
and T0  is the midship position.  The range or possible hitting 
points corresponding to  T_]T   and T^  is U_^UQ  and U]_, 
and U_^U0  is in general different in length from U0U^.  The 
permitted range of values of deflection angle  9  for a hit 
(firing when the centre of the target is at  T0)  is 
(9o- 8-1 t    8o+ 6l)« 

2L 

To obtain  9i  and  9_^ the fire control computer would 
basically calculate: 

X sin 90 
(a>     e-l.l =  arctan  [- ? --] (X   =  L/R0|   R0 ' 1 ± * cos 90 

(b)    0_lfl - 0O ; e_lfl        j 

ST0) 
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(c)     8   i   i   =  aresin   [vsin  0 ]     ; -J-»-L Y » 

(d)   6.lfl = ± eG + e_i,i ; e.-L^   5 

where the first subscript is taken with the upper of any two sign 
choices available0 

The probability of a hit depends upon the distribution of  9 
about  9   and this is a more complex question than may at first 
sight appear since the errors that may affect  9  derive at least 
from: 

(a) tracking and location errors (0, v and RQ  may be 
in error); 

(b) fire control errors (calculation in the computer, 
launching errors); 

(c) running errors (the weapon may curve instead of running 
straight ) • 

Naturally it is supposed that the target is in range, 

2.2   Some Homing Mathematics 

The most well known homing system leads to what is called a pursuit 
curve which we now describe in two dimensions.  A rabbit  R  when at 
a point  R0  in a field perceives a dog  D  glaring menacingly at 
him from a point  DQ  at distance  d.  The rabbit sets off at 
maximum speed  V  in a straight line and is pursued by the dog at 
his maximum speed  v. 
The initial positions are as shown in Fig. 5. 

R o 

FIG. 5 
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The dog now chases the rabbit, always heading straight for him.  To 
describe D*s trajectory, the pursuit curve, it is convenient to 
work in target space, that is to "reduce R to rest" by applying a 
velocity equal and opposite to  V to  D.  Then we have the polar 
coordinate system  (r,8)  as shown in Fig. 6 with  r = RD. 

FIG. 6 

In actual geographical space the rabbit would be running to the 
left along the dotted line.  The equations describing D*s relative 
motion are 

r  = - v + V cos 8  , 

r 0 =  - Vsin 8  , 

and the polar equation of the pursuit trajectory is accordingly 

tsinj_ej 
sin 1 80J 

xsi 1 ft 1 cos ^ 90 
cos i 8 

X+l 

The dog will catch the rabbit when  r= 0.  Let  0 < 80*"   • 
2 

Then if  X = v/V > 1,  as instinct tells us, this will occur when  8 
has reduced from  8Q to  0.  (It is clear in this case from the 
second equation of motion that  8  decreases as time t  increases4) 
With the value of  r  given by this equation we can establish a 
relation between  8  and t.  One version is 

Vt , /tan   £   8 >      /sin    80\ 
n,,,[^coS 8o - 1 r—1   I /   <x+ cos 8>3• 
(X2_i) Vtan^So   '       V sin   8 / 

so 



The final value of time when/if the rabbit caught is more easily 
seen from the alternatives 

Vt _ sin 90 X + cos8 X-l- 

(X2-D n)[X + cos eo- T^nfe^ .<TTS3>^"i8>  ^ 

Then, when  X >1  the final value  t^  of t  is 

*1- 

rQ(X + cos 60) 

V(X2-1) 

Obviously for the dog to predict correctly what the rabbit will do 
and then to proceed on a straight collision course is more efficient. 
The time to intercept is then 

t1 = 
Components of D*s relative speed along D0R0 

r„ 

v cos D — V cos 6 

V (cos D - cos 9Q) 

where  D,  the deflection angle, is given by 

sin D = -r-  sin 80. 

Table 4 and curve I of Fig. 7 describe a pursuit curve for 
rQ = 2000 m,  v = 500 m/min,  X _ 2,  90 = 100°. 

