
1

AD-767 730

COMPLEXITY CLASSES OF RECURSIVE
FUNCTIONS

Robert Moll

Massachusetts Institute of Technology

Prep are d for :

Office of Naval Research
Advanced Research Projects Agency
National Science Foundation

June 1973

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

\

 ■ ■■■——■aiwin«!

BIBLIOGRAPHIC DATA
SHEET

4. TUIC and Subntle

JL
!• Repo-t No.

NSF-9CA-GJ34671- TR-llO

Complexity ClasBes of Recursive Functions

Äf^ Moll
'• Performing Organization Name and Address "

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY,

545 Technology Square, Cambridge, Massachusetts 02139

3. Recipient's Accession No.

5. Kepon Date Issued
June 1973

6.

8. Performing Organization K,~pi
No- MAC TK-llO

12. Sponsoring Organization Name and Address

Associate Program Director
Office of Computing Activities
National Science Foundation
Washington, p. c. 20550

15. Supplementary Notes

10. Pioject'Task/Work Lnn \.

11. Contract 'Grant No.

NSF-GT-34671 and ONR-
N0e0l4-70-A-0362-000l

13. Type of Report & Period
Covered '. Interim
Scientific Report

14.

16. Abstracts

— In,Part 0ne We develoP the properties of honest functions and

" t^^Wslv-lh^ B1VT' ^^ ^ ^relght.U™^ro
a; d

are solved y ^^ l8 8lVen and 8everal 0Pen ^hlem

Plexltv ^L^T prove/n orator embedding theorem for com- plexity classes of recursive functions

17. Key Words and Document Analysis. i7a. Descriptors"

Subrecursive hierarchy
Honest function
Complexity class
Universal embedding

l> D CV

17b. Identifiers/Open-Fnued Ter

DJteTRfüUj

17c. COSATI Field/Group

18. Availability Statement

Unlimited Distribution

Write Project MAC Publications

19. Security Class (This
Report)

20. Sei urity (lass (Thi:

FOHM NTIS-_! IREV. 3-72) -L.
Page

21. No. of Pages

22. Price

UNCLASSIFIF»
THIS FORM MAY BE REPRODUCED

-i- i
USCOMM-DC 14852-^'-

.-

■ "■"""^

-/.

MAC TR-110

COMPLEXITY CLASSES OF RECURSIVE FUNCTIONS

Robert Moll

June 1973

This research was supported in part by
the National Science Foundation under
research grant GJ-34671, and in part
by the Advanced Research Projects Agency
of the Department of Defense under ARPA
Order No. 4 33 which was monitored by
ONR Contract No. N00014-70-A-0362-0001.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

. ■---■-- ■■-■

Abstract

An honest function Is one whose size honestly reflects its computation
time. In 1969 Meyer and McCreiglt proved the "honesty theorem", which says
that for every t, the t-computablt functions are the same as the t'-compu-
table functions for some honest t'.

Ways of constructing honest functions are considered in detail. It is
shown that for any t there is an honest t' such that the t-computrble
functions and the t'-computable functions are the same, and such that t'
is arbitrarily large on a denBe set of arguments. Moreover any construction
method satisfying certain natural criteria will (almost) have this property.

On the other hand it is shown that by relaxing these criteria we
can guarantee that t1 s t on a (weak) dense set. We can also guarantee
that t' will be bounded above by a predetermined recursive function on all
but finitely many arguments. Finally, we show that in the case where t
is monotone, t' can also be made monotone.

We consider the t-computable functions, and order these classes under
set inclusion as t varies over the recursive functions. We show that given
any total offective operator P and any recursive countable partial order R

there is an r.e. sequence of machine running times T , T,, ••• T , •••
0 1 n

such that if iRj, then the T computable functions properly contain the

F(T) computable functions, and if i and j are incomparable, then F(TJ > T
i ~ i j

infinitely often and F(T) > 1^ infinitely often.

THESIS SUPERVISOR: Albert R. Meyer
TITLE: Associate Professor of Electrical Engineering

-3-

Acknowledgements

rlS;"."«."^* H-1-1' ""^ mC '" ^r^ - ^ the wr

fo^-M 8rateful to the following people for their support during my
formative years as a student of mathematics: R.A. Moore. Ed Fischer
Tom and Judith Wasow, Assaf Kfoury. and the Lee Street C^mune '

I am especially grateful to Professor Albert R. Meyer for his
professional and moral support, and above all his patience durlLv
the preparation of this thesis. "ence. auringv

Finally. I would like to thank Sharyn Cohn for typing the thesis.

»«■*■

1 ■ ■ 1 11 »' ^i^ m*j

TABLE OF CONTENTS

Title Page

Abstract

Acknowledgements

Table of Contents

Preface

Chapter 1: A Survey of Work on Subrecursive Hierarchies
and Subrecursive Degrees

Notations and Definitions

Section 1: ^-hierarchies of Primitive
Recursive Runctions

Section 2: w-hierarchies of Elementary
Functions

Section 3: Transfin^.te Hierarchies

Section 4: Subiecurslve Degrees

References

Chapter 2: Honest Bounds for Complexity Classes of
Recursive Functions

PAGE

Section 1

Section 2

Section 3

Section 4

Section 5

References

Introduction

Preliminaries

The Honesty Theorem

Large Honest Bounds on Computation

Good Honest Names for Complexity
Classes

1

2

3

4

6

7

9

10

21

25

45

51

58

58

60

66

70

75

82

 - - - -

■5-

mi ii inn-.- m^,

PAGE

Chapter 3: An Operator Embedding Theorem for
Complexity Classes of Recursive
Functions

Section 1

Section 2

Section 3

Section 4

References

Biographical Note

Introduction

Preliminaries

The Embedding Theorem

Relation to Other Work,
and Open Problems

8A

84

85

86

92

94

95

 - . - -
■■ ■■ ■ - --■ -^-^■.■. J

-6-

Preface

The three chapters of this theslc can be read Independently.

Chapters two and three are entirely self-contained; no attempt has

been made to integrate them into a single document. Chapter two

has been accepted for publication by the Journal of Symbolic Logic.

