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Abstract

An honest function is one whose size honestly reflects its computation
time. In 1969 Meyer and McCreight proved the "honesty theorem", which says
that for every t, the t-computable functions are the same as the t'-compu-
table functions for some honest t'

Ways of constructing honest functions are considered in detail. It is
shown that for any t there is an honest t' such that the t-computable
functions and the t'-computable functions are the same, and such that t'

is arbitrarily large on a dense set of arguments. Moreover any construction
method satisfying certain natural criteria will (almost) have this property.

On the other hand it is shown that by relaxing these criteria we
can guarantee that t' < t on a (weak) dense seL, We can also guarantee
that t' will be bounded above by a predetermined recursive function on all
but finitely many arguments. Finally, we show that in the case where t
is monotone, t' can also be made monotone.

We consider the t-computable functions, and order these classes under
set inclusion as t varies over the recursive functions. We show that given
any total offective operator ¥ and any recursive countable partial order R

there is an r.e. sequence of machine running times TO’ Tl’ 00 Tn’

such that if iRj, then the Tj computable functions properly contain the
E(Ti) computable functions, and if i and j are incomparable, then‘g(Ti) >T

infinitely often and E(Tj) > Ti infinitely often.
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Preface

The three chapters of this thesic can be read independently,
Chapters two and three are entirely self-contained; no attempt has
been made to integrate them into a single document. Chapter two
has been accepted for publication by the Journal of Symbolic Logic.

It is co-authored by Albert R. Meyer. Chapter three has been

submitted for publication to the Journal of Computer and System Sciences.




Chapter 1

A Survey of Work on Subrecursive Hierarchies and Subrecursive Degrees

The definition of the partial recursive functions is eagsily describable,
involving merely the p-operator in addition to the traditional initial
functions and schemas for developing the primitive recursive functions.
Moreover the Kleene normal forn theorem gives an effective syntactic
presentation of these functions. The recursive functions, those partial
recursive functions which are total, has no such presentation. Tn general
the demonstration that a partial recursive function is total involves a nou-
constructive existence proof.

To avoid this difficulty, subrecursive hierarehiaes have been ¢nne
structed in an attempt to effectively approximate the class of recursive
functions.

A subrecursive hierarchy is a sequence of classes of recursive functions
PO’ Pl’ eoe Pa’ e PB’ **+, where o and B may be finite or infinite
ordinals. For o < B, Pa §ZPB, and the extension of a hierarchy from «

to at+l, or from [ah} to a (where I%m o =o and o is limit ordinal) is

neN
usually carried out by some uniform effective principle.

The method of hierarchies has also been applied to certain rich and
interesting subclasses of the recursive functions. The goal of such
hierarchies is to approximate the given class from below with srallei, more

comprehensible sets of functions. Hopefully such a construction will

provide insight into the structure and complexity of the given class.




We begin by studying w-length hierarchies of the primitive recursive

functions. We show that these hiera-chies are quite successful in that
they give non-trivial alternative formulations of the primitive recursive
functions. Moreover there is considerable agreement among the various
hierarchies, and this agreement may be interpreted to mean that various
notions of primitive recursive complexity coincide.

Similar results are obtained for w-hierarchies of the elementary

functions.

Next we consider various attempts to build hierarchies of transfinite
length which exhaust the recursive functions. We discuss at length the

issue of names for ordinals. Ordinal names must be used to index any trans-

finite hierarchy, and we show how problems with ordinal names has essentially
ruled out any hope of building a meaningful exhaustive hierarchy of the
recursive functions.

The difficulties with building exhaustive hierarchies has led investi-
gators to comstruct and study '"short" transfinite hierarchies which exhaust
only a portion of the recursive function:. A key issue for such construc-
tions is the selection of '"nice" ordinal names to index such hierarchies,
and this has been done with considerable success, at least for hierarchies
of length less than or equal to 80.

Finally, we consider subrecursive degrees, corresponding to Turing
degrees of full recursion theory. This recently revitalized area has begun

to distinguish itself from the theory of Turing degrees, and has established

some interesting structural results about subre-zursive behavior.




Notations and Definitions

For basic notation from recursive function theory, we follow Rogers [2 ].

We denote by < x,y > a 1-1 onto recursive map from N x N * N. Associated
with < > are decoding functions T n2, such that z = < nl(z), nz(z) >,

Let f be any function. Define £'2) (x) = £(x), " (x) = £(£™(x)).

£ 15 the n™-pover of £.

If t is any total function, then the t-computable functions are the
set of functions computable within t(x) Turing machine steps, for all but
finitely many arguments. Our Turing machine conventions are those of
Davis [ ].

1f f(xo, seve: xn) = h(go(xo, sigie. xkb)’...’ gn(x y 0, xk)) ve say
that f is defined from h, 8y °**s By by composition. "

If £(0, xl’ yieery xn) * g(xls cee, xn):
f(n+13 xl’ e0e, xn) = h(t(s, xl’ s, xn): D, xl’ te xn)s

then we say that f is defined from g and h by primitive recursion.

The class of primitive recursive functions is the smallest class of
functione containing the zero function, the successor function, and the
projection functions U?(xl, see, xn) =X, which is closed under composition
and primitive: recu:sion.

If g, h, and j belong to some class of functions and f satisfies the

equations

£(0,y) = g(y),

f(x+1’ Y) = h:x’ y, f(x:Y))

£(x,y) € i(x,y), i




then we say that f is defined by limited recursion from g, h, and jo

n
If f(n, x, s+ x) = 1 g(z, x y S0, xk), we say f is defined from
n 2=0 1

g by limited multiplication. There is a similar scheme for limited summation.
I1f f(xl, ses xk) = g(yl’ cee, yn), where each Yy equals some X, then
we say that f is defined from g by explicit transformation.
The class of elementary functions E of Kalmax [77] can be defined as
the smallest class containing x+y, x-y, and x which is closed under the

operations of composition, explicit transformations, and limited recursion.

We use xk as an abbreviation for the expression X)s x2, see xk.

Section 1. w-hierarchies of Primitive Recursive Functions

The primitive recursive functions have been the most widely studied
subrecursive class, and so it is nctural that much of the work on hierarchies
of recursive “inctions has centered around classifying these functions., An
w-hierarchy of primitive recursive functions is an increasing sequence of
classes of functions PO’ Pl’ LI Pk’ **¢, such that for each k, Pk $ Pk+1
and such that the union of these classes equals the primitive recursive
functions. If f is primitive recursive, then the least k such that f ¢ Pk
in some sense measures the difficulty of f. As we shall see there are
many different ways to formulate hierarchies of primitive recursive
functions, each with its associated concept of difficulty; however, there

is a high degree of invariance among these concepts, and this invariance

makes the primitive recursive functions a well understood subrecursive class.




Primitive recursive hierarchies have been formulated in seversl different

ways. One approach is to consider each class in the hierarchy as a closure

class. Each Pk is formed by the application of certain sub-primitive

recursive closure rules to certain initial function~, usually differing only

in a single "key" function fk. This is the approach of Gzregoizyk, and

Axt. . Another formulation constructs each class using some external

syntactic criterion; for example, one might assign f to Pk if f can be

defined using at most n nested instances of primitive recursion. Axt

did the initial work in t¢his direction. Yet another approach, proposed by
Robert Ritchie, Robbin, Cobham, and Meyer and Ritchie, is complexity-
theoretic in nature. f ¢ Pk in case f is (roughly) fk computable.

The fundamental result of this section is that all these approaches
yield essentially the same hierarchy.

Gzregorczyk in his 1953 paper [41] gives the first formulation of an
w-hierarchy of primitive recursive functions. Ee defines a sequence of
rapidly increasing recursive functions fn’ and each fn is used to define
the nth class in the sequence.

Definition: Define a sequence of functions fn € Rz as follows:

]" fo(x’y)
2. fl(x,y)

3. fz(x,y) = (x+1)« (y+1)

y+l

x+y

4, f 10y = fn(y+1, y+1)

5. £ GeHLY) = £ (x, £ (x,y)




-12-

He defines his sequence of classes of primitive recursive functions
EO, El, QUIAY Ek, +++, as follows.
Definition: Let E- be the smallest class of *uictions containing as initial
functions the successor function, the projection functions, and fn’ and
closed under the operations of composition, explicit transformation, and
limited recursion.

Notice that f3 is essentially exponentiation, and so E3 is the elem-
ontary functions.

An essential feature of any proposed hierarchy is a hierarchy theorem,
that is, a theorem which demonstrates that the classes of the hierarchy form
a proper increasing chain.

Theorem: For all n= 0 En g En+1.

Gzregorczyk's proof of this theorem is ccmplicated by his choice of

key functions fk. The difficulty in the proof arises because fn+ is not

1
defined by a simple primitive recursive scheme. and so a bounded recur=ion
argument by itself will not suffice to establish the result. Gzregorczyk

uses a fairly intricate coding argument to show that for i < n, £, ¢ E,

i ;
this shows that E' C En+1 for each n.

The proof that each contaimment is proper follows from the fact that
for each n, fn+1(x,x) majorizes the one-variahle functions of En.

By first observing that each fn is primitive recursive, it is immediate

that % E" C primitive recursive functions. The next result shows that

this contaimment is actually an equality.
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Theorem: g E" = primitive recursive functions.

To prove this Gzregorczyk uses a formulation of the primitive recur-
sive functions due to R.M. Robinson [78]. The importaut feature of this
formulation is that primitive recursion is eliminated and is replaced by
a schema for iteration. It is tlen not difficult to show by induction on
the order of a function (where the order of f counts the number of opera-

tions used in the definition of f) that if f is primitive recursive and has

order k. then f ¢ Ek+3.

In an <arly paper Cobham [79], drawing on work of Ritchie [66],
considers the Gzregorczyk hierarchy and observes that the classes Ek have
interesting complexity-theoretic properties.

Theorem: For k> 3 f ¢ Ekiffsome'program P computes f and Tp € Ek, where
Tp 1s the run-time of Piff there is a g ¢ Ek such that f is g-computable.

Cobham states his result for k > 3 to achieve machine-independence;
in this form the theorem is true for any device or programming language
which can be arithmetized in an elementary-recursive way.

Meyer and Ritchie [72] exploit this result to give a complexity-
theoretic formulation of the Gzregorczyk hierarchy. We develop the Meyer=-
Ritchie approach here because the ideas involved will be useful in proving
the equivalence of various different hierarchies.

Definition: Given any f, let E(f), the functions elementary in f, be the

e

T TTEE————
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smallest set containing xy, x+y, x°y, and £, which is clnsed under composi-
tion, explicit transfcrmation, and limited recursion.

Notice that for k = 3 E(fk) = Ek, where fk is the kth Gzregorczyk
function.

The following simple theorem proves one part of Cobham's result cited
above.

Theorem: Let g be any function computable within t(x) steps for each
argument x. If t ¢ E(f), then g € E(f).

The proof of this theorem rests on the fact that in any reasonable
machine model there exist elementary functions Om(e, §m, y) for m > 1 such
that Om(e, im, y) = the output of the eth Turing machine on arguments im,
if the machine halts within y steps, and O otherwise. For every f,

Qm e E(f), and so Om(eg, §m, t(im)) =g ¢ E(f), where eg is a machine
which computes g in time t.

Call a function f elem:ntary-honest if f is h-honest for some elem-

entary-recursive hT The nexu result is a partial converse to the last
theorem.
Theorem: If f is elementary-honest and if g ¢ E(f), then there is a
t € E(f) such that g is t-computable.

Summarizing these last two results we have that if f is elementary
honest, then g € E(f) if and only if g is t-computable for some t € E(f).

Classes with this property are called computation-time closed classes.

.f

See definition 1 of Chapter 2, Section 2.




The size of functions in Ek for each k plays an important role in

Gzregorczyk's work. The following simple bounding lemma of Meyer and
Ritchie will yield more precise information on function size for
Gzregorczyk's classes,

Bourding lemma: If f is non-decreasing and 2 2% and if g ¢ E(f), then there

is a constant ¢ such that g(§;) < f(c)(Eéz[xls veey x D).

Meyer and Ritchie are now in a position to redefine the Gzregorczyk
I classes. First they note that fog is elementary honest if f and g are, and
f is at least as large as the identity. Similarly if f is elementary honest

(c)

and non-decreasing, then f is elementary honest. Using these observations

they construct a Gzregorczyk-like sequence of elementary honest functions

B (based on a modificatica of Gzregorczyk's functions due to Ritchie [67)),

as follows:

(x)(l) .