TABLE 4 

e t (min) r/r0 

100 0 1.000 
90 1.17 0.693 
80 2.00 0.496 
70 2.61 0.362 
60 3.09 0.267 
50 3.48 0.197 
40 3.82 0.143 
30 4.11 0.100 
20 4.38 0.063 
10 4.63 0.031 
0 4.87 0.000 
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I  Pursuit — no lead.    II  Pursuit — 5 lead angle. 

Ill  Line of sight guidance. 

FIG. 7  Pursuit Curves in Target Space 

The time to intercept on a collision course would be 4.18 minutes. 

A variant of the basic pursuit homing system is "pursuit with lead". 
In this case (Fig. 8) the weapon1s velocity vector makes a constant 
angle,  0 say, with the line joining weapon to target in the sense 
of pointing ahead of it.  ("Pursuit with lag" uses negative  0). 

S2 



In relative  space 

the  equations  are 

f = -  v cos  0 + V cos  9 

r9  = v sin 0 -  V sin  6 

leading to 

(a)     when     b —  sin 0  >   1; 
a  =   X   cos  0j 
X  = v. 

V 

r     . rb" sin 8°n        r       ~2a 
Z L— ;—- J exp[—5 —r arctan ro b- sin 9 (b2 - Iß 

( (b2-l)   sin ±   (9-90) -> 
lbcosi(9_90)_sini(9+90jf

J 

It   is   clear   in this   case that  the  weapon  will   never  reach the target 

(b)     X   sin 0  <   1 

It is now convenient to write 

X sin 0 = sin i|r , 
and we consider only the case where 

sin i|f < sin 90. 
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This means that  9  is initially negative and that  6  decreases 
from its initial value  9Q until it reaches ^  when a collision 
occurs. 

We obtain 

^cos0 

_£_ m   I* sinJjMOr08 ♦ rcos^(90^)1 
ro "     Lsin i   (eo-*J lcosi(e+ + )J 

cos 0 

cos i 
+ 1 

which reduces satisfactorily to the equation obtained previously 
for pursuit without lead when we put  0 = i|r = 0.  The time  t  to 
reach angle  9  is given by 

U+l  n U-2 
H    Cco«^ (9Q+*)3    .r  [ainj(M)] 

2V [sin^Mir1 'Qo [cosi(9+V)]"+2 
d9 

where 

U = ^ cos 0/cos ty 

Integrating we obtain 

U+l 
r0[cosi(eo+»)] 

Vcos3Ksini(90-i|f)]u-1 

u+l    u+l u    u u-l   u-l 
(xo       -x      )    2sinf(xo   -x )   (x0      -x        ) 
 + +  

U+l u u-l 

where 

x  = 
sin£(M) 
cosi(8+t) 

and  xQ  is this with  9  replaced by  9Q# 

The effect of a lead angle can be seen from Table 5 which may be 
compared with Table 4.  All parameters are the same and the lead 
angle  0  is 5°«  The curve is marked II on Fig, 7 to provide a 
visual comparison. 
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TABLE 5 

Pursuit with Lead Angle of 5°.  Parameters as in Table 4 

e° t(min) r/r0 

100 0 1.000 

90 1.75 0.642 

80 2.27 0.42 8 

70 2.59 0.292 

60 3.40 0.201 

50 3.72 0.137 

40 3.96 O.O89 

30 4.27 0.053 

20 4.47 0.024 

10.04 4.66 0.000 

It will be seen that in this case lead gets the weapon more 
quickly to the target than no lead.  But perhaps the trajectory- 
is more exacting for the weapon in terms of turning rates.  The 
basic mathematics for a thorough investigation is here. 

Analysis may be required to cope with the case of a manoeuvring 
target.  Circular arcs are basic.  If the target's path has constant 
radius  p  and it travels with constant speed  V then the same 
relative space technique gives the differential equations 

» 
r V cos (6-Vt) „ 

r6 = - V sin (6 _ Ü) 
P 

for straight pursuit.  Numerical techniques are indicated for 
analysis. 