It is co-authored by Albert R. Meyer. Chapter three has been

submitted for publication to the Journal of Computer and System Sciences.

.. ■ ...■^^ ^.^^
—-- — ■--■—■■ J

"^

•7-

Chapter 1

A Survey of Work on Subrecursive Hierarchies and Subrecursive Degrees

The definition of the partial recursive functions is easily describable,

involving merely the ^-operator in addition to the traditional initial

functions and Schemas for developing the primitive recursive functions.

Moreover the Kleene normal forn theorem gives an effective syntactic

presentation of these functions. The recursive functions, those partial

recursive functions which are total, has no such presentation. Tn general

the demonstration that a partial recursive function is total involves a non-

constructive existence proof.

To avoid this difficulty, subrecursive hierarchies have been COP>

structed in an attempt to effectively approximate the class of recursive

functions.

A subrecursive hierarchy is a sequence of classes of recursive functions

P0' Pl' *"' V *"' Pß' *,,' wh"6 « end ß may be finite or infinite

ordinals. For a < ß, P^ ^ Pß, and the extension of a hierarchy from a

to orH, or from {an}neN to a (where lim o^ = a and a is limit ordinal) is

usually carried out by some uniform effective principle.

The method of hierarchies has also been applied to certain rich and

interesting subclasses of the recursive functions. The goal of such

hierarchies is to approximate the given class from below with sr-alle., more

comprehensible sets of functions. Hopefully such a construction will

provide insight into the structure and complexity of the given class.

------ Ml ■a-k'^-MM mmmta

-8-

We begin by studying (J-length hierarchies of the primitive recursive

functions. We show that these hiera-chies are quite successful in that

they give non-trivial alternative formulations of the primitive recursive

functions. Moreover there is considerable agreement among the various

hierarchies, and this agreement may be interpreted to mean that various

notions of primitive recursive complexity coincide.

Similar results are obtained for w-hierarchies of the elementary

functions.

Next we consider various attempts to build hierarchies of transfinite

length which exhaust the recursive functions. We discuss at lei^th the

issue of names for ordinals. Ordinal names must be used to index any trans-

finite hierarchy, and we show how problems with ordinal viames has essentially

ruled out any hope of building a meaningful exhaustive hierarchy of the

recursive functions.

The difficulties with building exhaustive hierarchies has led investi-

gators to construct and study "short" transfinite hierarchies which exhaust

only a portion of the recursive function;. A key issue for such construc-

tions is the selection of "nice" ordinal names to index SUCH hierarchies,

and this has been done with considerable success, at least for hierarchies

of length less than or equal to « .

Finally, we consider subrecursive degrees, corresponding to Turing

degrees of full recursion theory. Th?s recently revitalized area has begun

to distinguish Itself from the theory of Turing degrees, and has established

;?ome interesting structural results about subre-.ursive behavior.

■okaMMiMMMaaillaBtaia* - ■

^ww

Notations and Definitions

For basic notation from recursive function theory, we follow Rogers [2]•

We denote by < x,y > a 1-1 onto recursive map from N x N -» N. Associated

with < > are decoding functions TT., TT , such that z ■ < n (z), TT (z) >.

Let f be any function. Define f(1) (x) = f(x), fnfl(x) = f(fn(x)).

ein) . t. th , ,
f Is the n -power of f.

If t Is any total function, then ♦■.he t-computable functions are the

set of functions computable within t(x) Turing machine steps, for all but

finitely many arguments. Our Turing machine conventions are those of

Davis [].

If f(x0, •••, xn) = h(g0(x0, •••, O.-'*! «„(XQ, •••.. 7^)) we say
n

that f is defined from h, g , •••, e by composition.

If f(0, x1, •••, xn) = g(x1, •••, xn),

f(n+l, x1, •••, xn) = h(t(n, x1, •••, xn), r>, z^, •••, xn),

then we say that f is defined from g and h by primitive recursion.

Tie class of primitive recursive functions is the smallest class of

functions containing the zero function, the successor function, and the

projection functions ^(x^ •••, x) = x , which is closed under composition

and primitiv» recursion.

If g, h, and j belong to some class of functions and f satisfies the

equations

f(0,y) = g(y),

f(x+l, y) = h:x, y, f(x,y))

f(x,y) C j(x,y).

- »«■■■■■MMMMMaMMMaaMM

"- ■
—■

-10-

then we say that f is defined by limited recursion from g, h, and j.
n

If f(n, x, ••. x) = n g(z, x v), we say f is defined from
z=0 K

g by limited multiplication. There is a similar scheme for limited summation.

If f(x1, •••, x^) = g(y1, y^), where each 3^ equals some x , then

we say that f is defined from g by explicit transformation.

The class of elementary functions E of KMlm* [77] can be defined as

the smallest class containing x+y, x-y, and xy which is closed under the

operations of composition, explicit transformations, and limited recursion.

We use Xj^ as an abbreviation for the expression x , x , •••, « .

Section 1. w-hierarchies of Primitive Recursive Functions

The primitive recursive functions have been the most widely studied

subrecursive class, and so it is nctural that much of the work on hierarchies

of recursive unctions has centered around classifying these functions. An

w-hierarchy of primitive recursive functions is an increasing sequence of

classes of functions P0, P^ p^ ..., 8uch that for each k) Pk 5 Pk+1

and such that the union of these classes equals the primitive recursive

functions. If f is primitive recursive, then the least k such that f e p
k

in some sense measures the difficulty of f. As we shall see there are

many different ways to formulate hierarchies of primitive recursive

functions, each with its associated concept of difficulty; however, there

is a high degree of invariance among these concepts, and this invariance

makes the primitive recursive functions a well understood subrecursive class.

- ■-■--■■

■ 11-

Primitive recursive hierarchies have been formulated in several different

ways One approach is to consider each class in the hierarchy as a closure

class. Each Pk is formed by the application of certain sub-primitive

recursive closure rules to certain initial function', usually differing only

in a single "key" function t. This is the approach of GzregOi.2yk, and

Axt. Another formulation constructs each class using some external

syntact c criterion; for example, one might assign f to P if f can be

defined u,5ing at most n nested instances of primitive recursion. Axt

did the initial work in chis direction. Yet another approach, proposed by

Robert Ritchie, Robbin, Cobham, and Meyer and Ritchie, is cotrplexity-

cheoretic in nature, f e Pk in case f is (roughly) f computable.