These simple functions can be used instead of Gzregorczyk's functions
fk’ so that for n > 3, E" = E(gn). Thus for n = 3 the class E" is precisely
the set of functions which are computable withim time bounded by some

fixed iterate of 8,

Gzregorczyk has one other result of interest, and this result leads

very naturally to another formulation of a primitive recursive hierarchy.
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Definition: Let E be a class of functions. A function F(x,y) is a univ-
ersal function for E if for each x, Ay F(x,y) € E, and for every g € E there
is an x such that g = Ay F(x,y).

Theorem: For n = 2 En+1 contains a universal function for the cne-variable
functions in E".

An important feature of any hierarchy is the method used for class
enlargement, the "jump operation'" of the hierarchy. One of the weaknesses
of Gzregorczyk's formulation is the obscurity of his jump operation, and
the resulting relative difficulty of his hierarchy theorem.

Axt [13] proposes an w-hierarchy where the jump operation is based
explicitly on universal functions. To go from class to P, to class P

k k+1

Axt adds to the initjal functions of Pk an enumerating function for Pk'

Definition: Let ® be a set of total functions. We say a function ¢ is
gﬁ in 8 if ¢ belongs to the smallest class containing & and fa(the
Gzregorczyk function fa), which is clcsed under composition, explicit
transformation, and limited recursion.

Axt now chooses a particular Ea function ef(x,y) such that efe(x,y)

is a universal function for the set of functions Ea in 6.

Definition: Define e for n 2 0 as follows:

eo(x»}’) =0

e
e () = ef "(x,y)




Axt now defines classes En based on the enumerating tunctions e s En

will be the set of functions E4 in e .
H . C oo E .
Theorem (Axt Hierarchy Theorem): EO g E1 s % ]
Notice that the proof of this theorem is immediate, since E

nt+l

the initial functions for En, and by a crivial diagonization, e

ol £ E -
Axt is able to show his hierarchy is essentially the same as
Gzregorczyk's.

Theorem: For all n = 0 En+4 = E

This is a pleasing result. It gives us a surprising alternative for-
mulation of the Gzregorczyk hierarchy. However, Axt's result is less
significant than one might suspect. The difficulty with his work lies
with his choice of the universal function ef. It is not hard to show that
there are a great many possible universal functions ef, each as natural as
Axt's ef, and eich yielding a different hierarchy when used as a jump

procedure to construct an Axt-like hierarchy. Indeed, the significance

of his technique is the highly non-invariar: character of his jump operation.

This phenomenon is in sharp contrast to the situation in full recursion
theory, where the behavior of the jump operation en Turing degrees dees not
depend on the specific details of the jump definition.

Axt formulates another w-hierarchy in [14] based on a natural syntactic

criterion, depth ot nesting of primitive recursion. He defines his classe«

Kn as follows.

contains

P g e e oy




Definition:
(1) if £ is an initial function, that is if f is the rero function,

the successor function, or a projection function, then f € KO.

(i1 if f is defined by composition from ., Bpr **ts Bps and h ¢ Kio,

g1 € Kil, ves, gk € Kik, then f ¢ Kmax[ij | 0<i<k]

(iii) if f comes from g and h by primitive recursion ard g € Kn , end

h eK , then f ¢ K . 4
n, 1+max[n1, n2]

It is immediate that Ko & Ky oo g K, G and the lr{ K = primitive
recursive functions.

This hierarchy uses no external machinery in its definition, and in
this sense is perhaps the most naturally formulated hierarchy of any we
have considered. It turnc out that for n > 3 En+1 = an, although Axt

was unable to show this in his original study.
Meyer [80] was the first to show that Axt's depth of nesting hierarchy
and the Gzregorczyk hierarchy eventually coincide. He shows that for

nz9, En+1 = Kn. The best published result to date is due to Schwichten-

berg [51], who proves that En+1 = Kn for n 2 3. Meyer's proof rests on
the complexity-theoretic properties of the Gzregorczyk hierarchy which we
established earlier.
ml
He begins by proving that for n = 3 Kn CE , using an inductive
argument to show that every function in one class is majorized by some
function in the other class. This yields the result, since if f appears

ntl
in Kn by an instance of primitive recursion, then g > f for some g ¢ E 5

TMuller has announced the result for n > 2 in the Recursive Function Theory
Newsletter, No. 5, April 1973.




and so f ¢ En+1 by an instance of limited recursion with g as bounding

function.

The proof that E" Kn-l for sufficiently large n is dealt with using

explicit complexity-theoretic arguments. Since |J K exhausts the primitive
néeN T
recursive functions, Om(e,'i;, y) belongs to K for some no.

To-1
since the running time of f is bounded by some function in E

Moreover,

,» and hence,

by the above, by some function t ¢ Kn » Meyer concludes that f =
0-1
Qm(ef,’i;, t(i;)) € Kn , where e. is a Godel number for £. He shows that
0-1
n, < 9, and thus for sufficiently large n, Kn = En+1.

This is a rather striking resul: in that it relates the size f, the

running time of f, and the synt.ctic form of f. The same general method
yields Schwichtenberg's result, although tle details of the construction

of 0 1in K2 is much more difficult.

Several investigators have considered syntactically formulated i
hierarchies which are quite similar to the depth of nesting hierarchy.
Parsons [63] observes that iieration is the feature of primitive recursion
that increases functional complexity. Using this as a guide, he defines a

hierarchy based on nested iteration rather than nested primitive recursion.

With this phenomenon in mind, he builds his classes £P so that functions

defined by primitive recursion are placed in th's class only when P

1
nested iterations takes place. He shows that for p=2 P Ep+ .

Schwichtembery, [51] and Meyer and Ritchie [58 1 also build hierarchies

similar to the depth of nesting hierarchy. They place f ¢ K:im in case

f is defined from fuunctions in Kif? by an instance of simultaneous recursion.

im _n

They show that for n > 2 K: E.




Meyer and Ritchie |59 ] propose yet another syntactically formulated
hierarchy. They consider a simplified programming language, and they
measure program difficulty by depth of nesting of LOOP-END pairs. Their

language consists of five possible types of expressions, (1) Set X to x+1

’

(2) Set XtoY, (3) SetX to zero, (4) LOOP, and (5) END. A sequence of
instructions is a Loop program when LOOP and END instructions are matched
like left and right parentheses. LOOP-END pairs affect the normal sequ-
ential flow of the program. If P is » Toop prorram, and register X contains
integer x, then "LOOP X, P, END" means that program P is to le executed x
times before the next instru~tion (if any) after the END is executed.

A program hierarchy Ln 1s constructed by placing program P in Ln if
P includes LOOP-END pairs nested to depth at most n. A hierarchy of
functions £n for n 2 0 is now derived from the Ln hierarchy: f ¢ £n in
case sone P ¢ Ln computes f,

Since loop structure and the schema of primitive recursion are very
similar, a routine inductive argument shows that U £n = primitive recursive
functions. Moreover, Meyer and Ritchie are able t: relate thei J0p

hierarchy to Gzregorczyk's by linking the classes Sn directly to the modified

Gzregorczyk functions 8, They defisze a sequence of functions hn as follows:

x+1 ifx=0

x+2 ifx=>2,

b () =hy () (1),
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Thus £ = Fi+1 is 'predictable computable" in the sense that the space

necded to compute f is bounded by some function in Fi' In a moment we will

sharpen the notion of predictability by giving explicit upper bounds on the

space needed to compute f ¢ Fi+1'

It is easy to pwove that F0 c F1 C o0 C Fn C *++, To show that all

the contaimments are proper, Ritchie develops a sequence of functions ‘0,
fl’ 85T fk’ **¢ which are similar to the Gzregorczyk functions, anc which
yield canonical estimates on the size of functions in F, -

£ (x) =
Theorem: Let f (x) = x, and let £ (0 =2 - Then for each n, £ €F ,

n
and if g ¢ Fn’ then g(xl, see xn) < fn(K-max(xl, see xn)).
Easy inductions prove both claims, and since for strictly increasing g
28 majorizes keg, £ ., ¢ F - This establishes the Ritchie hierarchy theorem.
Theorem: For all n 2 0, Fn §:Fn+1'

Ritchie next establishes that the elementary functions E C Lan. He :
a ]

accomplishes this by showing that expounentiation is in F2, and that explicit
transformation, limited recursion, 8nd composition do not lead out of the
F-classes. Finally by carefully analyzing and reworking the Kleene normal

form Theorem, Ritchie is able to show that every f ¢ |JF, is elem-

i
n ]
entary. Thus his hierarchy is precisely a hierarchy of the elementary

functions.
In [44] Herman develops a variant of the Ritchie hierarchy, based on
unary Turing machines. As in the Ritchie formulation, Herman places

eee < * PP .
f e Gi in case some machine T computes f and GT(xl, , xn) fi-l (K max(x1 xn))




By examining carefully the resource needad to convert between binary and

unary notation, he proves that for all i > 0 Fi ? Gi+1 C*t Fi+1’ and thus

that (J Gi = the elementary functions.
i

Cleave [81] proposes anotner method of building hierarchies, based on
register machines. He fixes a set of functions 7, and defines a Y-program
to be a finite sequence of instructions I(1), 1(2), ..., I(k). Instructions
may be of two forms: I(j) may be arithmetic, that is, of the form
F(Rl, vee Rm) - Rp(For F ¢ 7, apply F to the contents of registers R1 oo Rm’
and place the result in RP); or jump, that is Ji(d, B) (if Ri =1, go to
instruction I(&), and otherwise, go to I(R})). He limits his machines by
specifying a special register J which is decremented by one each time a
jump instruction is executed. When J = 0, the program halts.

Definition: A function f is (h-Y) computable (that is, f ¢ (E)h) if some
2-program P computes f at each argument x, with special register J initially
set to h(x).

Using this notion of bounded computability, Cleave constructs his

hierarchy.

Definition: The Cleave hierarchy.
1. fe 20 o fe(ph for some constant function h
2. fe:ZJrﬂ_1 & fEZ(ZI)g for somegezn.

For Z = (+, x, =} Cleave shows the following:

Theorem: 20 g 21 g coe g En g s+, and Lg En = elementary functions.




In [45]), Herman considers the equivalence of the Ritchie and Cleave

hierarchies. He shows that for T = (+, =}, U En = elementary functicns,
n

and using an induction argument based on Ritchies functions {fn} he

shows that for i 2 0, F g Gi+1 g Ei+2 g Fi+2 g GH-3'

neN’

Section 3. Transfinite Hierarchies

In the first part of this chapter we discussed w-hier:iirchies of two
1 well understood, effectively presentable subclasses of tte recursive
functions, the primitive recursive functions, and the rlementary functions.
In this section we discuss various attempts to build natural, effectively
constructed transfinite hierarchies which are designed to exhaust the
class of recursive functions in a non-trivial way. The results we con-
sider here are almost without exception, negative. The fundamental

difficulty with building exhaustive hierarchies is the highly non-in-

variant character of the ordinal names used Lo index such hierarchies.

These "naming'" difficulties have led to the formulation of transfinite

hierarchies with more modest goals, namely, the construction of hier-

archins indexed by apparently "patural" mames for a small subset of the

comstructive ordinals. We discuss non-exhaustive hierarchies of this

type at the end of this section.

One natural and attractive approach to the problem of constructing

exhaustive transfinite hierarchies is through ordinal recursion. One

might formulate such a hierarchy informally as follows: place a function

f e Fa for o < wy (the first non-constructive ordinal), if f can be




defined by ordinal recursion over some well ordering B < ¢ involving
functions in FK for N < o. By unnested recursion over a well-ordering R of N
we mean the following:

Definition: Let R be a well-ordering. Define R to be

x if xRa,

0 otherwise:

Then a function f is defined by ordinal recursion over R (or unnested

R-recursion), from given functions By» ***s gk if

£(0) = p

f(a+l) = h(a),

where h(a) has the form p(a. f(q(a) R a+l)), and p, q are built up from
g1 ejeje’. gk by composition.

Definition: Let U(R), the unnested R-recursive functions, be the smallest
class containing + and closed under composition, explicit transformation,
and ordinal recursion over R.

The next theorem siwows that the proposed hierarchy outlined above
collapses at the earliest possible stage. The character of the proof
hints at the close 1link between the "strength' of a transfinite hierarchy
and the ordinal names used to index the hierarchy.

Theorem: Myhill, Routledge [60], [50], [31] and [32]. Let f be any
recursive function. Then there exists a recursive well-ordering R

can be shown to be elementary) of order type w such that f ¢ U(R).




