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ABSTRACT 

During the past few years the Fourier and Hadamard trans- 

forms have been applied quite successfully to obtain a bandwidth reduc- 

tion and tolerance to channel errors for digital images.    Both of these 

transforms provide a high energy compaction of an image and possess 

a fast computational algorithm.    Neither,  however,  has been expressly 

tailored to the characteristic of a typical image.    In this dissertation 

a slant transform matrix consisting of basis vectors which resemble 

typical lines of an image has been developed.     The key feature of the 

transformation is a set of discrete sawtooth waveforms for the repre- 

sentation of linear spatial brightness changes within an image.    A fast 

transform algorithm based on the matrix decomposition has also been 

presented.     The transform has been proven to be superior,   from the 

standpoint of image quality,   to other transform, possessing fast com- 

putational algorithms. 

The statistical properties of the slant transform have been 

analyzed by introducing probability density and covariance models for 

the transform samples.    The bandwidth reduction capability of the 

slant transform has been investigated by several test images.     Two 

methods of achieving bandwidth reduction have been presented, 

namely,   threshold and zonal coding.    Studies have indicated that the 

11 
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average coding of a monochrome image can be reduced from 8 bits/ 

pixel to 1 bit/pixel or 1. 5 bits/pixel for the threshold and zonal coding, 

respectively, without seriously degrading the image quality.    Studies 

have also indicated that zonal coding has an extremely high noise 

immunity,  and can be practically implemented. 

Spatial redundancy of color images and the limitations of 

human color vision ha^e also been exploited by slant transform coding 

to achieve a bandwidth reduction for natural color images.    It has 

been found by computer simulation that the average coding of a color 

image can be reduced from 24 bits/pixel to about 2 bits/pixel while 

preserving good quality reconstruction. 

in 
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1.    INTRODUCTION 

1.1   General Background 

During the past twenty years the applications of electronic 

imagery have grown enormously.    This growth has placed severe 

demands on the capabilities of communication systems since conven- 

tional television transmission requires exceptional wide bandwidths. 

One means of bandwidth reduction that has shown particular promise 

is the transform image coding process. 

In 1968 the concept of coding and transmitting the two dimen- 

sional Fourier transform of an image,   computed by a fast computa- 

tional algorithm rather than the image itself,  was introduced [1,2]. 

This was followed shortly thereafter by the discovery that the 

Hadamard transform could be utilized in place of the Fourier trans- 

form with a considerable decrease in computational requirements [3]. 

Investigations then began into the application of the Karhunen-Loeve 

[4] and Haar [5] transforms for image coding.     The Karhunen-Loeve 

transform provides minimum mean square error coding performance 

but,  unfortunately,   does not possess a fast computational algorithm. 

On the other hand,  the Haar transform has ti^e attribute of an 

extremely efficient computational algorithm,   but results in a rela- 

tively large coding error.    None of the transforms mentioned above, 

1 
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however,   has been expressly tailored to the characteristic of an 

image. 

A major attribute of an image transform is that the transform 

compact the image energy to a few of the transform domain samples. 

A high degree of energy compaction will result if the basis vectors of 

the transform matrix "resemble- typical horizontal or vertical lines 

of an image.    If the lines of a typical monochrome image are 

examined,   it will be found that a large number of the lines are of con- 

stant grey level over a considerable length.    The Fourier.   Hadamard. 

and Haar transforms possess a constant valued basis vector that pro- 

vides an efficient representation for constant grey level image lines, 

while the Karhunen-Loeve transform has a nearly constant basis vec- 

tor suitable for this representation.    Another type of typical image 

line is one which increases or decreases in brightness over the length 

in a linear fashion.    None of the transforms previously mentioned 

possess a basis vector that efficiently represents such image lines. 

Shibata and Enomoto have introduced orthogonal transforms 

containing a "slant" basis vector for data of vector lengths of four and 

eight [6].    The slant vector is a discrete sawtooth waveform decreas- 

ing in uniform steps over its length,  which is suitable for efficiently 

representing gradual brightness changes in an image line.     Their work 

gives no indication of a construction for larger size data vectors,   nor 

exhibits the use of a fast computational algorithm.    In order to achieve 
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a high degree of image coding compression with transform ceding 

techniques,   it is necessary to perform the two dimensional transform 

over block sizes of 16 X 16 picture elements or greater.    For large 

block sizes,   computation is usually not feasible unless a fast algo- 

rithm is employed. 

1.2   Research Objectives 

With this background research has been undertaken to develop 

a slant transform of variable block size possessing a fast computa- 

tional algorithm.    The specific objectives of this research project are 

the analysis and evaluation of the slant transform for image coding. 

The approach taken toward the fulfillment of these objectives is: 

(1) Development of an image coding slant transform matrix posses- 

sing:   (a) an orthogonal set of basis vectors;  (b) a constant basis 

vector;  (c) a slant basis vector;  (d) sequency property;  (e) vari- 

able size transformation;   (f) high energy compaction;  and (g) 

fast computational algorithm. 

(2) Analysis of this sLtnt transform image coding system supported 

by statistical picture measurements to determine its bandwidth 

reduction capability. 

(3) Comparison of the slant transform with the Hadrmard,   Fourier, 

Haar,  and Karhunen-Loeve transforms for image coding. 

(4) Studying the channel error effects on the slant transform coding 

system. 
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(5)    Application of the slant transform coding technique +o color 

images. 

1. 3   Original Images 

Figure 1-1  shows photographs of the three original mono- 

chrome images that have been used as test images for the evaluation 

of the slant transform monochrome image coding system.    Each 

image contains 256 by 256 pixels with each pixel value uniformly 

quantized to 255 levels.     The images were read from magnetic tape, 

displayed on a flying spot scanner cathode ray tube display,   and photo- 

graphed with polaroid type 52 film.    Figure 1-2 shows photographs of 

the original color images that have been used as test images for the 

slant transform color image coding system.    Both of these images 

contain 256 by 256 pixels, with each red,   green and blue tristimulus 

values (NTSC receiver phosphor primary system) uniformly quantized 

to 255 levels.    The images were read from magnetic tape.displayed on 

an Aerojet Model SG-D2219 display unit,  and photographed on high 

speed Ektachrome film. 

1.4   Organization of Dissertation 

Chapter 1 is an introduction containing a discussion of general 

background and objectives of the research project.     The chapter 

closes with a summary of the organization of the dissertation. 

Chapter 2 presents a general representation of a two dimen- 

sional transform image coding system and definitions of the Fourier, 
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(a) 

Figure 1-1.    Original Monochrome Image: 
(a)     GIRL; (b)    COUPLE;   (c) MOON SCENE. 
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(b) 

Figure 1-2.    Original Color Images:   (a) GIRL; (b) COUPLE. 
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Hadamard, Haar, and Karhunen-Loeve transforms. The energy com- 

paction property of each transform is illustrated by transform domain 

pictures. 

Chapter 3 presents a construction of the slant transform 

matrix of order 2   where n is a positive integer.    A fast computational 

algorithm based upon the matrix decomposition is also presented. 

The chapter closes by introducing a class of slant transform rt.atrices 

which are constructed by a direct product of the. various orders of 

slant and Hadamard matrices. 

Chapter 4 contains a statistical analysis of the slant transform 

üomain samples.    A derivation of statistical mein anJ variance as 

well as an assignment of probability models for the transform domain 

samples are introduced.     The method introduced is generally appli- 

cable to all transforms. 

Chapter 5 is devoted to a presentation of the slant transform 

for monochrome image coding.     Two means of achieving a bandwidth 

reduction for the transform domain samples are introduced.    A deri 

vation of the quantization and coding scheme,  as well as a derivation 

of the mean square error between the original image and its recon- 

struction,   are also introduced.    Again the methods derived are 

generally applicable for all transforms.     The evaluation of the slant 

transform is obtained by performing the transform coding to three 

test images as well as to an image statistically described by a Markov 
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process. 

Chapter 6 presents the effects of transmitting the slant trans- 

form samples through a binary symmetrical channe).    The superiority 

of transmitting a zonal coded slant transform sample is demonstrated. 

Chapter 7 is mainly an extension of the work that has been 

presented in chapter 5.    All the quantization and coding techniques 

introduced in the monochromatic case are used to code transform 

samples of each color plane.    The color coordinate conversion between 

the NTSC receiver phospher primary system and NTSC transmission 

primary system is also included. 

Chapter 8 summarizes the results of the dissertation. 
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2.    TWO DIMENSIONAL TRANSFORMS* 

Figure 2. 1  shows a block diagram of a generalized transform 

image coding system.    An original digit.il image,   denoted by f(j,k),   is 

defined here as an array of samples of a continuous two dimensional 

intensity pattern of light.    The samples of this image undergo a two 

dimensional transformation over the entire image or some subsectionr 

of the image called blocks.    The resultant transform samples,   denoted 

by F(u, v),   are then operated on by a sample selector,  S(u, v),  that 

decides which samples are to be transmitted on the basis of magnitude 

or geometrical location in the plane.    A bandwidth reduction can be 

achieved by this selector simply by not transmitting all of the trans- 

form domain samples.    Those samples that are to be transmitted are 

then quantized and coded.    At the receiver the samples are decoded 

and inversely transformed to form the reconstructed image f(jf k). 

The following sections contain a general representation of a two dimen- 

sional transform image coding system and definitions of the Fourier, 

Hadamard,   Haar and Karhunen-Loeve transforms.    The definition of 

the slant transform is deferred to the next chapter. 

2. 1   General Representation 

Mathematically,   a two dimensional transform maps a two 

Part of the theory in this chapter is abstracted from the second 
chapter of USCEE Report 387,   "Transform Image Coding". 
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dimensional image array of dimension** NXN into a two dimensional 

array of the same dimension by 

N-l   N-l 
F(ufv)=     X)     L  f(j.k) a(j,k, u.v) u.v = 0, 1, ...N-l        (2-1) 

j = 0   k=0 

where a(j, k, u, v) is the forward transform kernel.    A reverse trans- 

form is defined by 

N-l   N-l 
f(j.k)   =      E     E  A/u.v)b(jIk,u,v) j,k= 0,1,...N-1        (2-2) 

u=0   v=0 

where b(j, k, u, v) is the reverse transform kernel.    When the function 

f(j, k) is equivalent to the original image f(j, k),  the reverse transform 

is called an inverse transform. 

A forward (or reverse) transform kernel is said to be separable 

if it can be written as 

a(j,k, u.v) =  a (j,a) a (k, v) 
J K (2-3) 

A separable two dimensional transform can be computed in two steps: 

a one dimensional transform along each row of the image f(j ,k); 

N-l 
F(u,k) =     E   f(j. k)a.(j,u) 

j = 0 J (2-4) 

and then a one dimensional transform along each column of F(u>k). 

N-l 
Ffu.v) =     E  F(u>k) a (k, v) 

k=0 K 
(2-5) 

** 
For simplicity all arrays are assumed to be square. 

-^ ■■ ■ ■ _, _^ . ■ ■ iin-iitMiii       i - - ■■--.:-.~-^-.   
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It is often useful to express two dimensional transforms in 

matrix form if the transform kernel is separable.    Let [f] be an 

image matrix representation of the array f(j, k) and [F] be a trans- 

formed image matrix representation of F(u, v),  then a two dimensional 

transform can be written as 

[F] = ict.uni^i (2-6) 

where [(7 ] and [<7^] are one dimensional transform matrices along 

rows and columns of an image.    If [C?.} and [£7 ] have inverses then a 
J K 

two dimensional inverse transform can be written as 

[f] = [tf.r'mc^r1 

2. 2   Fourier Transform 

(2-7) 

The two dimensional Fourier transform [1, 2, 7] of an image 

f(j, k) can be expressed in series form as 

N-l   N-l 
F(u. v) = - ^    Z)     E   f(j,k)exp      --^(uj+vk)| 

j = 0   k=0 L    N J 
(2-8) 

The inverse Fourier transform can be written as 

1     N"1   N-1 Co T 
f(j.k)  =   N      ^     ^    F(u(v)exp      2^(uj+vk)| 

u=0   v=0 L N J 
(2-9) 

The two dimensional transform can be computed as two sequential one 

dimensional transforms since the transform kernel is separable. 

The two dimensional Fourier transTorm can be put into matrix 

form by defining the symmetric unitary matrix 

..-   ■...:    „....■   ■Hl-,-l--i:..IT-■  , „. -.-. . w-.- iBnriaiiiniflMtofih fi'ion iVini-r itfrii^jfii h-i'iiiVüif'- -'~--^^-^^-^-liihini iiirnnirl-1*"^-^-■"-'-':' -' ■- - ■ ■: J ilhiVFIififlMriTl-- —'■ --■ ■ - ■■:--'-■■• ■-v"^-:- ■--■»^■■■^,
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7Nexp 

Thus,   the forward transform can be written as 

[F] = C^][f]CJ]T 

and the inverse transform can be written as 

[£] =  [^]*T[F][7]* 

13 

(2-10) 

(2-11) 

(2-12) 

Figure 2-2 illustrates a sketch of the Fourier transform wave- 

forms with N=16.    Figure 2-6 shows the full size two dimensional 

Fourier transform displays of the three original monochrome images 

shown in Figure 1-1.    In each display the original image has been 

multiplied by the checkerbourd function (-l)J+k in order to shift the 

zero frequency of the transform to the center of the display such that 

a photograph similar to the Fourier diffraction pattern of a coherent 

optical system can be achieved [7].    In addition,  the logarithm of the 

absolute magnitude of each transform sample is displayed rather than 

the absolute magnitude itself in order to reduce the dynamic range of 

the display.    From these displays it can be seen that most of the 

larger transform samples or energy are concentrating around the zero 

frequency region.    The symmetrical proper y [7] of the Fourier 

transform domain can also be seen from the displays. 

2. 3   Hadamard Transform 

The Hadamard transform [3] is based on the Hadamard matrix 

which is a square array of plus or minus ones.    The lowest order 

--         -   ■- — - - ----.—■- M^aMJ^aMWtMMMilMiiliiiiirfii tmniillMniinliMiini^^ 
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Figure 2-2.    Fourier Transform Waveforms,  N=l6. 
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Hadartiard matrix can be written as 

^ - i i    i 

x   -i 
(2-13) 

and the construction of a Hadamard matrix of order N can be written 

by the following recursive relation: 

[V=v? 

H 

H 

N 
2 

N 
2 

H 

-H 

N 
2 

N 
2 

(2-14) 

.n 
where N=2    and n is an integer.     The matrix [P] is a permutation 

matrix which permutes the rows of H     such that the number of sign 

changes of each row increases with the row index.    This is the 

sequency ordered Hadamard matrix. 