The fundamental result of this section is that all these approaches

yield essentially the same, hierarchy.

Gzregorczyk in his 1953 paper [41] gives the first formulation of an

u-hierarchy of primitive recursive functions. Ha defines a sequence of

rapidly increasing recursive functions f , and each f is used to define
n n

the n class in the sequence.

Definition: Define a sequence of functions f e R„ as follows:
n 2

1. f0(x,y) = y+1

2. fjCx^) = x+y

3. f2(x,y) = (x+l).(y+l)

4* fiH-l(0'y) = fn(y+1' 7+l)

5. t i*H,y) = ffl(x.ffl(x.y))

--;- - ■ —■-■■—- - ■—--- ■WMMAJMMMHdiMlltfidHlk MJMHto

 1 I ■

-12-

He defines his sequence of classes of primitive recursive functions

t , t , •••, E , ..«, as follows.

Definition: Let E be the smallest class of +ui»,tions containing as initial

functions the successor function, the projection functions, and f , and
n

closed under the operations of composition, explicit transformation, and

limited recursion.

Notice that f3 is essentially exponentiation, and so E is the elem-

entary functions.

An essential feature of any proposed hierarchy is a hierarchy theorem,

that is, a theorem which demonstrates that the classes of the hierarchy form

a proper increasing chain.

Theorem: For all n s 0 E11 c: Errfl.

Gzregorczyk's proof of this theorem is ct-nplicated by his choice of

key functions f . The difficulty in the proof irises because f , is not K n+1

defined by a simple primitive recursive scheme and so a bounded recursion

argument by itself will not suffice to establish the result. Gzregorczyk

uses a fairly intricate coding argument to show that for i < n, f e En;

this shows that En c E for each n.

The proof that each containment is proper follows from the fact that

for each n, f ^(xfx) majorizes the one-variaMe functions of En.

By first observing that each f is primitive recursive, it is immediate
n

that U E c primitive recursive functions. The next result shows that

this contairment is actually an equality.

 -— —fc—-^——.-—

mm

•13-

Theorem: IJ E = primitive recursive functions.

To prove this Gzregorczyk uses a formulation of the primitive recur-

sive functions due to R.M. Robinson [78]. The importaut feature of this

formulation is :hat primitive recursion is eliminated and is replaced by

a schema for iteration. It is t! en not difficult to show by induction on

the order of a function (where the order cF f counts the number of opera-

tions used in the definition of f) that if f is primitive recursive and has

order k then f e E .

In an -arly paper Cobham [79], drawing on work of Ritchie [66],

considers the Gzregorczyk hierarchy and observes that the classes Ek have

interesting complexit>-theoretic properties.

k t
Theorem; For k ^ 3 f e E i cf some program P computes f and T e E , where

Tp is the run-time of P iff there is a g e Ek such that f is g-computable.

Cobham states hid result for k ^ 3 to achieve machine-independence;

in this form the theorem is true for any device or programming language

which can be arithmetized in an elementary-recursive way.

Meyer and Ritchie [72] exploit this result to give a complexity-

theoretic formulation of the Gzregorczyk hierarchy. We develop the Meyer-

Ritchie approach here because the ideas involvfd will be useful in proving

tho equivalence of various different hierarchies.

Definition: Given any f, let E(f), the functions elementary in f, be the

- ■ ■ - 1 — —

■14-

tion, expHcit transfcrmation, and limited recursion.

E,) = E , where f, k k

smallest set containing xJ, x+y, x»y, and f, which is closed under compose

Notice that for k S: 3 E(f) = E , where f is the kth Gzregorczyk

function.

The following simple theorem proves one part of Cobham's result cited

above.

Theorem: Let g be any function computable within t(x) steps for each

argument x. If t Q E(f), then g e E(f).

The proof of this theorem rests on the fact that in any reasonable

machine model there exist elementary functions 0 (e, x , y) for mal such
m ' m

that 0 (e, x , y) = the output of the e Turing machine on arguments x ,
mm tn

if the machine halts within y steps, and 0 otherwise. For every f,

0 e E(f), and so 0 (e , x , t(x)) = g e E(f), where e is a machine m m g m m g

which computes g in time t.

Call a function f elemjntary-honest if f is h-honest for some elem-

entary-recursive h. The next result is a partial converse to the last

theorem.

Theorem: If f is elementary-honest and if g e E(f), then there is a

t e E(f) such that g is t-computable.

Summarizing these last two results we have that if f is elementary

honest, then g e E(f) if and only if g is t-computable for some t e E(f).

Classes with this property are called computation-time closed classes.

See definition 1 of Chapter 2, Section 2.

 - ■- ■ ...

" " ■

•15-

The size of functions in E for each k plays an important role in

Gzregorczyk's work. The following simple bounding lenina of Meyer and

Ritchie will yield more precise information on function size for

Gzregorczyk's classes.

Bounding lemma: If f is non-decreasing and :> 2X and if g c E(f), then there

is a constant c such that g(x") ^ f (««[x-, •••- x]). n —— 1 n

Meyer and Ritchie are now in a position to redefine the Gzregorczyk

classes. First they note that fog is elementary honest if f and g are, and

f is at least as large as the identity. Similarly if f is elementary honest

(c)
and non-decreasing, then f is elementary honest. Using these observations

they construct a Gzregorczyk-like sequence of elementary honest functions

gn, (based on a modificatica of Gzregorczyk's functions due to Ritchie [57]),

as follows:

x
83 = 2

WX) = gn
(X)(1>-

These simple functions can be used instead of Gzregorczyk's functions

fk, so that for n ^ 3, En = E(g). Thus for n s 3 the class En is precisely

the set of functions which are computable within time bounded by some

fixed iterate of g . n

Gzregorczyk has one other result of interest, and this result leads

very naturally to another formulation of a primitive recursive hierarchy.

• ■ - ^■.....

——

16-

Definitlon: Let E be a class of functions. A function F(x,y) is a univ-

ersal function for E if for each x, \y F(x,y) c E, and for every g e E there

is an x such that g = Xy F(x,y).