One proof of this theorem proceeds by constructing R from the running

time function ¢ for some Turing machine T which computes f, R is built
with an encyding of $(0), #(l), *+** embedded in it in an R-ordinal
recursive way. & can be extracted from R in an ordinal recursive way, and,
using the Kleene T-predicate and §, one shows that f ¢ U(R).

This is certainly a provacative result; it indicates that if there
is to be any hope of a successful transfinite hierarchy of the recursive
functions, then the issue of ordinal names must be treated with considerable
care.

With this in mind Kleene [27], proposed a subrecursive hierarchy in
which classes of functions are attached to the nodes of 0, the Church-
Kleene system of ordinal notations. We assume the reader is familiar
with 0; a readable account of 0 and iis properties may be found in
[2, pp. 205-213].

Hoping to avoid the difficulties which arise from the Myhill-Rocvtledge
result, Kleene restricts 0 by allowing only primitive recursive funda-
mental sequences. He shows in fact that under this restriction 0 still
names all the ordinals < W, In what follows, we assume O is restricted
in this way.

Loosely speaking, Kleene's hierarchy starts with the primitive
recursive functions at the base level, and is built up at successor levels
by taking an enumerating function for the previous class and forming its
primitive recursive closure. At limit notations Kleene assigns the

primitive recursive closure of a function which encodes the enumerating

functions of the classes named by the fundameutal sequence.
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Definition: The xieene subrecursive hierarchy. Let prf(a,b) enumerate
the functions primitive recursive in f. The enumeration procedure 1134

is uniform in f. Associate & function hx with each x € 0 as follows:

(1) if x =1, let h (b,a) = 0
(11) if x = 2%, let h (b,a) = prh’(b,.)
R, (1m, (5))
(111)  if x = 3¢5% Jet h (b8) = pr(m, (b), 2))

To each x € 0 assign the class of functions Px’ where Px = the primitive
recursive closure of hx.

Let us consider the issues Kleene's hierarchy raises. To be completely
successful, his (or any similarly formulated) hierarchy should satisfy
the following properties:

(1) (uuiqueness) Iur each a < wl, if x, y € 0 and |x|0 = |y|o =

o (i.e. if x and y are notations for o) then Px = Py;

(ii) (proper expansion) For each o < wl, W) Px g R, the recursive
functions; |x|0<d

(1i1)  (completeness) U Px =R; and
x€0

(iv) The mapping x - Px should be reasonably constructive, e.g.,
Px is uniformly r.e. in x.
Such & hierarchy would provide considerable information about the
class of total recursive functions. It would imply (subject to the

restriction to primitive recursive fundamental sequences) that sub-

recursive hierarchies are ordinal invariant: no matter what choice of
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names we select, we always generate the same sequence of classes of
recursive functions. Moreover a hierarchy satisfying the properties
listed above would provide us with % useful classification technique
for measuring the complexity of recursive functions. We cculd identify
the complexity of a function f with the least ordinal o such that

lx'o =aoand f € Px. This would be a significant measurec of function
complexity, since uniqueness would guarantee that no function f could
appear at an artificially early level.

Unfortunately the Kleene hierarchy, and indeed any reasonably con-
structive hierarchy built in 0 must fail to satisfy the first three
criteria, This breakdown means that any transfinite hierarchy of
recursive functions must depend critically on the choice of ordinal names
used to index the hierarchy. These negative results have made the aims
of subrecursive hierarchy theory much more modest, and as we shall see
much of the recent work on hierarchies is concerned with finding "nice"
rnames for sequences of ordinals, and building non-exhaustive hierarchies
along these paths.

Axt [12]) is the first to consider Kleene's hierarchy. He shows that
indeed the Kleene hierarchy is unique for o < wz. However, he also shows

2 2
non-uniqueness at w : there exist x, y ¢ 0 such that |x|0 * lylo =W

but P # P .

X y

Feferman [38) considers Kleene's hierarchy in a more general setting,
and his work reveals a great deal about difficulties involved in building

successful hierarchies in 0. Feferman proves his results for any

"primitive recursively expanding hierarchy", that is any hierarchy




satisfying five (rather complicated) abstract properties, the most re-
strictive of which specifies that classes at limit notations must contain
a function which diagonalizes across the classes named by the fundamental
sequence.

His first result shows that in a primitively recuvsively expanding
hierarchy, and in the Kleene hierarchy in particular, every recursive
function occurs at a low level.

Theorem: Let (Pd}dCO be the Kleene subrecursive hierarchy. For any

2
f eR there is a d ¢ 0, ldlo = w , such that f ¢ Pd. Moreover for any
b c 0 there is a d ¢ 0, b <, d and |d|0 = |b|0 + w? such that f ¢ P,

Feferman proves his theorem by showing how to encode any recursive
function into a notation for wz. This result shows that for a large class
of hierarchies, uniqueness must fail.

In [62], Parikh strengthens Feferman's non-uniqueness result.
Definition: (Parikh) A recursive transfinite progression of sets of
functions over 0 (or any suitable subset of 0, for example, 0 restricted
to primitive recursive fundamental sequences) is an r.e. predicate

C(p, q, a, b) such that

(i) x €0 implies that for any a, (< pP,q > | C(p,q,a,x)} is a function

f s M+ N; and
a.,X

(ii) If x, y € 0 and x <b y, then Cx g Cy’ where Cx = (f l Ja (f = fa,x)]

d C =(f Ja(f = £ )
an y ( | a( = y)]

’
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For such recursive transfinite progressions, of which Kleene's hierarchy
is certainly an example, Parikh proves the following theorem.

Theorem: Every recursive transfinite progression of sets of functions is
w%+l non-unique; that is, there exist X, y €0, leo = w%+1 sucn that
C. i cy.

Parikh's theorem is proved by methods similar to but simpler than
those used to prove Feferman's result. The generality of his theorem is
convincing evidence that transfinite subrecursive hierarchias are highly
ordinal-neme dependent.

Feferman has two other results, which, taken together, give concrete
information on how dependent the strength of a hierarchy may be on the
indexing ordinals for the hierarchy. By a path Z in 0 we mean a subset
of 0 well-ordered by <b and containing, with any d € £, all the predecessors
of d. Let izl denote the order type of Z.

Theorem: Let K be any ordinal < w.. Then there exists paths Z, 2' co,

1
|Z| =K+ w3 for K < Wis andIZ'i = for K = wy,such that UJ P =
xez ¥
U r =RgR.
xez' ¥

To prove the theorem with K < wl’ Feferman enumerates the recursive
functions (a highly non-constructive procedure), and then, using +0 he
iterates the techniques of his eariier theorem to obtain all the functions
by K + w3. For K = wl, he enumerates 0 and the recursive functions, and
he builds Z by alternately obtaining a new function, and then adding 6+0)
the next element in the O-listing. This iesult establishes the existence

of "complete" paths of length as short as w3, and as long as w This

1.

o A Eodime o
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is certainly a striking instance of ordinal non-invariance. It also shows
that proper expansion is an impossiblity, at least for hierarchies of

the Kleene type. The next result sharpens this phenomenon even further

by showing that there are "incomplete" paths of length wl.
Theorem: These exist incomplete paths in 0 of length wl. That is, there
exists a path Z ¢ 0, lzl = wl, and an f ¢ R such that for all d ¢ Z,

f ¢ Pd'

This is one of the deepest results in the theory of subrecursive
hierarchies. The proof of the theorem builds on work done by Feferman
and Spector in [39]), in which a "non-standard" version of 0, 0* is
studied. 0* is defined inductively as the intersection of all hyper-
arithmetic sets X satisfying

(1) leX

(ii) if d ¢ X, then 2d € X and d <b* 2d

(iii) if me(n) € X for all u and cpe(n) <0* cpe(n+1) for all n,
then 3+5% ¢ 0*.
Interested readers unfamiliar with hyperarithmetic sets and their
properties should consult (2, pp. 381-402],

Using this inductive definition, one can construct subrecursive
hierarchies in 0% exactly as one constructs them in O. Moreover,

0 §'0* and for d € 0, the class of functions P. attached to the d-node

d

*
in 0 is exactly the same as the class Pd in 0 . Feferman and Spector
*
show that for any d € 0 - 0, Z = C'(d) N 0 (where C'(d) = (x | x S
is a ﬂi path through 0 of order type wl. (For background material

on nﬁ-sets, the interested reader should consult [ 2, 397-403)).

e S}
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Picking such a ni-path Z in 0, we know there is a d ¢ O* such that
d "sits on top of" Z. Since the O*-hierarchy overlays the O-hierarchy and
agrees with the O-hierarchy on 0, we know that Pd must properly contain
U P.. Hence U P must omit some recursive function, and the foilowing
xez X xeZ
theorem, which applies to any subrecursive hierarchy in 0, is therafore
established:
Theorem: Let Z be a ni-path through G such that 7z = C'(d) N 0 for d ¢ O*.
Then there exists f ¢ R such that f fF U pP.

Co. bining the last two results, wzeiee that the exhaustive power of
a subrecursive hierarchy, at least of the Kleene-type, is intimately
tied to the ordinal notations used in the hierarchy. 1In short, these
results say that there are short (w3) complete hierarchies, and long (wl)
incomplete hierarchies.

An unpublished result of Mochovakis [82] provides still more infor-
mation on the behavior of hierarchies in 0.
Theorem: For a ¢ 0 (or any suitable version of 0, for example, Kleene's
0 restricted to primitive recursive fundamental sequences), let Aa < N.

Then one of the following must fail:

1. A= U Aa is hyperarithmetic; or
ac(

2, P(x,a) = [ac0and x ¢ Aa] € ni; or

3. For each constructive ordinal o, Lﬁ &, g:A.
x| <a 3
0
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Properly interpreted, this theorem says that for any hierarchy on 0
built up in any manner which could possibly be considered constructive,
if the recursive functions are exhausted at all, they are exhausted by
some bounded level in 0.

Mochovakis proves his result by considering the ni-predicate
Q(x,a) =[x £ A and a = 1] or [x ¢ A and (P(x,a))])1, The uniformization
theorm [2, p.43Q) says that there must be a hyperarithmetic function g
such that ¥x Q(x, g(x)); but then the range of g is an unbounded hyper-
arithmetic subset of 0, a contradiction.

In the case of the Kleene hierarchy, if we set Aa = {e ' me € Pa},
then (1) and (2) are true, and so (3) must fail. 1Indeed, we saw for
Kleene's hierarchy that this failure occurred at wz. Thus, even if one
gives up the goal of uniqueness for h:erarchies in 0, one must still
contend with the problem tlat either the hierarchy will collapse by some
bounded level, or it will omit some function.

By what we have just seen, hierarchies in O are extremely badly
behaved. Such hierarchies can still be of use, however, for proving
theorems about the various methods used in constructing hierarchies. As

an example of this we consider the Bass-Young hierarchy [70'. This work
has inspired many of the results in Chapter 2 of this thesis. In what
follows, the reader is assumed to be familiar with Section 2 of Chapter 2.

Bass and Young build their hierarchy by starting with some complexity

class ?(tl), where ty is some sufficiently large recursive function.
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At successor stages they assign to notation 2* the class 3(t2x), where
tzx is obtained from tx by an application of the honesty theorems followed
by an application of the compression theorem. At limits they apply the
union theorem of Meyer and McCreight [83], [84]. The resulting hierarchy
is a recursive progression of sets of functions in the sense of Parikh,
and so is non-unique at w2+1. However, Feferman's results do not apply:
the union theorem insures that a limit class is precisely the union of

the classes named by the fundamental sequence. In particular, the function
which diagonalizes across the classes determined by the fundamental
Sequence does not appear in the limit class. Indeed, an appeal to che
speed~up theorem of Blum [1] and the well-foundedness of 0 shows that

no function with h-speed~up can appear anywhere in the hierarchy. Here

h e Rz, the compression function used to build the hierarchy, is assumed
to be monotone in its second argument. Using these techniques Bass and
Young 2re able to construct a hierarchy on the full g in which every
function is in the Gzregorczyk class EA.

Bass and Young use Parikh's non-uniqueness result to establish
several results about inherent irregularities of honesty procedures.
For example, they prove the following theorem.

Theorem: For sufficiently large h ¢ Rz there exist honest functions tl’
t, such that 3(t1) = 3(t2), but F(h(x, tl(x)» # F(h(x, t2(x))).
This result and others like it in their paper led directly to our

work in Chapter 2 on the honesty phenomenon.
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By what we have just seen, the non-invariant character of ordinal
notations makes the construction of a meaning ful exhaustive hierarchy of

the recursive functions extremely unlikely. The construction therefore of

"short" hierarchies which classify only a portion of the recursive functions

seems to be a more legitmate if more modest goal.

