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ABSTRACT

During the past few years the Fourier and Hadamard trans-
forms have been applied quite successfully to obtain a bandwidth reduc-

tion and tolerance to channel errors for digital images. Botl. of these

transforms provide a high energy compaction of an image and possess

a fast computational algorithm. Neither, however, has been expressly

tailored to the characteristic of a typical image. In this dissertation

a slant transform matrix consisting of basis vectors which resemble

typical lines of an image has been developed. The key feature of the

transformation is a set of discrete sawtooth waveforms for the repre-
sentation of linear spatial brightness changes within an image. A fast
transform algorithm based on the matrix decomposition has also been
Presented. The transform has been proven to be superior, from the

standpoint of image quality, to other transforms possessing fast com-

putational algorithms.
The statistical properties of the slant transform have been

analyzed by introducing probability density and covariance models for

the transform samples. The bandwidth reduction capability of the

slant transform has been investigated by several test images. Two
methods of achieving bandwidth reduction have been presented,

namely, threshold and zonal coding. Studies have indicated that the

ii




average coding of a monochrome image can be reduced from 8 bits/
pixel to 1 bit/pixel or 1. 5 bits/pixel for the threshold and zonal coding,
respectively, without seriously degrading the image quality. Studies

have also indicated that zonal coding has an extremely high noise

immunity, and can be practically implemented. ;
Spatial redundancy of color images and the limitations of
human color vision have also been exploited by slant transform coding é
to achieve a bandwidth reduction for natural color images. It has
been found by computer simulation that the average coding of a color

image car bLe reduced from 24 bits/pixel to about 2 bits/pixel while

e

preserving good quality reconstruction.
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1. INTRODUCTION

1.1 General Background

During the past twenty yea«s the applications of electronic
imagery have grown enormously. This growth has placed severe
demands on the capabilities of communication systems since conven-
tional television transmission requires exceptional wide bandwidths.
One means of bandwidth reduction that has shown particular promise
is the transform image coding process.

In 1968 the concept of coding and transmitting the two dimen-
sional Fourier transform of an image, computed by a fast computa-
tional algorithm rather than the image itself, was introduced [1, 2].
This was followed shortly thereafter by the discovery that the

Hadamard transform could be utilized in place of the Fourier trans-

form with a considerable decrease in computational requirements [3].

Investigations then began into the application of the Karhunen-Loeve
(4] and Haar [5] transforms for image coding. The Karhunen-Loeve
transform provides minimum mean square error coding performance
but, unfortunately, does not possess a fast computational algorithm.
On the other hand, the Haar transform has the attribute of an

extremely efficient computational algorithm, but results in a rela-

tively large coding error. None of the transforms mentioned above,

s e
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however, has been cxpressly tailored to the characteristic of an

image.

A major attribute of an image transform is that the transform

compact the image energy to a few of the transform domain samples.

A high degree of energy compaction will result if the basis vectors of

S i S

the transform matrix "resemble" typical horizontal or vertical lines
of an image. If the lines of a typical monochrome image are
examined, it will be found that a large number of the lines are of con-
stant grey level over a considerable length. The Fourier, Hadamard,
and Haar transforms poscess a constant valued basis vector that pro-
vides an efficient representation for constant grey level image lines,
while the Karhunen-Loeve transform has a nearly constant basis vec-
tor suitable for this representation. Another type of typical image
line is one which increases or decreases in brightness over the length
in a linear fashion. None of the transforms previously mentioned
possess a basis vector that efficiently represents such image lines.
Shibata and Enomoto have introduced orthogonal transforms
containing a ''slant" basis vector for data of vector lengths of four and
eight [6]. The slant vector is a discrete sawtooth waveform decreas-
ing in uniform steps over its length, which is suitable for efficiently
representing gradual brightness changes in an image line. Their work 5
gives no indication of a construction for larger size data vectors, nor

exhibits the use of a fast computational algorithm. In order to achieve

s L s e st g e et




a high degree of image coding ccmpression with transform cecding

techniques, it is necessary to perform the two dimensional transform

over block sizes of 16 X 16 picture elements or greater. For large

block sizes, computation is usually not feasible unless a fast algo-
rithm ir employed.

1.2 Research Objectives

With this background research has been undertaken to develop

a slant transform of variable block size possessing a fast computa-

tional algorithm. The specific objectives of this research project are

the analysis and evaluation of the slant transform for image coding.

The approach taken toward the fulfillment of these objectives is:

(1) Development of an image coding slant transform matrix posses-
sing: (a) an orthogonal set of basis vectors; (b) a constant basis
vector; (c) a slant basis vector; (d) sequency property; (e) vari-
able size transformation; (f) high energy compaction; and (g)
fast computational algorithm.

(2) Analysis of this slunt transform image coding system supported
by statistical picture measurements to determine its bandwidth
reduction capability.

(3) Comparison of the slant transform with the Hadsmard, Fourier,
Haar, and Karhunen-Loeve transforms for image coding.

(4) Studying the channel error effects on the slant transform coding

system.




(5) Application of the slant transform coding technique to color
images.

1.3 Origirza! Images

Figure 1-1 shows photographs of the three original monc-
chrome images that have been used as test images for the evaluation
of the slant transform monochrome image coding system. Each
image contains 256 by 256 pixels with each pixel value uniformly
quantized to 255 levels. The images were read from magnetic tape,
displayed on a flying spot scanner cathode ray tube display, and photo-
graphed with polaroid type 52 film. Figure 1-2 shows photographs of
the original color images that have been used as test images for the
slant transform color image coding system. Both of these images
contain 256 by 256 pixels, with each red, green and blue tristimulus
values (NTSC receiver phosphor primary system) uniformly quantized
to 255 levels. The images were read from magnetic tape.displayed on
an Aerojet Model SG-D2219 display unit, and photoyraphed on high
speed Ektachrome film,
1.4 Organization of Dissertation

Ci:apter 1 is an introduction containing a discussicn of general
background and objectives of the research project. The chapter
closes with a summary of the organization of the dissertation.

Chapter 2 presents a general representation of a two dimen-

sional transform image coding system and definitions of the Fourier,




(b)

(c)
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Figure 1-1. Original Monochrome Image: :
(a) GIRL; (b) COUPLE; (c) MOON SCENE.
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Figure 1-2., Original Color Images: (a) GIRL; (b) COUPLE.



Hadamard, Haar, and Karhunen-Loeve transforms. The energy com-
paction property of each transform is illustrated by transform domain
pictures.

Chapter 3 presents a construction of the slant transform
matrix of order 2" where n is a positive integer. A fast computational
algorithm based upon the matrix decompositior. is also presented.

The chapter closes by introducing a class of slant transform matrices
which are constructed by a direct product of the various orders of
slant and Hadamard matrices.

Chapter 4 contains a statistical analysis of the slant transform
domain samples. A derivation of statistical mean anJ variance as
well as an assignment of probability models for the :ransform domain
samples are introduced. The method introduced is generally appli-
cable to all transforms,

Chapter 5 is devoted to a presentation of the slant transform
for monochrome image coding. Two means of achieving a bandwidth
reduction for the transform domain samples are introduced. A deri.-
vation of the quantization and coding scheme, as well as a derivation
of the mean square error between the original image and its recon-
struction, are also introduced. Again the methods derived are
generally applicable for all transforms. The evaluation of the slant
transform is obtained by performing the transform coding to three

test images as well asto animage statistically described by a Markov




process.

Chapter 6 presents the effects of transmitting the slant trans- -
form samples through a binary symmetrical channel. The superiority
of transmitting a zonal coded slant transforrn sample is demonstrated,

Chapter 7 is mainly an extension of the work that has been
presented in chapter 5. All the quantization and coding techniques
introduced in the monochromatic case are used to code transform
samples of each color plane. The color coordinate conversion between

the NTSC receiver phospher primary system and NTSC transmission

primary system is also included.

Chapter 8 summarizes the results of the dissertation.

-



2. TWO DIMENSIONAL TRANSFORMS*

Figure 2.1 shows a block diagram of a generalized transform
image coding system. An original digital image, denoted by £(j, k), is
defined here as an array of samples of a continuous two dimensional
intensity pattern of light. The samples of this image undergo a two
dimensional transformation over the entire image or some subsections
of the image called blocks. The resultant transform samples, denoted
by F(u, v), are then operated on by a sample selector, S(u, v), that
decides which samples are to be transmitted on the basis of magnitude
or geometrical location in the plane. A bandwidth reduction can be
achieved by this selector simply by not transmitting all of the trans-
form domain samples. Those samples that are to be transmitted are
then quantized and coded. At the receiver the samples are decoded *
and inversely transformed to form the reconstructed image f(j, k).
The following sections contain a general representation of a two dimen-
sional transform image coding system and definitions of the Fourier,
Hadamard, Haar and Karhunen-Loeve transforms. The definition of
tiie slant transform is deferred to the next chapter.
2.1 General Representation

Mathematically, a two dimensional transform maps a two

*Part of the theory in this chapter is abstracted from the second
chapter of USCEE Report 387, "Transform Image Coding",

9 .,iff
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dimensional image array of dimension™* NxXN into a two dimensional

array of the same dimension by

N-1 N-1
F(u,v) = 3 2 £(j, k) a(j, k,u, v) u,v=0,1,...N-1 (2-1)
=0 k=0

where a(j, k, u, v) is the forward transform ke rnel. A reverse trans-

form is defined by

. N-1 N-1
fG,k) = 3 Y £u,v) b, k,u, v) j,k=0,1,...N-1 (2-2)
u=0 v=0

where b(j, k, u, v) is the reverse transform kernel. When the function
f(j, k) is equivalent to the original image f(j, k), the reverse transform

is called an inverse transform.

A forward (or reverse) transform kernel is said to be separable

if it can be written as

a(j, k,u,v) = aj(j,u) ak(k, v) ‘ (2-3)

A separable tws dimensional transform can be computed in two steps:

a one dimensional transform along each row of the image {(j , k);

N-1

F(u,k) = 3 £(j, k) a(j, u) (2-4)
j=0

and then a one dimensional transform along each column of F(u, k).

N-1

F(u,v) = ). F(u, k) a, (k, v) (2-5)
k=0

*For simplicity all arrays are assumed to be square.

s i e

e R ) e s

Sy Wl

il ol B g




12
It is often useful to express two dimensional transforms in
matrix form if the transform kernel is separable. Let[f] be an
image matrix representation of the array £(j, k) and [F] be a trans-
formed image matrix representation of F(u, v), then a two dimensional

transform can be written as
[F] = [2,)(£][4,] (2-6)

where [dJ] and [dk] are one dimensional transform matrices along
rows and columns of an image. If [dJ] and [dk] have inverses then a

two dimensional inverse transform can be written as
-1 -1

2.2 Fourier Transform
The two dimensional Fourier transform [1,2,7] of an image
f(j, k) can be expressed in series form as
N-1 N-1

F(u, v) =§ > Y £, k) exp [--ZTT\;i(uj+vk)] (2-8)
j=0 k=0 |

The inverse Fourier transform can be written as

£ 1 b pl 2mi .
(j, k) = N Z E F(u, v) exp ~N (uj +vk) (2-9)
u=0 v=0

The two dimensional transform can be computed as two sequential one
dimensional transforms since the transform kernel is separable.
The two dimensional Fourier transiorm can be put into matrix

form by defining the symmetric unitary matrix
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(7] = -j—ﬁ exp ( "‘lNiju)

Thus, the forward transform can be written as

[(F]=[7]1[f] [J]T (2-11)

and the inverse transform can be written as

(1] = (717 rry )’ (2-12)
Figure 2-2 illustrates a sketch of the Fourier transform wave-

forms with N=16. Figure 2-6 shows the full size two dimensional
Fourier transform displays of the three original monochrome images
shown in Figure 1-1. In each display the original image has been
multiplied by the checkerbourd function (-l)j+k in order to shift the
zero frequency of the transform to the center of the display such that
a photograph similar to the Fourier diffraction pattern of a coherent
optical system can be achieved [7]. In addition, the logarithm of the
absolute magnitude of each transform sample is displayed rather than
the absolute magnitude itself in order to reduce the dynamic range of
the display. From these displays it can be seen that most of the
larger transform samples or energy are concentrating around the zero
frequency region. The symmetrical properiy [7] of the Fourier
transform domain can also be seen from the displays.

2.3 Hadamard Transform

The Hadamard transform [3] is based on the Hadamard matrix

which is a square array of plus or minus ones. The lowest order

o P

|

|
5
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Hadamard matrix can be written as

= =l .
[ﬂzl-ﬁ a s (2-13)

and the construction of a Hadamard matrix of order N can be written

by the following recursive relation:

I -
(¥ 1= 7 P (2-14)

v Py
2 2 .

b -

where N=2" and n is an integer. The matrix [P] is a permutation
matrix which permutes the rows of HN such that the number of sign
changes of each row increases with the row index. This is the
sequency ordered Hadamard matrix.