Equation (2-6) and (2-7) can bo used to express the two dimen- 

sional Hadamard transform matrix form by noting that the Hadamard 

matrix is real,   symmetrical,   and orthonormal.    Therefore,   the for- 

ward transform can be written as 

[F] =   [V][f][V] 

and the inverse transform becomes 

(2-15) 

[f] =  M[F][V] (2.16) 

Figure 2-3 contains a sketch of the Hadamard transform wave- 

forms of order 16.    A sequency property and a constant basis vector 

can easily be seen in the waveforms.    Figure 2-7 shows the two 

 L^_ i. ImM. 
.da^-^i...^tu.Sä.^..^ w^-.-,,. Wum,iftr-^ -^■^^•''-'^- --^•*---W^^-L^M-a^.^^..^^.^.^^.■!>^*±i^i!j,±j... .^^.w,^. .-■-..' -..^-^^-^-^ai^^rj**^-* Viiy'■ .r -ri , 11 - 



!WWf"f'^WpiWW«li!B!BW|»W^WP!IW^WlB^ll(f!Pi^^ 

Waveform,  u 

i 

2 

3 

4 

5 

6 

7 

8 

S 

0- 

C 

0 

10 

11 

12 

13       0 

°:bffl "OJinruvr 
°:ffljinjijj 

LzFtfH 
14 0- 

15 0- 
JuinjiMf 

h 
\mm 

.'  i  i  '  i  ,  .   i  i 

6'   '3'   'lO'   '12 14 

Figure 2-3.    Hadamard Transform Waveforms,  N=l6. 
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dimensional Hadamard transform displays of the three original mono- 

chrome images in Figure 1-1.    As in the Fourier transform display, 

the logarithm of the absolute value of each transform sample is cUs- 

played in order to reduce the dynamic range of transform samples. 

In these displays a certain degree of energy compaction can be seen 

on the upper-left corner of each display which is the low frequency 

region of transform samples. 

2.4   Haar Transform 

The Haar transform [5] is baued on the Haar matrix which is 

a square array of elements plus one,   minus one,   and zero.    A norma- 

lized Haar matrix of order 16 x 16 can be written in the following form 

c^61=yi6 

iiiiiiiiiiiiiiil 
i      ii      ii      ii      i    -l     -i   -i    -i   -i    .i   -i     .i 

yr JT ji JT -ji -ji -jr -jr oooooooo 
0 

-z 

0 

0 

0 

zji-zjz  0 
iji-ijz o 

0 

0 

-z 

0 

0 

0 

0 

o  zji-zji o 

JT   Jz Jz   Ji   .Jz   .Jz-JT vT 
oooooooo 

o  zjl -zjz o 

0 

-2 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0   Zjl -Zjl   o 

0 

-2 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0      0 

o zjz-zjl o 

0 

0 

-2 

0 

0 

0 

0 

0 

0 

0     0 

0      0 

0   Zjl .Zjl  0 

ooo  zjz.zji. 

(2-17) 

, 
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Based on this pattern the Haar Matrices of order N( = 2n; 0=1, 2, 3, ... ) 

can easily be constructed.    It can be seen that the Haar matrices are 

real and orthonormal. 

The two dimensional forward Haar transform can be written in 

matrix form as 

[F] = L^o[/pr 

and the inverse transform can be written as 

(2-18) 

Cf] =[/?]    Cf]R] (2-19) 

A sketch of the Haar transform waveform of order 16 is shown 

in Figure 2-4.    Figure 2-8 shows the full size two dimensional Haar 

transform displays of the three original monochrome images.    Again, 

the logarithm of the absolute value of each transform sample is dis- 

played.    The energy compaction property of Haar transform can also 

be seen in the upper-left corner but it is not nearly as good as the 

Hadamard or Fourier transform. 

2.5   Karhunen-Loeve Transform 

The Karhunen-Loeve transform is a special case of an eigen- 

vector matrix transformation [9-13].    Let f. be a column vector 
J 

representing the rows of an image [f],   then the covariance matrix of 

this vector can be written as 

[cj] = E{tvi,"Vr)JCfj{ii,'VTr)]T} (2_20) 

where i,   ii=0(l N-1 for the matrix of NxN.     The eigenvectors of 
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Figure 2-4.    Haar Transform Waveforms, N=l6. 
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(2-22) 

a matrix [X.], 

[C.] are column vectors  [?r](   i = 0. 1 N-l,   satisfying 
i 

CaDDr.^Cx.K^] (2.21) 

where [X    ] are the eigenvalues of [C.].    The Karhunen-Loeve 
i J 

matrix constructed by the eigenvector columns which can be written aS 

[* J =   [*    V   • • • Y.       ] 
J Jo  Ji       JN-I 

if the eigenvalues are located along the diagonal of 

then the following relation holds: 

CW=CV[V (2-23, 

Similarly,   the Karhunen-Loeve matrix of a column vector 

representing those columns of the image can also be constructed by 

the following relation: 

[ckKvk] = Py[*k] (2.24) 

A two dimensional separable Karhunen-Loeve transform can then be 

defined as 

[F] ^v.icnc^] (2-25) 

Figure 2-5 contains a sketch of the Karhunen-Loeve wave- 

forms of order 16.     These waveforms were obtained by assuming that 

the covariance matrix along an original image line is the first order 

Markov process with correlation coefficient  p = 0. 95.    Figure 2-9 

shows the two dimensional Karhunen-Loeve transform displays of the 
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Figure 2-5.    Karhunen-Loeve Transform Waveforms,  N=l6. 
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GIRL image. The transform was performed by brute force matrix 

multiplication since there is no known fast computational algorithm 

for the Karhunen-Loeve transformation. 
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(b) (c) 

Figure 2-6.    Fourier Transform Domain Display: 
(a) GIRL;   (b) COUPLE; (c) MOON SCENE. 
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(a) 

Figure 2-7.    Hadamard Transform Domain Dis- 
play:    (a) GIRL; (b) COUPLE; (c) MOON SCENE. 
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(a) 

Figure 2-8.    Haar Transform Domain Display: 
(a) GIRL; (b) COUPLE; (c) MOON SCENE. 
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3. DEVELOPMENT OF THE SLANT TRANSFORM 

This chapter presents a detailed construction of the slant trans- 

form matrix of order 2    (n is a positive integer),    A fast computational 

algorithm based on the matrix decomposition is also presented.    A 

computational flowchart of order four and eight which indicate steps of 

additions and multiplications needed for the fast transformation is also 

introduced.    The chapter is summarized by introducing a class of slant 

matrices which are constructed by a direct product of the various 

orders of slant and Hadamard matrices. 

3. 1   Definition of the Slant Transform 

The slant transform is based on the post multiplication of 

image lines by a slant matrix which is defined as an orthonormal 

matrix consisting of a constant basis vector,   a slant basis vector,   and 

possessing the sequency property.    Let [f.] be a column vector of an 

image line composed of N pixels and [V] be the slant matrix of size N 

by N.    Then the slant transform of this image line is 

[F.] =   [VKf.] (3.l) 

Since the slant matrix is real and orthonormal,   a two dimensional 

slant transform can be written as 

[F] =   [^][f][^]T (3.2) 
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and the inverse transform is 

m = [/) [Oiv] 0-3) 

where [f] denotes image pixels in an NxN matrix,   [V] denotes the 

slant transform kernel in an NxN matrix,   and [F] denotes the two 

dimensional  slant transform of [f "]. 

3. 2   The Construction of the Slant Transform Matrix 

The slant transform matrix of order two consisting of a con- 

stant and slant basis vector is simply 

" ^ L .J (3-4) 

The slant transform matrix of order four can be written as 

s  =_L 
44        44        44        44 

aiA-hA    -a-4-b,i      a^+b^i    -a^+b^ 44 44        44        44 

(3-5) 

where a    and b    are real constants to be determined by the conditions 

that S    must be orthogonal and that the step size of the slant basis 

vector must be the same throughout its length.    The step sizes 

between adjacent elements of the slant vector are 2b  ,   2a   -2b  ,   and 
4 4       4 

2b4.    By setting these step sizes equal,   there results 

4 4 

Hence,  the slant matrix of order 4 can be rewritten as 

(3-6) 

   ■ ■ "-"-  -— '•■"—"-  ■'-- 
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S    =   -^ 

1 1 1 1 

1 
^/4 

3b4 

1 

b4 

-1 

-b4 

-1 

-3b, 

1 

b4 -3b, 3b4 -b4 

(3-7) 

By the orthonormality condition [S.] [S JT= [1],   it is found 
4J ^4- 

b    =     1 4      Tf 

Substituting this into equation (3-6) one obt 

2 
a4"  JS 

that 

ains 

Thus,   the slant matrix of order 4 b e comes 

(3-8) 

(3-9) 

S . =   -k 1_ 

1 1 

_3_      J_ 
/5      /5 

1 1 

1 1 

zX      -3 

-1 1 

1        -3 -3 3-1 

(3-10) 

It is easily seen that S4 is orthonormal.    Furthermore.   S, possesses 

the sequency property;  each row has an increasi 

reversals from 0 to 3. 

ig number of sign 

An extension of the slant matrix to its next size of order 8 is 

given by 

. 
i...; ,....,..w..J,.JU.i..-i,J.„ivt,„....^j^,.._. .,,„■.., ...„,.■ ...:;. ^...j,,,^..^,..^ .»: ......a»^.--^^^,^^... ..^ :i,,:^j 
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s8cyf 

"l      0    0    0    'i    1      0     o    o" 

'S    b8    0    0     j -8   b8     0     0 

0      0     1    0    j    0       0      10 

0      0     0    1     1    0       0      0     1  _   s_                   

s4        1 

1 
0       10    0     10-100 

■b8   '8    0    0    1   b8     '8     0     0 

0      0     10*0       0-10 

_0      0     0    1     1    0       0      0    -1_ 

0             1             S4 

J 

(3-11) 

where a- and b    are constants to be determined to satisfy the slant, 

ortnonormality,   and seq'-ency properties.    It can be seen that in S  , 
8 

the slant vector is obtained by a simple scaling operation on S   .    The 
4 

remaining terms in equation (3-11) are introduced to obtain the 

sequency and orthogonality properties. 

Equation (3-11) can be generalized to give the slant matrix of 

order N(N= 2  ,   n = 3, 4, 5, . . . ) in terms of the slant matrix of order 

N 
— by the following recursive relation: 

SN= yz 

i    o! 
a     b 

N    N 
I 

in 
LJJ 

i 

0      1 I 

.--V_NI 
I      I 
LI A 

r— 

1     0 
-a    b 

N   N 

LJ-J 

-I! 

f-.-N-'-Nl 
I      1 
'    1   < 

0 

SN 
2 

0 

I 

0 

0 SN 
2 

1 J _ __ 

(3-12) 

where I represents a 2x2 identity matrix. 
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A 16x16 slant matrix computed by this recursive relation is as 

follows: 
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516 ' Tit 

1111 I   1   1   1   1   1   1 

IS 13 
IS 

11 
15 

9 
15 

7 
15 

5 
15 

3 
15 

7 
7ü 

5 
7 

3 
7 

1 
7 T 

-3 
7 

-5 
7 

i 
,/2TxF5 

/3S 
v77 

19 
77 

3 
77 

-13 
77 

-28 
77 

-45 
77' 

-61 
77 

3 
7* 

1 
3 

-1 
3 -1 -1 

-1 
3 

1 
3 

3 
7? 

1 
3 

-1 
3 -1 -1 T 

1 
3 

17 
7iös \T7 

-1 
17 

•9 
17 -1 1 9 

17 
1 
17 

17 
Til? vT? 

-1 
17 

-9 
17 

- l 1 
9 
17 

1 
17 

-1 -1 1 1 -1 -1 

-1 -1 1 1 -1 -1 

-1 -I » -1 1 1 

-1 -1 1 -1 1 1 

3 
3 -I 1 

-1 
3 

-1 
3 1 -1 

3 
-1 1 

-1 
3 

-1 
3 1 -1 

3 
-1 1 

-1 
3 

1 
3 -1 1 

3 
3 -1 1 -1 

3 
1 
3 -1 1 

-2 ^ -7 
15   15   15 

M   45   28 
77   77   77 

3     3 

3 T     1 

17   17 

17   17 
-1 

-1 -1 1 

1 1 -1 

1 1 -I 

-1 -1 1 

-i i 4 

■ - \ 

^1 di 
15 

3 
7 

13    O 
77    77 

3 

ll 
17 

17 

-1 

1 

-1 

1 

1     ■ 1    -1    t 

-1     1    ~ 

-n 

1 I    J 

-13 
15 

-1   ) 

5 
7 1     ) 

-19 
77 

-35 \ 
77  / 

1 
3 1    ) 

T -1   ) 

-1 
17 

7    \ 
17  ) 

1 
17 

-9  \ 
i7 ; 

-i 1    ) 

1 -1   ) 

-1 1    ) 

1 -I   ) 

-1 1    \ 
3    / 

1 -1   \ 
3    / 

-1 
1    \ 
3   ) 

1 -1   \ 
3    / 

.J 

(3-13) 
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3. 3   Slant Transform Fast Computational Algorithm 

The fast computational algorithm of the slant transform is 

based on the property of matrix decomposition.    The 4x4 slant matrix 

can be reformed as 

n   i     o 

7% 

0     0 

1  -1 

0     0 

o ■ 

J_ 

0 

75 
0 

1        _3_ 

'IOO   r 

0 110 

10 0-1 

0    1-10 

(3-14) 

If S4 is post multiplied by a column data vector,   the first computa- 

tional pass requires 4 additions,   the second pass requires 4 multipli- 

3 1 
cations (the elements -7= and   -j~) and 4 additions.    The total compu- 

tational requirements,  without counting the normalization factor    -L 

are 8 adds and 4 multiplies   .    Figure 3-1 contains a flowchart of the 

computational operations for S4.     The 8x8 slant matrix can be written 

as 

53E7? 

1   0    0   0 1 
0 b» a« 0 i   0 
0 0 0 11 

0   »8    -b8  0   ! 

"IOOO   1 1   0   0   0" 
0 1    0   0    J   0     1     0    0 

1 0    0    0     1 .)     0     0     0 

0    10    0     j   0    -1     0     0 

s4   1    0 

1   ]   0    0   0 

[   0   1    0   0 
0              * 1   0   0    I    0 

1   0   0    0    J_ 

0 0    1    0     j   0     0     1     0 

0010    I   0    0-1    0 

0001 10    0    0-1 

J)   0    0    i     10     0     0     1 _ 

0 i s< 

(3-15) 

The normalization factor will not be encountered here. 
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If Sg is post multiplied by a column data vector,   the first and seco nd 

computational passes require two times the total computations of S 
4' 

and the third and fourth passes require eight additions and four multi- 

plications (the element ag and bg).     The total computational require- 

ments are 24 adds and 12 multiples, ^flowchart of these computational 

operations is shown in Figure 3-2. 