Theorem: For n 5 2 E contains a universal function for the one-variable

functions in E .

An important feature of any hierarchy is the method used for class

enlargement, the "jump operation" of the hierarchy. One of the weaknesses

of Gzregorczyk's formulation is the obscurity of his jump operation, and

the resulting relative difficulty of his hierarchy theorem.

Axt [13] proposes an w-hierarchy where the jump operation is based

explicitly on universal functions. To go from class to P, to class P, ,
k k+1

Axt adds to the initial functions of P an enumerating function for P .
K K

Definition: Let 8 be a set of total functions. We say a function 0 is

4
E_ in 9 if 0 belongs to the smallest class containing 9 and f,(the

Gzregorczyk function f,), which is clcsed under composition, explicit

transformation, and limited recursion.

4 9
Axt now chooses a particular E function ef(x,y) such that ef (x,y)

4
is a universal function for the set of functions E in 9.

Definition: Define e for n s 0 as follows:
- n

e0(x,y) ■ 0

e
enfl(x'y) = ef "t*»^

■■■■■^f—MMMMaannii^Mtttfiii ■iMinr- "— - ■ - ■- ■ - -— -..—^--—-^ .. — - - -...- ■-.

111

•17-

Axt now defines classes E based on the enumerating tunctions e ; E 11 n n

will be the set of functions E in e .
n

Theorem (Axt Hierarchy Theorem): E. C E. C ••• C E .
0^1^ r n

Notice that the proof of this theorem is immediate, since E contains
rH"i

the initial functions for E , and by a crivial diagonization, e t E .
n rrfl n

Axt is able to sliow his hierarchy is essentially tht same as

Gzregorczyk's.

Theorem: For all n 2 0 E1*4 = E .
n

This is a pleasing result. It gives us a surprising alternative for-

mulation of the Gzregorczyk hierarchy. However, Axt's result is less

significant than one might suspect. The difficulty with his work lies

with his choice of the universal function ef. It is not hard to show that

there are a great many possible universal functions ef, each as natural as

Axt's ef, and eich yielding a different hierarchy when used as a jump

procedure to construct an Axt-like hierarchy. Indeed, the significance

of his technique is the highly non-invarian • character of his jump operation-

This phenomenon is in sharp contrast to the situation in full recursion

theory, where the behav;or of the jump operation on Turing degrees does not

depend on the specific details of the jump definition.

Axt formulates another w-pierarchy in [14] based on a natural syntactic

criterion, depth of nesting of primitive recursion. He defines his classes

K as follows,
n

•18-

Deflnitlon:

(1) If f is an initial function, that is if f is ^he rero function,

the successor function, or a projection function, then f 6 K .

(ii] if f is defined by composition from h, g-, •••, g , and h € K. ,
Ik i0

81 6 K , •••, t e K , then f e K ., I « ^ 4 -. i-i« 1 1
1 ^ He max[i I 0 ^ j ^ k]

(iii) if f comes from g and h by primitive recursion irH g e K ?nd
V

h e K , then f G K-. . ,.
Hj l+max[n.., n„ J

It is immediate that Kn 5
Ki * * * 5 K 5 *"' and the U K = primitive

recursive functions.

This hierarchy uses no external machinery in its definition, and in

this sense is perhaps the most naturally formulated hierarchy of any we

have considered. It turiv out that for n & 3 E1*4"1 = K , although Axt

was unable to show this in his original study.

Meyer [80] was the first to show that Axt's depth of nesting hierarchy

and the Gzrogorczyk hierarchy eventually coincide. He shows that for

n ? 9, E = K . The best published result to date is due to Schwichten-

n+1
berg [51], who proves that E = K for n 2 3. Meyer's proof rests on

the complexity-theoretic properties of the Gzregorczyk hierarchy which we

established earlier.

He begins by proving that for n ^ 3 K c E , usit« an inductive

argument to show that every function in one class is majorized by some

function in the other class. This yields the result, since if f appears

in Kn by an instance of primitive recursion, then g > f for some g G E1^" ,

Müller has announced the result for n ^ 2 in the Recursive Function Theory
Newsletter, No. 5, April 1973.

 ■ -■- — ■ ■ - - -- ' II—It—■■

1 i •^^mmi^fm^m^mmmmmm

•19-

n+1
and so f e E by an instance of limited recursion with g as bounding

function

The proof that E c K^ for sufficiently larg« n is dealt with using

explicit complexity-theoretic arguments. Since U K exhausts the primitive
n€N n

recursive functions, Oje, T, y) belongs to K for some n . Moreover.
"0-1 0

since the running time of f is bounded by some function in En, and hence,

by :he above, by some function t e K , Meyer concludes that f =
_ Vl

0m(ef' V ^^ c K
n » w*16" e

f ^ a Godel number for f. He shows that

rij, <: 9, and thus for sufficient^ lar^e n, K = E1^"1.
n

This is a rather striking result in that it relates the size f, the

running time of f, and the syntcctic form of f. The same general method

yields Schwichtenberg's result, although tie details of the construction

of 0 in K is much more difficult.

Several investigators have considered syntactically formulated

hierarchies which are quite similar to the depth of nesting hierarchy.

Parsons [63] observes that iteration is the feature of primitive recursion

that increases functional complexity. Using this as a guide, he defines a

hierarchy based on nested iteration rather than nested primitive recursion.

With this phenomenon in mind, he builds his classes S? so that functions

defined by primitive recursion are placed in ths class only when p

nested iterations takes place. He shows that for p s 2 £p = E^1.

Schwichtenbers, [51] and Meyer and Ritchie [58] also build hierarchies

similar to the depth of nesting hierarchy. They place f e Ksim in case
n

f is defined from functions in K^J by an instance of simultaneous recursion.

They show that for n :> 2 KSim = E".