Equation (2-6) and (2-7) can bz used to express the two dimen-

sional Hadamard transform matrix form by noting that the Hadamard

matrix is real, symmetrical, and orthonormal. Therefore, the for-

ward transform can be written as
[F] = [¥][£][¥] (2-15)
and the inverse transform becomes
(f] = [(M1[F][¥)] (2-16)
Figure 2-3 contains a sketch of the Hadamard transform wave -

forms of order 16. A sequency property and a constant basis vector

can easily be seen in the waveforms. Figure 2-7 shows the two
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dimensional Hadamard transform displays of the three original mono-
chrome images in Figure 1-1. As in the Fourier transform disnlay,
the logarithm of the absolute value of each transform sample is dis-
played in order to reduce the dynamic range of transform samples.
In thece displays a certain degree of energy compaction can be seen
on the upper-left corner of each display which is the low frequency
region of transform samples.
2.4 Haar Transform

The Haar transform [ 5] is baned on the Haar matrix which is
a square array of elements plus one, minus one, and zero. A norma-

lized Haar matrix of order 16 X 16 can be written in the following form

]

1 1 1 11 1 1 1 1 1 1 1 1 1 1 17
1 1 1 1 1 1 1 1 <1 <1 «1 <1 <1 -1 <1
VZ JZ 2 ST T ST AT 0 0o 0 o0 0 o0 o 0
0 0 0o 0 0 o0 9 o JT S T JT ST ST ST
2 2 -2 20 0 0 0 O 0 0 0 O o0 0 O
6 0o 0 o0 2 2 -2 -2 0 0 0 0 0 0 0 © y
6 0 0 0 0 o0 0 0 2 2 -2 .20 0 0 0 3
[eu]:ﬁ © 0 0 0 0 00 0 0 0 0 0 2 2 -2 -2]z1 ;‘
2f2.2/270 o0 0 o0 o0 06 0 0 0o 0 o0 o0 o o 2
0 o0 2Z-2/20 0 0 0 0 0 0 0 0 0 O 0 4
0 0o 0o 02Z-2/£0 0 0 0 0 0 0 ©0 0 o 1
0 0 o o0 0 02/Zi.2/f0 0 0 O0 0 0 O ©
6 0 0o 0 0o o0 o0 o02/2-220 0 0 0 0 o
6 o 0o o 0 o0 0o o0 o0 o02/2-220 0 0 0
0 0 0 00 o0 0 o0 0 0 0 o02Z-2/Z0 o
(0 0 0 0 0 0 0 0 0 0 2 0 0 o0 2/7-2./%]
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Based on this pattern the Haar Matrices of order N(=2n; n=1,2,3,...)

can easily be constructed. It can be seen that the Haar matrices are

real and orthonormal.

The two dimensional forward Haar transform can be written in

matrix form as

[F] =i 0R)T (2-18)
and the inverse transform can be written as
(1] = [#) T [£1 ) (2-19)
A sketch of the Haar transform waveform of order 16 is shown
in Figure 2-4. Figure 2-8 shows the full size two dimensional Haar
transform displays of the three original monochrome images. Again,
the logarithm of the absolute value of each transform sample is dis-

played. The energy compaction property of Haar transform can also
be seen in the upper-left corner but it is not nearly as good as the
Hadamard or Fourier transform.

2.5 Karhunen-Loeve Transform

The Karhunen-Loeve transform is a special case of an eigen-

vector matrix transformation [9-13]. Let fj be a column vector

representing the rows of an image [f], then the covariance matrix of

this vector can be written as

[Cj]=E{[fj(l)-fj(l)J[fj(u)-fj(u)] } (2-20)

where i, ii=0,1,..., N-1 for the matrix of NXN. The eigenvectors of
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[Cj] are column vectors [Kj ], i=0,1,...,N-1, satisfying

1

[chD(ji] = [xji][xji]

where [)\j ] are the eigenvalues of [C

j] . The Karhunen-loeve
i

matrix constructed by the eigenvector columns which can be written as

1=1[x. % ---x ] (2-22)
: Jo 1 Ina
if the eigenvalues are located along the diagonal of a matrix [x.1,

then the following relation holds:

[Cj][?(jJ = L?(j][kj] (2-23) i

Similarly, the Karhunen-Loeve matrix of a column vector

repriasenting those columns of the image can also be constructed by

the following relation:

(c 1% 1= X, ] [’\k] (2-24)

A two dimensional separable Karhunen-Loeve transform can then be

1
K
defined as 3

[F] = 010 0, 17 (2-25) |

o con i o

Figure 2-5 contains a sketch of the Karhunen-Loeve wave - ":

forms of order 16. These waveforms were obtained by assuming that

the covariance matrix along an original image line is the first order

P TR w1 Y eapr

Markov process with correlation coefficient p= 0.95. Figure 2-9

shows the two dimensional Karhunen-Loeve transform displays of the
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Figure 2-5. Karhunen-Loeve Transform Waveforms, N=16.




GIRL image. The transform was performed by brute force matrix

multiplication since there is no known fast computational algorithm

for the Karhunen-Loeve transformation.
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Figure 2-6. Fourier Transform Domain Display:

(a) GIRL; (b) COUPLE; (¢) MOON SCENE.
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play: (a) GIRL; (b) COUPLE; (c) MOON SCENE.
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Figure 2-8. Haar Transform Domain Display: 2
(a) GIRL; (b) COUPLE; (c) MOON SCENE. ;
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Figure 2-9. Karhunen-Loeve Transform
Domain Display of GIRL Image.
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3. DEVELOPMENT OF THE SLANT TRANSFORM

This chapter presents a detailed construction of the slant trans-
form matrix of order 2" (n is a positive integer). A fast computational
algorithm based on the matrix decomposition is also presented. A

computational flowchart of order four and eight which indicate steps of

additions and multiplications needed for the fast transformation is also

i T — s e L
i T o R B o

introduced. The chapter is summarized by introducing a class of slant
matrices which are constructed by a direct product of the various
orders of slant and Hadamard matrices.
3.1 Definition of the Slant Transform

The slant transform is based on the post multiplication of

image lines by a slant matrix which is defined as an orthonormal i

matrix consisting of a constant basis vector, a slant basis vector, and

B i e e o

possessing the sequency property. Let [fi] be a column vector of an
image line composed of N pixels and [o/] be the slant matrix of size N

by N. Then the slant transform of this image line is
(F,] = [L1[£,) (3-1)

Since the slant matrix is real and orthonormal, a two dimensional

slant transform can be written as

[F]= (#10£1(2]" (3-2)

27
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and the inverse transform is

GEIMEHIG (3-3)
where [f] denotes image pixels in an NXN matrix, [»’] denotes the
slant transform kernel in an NXN matrix, and [F] denotes the two
dimensional dant transform of [f7],
3.2 The Construction of the Slant Transform Matrix

The slant transform matrix of order two consisting of a con-
stant and slant basis vector is simply
1 [l 1
R NN oo

The slant transform matrix of order four can be written as

[~ 1 1 1 |

1
4 /3 1 -1 -1 1 (3-5)

a4-b4 -a4—b4 a4+b4 -a4+b4

where a, and b4 are real constants to be determined by the conditions

that S4 must be orthogonal and that the step size of the slant basis
vector must be the same throughout its length. The step sizes
between adjacent elements of the slant vector are 2b,, 2a ,-2b., and

4 4 4
2b4. By setting these step sizes equal, there results

a, = 2b, (3-6)

Hence, the slant matrix of order 4 can be rewritten as

< o s e o

g =

Apd,

e eag s Sl i o




[ 1 1 1 1 ]
1 3b, b, -b, -3b,

S 77 1 a1 a1 3T}
_b4 -3b, 3b, -b4J

By the orthonormality condition [54] [S4JT= [I], it is found that

_ 1
b4—ﬁ (3-8)

Substituting this into equation (3-6) one obtains

2
4 /5 (3-9)

Thus, the slant matrix of order 4 becomes

[ 1

t
w

(3-10)

G- -
w L hl,‘_ —

E"“ - &l

'
w

»
==
|
'
[

S

/5
It is easily seen that §

4 is orthonormal. Furthermore, S4 possesses

the sequency Property; each row has an increasiag number of sign

reversals from 0 to 3.

An extension of the slant matrix to its next size of order 8 is

given by

A P S o, o o
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e i e

P TR AR T

T s T T T Y s S m——

et e e i



LY &

1 o0 00 1 o o o]
I
. ()}
'S b8 0 0 : '8 ba s
(] 010:0 o 1 o
6o o0 01 | o o 1
s et omea A
8 J2 0 100:0 -1 0 0
K ) [+
b8 '8 0 0 | ba '8
0 ono:o o -1 0
o 0o 01 1 0 o o-l_“_

- o —
~

30

(3-11)

where a8 and b8 are constants to be determined to satisfy the slant,

ortnonormality, and seqency properties.

It can be seen that in S

8!

the slant vector is obtained by a simple scaling operation on S4. The

remaining terms in equation (3-11) are introduced to obtain the

sequency and orthogonality properties.

Equation (3-11) can be generalized to give the slant matrix of

order N(N= 2n, n=3,4,5,...) in terms of the slant matrix of order

% by the following recursive relation:

1 ol 1 1 o! 7]
1 ! ! a_b I
[NONL o NN o
P a0
Ll : Ll
. | '.‘
0 == 0 r---
1 Pl !
]
§. .2 7= |mmmmem e —— t—_—— e — e
N ﬁ 0 1 i— | [VIR | :
b a I by, 2
L_UNCNL 0 N N__ 0
' = it
by ! | ' gt
| I (LI
O
0 =) 0 -
[ | 'r-l
- ] ! !

where I represents a 2x2 identity matrix.

(3-12)




A 16x16 slant matrix computed by this recursive relation is as

follows:
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3.3 Slant Transform Fast Computational Algorithm

The fast computational algorithm of the slant transform is

based on the property of matrix decomposition. The 4x4 slant matrix

can be reformed as

o

=101 1 0
75

0 1 0 0 -1 (3 =hd)

1 3
0 0 =[]0 1 -1 o
IV G

(S

If S4 is post multiplied by a column data vector, the first computa-

tional pass requires 4 additions, the second pass requires 4 multipli-

cations (the elements % and 715:) and 4 additions. The total compu-

tational requirements, without counting the normalization factor ﬁ ;
&

are 8 adds and 4 multiplies . Figure 3-1 contains a flowchart of the

computational operations for S,. The 8x8 slant matrix can be written

4
as
o - r - r | -
1 o o o] 1 0 11 0 0 !
| 0
o1 0 1 0
Ct | s, | o
ooox: 1 00 -1 0 0 O ]
| |
- I () 6 -1 0
OasbBO' 01 | )
1 ! LA (N S Uy P e _——— b - 3.15)
Se= - LTt TP I , (
3 VE 11000 oo:o{ooxo I
'
lo1o00f{]Joo0o 10 lo o -1 0 |
o ! ' 6 | S§
! 1o ooox:oo -1 |
|
! o1|]looo i 10 0 14 L | ]
5

The normalization factor will not be encountered here.
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If SB is post multiplied by a column data vector, the first and second
computational passes require two times the total computations of S4,
and the third and fourth passes require eight additions and four multi-
plications (the element ag and b8). The total computational require-
ments are 24 adds and 12 multiples. & flowchart of these computational
operations is shown in Figure 3-2,
The decomposition of a generalized NXN slant matrix is shown

in exhibit 3-1., If SN is post multipiied by a column data vector, the

total additions and multiplications can be computed by the recursive

relation: 1
KN= ZKI_\I+N (3-16)
2
and ‘
- 1 - L
KN ZKI_\I+4 (3-17) {
2 :

where KN and Ki\I are the number of additions and multiplications

respectively, These terms can be rewritten as™

K _=2(2K

N
N +2)+N

N

=N

4KN+2N

'N|

8KN+3N

8

* All logarithms are base two.




N
2K4+(log 4)N

N
4

-8+Nlog%

N(2 + log%

Nlog N (3-18)

and

'= 2(2K! +4) +4
Ky, = 2( 2K} +4)

Te

= 2N-4 (3-19)
Therefore, the total operations of an NXN slant transform is N log |

N + 2N-4. For purpose of comparison an NXN Hadamard transform

requires N log N operations. It is seen that the total number of oper- A%
ations of the slant transform is only slightly more then those of the

Hadamard transform.

To determine the coefficients (aN, bN), one can proceed as
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follows: the first vector is a constant
S (1,i) = 1 3-20)
N ’ ﬁ ( =

The second vector (slant vector) is a linear function of the column
index which is orthonormal to the first row. It must, therefore, be

of the form

SN(Z, i) = XN * (N +1-21) (3-21)

Now, by the recursion indicated in equation {3-12), one obtains

L1 L1 .
SN(Z'I)_ﬁaNSH(l'l)+ﬁbNSH(2'1) (3-22)
2 2
or
X'N+12""L +—bX'E+12' 3-23)
N ( = 1) - l\/-ﬁ a'N ﬁ N H (2 - 1) ( S
2

From this it is found that

1
= 3-2

XN > bN XH ( 4a)

2

3

N 2
ay = e 1 7) XN (3-24b)

and by induction

a._=2b__a (3-25)

N N

~|Z

Since SN( 1,.)and SN(Z, . ) are orthonormal vectors in % dimensions

2 2

and SN(Z, . )'is a unit vector in N dimensions, the above recursion
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implies
2 2
[ = = -

(2 Ml =ay +by =1 (3-26)
These two relations can be used to obtain the coefficients, (aN, b}_),
recursively:

= 1
2
/ 2
bN = 1/ 1 +4a N
2
ay = ZbN aH (3-27)
2

For the inverse transform the computational operations are
similar to the forward transform described above. The decomposition
of a generalized NXN inverse slant matrix is shown in exhibit 3-2.

If SN is post multiplied by a column vector it can easily be seen that
the total number of operations is exactly the same as for the forward
transform. Again the coefficients, (a.N, bTT)' can be computed by
equation (3-27).