The decomposition of a generalized NxN slant matrix is shown 

in exhibit 3-1.    If SN is post multiplied by a column data vector,  the 

total additions and multiplications can be computed by the recursive 

relation: 

KN=2KN + N (3-16) 

and 

KN=2KN + 4 (3-17) 

where KN and Kj^ are the number of additions and multiplications 

respectively.    These terms can be rewritten as* 

KN=2(2KN + T)+N 

= 4 KN + 2N 

=  8 KN + 3N 

All logarithms are base two. 

jfcai—wifctiniiiniiii ...-■■^■■■.^■^^-^■-■■.^.-^-^^-^^^ ...:   ,. :....^M 



7K4 + (log7)N 

N
 Q   X   TVT   1 N - • 8 + N log - 

N(2 + log^) 

=   N log N 

and 

KN = 2( 2K^ + 4)   +4 
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(3-18) 

4 K'   + 8 + 4 
N 

8 K'   + 16 + 8 + 4 
N 

4     4      2       4 + 8+4 

N      N 
=   N+^+^+... + 8+4 Z       4 

=   2N-4 (3_19) 

Therefore,  the total operations of an NxN slant transform is N log 

N + 2N-4.    For purpose of comparison an NxN Hadamard transform 

requires N log N operations.    It is seen that the total number of oper- 

ations of the slant transform is only slightly more then those of the 

Hadamard transform. 

To determine the coefficients (aN, b   ),   one can proceed as 
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follows:   the first vector is a constant 

1 
V'^TN (3-20) 

The second vector (slant vector) is a linear function of the column 

index which is orthonormal to the first row.    It must,  therefore,  be 

of the form 

SN(2,i)= XN- (N + l-2i) (3-21) 

Now,   by the recursion indicated in equation ^3-12),   one obtains 

SN<2'i,= ^aNSN<1'i> + ^bNSN(2'i) I3'22' 

or 

XN • <N + 1-2i) = Tff aN + J? bN XN • (T + 1-2i' <3-23> 

From this it is found that 

XN =  72  bN XN 
2 

(3-24a) 

aN = 

3 

72(^)2X 
N (3-24b) 

and by induction 

a    =  2b    a 
N N    N 

N 

(3-25) 

Since S    (1, . ) and S    (2, . ) are orthonormal vectors in —   dimensions 

and S    (2, . ) is a unit vector in N dimensions,   the above recursion 

Hfitfllf^fiurtrMWlftaii 
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implies 

SN(2..) 
2 2 

(3-26) 

These two relations can be used to obtain the coefficients,  (a   , b   ), 

recursively: 

;"//• 
1 + 4 a 

N 
2 

a    =  2b    a 
N N    N 

(3-27) 

For the inverse transform the computational operations are 

similar to the forward transform described above.    The decomposition 

of a generalized NxN inverse slant matrix is shown in exhibit 3-2. 

If S     is post multiplied by a column vector it can easily be seen that 

the total number of operations is exactly the same as for the forward 

transform.    Again the coefficients,  (a^, b   ),   can be computed by 

equation (3-27). 

3.4   Summary 

The slant transform matrix thus far discussed contains a 

slant basis vector decreasing in uniform steps over its entire vector 

length.    There are a class of slant matrices that can be constructed 

with the slant basis vector decreasing or increasing in steps a number 

of times over its vector length.    Taking a 16x16 matrix as an example, 
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there are two other type of matrices,   in addition to the one shown on 

equation (3-13),  which can be constructed by the direct product    of 

slant and Hadamard matrices,   namely,   SQXH    andS   XH  .    In SQ X H  , 
o        c. 4        4 o        c. 

the slant basis vector decreases in uniform steps to the middle point 

of its vector length and then increases in uniform steps to the rest of 

its vector length.    In S.xH,.,  the slant basis vector decreases uni- 
4       4 

formly for the first quarter length,   increases for the second quarter, 

decreases for the third quarter,   and increases again for the final 

quarter.    It can easily be shown that a matrix of order NxN has a 

class of (log    N~l) matrices each containing a "slant" basis vector. 

Figures 3-3,   3-4 and 3-5 show the class of slant matrices of order 16. 

It can be seen that all these matrices possess sequency and orthogona- 

lity properties.    The performance capability of these matrices has 

not been investigated.    From a purely mathematical point of view the 

A direct product of a matrix A =    a..    ,   1 < i,  j<m,  and a matrix 
y       - 

B =    b..    ,   l<i,   j<n,   is defined as 

AXB = 

Abll      Abl2 

Ab21      Ab12 

Ab    ,    Ab    _ 
ml m2 

Ab 

Ab 

Im 

2m 

Ab mm 

jtili   'H    I    t-l  —-:■■   ■■       --   ■     -."-  ■-    ■ , ^^ r.   - - 
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existence of a slant matrix of order other then 2  ,   n=l, 2,1, ... ,   may 

also be an interesting topic to explore,   though it will nov be considered 

here for image coding. 

The next two chapters contain a general analysis of the slant 

image transform. 
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4.    STATISTICAL ANALYSIS OF THE SLANT TRANSFORM 

The development of efficient quantization and coding methods 

for slant transform samples requires an understanding of the statis- 

tical properties of the transform domain samples.    This chapter pre- 

sents a derivation of the statistical mean and variance of slant trans- 

form samples,   and also the development of stochastic probability 

models for slant transform samples.    The material introduced here 

is generally applicable not only for slant transform but for all trans- 

forms as well. 

4. 1   Statistical Mean and Variance 

Suppose each sample of an original image,   denoted by the func- 

tion f(j, k) over spatial coordinates,   is considered as a two dimen- 

sional stochastic process.    The spatial mean 

E{f(j,k)3H f(j,k) 

and the covariance 

(4-1) 

E {[füj. kj) - f(ji, kj)] [f(j2. k2) - f(j2) k2)]} H C [jj. kj, j2, k2}   (4-2) 

are assumed known or at least estimable. Then,   for a generalized 

forward transform as shown in equation (2-1),   the mean of the trans- 

form samples can be written as 

E {F(u, v)3 H F(u, v) =  E Z f(j, k)  a(j, k, u, v) 
j k 
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(4-3) 
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The covariance function of the transform samples is defined as 

C{U1.U2,V1,V2}BE{[F(U,,V])- F{MVV1)2[F(UZ,V2). F(viz.y2)2] 

(4-4) 

Substitution of equation (2-1) and (4-3) into equation (4-4) gives 

'11 im2.k2)-li^y *ij2,k2.urv2» 
(4-5) 

or 

C{u1.u2.v1.v2)= EEE  Z   E{[f(j     k  )-f(j    k )][f(j     kJ- 
JlJz^^ 2    2 

f(J2. k2)]} • aO'j. k1.ul. Vj) a(j2, k2. u2, v.,) 

Upon substitution of equation (4-2),   the result is 

C(u1,u2,v11v2)=rEE   E    C(jl>j2.k1.k2)a(j1.k1.u1.v1) 

a(J2.k2(u2.v2) 

(4-6) 

(4-7) 

mam The generalized expression for the variance of transform do 

samples is thus 

a (u,v) =  C{u.u.v.v) = S E E   E   C (j    j     k    k ) a(j1, k., u. v) 
JlJ2klk2 

a(j2, k2, u, v) 
(4-8) 

If the covariance matrix of the original image is separable in j and k 

direction and if the transform kernel is separable,   then the transform 

domain variance can be computed as 
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(4-9) 

Since the transform kernel of the slant transform in series form is 

mathematically difficult to describe, it is desirable to introduce an 

alternate matrix formulation. 

A matrix formulation of a separable two dimensional slant 

transform can be written as 

[F] =   [S][fJ[S] 
(4-10) 

where [f] denotes an image pixel in NxN matrix.   [S] denotes slant 

transform kernel in NxN matrix,   and [F] denotes the two dimensional 

slant transform of [f].    Let [f.] and [y be column vectors repre- 

senting the rows and columns of [f],   respectively.     Then the covari- 

ance matrices of rows and columns are 

[v] E[Cfrfj][fj"f/T} (4-11) 

and 

M = E{[fK-rk][fk.rk]^ (4-12) 

Now define 

[F.] =   [S][f.] 
(4-13) 

and 

CFk]= rs][fk] 
(4-14) 

Then the covariance matrices of [F ] and [F   ]  are respectively 

— i —. ^—    - -  -■ — .   . -, . ,  - -~^- -^-^-i^--^—■■^-^■«.^.^ im iiaiiniMMfciiiM i ..^■..^-^i^^^d^-^^aa...^.-..^...,   ....■■,■..,.■■.. .,..,^,w./—:..   ^.**:-.\,:*~.-^..„-r.      -■   ■. ■      :.-....   ^. 
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[cF]-EaF.-F.nr.-T.fT) 

and 

[C    ]=ECtFk-Fk][Fk-Fk]*T) 

substituting equation (4-13) into equation (4-15) gives 

[cF ] = E [([S] [f.] - [S] [f.]) ([S] [f.] - [S] [f.l)  T} 

= E[[S][fj-fj][fj-f.]*T[S]*Tl 

or 

[CF.]=[Sl[Cf.][S] 
*T 

J ~     J 

Similarly,   equation (4-16) can be reduced to 

[c ]=[s][c ][sr 
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(4-15) 

(4-16) 

(4-17) 

(4-18) 

The variances of the slant trarsform samples are,   therefore, 

I 
j-~     k 

IT 

j J J 

[
V 

=
 [

V
F.][

V
FJ" (4-19) 

here  ^VF ]T =  [CF (0,0),   CF (1,1) CF (N-l, N-l)] 

[V     1T=  fc     (0.0),   C     (1.1) C     (N-l.N-l)l 
L     kJ u     k k rk J 

4.2   Probability Densities 

The probability density of slant transform samples is gener- 

ally very difficult to obtain since the probability density of the original 

image is not usually well deiined,   and also,  the slant transform 
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representation is mathematically complex.    Nevertheless,   since the 

transform operation forms a weighted sum over all of the pixels in 

the original image,   one can evoke qualitative arguments based upon 

the central-limit theorem [15-17] to determine probability densiti 

of transform domain samples. 

A two dimensional slant transform in matrix form,   shown in 

equation (4-10),   can be rewritten as 

es 

F(0,0M[S0][f][S0] (4-20a) 

and 

F(u.v) = [S.][f][S ]   ;u,v = 0,1.2 N-l; (u. v) ji (0. 0)   (4-20b) 

where [S   ] is kth vector of slant matrix [S],   i, e. ,   [S   ] = [S(k, 0) 

S(k, 1) •••S(k, N-l)].    From equation (4-20a)>   since all elements of 

the vector [SQ] are positive constants and all pixels of [f] are non- 

negative,   the value of F(0, 0) is always non-negative.     The probability 

density of F(0, 0) will resemble the histogram of f(j, k) and generally 

can be represented by a Rayleigh density,   i. e. , 

PF(0, 0)(X)=   "I exP(-x   /2a   ) U(x) 
a 

(4-21) 

The probability densities of the    samples of F(u, v),   for 

(u, v)^(0I0)>   are generally indeterminable.    By examining equation 

(4-Z0B),   since half the elements of [S.] (i^ 0) are positive and half are 

negative,   and also the magnitude of these elements are periodically 
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defined,  therefore,   the only information that one can obtain is that 

the probability densities of F(u, v),  (u, v) i (0, 0),   are expected to be 

symmetrical about the origin.    Based upon this information two dif- 

ferent types of probability models may be defined,   namely,   the 

Gaussian and two-sided exponential models: 

For the Gaussian model,   the probability density can be 

written as 

PF(u,v)(x)=  yznalu.v)  ^P(^W(u.v)) 

(4-22) 
u.v = 0,l N-l;  (u.v) ?f(0,0) 

and for the two-sided exponential model,  the probability density can 

be written as 

PF(u,v)(x) = ^2 V)  exP(-a(u. v)x) 

u, v=0, 1, . .. , N- 1; (u, v) 5« (0, 0) (4-23) 

Since the magnitude of F(0, 0) is always non-negative and the 

magnitudes of the remaining transform samples fluctuate about the 

origin,  they will be termed respectively the dc and ac transform 

domain samples. 

Suppose that the ac samples,   as defined in equation (4-20b)) 

are independent and identically distributed,  then from the central- 

limit theorem the probability density of E E F(u, v)   will tend to be 
u v 
(u,v)^(0,0) 

Gaussian with mean zero and variance  o =  E E a(u, v),   i. e. , 
u v 
(u,v)^(0,0) 

^.-^.■.a:,^,fc^u"*-UJ
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px(x) = 7^ exp 
2 1 

L   2a 
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(4-24) 

where X denotes the summation of the ac random variables,   F(u, v), 

(u.v) M0.0). 
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5.    SLANT TRANSFORM MONOCHROME IMAGE CODING 

Figure 5-1 contains a block diagram of the slant transform 

coding system for monochrome images.    In operation a two dimen- 

sional slant transform is taken of the image pixels over the entire 

image or repeatedly over subsections of the image called blocks.    The 

transform domain samples are then operated upon by a sample selec- 

tor that decides which samples are to be transmitted.    Those selected 

samples are then quantized,   coded,   and transmitted over a channel. 

At the receiver the received data is decoded and an inverse slant 

transformation is performed to reconstruct the original image. 

The basic premise of an image transform coding system is 

that the two dimensional transform of an image has an energy distri- 

bution more amenable to coding than the spatial domain representation. 

As a result of the inherent pixel to pixel correlation of natural images, 

the energy in the transform domain tends to be clustered into a rela- 

tively few number of transform samples.     The slant transform of an 

image has exactly the same property which can be exploited to achieve 

a bandwidth reduction. 

Figure 5-2(a),  (b),   and (c) shows the full size two dimensional 

slant transform displays of the three original monochrome images 

shown in Figure 1-1.    The logarithm of the absolute value of each 
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transform sample is displayed rather than the absolute value itself in 

order to reduce the dynamic range of transform samples.    Figure 

5-2(d) and 5-2(e) show two different views of the threshold display of 

Figure 5-2(a) where all samples whose magnitude is below a specified 

threshold are set to zero and all samples whose magnitude is above 

the threshold remain unchanged.    A typical energy distribution of the 

slant transform canbe seen from these pictures,    A high degree of 

energy compaction is seen on the upper-left hand corner of each pic- 

ture which is the low frequency zone of the transform samples. 

There are two bandwidth reduction factors that are often 

stated as image coding performance measures [23]: 

Sample 
reduction 
factor 

Bit 
reduction 
factor 

number of original image samples 

number of samples selected 
to be coded and transmitted 

number of original image code bits 

(5-1) 

number of selected sample code bits 
(5-2) 

The sample and bit reduction factors are identical if the same number 

of bits are assigned to both original and coded image samples. 

A bandwidth reduction can be achieved with the transform 

coding system in two basic ways:   threshold sampling and zonal 

sampling [14].    In threshold sampling the image reconstruction is 

made with a subset of the samples which are larger than a specified 

threshold.    In zonal sampling the reconstruction is made with a subset 
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of samples which lie in a certain geometrical zone - usually the 

lower frequency samples.     This chapter will present the performance 

of the slant transform for threshold and zonal samplings in an error 

free channel.    A derivation of the quantization and coding scheme as 

well as a derivation of the mean square error between the original 

image and its transform coded reconstruction will also be presented. 