Finally it is worth mentioning two other systems.  The first may be 
described as "line of sight guidance".  The system may be thought of 
as such that a fixed point  P of the weapon is kept on the bearing 
line joining parent ship (submarine) to current position of target. 
The weapon's velocity vector has a constant component in the direction 
of the bearing line, directed at the target.  In a second system, 
related to what is sometimes called "proportional navigation", the 
lead angle  0  varies with time and is corrected by servo-mechanisms 
which try to reduce it to zero.  This system may be useful if there 
is poor fire control information. 
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The pursuit curve is the basis of most homing systems«  A passive 
acoustic homing torpedo, for instance, always tries to point 
towards the target by adjusting its track according to where the 
noise is coming from.  The trajectories themselves naturally become 
more elaborate if the target is disobliging enough not to follow a 
straight track.  Also in some cases it is necessary to look at the 
three-dimensional form of the pursuit curves.  The point of a 
mathematical analysis is, of course, to examine what demands are 
made on a weapon's speed and manoeuvrability by a certain homing 
or guidance system, and by plausible enemy evasive tactics.  The 
mathematics thus enters both on the weapon design and employment 
side, and is an indispensable element in an investigation of pursuit 
and evasive tactics. 

An elementary formulation of the problem for line of sight guidance 
is of interest as a final exercise in homing mathematics.  In geo- 
graphical space, as shown in Fig, 9* the firing ship S  pursues a 
fixed trajectory with constant speed u and the target  T  does 
likewise with constant speed  V.  S  controls the weapon W directly 
(wire), or remotely (radio), holding it always on the bearing line ST, 
The weapon has constant speed v at fixed angle  x to the bearing. 

In target space (target put to rest) we have Fig. 10. 

S 

V 
—*■ 

FIG. 10 
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Let  ST =: R .  Then 

R = V cos 8 - u cos (9-0) = A cos 9 - B sin 9     [Eq. l] 

R0 = u sin (9-0) - V sin 9 = - A sin 9 - B cos 9   [Eq. 2] 

where 

A = V - u cos 0,    B = u sin 0 

These are the basic guidance equations and determine  9  which has 
to enter into the homing equations.  Putting TW = r  we have, as 
usual, 

r = - v cos x + v c°s 9 » [Eq. 3] 

r0 = v sin x - V sin 0 . [Eq. 4] 

Integration yields 

R _ A sin 8p + B cos 9p [Eq# 5-] 
R0  A sin 0 + B cos 0 

and by substitution in Eq. 2 

2 
•      (A sin 9 + B cos 0) 

R0(A sin 0 + B cos 0) 

Finally, substitution in Eq. 4 gives 

[Eq. 6] 

r (V sin 0-v sin x) (A sin 0O + B cos 0O) 
ro (A sin 0 + B cos 0): 

with a hit if and when  0=0,  given by 

[Eq. 7] 

«    v sin Y r „   o-, sin 0h =  ~-     » [Eq. 8] 

There are, of course, considerations of signs of the factors of the 
numerator in order to have a practical geometry.  Also the weapon is 
launched from S  so that  r0 = R0.  This means that for consistency, 
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V sin 0O - v sin x = A sin 0O + B cos 9o 

must hold. 

The implication of Eq. 9 is that 

[Eq. 9] 

v sin y = u sin (9o-0)  > [Eq. 10] 

which places a restriction upon the parameters at the disposal of S. 
As an example consider the parameters of the example used previously, 
viz.  V = 250 m/min,  v = 500 m/min,  R = 2000 m,  80 = lOOo, 
Taking u = 100 m/min,  0 = 10°,  we get from (Eq, 10) sin \ ~  0.2 
and x = 11.537,0°.  Then A = 151.5192,  B = 17.3648,  and a check 
reveals that  R0  is negative, as it should be for a hit, and that 
80  is negative, so that  6  decreases from its initial value of 
lOOo to 6h  which may be calculated from Eq. 8 and is 23.580.  The 
customary table for the homing curve and time required is given 
on Table 6.  The curve is also plotted on Fig. 7 as curve III.  It is 
visibly longer than the straight pursuit curves. 