3.4 Summary

The slant transform matrix thus far discussed contains a
slant basis vector decreasing in uniform steps over its entire vector
length, There are a class of slant matrices that can be constructed
with the slant basis vector decreasing or increasing in steps a number

of times over its vector length. Taking a 16 X16 matrix as an example,
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there are two other type of matrices, in addition to the one shown on

equation (3-13), which can be constructed by the direct product’k of

slant and Hadamard matrices, namely, S_XH_and S, XxH . InS_XH,,

8 2 4 4 8 2

the slant basis vector decreases in uniform steps to the middle point ]
of its vector length and then increases in uniform steps to the rest of
its vector length. In S4x H4, the slant basis vector decréases uni-
formly for the first quarter length, increases for the second quarter,
decreases for the third quarter, and increases again for the final 4
quarter. It can easily be shown that a matrix of order NXN has a

class of (log2 N-1) matrices each containing a '"slant'" basis vector.

Figures 3-3, 3-4 and 3-5 show the class of slant matrices of order 16.

It can be seen that all these matrices possess sequency and orthogona-

lity properties. The performance capability of these matrices has

not been investigated. From a purely mathematical point of view the

I O T PP TR E ¥ ¢ PR P

g s atad

A direct product of a matrix A = aij , 1<i, j<m, and a matrix
B = bij » 1<i, j<n, is defined as 4
‘-
abyy Ry, o Al
Ab Ab ««+ Ab
AXB = 21 12 2m
Ab Ab «+ Ab
|~ ml m2 mm |
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existence of a slant matrix of order other then Zn, n=1,2,3,..., may

also be an interesting topic to explore, though it will not be considered

here for image coding.

The next two chapters contain a general analysis of the slant

image transform.,
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Figure 3-3, Waveforms

of Slant Matrix Sl6'
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4. STATISTICAL ANALYSIS OF THE SLANT TRANSFORM

The development of effirient quantization and coding methecds
for slant transform samples requires an understanding of the statis-
tical properties of the transform domain samples. This chapter pre-
sents a derivation of the statistical mean and variance of slant trans-
form samples, and also the developmeant of stochastic probability
models for slant transform samples. The material introduced here

is generally applicable not only for slant transform but for all trans-

forms as well,
4.1 Statistical Mean and Variance

Suppose each samp!e of an original image, denoted by the func-
tion f(j, k! over spatial coordinates, is considered as a two dimen-

sional stochastic process. The spatial mean

E {£(j, k)} = £(j, k) (4-1)

and the covariance

are assumed known or at least estimable. Then, for a generalized

forward trinsform as shown in equation (2-1), the mean of the trans-

form samples can be written as

E{F(u,v)}= F(u,v) = ST 1(j, k) a(j, k,u, ) (4-3)
ik
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The covariance function of the transform samples is defined as

(4-4)

Substitution of equation (2-1) and (4-3) into equation (4-4) gives

C{ul,uz, v vz}E E{;Z E [f(Jl,kl)- f(Jl,kl)] . a(Jl,kl,ul,vl)

171 (4-5)
T2%2
or
C{ul.uz. VI’VZ} =z E E{[f(Jl,kl)- (3, k)] [f(JZ. k,) -
ik kp
(4-6)
T 1311 o y
U k)l alip depuyvp) alip by uy, vy)
Upon substitution of equation (4-2), the result is
Clupuyvp,vy)=13 L ClUpgpkpky)al k,u,v))
(4=7)
a(JZ, kyiuy,v,)
The generalized expression for the variance of transform domain
samples is thus
2( )= C| )=Z X Z % C(j,j, k,.k,)a(j,, k )
0 (u,v) = (0, u,v,v) = Lz & (_]1,_]2, 1550 aliy, WV
J1J2*1 %2
(4-8)
a(JZ,kZ,u, v)

If the covariance matrix of the original image is separable in j and k
direction and if the transform kernel is separable, then the transform

domain variance can be computed as
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oz(u,v) = oz(u) GZ(V) (4-9)

Since the transform kernel of the slant transform in series form is
3 mathematically difficult to describe, it is desirable to introduce an
.

alternate matrix fo rmulation.

3 A matrix formulation of a separable two dimensional slant
transform can be written as

- syrpeT

: (F] = [s](f](S] (4-10)
L where [{] denotes an image pixel in NXN matrix, [S] denotes slant

)

; transform kernel in NXN m

atrix, and [F] denotes the two dimensional

slant transform of [f]. Let [fj] and [fk] be column vectors repre-

senting the rows and columns of [£], respectively. Then the covari-

ance matrices of rows and columns are

= —_%T
-E{[fj-fj][fj-fj] } (4-11)

—
Q]
(o)
e
J
t

. ra ra *T
E{[fK-fk][fk-fk] 1 (4-12)

—
Q
(o)
(I
t

Now define

(F.]= [S][fj]

; (4-13)

and

[Fk] = [S][fk] (4-14)

Then the covariance matrices of (F.] and [Fk] are respectively
J
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— — _%T
C = E{[F.-F.]J[F.-F. 4-15
[FJ_] [(F, -F)F,-F) ) (4-15)
and
[c ]= E{[F, -F.I[F, -F.1 1) (4-16)
Fk k k k "k
substituting equation (4-13) into equation (4-15) gives
[Cr ] = BEUCSICELI- [SITL D (LSI0E,] - [SILED )
Fj J J J J
- = *T *T
= E f,-f£. ][f.-f, S
{[S][J J][ j J] (s] "}
or
- *T
[cF.] = [8] [cf_][s] (4-17)
J J ;
Similarly, equation (4-16) can be reduced to 3
c. ]=rsifc, 1rs1™T 4-18
[Cx | = ts1[c; | (4-18) ]
k k 3
The variances of the slant trarsform samples are, therefore,
_ =
Vg~ [vFj] [V, ] =4 -f

where [vFi]T= [ch(o, 0), CFj(l,l),...,CFj(N-l,N-l)]

T -
Y =|C_ (0,0), C_(1,1),...,C_ (N-1, N-1)
[Fk] [Fk B Ex J

4.2 Probability Densities

The probability density of slant transform samples is gener-

ally very difficult to obtain since the probability density of the original

image is not usually well defined, and also, the slant transform

S SR S S e Sy S S S e e i el SR S d e A Gt € e b et e
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representation is mathematically complex. Nevertheless, since the
transform operation forms a weighted sum over all of the pixels in
the original image, one can evoke qualitative arguments based upon
the central-limit theorem [15-17] to determine probability densities

of transform domain samples.

A two dimensional slant transform in matrix form, shown in

equation (4-10), can be rewritten as

F(0,0) = [S,1[f1[s,] T (4-20a)

and

F(u,v) = [5,][f] [sj]T; w,v=0,1,2,...,N-1; (u,v) # (0, 0) (4-20b)

where [Sk] is kth vector of slant matrix [S], i.e., [Sk] = [S(k, 0)
S(k, 1) -+ -S(k,N-1)]. From equation (4-20a), since all elements of
the vector [50] are positive constants and all pixels of [f] are non-
negative, the value of F(0, 0) is always non-negative. The probability
density of F(0, 0) will resemble the histogram of f(j, k) and generally

can be represcnted by a Rayleigh density, i.e

X 2 2
'pF(O, 0)(x) = ;—2- exp(-x /2a") U(x) (4-21)
The probability densities of the samples of F(u, v), for

(u, v) #(0,0), are generally indeterminable. By examining equation

(4-20b), since half the eclements of [Si] (i#0) are positive and half are

negative, and also the magnitude of these elements are periodically
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defined, therefore, the only information that one can obtain is that
the probability densities of F(u, v), (u, v) # (0, 0), are expected to be
symmetrical about the origin. Based upon this information two dif-
ferent types of probability models may be defined, namely, the
Gaussian and two-sided exponential models: )

For the Gaussian model, the probability density can be

written as

= 1 2, 2
Pr(u, v)®) = Tamo(u, v) SXP(-x /207 (u, V)

(4-22)
u,v=0,1,...,N-1; (u,v) #(0, 0)

and for the two-sided exponential model, the probability density can

be written as

Prpa, v® = 5 exp(-atu, v)x)

u,v=0,1,...,N-1; (u,v) # (0,0) (4-23)

Since the magnitude of F(0, 0) is always non-negative and the
magnitudes of the remaining transform samples fluctuate about the
origin, they will be termed respectively the dc and ac transform
domain samples.

Suppose that the ac samples, as defined in equation (4-20b),
are independent and ide nt{cally distributed, then from the central-

limit theorem the probability density of £ ¥ F(u, v) will tend to be
uv

(u,v) #(0, 0)

Gaussian with mean zero and variance g = ¥ § o(u, v), i.e
uv

(u, v) #(0, 0)
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1 x2
pX(X) = J2ng °%P |- 20—2] (4-24)

where X denotes the summation of the ac random variables, F(u, v),

(u, v) # (0, 0).




5. BLANT TRANSFORM MONOCHROME IMAGE CODING

Figure 5-1 contains a block diagram of the slant transform
coding system for monochrome images. In operation a two dimen-

sional slant transform is taken of the image pixels over the entire

image or repeatedly over subsections of the image called blocks. The
transform domain samples are then operated upon by a sample selec-
tor that decides which samples are to be transmitted. Those selectsd
samples are then quantized, coded, and transmitted over a channel.
At the receiver the received data is decoded and an inverse slant
transformation is performed to reconstruct the original image.

The basic premise of an image transform coding system is
that the two dimensional transform of an image has an energy distri-
bution more amenable to coding than the spatial domain representation.
As a result of the inherent pixel to pixel correlation of natural images,
the energy in the transform domain tends to be clustered into a rela-
tively few number of transform samples. The slant transform of an
image has exactly the same property which can be exploited to achieve
a bandwidth reduction,

Figure 5-2(a), (b), and (c) shows the full size two dimensional
siant transform displays of the three original monochrome images

shown in Figure 1-1. The logarithm of the absolute value of each
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transform sample is displayed rather than the absolute value itself in
order to reduce the dynamic range of transform samples. Figure
5-2(d) and 5-2(e) show two different views of the threshold display of
Figure 5-2(a) where all samples whose magnitude is l?elow a specified
threshold are set to zero and all samples whose magnitude is above

the threshold reriain unchanged. A typical energy distribution of the

slanttransform canbe seen from these pictures. A high degree of

énergy compaction is seen on the upper-left hand corner of each pic-

ture which is the low frequency zone of the transform samples,
There are two bandwidth reduction factors that are often

stated as image coding performance measures [23];

Sample number of original image samples
reduction = (5-1)
factor number of samples selected

to be coded and transmitted
Bit number of original image code bits
reduction = (5-2)
factor number of selected sample code bits

The sample and bit reduction factors are identical if the same number
of bits are assigned to both original and coded image samples.

A bandwidth reduction can be achieved with the transform
coding system in two basic ways: threshold sampling and zonal
sampling [14]. In threshold sampling the image reconstruction is
made with a subset of the samples which are larger than a specified

threshold. In zonal sampling the reconstruction is made with a subset

Bt e o ia e oD
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of samples which lie in a certain geometrical zone - usually the
lower frequency samples. This chapter will present the performance
of the slant transform for threshold and zonal samplings in an error
free channel. A derivation of the quantization and coding scheme as
well as a derivation of the mean square error between the original
image and its transform coded reconstruction will also be presented.
For threshold sampling a runlength coding technique is used and for
zonal sampling a bit allocation matrix based on the "maximum vari-
ance matrix'" and rate distortion theory is introduced. Again the
method introduced is generally applicable for all tran'sforms.
5.1 Slant Transform Bandwidth Reduction

The slant transform sample reduction technique can be
analyzed by defining a two dimensional sample selector as a function
S(u, v) which takes on the value zero or one according to an apriori or
adaptive rule. The reconstr ucted image, with those selected trans-

form samples unquantized and uncoded, is then given by

f (jyk) = TZ F(u, v) S(u, v) b(j, k, u, v) (5-3)
B uv

where b(j, k, u, v) is the inverse transform Kernel.

The mean square error between this reconstructed image and

original is, therefore

¢= <3 IEE(ILG, -1 (5, k) (5-4)
N Jk 8

Substituting equations (2-2) and (5-3) into (5-4) gives

i i et ey
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= E E E {[z z F(u, v) (1-5(u, v)) b(j, k, u, v)]°) (5-5)
j

(5-6)
¥ b(j, k, u, v) b(j, k,u', v')}
ik
By the orthonormality of the slant transform Ker 1els the second set

of summations is non-zero only if u=u' and v=v'. Thus

€= LZ ZZ ZZ E{F(u,v) [1-S(u, v)] F(u', v') [1-S(u', v')]
N° uu'vv'
(5-7)
» §{(u-u', v-v')}
or
€= <5 T T E([F(wv) (1-8(s, v)1%) (5-8)
N uv

Equation (5-8) shows that the mean square error between the original
image and its sample reduced reconstruction may be computed from

the transform domain samples.
5.1.1 Threshold Sampling

In threshold sampling the selection of transform domain sam-
ples is made after the transform has been taken on a particular
image. A threshold is established apriori or adaptively, and only
those samples whose magnitudes are greater than the threshold are
selected to be quantized, coded, and transmitted over a channel.

Figure 5-3 contains a plot of the percentage of transform

TN
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dornain samples lying helow a magnitude threshold levei for the slant
transform of the three original monochrome images. The energy

compaction for the GIRL image for various transforms is illustrated
in Figure 5-4. In the figure it is seen that the energy compaction of

the slant transform is exceeded only by the Karhunen-Loeve trans-

forra.