For threshold sampling a runlength coding technique is used and for 

zonal sampling a bit allocation matrix based on the "maximum vari- 

ance matrix" and rate distortion theory is introduced.    Again the 

method introduced is generally applicable for all transforms. 

5. 1   Slant Transform Bandwidth Reduction 

The slant transform sample reduction technique can be 

analyzed by defining a two dimensional sample selector as a function 

S(u. v) which takes on the value zero or one according to an apriori or 

adaptive rule.    The reconstructed image,  with those selected trans- 

form samples unquantized and uncoded,   is then given by 

fs(j,k)=  EE F{u, v)S(u. v) b{j,k.u,v) (5.3) 

where b(j, k, u, v) is the inverse transform Kernel. 

The mean square error between this reconstructed image and 

original is,   therefore 

^   ^2? £Et[f(j'k,-fs<J'k)l2} (5-4) 

Substituting equations (2-2) and (5-3) into (5-4) gives 
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€ = — E E E {[E E F(u. v) (1 -S(u. v)) b(j. k, u. v)]2) (5-5) 
N    j   k u v 

Expanding the series and changing the order of operations gives 

C= — E E EE  E[F(u,v) [ 1-S(u, v)] F(ut, v') [l-S(u^v,)] 
N    u u' v v' 

(5-6) 
• E E b(j,k,u.v) Wj.k.u'.v1)} 

j  k 

By the orthonormality of the slant transform Ker lels the second set 

of summations is non-zero only if 11=11' and v^'.    Thus 

e= — EE EE E{F(u,v) [ 1-S(u, v)] F(u^ v') [l-^u'.v')] 
N    u u1 v v' 

(5-7) 
• ÖO-i-u', v-v')} 

or 

€= -^r EEE{[F(u,v)(l-S(u>v))]2} (5_8) 
N    u v 

Equation (5-8) shows that the mean square error between the original 

image and its sample reduced reconstruction may be computed from 

the transform domain samples. 

5.1.1    ThresJiold Sampling 

In threshold sampling the selection of transform domain sam- 

ples is made after the transform has been taken on a particular 

image.    A threshold is established apriori or adaptively,   and only 

those samples whose magnitudes are greater than the threshold are 

selected to be quantized,   coded,   and transmitted over a channel. 

Figure 5-3 contains a plot of the percentage of transform 

^■-- ■ ^ »„.^ , ■   -•■   - ■■    .-.■■       ■-    -  ■   w.-.   ->..   .  ;.: - ..,. - _^ . ^ , , ^ .     ,  .. 
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domain samples lying below a magnitude threshold level for the slant 

transform of the three original monochrome images.     The energy- 

compaction for the GIRL image for various transforms is illustrated 

in Figure 5-4.    In the figure it is seen that the energy compaction of 

the s'.ant transform is exceeded only by the Karhunen-Loeve trans- 

form. 

Figure 5-5 shows slant transform threshold sampling proces- 

sed images of the original pictures,    A two dimensional slant trans- 

form was taken of the image pixels repeatedly over subsections of an 

image in 16x16 pixel blocks.    A threshold was assigned to make the 

sample reduction and then these reduced samples were inversely 

transformed immediately without any quantization and/or coding. 

The purpose of these pictures is mainly to illustrate the threshold 

sampling effect of the slant transform.    It can be seen that the slant 

transform th reshold sampling provides     good quality reconstructions 

for sample reduction factors up to 12:1,    For purposes of comparison 

Figures 5-6 and 5-7 contain threshold sampling processed GIRL pic- 

tures for the Hadamard,  Haar,  Fourier,  and Karhunen-Loeve trans- 

forms.    The quality  rating of these transforms,   from the standpoint 

of subjective quality,   is the Karhunen-Loeve first,   followed by the 

slant,   Haar,   Hadamard,   and Fourier transforms.     The orders of 

these ratings are exactly the same as the orders of those curves 

shown in Figure 5-4,    It is rather interesting that the performance 

L,^.   .....■■^^-■I    ,.::,',.^..v...   .....;..,...  -^.■J^-^^.■..-■ ̂̂ ^^^^...^■^^^^■V.,^^.^^^^:^.^^^^^^,  .^.-^^^    ^,^ _J..  ....„..:  ■^......    ,.   .........   __,..; ^.^..^ .^:^,^ ■^-_^^,_^J^i 
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lOOr 

8 12 16        20       24 
THRESHOLD 

28 32       36 

Figure 5-3. Number of Slant Transform Samples 
Below Threshold Versus Threshold Level (Trans- 
form is Performed in 16 x 16 Pixel Blocks). 
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KARHUNEM-LOEVE   TRANSFORM 

SLANT TRANSFORM 

12 16        20 
THRESHOLD 

Figure 5-4.    Number of Transform Samples of 
GIRL Below Threshold Versus Threshold Level 
(Transform is Performed in 16 x 16 Pixel Blocks). 
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of the Haar transform, with the fastest transform algorithm,   is 

better than either the Hadamard or Fourier transform.    Table 5-1 

exhibits the mean square errors between the original GIRL and its 

threshold sampling reconstructions for the slant,  Haar,  Hadamard, 

Fourier,   and Karhunen-Loeve transforms with various sample reduc- 

tions.    As expected,  the Karhunen-Loeve transform has the best mean 

square error followed closely by the slant transform. 

5. 1. 2   Zonal Sampling 

In zonal sampling,   rather than selecting those larger magni- 

tude samples,  a specific zone in the transform domain is established. 

Those samples lying inside the zone are selected and transmitted over 

a channel.    Since the slant transform compacts energy over the upper- 

left hand corner of the transform domain,   it is possible to design a 

special zone in this corner which covers most of the larger samples. 

There are a number of zones that could be employed in the 

transform domain samples: 

(1)   rectangular zone 

S(u, v) = 1       for u<u  ,  v< v 
—   c       —   c 

= 0 .     otherwise 
(5-9) 

(2)   elliptical zone 

2 2 
S(u, v) = 1       for -^ +   -^  < 1 

U V 
c c 

= 0       oth 
(5-10) 

erwise 
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(3)   triangular zone 

S(u, v) = 1        for (u+v)<K 

= 0        otherwise 

(5-11) 

where S(u, v) denotes a sample selecting function,  and u , v ,  and K 
c     c 

are constants.    It could easily be seen from figure 5-2(d) and 5-2(b) 

that for a full size slant transform none of the zones listed closely 

resembles the energy distribution of transform samples.    Neverthe- 

less, the degradation is not too serious if a rectangular zone is used 

for the slant transform of very high sample reductions (about 20:1), 

and a circular or a triangular zone for medium sample reductions 

(about 8:1). 

There is a special zone termed "maximum variance zone" 

which is optimum for a mean square error criterion.    Consider the 

pixels along a row of an image as denoted by a sequence of random 

variables f.(0), f.(l),..., f.{N-l).    Then the autocovariance function 
J J 3 

may be expressed as a covariance matrix of the form 

N 
E{[f.(0)-f.(0)f} 

3 3 

E[[f.(l)-f.(l)l[f.(0)-f.(0)]} 
J J J J 

E{[f.(0)-f.(0)]Cf.(l)-f.(l)]} 
J J J J 

E^.m-fTTj]2 

E{Ii(N-l)-f (N-l)]Cf.(0).f (0)11      E[[f.(N-l)-f.(N.inrf.(l)-f.(TT]}... 
JJ JJ Jjjj 

(5-12) 

..IW^.-.^^.'^^^..^^^.^^^.^..^^^^^        .        -    ,      v ;   ■   ^ .:  ,..;..-. ^^^w^^^^^^^^^-^-^ '-atiiBM'■V,ii .fy^   Inr     -li-fiin!    W .ntV'irnT'ririr-.nii'ni.irini^- 



^mmmmnmmmmm^mmmmmm^mmmmmmmmmm ^m*i^mmimmrim*>^**mimmmm^mw*i^*mmmmmm**'mi*mmmmmmimmmmm~m*m^m^mmm 

68 

If the image is considered a sample of a Markov process with a 

correlation coefficient of p (0 <■ p <- 1) between each adjacent pixels 

and self correlation coefficient of unity,  then equation (5-12) reduces 

to 

K ] = ^ 

i N-l 

N-2 

• •   • 
• •   • 

N-l    N-2    N-3 
P P P 

(5-13) 

where a.   denotes the variance of pixels along ehe row.    Similarly, 
J 

considering the pixels along a column of the image as a Markov 

process, the covariance matrix can be written as 

[cf. ] = "i 

P 

P 

N-l     N-2    N-3 
P P P 

N-l 

N-2 

(5-14) 

where o     is the variance of pixels along the column.    With covariance 

matrices of rows and columns as defined in equation (5-13) and (5-14) 

the variance of the two dimensional slant transform samples may be 

written as 
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(5-15) 

where     [VF    j   = [c     (0,0)    C     (1. 1) . . .C     (N-l, N-l)] 
j j j j J 

T 

[Vl   =[CF   (0'0)    CF   d.D'.-SCN-l.N-l)] 

and [CF] = [^[CJP]T 

J J   " 

By setting some smaller elements of fv     ] and [v       1 zero, a 

special zone in [VF J which is constructed by non-zero elements will 

be formed.    This special type of zone is called the ' 

ance zone. " 

maximum van- 

Figure 5-8 contains a display of the covariance matrix,  [c       | 

0r LCF   J'   of the Slant transform with correlation coefficient 0. 95 
k 

and matrix size of 2 56x2 56.    It can be seen that fv     1 or [v      1 

j k 

are the diagonal elements of [CF  ] or fc       1  which appear in 
j k 

descending order.    There are a few numbers of off diagonal elements 

in this picture whose values are much smaller than those in the 

diagonal.    It should be noted that all these off-diagonal elements are 

zero for the Karhunen-Loeve transform.    Figure 5-9 contains a plot 

of the variance function [VF   ] or [VF   1 of the slant transfoj )rm as a 
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SLANT 
HADAMARD 

HAAR 

r^ 

KARHUNEN-LOEVE- 

.IXI-X2I 

0 

CvlXl,XJ=(0.95) 
I    I    I    I    I    l l    I    I    I    I    I    I    I    I 

2        4        6 8       10       12       14 
TRANSFORM DOMAIN   VARIABLE,^ 

Figure 5-9.    Transform Domain Variances; 
N=l6,  Element Con elation = 0.95. 
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function of frequency.    The variance functions for the Hadamard, 

Fourier,  Haar and Karhunen-Loeve transforms are included for 

comparison.    It is seen that the variance function for the slant trans- 

form is reasonably close to the variance function of the Karhunen- 

Loeve transform which is known to provide the best energy compaction 

for the Markov source. 

The statistical evaluation of the performance of various trans- 

forms in a form of the "maximum variance" zonal sampling can be 

specified in terms of the mean square error between the original 

image and its reconstruction for a statistical class of images. 

Figure 5-10 contains a plot of this mean square error as a function 

of block size for various transforms.    This plot was obtained for an 

image statistically described by a Markov process.    In the sampling 

process 25% of the transform samples with tha largest variances, 

Vpiu.v),  were selected and the remainder were discarded according 

to the maximum variance zone.    From the figure it is seen that the 

Karhunen-Loeve transform provides the best mean square error, 

while the slant transform results in only a slightly greater error. 

Also to be noted is that the rate of decrease in mean square error 

for larger block sizes becomes quite small after a block size of 

32 x32. 

Figure 5-11 shows the slant transform "maximum variance" 

zonal sampling of the original images.    A two dimensional slant 
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Figure 5-10.    Mean Square Error Performance of 
Image Transforms as a Function of Block Size. 
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transform was  taken of the  image pixels repeatedly over subsections 

in 16x16 pixel blocks.    A maximum variance zone wa;. assigned to 

the transform samples by selecting only these samples inside the zone 

and an inverse transform was taken to form the reconstruction. 

Again,   the reconstruction was formed without quantization or coding 

of transform domain samples.    For purposes of comparison a series 

of experiments of the GIRL image have been performed for the 

Hadamard,  Haar,  Fourier and Karhunen-Loeve transforms which 

are shown in figures 5-12 and 5-13.    It can be seen that the slant 

transform generally performs better than the rest of the transforms 

which possess a fast computational algorithm.    Table 5-2 exhibits the 

mean square errors between the original GIRL image and its 

"maximum variance" zonal sampling reconstructions for various 

transforms with sample reductions of 2:1,  4:1,  and 6:1.    It can be 

noted from this table that the Haar transform generally does not 

perform very well under the maximum variance zonal sampling. 

This is due to the fact that most larger transform domain samples 

are not concentrated on the low frequency zone.    It can also be noted 

that the Fourier transform with the sample reduction of 4:1 does 

rather well under the "maximum variance" zonal sampling.    This 

indicates that the "maximum variance" model is particularly 

favorable to the Four.ar transform zonal sampling with the sample 

reduction of 4:1.    The slant transform generally performs well under 
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the "maximum variance" model. But better results could no doubt be 

achieved if a better statistical model could be found. 

5.2   Quantization Effect 

There are two basic approaches to the quantization of trans- 

form samples:   each sample could be quantized to the same number 

of levels;  or the number of levels could be varied from sample to 

sample.    Since the transform samples differ significantly in magni- 

tude from sample to sample,  the latter approach results in the most 

efficient coding.    Th*: following subsections present analytic methods 

of minimizing the mean square error between an original image and 

its reconstruction with the reconstruction taking into account the 

quantization effect in its transform samples.    Two methods arc 

considered:   an approximate and an exact method.    The analysis 

considers the quantization with various levels;  quantization with the 

same number of levels is simply a special case of this analysis. 

5. 2. 1   Calculation of Optimal Mean Square Error - Approximate 

Method 

As denoted in equation (5-8) the mean square error between 

an original image and its reconstruction with a selected set of 

samples,   but without quantization, may be computed by 

e=    —    2:2  Ef[F(u,v) (l-S(u.v))]2} 
N       u 

(5-16) 
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or 

e  =   —2   212      ErF2(u,v)] 
N      u   v 

S(u,v) = 0 
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(5-17) 

Now with those selected samples from the output of the sample 

selector quantized, an additional quantization error will be introduced 

and,  therefore,  the total mean square error may be written as 

c„, - -^   {e(0,0)+    LL        e(u,v)+    EE     E[F2(u,v)]\ 
N u    v u   v J 

(u,V)^(0,0) 
S(u,V) = I 

S(u, v)=0 (5-18) 

where G(0, 0) and e(u,v) denote the mean square quantization errors 

of dc and ac samples respectively.    Now let the dc samples be quan- 

tized into Ll levels by a set of decision levels. (3(0,0).  and a set of 

reconstruction levels,  FK(0, 0),  as shown in figure 5-14.    Then 

e(0,0) in equation (5-18) may be written as 

e(0. 

