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Abstract 

An honest function Is one whose size honestly reflects its computation 
time.  In 1969 Meyer and McCreiglt proved the "honesty theorem", which says 
that for every t, the t-computablt functions are the same as the t'-compu- 
table functions for some honest t'. 

Ways of constructing honest functions are considered in detail.  It is 
shown that for any t there is an honest t' such that the t-computrble 
functions and the t'-computable functions are the same, and such that t' 
is arbitrarily large on a denBe set of arguments.  Moreover any construction 
method satisfying certain natural criteria will (almost) have this property. 

On the other hand it is shown that by relaxing these criteria we 
can guarantee that t1 s t on a (weak) dense set. We can also guarantee 
that t' will be bounded above by a predetermined recursive function on all 
but finitely many arguments.  Finally, we show that in the case where t 
is monotone, t' can also be made monotone. 

We consider the t-computable functions, and order these classes under 
set inclusion as t varies over the recursive functions.  We show that given 
any total offective operator P and any recursive countable partial order R 

there is an r.e. sequence of machine running times T , T,, ••• T , ••• 
0  1      n 

such that if iRj, then the T computable functions properly contain the 

F(T ) computable functions, and if i and j are incomparable, then F(TJ > T 
i ~ i    j 

infinitely often and F(T ) > 1^ infinitely often. 

THESIS SUPERVISOR: Albert R. Meyer 
TITLE: Associate Professor of Electrical Engineering 
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Preface 

The three chapters of this theslc can be read Independently. 

Chapters two and three are entirely self-contained; no attempt has 

been made to integrate them into a single document.  Chapter two 

has been accepted for publication by the Journal of Symbolic Logic. 

It is co-authored by Albert R. Meyer.  Chapter three has been 

submitted for publication to the Journal of Computer and System Sciences. 

.. ■ ...■^^ ^.^^ 
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Chapter 1 

A Survey of Work on Subrecursive Hierarchies and Subrecursive Degrees 

The definition of the partial recursive functions is easily describable, 

involving merely the ^-operator in addition to the traditional initial 

functions and Schemas for developing the primitive recursive functions. 

Moreover the Kleene normal forn theorem gives an effective syntactic 

presentation of these functions.  The recursive functions, those partial 

recursive functions which are total, has no such presentation.  Tn general 

the demonstration that a partial recursive function is total involves a non- 

constructive existence proof. 

To avoid this difficulty, subrecursive hierarchies have been COP> 

structed in an attempt to effectively approximate the class of recursive 

functions. 

A subrecursive hierarchy is a sequence of classes of recursive functions 

P0' Pl' *"' V *"' Pß' *,,' wh"6 « end ß may be finite or infinite 

ordinals. For a < ß, P^ ^ Pß, and the extension of a hierarchy from a 

to  orH, or from {an}neN to a  (where lim o^ = a and a is limit ordinal) is 

usually carried out by some uniform effective principle. 

The method of hierarchies has also been applied to certain rich and 

interesting subclasses of the recursive functions.  The goal of such 

hierarchies is to approximate the given class from below with sr-alle., more 

comprehensible sets of functions.  Hopefully such a construction will 

provide insight into the structure and complexity of the given class. 

------ Ml ■a-k'^-MM mmmta 
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We begin by studying (J-length hierarchies of the primitive recursive 

functions.  We show that these hiera-chies are quite successful in that 

they give non-trivial alternative formulations of the primitive recursive 

functions.  Moreover there is considerable agreement among the various 

hierarchies, and this agreement may be interpreted to mean that various 

notions of primitive recursive complexity coincide. 

Similar results are obtained for w-hierarchies of the elementary 

functions. 

Next we consider various attempts to build hierarchies of transfinite 

length which exhaust the recursive functions. We discuss at lei^th the 

issue of names for ordinals.  Ordinal names must be used to index any trans- 

finite hierarchy, and we show how problems with ordinal viames has essentially 

ruled out any hope of building a meaningful exhaustive hierarchy of the 

recursive functions. 

The difficulties with building exhaustive hierarchies has led investi- 

gators to construct and study "short" transfinite hierarchies which exhaust 

only a portion of the recursive function;.  A key issue for such construc- 

tions is the selection of "nice" ordinal names to index SUCH hierarchies, 

and this has been done with considerable success, at least for hierarchies 

of length less than or equal to « . 

Finally, we consider subrecursive degrees, corresponding to Turing 

degrees of full recursion theory.  Th?s recently revitalized area has begun 

to distinguish Itself from the theory of Turing degrees, and has established 

;?ome interesting structural results about subre-.ursive behavior. 

■okaMMiMMMaaillaBtaia* -    ■ 
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Notations and Definitions 

For basic  notation from recursive function theory, we  follow Rogers   [2 ]• 

We denote by < x,y > a 1-1 onto recursive map from N x N -» N.    Associated 

with < > are decoding  functions TT.,  TT  ,  such that z ■ < n  (z), TT (z) >. 

Let  f be any  function.     Define   f(1)   (x)   = f(x),   fnfl(x)  =  f(fn(x)). 

ein)   .     t.        th ,  , 
f        Is the n -power of f. 

If t Is any total  function,   then ♦■.he t-computable  functions are the 

set of functions computable within t(x)  Turing machine steps,   for all  but 

finitely many arguments.    Our Turing machine conventions are those of 

Davis   [     ]. 

If f(x0,   •••,  xn)  = h(g0(x0,   •••,  O.-'*!  «„(XQ,   •••..  7^)) we say 
n 

that  f is defined  from h,  g  ,   •••,  e    by composition. 

If f(0,  x1,   •••,  xn)  = g(x1,   •••,  xn), 

f(n+l,  x1,   •••,  xn)  = h(t(n,  x1,   •••,  xn),  r>,  z^,  •••,  xn), 

then we say that f is defined from g and h by primitive recursion. 

Tie class of primitive recursive functions is the smallest class of 

functions containing the zero function, the successor function, and the 

projection functions ^(x^ •••, x ) = x , which is closed under composition 

and primitiv» recursion. 

If g, h, and j belong to some class of functions and f satisfies the 

equations 

f(0,y) = g(y), 

f(x+l, y) = h:x, y, f(x,y)) 

f(x,y) C j(x,y). 

- »«■■■■■MMMMMaMMMaaMM 
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then we say that f is defined by limited recursion from g, h, and j. 
n 

If f(n, x, ••. x )  = n g(z, x  .... v ), we say f is defined from 
z=0 K 

g by limited multiplication.  There is a similar scheme for limited summation. 

If f(x1, •••, x^)  = g(y1, .... y^), where each 3^ equals some x , then 

we say that f is defined from g by explicit transformation. 

The class of elementary functions E of KMlm*   [77]  can be defined as 

the smallest class containing x+y, x-y, and xy which is closed under the 

operations of composition, explicit transformations, and limited recursion. 

We use Xj^ as an abbreviation for the expression x , x , •••, « . 

Section 1.  w-hierarchies of Primitive Recursive Functions 

The primitive recursive functions have been the most widely studied 

subrecursive class, and so it is nctural that much of the work on hierarchies 

of recursive unctions has centered around classifying these functions.  An 

w-hierarchy of primitive recursive functions is an increasing sequence of 

classes of functions P0, P^ .... p^ ..., 8uch that for each k) Pk 5 Pk+1 

and such that the union of these classes equals the primitive recursive 

functions.  If f is primitive recursive, then the least k such that f e p 
k 

in some sense measures the difficulty of f.  As we shall see there are 

many different ways to formulate hierarchies of primitive recursive 

functions, each with its associated concept of difficulty; however, there 

is a high degree of invariance among these concepts, and this invariance 

makes the primitive recursive functions a well understood subrecursive class. 

- ■-■--■■ 
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Primitive recursive hierarchies have been formulated in several different 

ways  One approach is to consider each class in the hierarchy as a closure 

class.  Each Pk is formed by the application of certain sub-primitive 

recursive closure rules to certain initial function', usually differing only 

in a single "key" function t.  This is the approach of GzregOi.2yk, and 

Axt.   Another formulation constructs each class using some external 

syntact c criterion; for example, one might assign f to P if f can be 

defined u,5ing at most n nested instances of primitive recursion. Axt 

did the initial work in chis  direction.  Yet another approach, proposed by 

Robert Ritchie, Robbin, Cobham, and Meyer and Ritchie, is cotrplexity- 

cheoretic in nature,  f e Pk in case f is (roughly) f computable. 

The fundamental result of this section is that all these approaches 

yield essentially the same, hierarchy. 

Gzregorczyk in his 1953 paper [41] gives the first formulation of an 

u-hierarchy of primitive recursive functions. Ha defines a sequence of 

rapidly increasing recursive functions f , and each f is used to define 
n n 

the n  class in the sequence. 

Definition:  Define a sequence of functions f e R„ as follows: 
n   2 

1. f0(x,y) = y+1 

2. fjCx^) = x+y 

3. f2(x,y) = (x+l).(y+l) 

4*  fiH-l(0'y) = fn(y+1' 7+l) 

5. t      i*H,y)  = ffl(x.ffl(x.y)) 

--;- - ■ —■-■■—- - ■—--- ■WMMAJMMMHdiMlltfidHlk  MJMHto 
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He defines his sequence of classes of primitive recursive functions 

t  ,  t  ,   •••,  E  ,   ..«,  as follows. 

Definition:     Let E    be the smallest class of +ui»,tions containing as initial 

functions  the successor function,   the projection functions,  and  f ,  and 
n 

closed under the operations of composition, explicit transformation, and 

limited recursion. 

Notice that f3 is essentially exponentiation, and so E is the elem- 

entary functions. 

An essential feature of any proposed hierarchy is a hierarchy theorem, 

that is, a theorem which demonstrates that the classes of the hierarchy form 

a proper increasing chain. 

Theorem:  For all n s 0 E11 c: Errfl. 

Gzregorczyk's proof of this theorem is ct-nplicated by his choice of 

key functions f .  The difficulty in the proof irises because f , is not K n+1 

defined by a simple primitive recursive scheme and so a bounded recursion 

argument by itself will not suffice to establish the result.  Gzregorczyk 

uses a fairly intricate coding argument to show that for i < n, f e En; 

this shows that En c E   for each n. 

The proof that each containment is proper follows from the fact that 

for each n, f ^(xfx) majorizes the one-variaMe functions of En. 

By first observing that each f is primitive recursive, it is immediate 
n 

that U E c primitive recursive functions. The next result shows that 

this contairment is actually an equality. 

  -—  —fc—-^——.-— 
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Theorem:  IJ E = primitive recursive functions. 

To prove this Gzregorczyk uses a formulation of the primitive recur- 

sive functions due to R.M. Robinson [78].  The importaut feature of this 

formulation is :hat primitive recursion is eliminated and is replaced by 

a schema for iteration.  It is t! en not difficult to show by induction on 

the order of a function (where the order cF f counts the number of opera- 

tions used in the definition of f) that if f is primitive recursive and has 

order k then f e E  . 

In an -arly paper Cobham [79], drawing on work of Ritchie [66], 

considers the Gzregorczyk hierarchy and observes that the classes Ek have 

interesting complexit>-theoretic properties. 

k t 
Theorem;  For k ^ 3 f e E i cf some program P computes f and T e E , where 

Tp is the run-time of P iff there is a g e Ek such that f is g-computable. 

Cobham states hid result for k ^ 3 to achieve machine-independence; 

in this form the theorem is true for any device or programming language 

which can be arithmetized in an elementary-recursive way. 

Meyer and Ritchie [72] exploit this result to give a complexity- 

theoretic formulation of the Gzregorczyk hierarchy. We develop the Meyer- 

Ritchie approach here because the ideas involvfd will be useful in proving 

tho equivalence of various different hierarchies. 

Definition:  Given any f, let E(f), the functions elementary in f, be the 

- ■ ■   - 1 — — 
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tion, expHcit transfcrmation, and limited recursion. 

E, ) = E , where f, k k 

smallest set containing xJ,  x+y,  x»y, and f, which is closed under compose 

Notice that for k S: 3 E(f ) = E , where f is the kth Gzregorczyk 

function. 

The following simple theorem proves one part of Cobham's result cited 

above. 

Theorem:  Let g be any function computable within t(x) steps for each 

argument x.  If t Q E(f), then g e E(f). 

The proof of this theorem rests on the fact that in any reasonable 

machine model  there exist elementary functions 0 (e, x , y) for mal such 
m ' m 

that 0 (e, x , y) = the output of the e  Turing machine on arguments x , 
mm tn 

if the machine halts within y steps, and 0 otherwise.  For every f, 

0 e E(f), and so 0 (e , x , t(x )) = g e E(f), where e is a machine m m g  m    m g 

which computes g in time t. 

Call a function f elemjntary-honest if f is h-honest for some elem- 

entary-recursive h.  The next result is a partial converse to the last 

theorem. 

Theorem:  If f is elementary-honest and if g e E(f), then there is a 

t e E(f) such that g is t-computable. 

Summarizing these last two results we have that if f is elementary 

honest, then g e E(f) if and only if g is t-computable for some t e E(f). 

Classes with this property are called computation-time closed classes. 

See definition 1 of Chapter 2, Section 2. 

 -  ■- ■     ... 
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The size of functions in E    for each k plays an important role in 

Gzregorczyk's work.     The  following  simple bounding  lenina of Meyer and 

Ritchie will yield more precise information on function size for 

Gzregorczyk's classes. 

Bounding  lemma:     If  f is non-decreasing and :> 2X and  if g  c E(f),   then there 

is a constant c  such that g(x")  ^ f      (««[x-,   •••-  x  ]). n ——    1 n 

Meyer and Ritchie are now in a position to redefine the Gzregorczyk 

classes.     First  they note that  fog is elementary honest if f and g are,  and 

f is at  least as  large as the identity.     Similarly if f is elementary honest 

(c) 
and  non-decreasing,   then f        is  elementary honest.     Using  these observations 

they construct a Gzregorczyk-like sequence of elementary honest functions 

gn,   (based on a modificatica of Gzregorczyk's  functions due to Ritchie   [57]), 

as  follows: 

x 
83     =    2 

WX)    =   gn
(X)(1>- 

These simple  functions can be used instead of Gzregorczyk's  functions 

fk,   so that  for n ^ 3,  En = E(g ).     Thus  for n s 3 the class En is precisely 

the set of functions which are computable within    time bounded by some 

fixed  iterate of g  . n 

Gzregorczyk has one other result of interest,  and this result leads 

very naturally to another formulation of a primitive recursive hierarchy. 