We survey several approaches to this problem. Hierarchies can be
built up by unnested and nested ordinal recursion over particularly natural
well orderings. By restricting attention to such wrll-orderings one can
avoid the difficulties inherent in the Myhill-Routledge result. Another
approach extends existing w-length hierarchies into the transfinite. We
discuss invariance between these hierarchies. A linearly-ordered Kleene
hierarchy can be constructed by selecting a nice path in 0 and examining
the Kleene hierarchy restricted to this set. The results of these investi-
gations show that if one chooses ordinal names with care, then one can
indeed build interesting and singificant hierarchies of portions of the
recursive functions.

We begin by discussing work by Tait [52] relating unnested ind nested
ordinal recursion over a well ordering R of N. Recall that for R a well-
ordering, the function XRy is equal to x if xRy and O otherwise.
Definition: A function f is defirad by nested R-recursion over R from

functions Bys **° if f satisfies

> By

£(0) = n,

f(a+l) = h(a),




in R.
*
. . = W == . -= = .
Definition: Define 4 b <n_1_1 <n+1 X < define Q0 <1 Qn+1 s
n ' w"
Thus, |<hi =W, and lQn+1| = W , Moreover, for each n <4 and

-

where h(a) is built up from Bpr ***s gk and f by composition, but where
every application of f has the form f(gs a+l).

Definition: The R-nested (ordinal) recursive functions, N(R), is the
smallest set containing + and closed under the operations of composition,
explicit transformation, primitive recursion, and nested R-recursion.

Tait points out that, in the case of unnested R-recursion, computation
of f(a+l) proceeds in a linear way down a well-orderiig until £(0) is reached
and evaluated. For nested R-recursion, the computation of f(a+1) may lead
to a computation tree and the value of f(a+l) cannot be determined until
the computations on each path of the tree have been reduced to known functions
or constants. The comparison o€ th~se two types of recursion lies in the
analysis of these two foms of cemputation.

Definition: ILet R be a well-ordering. Define R* to be the limit of all
o o, o

polynomials in w of the form w ioal + W -az + 000 4w n-an, for an <

* R
o1 S se0 g o < R, and aj, *°°, an integers. R has order type wl l.

If R is a recursive well-ordering of N we can assign integers to
%
polynomials in w of the above form. This assignment induces an R ordering

of N, and it is not hard to show that this ordering is primitive recursive 1

Q_ are recursive well-orderings on N.
n
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Using tree analysis of nested computaions as a guide, Tait shows
that for the well-orderings <n’ nested recursion on <n+1 is reducible to
unnested recursion on Qn-

Theorem: For n= 0, if f ¢ N(<n+1) then f ¢ U(Qn)"

Robbin [68] proves the converse of Tait's theorem and puts these
results in a more hierarchy theoretic framework. He obtains significant
results about various short hierarchies and their relationship to one
another. 1In particular he relates these results to the multiply-recursive
functions of Peter [10].

Peter invented the multipiy recursive functions after Ackermann
had shown that nested double recursion (Ackermann's function) leads out
of the class of nested single recursion definable functions, the primitive

recursive iunctions. The function ¢ defined by the equations

v(o,n) = mtl
y(mtl, 0) = y(m, I)

Y(mtl, mtl) = y(m, §(m+l, n))

is an example of a "2-recursive" function: the inductive definition is

done over two arguments, and the computation of ¢y is nested in the sense
that to compute {(m+l, nt+l), one must first evaluate ¢ at other arguments.
Peter generalizes this to k variables for k > 2 und obtains the "k-recursive"
functions for each k > 0. She considers the k-recursive functions with k

as a parameter, the so called multiply-recursive functions, and shows by a

diagonal argument that for each k, the k+l-recursive functions properly

contain the k-recursive functions. We denote the k-recursive functions by Nk.




Robbin's first main theorem relates nested ari unnested ordinal

recursion to the Peter hierarchy.
Theoren: N~ N(<n+1 = U(Qn)'

Robbin relates these results to an extended version of the Gzregorczyk
hierarchy and a linearly ordered portion of the Kleene hierarchy. He deals
with the problem of ordinal notations by specifying very carefully how
limit ordinals are to be approached.

- W k+1
Definition: For ¢ a limit ordinal <w » let o = W™ "(B+1). Define Ana(n)
such that l}lm a(n) = o to be g(n) = wk+1- ﬂ-Huk-n.

Using this definition Robbin defines a sequence of Gzregorczyk-like
functions wa which are quite similar to the modified Gzregorczyk functions
8, later introduced by Meyer and Ritchie.

W
Definition: For o < w , define wcv as follows:

Lo owyx) = 2%

2, woﬂ_l(x) = w;x)(l)

3. w(x) =y (x) for o a limit ordinal.
o a(x)

The wa's provide a natural way to extend the Gzregorczyk hierarchy.
Definition: For each ¢ < ww, define E¥ to be E(wor)’ that is Eor =
the functions elementary in %.

It is easy to see that a proper hierarchy is established. Robbin
is able to show that his extended Gzregorczyk hierarchy refines the hier-
archy of multiply recursive functions, and hence also the nested and

unnested ordinal recursion hierarchies.
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Theorem: For o < B, EQ’$ EB; moreover, for each k N = le Ea'
a<

RObbin's proof uses ideas which were employed later in the Meyer-
Ritchie account of the Gzregorczyk hierarchy. He proves a bounding 1emma
relating the size of the Ua's to the multiply-recursive functions, and a
key step in his proof is an appeal to the honesty of the functions ﬁf

We remarked earlier that the l-recursive functions of Peter are the
primitive recursive functions. If f(x) = g(x)(l), we say that f is obtained
from g by 1-fold iteration, and we can generate the primitive recursive
functions by using this iteration scheme instead of the schema for primitive
recursion. Robbin extends this equivalence, showing that the k-recursive
functions can be obtained by replacing the schema for k-recursion with a
schema for k-fold iteration, a generalization of 1-fold iteraticn.

Using k-fold iteration, Robbin gives an analysis of a Kleene-type
ww-hierarchy in terms of the multiply-recursive functions. He defines his
hierarchy as Kleene does, but he chooses a single path through 0 out to
ww, the path determined by his @(n) fundamental sequences,

Theorem: Let Pa’ o< W’ be the Kleene subrecursive hierarchy restricted
to the O-path determined by the a(n) fundamental sequences. Then for

n=1, N o= déﬁn'l Pa.

Robbin's work is an excellent example of how short hierarchies can
yield information about various notions of difficulty for subclasses of
the recursive functions. Hig results relate nested and unnested ordinal

recursion to the multiply-recursive functions, and through the extended

Gzregorczyk hierarchy, to the actual size of functions.




Earlier we discussed a construction of Cleave's which yielded an

w-hierarchy of the elementary functions. In the same paper Cleave extends

his hierarchy to w2, and shows that the resulting hierarchy exhausts the

primitive recursive functions.

2
Definition: The w -Cleave hierarchy.

(i) f e Zb o fe¢ (ZDh for some constant function h
h
(11) for k>0, £ ¢ Lpersk @ £ €@ forhe zh)-r+(k-1)

-]
|
(1) forr>0, feX o fe ey e (1)

Cleave's work is of interest for several reasons. First, the con-

2
struction of a proper w” length hierarchy of the primitive recursive

functions indicates that ordinal length, even for hierarchies which only

exhaust a portion of the recursive functions, can be a misleading measure

of hierarchy strength. (Of course, the subsequent construction by Bass

and Young of a proper hierarchy in the full O which fails to exhaust E4

is a more spectacular example of this phenomenon.) Second, Cleave's con-

struction brings out scme of the difficulties involved in the construction

of hierarchies by machine theoretic means. Indeed, Cleave points out that

his hierarchy must die out at w2. He argues as follows: since each program
is of fixed length, P = I(1), I(2), e¢e, I(k), if f e T 2 then all the
w

functions used to define f must appear in Zb.k for some k. Hemnce, extension

of the chain beyond w2 yields nothing new, since any f ¢ T » say, must
W +1

already appear in some Z%-k'

This inherent limitation of Cleave's approach is by-passed by Constable
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[18 ], who uses RASP machines to extend the Cleave hierarchy to eo,
W
of the sequence w, ww, w’ , *** . A RASP machine is perhaps the closest

the limit

tc real computers of all theoretically proposed machines. Its fundamental
characteristic for our purposes is its ability to monitor and modify itself
in the course of a computation. This is a fundamental difference between
RASPs and register machines, and this difference accounts for Constable's
successful extension to €.

0
For ordinals o < eo Constable carefully handles the problem of finding

nice fundamental sequences. He puts « in (unique) Cantor normal form,

o o
= . o . S e >
o =W a, + 4+ w an for oy an, and

al, see an integers,

and then he defines his fundamental sequences:

Definition: Let ¢ < eo be a 1imit ordinal in Cantor normal form as above.

If a is successor ordinal, define
@(x) =@ Lea, Hoeee 40"y

if a is a limit ordinal, define

o o, (x)

a(x) = w loal + 00 40 0

Using this formulation of fundamental sequences, Constable extends
the Cleave hierarchy using RASP machines, and he also extends tlie Gzregorczyk
W
classes (already extended to w by Robbin) to eo- His Gzregorczyk extension

o
is a direct generalization of Robbin's extension: for o< ¢,, E* = E(wa)’

o’

= : : = (x) 1ff o
where wa(x) %Pl(x) if o is a limit ordinal, and Wa(x) wa(x)

is a limit ordinal. His RASP hierarchy of length
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€ is proper because his RASP programs modify themselves in the course of
their execution, thus 2voiding the problems of the register machine

approach. Constable establishes the following result:

gt _

. vwhere RASP, is the 8" RASP

RASP 1+a) +1° B

Theorem: For o < ¢
hierarchy class.
Thus Constable is able to extend to €O the growing body of results
relating various generation methods for short hierarchies.
In [71], Schwichtenberg also considers the equivalence problem for
various eo-length hierarchies. He shows that the modified Kleene hierarchy,
the generalized Gzregorczyk hierarchy, and a standardized unnested recursion

hierarchy all coincide up to ¢ He defines standard fundamental sequences

0
exactly as Constable does, and his version of the extended Gzregorczyk

hierarchy is the same as Constable's. Moreover, he extends, with minor

modifications, Robbins version of the Kleene hierarchy to ¢ His un-

0"
nested ordinal recursion classes, Ra’ are defined in a rather unusual way,
and the analysis of these classes is the most original part of the paper.
S
Definition: Define well-ordering Sn of Nes follows: S1 =w, § =uwh

A standard well-ordering of type o < € is a well-ordering of the natural
numbers which is elementary-recursive isomorphic to an initial segment

of § for Sn <a<S$S

ml m1’

Schwichtenberg considers only standard well-orderings < ¢.; functions

O;
defined by instances of unnested A-recursion for standard well-orderings

A< € are said to be defined by elemeatary A-recursion. The €0-recursive

functions, then, are the set of functions which can be defined by elementary-

P p——
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A-recursion, A < €9 from given eo-recursive functions and elementary
functions in an elementary way.

Schwichtenberg assigns ordinals < € to €0-recursive functions, and he
uses this assigmment to define his ordinal recursion classes. If f is
defined explicitly from By» *° % 8, in an elementary way, then f is
assigned the ordinal ggg(dl, see, Qk)’ where the ai's are the ordinals
assigned to the gi's. If f is defined wsing an Wea-elementary recursion
from g, *°*, 8, then f is assigned the ordinal ggg(al, oL ok) + a.
Definition: Ra is the set of recursive functions which are assigned
ordinals < ¢.

This rather curious definition is the key to Schwictenberg's results:

by allowing Ra to contain functions defined by w*e recursions, he gives

himself enough slack to prove his main result.

Theorem: For all o < €, the extended Gzregorczyk hierarchy class E, =

Ra = Pa’ the modified Kleene class.
The critical part of the theorem is the proof that Rd = Ea' Here
Schwichtenberg i.utroduces a formal reduction system for the €y recursive
functious, and he develops a step-counting function s for each f ¢ Rd
which keeps track of the reductions necessary to evaluate f. He shows
that for f ¢ Ran Sf € Ra' Moreover, he shows that each function in Ra
can be defined from elementary functions alone by a single wee recursion.

Using this he establishes his claim by proving that each function in Rd

is majorized by Wd(g(x)), where g is some elementary function.