PR e N B Gt T N ey g TR B W e g T T Y

Figure 5-5 shows slant transform threshold sampling proces- :"
sed images of the original pictures. A two dimensional slant trans-
form was taken of the image pixels repeatedly over subsections of an
image in 16X16 pixel blocks. A threshold was assigned to make the
sample reduction and then these reduced samples were inversely
transformed immediately without any quantization and/or zoding.

The purpose of these pictures is mainly to illustrate the threshold

sampling effect of the slant transform. It can be seen that the slant

k transform threshold sampling provides good quality reconstructions
for sample reduction factors up to 12:1. For purposes of comparison

Figures 5-6 and 5-7 contain threshold sampling processed GIRL pic-

_,f_: tures for the Hadamard, Haar, Fourier, and Karhunen-Loeve trans-

YE‘ forms. The quality rating of these transforms, from the standpoint g
“ of subjective quality, is the Karhunen-Loeve first, followed by the ]

4 slant, Haar, Hadamard, and Fourier transforms. The orders of

2

these ratings are exactly the same as the orders of those curves

shown in Figure 5-4. It is rather interesting that the performance

ot P o B ot
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Figure 5-3, Nﬁmber of Slant Transform Samples
Below Threshold Versus Threshold Level (Trans-
form is Performed in 16 x 16 Pixel Blocks).
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(Transform is Performed in 16 x 16 Pixel Blocks).
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6:1 Sample Reduction

6:1 Sample Reduction 12:1 Sample Reduction

Fa )

6:1 Sample Reduction 12:1 Sample Reduction

Figure 5-5. Slant Transform Threshold Sampling
in 16 x 16 Pixel Blocks, Unquantized Transform.
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Hadamard Transform

Hadamard Transform
6:1 Sample Reduction

12:1 Sample Reduction

Haar Transform

Haar Transformn
6:1 Sample Reduction

12:1 Sample Reduction

Figure 5-6. Hadamard and Haar Transform Threshold
Sampling in 16 x 16 Pixel Blocks

Unquantized Transform.
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Fourier Transform

Fourier Transform
6:1 Sample Reduction

12:1 Sample Reduction

Karhunen-Loeve Transform
6:1 Sarnple Re KALIUH‘

Karhunen-Loeve Transform

12:1 Sample Reduction

Figure 5-7. Fourier and Karhunen-Loeve
Sampling in 16 x 16 Pixe] Blocks,

Transform Threshold
Unquantized Transform.
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of the Haar transform, with the fastest transform algorithm, is
better than either the Hadamard or Fourier transform. Table 5-1
exhibits the mean square errors between the original GIRL and its
threshold sarapling reconstructions for the slant, Haar, Hadamard,
Fourier, and Karhunen-Loeve transforms with various sample reduc-
tions, As expected, the Karhunen-Loeve transform has the best mean
square error followed closely by the slant transform.
5.1.2 Zonal Sampling
In zonal sampling, rather than selecting those larger magni-
tude samples, a specific zone in the transform domain is established.
Those samples lying inside the zone are selected and transmitted over
a channel. Since the slant transform compacts energy over the upper-
left hand corner of the transform domain, it is possible to design a
special zone in this corner which covers most of the larger samples.
There are a number of zones that could be employed in the
transform domain samples:

(1) rectangular zone

S(u, v) =1 for usuc, VSVC
(5-9)
= 0. otherwise
(2) elliptical zone
2 2
S(u,v) =1 forll—2+v—2§_1
u v
c c
(5-10)

=0 otherwise
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(3) triangular zone
S(u,v) =1 for (utv)€ K (5-11)
=0 otherwise

where S(u, v) denotes a sample selecting function, and uc, vc, and K
are constants. It could easily be seen from figure 5-2(d) and 5-2(b)
that for a full size slant transform none of the zones listed closely
resembles the energy distribution of transform samples. Neverthe-
less, the degradation is not too serious if a rectangular zone is used
for the slant transform of very high sample reductions (about 20:1),
and a circular or a triangular zone for medium sample reductions
(about 8:1).

There is a special zone termed ""maximum variance zone"
which is optimum for a mean square error criterion. Consider the
pixels along a row of an image as aenoted by a sequence of random
variables fj(O), fj(l), Sfondly fj(N- 1). Then the autocovariance function

imay be expressed as a covariance matrix of the form

cf.]=
L

- I - - =

E{lf.(0)-f.(0 E{lf.(0)-f.(0 AD-£.(1 T T
(t5,0) - 173 | (t,0)- £ )}Efj( )-£D 7

E{[f.(1)-£.(1) T£.(0)-£.(0) E{[f.(1)-1.(1) '-'
(T, () W (0)-E10) ) (e, (1)1 j

E{lf (N-1)-f (N-1)][,(0)-£,(0) T}  E{[f (N-1)-f(N-D)][£,(1)-T.(DT} . ..
J J J J J J J J

(5-12)
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If the image is considered a sample of a Markov process with a

correlation coefficient of p (0 < p « 1) between each adjacent pixels

and self correlation coefficient of unity, then equation (5-12) reduces

to

2
P P
1 P

(5-13)

2
where Oj denotes the variance of pixels along che row. Similarly,

process, the covariance matrix can be written as

2
P P
1 p

cees T

(-

considering the pixels along a column of the image as a Markov

(5-14)

. 2 : q
where o\ is the variance of pixels along the column. With covariance

matrices of rows and columns as defined in equation (5-13) and (5-14)

the variance of the two dimensional slant transform samples may be

written as

T T

P
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) T
] - [vFjJ[kaJ
where PVF ]T [ p (00 Co(Ll)...c_ (N-l,N-l)]
- . j j j
:ka] =[CF (0, 0) CFk(l,l)...CFk(I\J~1,N—1)]

and C

] ["][Cf]["]
or J=[“)[e ]["’]

By setting some smaller elements of [VF ] and [VF ] Zero, a
j k
special zone in [VF] which is constructed by non-zero elements will

o=
"rj

be formed. This special type of zone is called the "maximum vari-

ance zone. "

Figure 5-8 contains a display of the covariance matrix, [CF ]

or [CF ], of the slant transform with correlation coefficient 0. 95
k

and matrix size of 256 X256. It can be seen that [V ] or (v ]
are the diagonal elements of [CF ] or [CF ] which appear in
j k

descending order. There are a few numbers of off diagonal elements
in this picture whose values are much smaller than those in the

diagonal. It should be noted that all these off-diagonal elements are
zero for the Karhunen-I oeve transform. Figure 5-9 contains a plot

of the variance function [VF ] or [VF :' of the slant transform as a
x




(b)

Figure 5-8. Full Size Slant Transform of Covariance
Matrix - Markov Process (Correlation Coefficient

0. 95): (a) Transform; (b) Perspective View of Transform.
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function of frequency. The variance functions for the Hadamard,
Fourier, Haar and Karhunen-I oeve transforms are included for
comparison. It is seen that the variance function for the slant trans -
form is reasonably close to the variance function of the Karhunen-
Loeve transform which is known to provide the best energy compaction
for the Markov source.

The statistical evaluation of the performance of various trans -
forms in a form of the "maximum variance" zonal sampling can be
specified in terms of the mean square error between the original
image and its reconstruction for a statistical class of images.

Figure 5-10 contains a plot of this mean square error as a function
of block size for various transforms. This plot was obtained for an
image statistically described by a Markov process. In the sampling
process 25% of the transform samples with the largest variances,
VF(u.v), were selected and the remainder were discarded according
to the maximum variance zone. From the figure it is seen that the
Karhunen-ILoeve transform provides the best mean square error,
while the slant transform results in only a slightly greater error.
Also to be noted is that the rate of decrease in mean square error

for larger block sizes becomes quite small after a block size of

32 x32,

Figure 5-11 shows the slant transform "maximum variance"

zonal sampling of the original images. A two dimensional slant
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transform was taken of the image pixels repeatedly over subsections
in 16 x 16 pixel blocks. A maximum variance zone was assigned to
the transform samples by selecting only these samples inside the zone
and an inverse transform was taken to form the reconstruction.
Again, the reconstruction was formed without quantization or coding
of transform domain samples. For purposes of comparison a series
of experiments of the GIRL image have been performed for the

Hadamard, Haar, Fourier and Karhunen-I ceve transforms which

D e T e it

are shown in figures 5-12 and 5-13. It can be seen that the slant

transform generally performs better than the rest of the transforms

e

which possess a fast computational algorithm. Table 5-2 exhibits the

r—

mean square errors between the original GIRL image and its 1
"maximum variance'' zonal sampling reconstructions for various

transforms with sample reductions of 2:1, 4:1, and 6:1. It can be

noted from this table that the Haar transform generally does not
perform very well under the maximum variance zonal sampling. ;
This is due to the fact that most larger transform domain samples

are not concentrated on the low frequency zone. It can also be noted

that the Fourier transfrrm with the sample reduction of 4:1 does

rather well under the "maximum variance' zonal sampling. This
indicates that the "maximum variance' model is particularly
favorable to the Four.2r transform zonal sampling with the sample

reduction of 4:1. The slant transform generally performs well under




4:1 Sample Reduction

4:1 Sample Reduction

6:1 Sample Reduction

Figure 5-11, Slant Transform Zonal Sampling
in 16 x 16 Pixel Blocks, Unquantized Transform.,
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Hadamard Transforrﬁ

Hadamard Transform
4:1 Sample Reduction

6:1 Sample Reduction

Haar Transform

Haar Transform
4:1 Sample Reduction

6:1 Sample Reduction

Figure 5-12. Hadamard and Haar Transform Zonal

ona

Sampling in 16 x 16 Pixel Blocks, Unquantized Transform.
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Fourier Transform Fourier Transform
4:1 Sample Reduction 6:1 Sample Reduction

Karhunen-Loeve Transform Karhunen-Loeve Transform
4:1 Sample Reduction 6:1 Sample Reduction

Figure 5-13. Fourier and Karhunen-Loeve Transform Zonal
Sampling in 16 x 16 Pixel Blocks, Unquantized Transform.
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the "maximum variance'" model. But better results could no doubt be

achieved if a better statistical model could be found.

5.2 Quantization Effect

TR

There are two basic approaches to the quantization of trans-

s

form samples: each sample could be quantized to the same number

of levels; or the number of levels could be varied from sample to

s

semple. Since the transform samples differ significantly in magni-

tude from sample to sample, the latter approach results in the most

efficient coding. The following subsections present analytic methods i

of minimizing the mean square error between an original image and
its reconstruction with the reconstruction taking into account the
quantization effect in its transform samples. Two methods are

considered: an approximate and an exact method. The analysis :

1 considers the quantization with various levels; quantization with the

s e e

‘8ame number of levels is simply a special case of this analysis,

5.2.1 Calculation of Optimal Mean Square Error - Approximate

Method i

As denoted in equation (5-5) the mean square error between

an original image and its reconstruction with a selected set of

i samples, but without quantization, may be computed by
_ l 2 b
€= — ZZ E{[F(uv) (1-S(u,v)]°} (5-16) -

N u v
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or
s L & 2 (0, )]
€= — ElF (u, v), (5-17)
N uwv
S(u, v)=0

Now with those selected samples from the output of the sample

selector quantized, an additional quantization error will be introduced

and, therefore, the total mean square error may be written as

e = -1_2 {e(0.0) + 22X e(wv)+ LI E[Fz(u,v)]}

! N u v u v ]
(u, v)#(0, 0) S(u, v)=0 (5-18)
S(u, v)=1

where ¢(0,0) and ¢(u, v) denote the mean Square quantization errors

of dc and ac samples respectively. Now let the dc samples be quan-

tized into ]_l levels by a set of decision levels, QK(O,O), and a set of
reconstruction levels, FK(O,O), as shown in figure 5-14, Then

€(0,0) in equation (5-18) may be written as

L, Q0,0
€(0,00= Z | [F(O.O)-FK(O.O)JZpl{F(O.O)}dF(o,0) (5-19)
K=1
Q. ,(0,0)

where P, denotes the probability density of the dc samples. By the

method introduced in appendix D, ¢(0,0) can be minimized and written

as

' - ; = sl et U e s L Al
ey e i A e & i

” . e o i s R e 5 o Bt £ i

7 B Dot ik ali s e en s T L 3 BN s ppe, Jla

R e W R T
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1
. 1 : ? N
e(0,0) = (F)d F (5-20)
12 le < J0 "1 /

Let the ac samples be quantized into Lz(u,v) levels by a set of decision

levels, QK(u, v), and a set of reconstruction levels, l‘K(u, v), 2s shown

in figure 5-15. Then ¢(u, v) in equation (5-18) may be written as

I_Z(u,v)

2
e(u,v) = Z

-L_(u,v) "
K=—ZT—- QK-I

QK’(us V)
(F(u, V)-FK(u. V)]sz {F(u,v)}dF(u,v)
(u, v)
(5-21)

where P, denotes the probability density of ac samples. By the

method introduced in appendix D, equation (5-21) can be minimized

and written as

A (u v) l
(J p2 (F)dF> (5-22)

e(u, v)

31_ (u v)

With substitutions of equations (5-20) and (5-22), equation (5-18)

becomes
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A 1
1 2
€= =5 p (F)AF) + &Lz
T Nz{l?.l_f (f 1 > v 3L22(u,v)
(u.V)#(O.O)
S(v,v)=1
Az(uvv) _l_ 3 ©
. (F)dF) + =2 F p.(F) dF} (5-23 ‘
(jo Py (FIAF) + ZZ [ Fp,(F)aF} (5-23) a
S(u,v)=0 ©