•    ■      - ^■..... 
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Definitlon:  Let E be a class of functions.  A function F(x,y) is a univ- 

ersal function for E if for each x, \y F(x,y) c E, and for every g e E there 

is an x such that g = Xy F(x,y). 

Theorem:  For n 5 2 E   contains a universal function for the one-variable 

functions in E . 

An important feature of any hierarchy is the method used for class 

enlargement, the "jump operation" of the hierarchy.  One of the weaknesses 

of Gzregorczyk's formulation is the obscurity of his jump operation, and 

the resulting relative difficulty of his hierarchy theorem. 

Axt [13] proposes an w-hierarchy where the jump operation is based 

explicitly on universal functions.  To go from class to P, to class P, , 
k k+1 

Axt adds to the initial  functions of P    an enumerating  function for P . 
K K 

Definition:  Let 8 be a set of total functions.  We say a function 0 is 

4 
E_ in 9 if 0 belongs to the smallest class containing 9 and f,(the 

Gzregorczyk function f,), which is clcsed under composition, explicit 

transformation, and limited recursion. 

4 9 
Axt now chooses a particular E function ef(x,y) such that ef (x,y) 

4 
is a universal function for the set of functions E in 9. 

Definition:  Define e for n s 0 as follows: 
- n 

e0(x,y)    ■    0 

e 
enfl(x'y)   =   ef "t*»^ 

■■■■■^f—MMMMaannii^Mtttfiii ■iMinr- "—  - ■    - ■- ■      -  -— -..—^--—-^        ..      — -   - -...-     ■-. 
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Axt  now defines classes E    based on the enumerating  tunctions  e   ;   E 11 n      n 

will be the set of  functions E    in e  . 
n 

Theorem (Axt Hierarchy Theorem):    E. C E. C ••• C E . 
0^1^    r    n 

Notice that the proof of this theorem is immediate, since E   contains 
rH"i 

the initial  functions   for E  ,  and by a  crivial diagonization,   e t E   . 
n rrfl   n 

Axt is able to sliow his hierarchy is essentially tht same as 

Gzregorczyk's. 

Theorem:  For all n 2 0 E1*4 = E . 
n 

This is a pleasing result.  It gives us a surprising alternative for- 

mulation of the Gzregorczyk hierarchy.  However, Axt's result is less 

significant than one might suspect.  The difficulty with his work lies 

with his choice of the universal function ef.  It is not hard to show that 

there are a great many possible universal functions ef, each as natural as 

Axt's ef, and eich yielding a different hierarchy when used as a jump 

procedure to construct an Axt-like hierarchy.  Indeed, the significance 

of his technique is the highly non-invarian • character of his jump operation- 

This phenomenon is in sharp contrast to the situation in full recursion 

theory, where the behav;or of the jump operation on Turing degrees does not 

depend on the specific details of the jump definition. 

Axt formulates another w-pierarchy in [14] based on a natural syntactic 

criterion, depth of nesting of primitive recursion.  He defines his classes 

K as follows, 
n 
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Deflnitlon: 

(1)       If f is an initial  function,   that is if f is ^he rero  function, 

the successor  function,  or a projection function,   then f  6 K . 

(ii]        if  f is defined by composition from h,   g-,   •••,  g  ,   and h  € K.   , 
Ik i0 

81   6 K    ,   •••, t   e K    ,   then f e K       .,     I  « ^ 4  -. i-i« 1 1
1 ^        He max[i     I   0 ^ j  ^ k] 

(iii)       if f comes  from g and h by primitive recursion irH g  e K        ?nd 
V 

h e K , then f G K-.   .     ,. 
Hj l+max[n.., n„ J 

It is immediate that Kn 5 
Ki * * * 5 K 5 *"' and the U K = primitive 

recursive functions. 

This hierarchy uses no external machinery in its definition, and in 

this sense is perhaps the most naturally formulated hierarchy of any we 

have considered.  It turiv out that for n & 3 E1*4"1 = K , although Axt 

was unable to show this in his original study. 

Meyer [80] was the first to show that Axt's depth of nesting hierarchy 

and the Gzrogorczyk hierarchy eventually coincide. He shows that for 

n ? 9, E   = K .  The best published result to date is due to Schwichten- 

n+1 
berg [51], who proves that E   = K for n 2 3.  Meyer's proof rests on 

the complexity-theoretic properties of the Gzregorczyk hierarchy which we 

established earlier. 

He begins by proving that for n ^ 3 K c E  , usit« an inductive 

argument to show that every function in one class is majorized by some 

function in the other class.  This yields the result, since if f appears 

in Kn by an instance of primitive recursion, then g > f for some g G E1^" , 

Müller has announced the result for n ^ 2 in the Recursive Function Theory 
Newsletter, No. 5, April 1973. 

 ■ -■- — ■  ■ - -    -- ' II—It—■■  
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n+1 
and so f e E        by an instance of limited recursion with g as bounding 

function 

The proof that E    c K^  for sufficiently larg« n is dealt    with using 

explicit complexity-theoretic arguments.     Since   U    K    exhausts the primitive 
n€N    n 

recursive  functions,  Oje, T,  y)  belongs  to K for some n .    Moreover. 
"0-1 0 

since the running  time of f is bounded by some  function in En,  and hence, 

by  :he above,  by some function t e K        , Meyer concludes that f = 
_ Vl 

0m(ef'  V   ^^   c K
n      » w*16" e

f ^ a Godel  number  for f.    He shows  that 

rij,  <: 9,  and  thus  for sufficient^   lar^e n,  K    = E1^"1. 
n 

This is a rather striking result in that it relates the size f, the 

running time of f, and the syntcctic form of f. The same general method 

yields Schwichtenberg's result, although tie details of the construction 

of 0 in K is much more difficult. 

Several investigators have considered syntactically formulated 

hierarchies which are quite similar to the depth of nesting hierarchy. 

Parsons [63 ] observes that iteration is the feature of primitive recursion 

that increases functional complexity. Using this as a guide, he defines a 

hierarchy based on nested iteration rather than nested primitive recursion. 

With this phenomenon in mind, he builds his classes S?  so that functions 

defined by primitive recursion are placed in ths class only when p 

nested iterations takes place. He shows that for p s 2  £p = E^1. 

Schwichtenbers, [51] and Meyer and Ritchie [58] also build hierarchies 

similar to the depth of nesting hierarchy.  They place f e Ksim in case 
n 

f is defined  from functions  in K^J by an instance of simultaneous recursion. 

They show that  for n :> 2    KSim = E". 

- 
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Meyer and Ritchie feg ] propose yet another syntactically formulated 

hierarchy.  They consider a simplified programming language, and they 

measure program difficulty by depth of nesting of LOOP-END pairs.  Their 

language consists of five possible types of expressions, (1) Set Xtox+l, 

(2) Set XtoY, (3) Set X to zero, (4) LOOP, and (5) END.  A sequence of 

instructions is a Loop program when LOOP and END instructions are matched 

like left and right parentheses.  LOOP-END pairs affect the normal sequ- 

ential flow of the program.  If P is e Loop program, and register X contains 

integer x, then "LOOP X, P, END" means that program P is to U executed x 

times before the next instruction (if any) after the END is executed. 

A program hierarchy L is constructed by placing program P in L if 
n 

P includes LOOP-END pairs nested to depth at most n. A hierarchy of 

functions I for n ^ 0 is now derived from the L hierarchy: f e £ in 
" n n 

case some P c L computes f. 

Since loop structure and the schema of primitive recursion are very 

similar, a routine inductive argument shows that (J £ = primitive recursive 
n 

n 
functions.  Moreover, Meyer and Ritchie are able to relate thai   xip 

hierarchy to Gzregorczyk's by linking the classes JC directly to the modified 

Gzregorczyk functions g .  They defi le a sequence of functions h as follows: n n 

x+1 if x = 0 

x+2 if x s 2 

hn+1(x)=hn(x)(i). 

--■- ■ - -- ■   ■    —  
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Thus f « F ^ is "predictable computable" in the sense that the space 

needed to compute f is bounded by some function in F .  In a moment we will 

sharpen the notion of predictability by giving explicit uppei bounds on the 

space needed to compute f e F ,• 

It is easy to prove that F c F, c ••• c F C •••.  To show that all 
0   1        n 

the containments are proper, Ritchie develops a sequence of functions 4   , 
0 

£y   ***. f
k. •*• which are similar to the Gzregorczyk functions, anu which 

yield canonical estimates on the size of functions in F • 
f (x) k 

Theorem:    Let f  (x)  = x,  and  let f,,(x)  = 2 n      .     Then for each n,   f    e F 
u n+l n        r 

and  if g  e F  ,   then g(x-,   •••,  x )  < f  (K«max(x..,   •••,  x )). 
n i n n in 

Easy inductions prove both claims, and since for strictly increasing g 

2 majorizes k»g, f ,, ^ F .  This establishes the Ritchie hierarchy theorem. 

Theorem:  For all n ^ 0, F c; F ,. 
  n r    nfl 

Ritchie next establishes that the elementary functions E c U F • He 
n n 

accomplishes this by showing that exponentiation is in F-, and that explicit 

transformation, limited recursion, and composition do not lead out of the 

F-classes.  Finally by carefully analyzing and reworking the Kleene normal 

form Theorem, Ritchie is able to show that every f ^ U F Is elera- 
n 

entary.  Thus his hierarchy is precisely a hierarchy of the elementary 

function?. 

In [44] Herman develops a variant of the Ritchie hierarchy, based on 

unary Turing machines.  As in the Ritchie formulation, Herman places 

feG in case some machine T computes f and G (x., •••, x ) < f. . (K'maxCx.... .x )), 1 Tin    i-l       1   n 

 - ■ 
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By examining carefully the resource neec^d to convert between binary and 

unary notation, he proves that for all i > 0 Fi C G   C F 1, and thus 

that U G = the elementary functions, 
i  1 

Cleave [81] proposes another method of building hierarchies, based on 

register machines. He fixes a set of functions Tt  and defines a E-program 

to be a finite sequence of instructions 1(1), 1(2), .... i(k).  Instruction 

may be of two forms:  I(j) may be arithmetic, that is, of the form 

F(R1, •••, R ) -» R (For F e S, apply F to the contents of registers R, ••• R . 
v 1     m 

and place the result in Rp) ; or jump, that is J^er, ß) (if Ri = 1, go to 

instruction 1(a), and otherwise, go to I(fi)). He limits his machines by 

specifying a special register J which is decremented by one each time a 

jump instruction is executed. When J = 0, the program halts. 

Definition: A function f is (h-E) computable (that is, f e (E)h) if some 

2>program P computes f at each argument x, with special register J initially 

set to h(x). 

Using this notion of bounded computability. Cleave constructs his 

hierarchy. 

Definition:  The Cleave hierarchy. 

1. f e E0 *» f e (E)  for some constant function h 

2. f e Errfl o f e (E)8 for some g e E • 

For E = {+, x, =) Cleave shows the following: 

Theorem: Ifc ^ ^l ^ *" ? ^n ^ •,•' and y En = elementary functions. 

- -  -  . - -  —   
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In  [45], Herman considers the equivalence of the Ritchie and Cleave 

hierarchies.    He shows  that  for E -{+.-),    U   I    = elementary functions, 
n      n 

and using an induction argument based on Ritchies  functions  ff 1 he 
L  nJ neN' 

shows that for 1 * 0. F   c: G       c;E       CF       c r 
' 'i V ^i+l ? ^i+2 y Fi+2 ? G^+3• 

Section 3.  Transfinite Hierarchies 

In the first part of this chapter we discussed w-hier irchies of two 

well understood, effectively presentable subclasses of the recursive 

functions, the primitive recursive functions, and the elementary functions. 

In this section we discuss various attempts to build natural, effectively 

constructed transfinite hierarchies which are designed to exhaust the 

class of recursive functions in a non-trivial way.  The results we con- 

sider here are almost without exception, negative.  The fundamental 

difficulty with building exhaustive hierarchies is the highly non-in- 

variant character of the ordinal names used to index such hierarchies. 

These "naming- difficulties have led to the formulation of transfinite 

hierarchies with mort modest goals, namely, the construction of hier- 

archies indexed by apparently "natural" names for a small subset of the 

constructive ordinals.  We discuss non-exhaustive hierarchies of this 

type at the end of this section. 

One natural and attractive approach to the problem of constructing 

exhaustive transfinite hierarchies is through ordinal recursion.  One 

might formulate such a hierarchy informally as follows: place a function 

f r F^ for a < a^ (the first non-constructive ordinal), if f can be 
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defined by ordinal recursion over some well ordering  ß s » involving 

functions  in F^  for \ s a.    By unnested recursion over a well-ordering R  of N 

we mean the  following: 

Definition:     Let R be a well-ordering.     Define R to be 

xRa    = 

Then a  function f is defined by ordinal recursion over R  (or unnested 

R-recursion),   from given functions g.,   •••,  g    if 

f(0)     =   n 

f(a+l)    =    h(a), 

where h(a) has the form p(a. f(q(a) R a+1)), and p, q are built up from 

81' "*• 8k by comP08ition- 

Definition:  Let U(R), the unnested R-recursive functions, be the smallest 

class containing + and closed under composition, explicit transformation, 

and ordinal recursion over R, 

The next theorem sl-ows that the proposed hierarchy outlined above 

collapsej at the earliest possible stage.  The character of the proof 

hints at the close link between the "strength" of a transfinite hierarchy 

and the ordinal names used to index the hierarchy. 

Theorem:  Myhill, Routledg,* Uol, [50], [31] and [32].  Let f be any 

recursive function. Then there exists a recursive well-ordering R 

can be shown to be elementary) of order type U such that f e U(R). 
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One proof of this theorem proceeds by constructing R from the running 

time function $ for some Turing machine T which computes f.  R is built 

with an encoding of $(0), $(1), •••  embedded in it in an R-ordinal 

recursive way.  $ can be extracted from R in an ordinal recursive way, and, 

using the Kleene T-predicate and $, one shows that f e U(R). 

This is certainly a provacative result; it indicates that if there 

is to be any hope of a successful transfinite hierarchy of the recursive 

functions, then the issue of ordinal names must be treated with considerable 

care. 