-45-

Schwichtenberg also notes that the €O-recursive functions are equal

to the so-called "provahle recursive functions'". A recursive function

f is provably recursive if for some index e for £ Vx dy T(e,x,y) is
provable in elementary number theory, where T is the Kleene T-predicate.

For a thorough account of the provably recursive functions, see Fischer 40].

Schwichtenberg's very elegant paper is one of the best examples of
a successful hierarchy construction of constructive ordinal length. His

w
work is a natural extension of Robbin's work from w to e

0’

In a sense the Schwichtenberg result may be one of the last investi-

gations in short hierarchy theory., while work in the Schwichtenberg frame-

work obviously could be extended beyond €g> it is not :lear what sort of

insight such an investigation would provide.

We turn therefore to a different method of classifying the recursive

functions, the method of subrecursive d2grees,

Sectiop 4. Subrecursive Degrecs

As we have seen, subrecursive hierarchies constitute an important and
extensively studied approach to the problem of classifying the recursive
functions. A fundamental problem with the hierarchy approach is the

difficulties inherent in attempts to exhaust the recursive functions in

any meaningful way. An immediate attraction of the degree approach, which
we turn to now, is inclusiveness: every total recursive function belongs ’

#
to some primitive recursive (or elementary recursive) degree.




The degree approach was initiated by Kleene [27]. He directly
applied the concepts and notations of Turing degrees of unsolvability to
the subrecursive case to obtain primitive recursion degrees.

Definition: Let f and g be total functions. We say f is primitive

recursive in g, f g g, if f is definable in a primitive recursive way using

g as an additional initial function. The degree of f, d(f) = (g | f g g amd

g g f}.

Following the development of Turing degrees closely, he defines d(f)U
d(g) (the join of f and g), and d(f)' (the jump of f). d(f) U d(g) =
d(2f . 38), and d(f)' equals d(h), where h is an enumerating function for
the functions primitive recursive in f which is generated in a uniform,
primitive recursive way.

Kleene ends his work here, and Axt [12] continues Kleenes investigation
of the basic properties of primitive recursive degrees. His main result is
the analogue of the celebrated Friedberg-Muchnik Theorem, -

Theorem: Jor each n there exists n pairwise incomparable primitive
recursive degrees contained in the recursive Turing degree.

we emphasize that primitive recursiveness is not the only notion
which can be analyzed by a degree approach. Indeed, we could just as
easily study elementary degrees or multiply-recursive degrees and achieve
basically the same results. 1In fact, with few exceptions, theorems proved
for one such concept carry over to the others with little effort.

We can also consider studying subrecursive classcs of functions,

rather than degrees.
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Definition: Pr(g), the primitive recursive class of f, 1s the set of
functions primitive recursive in f.
It is not hard to show that there is an order preserving isomorphism

between the primitive recursive degrees and the primitive recursive classes

(or, for that matter, between elementary degrees and elementary classes).
Indeed, the map which sends d(f) -+ Pi1(f) is the desired isomorphism. f
Much of the work to date on the structure of subrecursive degrees has
actually centered around subrecursive classes rather than degrees, and
we consider these investigations now.

Early work on the structure of subrecursive classes was done by
Meyer and Ritchie [72]. They consider elementary honest classes, as
outlined in Section 1 of this chapter, and they show that between any two
Gzregorczyk classes E" and En+1 for n 2 3, there are dense chains of
elementary honest classes. They prove their result by interpolating
between the iterates of 8 where E(gn) = E" and E(gnTl) = E/Ax g(le) =

n
En+1'

They also prove the existence of denumerable incomparable families

4

of elementary honest classes between E3 and E

Feferman [38] also has a density result: he shows the existence of
*
dense chains in 0 , and hence that there are dense chains of primitive

recursive degrees.

Similar results by other investigators are discussed at the end

of Chapter 3. '
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In a series of three papers [8 1, [85], and [g6], Machtey develops
an extremely elegant structure theory for elementary and primitive recursive
classes.
Definition: 1Iet E(f) denote the subrecursive class generated by the
recursive function f. If the class under consideration is the set of
functions elementary in f, then C(f) = [Ei(f) | i € N}, where Ei(f) is the

th
i function elementary in f.

Central to Machtey's approach is his complexity-theore-ic point of
view. He picks as a measure of computation Turing machine space (see
Section 2 of Chapter 2 for definitions). He then makes a fundamental
distinction: a class E(f) is an honest class if C(f) = E(Si) for some
space function (measure function) Si; otherwise E(f) is said to be a
dishonest class. The fundamental property of honest subrecursive classes
! is that they are complexity classes, that is, they equal the t-computable
functicus for some recursive function t. Machtey establishes a great many
structure results in these papers, and we consider some of them. {
Theorem: Every countable partial order can be embedded in the dishonest
subrecursive classes.

Machtey proves this result using techniques developed by Sacks to

analyze the structure of the r.e. Turing degrees.

Definition: Two sequences of honest functions fo, fl’ *+¢ and gy Bys *c*
determine a gap if, for all i, E(fi) ;’g(fi+1), g,y < E(gi), and
C(f&) S’C(gi). An effective gap is a gap for which there is a set

[io, il’ ***,} which is recursive in 0' (the complete r.e. Turing degree) b

such that for all i f, = ©; and g, = mi d
J 2 J 2§+1
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Theorem: Any countable partial order can be embedded in the honest

] subrecursive classes between any effective gap.

This rather complicated result has two important corollaries.

] Corollary: The honest subrecursive classes are dense; that is, if f and
g determine honest classes g(f) g C(f), then there exists an h such that
C(h) is honest, and g(f) gfg(h) L;t’g(g).

Corollary: No r.e. properly increasing sequence of honest subrecursive
classes has a least upper bound in the honest subrecursive classes.

Machtey also proves the following result, which is rather unexpected

-

given that the corresponding result fails for the r.e. Turing degrees.

Theorem: The partial ordering of the honest subrecursive classes is a

distributive lattice.

The novel element of Machte K 's work is his distinction between honest
and dishonest subrecursive classes. This is a distinction which allows
the elegant methods of complexity theory to play a role, and leads to his
more interesting results, for example, his lattice result for honest
degrees.

In [92], Ladner examines the structure of subrecursive classes and
obtains results similar to Machtey's.
Theorem: The subrecursive degrees are dense, and are not a lattice.

He also considers the problem of minimal degrees.

Theorem: There exist minimal pairs of elementary degrees. That is, there

exist recursive functions f and g such that if h i:f and h iag, then h is

elementary (here h s‘ f means h is elementary in f).




Ladner is particularly interested in considering the range of his
(or Machtey's) results. His methods certainly apply to primitive recursive
or multiply-recursive degrees, etc., as do Machtey's. However, he also
discusses abstract notations of reducibilities which, hopefully, will shed
some light on concrete problems in theoretical computer science. We
discuss one such notion here.
Definition: A set S of unary functions is a space class if it is r.e.,
contains the identity, and for all f and g in S and constants ¢y and c2
there exists an h ¢ S such that
(i) h ie increasing
(ii) h(n) = c1~f(n) + ¢,
(1i1)  h(n) = f(x(n)),
(iv)  h(n) = max[f(n), g(n)]).
The class of linear functions, and the class of polynomial functions
are examples of space classes.
Ladner considers 0-1 valued functions, that is "decision prot tems",

for his notion of reducibility. If p(x) and g(x) are 0-1 valued, he

defines p to be S-space reducihble to g if some oracle Turing machine with

oracle g computes p in space bounded by some function in S.
He then concludes that for the degree structure induced by S-space

reducibility, the two theoremsc of his paper quoted above are true.
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Chapter 2

Honest Bounds for Complexity‘Cl&;seé' ot Recursive Functions

1. Introduction

Let F(t) be the set of recursive functions computable by machines
using t(x) computation steps on argument x, for all but finitely many

inputs x. We call t a name for the complexity class F(t) Suppose we

allow our machines to run longer, say h(x,t(x)) steps on argument x,
where h is some fixed recursive function. One might expect that for
large enough h, permitting our machines to run longer by an amount h
will always allow us to compute new functions, i.e. F(t) is a proper
subset of F(h(x,t(x)). This turns out not to be the case: the "gap
theorem" [2],

[3] implies that for every recursive h there exists a

recursive t such that F(t) = F(h(x,t(x))). However, if we restrict our

attention to names from a certain subclass of the recursive functions,
then we can indeed uniformly increase the size of our F-classes.
Informally, we call a recursive function t "honest" if some machine
computes t(x) in roughly t(x) steps for each argument x. (A precise

definition is given in Definition 1 below.) Then according to the
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"compression theorem " [3], there exists a single recursive function

h such that for every honest t, F(t) is a proper subset of F(h(x,t(x))).
Thus the phenomenon of the gap theorem is avoided by restricting attention
to honest functions. It is a surprising consequence of the "honesty
theorem' of McCreight and Meyer [4], [5] that there is no loss of
generality in this restriction. Namely, for any recursive function t
there is an honest recursive function t' such that F(t) = F(t").

[n this paper we present a new simplified proof of the honesty
theorem, and then we analyze the possible behaviors of precedures for
constructing honest names equivalent to arbitrarily given names. Part
of ghe motivation for this analysis springs from the construction of
hierarchies of recursive functions based o computational complexity.

Bass and Young [7] have observed that application of the honesty theorem
followed by the compression theorem to a function t yields a reasonable
natural "jump" to a larger complexity class. The behavior of this jump
operation and the resulting hierarchy of course depend critically on the
honesty procedure being used.

Section 2 describes our notation and the axioms of Blum [1) which
provide a machine-independent characterization of running time; Blums
measured sets [l] and classes of honest functions are shown to be essentially

equivalent. Section 3 consists of our nev proof of the honesty theorem.

In section 4 we consider honesty procedures which work on partial functions




as well as total functions, and we show that such procedures must generate

arbitrarily large names for any complexity class. As a corollary we

obtain another "gap'"-like theorem which shows that every complexity class
has honest names which are arbitrarily large on all but a vanishing
fraction of argumen:s, thereby strcngthening & result of [{8]. In section
5 we show that honesty procedures restricted to total functions need not
yield arbitrarily large names for classes, and can preserve monotonicity,

thereby settling questions raised in [7], [4].

2, Preliminaries

For notatio: from recursive function theory we follow Rogers [9].

For each r ¢ 4, Pn stands for the partial recursive functions of
n variables. Rn stands for the total recursive functions of n variables.

We use '"(a.e.)" to denote "almost everywhere", which for our purposes
stands for "all but finitely many". Similarly "(i.o.)" staunds for
"infinitely often".

If § and ¢ are partial furctions and ¢ is undefined at argument x
we adopt the convention that {(x) <o (x).

Suppose [mo, ml,...) is a Gdédel numbering of Pl. A measure on
computation {1} & = [@0, @1, ...} is a sequence of functions in Pl

satisfying

1) Vi € gyldom ®.) = dom (qsi)]
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2y M x y[@i(x) =y] is a recursive predicate.

If we think of our Godel numbering in the usual one-tape Turing machine

formalism, then

Qi(x) = "the number of steps in the computation of the ith Turing

machine on argument x" is a measure on computation.

Henceforth let § be some fixed measure on computation. Then we

define for any total function t

1 e

{i€ 4V| o, € Rl and Qi <t (a.e.)},

and

J(t)

(@, | 1€Fe).

Thet is, F(t) is the set of (indices of) total machines or programs which
run in time t, and #(t) is the set of total functions computable within

time t. Similarly we define for any partial function §

F,0) =(iemle <y (ae)

and

Fo®) = oy 11 er ).

A sequence of partial functions Y = {wo, ¢1’ ...} is said to be an

r.e. sequence of partial functions if Ai xqwi(x)] € PZ.
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Definition 1. (McCreight-Meyer [4]) A function V¥ € Pl is g~honest for

g € Rz if there is an 1 such that mi = { and @i < Mxg(x,¥(x)) (a.e.).

Definition 2. (Bl'm [1]) An r.e. sequence of partial functions

*
¥ = {WO, Wl, ...} is said to be a measured set if

Kixy[wi(x) = y] is a recursive predicate.

The relationship between honest functions and measured sets is
explained by the following theorem of Meyer-M:Creight [4]. Since the
proof appears only in McCreight's unpublished thesis [5], we reproduce

it here.

itheorem 1. [4], [5]. Every measured set ¥ is made up of g~-honest functions
for some g € Rz; furthermore the set of g-honest furctions form a measured

set.