I-!     QK(o.o) 

0)=2^J [F(0,0)-FK{0,0)]2pi[F(0,0))dF(0,0)     (5-19) 

QK-1(0'0) 

where p1 denotes the probability density of the dc samples.     By the 

method introduced in appendix D.   e(0. 0) can be minimized and written 

as 
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MO.o) 
Ai   1 

 2    ( I       pl3 <F) d 0 
12L.      V J0       1 ^ 

(5-20) 

Let the ac samples be quantized into L   (u, v) levels by a set of decisi 

levels, QK(u, v), and a set of reconstruction levels, F   (u, v), ay sh 
K 

in figure 5-15.    Then e(u,v) in equation (5-18) may be written 

on 

own 

as 

e(u,v) = 

L^u.v) 

2    ~    QKiu,v) 

,? J 
K= 

•L2(u,v) 
z QK-1(   ' V) 

[F(u, v)-FK{u, v)]  p2 f F(u, v)] dF(u, v) 

(5-21) 

where p2 denotes the probability density of ac samples.     By the 

method introduced in appendix D.   equation (5-21) can be minimized 

and written as 

e(u,v)   = 
3L2(u,v) 

A2(u,v)   I 3 

( J P23 <F) dF) (5-22) 

With substitutions of equations (5-20) and (5-22),  equation (5-18) 

becomes 
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Al    i 3 

0 u     v 

(u,v)jt(0,0) 
S(ü,V)=1 

N        12 L 
1 3L2 (u.v) 

CJ. 
A2(u,v)    1 

P2"(F) dF^)   +    E E       j F p2(F) dFJ  (5-23) 
S(u,v)^0  a, 

Example 5-1:   Suppose the probability density of dc samples is 

Rayleigh and ac samples is Gaussian.    Then 

1 

'^^^^7^-17^^ 

+   EL 
A2(u,v) 1 

CJ."   [^r-.Krx-)] ^ u    v 3Lfc(u,v) ^O L/2^o(u,v)       V2a (u,v/J ^ 
(u,v)^(0,0) 
S(u,v) = l 

^ F2 

exp ("d-.» u    v .o,   /2n a(u,v) 2CT   (U,V) 

(u.v)^(0,0) 
S(u,v)=0 

(5-24) 

2 2 
where 2(jf   and o*'(u,v) are variances of Rayleigh and Gaussian densi- 

ties.    Equation (5-24) can be simplified and rewritten as 

■   ■   ~—-j~ ■  •■■   ii  '  
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Al     i _2 = ^iTVI[I F3
 ^C-fi)^] €T 

IZL.a      '0 ( 

+    ^ ^  = i-i—L   erf       + L E      a (u, v)V 
u    v L2 (u.v) L /T~     -1      u   v J 

(u,v)jt(0,0) S(ulv)=0 
S(u,v) = l <5-25' 

1      * 2 

where   erf (x)   =    J    exp^--5L.^dy (5-^6) 
/2TT    _ 

Example 5-2:   Suppose the probability density of dc samples is 

Rayleigh and ac samples is two-sided exponential. 

Then 

N       12 L. 0      a 2cr 

A2(u.v) i 

+ EL     ^—r r    re(u,v) 

0)     * 
S(u,v) = l 

u   v 3L"(u,v)  ""0 

+ EE     J   ü^l)F
2
exp(.BF)dF| (5.27) 

U    V „a, 

8(U,V)=0 

o  2                 2 where <iQr   and   -r   are variances of Ravleigh and two-side 
B  (u.v) 

exponential densities respectively.    Eq ntion (5-27) can be simplified 

.-■■.- —       ■       ■ .-.-,.    .^.^.„i      .   ^^^ «. „ _. L--.^   _■._., ^^       ...        -  J-.^. ^ ■ ^-^^^.^.^■--■,. -.— -..■ L—-. 
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Al     i 

N       12 L. or 0 6a 

U    V 

(u.vWO.O) 
S(u,v)= 1 

2 2 
0   (u,v)L2(u,v) 

[l - exp (- 
0(u,v)A2(u,v)_3 

")] 

+   EE -yf  
u   v 0   'u, v) 

S(u,v)=0 

) 
(5-28) 

5.2.2   Calculation of Optimal Mean Square Error - Exact Method 

The total mean square error shown ir. equation (r»-23) is valid 

if the number of quantization levels is large.    This is always not the 

case.    In some applications as few as t" o quantization levels are 

assigned to transform samples.    This has led to the necessity of 

.deriving a more accurate equation which is applicable to any number 

of quantization levels.    The following paragraphs present a derivation 

of the optimal mean square error which could be applied to any 

quantization level. 

As denoted in equation (5-18) the total mean square error may 

be written as 

■  ■ ■        — M^^MMMHItaMllillMaMaJl -aa_Ma_akr_nM.  



^^■■^^■w»i^iw"w>pp^w*»^ww^"»»M        i   ■■■ ^■«■nmH^n^i^^^v« 

87 

€T=   ~2 { e(0'0) +  ^^        €(u.v)+DL,       ErF2(u.v)1\ (5-29) 
N u   v u   v L J j 

(u,v)^(0,0) S(u,v)=0 
S(u,v) = l 

where e(0,0) and c(u,v) are the mean square errors of dc and ac 

samples respectively.    Now suppose the dc samples are quantized into 

Lj levels by a set of decision levels, C^. and a set of reconstruction 

levels, FK, as shown in Figure 5-14.    Then €(0.0) may be written as 

Ll      QK 
L    J       ^"V    Pi(F)dF (5-30) 

K=l   dQ.    ,       K        1 

e(0,0) 
K=l  Jr 

'K-l 

In order to minimize e(0,0) one may cake the partial derivative of 

equation (5-30) with respect to Q   and F   and set the results to zero, 
J J 

i. e. 

a €(o,o)      in       > 2 

"Top = ^"^  ^V - {Qj-Fjn)pi^ = 0 (5-31) 

and 

Q 
Be(0,0)      ,   P   

J 

9F 

'f>l 
—   -Zj       (F-F ) p   (F) dF = 0 j = 1.2 T       (5-32) 
J Q.   ,        J 1    x ' 

Equation (5-31) and (5-32) may be rewritten as 

Fj+I =   2Qj- Fj (5-33) 
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and 
Q. 

f        (F-F)p(F)dF 3 = 1.2....,L, (5-34) 
JQ.   ,        J     1 1 

With the method suggested by Max (21),  one can find the optimal 

decision levels Q,  K=0,1,..,T    , and reconstruction levels F   . 
K 1 K 

K=1,2,...,L   ,   that satisfy equations (5-33) and (5-34).    With the 

help of equation (5-34),  equation (5-30) can be simplified as 

Ll Qk 
:(0,0)   =    '    F2p  (F)dF-   E    F2  f       p. (F) dF (5-35) 

0 K=1 QK-1 

where Q^   = A^ » in this case.    Sinrmarly,  suppose the ac samples 

are quantized into L2(u,v) levels by a set of decision levels, Q   (u, v), 

and a set of reconstruction levels,  F    (u,v), as shown in figure (5-15). 

Then the ac mean square error,   e(u,v), may be written as 

z Q   (u, v) 
"1 r   K 

e(U'V) =   2   L    'o* A*.y)[F'FKl}x'v)1 *i{F)dF    (5-36) 

The optimal decision and reconstruction levels may then be calculated 

by a method similar to the dc case which will satisfy the following 

equations 

■   ~.^.^. i-^.-..^—^. ^.-.   ...._..  ^—*.^^..,..^ ^..^-^^ ^...,_^^„...... .. .- -    -       ■■ ■    ii   i 
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F       (u.v) = 2Q (u.v) - F (u,v) j = l, 2,. . . . L   (u. v) (5-37) 
J J J *• 

Q.Oi.v) 

[ [F-F (u.v)] p   (F)dF=0 j = l,2,...,L_(ufv) (5-38) 
Q.   ^u.v) 

With the help of equation (5-38) the optimal rru an square error of ac 

samples then can be written as 

Lj QK(0.0) 

€T="l{[    F2p(F)dF-Z:    F2[ P1(F)dF 
N2U0 1 K=l     K,,QK.1(0,0)1 

L2(u,v) 

r  r00    2 ~    2 QK(U,V) 

+2Z:E [    F    p(F)dF-      Z      F     (u.v)  [ n,(F)dF| 
u    v        LJ0 KM        K JQK ^u.v)2 -1 

(u,v)^(0,0) K-1 

S(u,v) = l 

+ E L       ET F   (u,v)]| (5-40) 
U       V 

S(u,v)=0 

Example 5-3:       Suppose dc and ac probability densities of transform 

domain samples are Rayleigh and Gaussian respec- 

tively.    Then the minimal total mean square error fs 

II^MI—n—»—M—t iM 
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L. Q^(0,0) 
2 1      ,     ~K 

1    K     QK-l(0'0)   ^ ZQ
' 

— exp( 2*)dF 

CD 

+ 2 EL      f. F2 

exp(^- F^ 

2cr   (u. v) U      V            *{)    y 

(u,vM(0.0) 
^Zn a(u, v) 

S(u,v)=l 

L2(tt,v) 

-      S         F 2(u, 

QK(u,v) 

v)   ' 
1 

expf- - 
2. 

F2 

K = l          K 
v) /I 1 or(u,v) r  (u, v) 

U      V 

S(u,v)=0 

r) 

)-] 

(5-41) 

2 2 
where 2»   and a   (u.v) are the variances of Rayleigh and Gaussian 

densities rrspectively.    By carrying out the integrals,  equati 

(5-41) can be simplifed as 

on 

L 7 

1   fo 2   J     2        r      ^ Q
K I

(ü
'
0

)N ,   Q^(O.o)   , 

•T-?{^-KVK<^>[«P(-S—)-«<-fT-)] 
2 

«I 
2a' 

L,(u.v) 

+ E E        a (u,v) - 2   E E 
u    V 

(u.v)i(0,0) 

erfC    a(u,v)       J)J} 

2 2 . Q   (u.v) 
E F    (u.v):  erff-JL ^ 

U  v K=l L ^(u.v)^ 

(u,v)^(0f0) 
S(u,v) = l 

(5-42) 
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Example 5-4:      Suppose dc and ac probability densities of transform 

domain samples are Rayleigh and two-sided exponen- 

tial respectively.    Then the minimal total r^.ean 

square error is 

»     3 2 Ll QK(0'0) 2 

N        "0  a 2a K   ' QK-1(0,0) 

+    LE        T   f   ß(y)F2  exp(-ß(u>v)F)dF [ uv        •-  "o 
(u,v)it(0,0) 
S(u,v) = l 

L2(u,v) 

z:   F2(U,V) r 
K=l r J( 

QK(u,v) 

QK-1(U'V) 

^i-^ exp (-ß(u,v)F)dFj 

u   v        p2(u,v]    J 

S(u, v)=0 

(5-43) 

where Za   and 
e2(u,v) 

are the variances of Rayleigh and two-sided 

exponential densities respectively.    Equation    (5-70) can be simpli- 

fied and rewritten as 

— -    —'—'■—''-"—    
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-   i   ;, 2  v     2 r      ^   QK 1
(0
'
0)

N ,   QJ{o.o)v. 

Zcy 

L2Kv) 

■= -EE B 

2 

+ EE 
u    v e'fu.v)        u   v f 

(u,v)^(0,0) (u,v)?t(0,0) 
S(u,v)=0 

exp (-8(u,v)QK(u,v))J| 

C      ^^^^^^(-^("'V^K.^U.V)) 

(5-44) 

5.3   Codii g Effects 

The coding techniques for quantized transform samples are 

quite different for threshold sampling and zonal sampling.    In 

threshold sampling the locations of samples exceeding the threshold 

varies from image to image.    Therefore,  it is necessary to code the 

position of lampUl exceeding the threshold level.    Position coding is 

not necessary for zonal sampling since the location of samples to be 

coded is known apriori. 

5.3.1   Threshold Coding 

There are a variety of ways tnat position coding could be 

employed.    The simplest method conceptually would be to code the 

coordinates of each significant samples.    However, higher coding 

efficiency can be obtained by coding the number of non-significant 

-■■   -■ ■ - 
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samp os between significant samples.    This scheme,  called run 

length coding,   is implemented as follows: 

(1) The first sample along each line is coded regardless 

of its magnitude.    A position code bits of a?l zeros 

or all ones affixed to the amplitude provides a line 

synchronization code group; 

(2) The amplitude of the second run length code word is 

the coded amplitude of the next significant s: -nple. 

The position code is the binary count of the number 

of samples of the significant sample from the 

previous significant sample; 

(3) If a significant sample is not encountered after 

scanning the maximum run length of samples,  the 

position and amplitude code bits are set to all oi es 

to indicate a maximum run length. 

The advantage of including a line synchronization code group is that it 

becomes unnecessary to code the line number and, also, it prevents 

the propagation of channel errors over more than one line.    A simple 

code to implement this run length coding procedure is given as 

follows: 

 ■■ _ 
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positi' n 
 K  

X   X   .   .   . X   X 

1   111111 

0     0   .  .  .    0   0 

0     0   ...    0   1 

0     0   .  .  .    10 

1     111110 

1   111111 

amplitude 
r- 
Y   Y   .   .   .  Y   Y 

0     0   0 0 0  0   0 

Y   Y   .   .   .    Y  Y 

Y   Y   .   .   .    Y  Y 

Y   Y   .  .   .    Y  Y 

^    Y   .  .   .    Y   Y 

1     11111     1 

first sample of a line below 
threshold 
first sample of a line above 
threshold 
run length = 1 

run length = 2 

N run length =2-2 (where N 
is number of position code 
bits) 
pseudo-run of length 2N-2 

This run length coding procedure for transform threshold coding has 

been tested for the GIRL, COUPLE and MOONSCENE.    Table 5-3 

shows the relationship between sample reduction and average code 

bits per pixel for the slant transform of the GIRL image with the 

amplitude of each significant sample quantized and coded into six 

bits.    It can be seen that with a 4:1 sample reduction the best number 

of position code bits is four,  and with 6:1 arü 12:1 sample reductions 

the best number of position code bits are five and six respectively. 

Figure 5-16 shows a plot of sample reduction versus average number 

of code bits per pixel for the slant transformed GIRL image with vari- 

ous numbers of position code bits.    It can be seen that the number of 

position code bits changes with the sample reduction in order to 

-----      -  ■ - — — 
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Figure 5-16.    Sample Reduction Versus A\ (irage 
Code Bits Per Pixel for Slant Transform Tnrcshold 
Sampling of GIRL Image In 16 x 16 Pixel Blocks. 
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achieve the least average number of code bits per pixel.    For a 

sample reduction factor of less than b:l the best number of position 

code bits is four,  and for a sample redo   tion of from 5:1 to 9. 5:1 the 

best number of position code bits is five,  etc. 