With this in mind Kleene [27],  proposed a subrecursive hierarchy in 

which classes of functions are attached to the nodes of 0, the Church- 

Kleene system of ordinal notations.  We assume the reader is familiar 

with 0; a readable account of 0 and its properties may be found in 

[2 , pp. 205-213]. 

Hoping to avoid the difficulties which arise from the Myhill-Routledge 

result, Kleene restricts 0 by allowing only primitive recursive funda- 

mental sequences.  He shows in fact that under this restriction 0 still 

names all the ordinals < u..  In what follows, we assume 0 is restricted 

in this way. 

Loosely speaking, Kleene*s hierarchy starts with the primitive 

recursive functions at the base level, and is built up at successor levels 

by taking an enumerating function for the previous class and forming its 

primitive recursive closure. At limit notations Kleene assigns the 

primitive recursive closure of a function which encodes the enumerating 

functions of the classes named by the fundamp^tal sequence. 

 ■ '—- --■i i        iiiiii-aiMi»iri»iniiiifcriiiiii«iiiii i MI—muni—ia ■...■. ....... -..  — - -  — 
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Deflnltlon:  The rlieene subrecursive hierarchy.  Let prf(a,b) enumerate 

the functions primitive recursive in f.  The enumeration procedure pr 

is uniform in f.  Associate ^ tunction h with each x e 0 as follows: 

(1)  if x = 1, let h (b,a) s 0 

(ii)  if x = 2y, let hx(b,a) = pr^(b,«) 

VOioCb)) 
(ill)  if x = 3*5 let hx(b.a) » prdr^b), ■)) 

To each x e 0 assign the class of functions P , where P = the primitive 

recursive closure of h . 
x 

Let us consider  the issues Kleene's hierarchy raises.     To be completely 

successful,  his   (or any similarly formulated)  hierarchy should satisfy 

the  following properties: 

(1)       (uniqueness)    J jr each o- < u      if x,  y e 0 and   |x|     =   |y|     - 

ex (i.e.   if x and y are notations  for a)   then P    = P  • 
x   y' 

(ii)  (proper expansion) For each a < u,   U.   Px 5 «, the recursive 
functions; Ivl Ov * * lx|0<br 

(ill)       (completeness)      (J    P    = R:  and 
xeO 

(iv)  The mapping x -» p should be reasonably constructive, e.g., 

Px is uniformly r.e. In x. 

Such a hierarchy would provide considerable information about the 

class of total recursive functions.  It would imply (subject to the 

restriction to primitive recursive fundamental sequences) that sub- 

recursive hierarchies ar« ordinal invariant:  no matter what choice of 

— — -   
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names we select, we always generate the same sequence of classes of 

recursive functions.  Moreover a hierarchy satisfying the properties 

listed above would provide us with * useful classification technique 

for measuring the complexity of recursive functions. We cculd identify 

the complexity of a function f with the least ordinal a  such that 

|x|0 = a and f e P^.  This would be a significant measure of function 

complexity, since uniqueness would guarantee that no function f could 

appear at an artificially early level. 

Unfortunately the Kleene hierarchy, and indeed an^ reasonably con- 

structive hierarchy built in 0 must fail to satisfy the first three 

criteria.  This breakdown means that any transfinite hierarchy of 

recursive functions must depend critically on the choice of ordinal names 

used to index the hierarchy.  These negative results have made the aims 

of subrecursive hierarchy theory much more modest, and as we shall see 

much of the recent work on hierarchies is concerned with finding "nice" 

names for sequences of ordinals,  and building non-exhaustive hierarchies 

along these paths. 

Axt [12] is the first to consider Kleene's hierarchy. He shows that 

indeed the Kleene hierarchy is unique for a < co2.  However, he also shows 
o 

non-uniqueness at w ;  there exist x, y E 0 such that Ixl  = lyl  = to2 I   IQ      1^ IQ 

but P ^ P . 
x   y 

Feferman [38] considers; Kleene's hierarchy in a more general setting, 

and his work reveals a great deal about difficulties involved in building 

successful hierarchies in 0.  Feferman proves his results for any 

"primitive recursively expanding hierarchy", that is any hierarchy 

■———1——MM 
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satisfying five (rather complicated) abstract properties, the most re- 

strictive of which specifies that classes at limit notations must contain 

a function which diagonalizes across the classes named by the fundamental 

sequence. 

His first result shows that in a primitively recu-sively expanding 

hierarchy, and in the Kleene hierarchy in particular, every recursive 

function occurs at a low level. 

Theoran:  Let (*J)JCQ be the Kleene subrecursive hierarchy.  For any 

f € R tb3re is a d c: 0, ld|0 = U , such that f e P .  Moreover for any 

b e 0 there is a d e 0, b < d and |d|  = |b|  + u mch that f e p . 
^J        ü     0 d 

Feferman proves his theorem by showing how to encode any recursive 

function into a notation for u ,  This result shows that for a large class 

of hierarchies, uniqueness must fail. 

In [62],  Parikh strengthens Feferman's non-uniqueness result. 

Definition:  (Parikh)  A recursive transfinite progression of sets of 

functions over 0 (or any suitable subset of 0, for example, 0 restricted 

to primitive recursive fundamental sequences) is an r.e. predicate 

C(p, q, a, b) such that 

(i)  x e 0 implies that for any a, {< p,q > | C(p,q,a,x)} is a function 

f  :   F ■♦ N; and 
a,x 

(ii)  If x, y e 0 and x <. y, then C C C , where C - (£ I !• (£ - f  )! 
0        x ^ y        x     ' a ,x 

and C  = (f I aa(f = f  )] . 
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For such recursive transfinite progressions, of which Kleene's hierarchy 

is certainly an example, Parlkh proves the following theorem. 

Theorem:  Every recursive transfinite progression of sets of functions is 

Al non-unique; that is, there exist x, y e 0, |x|0 = u
2
+i sucn that 

c   ¥ c . 
x   y 

Parikh's theorem is proved by methods similar to but simpler than 

those used to prove Feferman's result.  The generality of his theorem is 

convincing evidence that transfinite subrecursive hierarchy are highly 

ordinal-nPme dependent. 

Feferman has two other results, which, taken together, give concrete 

information on how dependent the strength of a hierarchy may be on the 

indexing ordinals for the hierarchy.  By a path Z in 0 we mean a subset 

of 0 well-ordered by <0 and containing, with any d c z, all the predecessors 

of d.  Let (zl denote the order type of Z. 

Theorem:  Let K be any ordinal s uy  Then there exists paths Z, Z' c 0, 

|Z| - K + u for K < o1, and|z'i = Ul for K = u^such that U P = 

U  P =R. xeZ X 

xeZ' x 

To prove the theorem with K < u^, Feferman enumerates the recursive 

functions (a highly non-constructive procedure), and then, using ♦ he 

iterates the techniques of his earlier theorem to obtain all the functions 
3 

by K + a) .  For K = uy he enumerates 0 and the recursive functions, and 

he builds Z by alternately obtaining a new function, and then adding (+ ) 

the next element in the 0-listing.  This iMult establishes the existence 

of "complete" paths of length as short as to3, and as long as uy This 

 -■ - -- ■■-"-—-—- —■ - -    
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is certainly a striking instance of ordinal non-invariance.  It also shows 

that proper expansion is an impossiblity, at least for hierarchies of 

tha Kleene type.  The next result sharpens this phenomenon even further 

by showing that there are "incomplete" paths of length u . 

Theorem:  These exist incomplete paths in 0 of length w .  That is, there 

exists a path Z e 0, |z| = uy and an f s R such that for all d e Z, 

f f-  P.. 
a 

This is one of the deepest results  in the theory of subrecursive 

hierarchies.     The proof of the  theorem builds on work doae by fefemvan 

and Spector  in  [39],   in which a "non-standard" version of 0.  0* is 

studied.     0    is defined  inductively as  the intersection of all hyper- 

arithmetic  sets X satisfyii^ 

(i)       lex 

(ii)       if d e X,   then 2d  e X and d < „^ 
0* 

(iii)       if CD  (n)   e X for all n and qg   (n) <     Q,  (nfU  for all n. 
• e o*    e ' 

then 3»5e  5 0  . 

Interested readers unfamiliar with hyperarithmetic  sets and their 

properties  should consult   [2t   pp.   381-402], 

Using this inductive definition,  one can construct subrecursive 

hierarchies  in 0* exactly as one constructs  them in 0.    Moreover, 
* 

OqO    and for d e 0,  the class of functions PJ attached to the d-node 
d 

in 0 is exactly the s^me as the class Pd in 0*.  Feferman and Spector 

show that for any d e 0* - 0. Z = C'Cd) n 0,( where C'(d) = {x | x < ^ d}) 

is a TT^ path through 0 of orcer type uy  (For background material 

on TT^-sets, the interested reader should consult [ 2, 397-403]). 
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Picking such a T^-path Z in 0, we know there is a d e 0* such that 

d "sits on top of" Z.  Since the 0*-hierarchy overlays the 0-hierarchy and 

agrees with the 0-hierarchy on 0. we know that Pd must properly contain 

x^Z Px*  HenCe yeZ  
Px mUSt 0mit  SOme recursive function, and the f alowing 

theorem, which applies to anjr subrecursive hierarchy in 0, is therafore 

established: 

Theory.:  Let Z be a nj-path through 0 such that Z - C (d) n 0 for d e 0*. 

Then there exists f e R such that f ^ (J P • 
xGZ x 

Co. bining the last two results we see that the exhaustive power of 

a subrecursive hierarchy, at least of the Kleene-type. is intimately 

tied to the ordinal notations used in the hierarchy.  In short, these 

results say that there are short (u3) complete hierarchies, and long (to ) 

incomplete hierarchies. 

An unpublished result of Mochovakis [82] provides still more infor- 

mation on the behavior of hierarchies in 0. 

Theorem:  For a e 0 (or any suitable version of 0, for example. Kleene's 

0 restricted to primitive recursive fundamental sequences), let A s N. 
a 

Then one of the following must fail: 

1. A = U A is hyperarithmetic; or 
act) 

2. P(x,a) =   [a e 0 and x e A ] e TTJ; or 
Ä        1 

3. For each constructive ordinal er. U    A c A 
Ixl<a ^ 

 — ■ -■ -    -- ■ ■    ii ■    ■ 
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Properly interpreted, this theorem says that for any hierarchy on 0 

built up in any manner which could possibly be considered constructive, 

if the recursive functions are exhausted at all, they are exhausted by 

some bounded levp.l in 0. 

Mochovakis proves his result by considering the TT|-predicate 

Q(x,a) = [[x ^ A and a = 1] or [x e A and (P(x,a))]i. The uniformization 

theorm [2, p.430] say- that there must be a hyperarxthmetic function g 

such that Vx Q(x, g(x)); but then the range of g is an unbounded hyper- 

arithmetic subset of 0, a contradiction. 

In the case of the Kleene hierarchy, if we set A = {e ( m e p ] 
a     ' ^e   a;' 

then (1) and (2) are true, and so (3) must fail.  Indeed, we saw for 

Kleene's hierarchy that this failure occurred at to2.  Thus, even if one 

gives up the goal of uniqueness for lueraichies in 0, one must still 

contend with the problem tuat either the hierarchy will collapse by some 

bounded level, or it will omit some function. 

By what we have just seen, hierarchies in 0 are extremely badly 

behaved. Such hierarchies can still be of use, however, for proving 

theorems about the various methods used in constructing hierarchies. As 

an example of this  we consider the Bass-Young hierarchy [701. This work 

has inspired many of the results in Chapter 2 of this thesis.  In what 

follows, the reader is assumed to be familiar with Section 2 of Chapter 2. 

Bass and Young build their hierarchy by starting with some complexity 

class ^(tp, where ^ is some sufficiently large recursive function. 

- - -     . . - - 
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At successor stages they assign to notation 2X the class y^). „here 

t2x is obtained fron, ^ by an application of the honesty theorems followed 

by an application of the compression theorem.  At limits they apply the 

union theorem of Meyer and McCreight [83], [84].  The resulting hierarchy 

is a recursive progression of sets of functions in the sense of Parikh. 

and so is non-unique at Al.  However. Feferman's results do not apply: 

the union theorem insures that a limit class is precisely the union of 

the classes named by the fundamental sequence.  In particular, the function 

which diagonalizes across the classes determined by the fundamental 

sequence does not appear in the limit class.  Indeed, an appeal to ehe 

speed-up theorem of Blum [ i ] and the well-foundedness of 0 shows that 

no function with h-speed-up can appear anywhere in the hierarchy. Here 

h e R2. the compression function used to build the hierarchy, is assumed 

to be monotone in its second argument. Using these techniques Bass and 

Young -re able to construct a hierarchy on the full g in which every 

function is in the Gzregorczyk class E4. 

Bass and Ycung use Parikh's non-uniqueness result to establish 

several results about inherent irregularities of honesty procedures. 

For example, they prove the following theorem. 

Theorem: For sufficiently large h e ft,, there exist honest functions t . 

t2 such that WJ  - 5(t2). but ?(h(x. t^x))) 4 ?(h(x, t2Cx))). 

This result and others like it in their paper led directly to our 

work in Chapter 2 on the honesty phenomenon. 

■ — • i      -  -      ... - 
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By what we have just seen, the non-invariant character of ordinal 

notations makes the construction of a meaningful exhaustive hierarchy of 

the recursive functions extremely unlikely.  The construction therefore of 

"short" hierarchies which classify only a portion of the recursive functions 

seems to be a more legitmate if more modest goal. 

We survey several approaches to this problem. Hierarchies can be 

built up by unnested and nested ordinal recursion over particularly natural 

well orderings.  By restricting attention to such w"ll-orderings one can 

avoid the difficulties inherent in the Myhill-Rou tledge result.  Another 

approach extends existing ^-length hierarchies into the transfinite. We 

discuss invariance between these hierarchies. A linearly-ordered Kleene 

hierarchy can be constructed by selecting a nice path in 0 and examining 

the Kleene hierarchy restricted to this set.  The results of these investi- 

gations show that if one chooses ordinal names with care, then one can 

indeed build interesting and singificant hierarchies of portions of the 

recursive functions. 

We begin by discussing work by Tait [52] relating unnested xnd  nested 

ordinal recursion over a well ordering R of N.  Recall that for R a well- 

ordering, the function xRy is equal to x if xRy and 0 otherwise. 