Proof. let ¥ = [wo, wl’ ...) be a measured set. By Definition 2 and

elementary recursion theory there is an s ¢ Rl such that Wi =® Define

s(i)’
80x,y) =max(¢  \ () |1, j<xandy () <y).

Then for x > i we have @S(i)(x) < g(x, o (x)), and so for each i

(1)
ms(i) = Wi is g-honest.

*
Measured sequence would be more accurate, but we conform to the
terminology of Blum [1].




To prove the second statement consider the partial recursive function

mo(i,j,k) for o € R3, which, roughly, imitates mi(x) when cai(x) appears to

be g-honest from arguments j to x. More precisely

cpi(x) g[(xsja__nd_ﬁi(x)skg(x>j§n_d
Qi(X) < g(x, coi(x)))]
and[(Vy < j)léi(y) >k = 8, (¥) > x]]
Dot I k)(X) =
. and[ (Vy) (j <y <3 (y) <x =8 (y)

< g(y, coi(y))]]

® otherwisge.

It follows from the definition of measure on computation that A, g,

k, x, z[mc(i’j,k)(x) = 2z] i8 a recursive predicate. Hence

S = {mo(i,j,k) | i,j,k 2 0) is a measured set.

We claim S equals the g-honest functions. Indeed 1f for fixed i, j, k

<Fi(x) < g(x, cni(x)) for all x > j and
k > max{@i(y) | y <jand Oi(y) convergent},

then wor(i,j,k) =0, and mo(i,j,k) is g-honest.

If however the preceeding condition is not met, then mo(i 1,k) diverges
‘ 2J

(a.e.), but such functions are also (by convention) g-honest. So S is

a8 subset of the g-honest functions,
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Furthermore, if y is any g-honest function, then Y =0, for some 1
such that Qi(x) < g(x, mi(x)) for all x > § for some jo Let k =
max[Qi(y) ’ y £ j and Qi(y) convergent]. Then y = mc(i,j,k) and we
conclude that S equals the g-honest functions. O

We state, for completeness, the following generalized compression
theorem of Blum [1].* The compression theorem says that an r.e. sequence
of partial recursive functions is a measured set precisely when a 1niform
procedure exists fcr constructing, for each function in the sequence, a

0-1 valued partial recursive function whose complexity is only a little

bit above the designated function.

Proposition. let Y = (¢0, &1, -+.} be an r.e. sequence of partial recursive
functions. Then Y is a measured set if and only if there is a p € R3 and
anr € Rl such that (1) mr(i) is 0-1 valued, (2) domain Qnr(i)) = domain (wi),

(3) Qr(i) < Mx[p(i,x, t&i(x)], and (4) ifcpe =mr(i)’ then Qe > ‘tri (a.e.).

It is an immediate corollary of the compression theorem that if we restrict
attention to recursive functions t from a measured set Y, then we can
uniformly enlarge F(t) by composing t with a fixed recursive function h

independent of t.

Corollary. Let Y be a measured set. Then there exists an h € RZ such

that 1f t €Y, t € Rl, then F(t) E:ﬁ(xx[h(x, t(x)) ).

*
We remark that Blum's theorem in f1] p. 333 is incorrectly stated;
the correct statement is given above,
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Proof. Let h(x,z) = max [p(e,x,2z)], where p is the recursive function of
esx

the proposition.

Definition 3. Let s € Rl' s is an honesty procedure on E] if Ke,x,yﬁps(e)(x) =

y] is a recursive predicate, and if for every e ?p@ne) = ?pcp

s(e))'
Definition 4. 1let s € Rl. s is an honesty procedure on @1 if Ke,x,xkns(e)(x) -

y] is a recursive predicate, and if for every total.me, © is total and

s(e)
F =F .
©)) = FO )
Notice that not every honesty procedure on Pl need be an honesty procedure
on RI: an honesty procedure on Pl need not map total functions to total

functions. However, suppose s is an honesty procedure on Pl which also

preserves F-classes. That is, suppose that for every e, Fp@ne) = Fp«n ).

s(e)

Then a minor modification of s yields an honesty procedure on Pl and or

Rl. Indeed, it is easy to show that s' ¢ Rl defined by

©g1 (e) (x) = M[@s(e)(x), (©, (x) + 3,(x)))

in such a procedure.
Constable has observed that no honesty procedure on 91 can be ¢
total ef”~ctive operator. We prove a corresponding result for honesty

procedures on Pl and effective operators (see [9] for definitions).

Proposition. No honesty procedure on Pl can be an effective operator.

Proof. Let s be any honesty procedure on Pl, and let t = o, be any recursive

o

function. Define using the recursion theorem-

mj(x) if Hz[cgs(j)(z) #cps(e) (z)]

coe(X) =

o otherwise.




The computation of<me(x) is effective sincecws(e) and ms(j) are in a
measured set. Clearly'cpe is either total or empty. Ifcpe is empty, it
follows that s cannot be an honesty procedure on Pl’ for then 3p«Ds(e)) =
F @ ,.
p( s(j)
and o

) = "J’p(&')j) P = ?p(('oe). So @, must be total. Then ©, - coj
ste) " Ps(h)

The Honesty Theorem

The honesty theorem says that given any function we can effectively
find an honest, function which names the same class. Our proof explicity
exhibits an honesty procedure on Pl. Recall from section two, however, that

with a minor modification we can obtain a procedure on Rl as well.

Theorem 2. There exists an honesty procedure on Pl. Moreover, s preserves

).

F classes, namely for every e,Fp«De) = Fp@)

s(e)

Proof. Let e be 2n index for Y. A function {' such that FP(W) Fp(w')

P

is defined in stages beginning with stage 0. At stage n the integers

from 0 to n will be ordered in a sequence or queue = 99° ql, ol qn, which
is updated from stage to stage. Also a zero-one valued function "pop" on

the integers from 0 to n is defined and updated from stage to stage. Ilet

< X,y > be a one-one onto pairing function with projection functions ™

and Tye As a technical convenience we use the fact that the pairing function

< x,y > is strictly increasing in its second argument, so that stage < x,y >

always precedes stage < x, y+1 >,
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We outline the idea of the construction.

of ¥, 8., 9

Dovetail the computations
17 e Qn +-. at all arguments. Whenever it is discovered

that §(x) < @i(x) set pop(i) = 1, and try to define ' (z) < @i(z) for

l Some argument z. When pop(j) = 9, try to keep {'(z) > @j(z). The pop

conditions on i and j may be inconsistent, and the queue assigns priorities

to the integers (programs) to resolve the conflict. The dovetail nature

of the construction guarantees that ¥' will be honest.

Stage n.

A) Put n on the bottom of the queue (i.e. set Qn = n). Set

pop(n) = 1, Let *l(n) = X, nz(n) y.

B) If @e(x) =Yy, then for 0 < i < n, if Qi(x) > {(x) set pop(i) = 1.

C) If ¢'(x) has already been defined at some previous stage, go to

stage mntl.

D) Find the least { < n (if any) such that
1) pop(qy) =1

2) @qi(x) >y
3) (Vi < i)[pOp(qj) =0 - éq (x) <y)
3

If i exists, define ¥'(x) = y, set pop(qi) = 0, and put q, on the bottom

of the queue. Go to stage nt+l. If no such i exists, go to stage m+l. [
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For any o = ¥ and any n 2 0, stage n in the computation of §' is
effective and will terminate. Condition (C) guarantees that if V' (x) is
defined, it is defined at only one stage, and -o V' is well defined.
Furthermore since our procedure is uniform in e, {' =‘bs(e) for some
s € Rl. Condition (D) guarantees that if ¥'(x) is defined, it is
defined at stage n = < X, ¥'(x) >; hence the predicate Ae x was(e)(x) = vy]
is recursive (we need only run our procedure until etage < x,y >), and so
{ms(e)}ezo is a measured set. This implies by Theorem 1 that ¥v' will be
g-honest for some g € R2 independent of .

We now show that for each 1., éi < ¢ (a.e.) & Qi < {¢'(a.e.). This
immediately implies Fp(w) = Fp(w').

The proof divides into cases depending on the final positions of the
integer i on the queue., If i reaches a final location on the queue we

shall say that i isg stable; otherwise we say i is unstable.

Case 1: 1 is unstable.

If i does mot stabilize it must be moved to the bottom of the queue
by step (D) at stage < X,y > for infinitely many x. Step (D) defines
V'(x) =y < @i(x), and hence Qi > ¢'(i.0.). Moreover step (D) moves i
to the bottom of the queue only if pop(i) = 1, at which time pop(i) is
reset to 0. In order for step (D) to apply again to i, pop(i) must be

reset to 1 by step (B) at some later stage. But condition (B) sets pop(i)

to 1 only at stages < x, Qe(x) > such that Qi(x) > {§(x). Thus @i >{¢ (i.0.).
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Case 2: i is stable.

If i reaches a stable position on the queue, then pop(i) must also
stabilize since it is set to 0 only by a step (D) execution, at which

tizie i is moved to the bottom of the queue,

Case 2a: pop(i) stable at O.

Pop(i) can be set to 1 by step (B) at only finitely many arguments,
hence Qi < ¢ (a.e.). Elements above i on the queue can only be moved
finitely often by step (D), for otherwise i would be unstable. So for
almost all arguments x in the domain of t', ¥'(x) is defined via step
(D) for some j below i on the queue with pop(j) = 1. But then condition

(2) of step (D) guarantees that Qi(x) < ¢'(x). Hence Qi < §¥'(a.e.).

Case 2b: i 1.

Consider any x such that i, the elements above i on the queue, and
their pops- have stabilized at stage < x,0 > and all later stages. By
case 2a we may assume X is sufficiently large that Qj(x) < min(y(x), ¥'(x))

for those (finitely many) j which are above i on the queue with pop(j) = 0. Let
m = mgg{éj(x) | 3 is above i on queue and pop(j) = 0).

We observe that m < min[{(x), ¢'(x)], and thus if m is infinite, both
v(x), ¥'(x) are undefined, implying by convention that Qi(x) < ¥ (x),

Qi(x) < ¥'(x). So suppose m is finite. Since *he pairing function is
monotone in its second argument, < x,m > is the earliest stage at which
¥'(x) could be defined without violating condition (3) of step (D) and our
assumption that the queue above i has stabilized. But i has stabilized as
well, and so i must fail to satisfy condition (2) of step (D) at stage

< x,m >, That is, Qi(x) < m, and we therefore have §i(x) <m < min(y(x), ¢'&)).
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Combining cases we have @i(x) < y(x) (a.e.) ® i is stable =

@i(x) < ¢'(x) (a.e.).

Corollary. There exists ap honesty procedure on Rl.

Proof. Immediate from section two and the fact that the procedure of

Theorem 2 preserves F-classes as well as F-classes.

4, Large Honest Bounds on Computation

Given a recursive function t we can think of t as a name for the
class of functions #(t). Now in a sense we have understood a complexity
class if we know how to compute its name, t. It follows that more easily
computed funutions (i.e. functions which can be computed rapidly) are
more satisfactory names for a given class than long-running functions.
Honest functions seem to be gcod candidates for names, then, because they
are only as hard to compute as they are large. We now show that in general
honest functions are not necessarily satisfactory names in the sense
described abo\s, Indeed we exhibit an honesty procedure on Rl which takes
any recursive class name to an honest recursive name for the same class which
is arbitrarily large (and therefore arbitrarily long-running) on all but
a rapidly vanishing percentage of arguments. Furthermore we prove that any
honesty procedure on Pl must (almost) have this property. We remark that
this phenomenon is closely related to the gap theorem mentioned in the
introduction: in both cases we pass from a recursive function t to a much

larger recursive function t' while preserving class size.
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Theorem 3. There is an honesty procedure s, on Pl, such that for every e

lim l{y < x | y € domain (»
X--¥00

s

0.

X

Proof of the Theorem. The procedure of the theorem is only a slight

variant of the procedure of Theorem 2. As before ¢' is defined in stages
beginning with stage 0. A function "pop" from integers to integers is
defined amd updated during successive stages. Clause (D) has the added
restriction trtat when pop(i) is larger than X, 1 is excluded from the
priority scheme of the queue at arguments < x, The pop function is sufficiently
fast-growing to insure that only a smaill fraction of the entries on the
queue can be used to define V' at arguments < X. Hence at "most" arguments
< X, ¢' will be undefined.
A) Put n on the bottom of the queue, (i.e, set qn = n); set
pop(n) = 2n. Set x = ﬂl(n), y = ﬂz(n).
B) 1If §e(x) =y, then for each i, 0<is<nq, if [pop(i) = 0 and
8, (X) > ¥(x)] set pop(i) = 27,
C) If {'(x) has been defined previously go to stage n+l.
D) Find the least i < n (if any) such that
1) 0 < pop(i) < x

2) & (x) > y, and
9
3)  (¥j < i)(pop(j) = 0 - ‘Pq (x) <vy)
i




If such an 1 exists, set pOp(qi) = and move a to
the bottom of the queue. Go to stage m+l., If no such

1 exists, go to stage ntl.