-

■^ww^^""^"»"""'' ' — ' " "' —

•20-

Meyer and Ritchie feg] propose yet another syntactically formulated

hierarchy. They consider a simplified programming language, and they

measure program difficulty by depth of nesting of LOOP-END pairs. Their

language consists of five possible types of expressions, (1) Set Xtox+l,

(2) Set XtoY, (3) Set X to zero, (4) LOOP, and (5) END. A sequence of

instructions is a Loop program when LOOP and END instructions are matched

like left and right parentheses. LOOP-END pairs affect the normal sequ-

ential flow of the program. If P is e Loop program, and register X contains

integer x, then "LOOP X, P, END" means that program P is to U executed x

times before the next instruction (if any) after the END is executed.

A program hierarchy L is constructed by placing program P in L if
n

P includes LOOP-END pairs nested to depth at most n. A hierarchy of

functions I for n ^ 0 is now derived from the L hierarchy: f e £ in
" n n

case some P c L computes f.

Since loop structure and the schema of primitive recursion are very

similar, a routine inductive argument shows that (J £ = primitive recursive
n

n
functions. Moreover, Meyer and Ritchie are able to relate thai xip

hierarchy to Gzregorczyk's by linking the classes JC directly to the modified

Gzregorczyk functions g . They defi le a sequence of functions h as follows: n n

x+1 if x = 0

x+2 if x s 2

hn+1(x)=hn(x)(i).

--■- ■ - -- ■ ■ —

——^^wmmmHwmm *^mmm*mmm^*^**m

■23-

Thus f « F ^ is "predictable computable" in the sense that the space

needed to compute f is bounded by some function in F . In a moment we will

sharpen the notion of predictability by giving explicit uppei bounds on the

space needed to compute f e F ,•

It is easy to prove that F c F, c ••• c F C •••. To show that all
0 1 n

the containments are proper, Ritchie develops a sequence of functions 4 ,
0

£y ***. f
k. •*• which are similar to the Gzregorczyk functions, anu which

yield canonical estimates on the size of functions in F •
f (x) k

Theorem: Let f (x) = x, and let f,,(x) = 2 n . Then for each n, f e F
u n+l n r

and if g e F , then g(x-, •••, x) < f (K«max(x.., •••, x)).
n i n n in

Easy inductions prove both claims, and since for strictly increasing g

2 majorizes k»g, f ,, ^ F . This establishes the Ritchie hierarchy theorem.

Theorem: For all n ^ 0, F c; F ,.
 n r nfl

Ritchie next establishes that the elementary functions E c U F • He
n n

accomplishes this by showing that exponentiation is in F-, and that explicit

transformation, limited recursion, and composition do not lead out of the

F-classes. Finally by carefully analyzing and reworking the Kleene normal

form Theorem, Ritchie is able to show that every f ^ U F Is elera-
n

entary. Thus his hierarchy is precisely a hierarchy of the elementary

function?.

In [44] Herman develops a variant of the Ritchie hierarchy, based on

unary Turing machines. As in the Ritchie formulation, Herman places

feG in case some machine T computes f and G (x., •••, x) < f. . (K'maxCx.... .x)), 1 Tin i-l 1 n

 - ■

mmimmmm^^m^mimmm^^mmmmmmi^^**'*-*^*^*'

■Ik-

By examining carefully the resource neec^d to convert between binary and

unary notation, he proves that for all i > 0 Fi C G C F 1, and thus

that U G = the elementary functions,
i 1

Cleave [81] proposes another method of building hierarchies, based on

register machines. He fixes a set of functions Tt and defines a E-program

to be a finite sequence of instructions 1(1), 1(2), i(k). Instruction

may be of two forms: I(j) may be arithmetic, that is, of the form

F(R1, •••, R) -» R (For F e S, apply F to the contents of registers R, ••• R .
v 1 m

and place the result in Rp) ; or jump, that is J^er, ß) (if Ri = 1, go to

instruction 1(a), and otherwise, go to I(fi)). He limits his machines by

specifying a special register J which is decremented by one each time a

jump instruction is executed. When J = 0, the program halts.

Definition: A function f is (h-E) computable (that is, f e (E)h) if some

2>program P computes f at each argument x, with special register J initially

set to h(x).

Using this notion of bounded computability. Cleave constructs his

hierarchy.

Definition: The Cleave hierarchy.

1. f e E0 *» f e (E) for some constant function h

2. f e Errfl o f e (E)8 for some g e E •

For E = {+, x, =) Cleave shows the following:

Theorem: Ifc ^ ^l ^ *" ? ^n ^ •,•' and y En = elementary functions.

- - - . - - —

-25-

In [45], Herman considers the equivalence of the Ritchie and Cleave

hierarchies. He shows that for E -{+.-), U I = elementary functions,
n n

and using an induction argument based on Ritchies functions ff 1 he
L nJ neN'

shows that for 1 * 0. F c: G c;E CF c r
' 'i V ^i+l ? ^i+2 y Fi+2 ? G^+3•

Section 3. Transfinite Hierarchies

In the first part of this chapter we discussed w-hier irchies of two

well understood, effectively presentable subclasses of the recursive

functions, the primitive recursive functions, and the elementary functions.

In this section we discuss various attempts to build natural, effectively

constructed transfinite hierarchies which are designed to exhaust the

class of recursive functions in a non-trivial way. The results we con-

sider here are almost without exception, negative. The fundamental

difficulty with building exhaustive hierarchies is the highly non-in-

variant character of the ordinal names used to index such hierarchies.

These "naming- difficulties have led to the formulation of transfinite

hierarchies with mort modest goals, namely, the construction of hier-

archies indexed by apparently "natural" names for a small subset of the

constructive ordinals. We discuss non-exhaustive hierarchies of this

type at the end of this section.

One natural and attractive approach to the problem of constructing

exhaustive transfinite hierarchies is through ordinal recursion. One

might formulate such a hierarchy informally as follows: place a function

f r F^ for a < a^ (the first non-constructive ordinal), if f can be

re-

defined by ordinal recursion over some well ordering ß s » involving

functions in F^ for \ s a. By unnested recursion over a well-ordering R of N

we mean the following:

Definition: Let R be a well-ordering. Define R to be

xRa =

Then a function f is defined by ordinal recursion over R (or unnested

R-recursion), from given functions g., •••, g if

f(0) = n

f(a+l) = h(a),

where h(a) has the form p(a. f(q(a) R a+1)), and p, q are built up from

81' "*• 8k by comP08ition-

Definition: Let U(R), the unnested R-recursive functions, be the smallest

class containing + and closed under composition, explicit transformation,

and ordinal recursion over R,

The next theorem sl-ows that the proposed hierarchy outlined above

collapsej at the earliest possible stage. The character of the proof

hints at the close link between the "strength" of a transfinite hierarchy

and the ordinal names used to index the hierarchy.