Definition: A function f is definad by nested R-recursion over R from 

functions g^ •••, gk if f satisfies 

f(0)  = n, 

f(a+l)  = h(a). 

  - JMMMuMiMMMM_ 
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where h(a) is built up from g1, •••, gk and f by composition, but where 

every application of f has the form f(xK a+1). 

Definition: The R-nested (ordinal) recursive functions, N(R), is the 

smallest set containing + and closed under the operations of composition, 

explicit transformation, primitive recursion, and nested R-recursion. 

Tait points out that, in the case of unnested R-recursion, computation 

of f(a+1) proceeds in a linear way down a well-ordering until f(0) is reached 

and evaluated.  For nested R-recursion, the computation of f(a+1) may lead 

to a computation tree, and the value of f(a+1) cannot be determined until 

the computations on each path of the tree have been reduced to known functions 

or constants  The comparison of th-.se two types of recursion lies in the 

analysis of these two forms of computation. 

Definition: Let R be a well-ordering. Define R* to be the limit of all 
a.     a7 a 

polynomials in u of the form U «a + u »a + ••• + u n.a  for a <: 
2 n     n 

Vl ^ ••• s »!< R. and a1, .... an integers. R* has order type JR'. 

If R is a recursive well-ordering of N we can assign integers to 

polynomials in u of the above form.  This assignment induces an R* ordering 

of N, and it is not hard to show that this ordering is primitive recursive 

in R. 

Definition:    Define ^ = «. ^ o ^ x ^  define Q    = <      o        . < 
r ■ .w.      V 

111118»   l^l   = ^ »  and  IQ^-II   
= u    •    Moreover,   for each n <    and 

Q    are recursive well-orderings on N. 

--- — --— „...■.■..  
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Using tree analysis of nested computaions as a guide,  Talc  shows 

that  for  the well-orderlngs < ,   nested recursion on <    ,   is reducible to 
n n+1 

unnested recursion on 0  . 
n 

Theorem:     For n ä 0,   If f c N(<    .,)   then f e U(Q ). 

Robbln     [68]  proves  the converse of Tait's  theorem and  puts   these 

results   In a more hierarchy theoretic   framework.     He obtains  significant 

results about various short hierarchies and their relationship to one 

another.     In particular he relates  these results to the multiply-recursive 

functions of Peter   [10]. 

Peter  invented  the multiply recursive  functions  after Ackermann 

had  shown that  nested double recursion  (Ackermann's  function)   leads out 

of the class of nested single recursion definable functions,   the primitive 

recursive  junctions.     The function ^ defined by the equations 

iK0.n)    =    n+1 

iKmfl,  0)     =    ^(m,   1) 

\Km+l,  n+1)     =    t(a,   ij,(m+l,  n)) 

is an example of a '^-recursive"  function:   the Inductive definition is 

done over  two arguments,  and the computation of \|r  is nested in the sense 

that  to compute i|r(m+l,  n+1),  one must  first evaluate i|r at other arguments. 

Peter generalizes  this to k variables   for k 2: 2 and obtains the  "k-recursive" 

functions  for each k > 0.     She considers the k-recursive functions with k 

as  a  parameter,   the so called multiply-recursive  functions,  and  shows by a 

diagonal argument that  for each k,   the k+1-recurslve  functions  properly 

contain the k-recursive  functions.     We denote the k-recursive  functions by N . 

i -   -■ 
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Robbin's first main theorem relates nested ar.1 unnested ordinal 

recursion to the Peter hierarchy. 

I^^:     NrH-l = ^n+l = ^V' 

Robbin relates  these results  to an extended version of the Gzregorczyk 

hierarchy and a  linearly ordered portion of the Kleene hierarchy.    He deals 

with  the  problem of ordinal   notations  by  specifying very carefully how 

limit ordinals are to be approached. 

Definitlon:     For a a llmit 0^inal «A   let a = u^Vl).     Define \ncv(n) 

such  that  lim a(n)  = cv to be a(n)  = cok+1. p4<i)
k.n. 

Using  this definition Robbin defines a sequence of Gzregorczyk-like 

functions W^ which are quite  similar  to  the modified Gzregorczyk  functions 

gn later  introduced by Meyer and Ritchie. 

Definition:     For a < u)W,  define w    as  follows: define w 
a 

x 
1.  W0(x) = 2 

2- Vi(x) = v(a
X)(V 

3.  W^Cx)  = Wa(x)(x) for or • limit ordinal. 

Thew^'s provide a natural way to extend the Gzregorczyk hierarchy, 

Definition:  For each a < </.  define E*  to be E(W ), that i« F* = 
a 

the functions elementary in W . 
a 

It is easy to see that a proper hierarchy is established.  Robbin 

is able to show that his extended Gzregorczyk hierarchy refines the hier- 

archy of multiply recursive functions, and hence also the nested and 

unnested ordinal recursion hierarchies. 
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Theorern:     For a < ß,  E* ^ Eß;  moreover,   for each k K   =     Q     £ 

Pbbbin^ proof uses ideas which were employed later  in the Meyer- 

Ritchie account of the Gzregorczyk hierarchy.    He proves a bounding le™ 

relating  the size of  the «^   t0 the multiply-recursive  functions,  and a 

key step in his proof is an appeal  to the honesty of the  functions   » . 

We remarked earlier that  the  1-recursive functions of Peter Je the 

primitive recursive  functions.     If f(x)  = g(*)(1)>  we say that  f ^ ^.^ 

from g by  l-fold  iteration,   and we can generate  the primitive recursive 

functions by using this  iteration sehen, instead of the schema  for primitive 

recursion.    Robbin extends  this equivalence,   showing  that  the k-recursive 

functions can be obtained by replacing the schema for k-recursion with a 

schema  for k-fold  iteration,  a generalization of  l-fold iteraticn. 

Using k-fold  iteration.   Robbin gives an analysis of a Kleene-type 

-"-hierarchy in terms of the multiply-recursive functions.    He defines his 

hierarchy as Kleene does,  but he chooses a single path through 0 out to 

M ,   the path determined by his «(n)   fundamental  sequences. 

Theorem:    Let P^.  a < ^ be the Kleene subrecursive hierarchy restricted 

to  the 0-path determined by the a(n)   fundamental sequences.     Then for 
n ^   !.   N      =      U    ,   P   . 

Robbin's work is an excellent example of how short hierarchies can 

yield  information about various  notions of difficulty for  subclasses of 

the recursive functions.    His results relate nested and unnested ordinal 

recursion to the multiply-recursive functions,  and  through the extended 

Gzregorczyk hierarchy,   to the actual size of functions. 

M^MMMM 
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Earlier we discussed a construction of Cleave's which yielded an 

(^-hierarchy of the elementary functions.     In the same paper Cleave extends 

his hierarchy to w ,  and  shows  that  the resulting hierarchy exhausts  the 

primitive recursive functions. 

2 
Definition:     The u -cleave hierarchy. 

f  e Z^j o    f e  (E)       for some constant  function h 

(ü)      forioo. fe^r+k   «fMZ)11   for h e 2^^ 

(Hi)       forr>0.   fe^r   «fe     0^.^ 

Cleave's work is of interest  for several reasons.     First,   the con- 

struction of a proper u    length hierarchy of the primitive recursive 

functions indicates that ordinal  length,   even for hierarchies which only 

exhaust a portion of the recursive functions,  can be a miäleading measure 

of hierarchy strength.     (Of course,   the subsequent construction by Bass 

and Young of a proper hierarchy in the  full 0 which fails  to exhaust E4 

is a more spectacular example of this phenomenon.)    Second,  Cleave's con- 

struction brings out some of the difficulties  involved  in the construction 

of hierarchies by machine theoretic means.     Indeed. Cleave points out that 

his hierarchy must die out at co2.    He argues as  follows:   since each program 

is of fixed  length,  P = 1(1),   1(2),   ...,   i(k),   If f c L 2  then all  the 

functions used to define f must appear in ^.k for some^k.    Hence,   extension 
2 

of the chain beyond u    yields  nothing new,   since any f e L 2     ,   say, must 
U)   +1 

already appear in some E   , • 
m«k 

This inherent limitation of Cleave's approach is by-passed by Constable 

■ ■-   —      -■ -    ■ - -■' - ■- 
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[18], who uses RASP machines to extend the Cleave hierarchy to e., the limit 
10 " 

(J  to 
of the sequence u), CJ , co , ... . A RASP machine is perhaps the closest 

tc ttai computers of all theoretically proposed machines.  Its fundamental 

characteristic for our purposes is its ability to monitor and modify itself 

in the course of a computation.  This is a fundamental difference between 

RASPs and register machines, and this difference accounts for Constable's 

successful extension to Sn. 

For ordinals a < en Constable carefully handles the problem of finding 

nice fundamental sequences. He puts a  in (unique) Cantor normal form. 

Q'1 a 
a = w «a, + -'-+u)n.a  for a. ^ ••• s a , and 

1 n     1        n 

a,, •••, a integers, 
i      n 

and then he defines his fundamental sequences; 

Definition: Let a < s    be a limit ordinal in Cantor normal form as above. 

If a    is successor ordinal, define 
n 

a 
cKx) =w •a1 + *,*+u) 

a  -1 
•x; 

if a is a limit ordinal, define 

or1 a (x) 
a(x) ■ u «a. + ••• + co u 

Using this  formulation of fundamental sequences.  Constable extends 

the Cleave hierarchy using RASP machines,  and he also extends  the Gzregorczyk 

10 
classes (already extended to co by Robbin) to e . His Gzregorczyk extension 

is a direct generalization of Robbin1s extension:  for cv < e0» E = E(w ), 

where W (x) = w ,(x) if a is a limit ordinal, and W (x) = W .  (x) iff a 

a a-l a a(x) 

is a limit ordinal. His RASP hierarchy of length 

■«MaiklriHhtfMte ^        ^       .-    -   ■ -    ■ ^UW^MMtflaHllMiHH 
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e0 Is proper because his RASP programs modify themselves in the course of 

their execution, thus .«voiding the problems of the register machine 

approach.  Constable establishes the following result: 

Theorem:  For * < e0 E^
1 . RASP(1+a)+1. where RASPß is the ßth RASP 

hierarchy class. 

Thus Constable is able to extend to G0 the growing body of results 

relating various generation methods for short hierarchies. 

In [71], Schwichtenberg also considers the equivalence problem for 

various ^-length hierarchies.  He shows that the modified Kleene hierarchy, 

the generalized Gzregorczyk hierarchy, and a standardized unnested recursion 

hierarchy all coincide up to eQ.    Ke defines standard fundamental sequences 

exactly as Constable does, and his version of the extended GzregorcEyk 

hierarchy is the same as Constable's.  Moreover, he extends, with minor 

modifications, Robbins version of the Kleene hierarchy to e .  His un- 

nested ordinal recursion classes, R^, are defined in a rather unusual way, 

and the analysis of these classes is the m>Bt  original part of the paper, 

Definition:  Define well-ordering S of N i s follows:  S = co S 
n 1   '  rrfrl 

A standard well-ordering of type a < e0 is a well-ordering of the natural 

numbers which is elementary-recursive isomorphic to an initial segment 

of S   for S < a s S^.. 
iH-1     n      nrfl 

Schwichtetiierg  considers only standard well-orderings < e  ;   functions 

defined by  instances of unnested \-recursion for standard well-orderings 

X < c0 are said  to be defined by elementary X-recursion.     The e^recursive 

functions,   then,  are the. set of functions which can be defined by elementary- 

S 
n 

■-■■•'  ■ — 
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X-recursion, ^ < EQ,   from given e0-recursive functions and elementary 

functions  in an elementary way. 

Schvichtenberg assigns ordinals < en  to e -recursive  functions,  and he 

uses  this assignment to define his ordinal recursion classes.     If f is 

defined explicitly from g^   •••,  gk in an elementary way,   then f is 

assigned the ordinal max^,   •••,   o^), where the a.'s are  the ordinals 

assigned to the g^i.     If f is defined wsing  an wcy-elementary recursion 

from g1,   •••,  g^,   then f is assigned the ordinal maxto ,   •••,   a ) + a. 

Definition:    R^ is  the set of recursive functions which are assigned 

ordinals s a. 

This rather curious definition is  the key to Schwictenberg's results: 

by allowing R    to contain functions defined by wa recursions,  he gives 

himself enough slack to prove his main result. 

Theorem;     For all cc < e0 the extended Gzregorczyk hierarchy class E    - 

Rcy = ^  the inodified Kleene class. 

The critical part of the theorem is the proof that R    c E  .    Here 
a       a 

Schwichtenbaieg iutroduces a  formal reduction system for the en-recursive 

functions,  and he develops a step-counting  function s . for each f e R 
t a 

which keep? track of the reductions necessary to evaluate f.  He shows 

that for f e R , s  e R   Moreover, he shows that each function in R a      z        a a 

can be defined from elementary functions alone by a single u»a  recursion. 

Using this he establishes his claim by proving that each function in R 
a 

is majorized by W (g(x)), where g is some elementary function. 

■   '—-•■'      ■    ■  ■■■— -■  ■ - ^ 
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Schwichtenberg also notes that the ^-recursive functions are equal 

to the so-called "provable recursive functions". A recursive function 

f is provably recursive if for some index e for f Yx 3y  T(e,x.y) is 

provable in elementary number theory, where T is the Kleene T-predicate. 

For a thorough account of the provably recursive function., see Fischer [40] 

Schvichtenberg's very elegant paper is one of the best examples of 

a successful hierarchy construction of constructive ordinal length.  His 

work is a natural extension of Robbin's work from coW to e . 

In a sense the Schwichtenberg result may be one of the last investi- 

gations in short hierarchy theory, while work in the Schwichtenberg frame- 

work obviously could be extended beyond e0> it is not .lear what sort of 

insight such an investigation would provide. 

We turn therefore to a different method of classifying the recursive 

functions, the method of subrecursive dagrees. 

Section 4. Subrecursive Degrees 

As we have seen, subrecursive hierarchies constitute an important and 

extensively studied approach to the problem of classifying the recursive 

functions.  A fundamental problem with the hierarchy approach is the 

difficulties inherent in attempts to exhaust the recursive functions in 

any meaningful way. An immediate attraction of the degree approach, which 

we turn to now, is inclusiveness: every total recursive function belongs 

to some primitive recursive (or elementary recursive) degree. 