Figure 5-17 shows the quantized and coded versions of 

Figure 5-5.    A two dimensional slant transform was taken of the 

image pixels repeatedly over subsections of an image in 16 X 16 pixel 

blocks.    A threshold was assigned to make the sample reduction, and 

then these reduced samples were optimally quantized and coded. 

Following the decoding, an inverse slant transform was taken to 

reconstruct the original image.    The quantization scheme used was 

the one suggested by Max [2l]  where dc decision and reconstruction 

levels were obtained by solving equations (5-33) and (5-34) and ac 

decision and reconstruction levels were obtained by solving equations 

(5-37) and (5-38).    The dc probability density p. in equation (5-34) 

and the ac probability density p    in equation (5-38) were assumed to 

be Rayleigh and Gaussian,   respectively.    It was found experimentally 

that,  for the optimal reconstruction of test images,   the variances of 

p. and p    were 670 and 200,   respectively.    For the runlength coding 

and decoding parts of the experiments a constant code word length of 

six bits was assigned to the amplitude of each significant transform 

sample and a constant code word length of four bite was assigned to 

the position.    As expected, quantization increases the mean square 

— ■  ——— .      - . . 







""-"■ ■ I" 

100 

error; but,  subjectively,  the reconstructed images appear to have 

little visible degradation.    Figure 5-18 illustrates the quantized and 

coded pictures of the Hadimard transform.    It is easily seen that the 

sknt transform in figure 5-17 performs tetter than those in 

figure 5-18. 

Table 5-4 exhibits the mean square errors of the slant trans- 

formed GIRL image with sample reductions of 4:1,    6:1 and 12:1. 

The corresponding thresholds and average code bits per pixel are also 

included.    Figure 5-19 shows a plot of sample reduction versus mean 

square error between the original and its reconstructions for the 

slant transform threshold sampled GIRL inagc.    Since the dc samples 

are much larger than the ac samples,   the former are essentially all 

quantized aid,  therefore,  tha mean square quantization error is 

nearly constant.    For ac samples, as the sample reduction factor 

increases,   the number of significant samples decrease and,  there- 

fore,  the mean square quantization error decreases accordingly. 

The mean square error after the sample reduction (unquantized) and 

total mean square error are almost linearly related to the ■ample 

reduction factor,   which is expected for the slant transform threshold 

sampled or coded images. 

5.3.2   Zonal Coding and Bit Allocation 

The quantization levels and code bit assignment for each 

. ■   ..- — .. w .. - ... MWMtfV^rfH 
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Figure 5-19.    Mean Square Error Versus Sample 
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significant de or ac sample have been kept constant in the previous 

section.    For zonal sampling the quantization levels and code bit 

assignment can be varied according to the statistics of the transform 

domain samples.    Since the magnitude of the transform domain 

samples appears to be in descending order from low to high frequen- 

cies, as can be seen in figure 5-2,  the variation of quantization levels 

and the allocation of code bits will certainly result in the most effi- 

cient coding.    The total mean sq.^re error between the original 

image and the reconstructed image can easily be calculated .    Suppose 

a constant word length code of length 

NB(u,v) 
Lc(u.v)   =   2 (5.45) 

is assigned to each quantization level and a total of 

NB =    ST        N   (u.v) (5.46) 
u   v 

S(u.v)=l 

bits are allocated for transform domain samples.    Then the minimum 

total mean square error in equation (5-42) becomes 

_..      ----■ — 
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2
NB(0'0)       QK(0.0) 

H    l  ^O l K=I KJQ 
K-l 

(0,0) 
P1(F)dF 
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00 

CN   (u.v)-!] 
2      B QK(u,v) 

+ 2 EZ      :Fzp(F)dF- r     F'. 
U   v 0 K=l K JQ       /u.v)2 

(u,v)?f(0(0) K-1 

S(u,v) = l 

K(U'V)L    .    P2<F)dF] 

EE      ErF2(u,v)]\ 
U     V J 

S(u,v)=0 

(5-47) 

Let the probability densities of the dc and ac samples be modelled as 

Rayleigh and Gaussian densities respectively.    Eouation (5-47) then 

can be written as 

NB(0,0) 

Q., ,(o.o) i    r    2 V 2        r      ^ W
K r '  'N x  W

K-
IU,U

'%-. 

rNB(u,v)-i] 

+   L L cT2(u.v) -   E E 2   E F2(u.v)rerfr^^l)>) 
u   v u   v K   i K L       V   (u,v)     y 

(u.v^O.O) (u,v)^(0l0)   R  * 
S(u,v) = l 

-erfC (u.v)   A) (5-48) 

i 
where   erf x =     J   expC- "^-^dy-    It should be noted that the 

v/Tn    -oo y 

constant code word length L    (u,v) in equation (5-45) is the same as 

■    - 
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the quantization levels L(u,v). 

The bit assignment N    (u,v) for each transform domain 
B 

sample has been based upon an algorithm of rate distortion theory 

[19].    The numbf x of bits is selected according to the relation 

Nju.v)   =   XnfV   fu.v)] - JnTD] (5-49) 

where V    (u,v) is the variance of a transform domain sample and D is 

proportional to the mean square error of the coding process.    A plot 

of rate versus distortion for various transforms is shown in appendix 

C.    Figure 5-20 illustrates a typical assignment of code bits for the 

slant transform zonal coding in 16x16 pixel blocks. 

8 8 8 7 7 7 5 5 4 4 4 4 4 4 4 4 
8 8 7 5 5 5 3 3 3 3 3 3 2 2 2 2 
8 7 6 4 4 4 3 3 2 2 2 2 2 2 2 2 
7 5 4 3 2 2 2 2 0 0 0 0 0 0 0 0 
7 5 4 2 2 2 2 2 0 C 0 0 0 0 0 0 
7 5 4 2 2 2 2 2 0 I 0 0 0 0 0 0 
5 3 3 2 2 2 0 0 0 0 0 0 0 0 0 0 
5 3 3 2 2 2 0 0 0 0 0 0 0 0 0 0 
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 2 2 0 0 0 0 0 0 0 0 0 0 r 0 0 
4 > 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5-20.    Typical Bit Assignments for the Slant 
Transfer:c Zonal Coding ^n 16 x 16 Pixel Block. 
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The performance of the transform coding system can again be 

evaluated in terms of the mean square error between the original 

image,  which is statistically described by a Kharkov process, and its 

reconstruction.    Figure 5-21 contains a refinement of the work which 

has been done in Figure 5-10,    Every sample inside the maximum 

variance zone is quantized,  and bit allocated according to the relation 

shown in equation (5-49).    The maximum variance zone is adjusted 

each that an average of I. 5 bits/pixel is used to code the samples 

inside the zone.    Again from the figure it is seen that the Karhunen- 

Loeve transform provides the minimum mean square error and the 

slant transform  results in only a slightly greater error.    By 

comparing figures  5-21 and 5-10 it is eas.ly seen that the variation 

of quantization levels and the allocation of code bits reduces the 

mean square error for all transforms  (with the exception of 4 x4 

block size). 

Figure 5-22 shows the optimally quantized and bit allocated 

versions of figure 5-11.    The quantization scheme used was again a 

nonlinear quantization rule where dc decision and reconstruction 

levels were obtained by solving equations (5-33) and (5-34) and ac 

decision and reconstruction levels were obtained by solving equations 

(5-37) and (5-38).    The variance of dc samples,  V    (0,0),   is defined 
F 

in equation (5-15).    In the process of finding V    (0,0),  it was deter- 
r 

mined experimentally that the variance of pixels along the row (or 

uMaaMBaaaMMBaa^MH 
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Figure 5-21.    Mean Square Error Performance of 
Image Transforms as a Function of Block Size. 
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2       2 
column) in equation (5-13) (or equation (5-14))is 24,  i.e.,  a   = <T   =24. 

j        k 

The variance of ac samples, V    (u,v),  is also defined in the variance 

matrix [ V    ]  where the experimental result of  a    or cr     is dependent 
1 J ^ 

upon the bandwidth reduction which can be summarized as follows: 

Average 
Code Bits 

0. 5 

1. 0 

1. 5 

2. 0 

a.   in equation (5-14) or 
J 

<T.   in equation (5-15) 

5.75 

6.03 

6.30 

6. 58 

From these figures it can be seen that the quantization and the bit 

allocation improve the quality of picture substantially.    For purposes 

of comparison the Hadama-d transform zonal coded pictures aie 

also shown in figure 5-23.    It is easily seen that the slant transform 

performs better than the Hadamard transform subjectively. 

Figure 5-24 contains a plot of the mean square error cf the 

optimally quantized and bit allocated slant transform GIRL image for 

threshold and zonal codings as a function of average code bits per 

pixel.    It is seen that threshold coding results in a better mean square 

error for an average code bit per pixel of I. 9 or less.    For an 

average code bit per pixel of greater than 1. 9 the zonal coding 

appears to be favorable in the mean square sense. 
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6.    EFFECT OF CHANNEL ERROR FOR SLANT TRANSFORM 
IMAGE TRANSMISSION 

The preceding chapter has been devoted to a presentation of 

the slant transform for image coding in an error free channel.    Since 

it is impossible for a practical communication system to possess such 

a channel,   it is necessary to study the noise effects on the transform 

coded images.     The inherent "error averaging" property of transform 

coding has provided a means of image coding for which channel errors 

are less deleterious than for conventional spatial coding of an image. 

This chapter presents the results of computer simulations of noise 

effects on the spatial and slant transform domain of the GIRL image. 

Simulations of noise effects are also made for the bandwidth compres- 

sed slant transform image of 1, 5 bits/pixel for both threshold and 

zonal coding.    As expected,   it is found that zonal coding has the pro- 

perty of best noise immunity. 

A binarv symmetric channel is used as the noise model. 

Figure 6-1  illvstrates a classical representation of such a communi- 

cation channel where the probability of receiving an incorrect symbol 

is p ana receiv ing a correct one is 1 -p regardless of which symbol is 

transmitted. 

6. 1    Channel Error Effects - Without Bandwidth Compression 

A major advantage of transmitting the transform rather than 

112 
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Figure 6-1.     Model of a Binary Symmetric Channel. 
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the spatial domain of an image 's the fact that the channel noise intro- 

duced in the transform domain tends to be distributed over the entire 

channel [14].    Since the eye is more sens;tive to the "salt and pepper" 

effects of channel noise introduced in the spatial domain,   the same 

channel error rate in the transform domain is not so offensive. 

Figure 6-2 illustrates the effects of channel error on the spa- 

tial domain of the GIRL image with error rates of lO'4,   10'3,   and 

10     .     The "salt and pepper" effect is quite evident in these pi-tures. 

Figure 6-3 illustrates the effects of channel error on the slant trans- 

form domain with the same error rates.    Here the transform is per- 

formed in 16x16 pixel blocks and each transform sample is coded with 

8 bits.    It can be seen for error rates of less than lO-4,   the trans- 

formed image indicates little effect from the channel error.    It can 

also be seen,   however,   for larger error rates the transformed image 

turns out to be "washed out".    This can be explained by the fact that 

some of the bit assignment for the larger transform domain samples 

are reversed for the larger error rates. 

6.2   Channel Error Effects - With Bandwidth Compression 

Figure 6-4 and 6-5 illustrate channel error effects on the 

threshold and zonal coded GIRL image with a bandwidth reduction 

coding of 1. 5 bits per pixel (No error correction has been attempted). 

It can be see    that threshold coding,  which appears to be a bit better 

than zonal coding in the error free channel,   is much more affected by 

—_ _t„^ -   -     - - i nai 
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channel errors.    This is inevitable because position coding is neces- 

sary in the threshold coding system.    Once a position code bit is 

reversed,   the entire image line thereafter will be incorrectly decoded 

which causes degradations in the reconstruction.     Zonal coding 

appears to be much less affected by channel errors. 

-  
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7.    SLANT TRANSFORM COLOR IMAGE CODING 

Figure 7-1 shows a block diagram of the slant transform 

color image coding system.    In the system the color image is repre- 

sented by three source tristimulus signals, R (j, k), G(j, k) and B(j,k) 

which specify the red,  green and blue content of an image pixel at 

spatial coordinate (j,k),  according to the NTSC receiver phosphor 

primary system [26].    The source tristimulus signals are then 

converted to a nev.  three dimensional space Y(j,k), I(j,k), and Q(j,k) 

which specify the luminance and the chrominance information of the 

image pixel, according to the NTSC transmission primary system 

[26].    The converted signals then individually undergo a two 

dimensional slant transform over the entire image,  or repeatedly 

over subsections of the image called blocks,  resulting in three trans- 

form domain planes F   (u,v),  F (u,v), and F   (u,v).    Next, a sample 

selection and quantization a re performed on the three transform 

domains.    The resultant quantized tran :form si£nals are then coded 

and transmitted over a channel.    At the receiver,   the channel output 

is decoded, and an inverse slant transform and inverse coordinate 

conversion operations are performed to reconstruct the source 

tristimulus signals. 
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As discussed in Chapter 5,  there are two methods of 

achieving a bandwidth reduction in transform coding system-- 

threshold and zonal coding.    The discussion in this chapter is limited 

to zonal color image transform coding.    However,   it is expected that, 

as in monochromatic image coding,  threshold coding will perform 

slightly better than zonal coding.    But,  it is also expected that 

threshold coding will be affected by channel errors to a greater 

degree than zonal coding. 

7. 1    Color Image Coordinate Conversion 

There are a number of coordinate systems w-hich could be 

employed in color image coding and transmission [2 5].    The NTSC 

transmission primary coordinate system has been used in this 

study because: 

(1) the NTSC transmission primary (YIQ) system is 

the U.S.   standard for color Leievision transmission. 

(2) the (YIQ) system includes a luminance (monochrome) 

image signal. 

(3) a previous study [241  has shown that the Y, I, and 

Q signals are less correlated in comparison with 

other standard coordinate systems so that they can 

be processed separately without much loss  in coding 

performance. 

MMaaaaaMAa 
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Conversion of tristLmulus values from the NTSC receiver phosphor 

primary system to NTSC transmission primary system can be 

mathematically expressed by the matrix equation [25] 

Y 

I 

Q 

0.299 0.587 0.114 

0.596       -0.274        -0.322 

0.211        -0.253 0.312 B 

The inverse coordinate conversion is given by 

(7-1) 

R 

G 

B 

1.000 0.956 0.621 

1.000       -0.272 -0.647 

1.000       -1.106 1.703 

Y 

I (7-2) 

7.2   Color Image Transform Coding 

Consider the color image transform coding system tf 

Figure 7-1.    The color coordinate conversion of equation (7-1) can 

be rewritten here as 

Y = 0.299R + 0. 587G + 0. 114B 

I = 0. 596R - 0.274G - 0.322B 

Q   =   0.211R - 0. 523G + 0.312B 

(7-3) 

Now each of these color signal planes is separately slant trans 

formed to produce three transform domain planes: 
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rFY] = [-OfYiiv] 

0.299 ly]rR]r^]T+0. 587L^]CR][^]T + 0. 114 

[SliBlWl 

[Fj] = U]Li]L^] (7-4) 

=   0. 596 L^][R][^]     - 0.274 L^][G][^]     - 0.322 

[FQ] =   [^[Q][^]T 

=   0.211  [^][R][^]T- 0.523  [^][G][^]T+ 0.312 

[^][B][^]
T 

It is apparent that the order of the color coordinate conversion and 

two dimensional forward transformation processes is immaterial. 