Theorem: Myhill, Routledg,* Uol, [50], [31] and [32]. Let f be any

recursive function. Then there exists a recursive well-ordering R

can be shown to be elementary) of order type U such that f e U(R).

-

-27-

One proof of this theorem proceeds by constructing R from the running

time function $ for some Turing machine T which computes f. R is built

with an encoding of $(0), $(1), ••• embedded in it in an R-ordinal

recursive way. $ can be extracted from R in an ordinal recursive way, and,

using the Kleene T-predicate and $, one shows that f e U(R).

This is certainly a provacative result; it indicates that if there

is to be any hope of a successful transfinite hierarchy of the recursive

functions, then the issue of ordinal names must be treated with considerable

care.

With this in mind Kleene [27], proposed a subrecursive hierarchy in

which classes of functions are attached to the nodes of 0, the Church-

Kleene system of ordinal notations. We assume the reader is familiar

with 0; a readable account of 0 and its properties may be found in

[2 , pp. 205-213].

Hoping to avoid the difficulties which arise from the Myhill-Routledge

result, Kleene restricts 0 by allowing only primitive recursive funda-

mental sequences. He shows in fact that under this restriction 0 still

names all the ordinals < u.. In what follows, we assume 0 is restricted

in this way.

Loosely speaking, Kleene*s hierarchy starts with the primitive

recursive functions at the base level, and is built up at successor levels

by taking an enumerating function for the previous class and forming its

primitive recursive closure. At limit notations Kleene assigns the

primitive recursive closure of a function which encodes the enumerating

functions of the classes named by the fundamp^tal sequence.

 ■ '—- --■i i iiiiii-aiMi»iri»iniiiifcriiiiii«iiiii i MI—muni—ia ■...■. -.. — - - —

•28-

Deflnltlon: The rlieene subrecursive hierarchy. Let prf(a,b) enumerate

the functions primitive recursive in f. The enumeration procedure pr

is uniform in f. Associate ^ tunction h with each x e 0 as follows:

(1) if x = 1, let h (b,a) s 0

(ii) if x = 2y, let hx(b,a) = pr^(b,«)

VOioCb))
(ill) if x = 3*5 let hx(b.a) » prdr^b), ■))

To each x e 0 assign the class of functions P , where P = the primitive

recursive closure of h .
x

Let us consider the issues Kleene's hierarchy raises. To be completely

successful, his (or any similarly formulated) hierarchy should satisfy

the following properties:

(1) (uniqueness) J jr each o- < u if x, y e 0 and |x| = |y| -

ex (i.e. if x and y are notations for a) then P = P •
x y'

(ii) (proper expansion) For each a < u, U. Px 5 «, the recursive
functions; Ivl Ov * * lx|0<br

(ill) (completeness) (J P = R: and
xeO

(iv) The mapping x -» p should be reasonably constructive, e.g.,

Px is uniformly r.e. In x.

Such a hierarchy would provide considerable information about the

class of total recursive functions. It would imply (subject to the

restriction to primitive recursive fundamental sequences) that sub-

recursive hierarchies ar« ordinal invariant: no matter what choice of

— — -

-29-

names we select, we always generate the same sequence of classes of

recursive functions. Moreover a hierarchy satisfying the properties

listed above would provide us with * useful classification technique

for measuring the complexity of recursive functions. We cculd identify

the complexity of a function f with the least ordinal a such that

|x|0 = a and f e P^. This would be a significant measure of function

complexity, since uniqueness would guarantee that no function f could

appear at an artificially early level.

Unfortunately the Kleene hierarchy, and indeed an^ reasonably con-

structive hierarchy built in 0 must fail to satisfy the first three

criteria. This breakdown means that any transfinite hierarchy of

recursive functions must depend critically on the choice of ordinal names

used to index the hierarchy. These negative results have made the aims

of subrecursive hierarchy theory much more modest, and as we shall see

much of the recent work on hierarchies is concerned with finding "nice"

names for sequences of ordinals, and building non-exhaustive hierarchies

along these paths.

Axt [12] is the first to consider Kleene's hierarchy. He shows that

indeed the Kleene hierarchy is unique for a < co2. However, he also shows
o

non-uniqueness at w ; there exist x, y E 0 such that Ixl = lyl = to2 I IQ 1^ IQ

but P ^ P .
x y

Feferman [38] considers; Kleene's hierarchy in a more general setting,

and his work reveals a great deal about difficulties involved in building

successful hierarchies in 0. Feferman proves his results for any

"primitive recursively expanding hierarchy", that is any hierarchy

■———1——MM

•30-

satisfying five (rather complicated) abstract properties, the most re-

strictive of which specifies that classes at limit notations must contain

a function which diagonalizes across the classes named by the fundamental

sequence.

His first result shows that in a primitively recu-sively expanding

hierarchy, and in the Kleene hierarchy in particular, every recursive

function occurs at a low level.

Theoran: Let (*J)JCQ be the Kleene subrecursive hierarchy. For any

f € R tb3re is a d c: 0, ld|0 = U , such that f e P . Moreover for any

b e 0 there is a d e 0, b < d and |d| = |b| + u mch that f e p .
^J ü 0 d

Feferman proves his theorem by showing how to encode any recursive

function into a notation for u , This result shows that for a large class

of hierarchies, uniqueness must fail.

In [62], Parikh strengthens Feferman's non-uniqueness result.

Definition: (Parikh) A recursive transfinite progression of sets of

functions over 0 (or any suitable subset of 0, for example, 0 restricted

to primitive recursive fundamental sequences) is an r.e. predicate

C(p, q, a, b) such that

(i) x e 0 implies that for any a, {< p,q > | C(p,q,a,x)} is a function

f : F ■♦ N; and
a,x

(ii) If x, y e 0 and x <. y, then C C C , where C - (£ I !• (£ - f)!
0 x ^ y x ' a ,x

and C = (f I aa(f = f)] .