 ■J^.J^.- L......    ^..  ^ -          .     . . .       .. --■ ■'- -— ■    ' 
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The degree approa-.h was initiated by Kleene [27]. He directly 

applied the concepts and notations of Turing degrees of unsolvability to 

the subrecursive case to obtain primitive recursion degrees. 

Definition:  Let f and g be total functions.  We say f is primitive 

recursive in g, f ^ g, if f is definable in a primitive recursive way using 

g as an additional initial function.  The degree of f, d(f) = {g | f •■ g aid 

Following the development of Turing degrees closely, he defines d(f)U 

d(g) (the join of f and g), and d(f)'   (the jump of f).  d(f) U d(g) = 

f   g 
d(2  • 3 ), and d(f)1 equals d(h), where h is an enumerating function for 

the functions primitive recursive in f which is generated in a uniform, 

primitive recursive way. 

Kleene ends his work here, and Axt [12] continues Kleenes investigation 

of the basic properties of primitive recursive degrees. His main result is 

the analogue of the celebrated Friedberg-Muchnik Theorem. 

Theorem:  Jor each n there exists n pairwise incomparable primitive 

recursive degrees contained in the recursive Turing degree. 

«e emphasize that primitive recursiveness is not the only notion 

which can be analyzed by a degree approach.  Indeed, we could just as 

easily study elementary degrees or multiply-recursive degrees and achieve 

basically the same results.  In fact, with few exceptions, theorems proved 

for one such concept carry over to the others with little effort. 

We can also consider studying subrecursive classes of functions, 

rather than degrees. 

  _  
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Definition:  Pr(f), the primitive recursive class of f, is the set of 

functions primitive recursive in f. 

It is not hard to show that there is an order preserving isomorphism 

between the primitive recursive degrees and the primitive recursive classes 

(or, for that matter, between elementary degrees and elementary classes). 

Indeed, the map which sends d(f) -♦ Pr(f) is the desired isomorphism. 

Much of the work to date on the structure of subrecnrsive degrees has 

actually centered around subrecursive classes rather than degrees, and 

we consider these investigations now. 

Early work on the structure of subrecursive classes was done by 

Meyer and Ritchie [72].  They consider elementary honest classes, as 

outlined in Section 1 of this chapter, and they show that between any two 

Gzregorczyk classes En and E   for n & 3, there are dense chains of 

elementary honest classes.  They prove their result by interpolating 

between the iterates of g , where E(g ) = En and E(g  n) = L'\x g(xm = 
n n ml       0n K ' 

They also prove the existence of denumerable incomparable families 

of elementary honest classes between E and E , 

Feferman [38] also has a density result:  he shows the existence of 

dense chains in 0 , and hence that there are dense chains of primitive 

recursive degrees. 

Similar results by other investigators are discussed at the end 

of Chapter 3. 

■■■- —   
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In a series of three papers [8 ]. [85], and [86], Machtey develops 

an extremely elegant structure theory for elementary and primitive recursive 

classes. 

Definition:  I et C(f) denote the subrecursive class generated by the 

recursive function f.  If the class under consideration is the set of 

functions elementary in f, then C(f) = (C (f) | i £ N} . where C.(f) is the 
.th r -* 
i  function elementary in f. 

Central to Machtey's approach is his complexity-theoretic point of 

view.  He picks as a measure of computation Turing machine space (see 

Section 2 of Chapter 2 for definitions).  He then makes a fundamental 

distinction:  a class C(f) is an honest class if C(f) = C(S ) for somp 
~    ~ i 

space function (measure function) S.; otherwise C(f) is said to be a 

dishonest class.  The fundamental property of honest subrecursive classes 

is that they are complexity classes, that is, they equal the t-computable 

functions for some recursive function t.  Machtey establishes a great many 

structure results in these papers, and we consider some of them. 

Theorem:  Every countable partial order can be embedded in the dishonest 

subrecursive classes. 

Machtey proves this result using techniques developed by Sacks to 

analyze the structure of the r.e. Turing degrees. 

Definition:  Two sequences of honest functions f„, f,, ••• and g  s 
0  1        "O  1' 

determine a gaj, if, for all i, cU.) C C(f.+1), C(gi+1) c C(g.), and 

■S^V? E^)- An effective gap is a gap for which there is a set 

^O' 11' ***»5 which is recursive in 0" (the complete r.e. Turing degree) 

such that for all i f. = cp.  and g    = cp 
:,   ^j     J   i2j+l 

i «■in 
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Theorem:  Any countable partial order can be embedded in the honest 

subrecursive classes between any effective gap. 

This rather complicated result has two important corollaries. 

Corollary:  The honest subrecursive classes are dense; that is, if f and 

g determine honest classes C(f) C C(f), then there exists an h such that 

C(h) is honest, and C(f) 5 C(h) 5C(g). 

Corollary:  No r.e, properly increasing sequence of honest subrecursive 

classes has a least upper bound in the honest subrecursive classes. 

Machtey also proves the following result, which is rather unexpected 

given that the corresponding result fails for the r.e. Turing degrees. 

Theorem:  The partial ordering of the honest subrecursive classes is a 

distributive lattice. 

The novel element of Machtt. 's work is his distinction between honest 

and dishonest subrecursive classes.  This is a distinction which allows 

the elegant methods of complexity theory to play a role, and leads to his 

more interesting results, for example, his lattice result for honest 

degrees. 

In [92], Ladner examines the structure of subrecursive classes and 

obtains results similar to Machtey's. 

Theorem.  The subrecursive degrees are dense, and are not a lattice. 

He also considers the problem of minimal degress. 

Theorem:  There exist minimal pairs of elementary degrees.  That is, there 

exist recursive functions f and g such that if h <: f and h s g, then h is 

elementary (here h <: f means h is elementary in f). 

■  ^^^_a^MM^kM^^^^^M^^^MM-MaA-BMB^M^^^M^Ma^^^ 
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Ladner is particularly interested in considering the range of his 

(or Machtey's) results.  His methods certainly apply to primitive recursive 

or multiply-recursive degrees, etc., as do Machtey's.  However, he also 

discusses abstract notations of reducibilities which, hopefully, will shed 

some light on concrete problems in theoretical computer science.  We 

discuss one such notion here. 

Definition:  A set S of unary functions is a space class if it is r.e., 

contains the identity, and for all f and g in S and constants c and c 

there exists an h e S such that 

(i)  h ip increasing 

(ii)  h(n^ a c1'f(n) + c2 

(iii)  h(n) k f(x(n)), 

(iv)  h(n) :> max[f(n), g(n)]. 

The class of linear functions, and the class of polynomial functions 

are examples of space classes. 

Ladner considers 0-1 valued functions, that is "decision prohiems", 

for his notion of reducibility.  If p(x) and g(x) are 0-1 valued, he 

defines p to be S-space reducible to g if some oracle Turing machine with 

oracle g coinoutes p in space bounded by some function in S. 

He then concludes that for the degree structure induced by S-space 

reducibility, the two theoreim. of his paper quoted above are true. 

HAÜ-MMMl-^MilMM 
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Chapter 2 

Honest Bounds for Complexity Classes of Recursive Functions 

1.  Introduction 

Let y(t) be the set of recursive functions computable by machines 

using t(x) computation steps on argument x, for all but finitely many 

inputs x. We call t a name for the complexity class 7(t)       Suppose we 

allow our machines to run longer, say h(x,t(x)) steps on argument x, 

where h is some fixed recursive function.  One might expect that for 

large enough h, permitting our machines to run longer by an amount h 

will always allow us to compute new functions, i.e. 3f(t) is a proper 

subset of y(h(x.t(x)).  This turns out not to be the case:  the "gap 

theorem" [2], [3] implies that for every recursive h there exists a 

recursive t such that 9(t)  = ?(h(x.t(x))). However, if we restrict our 

attention to names from a certain subclass of the recursive functions, 

then we can indeed uniformly increase the size of our ^-classes. 

Informally, we call a recursive function t "honest" if some machine 

computes t(x) in roughly t(x) steps for each argument x.  (A precise 

definition is given in Definition 1 below.)  Then according to the 

ft*«UMMM>IIMI 
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"compression theorem •• [3], there exists a single recursive function 

h such that for every honest t. 9(t)   is a proper subset of ^(h(x.t(x))). 

Thus the phenomenon of the gap theorem is avoided by restricting attention 

to honest functions.  it is a surprising consequence of the "honesty 

theorem" of McCreight and Meyer [4], [5] that there is no loss of 

generality in this restriction.  Namely, for any recursive function t 

there is an honest recursive function f such that ^(t) = ^(t'). 

In this paper we present a new simplified proof of the honesty 

theorem, and then we analyze the possible behaviors of precedures for 

constructing honest names equivalent to arbitrarily given names.  Part 

of the motivation for this analysis springs from the construction of 

hierarchies of recursive functions based oi computational complexity. 

Bass and Young [7] have observed that application of the honesty theorem 

followed by the compression theorem to a function t yields a reasonable 

natural "jump" to a larger complexity class.  The behavior of this jump 

operation and the resulting hierarchy of course depend critically on the 

honesty procedure being used. 

Section 2 describes our notation and the axioms of Blum fl] which 

provide a machine-independent characterization of running time; Blums 

measured sets [1] and classes of honest functions are shown to be essentially 

equivalent.  Section 3 consists of our new proof of the honesty theorem. 

In section 4 we consider honesty procedures which work on partial functions 

- 
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as well as total functions, and we show that such procedures must generate 

arbitrarily large names for any complexity class.  As a corollary we 

obtain another "gap"-like theorem which shows that every complexity class 

has honest names which are arbitrarily large on all but a vanishing 

fraction of arguments, thereby strengthening a result of [8].  In section 

5 we show that honesty procedures restricted to total functions need not 

yield arbitrarily large names for classes, and can preserve monotonicity, 

thereby settling questions raised in [7], [4]. 

2.  Preliminaries 

For notatio- from recursive function theory we follow Rogers [9]. 

For each * i   ft, P    stands for the partial recursive functions of 

n variables. R  stands for the total recursive functions of n variables. 
n 

We use "(a.e.)" to denote "almost everywhere", which for our purposes 

stands for "all but finitely many".  Similarly "(i.o.)" stands for 

"infinitely often". 

If t and CD are partial furotions and CD is undefined at argument x 

we adopt the convention that iKx) ^CD(X). 

Suppose {CDQ. CD,,...} is a G<3del numbering of IP .  A measure on 

computation \l]    $ = {$0, §^   ...]   is a sequence of functions in P 

satisfying 

1) Vi ^ /^fdom (üi) = dorn (» ) ] 

_.___.. IMMHIIMMI ___ _«. 
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2) M x yf$1(x) = y] is a recursive predicate. 

If we think of our Godel numbering in the usual one-tape Turing machine 

formalism, then 

•i(x) = "the number of steps in the computation of the ith Turing 

machine on argument x" is a measure on computation. 

Henceforth let $ be some fixed measure on computation.  Then we 

define for any total function t 

F(t) - (1 f 4r| flD1 € Rj and ». « t (a.e.)}, 

and 

-(t) - ((p1 | 1 € F(t)}. 

That is, F(t) is the set of (indices of) total machines or programs which 

run in time t, and ^(t) is the set of total functions computable within 

time t.  Similarly we define for any partial function If 

Pp(*) = {i € #]  #< M (a.e.)] 

and 

y (♦) = (aDi I i € F (t)). 

A sequence of partial  functions *-(♦„.  1^,   ...)   !■ said to be an 

r.e.   sequence of partial  functions if \i x|i|f   (x) ]  6 P . 

-  ■ -  - 
 B^mimmmiH    | |     --       - ^.. ---    ■-        --       -■ 
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Deflnltton 1.     (McCreight-Meyer   [4]) A  function ^ € Pj  is g-houest  for 

g € R2 if there is an i such that G^ - f and •    * ^xg(x,i|f(x))   (a.e.)- 

Definition 2.     (Bl m   fl])     An r.e.   sequence of  partial   functions 

* " i^Qt  ^i*   •••]   is said  to be a measured set    if 

\ixyf\lri(x)  = y]   is a recursive predicate. 

The relationship between honest  functions and measured  sets  is 

explained by  the  following  theorem of Meyer-M-.Creight   [4].     Since  the 

proof appears only in McCreight's unpublished  thesis   [5],  we reproduce 

it here. 

Theorem 1.     f4],   \5].     Every measured set f is made up of g-honest  functions 

for some g f «2;   furthermore  the set of g-honest  functions  form a measured 

set. 

Proof.     Let Y =  f^,   il^,   .,.]   be a measured set.     By Definition 2 and 

elementary recursion theory there is an s € R.   such that  t    -Q Define 
1 i   s(i) 

g(x,y) = max[$s(i)(j) | i, j 5 x and ^(j) s y) . 

Then for x > i we have $s(i)(x) s g(x, ®s(i)(x))r and so for each i 

(»s (i.   = f. is g-honest. 

* 
Measured sequence would be more accurate, but we conform to the 
terminology of Blum fl]. 

_ .....---  ■■_ — -.,■..._  . ^ —.—J.-^M „ .   .-   ..  . .     . M^^.-.— 
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To prove the second statement consider the partial recursive function 

%i,j,k) for CT eR3' whlch, roughly, imitates (ü^X) whenoi^x) appears to 

be g-honest from arguments j   to x.    More precisely 

VX)        l£f<x s J 2nd ^(x)  ^ k or  (x > j  and 

•jC«) s g(x, qB1(x)))] 

and[(Vy s j^S^y)  > k ^ ^(y)  > x]] 

■MKVyXJ < y ^ x)[il(y) < x ^ $ (y) 
s g(y, cp^y))]] 

otherwise. 

Vi.j.k)^ 

It  follows  from the definition of measure on computation chat \i,  j. 

k.  x'   2foa(i,j,k)(x)  = z]  l8 a "cursive predicate.     Hence 

S      ^ff(l,J,k)   '   i'i'k ^ 0)   i8 a measured set. 

We claim S equals  the g-honest  functions.     Indeed  if for fixed i.  j.  k 

V*) « 8(x, »l(x))   for all x > j and 

k :» maxf^Cy)   I  y s j and ^(y) convergent}, 

^"^(ij.k)  =^i ^^(i.j.k)   i« «"honest. 

If however the preceeding condition is not met.   th««^^  diverges 

(a.e.).  but such functions are also  (by convention)  g-honest.     So S  is 

a  subset of the g-honest  functions. 