TABLE 6 

9° •Ao t(min) 
~~— 1 

100 1 0 

95 0.976 1.15 
90 0.955 2.29 

85 0.938 3.40 
80 0.922 4.49 
60 O.87O 9.19 
40 0.724 15.65 
35 0.620 17.92 
30 0.443 20.70 

25 0.130 24.22 

24 0.041 25.04 
23.58 0 25.40 

The  equation  for  calculating    t     as  a   function of     9     is 

t = 
R0 cos 90 (tan 90 ~ tan 8) 

B + A tan 9 
[Eq. 11] 
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It will be seen that really a very long (ludicrously so) time is 
required under this system relatively to the time for straightforward 
pursuit.  It is for the analyst to weigh the advantages of the system, 
find how to reduce its practical difficulties if there are tactical 
reasons for adopting such a system, and to make recommendations* 

2.3   A Ship Closure Problem 

To conclude this chapter on closure we discuss a typical and simple 
problem.  It is supposed that the position of a submarine has been 
reported.  It will be assumed that there is no uncertainty about 
this position.  A group of ships with semi-swept path W*  immediately 
begins to close the reported position from range  R  with speed V. 
The submarine's speed v  is equally likely to have any value in the 
range  0 £ v £ v0,  and its course is equally likely to be anything. 
What is the probability that the group sweeps over the submarine? 

The reported submarine position is A and the group starts from B 
along BA (BA = R)  with speed V (Fig. 11).  If the submarine is on 
a track making an angle  0  with  AB then it will just be detected 
if its track relative to the group makes an angle  0  with AB 
such that 

tan 0 = - 
R 

say. [Eq. 12] 

# 
This means that detection of a submarine within a range W of the ship's 
position is 100% certain.  Beyond W the probability is zero. 
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We have 

tan 0 =  V Sin 9 [Eq. 13] 
V + v cos 8 

and so generally, for a detection 

0 <   VSin9    < r  , [Eq. 14] 
V + v cos 8 

where we restrict ourselves to  0 < 8 <^ • 

(There is symmetry about AB, so the first two quadrants supply all 
information.) 

Now if  8=0,  the submarine is moving towards  B and clearly 
whatever speed  v  which it makes good  (0 < v < •)  will result 
in its being detected.  A small increase in  6  will result in a 
finite, but still large, range of values of  v which are favourable 
to the submarine's detection;  as  8  increases the corresponding 
range of  v decreases. 

Clearly there is a critical value  8i  of  8  to be associated with 
the speed v0  for which all submarine speeds such that  0 < v < v0 
will result in detection.  We may say that for values of  8  such 
that  0 < 8 £ 8i the submarine is bound to be detected since 
whatever speed it uses, even restricting itself to  0 < v < v0 , 
it will be detected. 

Also there will be a second critical value  82  of  9  which gives 
similar results - viz. for  82 < 8 < 71  the submarine is bound to 
be detected whatever speed it uses (and always supposing that 
V > v0). 

The joint probability that  8  lies between  8  and  8 + d8  and 
that  v  lies between  v  and v + dv  is 

*£  ££ • [Eq. 15] 
vo   * 

The probability  P that the submarine is detected is therefore 
given by 

P = li+ A(9l, 02) +^ii [Eq. 16] 
n n 

because of symmetry about  AB, where the function A(8i> 82) 
corresponds to detection for  81 < 9 < 82« 
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The critical values of  9  are the solutions in  0 £ 9 < TT of 

v0 sin 9 = r(V + v0 cos 9) 

With  t = tan ^9,  this equation gives 

r t2 (V-v0) - 2 t v0 + r(V+v0) - 0 . 

Hence 

tl,2 = 
rG  * [vo2(l+ r2)-r2V2] 

r(V-v0) 

where  t^ = tan 3 9i  is obtained with the - sign. 

Now, choosing a  9  in  (9i> 92)  we see that, for a detection 
0 < v < v^  where  by Eq. 14 

vj sin 9 

V + vi cos 9 

i.e. 

vl  = 
Vr 

sin 9 - r cos 9 

The function  A(9^, 92)  i-n Eq, 16 is thus given by 

A(elf  92) = 

02  vx 
P 

S 

TT V O <-'   1 

dv d9 = 

&l   o 

Vr   P 

TT V0  J 

_d§_ 
sin 9 - r cos 9 

6l 

Vr 

TTV, 
K9i, 92) . 