Example 5-1: Suppose the probability density of dc samples is

Rayleigh and ac samples is Gaussian. Then

°T=l_2{l“z<] L—e""(' >] dF>

Az(u,v)

¥ BE e (==t dF

L 1 3L.2(u,v)<‘[0 I'mo(u,v) p<?.o (u,v)>] /

(u, v)#(0, 0)

S(u, v)=1 !
+ L X ———————— exp dF (5-24)

u v '[m v/.?.—o(uv)e <:.o (uv)> } l
(u, v)#(0, 0)

S(u,v)=0

”
where ?.(xz and o (u,v) are variances of Rayleigh and Gaussian densi-

ties. Equation {5-24) can be simplified and rewritten as




85

; eT=NL{ zz[f e"p( ) ]

A (u,v) 3

+ X 4/_;6 (u, v) [ rf ———— ]+ZZ Uz(u,v)}
u v 2 (u, v) a1 u v
' (u, v)#(0, 0) S(u, v)=0
S(u, v)=1 (5-25)
il 1 .
where erf (x) = —— exp( - =5 )dy (5-.6)
‘ /Zm _L )

Example 5-2: Suppose the probability density of dc samples is

Rayleigh and ac samples is two-sided exponential.
Then
A .
5= )] |
£ s dF>
T N2 12 I_l2
A (u v) -!-
+ 2L ——— (J r B(u, )exp( B(u, v)F)] dF)
u v 31_2 (u, v)
(u, v)#(0, 0) :
S(u, v)=1
+ X J B‘“ ) £ exp (-BF) ar } (5-27)
u v
s (u, v)=0
2 . z :
where 20 and > are variances of Rayleigh and two-side

|
B (u,v) }i

exponential densities respectively. Equation (5-27) can be simplified

T PO S Rieen bl Rt ad i N T, N o Ay p T —— S




and rewritten as

3 Al L 2 3
-1 1 g E; F

ex " 2 {g [] Fee(- 5 )er]
N 121 )« 0 ba

Blu, v)A, (u,v)

: + T Z - [l-exp( —)]

u v B (u,v)L (u v)
(u,v)#(0,0)
S(u,v)=1

+ B8 aglea (5-28)
u v leu,v) }
S(u, v}=0

5.2.2 Calculation of Optimal Mean Square Error - Exact Method
The total mean square error shown ir. equation (H-23) is valid

if the number of quantization levels is large. This is always not the

case. In some applications as few as two quantizatioh levels are
assigned to transform samples. This has led to the necessity of
.deriving a more accurate equation which is applicable to any number
of ouantization levels. The following parag-aphs present a derivation
of. the optimal mean square error which could be applied to any
quantization level.

As denoted in equation (5-18) the total mean square error may

be wiitten as
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1
ep™ 3 {€0,00+ ZX  euv)+ ZZ E[Fu, v) (5-29)
T NZ{ u v u v [ ]}
(unv)¢(0n0) S(u,V)=0
S(u, v)=1

where ¢(0,0) and ¢(u,v) are the mean square errors of dc and ac
samples respectively. Now suppose the dc samples are quantized into
I_l levels by a set of decision levels, QK' and a set of reconstruction

levels, FK' as shown in Figure 5-14. Then €(0,0) may be written as

¢(0,0) = Z j (F-F ) p, (F) dF (5-30)

In order to minimize ¢(0, 0) one may take the partial derivative of

equation (5-30) with respect to Qj and Fj and set the results to zero,

i.e.,
3¢(0,0) _ T o B 2 5 -31)
an (Qj Fj) pl(Qj) (Qj Fj+1) pl(Qj) 0 (5-31)
and
39-(0—0) zj (F-F ) p, (F) dF = j=L2,...,L  (5-32)

Equation (5-31) and (5-32) may be rewritten as

Fip = 2Q;- F; (5-33)




Q.
J
j (F-F,) p, (F) dF i=1,2,...,L

1
Q|

(5-34)

With the method suggested by Max (21), one can find the optimal
decision levels QK, K=0,1,.. ,Ll, and reconstruction levels F
K=1,2,... 'Ll' that satisfy equations (5-33) and (5-34). With the

help of equation (5-34), equation (5-30) can be simplified as

L
¢(0,0) I Fe p, (F) dF - ZJ FKJ p,(F) dF (5-35)

where QI_ = A1= ® in this case. Simiiarly, suppose the ac samples
1
are quantized into Lz(u,v) levels by a set of decision levels, QK(u,v),

2nd a set of reconstruction levels, FK(u,v), 25 shown in figure (5-15).

Then the ac mean square error, ¢(u,v), may be written as

L_(u,v)
22 J'Q[{(uo V)
2
efu,v) = 2 2 [F-F_(u,v)]"p (F)dF (5-36)
K=1 QK-I(J' v) K 1

The optimal decision and reconstruction levels may then be calculated

by a method similar to the dc case which will satisfy the following

equations
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Fj+l(u' v) = ZQj(u. v) - Fj(u, v) j=l,2,...,L2(u,v) (5-37)
Qj(uiv)

J' [F-F,(u,v)] p,(F)dF=0  j=1,2,...,L,(uv)  (5-38)
Qv

With the help of cquation (5-38) the optimal m.an square error of ac

samples then can be written as

. L Q,(0,0)
1 2 2
€ = —5 F p,(F)dF - & F p,(F) dF
S NZ{‘[O : K=1 KIQ 0,0) !
K-1
Lz(u,v)
. 3 Bgfuiv)
2 2
4285 [J F p,(F)dF - Z F (u.v)j n. (F) dF]
K 2
u v 0 K=1 QK 1(U.V)
(u, v)#(0, 0) i
S(u,v)=1
2
+ZZ  E[Fu,w]} (5-40)
u v
S(u, v)=0
Example 5-3: Suppose dc and ac probability densities of transform

domain samples are Rayleigh and Gaussian respec-

tively. Then the minimal total mean square error is




(u, v)#(0,0)
S(u,v)=1

L_(u,v)
. R

2 2
] Kzzl (U 2 J (u v) /_Z."lcr(u v) exP(‘ 1; >dF]

+ 2T az(u,v)}

u v
S(u, v)=0

2
where 20 and az(u,v) are the variances of Rayleigh and Gaussian

densities respectively. By carrying out the integrals, equation

(5-41) can be simplifed as

L Q (o 0)

Q. % (0,0
A :..1_2{20 -z Fo 20, f‘)[exp< K'f,_ )-exP< ):‘
2

N K=1
LZ (U,V)

2 ‘ 2 > Q(uv)
+ 22 o (u,v)-2 2% Py Fluv)crf(

u v u v K=1 N - oluv)
(u, v)#00,0) (u, v)#(0, 1)
S(u, v)=1

'e’f< g(ul(v), )]}
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Example 5-4: Suppose dc and ac probability densities of transfurm

domain samples are Rayleigh and two-sided exponen-

tial respectively., Then the minimal total r.ean

square error is

© 2
+ Xz [ ¢ %%1)—}?— exp (-B(u,v)F) dF
u v Jo

(u, V)#(oo 0)
S(u, v)=1

L(u, v)
_— QK(u. v)

2

2
- 2 Fé(u,v) J M exp (-B(u,v)F) dF]

K=1 QK-l(u' v)

+ BB et

a v BZl(u, v)

S(u, v)=0

where Zaz and are the variances of Rayleigh and two-sided

B (u,v)

exponential densities respactively., Equation (5-70) can be simpli-

fied and rewritten as




L
: —{20 -LF (0, 0)[

1( : Q20,0

'e"p<' :;z )]

I.Z(u,v)

2
+ 2T 3 ¢ v 2 2 F 2(u, v)iexp(-B(u, v)Q (u, v))
= K K-1
u v B (u,v) uwv K=1
(u, V)#(ol 0) (u, V)#(O, 0)
S(u, v)=0

- exp (-8(u,v)Q, (u,v)) ]}

5.3 Codit g Effects

The coding techniques for quantized transform samples are
quite different for tareshold sampling and zonal sampling. In
threshold sampling the locations of samples exceeding the threshold
varies from image to image. Therefore, it is necessary to code the
position of samyples exceeding the threshold level. Position coding is
not necessary for zonal sampling since the location of samples to be

coded is known apriori.

5.3.1 Threshold Coding
There are a variety of ways tnat position coding could be
employed. The simplest method conceptually would be to code the
coordinates of each significant samples. However, higher coding

efficiency can be obtained by coding the number of non-significant




samp es between significant samples. This scheme, called run

s length coding, is implemented as follows:

(1)

2)

(3)

The first sample along each line is coded regardless
of its magnitude. A position code bits of a!l zeros
or all ones affixed to the amplitude provides a line
synchronization code group;

The amplitude of the second run length code word is
the coded amplitude of the next significant s: nple.
The position code is the binary count of the number
of samples of the significant sample from the
previous significant sample;

If a significant sample is not encountered after
scanning the maximum run length of samples, the
position and amplitude code bits are set to all ones

to indicate a maximum run length.

The advantage of including a line synchronization code group is that it

becomes unnecessary to code the line number and, also, it prevents

the propagation of channel errors over more than one line. A simple

code to implement this run length coding procedure is given as

follows:

%

]
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positicn amplitude

~ A N @& A -—

x X L] . . x X Y Y . . L] Y Y

1 111111 0 00000O0O first sample of a line below
threshold

0o 0... 00 ¥ oo« XY first sample of a line above
threshold

0 0 ... 01 T ¥ .. ¥Y run length =1

0o 0...10 ¥ Y ; ;4 X0 run length = 2

1 11111 0 Y Y... Y Y runlength = 2N.2 (where N
is number of position code
bits)

1 111111 1 11111 1

pseudo-run of length 2N_2

This run length coding procedure for transform threshold coding has
been tested for the GIRL, COUPLE and MOONSCENE, Table 5-3
shows the relationship between sample reduction and average code
bits per pixel ‘or the slant transform of the GIRL image with the
amplitude of each significant sample quantized and coded into six
bits. It can be seen that with a 4:1 sample reduction the best number
of position code bits is four, and with 6:1 ara 12:1 sample reductions
the best number of position code bits are five and six respectively,
Figure 5-16 shows a plot of sample reduction versus average number
of code bits per pixel for the slant transformed GIRL image with vari-
ous numbers of position code bits. It can be seen that the number of

position code bits changes with the sample reduction in order to
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achieve the least average number of code bits per pixel. For a
sample reduction factor of less than 5:1 the best number of position
code bits is four, and for a sample redu-tion of from 5:1 to 9. 5:1 the
best number of position code bits is five, etc.

Figure 5-17 shows the quantized and coded versions of
Figure 5-5. A two dimensional slant transform was taken of the
image pixels repeatedly over subsections of an image in 16 x 16 pixel
blocks. A threshold was assigned to make the sample reduction, and
then these reduced samples were optimally quantized and coded.
Following the decoding, an inverse slant transform was taken to
reconstruct the original image. The quantization scheme used was
the one suggested by Max [21] where dc decision and reconstruction
levels were obtained by solving equations (5-33) and (5-34) and ac
decision and reconstruction levels were obtained by solving equations

(5-37) and (5-38). The dc probability density P in equation (5-34)

and the ac probability density p, in equation (5-38) were assumed to
b 2

be Rayleigh and Gaussian, respectively. It was found experimentally

that, for the optimai reconstruction of test images, the variances of

Py and p, were 670 and 200, respectively. For the runlength coding

and decoding parts of the experiments a constant code word length of

six bits was assigned to the amplitude of each significant transform

sample and a constant code word length of four bits was assigned to

the position. As expected, quantization increases the mean square




1. 15 bits/pixel

1. 99 bits/pixel 1. 15 bits/pixel

Figure 5-17. Slant Transform Threshold Sampling
in 16 x 16 Pixel Blocks, Quantized Transform.



1. 99 bits/pixel 1. 15 bits/pixel

1. 99 bits/nixel 1. 15 bits/pixel
Figure 5-15. Hadamard Transform Threshold Sampling
in 16 x !4 Pixel Blocks, Quantized Transform.
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error; but, subjectively, the reconstructed images appear to have
little visible degradation. Figure 5-18 illustrates the quantized and
coded pictures of the Hadamard transform. It is easily seen that the
slent transform in figure 5-17 performs hetter than those in
figure 5-18,

Table 5-4 exhibits the mean square errors of the slant trans-
formed GIRL image with sample reductions of 4:1, 6:1 and 12:1,
The corresponding thresholds and average code bits per pixel are also
included. Figure 5-19 shows a plot of sample reduction versus mean
square er-or between the original and its reconstructions for the
slant transform threshold sampled GIRL irnage. Since the dc samples
are much larger than the ac samples, the former are esseantially all
quantized and, trerefore, the mean square quantization error is
nearly constant. For ac samples, as the sample reduction factor
increases, the number of significant samples decrease and, there-
fore, the mean square quantization error decreases accordingly,
The mean square error after the sample reduction (unquantized) and
total mean square error are almost linearly related to the sample
reduction factor, which is expected for the slant transform threshold

sampled or coded images.