■ ■    ■ - - ■   .     . -      til ■—■■■IB II 1   I Ml    I 
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Furthermore, if y U  any g-honest function, then y  = ^  for some i 

Puch that ^(x) ^ g(x. Vi(x)) for all x > j for some j.  Let k = 

maxr^Cy) I y S j and « (y) convergent]. Then y - <P ,,  , , and we 
CT(i,j,k) 

conclude that S equals the g-honest functions. D 

W« state, for completeness, the following generalized compression 

theorem of Blum [1].* The compression theorem says that an r.e. sequence 

of partial recursive functions is a measured set precisely when a uniform 

procedure exists for constructing, for each function in the sequence, a 

0-1 valued partial recursive function whose complexity is only a little 

bit above the designated function. 

Proposition. Let Y = (^ ^ ..0 be an r.e< sequence of partial recurslve 

functions. Then Y is a measured set if and only if there is a p € R and 

an r € ^ such that (D Vr(i)   is  0-1 valued. (2) domain fer(i)) = domain C^). 

(3) $r(i) s\xfP(i.x. ^(x)], and (4) «*, - 5>r(1), then »e > ^ (a.e.). 

It is an immediate corollary of the compression theorem that if we restrict 

attention to recursive functions t from a measured set Y. then we can 

uniformly enlarge f(t) by composing t with a fixed recursive function h 

independent of t. 

Corollary- Let Y be a measured set. Then there exists an h € R such 

that if t € Y. t €KV  then5(t) c yc^x[h(x. t(x))]). 

We remark that Blum's theorem in fl] p. 333 is Incorrectly stated- 
the correct statement is given above. 

   - -    — ■— J -^ 
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Proof.  Let h(x,z) = SSi [p(e,x,z)], where p is the recursive function of 
esx 

the proposition. 

Definition 3.     Let s € R   .     s  is an honesty procedure on P.   if \mtxtykp        (x)  = 
1 ^s(e) 

y]   is a recursive predicate,  and  if for every e ? fo  )  = "? fo ) 
P    e p    8(e) 

Definition 4.     L«t ■ € J^.     s  is an honesty £rocedure on R.   if Xe.x.xfo  ,  , (x)   = 1 s(e) 
y]   is a recursive predicate,  and if for every totals   , ©   ,  x   is  total and 

e      8(e) 

e s(e) 

Notice  that  not  every honesty procedure on J^ need be an honesty  procedure 

onR1:     an honesty procedure on Pj  need  not map  total   functions   to  total 

functions.    However,   suppose s  is an honesty procedure on P   which also 

preserves F-classes.    That  is,   suppose that  for every t,  F (» )  - F fa ) 
P e    pv 8(e) 

Then a minor modification of s yields an honesty procedure on P and CT 

R1.  Indeed, it is easy to show that ■' € R, defined by 

V(e)(x) = niin[cD8(e)(x), (^(x) +$e(x))] 

in such a procedure. 

Constable has observed that no honesty procediu-e onR, can be P. 

total ef'-ctive operator. We prove a corresponding result for honesty 

procedures on 5^ and effective operators (see [9] for definitions). 

Proposition.  No honesty procedure on Pj can be an effective operator. 

Proof.  Let s be any honesty procedure on P^ and let t = cp. be any recursive 

function. Define using the recursion theorem- 

CDjtx)    Ifa.fe^C) ^CP8(e)(z)] 

© (x) = 
e 

otherwise. 

■-■ - 
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The computation of CD (x) is effective since © , N and m    are in a 
8(e)     s(j) 

measured set. Clearly^ is either total or empty,  if ^ is empty> it 

follows that s cannot be an honesty procedure on P., for then 5 fej 
1 P  s(e) 

7
P
(CD
S(J)

)
 
= 'p^j) ^Pi = ypto,)-  So(pe must be total. Then c^ » q, 

and CD   .  .   ^ co ws(e)   rvs(j) 

)   = 

n 

3.     The Honesty Theorem 

The honesty theorem says  that  given any  function we can effectively 

find  an honest,   function which  names  the same class.     Our proof expliclty 

exhibits  an honesty procedure on ^     Recall  from section two,   however,   that 

with a minor modification we can obtain a procedure on R    as well. 

The0rein 2-     There exists an honesty procedure on P^     Moreover,   s  preserves 

F    classes,   namely  for every e, F  fo  )   = F  fo ) 
* p    e p^s(e) 

Proof.     Let  e be -n index  for Jr.     A  function y   such  that F  (Jr)   =  F  (A1) 
P P 

is defined  in stages beginning with stage 0.    At stage n the integers 

from 0  to  n will be ordered  in a   sequence or queue = %l   q^   ....   ^  which 

is updated  from stage to stage.    Also a zero-one valued  function -pop" on 

the integers  from 0 to n is defined and updated from stage to stage.     Let 

< x,y > be a one-one onto pairing  function with projection functions TT 

and TT2.     As a technical convenience we use the fact that  the pairing  function 

< x,y > is  strictly increasing  in its second argument,   so that stage < x,y > 

always  precedes  stage < x,  y+1 >. 
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We outline the idea of the construction.  Dovetail the computations 

of ♦• V $i» •••• ^n ••■ at all arguments.  Whenever it is discovered 

that tOO < ^(x) Set pop(i) = 1, and try to define ^ (t) < $ (2) for 

some argument z.  When pop(j) = 0. try to keep V (z) *  I (.).  The pop 

conditions on i and j may be inconsistent, and the queue assigns priorities 

to the integers (programs) to resolve the conflict.  The dovetail nature 

of the construction guarantees that f will be honest. 

Stage n. 

A) Put n on the bottom of the queue (i.e. set q = n)  Set 
n 

pop(n) = 1.  Let ^(n) = x, n^n) = y. 

B) If $e(x) = y, then for 0 <: i s n, if l^x) > ^(x) set Pop(i) = 1. 

C) If f(x) has already been defined at some previous stage, go to 

stage n+1. 

D) Find the least I «: n (if any) such that 

1) pop(qi) = 1 

2) $  (x) > y 
qi 

3) (Vj < i)[pop(q ) - 0 -> |  (x) S yl 
J        q. J ' 

j 

If i exists, define ^ (x) = y. set pop^) = 0. and put ^ on the bottom 

of the queue.  Go to stage nfl.  if no such i exists, go to stage nfl.  D 

^mm^mm 
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For any q^ = ^ and any i, :> 0, stage n in the computation of ^ is 

effective and will terminate.  Condition (C) guarantees that if t'(x) is 

defined, it is defined at only one stage, and ^o *' is well defined. 

Furthermore since our procedure is uniform in e, *' -«    for some 
s(e) 

s 6 R1.  Condition (P) guarantees that if ^(x) is defined, it is 

defined at stage n - < x. fCx) >; hence the predicate \e x yto   (x) = vl 
s(e)     J ' 

is  recursive (we need only run our procedure until stage < x.y >), and so 

(qVe)}e=0 iS a Ineasu«d set.  This implies by Theorem 1 that r  will be 

g-honest for some g € 5?2 independent of ^. 

We now show that for each i. ^ s ^ (a.e.) « $i s ♦'(•.•.)•  This 

immediately implies F (\|;) = F (ilr1). 

The proof divides into cases depending on the final positions of the 

integer i on the queue.  If i reaches a final location on the queue we 

shall say that i is stable; otherwise we say i is unstable. 

Case 1:  j is unstable. 

If i does not stabilize it must be moved to the bottom of the queue 

by step (D) at stage < x.y > for infinitely many x.  Step (D) defines 

♦'(x) = y < ^(x), and hence $. >  ^(i.o.). Moreover step (D) moves i 

to the bottom of the queue only if pop(n = 1, at which time pop(i) is 

reset to 0.  In order for step (D) to apply again to i, pop(i) must be 

reset to 1 by step (B) at some later stage.  But condition (B) sets pop(i) 

to 1 only at stages < x, IJx) >  such that l^x) > *(x).  Thus • > * (I.O.). 

i — 
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Case 2:  i is stable. 

If i reaches a stable position on the queue, then pop(i) must also 

stabilize since it is set to 0 only by a step (D) execution, at which 

time i is moved to the bottom of the queue. 

Case 2a:  pop(i) stable at 0. 

Pop(i) can be set to 1 by step (B) at only finitely many arguments, 

hence Si  s f (a.e.).  Elements above i on the queue can only be moved 

finitely often by step (D), for otherwise i would be unstable.  So for 

almost all arguments x in the domain of ^ ^r' (x) is defined via step 

(D) for some j below i on the queue with pop(J) = 1. But then condition 

(2) of step (D) guarantees that 9   (x)  <: if'ix).    Hence t    <: ^'(a.e.). 

Case 2b; popm stahlP at 1. 

Consider any x such that i, the elements above i on the queue, and 

their pops have stabilized at stage < x,0 > and all later stages.  By 

case 2a we may assume x is sufficiently large that $. (x) s min(iHx). Kfx)) 

for those (finitely many) j which are above i on the queue with pop(j) = 0. Let 

m = max($   (x)   |   j   is  above  i on queue and pop(j)   = 0}. 

We observe that m ^ minfiK*),  t'OOJi  and  thus if m is  infinite,  both 

llf(x),  ilr'Cx)  are undefined,   implying by convention that *   (x)  <r \|f(x), 

J^x) <: ^'(x).     So suppose m is   finite.     Since ^he pairing  function is 

monotone in its second argument,  < x,m > is  the earliest stage al which 

i|f'(x)  could be defined without violating condition (3)  of  step  (D)  and our 

assumption that  the queue above i has stabilized.     But i has stabilized as 

well,  and so i must  fail  to satisfy condition (2)  of step  (D)  at stage 

< x,m >.     That  is,   Mx)  <: m,   and we  therefore have $.(x)   ems min(iKx).   t'OO) 
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Combining cases we have ^.(x) ^ \|f(x) (a.e.) » 1 is stable » 

i^x) *  r(x) (a.e.)- 

Corollary.  There exists ar honesty procedure on R^. 

Proof.  Immediate from section two and the fact that the procedure of 

Theorem 2 preserves F-classes as well as 5-classes. 

4.  Large Honest Bounds on Computation 

Given a recursive function t we can think of t as a name for the 

class of functions ^(t).  Now in a sense we have understood a complexity 

class if we know how to compute its name, t.  It follows that more easily 

computed functions (i.e. functions which can be computed rapidly) are 

more satisfactory names for a given class than long-running functions. 

Honest functions seem to be good candidates for names, then, because they 

are only as hard to compute as they are large. We now show that in general 

honest functions are not necessarily satisfactory names in the sense 

described abo> <;.  Indeed we exhibit an honesty procedure on R^ which takes 

any recursive class name to an honest recursive name for the same class which 

is arbitrarily large (and therefore arbitrarily long-running) on all but 

a rapidly vanishing percentage of arguments.  Furthermore we prove that any 

honesty procedure on P, must (almost) have this property. We remark that 

this phenomenon is closely related to the gap theorem mentioned in the 

introduction;  in both cases we pass from a recursive function t to a much 

larger recursive function t' while preserving class size. 
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TheoresU.     There t. „ honesty pr„cedure s>  „„ ^  such ^  ^ ^ ^ 

Hm    l{y s x  | y 6 domain fo )i I 
x«     . slelj.1  _, 0 

Proof of the Th.orem.     The procedure of the theorem 1. oo.y e sllght 

variant of the procedure of Theorem 2.    As before f   Is defined  In stages 

winning „1th stage 0.     A fusion ■■pop"  frOT integers to Integers Is 

defined and updated durl^ successive stagea    Cause  (D, has  the added 

raatrlctlon that „hen pop»,   is  iarger than x,   1   Is excluded  from the 

Priority scheme of the ,ueue at argents . x.     The pop fu.tlon Is sufficient^ 

f«t..rM4 to insure that only a SM„   r,aceion of ,„. entrles ^ ^ 

queue can he used to define ,■   at arguments S x.    Hence at .■»„.. .^„„ents 
s x,   ^ will be undefined. 

A) Put  n on the bottom of  the queue,   (I.e.   set c^ = n);   set 

Pop(n)   - 2°.     Set x - TT^n).  y -^(n). 

B) If $e(x)  - y.   then for  each  I.  0 < i . n.   lf  rpop(i)   . 0 and 

• jCx) > iKx)]  set pop(i)   = 2n. 

C) If r(x)  has been defined previously go to stage nfl. 

D) Find   the  least  I * n (if any)   such  that 

1) 0 < pop(i) < x 

2) 9    (x) > y,   and 

3) (VJ < i)(pop(j)   - 0 -»»     (x)  ^ y) 
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If such an i exists, set popCq^ =  and move q  to 

the bottom of the queue.  Go to stage nfl.  If no such 

i exists, go to stage n+1. n 

We omit the proof that our procedure is indeed an honesty procedure 

on P^ the proof here is virtually identical with that given in Theorem 2, 

We prove the limit condition of the lemma. Given any x, step (A) 

guarantees that at any stage n = < y.z > where y * x, at most log^x) 

indices on the queue can have pops which might be used in step (D) 

condition (1) to define t'(y).  Furthermore, if i is such an index and if 

i is u.ed again at stage n = < y,, >, y s x> to define r(y)> then if it 

is to be used again at some later stage to define f („) for some other 

w ^ x, its pop will be at least 2^\    Hence i can be used to define at 

mos. riog2(x).i](the greatest integer in (log2(x)-i)) arguments y ^ x. 

Thus ^'(x) can be defined on at most 

riog2x] 

7   riog2(x)-j] 

arguments s x.  So 

riog2(x)] 

ll^ x | y g domain.,^ I <       L       [l0*2^ 

but the right hand expression goes to 0 in the limit, proving the 

theorem. □ 

— 
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Theorem 3 leads naturally to the following result about honesty 

procedures on R.. 

Theorem 4.  There is an honesty procedure on R. such that given any 

t € R1 and any b € B^ there exists an e, cp  = t, such that 

lim Jirll_Kle) (y)  <b(y)}l 
x-m  V  ■* 0- 

Proof.  Let s be the honesty proceuure ou f>l  described in Theorem 3. 