Writing A2 = 1 + —■  we have 

K6i, 92) = ^7 *n v A 

(t2+i - A) (tx + i + A) 

(tx + 1 - A) (t2 + 1 + A) . 

where  t, 

* = v0/V. 

1 

X + r(X2 A2-l) 2    .    X , r(X2A2 - l) 
-"   r(l-X)      >  tl =  r(l-X) 
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Hence  altogether the  probability     P     of the  submarine  being  detected 
is 

= £      [TT+Si-92 + ^ KSx,   e2)] 

As an example take: 

v = 5 knots; o 

V = 20 knots; 

R  =20 nautical miles; 

W —  2 nautical miles; 

X =  0.25 : r = 0.1; 

A2= 7 101 : A = 10.05 

Noting that 

->-* X ±r *A(1- X2A2) 
'2>1 :      r(l-X) 

0.25 * 0.2304 
0.075 

t2  = 6.405 : S2 = 2.832 ; 

t-L  = 0.2613 : 0X = 0.5112  ; 

P  = 0.659 . 

If  V  is reduced to 18 knots  P  is reduced to 0.618. 

3. PROBLEMS OF LOCATION 

The final chapter of this Part on geometrical problems is concerned 
only with the location of a target given that one knows one's own 
position.  Problems of navigation, which include the latter, are both 
of great importance militarily, and mathematically quite rich, but to 
do them justice would require a further volume which this author does 
not plan at present. 

Complete location of a target in two dimensions (all we deal with) 
with respect to a reference position and direction may be said to have 
taken place when the observer has determined four quantities : 

(a) a position (two quantities) at some time; 

(b) speed in magnitude and direction. 

For example, if one obtained two accurate ranges and bearings 
separated by a fixed time interval then (a) and (b) are known.  Since 
ranges and bearings, if used, are subject to error two alone of each 
will rarely be allowed to suffice.  A number would be taken. 
Mutual inconsistencies will be observed and these may be attributed 
to errors, to target manoeuvres, or to both.  Then arises the question 
of reconciliation, and the taking of a decision as to what the target 
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is doing and then, usually, what it is likely to be doing in the 
immediate future.  Thus one confronts a set of problems of smoothing 
and prediction, too vast to be more than mentioned here» 

We shall focus attention on the mathematics associated with the 
location of a target using only bearings, and no range measurements. 
This is a situation that arises when an observer does not wish to 
disclose his own whereabouts and so merely listens to, or watches, 
passively, the target** movements, noting bearings.  In principle 
four bearings are sufficient, but again the problem of inconsistencies 
arises.  Before tackling that one must look at the basic mathematics. 

In geographical space, with a target  T  on a constant course, 
constant speed, trajectory, the basic situation is as depicted in 
Fig. 12. 

FIG. 12 

The bearings are  0O, 0]_, 09, 0?, ...  taken at times 
*p> ^1» *'2> ^3? •»•  from ship positions  SQ, Sj_, S2, S3, ... 
The ship is known to have constant speed  v  in the direction 
shown.  The problem is to establish a target position  TQ,  say, 
together with  V and 0. 
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If we look at the problem in ship space, then at time t  we have 
the situation shown in Fig. 13t 

FIG. 13 

so that in polar coords (r, 9)  with  ST = r, 

r = V COS ( 9rr0) - V cos 0 , 

r§ = v sin 9 - V sin (9-0)  • 

[Eq. 17] 

[Eq. 18] 

These equations resemble Eqs. 3 & 4. 