5.3.2 Zonal Coding and Bit Allocation

The quantization levels and code bit assignment for each

L Tepe—
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Figure 5-19. Mean Square Error Versus Sample
Reduction Factor for the Slant Transform Threshold
Sampling of GIRL in 16 x 16 Pixel Blocks.
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significant dc or ac sample have been kept constant in the previous
section. For zonal sampling the quantization levels and code bit
assignment can be varied according to the statistics of the transform
domain samples. Since the magnitude of the transform domain
samples appears to be in descending order from low to high frequen-
cies, as can be seen in figure 5-2, the variation of quantization levels
and the allocation of code bits will certainly result in the most effi-
cient coding. The total mean sq.are error between the original
image and the reconstructed image can easily be calculated . Suppose
a constant vord length code of length

NB(u,v)

LC(u.v) = 2 (5-45)

is assigned to each quantization level and a total of

NB= orh NB(u,v) (5-46)
u v

S(u, v)=1

bits are allocated for trancform domain samples. Then the minimum

total mean square error in equation (5-42) becomes




50 0)

2 ()KKO.O)
Fl p,(F)dF - 2 F p,(F)dr
Z{I \ RS I
K-1
. Z[N (u, V)‘l] Q (u V)
+ 227 [ ,]P ¥ p(F)dF - T F° (4, v)j p, (F) dF]
u v 0 K=1 K l(u V) §
(u, v)#(0, 0) 3
S{u, v)=1 ‘
+ X E[Fz(u,v)]} (5-47) 4
u v 3
S(u, v)=0

Let the probability densities of the dc and ac samples be modelled as

Rayleigh and Gaussian densities respectively. Eouation (5-47) then

can be written as

N (0 0) >
2 (0,0) Q (0 0)
eT= -1—2 {20(2- z F (0 O)thp< -Ll—>- exp >]
N K=1
[NB(UJV)'IJ
2 2 ‘ Q (u v)
+ L2 6 (u,v)- 2 2 2 F (u v)[erf( >
u v u v K-! (u, v)
(u, v)#(0,0) (u, v)#(0,0)
S(u, v)=1
f Tkt (5-48)
- er ( {u, v) /]

e

where erf x =

I exp(- };—>dy. It should be noted that the

J2n . ' :

constant code word length Lc(u,v) in equation (5-45) is the same as "
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-

the quantization levels L (u, v).
The bit assignment NB(u,v) for each transform domain
sample has been based upon an algorithm of rate distortion theory

f19]). The numbe: of bits is selected according to the relation
Ng(wv) = 4nlV_(a,v)] - 4nTD] (5-49)

where VF(u,v) is the variance of a transform domain sample and D is
proportional to the mean square error of the coding process. A plot
of rate versus distortion for various transforms is shown in appendix
C. Figure 5-20 illustrates a typical assignment of code bits for the

slant transform zonal coding in 16 X 16 pixel blocks.

N O N O N O N T R I - -
o BNV VDY W W W Ww W WwWw ooy n =) G 0
NNV IV NN WW OB O3 0
COOCOCOOCOONINNNWERW!M
COOCOOCOOONNNININ RV I
COO0CO0OOCOOONNNNNS GO
COO0O0O0CO0COOCOONNNWWWM
CO0OO0OO0OO0ODOOCONNNWWM®M
COO0VO0OO0OOO0O0OOOONW
COO0OO0OYTOOCOOOOCANWGR
COO0O0O0OPO0OO0OCOCOOONWMR
CO0O0O0O0O0OO0OCOOOONWR
COO0O0OO0O0O0O0OO0OOCOONINNR
CO0CO0O0O0O0O0O0COOO0ONNMK
CO0O0CO0O0O0O0OOOOONIN®R
CO0O0O0O0O0O0OO0CO0OOOOCNINMK

Figure 5-20, Typical Bit Assignments for the Slant
Transforic. Zonal Coding ‘n 16 x 16 Pixel Block.
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The performance of the transform coding system can again be
evaiuated in terms of the mean square error between the original
image, which is statistically described by a Markov process, and its
reconstruction. Figure 5-21 contains a refinement of the work which
has been done in Figure 5-10. Every sample inside the maximum
variance zone is quantized, and bit allocated according to the relation
shown in equation (5-49). The maximum variance zone is adjusted
guch that an average of 1.5 bits/pixel is used to code the samples
inside the zone. Again from the figure it is seen that the Karhunen-
Loeve transform provides the minimum mean square error and the
slant transform results in only a slightly greater error. By
comparing figures 5-21 and 5-10 it is easily seen that the variation
of quantization levels and the allocaticn of code bits reduces the
mean square error for all transforms (with the exception of 4 x4
block size).

Figure 5-22 shows the optimally quantized and bit allocated
versions of figure 5-11. The quantization scheme used was again a
nonlinear quantization rule where dc decision and reconstruction
levels were obtained by solving equations (5-33) and (5-34) and ac
decision and reconstruction levels were ottained by solving equations
(5-37) and (5-38). The variance of dc samples, VF(O,O), is defined
in equation (5-15). In the process of finding VF(O,O). it was deter-

mined experimentally that the variance of pixels along the row (or

T T —_—
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Sa b a2 o




107

; 5%
|
] 4:1 BANDWILUTH REDUCTICN
)(c =.,95
Al Y, =.95
o
O
c
b o
W 3%~
w
oC
g
o
C
v
zZ 2°/o"
g
w
=
HAAR TRANSFORM
AS HADAMARD
//- FOURIER
7
SLANT K-L
0 | J 1 1 1 i
4x4 8x8 I5x!5 64x64 128«xI128
BLOCK SIZE

Figure 5-21, Mean Square Error Performance of 1
Image Transforms as a Function of Block Size.




108

2 2
column) in equation (5-13) (or equation (5-14))is 24, i.e., oj = ok=24.

The variance of ac samples, VF(u,v), is also defined in the variance

2 2
matrix [VF] where the experimental result of O’j or o is dependent

upon the bandwidth reduction which can be summarized as follows:

Average ojz in equation (5-14) or

Code Bits Gj in equation (5-15)

0.5 5. 75
1.0 6.03
1.5 6.30
2.0 6.58

From these figures it can be seen that the quantization and the bit

allocation improve the quality of picture substantially. For purposes

of comparison the Hadamard transform zonal coded pictures are
also shown in figure 5-23. It is easily seen that the slant transform
performs better than the Hadamard transform subjectively.

Figure 5-24 contains a plot of the mean square error cf the

optimally quantized and bit allocated slant transform GIRL image for

-

threshold and zonal codings as a function of average code bits per
pixel. It is seen that threshold coding results in a better mean square
error for an average code bit per pixel of 1.9 or less. For an
average code bit per pixel of greater than 1.9 the zonal coding

appears to be favorable in the mean square sense.
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.
B
.y

1. 5 bits/pixel 1.0 bit/pixel

1. 5 bits/pixel

1. 5 bits/pixel 1. 0 bit/pixel
Figure 5-22, Slant Transform Zonal Sampling in
16 x 16 Pixel Blocks, Quantized Transform.
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1. 5 bits/pixel 1.0 bit/pixel

1. 5 bits/pixel

1. 5 bits/pixel 1.0 bit/pixel

Figure 5-23. Hadamard Transform Zonal Sampling
in 16 x 16 Pixel Blocks, Quantized Transform.
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6. EFFECT OF CHANNEL ERROR FCR SLANT TRANSFORM
IMAGE TRANSMIiSSION

The preceding chapter has been devoted to a presentation of
the slant transform for image coding in an error free channel. Since
it is impossible for a practical communication system to possess such
a channel, itlis necessary to study the noise effects on the transform
coded images. The inherent ""error averaging'' property of transform
coding has provided a means of image coding for which channel errors
are less deleterious than for conventional spacial coding of an image.
This chapter presents the results of computer simulations of noise
effects on the spatial and slant transform domain of the GIRL image.
Simulations of noise effects are also made for the bandwidth compres-
sed slant transform image of 1.5 bits/pixel for both threshold and
zonal coding. As expected, it is found that zonal coding has the pro-
perty of best noise immunity,

A binarv symmetric channel is used as the noise model.
Figure 6-1 illustrates a classical representation of such a communi-
cation channel where the prooability of receiving an incorrect symbol
is p ana receiving a correct one is 1-p regardless of which symbol is
transmitted.

6.1 Channel Error Effects ~ Without Bandwidth Compression

A major advantage of transmitting the transform rather than

112




Figure 6-1. Model of a Binary Symmetric Channel. ]
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the spatial domain of an image is the fact that the channel noise intro-
duced in the transform domain tends to be distributed over the entire
channel [14]. Since the eye is more sensitive to the "salt and pepper"
effects of channel noise introduced in the spatial domain, the same
channel error rate in the transform domain is not so offensive.

Figure 6-2 illustrates the effects of channel error on the spa-

4 -3

tial domain of the GIRL image with error rates of 10 , 10 7, and

10-2. The ''salt and pepper'" effect is quite evident in these pi-tures.
Figure 6-3 illustrates the effects of channel error on the slant trans-
form domain with the same error rates. Here the transform is per-
formed in 16 x16 pixel blocks and each transform sample is coded with
8 bits. It can be seen for error rates of less than 10-4, the trans-
formed image indicates little effect from the channel error. It can
also be seen, however, for larger error rates the transformed image
turns out to be "washed out'. This can be explained by the fact that
some of the bit assignment for the larger transform domain samples
are reversed for the larger error rates.
6.2 Channel Error Effects - With Bandwidth Compression

Figure 6-4 and 6-5 illustrate channel error effects on the
threshold and zonal coded GIRL image with a bandwidth reduction

coding of 1.5 bits per pixel (No error correction has been attempted).

It can be see that threshold coding, which appears to be a bit better

than zonal coding in the error free channel, is much more affected by
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(a) Pe=10"

(b) pe:lo'3 (c) Pe=10"

Figure 6-2., Spatial Domain Coding Effects
of Channel Errors, 8 bits/pixel.
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(b) Pe=10"

Figure 6-3. Slant Transform Coding Effects of
Channel Errors, 8 bits/coefficient.
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(b) Pe=10"1 (c)

Pe=10"

Figure 6-4. Slant Transform Threshold Coding Effects of
Channel Errors, average coding of 1,5 bits/pixel,
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(b) Pe=10" (c)

Pe:lo'z

Figure 6-5. Slant Transform Zonal Coding Effects

of Channel Errors, average coding of 1.

£ bits/pixel.
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channel errors. This is inevitable because position coding is neces-
sary in the threshold coding system. Once a position code bit is
reversed, the entire image line thereafter will be incorrectly decoded

which causes degradations in the reconstruction. Zonal coding

appears to be much less affected by channel errors.

s, g




7. SLANT TRANSFORM COLOR iIMAGE CODING

Figure 7-1 shows a block diagram of the slant transform
color image coding system. In the system the color image is repre-
sented by three source tristimulus signals, R(j, k), G(j, k) and B(j, k)
which specify the red, green and blue content of an image pixel at
spatial coordinate (j, k), according to the NTSC receiver phosphor
primary system [26). The source tristimulus signals are then
converted {o a nev. three dimensional space Y (j, k), I(j, k), and Q(j, k)
which specify the luminance and the chrominance information of the
image pixel, according to the NTSC transmission primary system
[26]). The converted signals then individually undergo a two
dimensional slant transform over the entire image, or repeatedly
over subsections of the image called blocks, resulting in three trans-
form domain planes FY (u, v), FI(u,v), and FQ(u,v). Next, a sample
selection and quantization are performed on the three transform
domains. The resultant quantized traniform signals are then coded
and transmitted over a channel. At the receiver, the channel output
is decoded, and an inverse slant transform and inverse coordinate
conversion operations are performed to reconstruct the source

tristimulus signals.
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As discussed in Chapter 5, there are two methods of

achieving a bandwidth reduction in transform coding system--
threshold and zonal coding. The discussion in this chapter is limited
to zonal color image transform coding. However, it is expected that,
as in monochromatic image coding, threshold coding will perform
slightly better than zonal coding. But, it is also expected that
threshold coding will be affected by channel errors to a greater

degree than zonal coding.

7.1 Color Image Coordinate Conversion
There are a number of coordinate systems which could be
employed in color image coding and transmission [25]. The NTSC
transmission primary coordinate system has been used in this
study because:
(1) the NTSC transmission primary (YIQ) system is
the U.S. standard for color (eievision transmission,
(2) the {YIQ) system includes a luminance (monochrome)
image signal.
(3) a previous study [247 has shown that the Y, 1, and
Q signals are less correlated in comparison with
other standard coordinate systems so that they can

be processed separately without much loss in coding

performance.