Recall that we can make s into en honesty procedure on R- by defining 

V(e)(x) = Si£tqp8(e)(x), .ye(y.) + ^(x))].  Let t be any recursive 

function.  Blum fl] shows that every recursive function has arbitrarily 

bad (i.e. arbitrarily long running) programs.  That is, we can choose 

CDe = t such that $e(x) > b(x) for all x. Hence given t and b, choose 

such an e, q^ = t, and thenQD8l(e) satisfied the theorem. D 

The following theorem describes the behavior of any honesty procedure 

on P-, 

Theorem 5.  Let s be any honesty procedure on ^ and let t and b be 

any recursive functions.  Then there is a CD = t such that 
e 

|{y s x  |CD         (y)  <b(y)]| 
lim inf §1SJ—.     ^ 0> 

Bass and Young   [7]  prove a somewhat weaker  form of this theorem:   they show 
that an e can be  found such that co   .  .   will be larger than b with 
recursive  frequency. s^' 
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Proof.  Define using the recursion theorem a program © such that 
e 

B   (X)      = 
e 

t(x) if  r(x = 0)  or  (x > 0 and ra   (x-1) 

convergent) ]  and 3z > x such that 

l(y *z I qos(e)(y) < b(y)n      1 

00 otherwise. 

Clearly,   i f q^ is  total,   thencDa = t.     Suppose«^ is not total,  and  let 

x be the  Ijast y such that ^(y)  diverges.     ThencD^z)  diverges  for all 

z :> x,  but since QDe(x-l)  converges,   the first clause in the definition 

of CD  (x)   implies  thai, for all z > x 

Ify ^ z I ^S(e)(y) <b(y))l       l 
z ^+1' 

In particular,  domain (C0s(e)) must be infinite.    However,   it is easy 

to show that If ♦ € P-  has infinite domain,   then Sf (♦) ^ P .    Hence 
P      1 

yp(<P8(e)) ^ Pl = ^p^e^ contradicting the fact that s is an honesty 

procedure on P .  Therefore, © = t. 
1 e 

Now for each x let zx  be the least z > x for which the second conjunct 

in the definition of cp hold..  Then [zj" is a subsequence of the 

i=0 
integers for which 

lim 
l(y^x'Wy)<^y))l ^ o 

**m \ 

and  the  theorem is proved. □ 

 -- MMMMtaMM«* 
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We remark that  the "lla inf appearing  in Theorem 5 cannot be 

replaced by "lim".    We sketch breifly why this  is  so.     Let s be the 

honesty procedure on ^ of Theorem 2.  and  let t be any g-honest recursive 

function.    We construct an honesty procedure 6t on ^ in the  following 

manner.     Given index e.   begin constructing^^  as prescribed in the 

theorem,     if at some stage n it is discovered  that (^ has converged on 

a new initial  segment,   see If^ - t on that Initial segment.     If ^ 

find  the least x such that stage < x.O > has not yet been reached and 

define qoCz)   =  t(2)   for x ^ z S 2x.     It  is  not hard  to show that  s 
t t 

is a  legitimate honesty procedure on P^   and  furthermore for any cp    =  t 

'{y * X   ' ^s   (e)(y)  < tWl 
lim sup 1 1^ 

In particular not all honesty procedures on ^ satisfy Theorem 3. 

——Good Honest Names for Complexity Classes 

In this section we consider honesty procedures that work for total 

functions only. We show that by relaxing the requirements on honesty 

procedures in this way we can indeed build well-behaved honest bounds 

for complexity classes which often significantly improve on the original 

bound for the class.  We first build an honesty procedure yielding 

honest bounds which are no larger than the original class bound on a 

significant percentage of arguments.  Next we show how to keep honest 

  -- ■   ■ —^^A—^—.^--^^^  —.  .   -. .^.^  
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bounds for ?(t) bounded (a.e.) in a manner independent of the program 

we choose for t. Lastly we exhibit an honesty procedure on R which 

preserves monotonicity. 

Implicit in the work of Constable [11] is the observation that there 

are complexity cl .ses all of whose honest names are much larger (l.o.) 

than some dishonest name.  Indeed any class ?(t) where t is obtained 

vie the gap theorem has this property.  Theorem 6 shows that this result 

is false if we replace "(l.o.)" with "(a.e.)". 

Theorein 6-  There is an honesty procedure on R., s , such that if m 1 e 
is total, then 

[(xs n | 9 ( Ax)  >» (x)}| 
lim inr  2liZ e_ J_    = 

n-»oo n 

Proof of the Theorem.  The proof follows the general outline of Theorem 2. 

In the course of the procedure we define a "percentage" function P(n) 

which monitors the frequency with which (ps(e) is small,  m addition the 

pop function in this proof is 0-1-2 valued. Here pop(l) = 2 means that 

V.) haS been defined to be less than 1^ but movement of i to the bottom 

of the qneue has been delayed. 

Stage n: 

Let n1(n) = x, rr^n) = y, 

A)  Set q^ = n, and set pop(n) = 1. 

-J^^.—... .—-..- ■—^J—^^-^—t.... ..■. .... . . ... --  .—.-^-_^^-. 
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B)  If $eCx) = y. then for 0 ^ i ^ n. if ^(x) ^(x) and pop(i) = 0. 

set pop(i) = 1. 

O  If fCx) has been defined at some previous stage, go to stage ^1. 

D)  Find least i s n, if any, such that 

1) pop(qi) = 1 or 2 

2) I  (x) > y 
qi 

3)  (VJ < i)[pop(q1) = o -► $  (x) < y] 
q.i 

If such an i exists,   set r(x)  = y.  and set poP(q  )   = 2. 
* i 

E )  See if 3w ^ n such that w > p(n)  and 

->-   1 -       ' 
P(n) 

If such a w exists, set all 2's on queue to 0, and move them to 

the bottom of the queue.  Set P(r*l) = P(n) + 1.  Go to next stage. 

If no such w exists, set P(n+1) = P(n), and go to next 8tage  D 

As in the proof of theorem 2, there is an r € ^ such that the procedure 

yields, for ever e, a function*^ = r.  Furthermore, i*t(%))^  is 

a measured set.  Define 

t(x) =qps(e)(x) =!nin[CPr(e)(x),^e(x) +»#(x)J; 

then fe8(e)}e(:R is a measured set, and s is the desired procedure. 

Clause m   involves an implicit use of the recirsion theorem. 

^MM« 
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To prove the limit condition of the theorem, we need to show that 

Clau8e (E) is executed infinitely often for recursive t - c^.  Suppose 

therefore that (E) is executed only finitely often, and let < x.O > be 

a stage after which there are no Clause (E) executions. We can assume 

without loss of generality that by stage < x,0 > all pop 0 entries on the 

queue which are ever set to 1 have been set to 1, and furthermore < x,0 > 

is large enough that an index for the empty function appears on the queue 

(its pop at stage < x,0 > must be 1 or 2).  Then for all z ^ x and all 

i such that pop(i) = 0, 1^.) ^ t(z). and so clause (D) and the presence 

of an index for the empty function on the queue guarantees that *•(,) will 

be defined and *•(z) * t(z). Therefore the percentage of arguments where 

♦ '(.) * tC) will eventually move above 1- j~ ^ - , and at that ^ 

clause (E) will get executed. 

To show that ?«pe) = y<fP-(g)) in the case where ^ G B^ notice that 

if i stabilizes on the queue, its pop cannot be 2. Using this observation 

it is easy to show that the classes are the same by using the techn. ues 

developed in theorem 2, and we omit the proof. 

Our next theorem illustrates the striking difference between honesty 

procedures on ^ and honesty procedures on P^  Theorem 5 s.ye that given 

any t € f^, every procedure on P, must map some program for t to an 

arbitrarily large honest name for ?(t). We now construct a procedure on 

Rj which produces uniformly bounded honest names for 5f(t) independent 

of the program chosen for t.  The procedure of Theorem 7 is an example of 

an honesty procedure on ^ which cannot be extended to an honesty procedure 

on P, 

*"--   - ■-■■- — 
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Theorem 7-     There i8 an honesty procedure on R^   s,  with the property 

that  for every recursive  t,   there is a h f ft,       such that If ffl    - t 
1 e   ' 

thenC,s(e) S b (a-e-)- 

Proof.  let s' be any honesty procedure on 5^ with the property that if 

CPe is total, then Ffe^) = Ffe,^).  Say that ooe S^e, if after n steps 

of the dovetailed computation of ^ •Ild(Pe,, ^ and (p^, have not differed 

on any argument.  Define 

^s(e)(x) =HliS^s.(e)00.Oe,(x) +$e,(x) | ,. se. Oe, «^J.  (*) 

{CDs(e)1e€/H iS a mea8ured !et since both C«»,.^)^ . and {^ + f^^^ 

are measured.  Furthermore F(cos(e)) = F^).  Suppose $. ^ m^a.e.) •  Then 

for sufficiently Urg« x those e' s e which compute functions which differ 

from e will be omitted from the expression *)for « . ..  From then on if 
s (e; 

Ve,(y) convenes for a^- e' s e, ©^(y) will equal ^(y). Therefore since 

fi ^^s'Ce)^'60' ^i ^ :D
s(e)

(a'e')- If on the other hand $ >(£ (I.e.), 

then$i >cos,(e)(i.o.), and since Gos,(e) Z*^  everywhere, ^ > ?s(e) d-o.) 

Let e' be the least index for » €R . Then for every o. = ra , 
i   e 

Our last theorem shows that every class» with a monotone name has a 

monotone honest name, settling a question raised in [4]. 

Theorem 8.  There is a g € R2 such that for every monotone recursive 

t ;> \x[xl there is a g-honest monotone recursive t' such that Sr(t) = ^(f). 

^^^«^^^^ 
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Proof. Our construction will again follow the lines of Theorem 2. However, 

t' will be total and monotone whenever t is total, and so y(t) may differ 

from^t') in the case where t is not monotone. Define^ ^(x) = maxf? («).xl. 
a(i)     zsx * 

^CT(l)'l€fll i8 a mea8ured 8et' Moreover for monotone t :> \x\x]  we have that 

* s t (a.e.) •© ,.. s t (a.e.). Let t = cp . 

Stage n.  Let TT1(n) = x, rr (n) = y 

A) Set q = n; set pop(q ) = 1 
n n 

B) If $e(x) = y, then for 0 5 i s n "^/^(x) > t(x), set pop(i) = 1. 

C) If t'(x)  has already been defined at some previous stage, go to 

stage nfl; if 3z < x such that t'(z) >  y, go to stage nfl; if x ^ y, 

go to stage n+1. 

D) Find least i ^ n (if any) such that 

1)  pop(q1) = 1 

2) ^(q^^ >y 

3)  (Vj < i)[pop(q ) = 0 -♦^ . .(x) s y] 

If i exists, set t'(x)  = y, set pop(q ) = 0, and move q to 

the bottom of the queue. 

E) If (D), find greatest z < x such that t^z) has already been defined; 

set t'Cw) = y for z < w < x. Go to stage n+1. D 

The procedure yields, for each e, a partial functioncp , ,. Moreover 
s(e) 

((I)s(e)^eeiMiS * mea',ured set:  to te8t:(P8(e)(
x) " 7. merely run the pro- 

cedure through the first < x,y > stages and check to see it a  , Ax)  is 

defined to be y at one of these stages. Clause (C) guarantees that© ,  N (x) 
8(e) 

can never be set equal to y after stage < y,y >. 

■■ -■ ■ - - 
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If t is total, then f will be total and monotone by clause (C) and 

the fact that Clause (D) must be executed infinitely often.  If t > \xfx], 

then pop stability analysis and the fact that each (p(y(1) is monotone shows 

that for every i. ^  * t  (....) m 9 $ t. (mm)      But then ^ 

monotone t we have 

•l S ' (t-*-) ^a(i) S t a-e-  0^(i) 
s f (a.e.) 

•• #1 « t' (a.e.). 

Corollary.  There is an honesty procedure onff^, s , such that for every 

recursive monotone t ^ \x[x]. if ^  = t th«« *, . is monotone. 
e s (e) 

Proof.  Let s be the procedure of Theorem 7. and let s1 be any honesty 

procedure on R^  Define s* as follows: 

V(e)(x) 

Let V(e)(x) = 

^sCe)^ 

if, within x steps it is discovered 

that <$e  is not monotone, or within x 

steps it is discovered that gj <: \x[x]; 

otherwise. 

The first clause on the right is obviously recursive, and so s* € 5? . 

If (»t ^ \x[x] and is monotone, then V(e) -«>i(-).  Otherwise ?,s*(e) = 

^s'Ce) (a>e-)-  Hence s  is the desired honesty procedure rn R . 

We remark that the lower bound \xfx] of the theorem and the corollary 

may be replaced by any slow-growing unbounded function. Borodin [2] shows 

that some lower bound is necessary, and thus our result is best possible. 

- 



•82- 

Blbliography 

1. 

2. 

3. 

A. 

6. 

7. 

9. 

10. 

11. 

12. 

Blum,  M.   "A machine-Independent   theory of the complexity of recursive 
functions",  JACM 14  (1967),  pp.   322-336. 

Borodin,  A.   "Complexity classes of recursive  functions and  the exist- 
ence of complexity gaps",  JACM  19   (1972),  pp.   158-174. 

Trachtenbrot,  B.A.,   "Complexity of algorithms and computations". 
Course notes,   Novosibirsk U. ,   Novosibirsk,  Russia   (1967). 

McCreight,   E M.   and A.R.  Meyer,   "Classes of computable  functions 
defined by bounds  on computation:   Preliminary Report",  Conf.   Rec. 
ACM Symp.   on Th.   of Computing   (1969),   pp.   79-88. 

McCreight,   E.M.   "Classes of computable  functions defined by bounds 
on computation",  Doctoral Thesis,  Computer Science Department, 
Carnegie-Mellon University,  Pittsburgh,   Pa.   (1969). 

Bass,  L.   "Hierarchies based on computational complexity and  ir- 
regularities of class determining measured sets" Doctoral Thesis, 
Purdue University  (1970). 

Bass,  L.   and  P.   Young,  "Ordinal  hierarchies and  naming classes", 
JACM,   to appear. 

Meyer,  A.R,  and E.M.  McCreight,   "Properties of bounds on computation", 
Proc.   of T.iird Ann.   Princeton Conf.   on Info.   Sei.   and Systems   (1969), 
pp.   154-155. 

Rogers, H.   Th* Theory of Recursive Functions and Effective Computability. 
McGraw-Hill,   New York  (1967). 

Robertson,  E.L    "Complexity classes of partial recursive functions", 
PTJJC.   of  the Third Ann.   Symp.   on Th.   of Computing   (1971),   pp.   258-265. 