We omit the proof that our procedure is indeed an honesty procedure
on Pl; the proof here is virtually identical with that given in Theorem 2.
We prove the limit condition of the lemma. Given any x, step (A)
guarantees that at any stage n = < ¥,z > where y < x, at most logz(x)
indices on the queue can have pops which might be used in step (D)
condition (1) to define v'(y). Furthermore, if i is such an index and if
i is used again at stage n = < y,z >, y < x, to define ¥v'(y), then if it
is to be used again at gsome later stage to define {'(w) for some other
w < x, its pop will be at least 2n+1' Hence i can be used to define at
mos | llogz(x)-i](the greatest integer in (logz(x)-i)) arguments y < x,

Thus ¥'(x) can be defined on at most

[logyx]
[log, (x)-]]

arguments < x. So

[log,(x) ]

ZO [log,(x)~}]
lly s x|y domatn@n)] _ i

X X

but the right hand expression goes to 0 in the limit, proving the

theorem.
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Theorem 3 leads naturally to the following result about honesty

procedures on Rl.

%* .
Theorem 4.  There is an honesty procedure on Rq such that given any

t € Rl and any b € Rl’ there exists an e, me = t, such that

; lmlexlm“®w><uwH*0
X0 X ’

Proof. 1Let s be the honesty procedure on P1 described in Theorem 3.
Recall that we can make s into an honesty procedure onﬁil by defining
ms,(e)(x) = minkps(e)(x), Lbe(x) + Qe(x))]. Let t be any recursive
function. Blum [1] shows that every recursive function has arbitrarily
bad (i.e. arbitrarily long running) programs. That is, we can choose

0, = t such that @e(x) > b(x) for all x, Hence given t and b, choose

such an e, ©, =t and then D satisfied the theorem. O

(e)
The following theorem describes the behavior of any honesty proczedure

on Pl.

Theorem 5. Let s be any honesty procedure on P, and let t and b be

any recursive functions. Then there is a me = t such that

1miﬁ|wlem“Qw><uwH40
x40 x .

%
Bass and Young [7] prove a somewhat weaker form of this theorem: they show

that an e can be found such that ms(e) will be larger than b with
recursive frequency.

T p——




Proof. Define using the recursion theorem a program o, such that

t(x) 1f [(x =0) or (x>0 ﬂcpe(x-l)
convergent) ] and Tz > x such that

[ty s 2o, 0o <biy)]
z

<
® (0 =

otherwise.

Clearly, 1fcpe is total, thencoe = t. Suppose me is not total, and let
x be the 1:ast y such that me(y) diverges. Then(pe(z) diverges for all

zZ 2 x, but since me(x-l) converges, the first clause in the definition

of<pe(x) implies that for all z > x

vy =z lo o0 <bom]

z > x+1°

In particular, domain «DS(e)) must be infinite. However, it is easy
to show that if § € P, has infinite domain, then yp(W) # Pl. Hence
=F ,
ypGps(e)) # Pl p«pe), contradicting the fact that s is an honesty

1

Now for each x let z be the least z > x for which the second conjunct

procedure on .. Therefore, me = t.

in the definition of me holds. Then (zx}m is a subsequence of the
i=0
integers for which

[y =2, oy 0y < b

lim >
K~4co x

20

and the theorem is proved.
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We remark that the "1im inf" appearing in Theorem 5 cannot be

replaced by "1im". We sketch breifly why this is so. Let s be the

honesty procedure on Pl of Theorem 2, and let t be any g-honest recursive

function. We construct an honesty procedure s on Pl in the following
manner. Given index e, begin constructing ms(e) as prescribed in the
theorem. If at some stage n it is diecovered that ©, has converged on
a new initial segment, see if(me = t on that initial segment. TIi oc
find the least x such that stage < x,0 > has not yet been reached and

define.cps (e)(z) = t(z) for x < 2z < 2x. It is not hard to show that st

t
is a legitimate honesty procedure on Pl, and furthermore for any ¢ =t
e
Ity < « | mst(e)(y) <t} ]
lim sup » > >

X0

In particular not all honesty procedures on Pl satisfy Theorem 3,

5. Good Honest Names for Complexity Classes

In this section we consider honesty procedures that work for total
functions only. We show that by relaxing the requirements on honesty
procedures in this way, we can indeed build well-behaved honest bounds
for complexity classes which often significantly improve on the original
bound for the class. We first build an honesty procedure yielding
honest bounds which are no larger than the original class bound on a

significant percentage of arguments. Next we show how to keep honest
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bounds for %(t) bounded (a.e.) in a manner independent of the program
we choose for t, Lastly we exhibit an honesty procedure on Rl which
preserves monotonicity.

Implicit in the work of Constable [11] is the observation that there
are complexity c] sses all of whose honest names are much larger (i.o.)
than some dishonest name. Indeed any class F(t) where t is obtained

vié the gap theorem has this property. Theorem 6 shows that this result

is false if we replace "(i.o0.)" with "(a.e.)",

Theorem 6. There is an honesty procedure on Rl, 8 , such that if ®,

is total, then

ltxsnlo_, x>0 ()]
lim inf s(e) & -9,
D4 n

Proof of the Theorem. The procf follows the general outline of Theorem 2.

In the course of the procedure we define a "percentage'" function R(n)
which monitors the frequency with which ms(e) is small. 1In addition the

pop function in this proof is 0-1-2 valued. Here pop(i) = 2 means that

ms(e) has been defined to be less than Qi’ but movement of i to the bottom

of the gneue has been delayed.
Stage n:
Let nl(n) = X, nz(n) = y.

A) Set q, =, and set pop(n) = 1.

P
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B) 1If Qe(x) =y, then for 0 < i < n, if Qi(x) >-me(x) and pop(i) = 0,
set pop(i) = 1,
C) If y'(x) has been defined at some previous stage, go to stage ntl,
D) Find least i < n, if any, such that
1) pop(g;) =1 or 2

2) qu(x) >y

N5 <Dlpop(a) =048 () < y)
j
If such an i exists, set ¥'(x) =y, and set pop(qi) = 2,

E ) See if 8w < n such that w > P(n) and

[(z < w lms(e) (z) <p_(2) and ¥ e) (2 B (2) < m) . )
w P(n)

If such a w exists, set all 2's on queue to 0, and move them to
the bottom of the queue. Set P(mtl) = P(n) + 1. Go to next stage.

If no such w exists, set P(ntl) = P(n), and go to next stage. [

As in the proof of theorem 2, there is anr € Rl such that the procedure

yields, for ever e, a functiorlmr(e) = {'. Furthermore, {0

r(e)]eEJV 12

a measured set. Define

t(x) =°‘°s(e)(x) = MIcor(e) (x), coe(X) + Qe(X)l;

then (ms(e)]e€53 1s a measured set, and s is the desired procedure.

*
Clause E) involves an implicit use of the recirsion theorem.
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To prove the limit condition of the theorem, we need to show that
Clause (E) is executed infinitely often for recursive t = me. Suppose
therefore that (E) is executed only finitely often, and let < x,0 > be
a stage after which there are no Clause (E) executions. We can assume
without loss of generality that by stage < x,0 > all pop 0 entries on the
queue which are ever set to 1 have been set to 1, and furthermore < x,0 >
1s large enough that an index for the empty function appears on the queue
(its pop at stage < X,0 > must be 1 or 2). Then for all z > x and all
1 such that pop(i) = 0, Qi(z) < t(z), and so clause (D) and the presence
of an index for the empty function on the queue guarantees that {'(z) will
be defined and §'(z) < t(z). Therefore the percentage of arguments where
V' (2) < t(z) will eventually move above 1- Ezzjija—;y » and at that time,

clause (E) will get executed.

To show that 3Gpe) = 3&38(8)) in the case where o, € Rl’ notice that
1f 1 stabilizes on the queue, its pop cannot be 2. Using this ouservation
it is easy to show that the classes are the same by using the techn.cues
developed in theorem 2, and we omit th- proof.

Our next theorem illustrates the striking difference between honesty
procedures on Rl and honesty procedures on Pl. Theorem 5 says that given
any t € Rl, every procedure on P1 must map some program for t to an
arbitrarily large honest name for ¥(t). We now construct a procedure on
Rl which produces uniformly bounded honest names for F(t) independent

of the program chosen for t. The procedure of Theorem 7 is an example of

an honesty procedure on Rl which canunot be extended to an honesty procedure

on Pl.
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Theorem 7. There is an honesty procedure on Rl’ s, with the property
that for every recursive t, there is a b € Rl such that if coe = t,

thencoS < b (a.e.).

(e)

Proof. Let s' be any honesty procedure on Rl with the property that if

- Lo
©, is total, then F(coe) = F(cos(e)). Say that o,

O if after n steps
of the dovetailed computation of O, and O s v, and CDe' have not differed

on any argument. Define
Pse) ™) = minl, (0 0 M + 8,00 | e se, 0, To ).

{ms(e)]eéln is a measured set since both (CDs'(e)]eGﬂ , and (cpe + Qe]eE///

. = . < .e.).
are measured Furthermore F(cos(e)) F(coe) Suppose @i me(a e.) Then
for sufficiently large x those e' < e which compute functions which differ

from e will be omitted from the expression &) for o From then on 1f

s(e)’
cae,(y) converges for any e' < e, coe.(y) will equal cae(y). Therefore since
< .e. N .e.). > i.o.
@i cps,(e)(a e.), 'ﬁi < os(e)(a e.) If on the other hand @i Cpe (i.0.),
> i.o0.) = > G i.o0.).
then 61 cos,(e)(l 0.), and since cos,(e) »cps(e) everywhere, @i @S(e)(l 0.)
Let e' be the least index for o, € Rl. Then for every o, =0,

) +§5e,. (a.e.). 1

. <
s(1) = Per
Our last theorem shows that every class with a monotone name has a

monotone honest name, sattling a question raised in [4].

Theorem 8. There is a g € R2 such that for every monotone recursive ]

t 2 Ax[x] there is a g-honest monotone recursive t' such that F(t) = F(t").
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Proof. Our construction will again follow the lines of Theorem 2. However,

t' will be total and monotone whenever t 1is total, and so F(t) may differ

from 7(t') in the case where t is not monotone. Define wo(i)(x) = max[@i(z),x]
zZ<X

[mc(i)]iém is a measured set, Moreover for monotone t > Ax[x] we have that

Qi <t (a.e.) c’wc(i) <t (a.e.). Lett = we.

Stage n. Let nl(n) = x, Wz(n) =y
A) Set q = n; set pOp(qn) =1
B) 1If Qe(x) =y, then for 0 <1 < n if mo(i)(x) > t(x), set pop(i) = 1.
C) 1If t'(x) has already been defined at some previous stage, go to

stage ntl; if ¥z < x such that t'(z) > y, go to stage nt+l; if x < y,

go to stage ntl,
D) Find least i < n (if any) such that
1) pop(qy) =1

2) mc(qi)(X) >y

3 Vi < 1)[po =0 -+ X) <
) (V] )[p p(qj) mc(qj)( ) <y]
If 1 exists, set t'(x) =y, set pOp(qi) = 0, and move q, to
the bottom of the queue.
E) If (D), find greatest z < x such that t'(z) has already been defined;

set t'(w) =y for 2z <w<x. Go to stage n+tl. O

The procedure yields, for each e, a partial functiorxms(e). Moreover
(ms(e)]eendis a measured set: to test(ps(e)(x) = y, merely run the pro-
cedure through the first < x,y > stages and check to see if ms(e)(x) is
defined to be y at one of these stages. Clause (C) guarantees that ms(e)(x)

can never be set equal to y after stage < v,y >.

.




If t is total, then t' will be total and monotone by clause (C) and

i the fact that Clause (D) must be executed infinitely often. If t > Ax[x],

. then pop stability analysis and the fact that each mc(i) is monotone shows
i

that for every i, coc(i) <t (a.e.) ch(i) < t' (a.e.). But then for

monotone t we have

@iSt (a.e.)scoc <ta.e. ®g¢g

(1) o (1) < t' (a.e.)

aéis t' (a.e.). M

*
Corollary. There is an honesty prccedure on Rl, § , such that for every

recursive monotone t > Ax[x], if ©, = t then ms*(e) is monotone.