123

Conversion of tristimulus values from the NTSC receiver phosphor

Primary system to NTSC transmission primary system can be

mathematically expressed by the matrix equation [25]

Y 0.299 0. 587 0.114
I 0.596 -0.274 -0.322

Q 0.211 -0.253 0.312

The inverse coordinate conversicn is given by

1.000 0. 956 0.621
1.000 -0.272 -0. 647

1.000 -1.106 1.703

7.2 Color Image Transform Coding
Consider the color image transform coding system of
Figure 7-1. The color coordinate conversion of equation (7-1) can

be rewritten here as

0.299R + 0. 587G + 0.114B
0.596R - 0,274G - 0.322B

0.211R - 0.523G + 0.312B

Now each of these color signal planes is separately slant trans-

formed to produce three transform domain planes:
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(F,]=(s2ryIrs]T

|
|
|

0.299 lvJTRIWIT+0.5870 SILRIIT + 0. 114

(v1(B1(~17T

(F ) = ALY (7-4)

0. 596 LJ][R][J]T -0.274 L4 10G10AT - 0,322
[J][B][J]T

(F.]= 0QiT

0.211 [J][R][J]T- 0.523 [J][G][J]T+ 0.312

[s3(BI,1T

It is apparent that the order of the color coordinate conversion and

two dimensional forward transformation processes is immaterial.
Next, each transform plane undergoes a sample selection

according to the "'maximum variance zone'" as introduced in

Chapter 5. Those selected samples in each plane are then optimally

quantized. Again, the quantization scheme used is the same as the

monochromatic case where Rayleigh and Gaussian densities are

introduced in deriving the quantization levels. The variations of

quantization level are again tailored by a bit allocation matrix where
the assignment of bits is proportional to the logarithm of variance of ]

each transform domain sample and the percentage of energy
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distributed in each color plane. Figure 7-2 illustrates a typical
assignment oi code bits for the slant transform samples of each

plane in 16 x16 sample blocks. Special attention must be paid to the

(u, v)

quantization and coding of the F(0,0) samples in Fl(u, v) and FQ

planes. Since pixels of I{j,k) and Q(j, k) are no longer all positive,
the F(0,0) transform samples are not necessarily all positive,
Therefore, a special code bit must be assigned for the sign of these
samples.,

At the receiver, the received samples are decoded into three
transform planes and an inverse slant transform is performed in

each plane to reconstruct three color signals:

(Y] = [J]T[P:Y][J]
(1] = [.:]T[fl][./] (7-5)

~ _ T ~
(el =1[0r] [FQ][J]

o ~

where FY, FI' and I:Q denote three decoded transform planes at the

receiver, i

The inverse coordinate conversion it the final stage of the

color image transform coding system, as defined by equation (7-2),

is then performed to give

| . » prTTTpae— - - B R . -
M b e i - P ot L2
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Figure 7-2 Typical Bit Assignments for the Slant
Transform Zonal Coding of Color Images.
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R = Y +0.957 +0.6210
G= ¥ -0.272[ - 0. 6478 (7-6)
B=Y-1.106 +1.7030

The energy compaction properties of FY(u,v). Fz(u,v), and

FQ(u,v) can be statistically evaluated if the covariance function of

R, G, B is known. Cons:der the case in which the second order

statistical variations of the tristimulus values R,G, B are spatially

identical and described by covariance matrices I Cf Jand [C. Jas

) k

denoted in equations (5-14) and (5-15). Suppose the covariance

~fay

matrix of the source tristimulus value is given by

I °R2 k¢ Crs
LCprop! * CrG °<§ CoB (7-7)
| “re CGB “1; |
where GRZ, cé, 0’1: are the variances of the source tristimulus
values, and C C

RG’ °rpB’ CGB are the correlations between pairs of

the source tristimulus values. Then it can easily be shown that the

covariance matrix of the Y,I,Q signals is

) -
%y Cy1 Cyq
) 2
[Cyipd = Cy1 9 ‘10 (-8}
2
 “va S0 % |
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where GYZ 0.0894 0R2+ 0.3446 02 +0.0130 O'BZ

G

+ 0.3510C +0.0682C__+ 0.1338C

RG RB GB
0"12 E 0.35520'R2+ 0.0751 GGZ +0.1037ch2
- 0.3266CRG- 0.3838 CRB+ 0. 1765CGB
O'QZ = 0.0445 O'RZ + 0. 0640 oé'i- 0.0973 OBZ
- 0.1068 CRB+ 0. 1.317CRG- 0. 1579CGB
CYI = 0.1728 GRZ - 0.1608 UGZ - 0.0367 OBZ

+0.2678 - 0.0283 - 0.2193
2 CRG CRB ? CGB

2 2 2
= 0,0631 - 0.1485 + 0.
CYQ OR 0.14 O‘G 0356 GB

+ 0.048 +0.117 +0.1
0.04 ZCRG 19CRB 0 540CGB

2 2 2
= 0. 2 + . - .
CIQ 1258 %R 0.0693 GG 0 IOOSOB

- 0. +0.1180 - 0.04
0 2086CRG CRB 0 OCGB

From equation (5-15) the covariance matrices of rows and columns

of each transform plane are

(c, ) - [a][cf.]rJ]T (7-9)

J J

[c. 1= [v1lc, 17T (7-10)
k k




minimize the mean Square error between the Y,I,Q and Y .1

129

Therefore, the variance of the transform planes may be written as

. T
v, 1= vy 10 ]
:VFI ] - GIZ[VF.:J'[VFk]T (7-12)
j
. T
-VFQ] ) “QZ [vrj][ka] (7-13)
T
where [vF._l =[CF.(0,0) Cp (L) ... CF.(N-I,N-I)]
j j j
T
[ka] = [CFk(O,O) ch(x.x) CFk(N-l.N-l)]

A summary of t.e energy distribution between the color signal planes

of R, G, Band Y, 1, Q, for the GIRL and COUPLE test images, is

given in Table 7-1. It can easily be seen that the YIO system

provides a better énergy compaction in comparison with che RGB

£Yys tem.

In order to optimally design the slant transform ima ge

coder it is necessary to specify some analytic measure of color

image fidelity. Unfortunately, there exists no standard fidelity

measures. As a rational alternative, the design procedure selected

has been to design the transform domain quantization system to

, ,d color
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planes. From en. (5-40) the minimal mean square error in each
% transform plane can be written as
Y Q. (0,0)
1.2 b B 8
e =—{jFp (F) dF - Z F(0,0)I p. (F) dF
T: 2 1. _ K 1
i N 0 i K=1 Q (0, 0) i
K-1""'
= in(u'v)/z Qp(u,v)
+2 22 szp (F) dF - & Fz(u,v)J p. ‘%) dF|
2, l K 2, J
u v 0 i K=1 QK_l(u,v) i
(u, V)#(0,0)
S.(u,v)=1
i
+ T E[Fiz(u,v)]} (7-11)
u v
S.l(u,v)=0 i

where €r is the mean square error in each transform plane;
i
S.(u,v) is a sampling function in each transform plane;
i

Py and p, are probability density functions of dc and ac
i i

samples;

Ll and L2 [1,v) are numbers of dc and ac quantization
i i
levels;

QK(O,O) and QK(u,v) are dc and ac decision levels;

FK(O' 0) and FK(u,v) are dc and ac reconstruction levels;

and Fi(u,v) are transform samples of a plane.

The total optimal relative mean square error then may be defined as




(7-12)

Figure 7-3 contains a plot of the m ean square error versus the

average code bit assignments of FY (4, v) and a fixed total average

code of 2 bits/pixel for the GIRL image. The optimal average bit

allocation for this test image is the maximum point on an envelope
which is constructed by drawing through each peak point of the

curves shown. The value is found to be: 1.25 for FY (u,v), 0. 55

for Fl(u,v), and 0,20 for FQ(u,v). The optimum scale does not

change appreciably for the other image.

7.3 Experiment Results

A computer simulation has been performed to subjectively

evaluate the performance of the slant transform color image coding

system.

Figure 7-4 contains black-and-white photographs of the
K, G, B components of the original images shown in figure 1-2., It
can be seen that the R, G, B pixels are highly correlated. Figure 7-5
illustrates black-and-white versions of the Y,1,Q planes of the same
images.

It is clearly seen that the degree of correlation among

these planes is much less than those in R, G, B planes.

The energy compaction properties of the slant transformed
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Y, I and Q planes can be seen from pictures of the three transform
domain samples, Figure 7-6 shows the slant transform planes,
FY(u.v), FI(u,v), and FQ(u,v), where the transform is performed
in 16 x 16 pixel blocks over the entire plane. Again, in these
pictures, a logarithm has been taken for each transform sample in
order to compact the dynamic range of the transform samples. It
can easily be seen that most of the significant samples in each plane
are located around the maximum variance zone. It can also be seen
that the energy distribution in FI(u' v) and FQ(u,") planes is quite
small in comparison with that of FY (u, v).

To illustrate the bandwidth reduction capability of the slant
transform for color image coding, two sets of experiments have
been performed for both the GIRL and COUPLE images. The first
set of experiments results in an average coding of 2 bits/pixel where
the transform samples of Y,I, and Q are coded with lA.Z, 0. 54, and
0.26 bits/ pixel respectively. The second set of experiments results
in an average coding of 3 bits/pixel where the transform samples of
Y, I, and Q are coded, respectively, with 2.0, 0. 6, and 0. 4 bits/
pixel. The corresponding reproductions of Y,1,Q and R, G, B for the
first set of experiments are shown in figure 7-7 and 7-8. Figure

7-9 and 7-10 show the reproductions of the color images with channel

= -2
error rates of Pe=0, Pe=10 : and Pe =10 ., It can be seen that

even with an average coding of 2 bits/pixel and channel error rate
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of Pe = 10-4, the result can still be considered as a good quality
reconstruction. Table 7-2 exhibits the mean square errors between
the original Y,I,Q planes and slant transform coded Y,1,Q planes
for the GIRL image. The reason that the mean square errors of

YIQ is presented rather than the mean square errors of RGB is that

the bandwidth compression has been made only to the YIQ signals.




136

.I 02 03 -4 -5 .6 -7 08 .9 I-O
NUMBER COF 1 BITS

99.1 T [ I T l T | l
Y = .35 bits Y =1.20 bits
Y=1.50bils
Y=110 bits

99.01-
(14
o
g:: Y = 1.00 bits _
LL’ »
W
o !
S i
o 98.9
[72]
> i
W,
2
u
(o]

= 2 bit

5 98,8 L n
< 4
’._
: 1
W
(@)
o
W
a
I
o 98.7 -
o
Q

SR | | L ! l | | L

|
]

Figure 7-3. Mean Square Error for
Various Color Plane Bit Assignments.




Figure 7-4,
the Original Images: (a) R: (b) G; (¢) B.

(c)

R, G, B Tristimulus Color Planes of
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(b)

(c)

Figure 7-5, Y, I, Q Tristimulus Color Planes
of the Original Images: (a) Y; (b) I; (c) Q.



(c)

Figure 7-6. Slant Transform Domain of

Y, I, Q Images: (a) FY; (b) Fi () FQ.
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(b)

(c)

Figure 7-7. olantATransformA?ona! Coding,
o
2 bits/pixel: (a) Y; (b) T; (c) Q.



Figure 7-8. Slant Transform Zonal
D
Coding, 2 bits/pixel: (a) R; (b) G: (c)

-

3,



(c)

3
Figure 7-9. Slant Transform Zonal Codigg, lbits/pi)éel.
Channel Error Rates: (a) Pe=0: (b) Pe=10 : (c) Pe=10 °,



(a)

(c)

Figure 7-10. Slant Transform Zonal Coding,
Channel Error Rates: (a) Pe=0; (b) Pe=10-4; (

3
¥ 1 bits/pixel.
c) Pe=10-2,
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8. SUMMARY

This dissertation has presented a theoretical development and
analysis of the two dimensional slant transform for image coding.
Various transforms which possess an energy compaction property
have also heen briefly discussed.

The implementation of the slant transform coding system
appears feasible using the fast transform algorithm developed in this
dissertation. It has been found that for a slant transform of order N,
the total number of operations is N log N + 2N-4, which is only
slightly greater than the number of operations required for the
Haadamard transform.

The statistical properties of the slant transform have been
analyzed based upon the assumption that the original image is a
sample of a two dimensional process with known mean and covariance.
The probability density functions of the transform samples have been
modelled as a Rayleigh densi‘y function for dc samples and as a
Gaussian density for ac samples,

The energy compaction property of the slant transform has
been exploited to achieve a sample reduction by two means:
threshold sampling and zonal sampling, Threshold sampling simply

entails the coding of each transform sample that exceeds a threshold

144
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level. In zonal sampling those samples with the largest expected

variance are coded. For purposes of comparison experiments have
also been performed on the Fourier, Hadamard, Haar, and Karhunen-
Loeve transforms. The conclusions are:

a) A significant sample reduction with slant transform

coding can be obtained by threshold and zonal sampling;
b) Threshold sampling provides a better performance than

zonal sampling for the same sample reduction factor. A higher

sample reduction can be obtained with threshold sampling without
seriously degrading the reconstruction.

c) The slant transform exhibits somewhat better performance
than the Fourier, Hadamard, or Haar transforms.

d) For block sizes larger than 16 x16, the improvement of
performance will not be significant.

An analysis has been performed to determine the quantization j
effect of transform domain sarnples. A mathematical expression of
the mean square error between the original image and its transform
codec reconstruction has been derived.

Coding techniques for optimally quantized transform samples
have been implemented and evaluated for both threshold and zonal ;

processed samples. For threshold processed samples, a position

coding technique employing runlength coding has been introduced. ;

For zonal processed samples a maximum variance zonal coding
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technique has been introduced. The maximum variance zonal coding
technique appears to be much easier to implement than runlength
coding, since no position coding is required.

The effect of channel errors on slant transform coded images
has been simulated on a digital computer. All code bits were packed
into a long string of binary data, and a random noise generator was
introduced to generate bit reversals according to a specific error

rate. It has been shown that channel errors in the transform domain

tend to cause a small overall loss in resolution which is perferable to
the "salt and pepper' errors introduced in spatial domain coding.
Comparing the effect of channel errors on threshold and zonal coding
techniques, it appears that zonal coding is less sensitive to channel
errors. It has been shown that zonal coding can tolcrate an error
rate as high as Pe = 10.3 for a bandwidth reduced image of 1.5
bits/pixel without serious image degradation. ;
The -tudies of the slant transform for monochrome image
coding have also been extended to color images. First, a coordinate
conversion from RGB to YIQ has been made in order to compact the
image energy betwcen color planes. Next, the slant transform coding %
technique has been applied to each color plane. It has been shown
that relatively large bandwidth reductions may be obtained in the I

and Q planes without seriously effecting the color image reconstruc-

tion,
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The conclusions to be drawn from experiments that have been
performed in monochrome and color image coding are:

(a) A bandwidth reduction of 1 bit/pixel and 1.5 bits/pixel
can be made for a monochrome image by threshold and zonal coding
techniques respectively without seriously degrading the reconstruc-

{ tion quality.
(b) For color images, a total coding of about 2 to 3 bits/pixel

can be realized while maintaining good quality reconstructions.