Writing 

A = V cos 0 - v , 

B = V sin 0 

we then have 

[Eq.   19] 

£       B  cos   80  -  A   sin   8n 
ro        B  cos   9  -  A  sin   9 

[Eq.   20] 

and 

so   that 

(B  cos   9  -  A  sin   9) 
0 =   

rQ(Bcos90-A  sin  90 

r-^9 = ro(B cos 90 - A sin 90) = constant 

[Eq. 21] 

[Eq. 22] 
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An interesting practical conclusion that can be drawn from Eq, 22 
is that, provided the target remains at constant speed on constant 
course, the range  r  at time t #is proportional to the inverse 
square root of the bearing rate .9  at the same time.  This means 
that if estimates are formed of 0 , for example by plotting the 
relative bearing  9  as a function of time, smoothing, and reading 
off the slope of the  9  versus time curve, one can construct a 
table of the type of Table 7> 

TABLE 7 

r t 
9 

_1 
•        2 

K 0 

fci 9i 
•    -2- 

K ex 
2cc ri 

< 
t2 92 

K  82  2GC r2 

*3 93 

l 

K   93    C&  r^ 

k 

and if the entries in the third column are plotted on polar paper 
against  9,  for a suitable value of  K  (not difficult to select 
on the basis of operational experience) then the line joining these 
points is, within the limits of accuracy, parallel to the targetfs 
estimated track relative to the observer. 
To determine completly the target's location then needs only the 
identification of which of the infinite family of parallels really 
is the target's relative track, for then measurement of the 
intercepts gives the absolute value of the relative speed  from 
which true speed and direction can be constructed by a vector 
diagram, while clearly any of the points on the identified relative 
track can be used to determine a target location in geographical 
space at a given time. 

It will be noticed that continuation of the measurements of bearings 
and the plotting of points, however long continued, adds no further 
information.  Hence the observer must change his tactics.  Let us 
suppose this to be merely a change of speed.  Then he must plot his 
new track relative to his old one carefully on the polar diagram. 
In principle one further observation is sufficient.  For all the 
observer needs to do is to mark a new bearing line and find where it 
intersects the bearing line that would have corresponded to the time 
of the new observation had he not moved, this latter bearing line 
being simple to construct.  That parallel through the point of 
intersection is the one sought to provide all supplementary infor- 
mation.  Naturally it is preferable to prolong the new set of 
measurements.  An experienced observer, it is to be noted, can deduce 
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a great deal about even a manoeuvring target from plots developed 
in the manner described.  He can also often improve his locating 
ability by appropriate manoeuvres according to the behaviour of 
the target. 
For example, a submarine target may move quite slowly so that the 
bearing rate is small and in that case particularly susceptible to 
error.  It is clear that there are observation positions from which 
the bearing rate will be near its maximum for given tactical 
conditions, and such positions are for the observer to find and 
occupy.  Finally, as noted above, the prolongation of the time of 
observation is naturally beneficial towards the formation of more 
reliable estimates, but on the other hand, provides the target with 
more opportunity to manoeuvre and escape. 

The reader who is well versed in what used to be called geometrical 
conies will not be surprised, if indeed he did not immediately 
perceive, that the basic geometry is that of the parabola.  We shall 
now review this briefly by well-known, but pedestrian, cartesian 
methods.  The reader is advised that the methods of protective 
geometry are more elegant and expeditious. 

V 

*-x 

FIG. 14 

Consider Fig. 14, let the origin of rectangular cartesian coordinates 
be  S o» as shown. S0T0 (bearing  8C)  is the initial bearing line 
corresponding to time ~t = 0.  T0,  the initial position of the 
target,  has coordinates  (xo>yo)*  After time t  we suppose the 
observer to be at  S  and the target at  T,  bearing  0.  The points 
S  and T  have coordinates  (vt,0), 

(x0 + Vt cos 0, yQ + Vt sin 0) [Eq. 23] 
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respectively, where  V and 0  define the targetfs speed vector. 

Also 

y  = X  tan 9   . [Eq. 24] Jo   o     o 

Observation gives  0O,  while  xQ, y  V and 0  have to be found. 