Constable,  R.   "Upward and downward  diagonalizations over axiomatic 
complexity classes",  Cornell  University,  Department of Computer  Science, 
Tech.   Report   (1969). 

Hartmanis,  J.   and J.  Hopcroft,   "An overview of  the  theory of compu- 
tational  complexity",  JACM  18   (1971),   pp.   444-475. 

— —  - -    - --- 



•83- 

13. 

14. 

15. 

16. 

landweber,   1    and E.  Robertson.   "Recursive properties of abstract 
complexity classes",  JACM 19  (1972),  pp.   296-308. 

Constable,   R.,   "The operator gap" JACM ^9   (1972),   pp.   175-183. 

Meyer,  A.R    and R.  Moll,   "Honest bounds  for complexity classes of 

Th^rf slD  "r'r"' ^  ^ Ihe Third Ann.   sLchi and^tolta 
iheory gag..  College Park,  Md.   (1972),   pp.   6Ü66.  

^"fi:  P"   "n887 con8truction8  in complexity theory:   speed-up and 

KJort fclAS^r UniVerSity,  COmPUter  Sci— ^P-t-^/Tech. 



-84- 

Chapter 3 

F^nc?"™" Elnbeddln8 Theore,n for Complexity Clasaes of Recursive 

1.  INTRODUCTION 

Let f(t) be the set of functions computable by some machine using 

no more than t(x) machine steps on all but finitely many arguments x. 

If we order the ?-classes under set inclusion as t varies over the 

recursive functions, then it is natural to ask how rich a structure 

is obtained.  We show that this structure is very rich indeed.  If R 

is any countable partial order and F is any total effective operator, 

then we show that there is a recursively enumerable sequence of 

recursive machine running times (i,^)^ such that if jRk, then 

^Vj)^ 5 7(*s(k))' and if J and k are Incomparable, then f(| , x) < 
~  8(j) 

*s(k) on infinitely many arguments, and F(»8(k)) < 1^  on infinitely 

many arguments. 

An interesting feature of our proof is that we avoid appealing 

explicitly to the continuity of total effective operators; indeed our 

proof follows directly from a single appeal to the recursion theorem. 

Several investigators have considered this and related problems, and 

in Section 4 we briefly sumarite these investigations and compare them 

to our own. 

■  —'  — -■ 
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2.   PRELIMINARIES 

For notation from recursive  function theory we  follow Rogers   [2 ]. 

For  each n 6 N, Pn stands  for  the partial recursive  functions of 

n-variables,  and ti^ stands  for  the  total recursive  functions of n 

variables. 

We use  (a.e.)   to denote "almost everywhere",  which  for our 

purposes  stands  for "all but  finitely many".     Similarly  (i.o.)   stands 

for  "infinitely often". 

Suppose  {CD0,O1,...)   is a Godel  numbering of P^    A measure on 

Computation  [1]  $  =  [Ig.f^...]   is a  sequence of  functions  in P- 

satisfying 

1. Vi € N  [domC©  )  = dom($  ) ] 

2. \ixy[$1(x)   = y]  is a recursive predicate. 

If we  think of our Godel  numbering  in the usual one-tape Turing machine 

formalism,   then 

*i(x)  = "the number of steps  in the computation of the ith Turing 

machine on argument x"  is a measure on computation. 

Henceforth let $ be some fixed measure on computation.     Then we 

define  for any total  function t 

and 

F(t)  = fi € N ( (üi € R,  and $    <: t  (a.e.)}, 

9(t) - (q^ I 1 g F(t)}. 

-  ..._■. , _ .       _           ._    ._ 
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That  is,  F(t)   is  the set of (Indices of )   total machines which run 

in time  t,  and y(t)   is  the set of total  functions computable within 

time t.    ?(t)   is called a complexity class. 

A sequence of partial  functions*   = [i|r   ,^   ,...]   is  said to be 

an r.e.   sequence of partial  functions  if \ixfi|f   (x)]  g P . 

The following theorem of Blum [ 1 ] shows that we can uniformly 

enlarge complexity classes f(t) if t is a sufficiently well-behaved 

function. 

Theorem.     (Compression Theorem)    There is a g  ^ R? such that  for every 

#i € R1,  ?(*.-'"^   '(^xg(x,«1(x)).     g  is called a compression function 

for $. 

An operator  is a map which takes  functions  to functions; we 

write F(f)(x)   to mean the value of the operator F applied to the 

function f,  evaluated at x.    An operator F:  D c P    -» P    is called an 

effective operator if there is an s € R,  such that Ffe ) (x)  -n        (x) 
J-        ~ e      s(e) 

An effective operator F is total effective if for every f € R , 

F(f) is defined and F(f) f R 

3. THE EMBEDDING THEOREM 

Theorem. Let F be any total effective operator, and let R be any recursive 

countable partial order on N. Then there exists an r.e. sequence of 

recursive functions p0, p^ ... pn ... such that if jRk, then F(p ) < 

Pk (a.e.), and if j and k are incomparable, then F(p ) < p (i.e.), and 

Pk <F(p ) (l.o.). 
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Proof. We assume without loss of generality that R orders N-(0} 

rather than N, and in addition that R contains kRO for each k > 0. 

Let a0 = < i0, ko >, a1 - < i^ kj > ^ = < i^ ^ >,   ... be a 

recursive listing of all   incomparable pairs  in R such  that  if x and 

y are  incomparable,   then < X.  y > and < y    X > both appear  infinitely 

often in the  list.     As a   technical  convience we define maxftf]   = 0. 

Lef  s € R2 be  the  ij   function of  the s-m-n  theorem defined  by  the 

equation 

C0e«x,   y»   =C.s(e>x)(y). 

Define ilr  6 o    as   follows: 

0     lfx<kor3n<k 

t(«,  <k,x >) 

such  that  $   (< 0,   n >)  > x,     (1) 

IRk 

[(S5.(..ln)(x)+^.(..ln)><^l. 

where n ■ jjm i x[((m - 0)  and   (x =  k ))  or 

[(m > 0)   and   (k = k  )  and   [(wi    (0 ^ i < m)) 

('3zi S  x)   such  that   (z    = k  )   and 

(2)(i) 

(2)(ii) 

(«1+1 = z. + $ 

such an n exists and (1) is not true, and 

i+i= zi + $s(e.ki)
(2i>) aaä (zm = x)]i]. if 

^   bs(e.j)(x)  +^s(e.j)
)(x)1   otherwise. 

iRk 

(3) 
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♦ ^ P2 since all the test computations in clauses (1) and (2) are 

recursive by the second measure on computation axiom.  By the recursion 

theorem there is an e such that He,  ^x >)  = ^«k.x»; we apply the 

s-1-1 version of the s-m-n theorem to obtain He,  <k,x>) =©     (x). 
8(e>K) 

To simplify our notation we now suppress mention of e and write p (x) = 
K 

"•(•.It)00'  Similarly we write •  (x) for »     (x).  Our definition 
rj^ S ^ e , K ^ 

now becomes 

f 0      ifx<kor^n<k such that $     (n)  < x, (1) 

aaEip4<x) + F(p.)(x)]) + 
jSx     J ~    J 
iRk 

[P1.  (x)  + F(pi  )(x)], 

Pk(x)  - 

(2)(i) 

(2)(ii) 
n "n 

where n = Mm ^ x[((m = 0)   and   (x ^ k ))  or 

[(m > 0)  and  (k = k )  and   [(V1(0 < 1 i m))(3z    s x) 

such that   (z0 = k0)  and   («^ - ^ + t       (z ))  and 
k. 

1 
(«n ■ x)Jlli   if such an n exists and  (1)   is not 

true,  and 

max   [p/x) + F(p .)(x)]    otherwise. 
J^x       J ~     J 
jRk 

We  first establish that at most  finitely many of the functions 

^k}k€N Can be non-total-     Suppose pk(x)  diverges.     Since p0 is defined 

by  (3)   at all  arguments, PQCX) must diverge,   and  so by  (1) p . (x)  = 0 

for all  j > x# 

(3) 

'i 
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We now prove that for all k pk is total. 

Say that an is serviced at x If pk (x) is defined by (2),  and if 

n is the least m S x satisfying the bod^ of (2) in the definition of 

P^Cx).  We allow the possibility that P (,) may diverge,  if a is 

serviced at x, (2) guarantees that x = . -^    + ,   ( ^ ^ so 
n i=l  1   Pk  i 

an is serviced at no other argument.  Moreover, if an is'serWced at x 

and p^Cx) diverges, then for „• >n %t  will never ", serviced) sincfc 

an, is serviced at y only when y bounds the computation of $   fx) 

Let k be an R-minimal element in the finite set (k. | ^."„on-to tall 

Then if Pk(x) diverges, it must do so because of (2)(ii).  That iS( a 

is serviced at x for some n. and ^ must be non-total. 
n 

But suppose p^(y) diverges by an instance of (2)(ii) for some y. 

This means that ^ I  k. for some j and aj is serviced at y.  If j < n> 

then y must equal .jl but since an is serviced x. .  (. ) < x and helce 

Pk (tj) must converge.  If j > n. then since a is serviced at x and 

Pk(x) is assumed to diverge. ^   is never serviced.  Moreover j cannot 

equal n. for then in would equal k^  Hence pi must be non-total because 
n 

of  C2)(i)  or   f3),  and so some  funetion p      such that  i'Ri     is  non-total. 
n- 

n 

_    —   —, .-* _ 
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Let  i  be R minimal  amor^  (1'   |   i'R  ^ and  i'   ncn-total).     Then 

p.  must be  non-total  by an  instance of  (2)(ii),   say at argument y. 

Hence i = k^   for some J,   and aj must be serviced at y =    ]E      z    + 

ip=0 

*p,    ^m5*     If J  < n.  Pk  (y) must converge since a    is  serviced at x 

by assumption;  and  if j   =  n,   then ^ and kn are comparable,   i contra- 

diction.     Furthermore if j  > n,   then a.  will  never be serviced.    Hence 

Pi  is  total,   and we conclude that   for every k ^    € Ä   . 

If JRk,   then F(Pj)(z)   ^ pk(t)   for all  z > ^ = max[k,j,$     (0), 

•     (1).   ...   t     (k-1)]. P0 

P0 PQ 

If j  and k are  incomparable,   then < j,k > = k     ,  a     ,   ... a 

for  some  infinite  sequence  n_  < n.  < n    • • •   r    •..    . q 

0 12 q 

For arguments  z > Tn0  p^«)   is defined by  (2)  or   (3).     Since the 

sequence of z.'s  is  strictly  increasing,   there is an     , such that  for 

1 > ^^i * m0-     At  tho8e arguments  «i  t       i > i       i  =  n  ,   p  (zj  will 
" *-! K 1 

be defined by clause   (2)  and  p^z^  > F^)^).     A  symmetric  argument 

shows  that p.  > F((,k)(i.o.),   and  the theo-em is  proved. 

CorolUry.     Let F be any total effective operator,   and  let R be any 

countable partial order on N.     Then there exists an r.e    sequence of 

recursive measure  functions  $r(0),  f^.   ...   such  that  if jRk>   then 

^rCj)^    $r(k)   (a-e')  and ^^(j)»? y<»r(k)).   ««»  ^ J  ^d k are 

incomparable,   th.n F(»r(J))   < $r(k)(i.o.),   and  F($r(k))  < $r(.)(i.0.). 
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Proof.  Mostowski [ 3 ] has shown that  there is a countable partial 
* 

order R  into which any countable partial order may be embec'ded. 

Moreover, Sacks [4 ] has shown that R is recursive. 

We assume without loss of generality that F is at least as large 

as the identity operator, and that the compression function for I, g, 

is strictly increasing in its second argument,  Blum [1] has shown 

th«t there is an h € R2 such that for all i 5, (x) < h(x, $.(x))(a.e,)•  We 

assume tl.at h is strictly increasing in lt<j second argument.  To prove 

the corollary, apply the theorem to R , rewrite clause (2) as 

n** [p.(x>fh(x,g(x.F^ )(x)))] + [p  (x) + h(x,g(x.F($   )(x)))], 
J^* Pj n ~ Pi 
IRk 

and we rewrite clause (3) as 

maxjp (x) + h(x,g(x,F($  )(x)))l, 

jRk 

It  is easy to see that  the theorem goes  through as before,  and the 

monotonicity restrictions on g and h guarantee that  the  functions 

(•    }k€N satisfy the corollary. 

- --  - 
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4.  RELATION TO OTHER WORK, AND OPEN PROBLEMS 

McCreight [5] is the first investigator to prove an embedding 

theorem for subrecursive classes. He shows .-hat any countable partial 

order can be embedded in the complexity class as ordered under set 

incli.dion. However, Ms theorem is weaker than our results in that 

the functions of his partial order are "separated" by composition 

with a fixed recursive function, whereas our functions are separated 

by a total .ff-ctive operator.  In [6] Enderton also proves a universal 

embedding theorem for subrecursive classes. His notion of a sub- 

recursive class is quite weak, however, and his result is an immediate 

corollary of McCreight's theorem. 

Ear y work on the structure of subrecursive classes was done by 

Feferman [12], Meyer and Ritchie [7], and Basu [8].  Feferman shows 

that dense chains exist for various notions of subrecursive classes. 

Meyer and Ritchie define what they call elementary honest classes, and 

they show the existence of dense chains and infinite anti-chains for 

such classes. Moreover, they are able to exhibit certain functions f 

such that dense chains of classes will exist between f and the iterate 
(x) 

of f, \x[f ' (xM. Basu builds dense chains of subrecursive classes, where 

these classes are closed under the application of a fixed recursive operator, 

Machtey [11] has announced universal embedding theorems for both 

the "honest" primitive recursive degrees and the "dishonest" primitive 

recursive degrees.  Both of these theorems follow immediately from our 

results. 

 -J"t- ■   — -     - ■mil      in iMiaii Mil M. i i  iiilwiiliiii I m in I MI.I »■iiiiiiBiinir MM.a—ii   
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We also note that Alton . 9] has Independently announced our 

embedding theorem. 

We leave open the question of the size of the functions in our 

embedding theorem.  That is. given F, what is a reasonable upper bound 

on the size of Po in terms of F(recall that p0 bounds all the functions 

^Pk^k€N on a11 arguments). 

The author wishes to acknowledge the generous assistance of Professor 

Albert R. Meyer in the conception and preparation of this paper. 
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