Appendix

SLANT TRANSFORM PROGRAMS

This appendix presents the programs of the one-dimensional
forward and inverse slant transform of size N=256. The transform
of sizes other than 256 can be obtained by a minor modification of

these programs.

(a) Forward Slant Transform:

e

C THIS PROGRAM PERFORMS ONE DIMENSIONAL
C SLANT TRANSFORM OF A 256 BY 256 IMAGE
C

DIMENSION A (256), B(256), C(256)
N=256 |
EN=N ,
ENN=SQRT(EN)

Bl=1. /SQRT(S5.)

A1=3, *B1

DO 79 M=1, N

CALL DSKIO(C, 1024, M, 1, 4)

K1=N/4
DO 40 II=1, K1
ITA=4%(II-1)
DO 11 1I=1,4
J=IIA+I

11 B(I)=C(J)

A(1)=B(1)+B(4)
A(2)=B(2)+B(3)
A(3)=B(1)-B(4)
A(4)=B(2)-B(3)
B(1)=A(1)+A(2)
B(2)=A1*A(3)+B1:*A(4)
B(3)=A{1)-A(2)
B(4)=B1*A(3)-A1*A(4)

148
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DO 40 I=1, 4
J=IIA+I
40 C(J)=B(I)

K=8

L=3

GO TO 49
41 K-=16

L4

GC TO 49
42  K=32

L=5

GO TO 49
43 K64

L%

GO TO 49
44 K-=128

L=7

GO TO 49
45 K=256 .

L=8 !
49 KK=xK/2

K2=N/K

LL=L-1

SUM1=0.

DO 61 I=1, LL
61 SUMI1=SUMI+2, **(2%(I-1))

SUM2=SUM14+2, **(2*LL)

A2=FLOAT (KK)/SQRT(SUM?2)

B2=SQRT(SUM1)/SQRT(SUM2)

DO 65 II=1, K2

IIB=K*(II- 1)

DO 51 I=1,K

J=IIB+I
51 B(I)=C(J)

DO 59 I=1, KK

DO 59 L2=1,2

T=0. 4

DO 57 L3-=1,2 |

I1KK#*(L3-1)+I

IF (L3+L2-4) 55,53, 55
53 T=T-B(Il)

GO TO 57 :
55  T=T+B(Il)

R
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57 CONTINUE
IF (IAND(I, 1)) 52, 54, 52
52 Ll1=2%(I-1)
I2=L1+ L2
GO TO 59
54 Ll1=2%I+1
[2=L1-L2
59 A(I2)=T

I C
DD=A(4)
A(4)=A(3)
: A(3)=A(2)
A(2)=DD

E2=B2*A(2)+A2%*A(3)
F2=A2%A(2)-B2*A(3)
! A(2)=E?2

A(3)=A(4)

A(4)=F2

63 DO 651=1,K
J=IIB+I
65 C(J)=A(I)
IF(K-16)41, 42, 67
67 IF(K-64)43, 44, 68
68 IF(K-256) 45,71,71
71 DO 751-1,N
75 C(I)=C(I)/ENN
CALL DSKIO(C, 1024, M, 0, 5)
79 CONTINUE
STOP
END

(b) Inverse Slant Transform:

THIS PROGRAM PERFORMS ONE DIMENSIONAL
INVERSE SLANT TRANSFORM OF A 256 BY 256
IMAGE

eNeNeNe!

DIMENSION A(256), B(256), C(256) i
N=256 1
S=SQRT(FLOAT (N)) -
Bl=1. /SQRT(5.)
Al=3, *Bl
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33

44

55

141

149

161

DO 179 M=],N

CALL DSKIO(C, 1024, M, 1, 4)
K=256

L=8

GO TO 149

K=128

L=

GO TO 149

K=64

L=b

GO TO 149

K=32

L5

GO TO 149

K=16

L= GO TO 149

K-8

L=3

KK=K/2

K2=N/K

LL=L-1

SUM1=0.

DO 161 I=1, LL
SUMI1=SUMI1+2, **(2%(I-1))
SUM2=SUMI1+2, **(2*LL)
A2=-FLOAT(KK)/SQRT(SUM2)
BZ=SQRT(SUMI1)/SQRT(SUM?2)
DO 165 11=1, K2
IIQ=K>*(II-1)

DO 151 1=1,K

J=I+1IQ

B(I)=C(J)

E2:=-B2*B(2)+A2*B(4)
F2=A2%B(2)-B2+B(4)
B(2)=E2

B(4)=B(3)

B(3)=F2

JK=KK+1

JKK=JK+1
A(1)=B(1)+B(3)
A(2)=B(2)+B(4)
A(JK)=B(1)-B(3)
A(JKK)=B(2)- B(4)
DO 159 [=3, KK
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155
157

159

160

165
66

77
105

111

144

179
99

[J=2%].1
DO 159 L2=],2
T 0.

DO 157 L3=1,2
[1=L3-141J

IF(L2+L3-4) 155,153, 155

T=T-B(Il)

GO TO 157
T=T+B(I1)
CONTINUE
[2=KK*(L2-1)+I
A(I2)=T

JIK=KK+4
DO 160 IC=JJK, K, 2
A(IC)=-A(IC)

DO 165 I=1,K
J=I+IIQ

C(J)=A(I)
IF(K-128) 66, 33, 22
IF(K-32) 77, 55, 44
IF(K-8) 99, 105, 141
K1=N/4

DO 144 1I=1,K]1
I1Q=43*(II-1)

DO 111 I=1, 4
J=I+1IQ

B(I)=C(J)
A(1)=B(1)+B(3)
A(2)=B(1)-B(3)
A(3)=A1%B(2)+B1%B(4)
A(4)=B1%B(2)-A1%B(4)
B(1)=A(1)+A(3)
B(2)=A(2)+A(4)
B(3)=A(2)-A(4)
B(4)=A(1)-A(3)

DO 144 1=1, 4
J=I+1IQ

C(J)=B(I)/S

CALL DSKIO(C, 1024, M, 0, 5)

CONTINUE
STOP
END




Appendix B

PHOTOGRAPHIC DENSITY IMAGE REPRESENTATION

Results of an experiment of using the photozraphic density
rather than intensity for the slant transform image coding system are
presented in this appendix. The oiiginal digital image, £(j, k),
defined as an array of samples of a continuous two dimensional
intensity pattern of light, has been converted to the photographic

density by [36]

£'(j, k) = log { £(j, k)} jyk=0,1,2,...,N-1

The samples of this conversion then undergo a two dimensional slant
transformation repeated over subsections of images in 16 x16 pixel
blocks. The resultant transform samples are then quantized, coded,
and transmitted over a computer simulated channel. At the receiver
the received samples are decoded, inverse transformed, and recon-
verted back to the photographic intensity by

f(j,k) = 1o f (k)

Figure A shows the result of this experiment. Comparing this with
figure 4-35(a) it appears that the conversion of the photographic
density does not have any improveruent for the slant transform image

coding system subjectively.
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1. 5 bits/pixel

Figure A. Slant Transform Zonal Coding
of GIRL Image; transform was performed

in 16 x 16 pixel blocks to the photographic
density rather than intens ty.
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Appendix C

RATE DISTORTION MEASURE FOR TRANSFORM CODING

The rate distrotion function of information theory has proven

to be a useful measure of the performance of source coding methods

(19]. It has been shown that for a Gaussian source of independent

symbols and a mean Square error fidelity criterion, the minimum

information rate R(D) that can be achieved while maintaining a fixed

distortion D is given parametrically by [19]

1 N %
R(D) = 5% Z max{o, log<—e>} (C-1j
i=1
1 N
D = = El min (8,0,) (C-2)

2 ..
where o is the variance of the i th sample anc N represents the

number of symbols in a block. This result can be applied to trans-

form coding by treating the transform coefficients as being indepen-

dent (note:

the coefficients are quantized and coded separately), and

by observing the probability density of the samples is well modelled

by a Gaussian density. Thus, the factor o, in eqs. (C-1) and (C-2)

can be assumed to be the standard deviation of the transform coeffi-

cients as given by =q. (4-17) or (4-18), l
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Figure C-1 illustrates rate versus distortion curves for a

first order Markov process, with correlation coefficient p = 0, 95

and N=16. The curves show that the Karhunen-1 oeve transform

gives the best rate over the whole range of distortion, while the slant

transform result is very close to the Karhunen-1 ceve transform,

Figure C-2 contains rate versus distortion curves for the same

Markov process with N =256. The curves show that the Fourier

transform tends to become the Karhunan-Loeve transform for a

large size data vector,
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Appendix D

AN APPROXIMATE METHOD OF
MINIMIZING THE QUANTI7ATION ERRCR AMND FINDING THE
DECISION LEVELS OF THE DC AND AC TRANSFOXM SAMPLES

This appendix presents a method of minimizing the quantization
error and finding the decision levels of the dc and ac transform
samples. The method described is similar to the Panter and Dite
(20]. LetF and F(u,v) represent the dc and ac transform samples
respectively. Suppose F is quantized into I_i levels by a set of

decision levels, QK' and a set of reconstruction levels, F_, as

k

shown in figure 5-14. Then the dc quantization error can be written

as

Qg

L
¢ = Z J [F-FK]Zpl(F)dF (D-1)
K=1 "Q

K-1

—

where Py is the probability density of the random variable F, In

order to minimize €, as shown in (D-1) consider

QK

€ = J' (F-FK)Z p, (F) dF (D-2)
Q1

Suppose pl(F) is nearly constant over the region of integral such that
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QK+ QK—I

pl(F) =Py

then

Q +QK-1

pl( >

i} 3
ey ° - [(Q -F ) HF Q) :| (D-3)

Differentiating €k with respect to FK and setting the result to zero

gives
.1 2
1( - FfrE-a =0 g
or
Q. +Q
_ K YUK-1 _
Fp = "=a—— (D-5) |
LetQy - Fy =F, -Q | =8F, (D-6)

Then € may be written as

3
Zpl(FK) AFK

eK = 3 (D-7)

Substituting this into equation (D-1) gives

e-i;‘-Zx (D-8)
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If the number of quantization levels is sufficiently large so
that the definition of the integral is applicable, then

1 1/3

L 1/3 | A
Xg = f:l[pl(FK)] AFK=EIO["1(F)] dF = K

"M

=] 1

(D-9)
where Al is the maximum decision level of F and Kl is a constant

since the integral is a function of only its limit. The minimization of

equation (D-1) is now reduced to the minimization of equation (D-8)

subject to the constraint of equation (D-9). Using Lagrange's method

it is easily found that € is minimum when

-

xl = XZ = eee = X = _l.. (D_IO)

s
[

By wubstituting equations (D-10) and (D-9) intn (D-8) tlie minimum

quantization error becomes

A
1 1 3

€ 2 (.f [pl(F)]l“db (=14

0

Suppose now that each ac sample F(u,v) is quantized into
LZ(u'V) levels by a set of decision levels, QK(u, v), and a set of

reconstruction levels, FK(u.v), as shown in figure 5-15, Then the

ac quantization error can be written as

"




—5— Qv

¢, = 2 J [F(u.v)-FK(u,v)]ZpZ[F(u,v)}dF(u,v)
-L, (u,v) QK-l(u' v)
K:—.—z.___ (D-IZ)

where P, is the probability density of F(u, v). Following a similar

method as introduced in equations (D-2) to (D-8), the minimization of

equation (D-12) may he reduced to minimize

Lz(u.v)
= 2 f‘) [y, ( ]3 D-13
¢, 3 . Ku.V) (D-13)
_ = 2‘“.")
Ke —%—

subject to the condition

Lz(u,v)
—z Aple
1
> Y, = ;,_-I p,{ F(u,v)}dF(u,v) = K, (u,v) (D-14)
_Lz(u.v) “A_{u,v)
K= —5— 'V

1/3
where YK= [pz[FK(u.v)]] AFK(u. v); Az(u,v) is the maximum

decision level of F(u,v), and Kz(u,v) is a constant. Using Lagrange's

method it is easily found that €., is minimum when

2

Kz(u.v)
Y- I;— Y_I_-_+l—.“—Y-I—Yl—'“—YE_l—Y}_—qzu_-v_) (D-15)
2 2 2 2
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minimum ac quantization error becomes

Az(u,v)
€. =

= 1 (J (p (F)dF]l/3>3 (D-16)
2 12 Lzz(u,v) 2

-Az(u,v)

A method of obtaining decision levels for dc samples may be

obtained by writing

Q. =2 AF1+2AF

" st e s +20F (D-17)

K
or

-1/3 -1/3 -1/3
o= T [ P e P e e ] s

The series may be approximated by an integral

KA,

L

QK=cjol Cey ) @173 ap D-19)

where K =0,1,2,... ,Ll and C is a constant of pProportionality so

chosen that when K=1 , Q = A

1 2k 1° Hence

KA,
'L_ -1/3
AI 1 [p,(F)] dF
B d ]
Q = Kzo,l,u-t.L
i Aj -1/3 1

[ teyel  ar
0
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The decision levels for ac sample may then be obtained in a similar

way which could be written as follows:

2 KA, (u, v)
Lyluv) -1/3
Az(u,v) Io [pZ(F)] dF
QK(u.V) = Y K=0,1,...
w00 e
2

0

Lz(u,v)

(D-21)
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