The characteristic bearing line  ST  has equation 

x - v t 

or 

t(v-Vcos0)-x    -y - Vt sin 0 

x - v t  _  y_ 

[Eq. 25] 

At + x      y  + B t o    Jo 

This may be written as a quadratic in time  t  thus: 

Bvt2 + t(Ay-Bx + vy0) + (x0y + y0x) = 0 [Eq. 26] 

The envelope of this line for varying t  is the parabola: 

(Ay-Bx + vy0)
2 = 4 Bv (xQy + y0x)  . [Eq. 27] 

To find the axis and tangent at the origin we write the parabola 
in the form 

(Ay-Bx + C)" = 4L(By + Ax + D) [Eq. 28] 

and determine  C, L and D  so that Eq. 2 8 is identical with Eq. 27. 
This gives 

2Bv(Ax0-By0) 
C = vy  

R2 

Bv(Ay0 + Bx0) 
L =  _    . [Eq# 29] 

R 

v      rB(Ax0-By0)
2 j 

D = (Ay0+Bx0)   [ P yo<A"o " B"o'J I 

where R2 = A2 + B2. 
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The axis is the line 

Ay - Bx + C = Oj 

The tangent at the vertex is 

By + Ax + D = Oj 

The latus rectum has total length 4L. 
The vertex is the point 

[ BO AD 
R2 

-(AC + BD) 
R2 ] 

The focus is 

[BC-AD + 2LA 
L  R2     R 

-(AC -t-BD) + 
R2 

2LB 
R J 

These expressions can be simplified, and the student should do it. 
In particular it can be seen that the slope of the axis.of the 
parabola,  B/A,  is parallel to the slope of the target's speed 
vector relative to the observer. 

Any line that has the property that the ratio of its intercepts by 
the bearing lines is equal to the ratio of the times between the 
bearings could be generated by a target with appropriate choice of 
speed and initial position. To the well-versed student it will be 
obvious that such possible target tracks are also tangents to a 
parabola, and indeed to the same parabola as that enveloped by the 
bearing lines.  We refer now to Fig. 15. 

FIG. 15 
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Let the initial bearing be  0O,  taken from So(0,0).  Let the next 
bearing be  81 taken from Si,  where  S0S^ = vti  and, of course, 
v and tl  are known.  Now for any point  P0  selected on the first 
bearing line any other point P\     may be chosen on the second 
bearing line, and clearly  PoPl  could be a target track with speed 
P0Pl/ti  and direction given by the inclination of  Po^l»  The line 
becomes a unique possible target track corresponding to the choices 
P0  and  P-^  iff  for  any time  t > tl,  a point  P  is defined 
on the continuation of  PoPl  such that  P0P = 

popl t  and P  lies 

on the appropriate bearing line. '-*- 

With the usual notation  Po(xo»Yo)> ^l(xl> Yl)» p(x»y)  we have for 
any line through  P0  with inclination 0, 

x - x = s cos 0,   y - y = s sin 0 • [Eq. 30] 

with y =; x tan 8 . Jo   o     o' 
where  s  is the distance measured along the line from PQ  to  P. 

The next fixed bearing line has equation 

x - vti = r cos 81,   y = r sin 81, [Eq. 31] 

where  r  is the distance measured along the line from S^ 
to  (x,y)j  with fixed v, t and  81.  r  corresponding to  P^  is 
given by the intersection with the line through  PQ«  Thus 

x + s cos 0 = vt, + r cos 81 

yQ + s sin 0 = r sin 81. 
[Eq. 32] 

Given 0,  everything is known except  r and s.  These may 
easily be found.  Thus 

r = (vt1   sin 0 - XQ sin 0 + yQ cos 0)/sin(8i~0); [Eq. 33] 

s ■■=   (vti sin 81-xQ sin 0i + yo cos 81)/sin( 8i-8) J [Eq. 34] 

and the possible target speed corresponding to this choice of  0 
is s/tj_. 

Any point  P(x_,yp)  on this line corresponding to time t is now 
given by 

XP = Xo + tT COS 0'   yP = yo + f^ S±n 0# [Eq# 35] 
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But the line  P0P^P will only qualify as a possible target track 
if the line  PS  joining P to the current observer position 
S(vt,0)  has the observed slope/bearing  0.  The requisite condition 
on 0, given P0,  is then that 

y0 + — sxn 0 
   = tan 9 . [Eq. 36] 
xn + — cos 0-vt 
°  *1 

Equations 34 and 36 determine  s  and 0 (in principle) for the 
observed and known values and the arbitrary choice of xQ 
(yQ  follows from yQ = xQ tan 0O, 0O being given). 