Next,  each transform plane undergoes a sample selection 

according to the "maximum variance zone" as introduced in 

Chapter 5.    Those selected samples in each plane are then optimally 

quantized.    Again,   the quantization scheme used is the same as the 

monochromatic case where Rayleigh and Gaussian densities are 

introduced in deriving the quantization levels.    The variations of 

quantization level are again tailored by a bit allocation matrix where 

the assignment of bits is proportional to the logarithm of variance of 

each transform domain sample and the percentage of energy 

- -   —— ^-.      -. -    . '--' —- 
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distributed in each color plane.    Figure 7-2 illustrates a typical 

assignment of code bits for the slant transform samples of each 

plane in 16 x 16 sample blocks.    Special attention must be paid to the 

quantization and coding of the F(0, 0) samples in F (u. v) and F    (u, v) 

planes.    Since pixels of I(j.k) and Q(j.k) are no longer all positive, 

the F(0,0) transform samples are not necessarily all positive. 

Therefore, a special code bit must be assigned for the sign of these 

samples. 

At the receiver,   the received samples are decoded into three 

transform planes and an inverse slant transform is performed in 

each plane to reconstruct three color signals: 

[Y]   =    [^]T[FY][^] 

[i] = [^]
T
[FI][^] 

CQ] = ^]
T
[FQ][^] 

(7-5) 

where F^ Fj, and FQ denote three decoded transform planes at the 

receiver. 

The inverse coordinate conversion  it the final stage of the 

color image transform coding system, as defined by equation (7-2), 

is then performed to give 

        ----- -■' -  -■ 
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8888886655554444 
8886664444443333 
8875443333332222 
86533322222 2 2222 
8643332222220000 
8643332222220000 
6432220000000000 
643222000000000u 
54322 2 0000000000 
5432220000000000 
5432220000000000 
5432220000000000 
4322000000000000 
4322000000000000 
4322000000000000 
4322000000000000 

(a) FY(u,v) 

8864443322222222 8653332222220000 
8543222200000000 64322 2 0000000000 
6432220000000000 53220 J 0000000000 
4320000000000000 3220000000000000 
4220000000000000 3200000000000000 
4220000000000000 3200000000000000 
3200000000000000 2000000000000000 

0 0 
0 

2000000000000000 20000000000 10000 
2000000000000000 20000000000JOOOO 
2000000000000000 2000000000 0 00000 
200000000000C000 000000000 0 000000 
2000000000000000 0000000000000000 
2000000000000000 0000000000000000 
2000000000000000 0000000000000000 

(b) Fjfu.v) (c) F (u,v) 

Figure  7-2     Typical  Bit Assignments   for  the  Slant 
Transform Zonal Coding of Color Images. 
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R = Y + 0.9561 + 0.621Q 

G = Y - 0.272f - 0.647Q 

B =   Y  - 1. 1061* + 1.703Q 

(7-6) 

The energy compaction properties of F    (u. v).  F   (u, v), and 

FQ(uf v) can be statistically evaluated if the covariance function of 

R, G.   B is known.    Consider the case in which the second order 

statistical variations of the tristimulus values R.G.B are spatially 

identical and described by cova-iance matrices T C   ] and [c    ] as 

denoted in equations  (^-H) and (5-15).    Suppose the^ova riance 

matrix of the source tristimulus value is given by 

2 

[CRCB] 

R RG 
2 

CRG aG 

CRB  CGB 

RB 

^B 
2 

rB 

(7-7) 

. 2        2        2 
wnere aR ,   aG ,  aB  are the variances of the source tristimulus 

values, and CRG,  CRBI  CGB are the correlations between pairs of 

the source tristimulus values.    Then it can easily be shown that the 

covariance matrix of the Y,I,Q signals is 

f CVIQ ]   = Yl 

Yl 
2 

\ 

YQ 10 

YQ 

2 

(7-8) 
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where   ^   =   0. 0894 CTR
2
+ 0. 3446 CT

2
 + 0. 0130 a 2 

+   0-3510CRG+0.0682CRB+0.1338CGB 

2 2 2? 
o.    =   0.3 552 a    + 0.07 51 (T^   +0. 1037ü- 1 « G B 

0.3266CD_- 0.3838C„„+ 0. 1765C 
RG RB GB 

a     =   0. 0445 CT
2
 + 0.0640 a 2+0.0973 er2 

u RGB 

- 0. 1068C      + 0. 1317C„^- 0. 1579C 
RB RG GB 

C      =   0.1728 a2 - 0.1608 a2 - 0.0367 a2 
11 « G B 

+ 0.2678CI- 0.0283CT,„- 0.2193C 
RG RB GB 

CYQ =   0.0631aR   - 0. 148 5 o-c
2 + 0.03 56 a2 

+ 0.0482CD„+ 0. 1179C0„+ 0. 1540C 
RG RB GB 

C       =   0. 12 58 a2+ 0.0693 a2 - 0.1005a2 

lU RGB 

0.2086C„„+ 0. 1180C      -0.040C 
RG RB GB 

From equation (5-15) the covariance matrices of rows and columns 

of each transform plane are 

[cF J = [^][cf üivr (7-9) 

Fk f
k 

(7-10) 
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Therefore,  the variance of the transform planes may be written as 

T 

[vWKKv] k 

T 

(7-11) 

[vl-^ylLv] (7-12) 

[vpJ"o[v][vr.] 

T 

(7-13) 

where 
[VF.]   =[C

F
(0'0)     S^'1)   ••' CF(N-1.N-1)"| 

J                   j                     j j J 

T 

[VFJ     =    [CF   (0'0)      C      (1.1) ...    C      (N-l.N-l)l 

A summary of    ^ energy distribution between the color signal plan 

of R,  G.   B and Y. I. Q.  for the GIRL and COUPLE test images,   is 

given in Table 7-1.    It can easily be seen that the YIO system 

provides a better energy compaction in comparison with ehe RGB 

system. 

In order to optimally design the slant transform  image 

coder it is necessary to specify some analytic measure of color 

image fidelity.     Unfortunately,   there exists no standard fidelity 

measures.    As a rational alternative,  the design procedure selected 

has  been to design the transform domain quantization system to 

inimize the mean square error between the Y.I.Q and Y,f,Q color 

es 
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planes.    From eq.   (5-40) the minimal mean square error in each 

transform plane can be written as 

Li. Q^fO.O) 

eT 
= "4 { [   F2 Pl   (F) dF -  E     F^O.O)  [ p    (F) dF 

i     NT   U0 ll K=l     K J ll 
QK-1(0'0) 

L2 (u.v)/2 2
: QK(u,v) 

+ 2   E E        j    [   F    p    (F) dF - E F    (u, v) f p. (F) drl 
u   v        LJ0 2l K=l K V   .(u.v)2! 

(u.v)jt(0,0) K"1 

S.lu.v)^ 

+    E E        E[Fi
2(u,v)] } (7-11) 

U      V 

S.(u,v)=0 

where    e      is the mean square error in each transform plane; 
i 

S (u,v) is a sampling function in each transform plane; 

pl   and p2   are Probability density functions of dc and ac 
i i 

samples; 

L     and L    ('l,v) are numbers of dc and ac quantization 
i i 

levels; 

QK(0»0) and Q    (u,v) are dc and ac decision levels; 

FjJO.O) and F    (ufv) are dc and ac reconstruction levels; 

and F. (u,v)are tiansform samples of a plane. 

The total optimal relative mean  square error then may be defined as 

i    i—^i»     in———■«■—li— ■■!   i    iiiii——■■n  i I   ■ 
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€„,   + €„   + e T T T 
1 2      T3 

eT "      3  (7-12) 

Figure 7-3 contains a plot of the mean square error versus the 

average code bit assignments of F^u.v) and a fixed total average 

code of 2 bits/pixel for the GIRL image.    The optimal average bit 

allocation for this test image is the maximum point on an envelope 

which is constructed by drawing through each peak point of the 

curves shown.    The value is found to be:    1.25 for F   (u,v),   0. 55 

for F^u.v).  and 0.20 for FQ(u.v).    The optimum scale does not 

change appreciably for the other image. 

7.3   Experiment Results 

A computer simulation has been performed to subjectively 

evaluate the performance of the slant transform color image coding 

system. 

Figure 7-4 contains black-and-white photographs of the 

R.G.B components of the original images shown in figure 1-2.    It 

can be seen that the R.G.B pixels are highly correlated.    Figure 7-5 

illustrates black-and-white versions of the Y.I.Q planes of the same 

images.    It is clearly seen that the degree of correlation among 

these planes is much less than chose in R, G, B planes. 

The energy compaction properties of the slant transformed 

...   .  _          . .—  ..  _—^  
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Y. I and Q planes can be seen from pictures of the three transform 

domain samples.    Figure 7-6 •howg the slant transform planes. 

FY(u.v).  F^u.v). and FQ{u.V).  where the transform is performed 

in 16X16 pixel blocks over the entire plane.    Again,   in these 

pictures,  a logarithm has been taken for each transform sample in 

order to compact the dynamic range of the transform samples.    It 

can easily be seen that most of the significant samples  in each plane 

are located around the maximum variance zone.    It can also be seen 

that the energy distribution in F^u.v) and FQ(u,-) pi u.cs is quite 

small in comparison with that of F   (u,v). 

To illustrate the bandwidth reduction capability of the slant 

transform for color image coding,   two sets of experiments have 

been performed for both the GIRL and COUPLE images.    The first 

set of experiments results in an average coding of 2 bits/pixel where 

the trensform samples of Y.I. and Q are coded with 1. 2.   0.54.  and 

0.26 bits/pixel respectively.    The second set of experiments results 

in an average coding of 3 bits/pixel where the transform samples of 

Y. I. and Q are coded,   respectively,  with 2. 0.  0. 6. and 0. 4 bits/ 

pixel.    The corresponding reproductions of Y.I.Q and R.G.B for the 

first set of experiments are shown in figure 7-7 and 7-8.    Figure 

7-9 and 7-10 show the reproductions of the color images with channel 

error rates of Pe = 0.  Pe = lo"4 and Pe = lo"2.    It can be seen that 

even with an average coding of 2 bits/pixel and channel error rate 

■■-          
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-4 
of Pe -   10     ,  the result can still be considered as a good quality 

reconstruction.    Table 7-2 exhibits the mean square errors between 

the original Y,I,Q planes and slant transform coded Y.I.Q planes 

for the GIRL image.    The reason that the mean square errors of 

YIQ is presented rather than the mean square errors of RGB is that 

the bandwidth compression has been made only to the YIQ signals. 

    i iifai.i    i mmm ■   i irfi i       im 
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8.    SUMMARY 

This dissertation has presented a theoretical development and 

analysis of the two dimensional slant transform for image coding. 

Various transforms which possess an energy compaction property 

have also heen briefly discussed. 

The implementation of the slant transform coding system 

appears feasible using the fast transform algorithm developed in this 

dissertation.    It has been found that for a slant transform of order N, 

the total number of operations is N log N + 2N-4, which is only 

slightly greater than the number of operations required for the 

Haoamard transform. 

The statistical properties of the slant transform have been 

analyzed based upon the assumption that the original image is a 

sample of a two dimensional process with known mean and covariance. 

The probability density functions of the transform samples have been 

modelled as a Rayleigh density function for dc samples and as a 

Gaussian density for ac samples. 

The energy compaction property of the slant transform has 

been exploited to achieve a sample reduction by two means: 

threshold sampling and zonal sampling.    Threshold sampling simply 

entails the coding of each transform sample that exceeds a threshold 

144 
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level.    In zonal sampling those samples with the largest expected 

variance are coded.    For purposes of comparison experiments have 

also been performed on the Fourier,  Hadamard,  Haar, and Karhunen- 

Loeve transforms.    The conclusions are: 

a) A significant sample reduction with slant transform 

coding can be obtained by threshold and zonal sampling; 

b) Threshold sampling provides a better performance than 

zonal sampling for thr same sample reduction factor.    A higher 

sample reduction can be obtained with threshold sampling without 

seriously degrading the reconstruction. 

c) The slant transform exhibits somewhat better performance 

than the Fourier,  Hadamard,  or Haar transforms. 

d) For block sizes larger than 16 xl6,  the improvement of 

performance    will not be significant. 

An analysis has been performed to determine the quantization 

effect of transform domain samples.    A mathematical expression of 

the mean square error between the original image and its transform 

coded reconstruction has been derived. 

Coding techniques for optimally quantized transform samples 

have been implemented and evaluated for both threshold and zonal 

processed samples.    For threshold processed samples,  a position 

coding technique employing runlength coding has been introduced. 

For zonal processed samples a maximum variance zonal coding 
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technique has been introduced.    The maximum variance zonal coding 

technique appears to be much easier to implement than runlength 

coding,   since no position coding is required. 

The effect of channel errors on slant transform coded images 

has been simulated on a digital computer.    All code bits were packed 

into a long string of binary data,   and a random noise generator was 

introduced to generate bit reversals according to a specific error 

rate.    It has been shown that channel errors in the transform domain 

tend to cause a small overall loss in resolution which is perferable to 

the "salt and pepper" errors introduced in   spatial domain coding. 

Comparing  the effect of channel errors on threshold and zonal coding 

techniques,  it appears that zonal coding is less sensitive to channel 

errors.    It has been shown that zonal coding can tolerate an error 

_3 
rate as high as Pe =  10      for a bandwidth reduced image of 1. 5 

bits/pixel without serious image degradation. 

The .-mdies of the slant transform for monochrome image 

coding have also been extended to color images.    First,   a coordinate 

conversion from RGB to YIQ has been made in order to compact the 

image energy between color planes.    Next,  the slant transform coding 

technique has been applied to each color plane.    It has been shown 

that relatively large bandwidth reductions may be obtained in the I 

and Q planes without seriously effecting the color image reconstruc- 

tion. 

■M^MB^MMMMi ______^_, 
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The conclusions to be drawn from experiments that have been 

performed in monochrome and color image coding ar*: 

(a) A bandwidth reduction of 1 bit/pixel and 1. 5 bits/pixel 

can be made for a monochrome image by threshold and zonal coding 

techniques respectively without seriously degrading the xeconstruc- 

tion quality. 