Proof. Let s be the procedure of Theorem 7, and let s' be any honesty

*
procedure on Rl. Define s as follows:

Psr(e) (x) if, within x steps it is discovered

that me is not monotone, or within x

ms(e) (x) otherwise.

*
The first clause on the right is obviously recursive, and so s € Rl.

If o, 2 Ax[x] and is monotone, then ms*(e) =

Let Cps*(e) (x) = steps it is discovered that ®, < Mx[x]; l
cos(e). Otherwise cps*(e) =
*
ms'(e) (a.e.). Hence s 1is the desired honesty procedure rn Rl.
We remark that the lower bound Ax[x] of the theorem and the corollary
may be replaced by any slow-growing unbounded function. Borodin [2) shows ]

that some lower bound is necessary,

and thus our result is best possible,
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1. INTRODUCTION

Let 7(t) be the set of functions computable by some machine using i
ro more than t(x) machine steps on all but finitely many arguments x. ‘
If we order the %-classes under set inclusion as t varies over the
recursive functions, then it is natural to ask how rich a structure
18 obtained. We show that thig structure is very rich indeed. If R
18 any countable partial order and F 18 any total effective opei;ator,
then we show that there is a recursively enumerable sequence of
recursive machine running times {Qs(k)}kéN such that 1f jRk, then

3(5(@8(1))) $¢3(§8(k)), and 1f § and k are incomparable, then F( ) <

8(3)
Qs(k) on infinitely many arguments, and E(Qs(k)) < Qs(j) on infinitely

many arguments,

An interesting feature of our proof is that we avoid appealing
explicitly to the continuity of total effective operators; indeed our
proof follows directly from a single appeal to the recursion theorem.

Several investigators have considered this and related problems, and

in Section 4 we briefly summarize these investigations and compare them

to our own.
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2. PRELIMIMARIES

For notation from recursive function theory we follow Rogers [ 2 ].

For each n € N, Pn stands for the partial recursive functions of
n-variables, and Rn stands for the total recursive functions of n
variables.

We use (a.e.) to denote "almost everywhere'", which for our
purposes stands for "all but finitely many". Similarly (i.0.) stands
for "infinitely often".

Suppose {mo,ml,...] is a Godel numbering of Pl. A measure on
Computation [1] & = (QO,QI,...] is a sequence of functions in Pl
satisfying

1. VieENw [dom&ni) = dom(@i)]

2. Kixy[@i(x) = y) is a recursive predicate.

If we think of our Godel numbering in the usual one-tape Turing machine
formalism, then

§i(x) = '"the number of steps in the computation of the ith Turing
machine on argument x'" is a measure on computation.

Henceforth let ¢ be some fixed measure on computation, Then we

define for any total function t

F(t)

[}

(1 €en] o, €R, and qsi <t (a.e.)),

and

F(t)

(0, | 1 €F).
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That is, F(t) is the set of (indices of ) total machines which run
in time t, and F¥(t) is the set of total functions computable within

time t. F(t) is called a complexity class.

A sequence of partial functions ¥ = {wo,yl,...] is said to be
an r.e. sequence of partial functions {if Mx[lbi(X)] € Pz.

The following theorem of Blum [ 1] shows that we can uni formly
enlarge complexity classes %(t) if t is a sufficiently well-behaved

function.

Theorem. (Compression Theorem) There is a g € Rz such that for every

Qi € Rl, F(," ;, J(Kxg(x,éi(x)). g 1s called a compression function

for §.

An operator is a map which takes functions to functions; we
write F(f)(x) to mean the value of the operator F applied to the

function f, evaluated at x. An operator E:Dcp, Pl 1s called an 1

effective operator if there is an s € Rl such that E(coe) (x) = cos(e) (x).

An effective operator F is total effective if for every f € R.l, 1

F(f) 1s defined and F(f) € Rl.

3. THE EMBEDDING THEOREM

A" maaii

Theorem. Let F be any total effective operator, and let R be any recursive
countable partial order on N. Then there exists an r.e. sequencc of
recursive functions Pg» Pys - P, - such that if jRk, then ~F(pj) <

Py (a.e.), and if j and k are incomparable, then E(pj) < pk(i.o.), and

P < ,I;‘(pj) (1.0.).




Proof. We assume without loss of generality that R orders N-{0}

rather than N, and in addition that R contains kRO for each k > 0.

let a. =< i k>,a

5 0 %o 1-_-<]_1’k1>’,,,(an=<1,kn>,...ber':l

n
recursive listing of all incomparable pairs in R such that if x and

y are incomparable, then < x, y > and < Yy X > both appear infinitely

often in the list. As a technical convience we define max[d] = 0.

1
Let s € Rz be the 4 function of the s-m-n theorem defined by the

equation

0 (<%, ¥y >) = O IRNCOE

Define ¢ € 02 as follows:

/ 0 if x <k or n <k such that & (<0, n>) > x,

max [ o .\ (X) + F(o Y(x)]) o+
Tex s(e,j) ~s(ey])
iRk

Pate,i)® T EOgeq Y 0),

where n = um < x[((m = 0) and (x = ko)) or

‘l’(e’ <k, x >) =

[(m > 0) and (k = km) and [(Vi (0 < i <m))
(Hzi < x) such that (zo = ko) and

(2417 g, QS(e,ki)(zi)) and (z = x)]]], if

such an n exists and (1) is not true, and

[C‘“s(e,j)(x) + ,E(Cos(e’j))(X)] otherwise.

(1)

(2) (1)

(2) (11)
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v € P2 since all the test computations in clauses (1) and (2) are
recursive by the second measure on computation axiom. By the recursion
theorem there is an e such that V(e, <k,x >) = me(<k,x>); we apply the
s-1-1 version of the s-m-n theorem to obtain {(e, <k,x>) =0

s(e,k)(x)'
To simplify our notation we now suppress mention of e and write pk(x) =

ms(e,k)(x)' Similarly we write ka(x) for Qs(e,k)(x)' Our definition
now becomes
/r 0] if x <k or In < k such that @p (n) < x, (D
0
mxfp () +E (0] + (2) (1)
jsx
iRk [ N
Py (x) +,E(Pi )(x) ], (2) (ii)
n n
where n = um < x[((m = 0) and (x = ko)) or
pk(x) = 4{ [(m>0) and (k = km) and [(Vi(0 < i < m))(E{zi < x)
such that (z0 = ko) and (zi+1 =z + ka (zi)) and
i

(zm = x)]1], if such an n exists and (1) is not

true, and

max [pj(x) +~F(Pj)(x)] otherwise. (3)

j=x
\ jRk

We first establish that at most finitely many of the functions

(’k]kEN can be non-total. Suppose pk(x) diverges. Since Po is defined

by (3) at all arguments, po(x) must diverge, and so by (1) p,(x) = 0

]

for all 1> x,

pp— " . bt f - -
e T ST em—— > . o § TR P TN T e ey
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We now prove that for all k Py is total.

Say that a is serviced at x if Py (x) is defined by (2), and if
n
n is the least m < x satisfying the body of (2) in the definition of

Py (x). We allow the possibility that Pk(x) may diverge. If a is
n LT |
serviced at x, (2) guarantees that x=z =X 2z +3 (z,), and so
n 1 p i
i=1 ki
an is serviced at no other argument. Moreover, if an is serviced at x

and p, (x) diverges, then for n' >n a, will never be serviced, since
kn n'

a is serviced at y only when y bounds the computation of ép (x).

|3
n

Let k be an R-minimal element in the finite set (k' | P+ non-total’.
Then if pk(x) diverges, it must do so because of (2)(ii). That is, a

is serviced at x for some n, and bi must be ncn-total.
n

But suppose pi (y) diverges by an instance of (2)(ii) for some y.
n
This means that in = kj for some j and aj 18 serviced at y. If j <n,

then y must equal zj, but since an 1s serviced x, Qp (zj) < x and hence
k
)

Pk (zj) must comverge. If j > n, then since an 1s serviced at x and

]

Pk(x) is assumed to diverge, aj is never serviced, Moreover j cannot

equal n, for then 1, Wwould equal kn. Hence p; must be non-total because
n

of (2)(1i) er (3), and 8o some funetion Py such that i'Ri“_is non-total,
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Let i be R minimal amorg (i' | i'R in and i' ncn-total}. Then
L must be non-total by an instance of (2) (ii), say at argument y.

Hence i = kj for some j, and aj must be serviced at y = JE z, +

) (z ). If j <n, p, (¥) must converge sirce a 1is serviced at x
Py m kj n

by assumption; and if j = n, then in and kn dre comparable, a contra-
diction. Furthermore if j > n, then aj will never be serviced. Hence

P, is total, and we conclude that for every k p, € Rl'

If jRk, then E(pj)(z) < pk(z) for all z > My = max(k,j,$ (0),
Po
(D, ... 3 (k-1)].
Po
If j and k are incomparable, then < j,k > = &

3
Po

for some infinite sequence 0 < n, < n, eee nq e

For arguments z > ™ pk(z) is defined bs (2) or (3). Since the

sequence of zi's is strictly increasing, there is an such that for

-9 |
i> io,zi 2 M- At those arguments z, v 1> io, i-= nq, pk(zi) will
be defined by clause (2) and pk(zi) > F(Pj)(zi)' A symmetric argument 1

shows that pj > F(Ek)(i.o.), and the theorem is proved.

k
Corollary. Let F be any total effective operator, and let R be any

countable partial order on N. Then there exists an r.e sequence of

recursive measure functions Qr(O)’ Qr(l)’ +.. such that if jRk, then 1
E(Qr(j9 < Qr(k) (a.e.) and 9(E(§r(j))($ F(Qr(k)), and if j and k are

incomparable, then F(Qr(j)) < Qr(k)(i.o.), and E(Qr ) < Qr (i.0.).

(k)

(3)

T e
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Proof. Mostowski [ 3] has shown that there is a countable partial
order R* into which any countable partial order may be embedded.
Moreover, Sacks [ 4 ] has shown that R* is recursive.

We assuue without loss of generality that F 1s at least as large
as the identity operator, and that the compression function for &, g,
1s strictly increasing in its second argument. Blum [ 1] has shown
that there is an h € RZ such that for all i mi(x) < h(x, @i(x))(a.e.).
assume that h is strictly increasing in its second argument.. To prove

*
the corollary, apply the theorem to R, rewrite clause (2) as

]m%f [pj(x»h(x,g(x,z(ép.XX)))] + [pin(x) + h(x,g(x,f(ép YN,

i i
iRk a

and we rewrite clause (3) as
max[p

jax ]
jRk

(x) + hlx,g (6,E® ) ().
3

It is easy to see that the theorem goes through as before, and the
monotonicity restrictions on g and h guarantee that the functions

[ka}kEN satisfy the corollary.

We




4. RELATION TO OTHER WORk, AND OPEN PROBLIMS

McCreight [5] is the first investigator to prove an embedding

theorem for subrecursive classes. He shows that any countable partial

order can be embedded in the complexity classe2s ordered under set

inclusion. However, nis theorem is weaker than our results in that

the functions of his partial order are "separated" by composition

with a fixed recursive function, whereas our functions are separated

by a total cffuctive operator. In [6] Enderton also proves a universal

embedding theorem for sibrecursive classes. His notion of a sub-

recursive class is quite weak, however, and his result is an immediate

corollary of McCreight's theorem.

Early work on the structure of subrecursive classes was done by

Feferman [12], Meyer and Ritchie [7], and Basu [8]. Feferman shows

that dense chains exist for various notions of subrecursive classes.

Meyer and Ritchie define what they call elementary honest classes, and

they show the existence of dense chains and infinite anti-chains for

such classes, Moreover, they are able to exhibit certain functions f

such that dense chains of classes will exist between f and the iterate

of f, Xx[f(x)(x\]. Basu builds dense chains of subrecursive classes, where

these classes are closed under the application of a fixed recursive operator.

Machtey [11] has announced universal embedding theorems for both

the "honest" primitive recursive degrees and the "dishounest" primitive

[ 3

recursive degrees. Both of these theorems follow immediately from our

results.




=93~

We also note that Altor t 9] has independently announced our
embedding theorem.

We leave open the question of the size of the functions in our
embedding theorem. That is, given F, what is a reasonable upper bound
on the size of Po in terms of F(recall that Po bounds all the functions

[pk]kEN on all arguments).

The author wishes to acknowledge the geénerous assistance of Professor

Albert R. Meyer in the conception and preparation of this paper.

-
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