 - i — ' - --- wätmk <■ ~- — -■ — -..^ — ..^ , ■■.,.._ . .-,. . ■ _. .

•31-

For such recursive transfinite progressions, of which Kleene's hierarchy

is certainly an example, Parlkh proves the following theorem.

Theorem: Every recursive transfinite progression of sets of functions is

Al non-unique; that is, there exist x, y e 0, |x|0 = u
2
+i sucn that

c ¥ c .
x y

Parikh's theorem is proved by methods similar to but simpler than

those used to prove Feferman's result. The generality of his theorem is

convincing evidence that transfinite subrecursive hierarchy are highly

ordinal-nPme dependent.

Feferman has two other results, which, taken together, give concrete

information on how dependent the strength of a hierarchy may be on the

indexing ordinals for the hierarchy. By a path Z in 0 we mean a subset

of 0 well-ordered by <0 and containing, with any d c z, all the predecessors

of d. Let (zl denote the order type of Z.

Theorem: Let K be any ordinal s uy Then there exists paths Z, Z' c 0,

|Z| - K + u for K < o1, and|z'i = Ul for K = u^such that U P =

U P =R. xeZ X

xeZ' x

To prove the theorem with K < u^, Feferman enumerates the recursive

functions (a highly non-constructive procedure), and then, using ♦ he

iterates the techniques of his earlier theorem to obtain all the functions
3

by K + a) . For K = uy he enumerates 0 and the recursive functions, and

he builds Z by alternately obtaining a new function, and then adding (+)

the next element in the 0-listing. This iMult establishes the existence

of "complete" paths of length as short as to3, and as long as uy This

 -■ - -- ■■-"-—-—- —■ - -

■ I

-32-

is certainly a striking instance of ordinal non-invariance. It also shows

that proper expansion is an impossiblity, at least for hierarchies of

tha Kleene type. The next result sharpens this phenomenon even further

by showing that there are "incomplete" paths of length u .

Theorem: These exist incomplete paths in 0 of length w . That is, there

exists a path Z e 0, |z| = uy and an f s R such that for all d e Z,

f f- P..
a

This is one of the deepest results in the theory of subrecursive

hierarchies. The proof of the theorem builds on work doae by fefemvan

and Spector in [39], in which a "non-standard" version of 0. 0* is

studied. 0 is defined inductively as the intersection of all hyper-

arithmetic sets X satisfyii^

(i) lex

(ii) if d e X, then 2d e X and d < „^
0*

(iii) if CD (n) e X for all n and qg (n) < Q, (nfU for all n.
• e o* e '

then 3»5e 5 0 .

Interested readers unfamiliar with hyperarithmetic sets and their

properties should consult [2t pp. 381-402],

Using this inductive definition, one can construct subrecursive

hierarchies in 0* exactly as one constructs them in 0. Moreover,
*

OqO and for d e 0, the class of functions PJ attached to the d-node
d

in 0 is exactly the s^me as the class Pd in 0*. Feferman and Spector

show that for any d e 0* - 0. Z = C'Cd) n 0,(where C'(d) = {x | x < ^ d})

is a TT^ path through 0 of orcer type uy (For background material

on TT^-sets, the interested reader should consult [2, 397-403]).

_ — ...■.■ ■—1 --iriMniiMti if-— -^^—^.. ...-■. ..^..- J_.J.__^JfcjMM^MjM>aAMJJ,^^hjat,t^tJ^^J.^^_^MMaMMMMfcJ^__ ^ .■■-.-. .„..^-r.^.^-.^-. „_..., . |. ,■■■--aMUlariHi

■33-

Picking such a T^-path Z in 0, we know there is a d e 0* such that

d "sits on top of" Z. Since the 0*-hierarchy overlays the 0-hierarchy and

agrees with the 0-hierarchy on 0. we know that Pd must properly contain

x^Z Px* HenCe yeZ
Px mUSt 0mit SOme recursive function, and the f alowing

theorem, which applies to anjr subrecursive hierarchy in 0, is therafore

established:

Theory.: Let Z be a nj-path through 0 such that Z - C (d) n 0 for d e 0*.

Then there exists f e R such that f ^ (J P •
xGZ x

Co. bining the last two results we see that the exhaustive power of

a subrecursive hierarchy, at least of the Kleene-type. is intimately

tied to the ordinal notations used in the hierarchy. In short, these

results say that there are short (u3) complete hierarchies, and long (to)

incomplete hierarchies.

An unpublished result of Mochovakis [82] provides still more infor-

mation on the behavior of hierarchies in 0.

Theorem: For a e 0 (or any suitable version of 0, for example. Kleene's

0 restricted to primitive recursive fundamental sequences), let A s N.
a

Then one of the following must fail:

1. A = U A is hyperarithmetic; or
act)

2. P(x,a) = [a e 0 and x e A] e TTJ; or
Ä 1

3. For each constructive ordinal er. U A c A
Ixl<a ^

 — ■ -■ - -- ■ ■ ii ■ ■

 ■ ■■

-3A-

Properly interpreted, this theorem says that for any hierarchy on 0

built up in any manner which could possibly be considered constructive,

if the recursive functions are exhausted at all, they are exhausted by

some bounded levp.l in 0.

Mochovakis proves his result by considering the TT|-predicate

Q(x,a) = [[x ^ A and a = 1] or [x e A and (P(x,a))]i. The uniformization

theorm [2, p.430] say- that there must be a hyperarxthmetic function g

such that Vx Q(x, g(x)); but then the range of g is an unbounded hyper-

arithmetic subset of 0, a contradiction.

In the case of the Kleene hierarchy, if we set A = {e (m e p]
a ' ^e a;'

then (1) and (2) are true, and so (3) must fail. Indeed, we saw for

Kleene's hierarchy that this failure occurred at to2. Thus, even if one

gives up the goal of uniqueness for lueraichies in 0, one must still

contend with the problem tuat either the hierarchy will collapse by some

bounded level, or it will omit some function.