(b) For color images,  a total coding of about 2 to 3 bits/pixel 

can be realized while maintaining good quality reconstructions. 
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Appendix 

SLANT  TRANSFORM PROGRAMS 

This appendix presents the programs of the one-dimensional 

forward and inverse slant transform of size N=256.    The transform 

of sizes other than 256 can be obtained by a minor modification of 

these programs. 

(a)   Forward Slant Transform: 

C 
C 
C 

11 

THIS PROGRAM PERFORMS ONE DIMENSIONAL 
SLANT TRANSFORM OF A 256 BY 256 IMAGE 

DIMENSION A(256), B(256)f C(256) 
N=256 
EN=N 
ENN=SQRT(EN) 
B1=1./SQRT(5.) 
AU3. *B1 
DO 79 M=1,N 
CALL DSKIOIC, 1024, M, 1,4) 

Kl=N/4 
DO 40 II=1,K1 
IIA=4*(II-1) 
DO 11 1=1,4 
J=IIA+I 
B(I)=C{J) 

A(1)=B(1) + B(4) 
A(2) = B(2) + B(3) 
A(3) = B(1)-B(4) 
A{4) = B(2)-B(3) 
B(1)=A(1)+A(2) 
B(2)=A1:;:A(3) + B1-A(4) 
B(3)=A{1)-A(2) 
B(4) = B1-A(3)-A1;;=A(4) 

148 
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DO 40 1=1,4 
J=IIA+I 

40 C(J) = B(I) 
C 

K=8 
L=3 
GO TO 49 

41 K=16 

GO TO 49 
42 K=32 

L=5 
GO TO 49 

43 K^4 

GO TO 49 
44 K=128 

L=7 
GO TO 49 

45 K=256 
L=8 

49      KK=K/2 
K2=N/K 
LL=L- 1 
SUM1=0. 
DO 61 1=1, LL 

61      SUMUSUM1+2. **(2*(I-1)) 
SUM2=SUMl + 2. **(2*LL) 
A2=FLOAT(KK)/SQRT(SUM2) 
B2=SQRT(SUM1)/SQRT(SUM2) 
DO 65 II=1,K2 
IIB=K*(II-1) 
DO 51 1=1, K 
J=IIB+I 

51      B(I)=C(J) 
DO 59 1=1, KK 
DO 59 L2=l,2 
T=0. 
DO 57 L3=l,2 
I1=KK*(L3-1)+I 
IF (L3+L2-4) 55,53, 55 

53      T=T-B(I1) 
GO TO 57 

55      T=T+B(I1) 

-  — ■     --   -~ -■ 
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57      CONTINUE 
IF (IAND(I, 1)) 52, 54, 52 

52     LI = 2*(I-1) 
I2=LlfL2 
GO TO 59 

54     L1 = 2*I+1 
I2=L1-L2 

59     A(I2) = T 
C 

DD=A(4) 
A(4)=A(3) 
A(3)=A(2) 
A(2) = DD 

C 

E2=B2*A(2)+A2*A(3) 
F2=A2*A(2)-B2*A(3) 
A(2)=E2 
A(3)=A{4) 
A(4) = F2 

C 

63     DO 65 1=1, K 
J=IIB+I 

65     C(J)=A(I) 

IF(K-16)41,42,67 
67 IF(K-64)43, 44, 68 
68 IF(K-256) 45,71,71 
71     DO 75 1=1, N 
75     C(I)=C(I)/ENN 

CALL DSKIO(C, 1024, M, 0, 5) 
79     CONTINUE 

STOP 
END 

(b)   Inverse Slant Transform: 

C THIS PROGRAM PERFORMS ONE DIMENSIONAL 
C INVERSE SLANT TRANSFORM OF A 256 BY 256 
C IMAGE 
C 

DIMENSION A(256), B(256), C(256) 
N=256 

S=SQRT(FLOAT(N)) 
B1=1./SQRT(5.) 
A 1 = 3. *B1 

Ifc ■ -   ■ - — ■ ■—  -.   - -     .  - J 
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DO 179 M=1,N 
CALL DSKIO(C, 1024, M, 1,4) 
K=256 
L=8 
GO TO 149 

22      K=128 
L=7 
GO TO 149 

33      K^4 
L=6 
GO TO 149 

44      K=32 
L=5 
GO TO 149 

55      K=16 
L=4     GO TO 149 

141      K=8 
L=3 

149      KK=K/2 
K2=N/K 
LL=L-1 
SUM1 = 0. 
DO 161 1=1, LL 

161      SUMl = SUMl + 2. **(2*(I-1)) 
SUM2=SUMl + 2. **(2=;=LL) 
A2=FLOAT(KK)/SQRT(SUM2) 
B2=SQRT(SUM1)/SQRT(SUM2) 
DO 165 11=1, K2 
IlQ=K*(n-l) 
DO 151 1=1,K 
J=I+IIQ 

I'JI      B(I)=C(J) 

E2=B2*B(2)+A2*B(4) 
F2=A2^B(2)-B2:::B(4) 
B(2)=E2 
B(4)=B(3) 
B(3)=F2 
JK=KK+1 
JKK=JK+1 

A(1)=B(1) + B(3) 
A(2) = B(2) + B(4) 
A(JK) = B(1)-B(3) 
A(JKK)=B(2)-B(4) 
DO 159 1=3, KK 

 ^^—^.^ - —■      — - -   - - J 
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IJ = 2*1-1 
DO 159 L2=lf 2 
T 0. 

DO 157 1.3=1,2 
I1 = L3-1+IJ 

IF(L2+L3-4)  155, 153, 155 
153      T=T-B(I1) 

GO TO 157 
155      T=T+B(I1) 
157      CONTINUE 

I2=KK;;=(L2-1)+I 
159 A(I2) = T 

JJK=KK+4 
DO 160 IC=JJK, K, 2 

160 A(IC)=-A(IC) 
C 

DO 165 1=1,K 
J=I+IIQ 

165      C(J)=A(I) 

IF(K-128) 66,33,22 
66        IF(K-32) 77,55,44 
77        IF(K-8) 99, 105,141 
105      Kl = N/4 

DO 144 11=1, Kl 
IIQ=4*(II-1) 
DO 111 1=1,4 
J=I+IIQ 

111       B(I) = C{J) 
A(1) = B(1) + B(3) 
A(2)=B(1)-B{3) 
A(3)=A1*B(2) + B1*B(4) 
A(4) = B1':-B(2)-A1=:<B(4) 
B(l)sA(l)+A{3) 
B(2)=A(2)+A(4) 
B(3)=A(2)-A(4) 
B(4)=A(1)-A(3) 
DO 144 1=1,4 
J=I+IIQ 

144      C(J) = B(I)/S 

CALL DSKIO(C, 1024. M, 0, 5) 
179      CONTINUE 
99        STOP 

END 

152 
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Appendix B 

PHOTOGRAPHIC DENSITY IMAGE REPRESENTATION 

Results of an experiment of using the photographic density 

rather than intensity for the slant transform image coding system are 

presented in this appendix.    The ciiginal digital image,  f(j,k), 

defined as an array of samples of a continuous two dimensional 

intensity pattern of light, has been converted to the photographic 

density by [36] 

f'Ü.k) = log{f(j,k)} j.k = 0,1,2,..., N-l 

The samples of this conversion then undergo a two dimensional slant 

transformation repeated over subsections of images in 16 xl6 pixel 

blocks. The resultant transform samples are then quantized, coded, 

and transmitted over a computer simulated channel. At the receiver 

the received samples are decoded, inverse transformed, and recon- 

verted back to the photographic intensity by 

f{j,k) =  iof,(j'k) 

Figure A shows the result of this experiment.    Comparing this with 

figure 4-35(a) it appears that the conversion of the photographic 

density does not have any improvement for the slant transform image 

coding system subjectively. 

153 

iM^^^MHMi 





^mmmi^mtmmmmw^ wrr-^mmmimm* 

Appendix C 

RATE DISTORTION MEASURE FOR TRANSFORM CODING 

The rate distrotion function of information theory has proven 

to be a useful measure of the performance of source coding methods 

[19].    It has been shown that for a Gaussian source of independent 

symbols and a mean square error fidelity criterion,   the minimum 

information rate R(D) that can be achieved while maintaining a fixed 

distortion D is given parametrically by [19] 

1 
N 

R(D)   =   -r—   ZJ    max 
2N i=i 

{0,.og(^)} (C-l) 

1   N 

D  "   N" 
S   min (e'a-) 
i = l l (C-2) 

where o.    is the variance of the i th sample and N represents the 

number of symbols in a block.    This result can be applied to trans- 

form coding by treating the transform coefficients as being indepen- 

dent (note:    the coefficients are quantized and coded separately),  and 

by observing the probability density of the samples is well modelled 

by a Gaussian density.    Thus,   the factor o. in eqs.   (C-l) and (C-2) 

can be assumed to be the standard deviation of the transform coeffi- 

cients as given by ~q.   (4-17) or (4-18). 

155 
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Figaro C-l illustrates rate versus distortion curves for a 

first order Markov process, wUh correlation coefficient p = 0. 95 

and N = 16.   The curves show that the Karhunen-Loeve transform 

gives the hest rate over the whole range of distortion,  while the slant 

.ransforn, result   is   very close to the Karhunen-Loeve transform. 

Figure C.2 contains rate versus distortion curves for the same 

Markov process with N =256.    The cue es show that the Fourier 

transform tends to become the Karhun.-n-Lcve transform for a 

large size data vector. 
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Figure C-l.    Rate Versus Distortion for Various Trans- 
forms for a First-Order Markov Process.  N=l6. 
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Figure C-2.    Rate Versus Distortion for Various 
Transforms for a First-Order Markov Process,  N=256. 
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Appendix D 

AN APPROXIMATE METHOD OF 

MINIMIZING THE QUANTIZATION ERROR AND FINTING THE 

DECISION LEVELS OF THE DC AND AC TRANSFORM SAMPLES 

This appendix presents a method of minimizing the quantization 

error and finding the decision levels of the dc and ac transform 

samples.    The method described is similar to the Panter and Dite 

[20].    Let F and F(u,v) represent the dc and ac transform samples 

respectively.    Suppose F is quantized into L . levels by a set of 

decision levels, Q       and a set of reconstruction levels,  F  , as 
k 

shown in figure 5-14.    Then the dc quantization error can be written 

as 

1     ^K 
I        [F-F   ]2p{F)dF 

K=1    QK-I       K l 
(D-l) 

where Pj is the probability density of the random variable F.    In 

order to minimize gj as shown in (D-l) consider 

K 
€K=     L      ^"V     Pl<F)dF 

U
K-1 

(D-2) 

Suppose p^F) is nearly constant over the region of integral such that 

159 
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Q   + Q 
,xr. /     K      K-l N pi(F) - piC—r—) 

then 
Q   + Q 

K [(QK-FK)3+(FK-QK-1)3] <D-3) 

Differentiating eK with respect to FK and setting the result to zero 

gives 

de., Q   +Q 
K      K-l K f 

)[-(QK-rK,i+<rK-QK-l'i]-0        'D-4' 

or 

FK = 

QK+QK-1 
(D-5) 

^^K^K^K^K-r^K (D-6) 

Then e     may be written as 

2p1(FK)AFK 

K (D-7) 

Substituting this into equation (D-l) gives 

el = 
2 ^        3 
3 E     XK 3   K=l     K 

(D-8; 

where   W^ ^ (F^ A FK ] 
1/3 

-----  -    - - ■■ ■—— ■*- ■  
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If the number of quantization levels   is   sufficiently large   so 

that the definition of the integral is applicable,  then 

L^'^-i^r^K-iftp.^'v^. 
(D-9) 

where Aj is the maximum decision level of F and K   is a constant 

since the integral is a function of only its limit.    The minimization of 

equation (D-l) is now reduced to the minimization of equation (D-8) 

subject to the constraint of equation (D-9).    Using Lagrange's method 

it is easily found that ^ is minimum when 

K 
Xj = x2= ... = x    = _ (D.10) 

1 1 

By substituting equations (D-10) and (D-9) irto (D-8) Ll.e minimum 

quantization error becomes 

TrCl'W^ ei =    12Y2- VJ    l''rv-\ ■ ^ (D-ii) 

Suppose now that each ac sample F(u,v) is quantized into 

L2(u,v) levels by a set of decision levels, Q   fu, v), and a set of 
K 

reconstruction levels, FK(u,v), as shown in 'igure 5-15.    Then the 

ac quantization error can be written as 

   .^—^*»—., 
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e2 " 

L2(u'v) 

2 
T 

QK(u,v) 

( rF(u,v)-F   (u,v)]''p   {F(u,v)1dF(u,v) 
-L2(u.v)    QK.JCU.V) K 2 

K= 2  P-12) 

where p^ is the probability density of F(u,v).    Followiiig a similar 

method as introduced in equations (D-2) to (D-8),   the minimization of 

equation (D-12) may he reduced to minimize 

I-2(u,v) 

'2 3 

K= 
-L2(u,v) 

[ YK(u,V)]: 
(D-13) 

subject to the condition 

2 
E 

-L2{u,v) 

A2(u,v) 

'K"   2 J P2{F(u,v)}dF(u,v) = K2(u,v) {D-14) 

K= -A2{u, v) 

1/3 
where YK= [P2[FK(U, v)]]       AFK(u,v); A2{u,v) is the maximum 

decision level of F(u, v), and K2(u,v) is a constant.    Using Lagrange's 

method it is easily found that e., is minimum when 

L 
2 i- Y     = Y 

-1    Xl 

2 2 

K2(u,v) 
(D-15) 

Substituting equations (D-15) and (D-14) into equation (D-13) tin 

amt^mlltlt^amt im^h 
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minimum ac quantization error becomes 

1 
A2(U'V)                               3 

V    2  CI              Tp   (F)dF]1/3)                     (D.i6) 
IZL^u.v) VJ

A   ,       ,    2                     ^ 
^ -A2(u,v) 

A method of obtaining decision levels for dc samples may be 

obtained by writing 

QK =   2 LF^ZLF^ •  .  .  + 2AF 
K (D-17) 

or 

2K 
QK=T7[^1/3(FI)+P;1/3(F2) + ... + P]-1/3

(FK)] (D-18) 

The series may be approximated by an integral 

KA 1 

QK=   C C PjlF) (F)]"1/3 dF (D-19) 

where K - 0, 1,2,. .. , Lj and C is a constant of proportionality so 

chosen that when K= L, Q= A,.    Hence 

KA 

-1/3 
1       tp^F)]        dF 

K 
r
Al -1/3 

J      Cp^F)] dF 
0 

K = 0,1,....L 

(D-20) 
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The decision levels for ac sample may then be obtained in a similar 

way which could be written as follows: 

2KA2(u,v) 

"^F^ -1/3 
A2(u,v)J [p-(F)] dF 

Q   (u.v)= J0 .  L2(U'V) 
K A   (u.v) K-0,1,...,  

(u.v)#(0.0) r   
2 r -1/3 Z 

LP,{r)J dF 

(D-21) 
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