We seek the envelope of the possible target tracks corresponding to 
the variable parameter  x0,  i.e. the envelope of the line 

y-x0 tan 0Q = (x-xQ) tan 0 [Eq. 37] 

where 
a sin 0^ -a i sin 9 

tan 0 = 

[Eq. 38] 

a  cos 0i -a x cos 0 

at =  (x0-vt) sin 0-y  cos 0  , 

altl  =  (xQ - vt1) sin 0-j^ - yQcos 6-^   . 

Then Eq. 37 becomes 

(y - XQ tan 0Q) (a cos 01 - a^ cos 0) = (x - XQ) (asin 01 - a sin 0) . 

[Eq. 39] 

We now differentiate with respect to  x0,  find that  x0  for which 
the derivative vanishes and substitute in Eq. 39.  This gives as 
envelope of possible tracks the parabola 

2 
(I y-  nx+m tan 0O)  = 4 my (£ tan 0O - n)  ,        [Eq. 40] 

where 
cos 0^sin(0-0o)  cos 0sin(0i-0o) 

I  =    j 
t tx 
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m = v cos 0o sin (0 - 0^  ; ££q> ^-j 

sin Bi  sin(0-8o)   sinQsinCGj^ 0O) 
n = 

*1 

There remains the problem of showing that Eqs. 28 and 40 are the 
same parabola.  The basic consideration is this:  Eq. 2 8 envisages 
fixed V and 0  with varying t;  Eq. 40, on the other hand, 
envisages fixed t^, t, 0^  and  0,  with varying x0.  The 
fundamental problem of conversion is thus to find V and 0 in 
terms of tj_, t, 0i  and  0.  This may be done by using Eqs. 34 &  36, 
recalling that  V = s/tj.  Proceeding directly to  A  and  B 
find 

Xoit^cos 0, sin(0-0o) - t cos 0sin(0.,-0 )}        t xQ 
A =   

we 

B 

t t, cos 0  sin(8,-0) cos 0 sin(0--0) 

x iti sin 8isin( 8-8 )-t sin 0 sin( 0,-0 ) } nx t»   J-       J- o -L   O O 

t t, cos 0  sin(0,-0) cos 8 sin(0,-8) 

Then, for example, the slope B/A of the axis of the parabola of 
Eq. 28 is equal to n/1, the slope of the parabola of Eq. 40.  A 
little further substitution provides the proof that the parabolae 
are identical.  A visual indication is provided by the Fig. 16. 
Arbitrary target and observer tracks have been drawn.  S   and T 
are the initial positions.  The parabola can be clearly seen 
emerging as the envelope of the bearing lines.  By continuing the 
bearing lines "backwards" from S_  one can see the approach to the 
observers1 track, and thereafter to the actual targets1 track, as 
possible target tracks, all members of the same tangent family to 
the fixed parabola.  As a final exercise the student is recommended 
to develop expressions for  x0, yQ, V  and 0  in terms of 
(v> ö0> 01* 02> ^,, t2 ) and  (vf, 0o, t3)  after a change of speed. 

* 

For example  three  bearings   0O , 0-^  and   02   corresponding  to  times   tQt^ and   t2 

8ive       tan  0  =   (R2tx  tan0x-  Rit2 tan 02)/(R2ti~Rl^2) 

where Rn - yQ  -  xo tan  fln + ^n tan  ©n     t 

and    --,2 ,2   „„2 a A D2 i   „2 -    ■ ■ .-      -   .J 

V 
R t  cos 02 + R  t  cos 0j - 2R.R2t1t2cos8icos82

cos(S2-8j)] 
2  i 12 a 

t1t2 sin(02-0l) 
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The attempt to carry out a paper error analysis will be instructive. 
More useful will be to program the calculations and to investigate 
numerically the error distributions consequent upon measurement 
errors.  This is one of the fruitful applications of digital 
computers to practical analysis. 

FIG. 16 
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