By what we have just seen, hierarchies in 0 are extremely badly

behaved. Such hierarchies can still be of use, however, for proving

theorems about the various methods used in constructing hierarchies. As

an example of this we consider the Bass-Young hierarchy [701. This work

has inspired many of the results in Chapter 2 of this thesis. In what

follows, the reader is assumed to be familiar with Section 2 of Chapter 2.

Bass and Young build their hierarchy by starting with some complexity

class ^(tp, where ^ is some sufficiently large recursive function.

- - - . . - -

■«■^mPVWIli ■ I -—»^ i IWWPWP^^^WW^»! •■ ■ i i i. IIIIMII IIHII 1^1 i ii HI. i «■«■•vw^^WHVMP^PV«

•35-

At successor stages they assign to notation 2X the class y^). „here

t2x is obtained fron, ^ by an application of the honesty theorems followed

by an application of the compression theorem. At limits they apply the

union theorem of Meyer and McCreight [83], [84]. The resulting hierarchy

is a recursive progression of sets of functions in the sense of Parikh.

and so is non-unique at Al. However. Feferman's results do not apply:

the union theorem insures that a limit class is precisely the union of

the classes named by the fundamental sequence. In particular, the function

which diagonalizes across the classes determined by the fundamental

sequence does not appear in the limit class. Indeed, an appeal to ehe

speed-up theorem of Blum [i] and the well-foundedness of 0 shows that

no function with h-speed-up can appear anywhere in the hierarchy. Here

h e R2. the compression function used to build the hierarchy, is assumed

to be monotone in its second argument. Using these techniques Bass and

Young -re able to construct a hierarchy on the full g in which every

function is in the Gzregorczyk class E4.

Bass and Ycung use Parikh's non-uniqueness result to establish

several results about inherent irregularities of honesty procedures.

For example, they prove the following theorem.

Theorem: For sufficiently large h e ft,, there exist honest functions t .

t2 such that WJ - 5(t2). but ?(h(x. t^x))) 4 ?(h(x, t2Cx))).

This result and others like it in their paper led directly to our

work in Chapter 2 on the honesty phenomenon.

■ — • i - - ... -

■36-

By what we have just seen, the non-invariant character of ordinal

notations makes the construction of a meaningful exhaustive hierarchy of

the recursive functions extremely unlikely. The construction therefore of

"short" hierarchies which classify only a portion of the recursive functions

seems to be a more legitmate if more modest goal.

We survey several approaches to this problem. Hierarchies can be

built up by unnested and nested ordinal recursion over particularly natural

well orderings. By restricting attention to such w"ll-orderings one can

avoid the difficulties inherent in the Myhill-Rou tledge result. Another

approach extends existing ^-length hierarchies into the transfinite. We

discuss invariance between these hierarchies. A linearly-ordered Kleene

hierarchy can be constructed by selecting a nice path in 0 and examining

the Kleene hierarchy restricted to this set. The results of these investi-

gations show that if one chooses ordinal names with care, then one can

indeed build interesting and singificant hierarchies of portions of the

recursive functions.

We begin by discussing work by Tait [52] relating unnested xnd nested

ordinal recursion over a well ordering R of N. Recall that for R a well-

ordering, the function xRy is equal to x if xRy and 0 otherwise.

Definition: A function f is definad by nested R-recursion over R from

functions g^ •••, gk if f satisfies

f(0) = n,

f(a+l) = h(a).

 - JMMMuMiMMMM_

-37-

where h(a) is built up from g1, •••, gk and f by composition, but where

every application of f has the form f(xK a+1).

Definition: The R-nested (ordinal) recursive functions, N(R), is the

smallest set containing + and closed under the operations of composition,

explicit transformation, primitive recursion, and nested R-recursion.

Tait points out that, in the case of unnested R-recursion, computation

of f(a+1) proceeds in a linear way down a well-ordering until f(0) is reached

and evaluated. For nested R-recursion, the computation of f(a+1) may lead

to a computation tree, and the value of f(a+1) cannot be determined until

the computations on each path of the tree have been reduced to known functions

or constants The comparison of th-.se two types of recursion lies in the

analysis of these two forms of computation.

Definition: Let R be a well-ordering. Define R* to be the limit of all
a. a7 a

polynomials in u of the form U «a + u »a + ••• + u n.a for a <:
2 n n

Vl ^ ••• s »!< R. and a1, an integers. R* has order type JR'.

If R is a recursive well-ordering of N we can assign integers to

polynomials in u of the above form. This assignment induces an R* ordering

of N, and it is not hard to show that this ordering is primitive recursive

in R.

Definition: Define ^ = «. ^ o ^ x ^ define Q = < o . <
r ■ .w. V

111118» l^l = ^ » and IQ^-II
= u • Moreover, for each n < and

Q are recursive well-orderings on N.

--- — --— „...■.■..

•38-

Using tree analysis of nested computaions as a guide, Talc shows

that for the well-orderlngs < , nested recursion on < , is reducible to
n n+1

unnested recursion on 0 .
n

Theorem: For n ä 0, If f c N(< .,) then f e U(Q).

Robbln [68] proves the converse of Tait's theorem and puts these

results In a more hierarchy theoretic framework. He obtains significant

results about various short hierarchies and their relationship to one

another. In particular he relates these results to the multiply-recursive

functions of Peter [10].

Peter invented the multiply recursive functions after Ackermann

had shown that nested double recursion (Ackermann's function) leads out

of the class of nested single recursion definable functions, the primitive

recursive junctions. The function ^ defined by the equations

iK0.n) = n+1

iKmfl, 0) = ^(m, 1)

\Km+l, n+1) = t(a, ij,(m+l, n))

is an example of a '^-recursive" function: the Inductive definition is

done over two arguments, and the computation of \|r is nested in the sense

that to compute i|r(m+l, n+1), one must first evaluate i|r at other arguments.

Peter generalizes this to k variables for k 2: 2 and obtains the "k-recursive"

functions for each k > 0. She considers the k-recursive functions with k

as a parameter, the so called multiply-recursive functions, and shows by a

diagonal argument that for each k, the k+1-recurslve functions properly

contain the k-recursive functions. We denote the k-recursive functions by N .

i - -■

•39-

Robbin's first main theorem relates nested ar.1 unnested ordinal

recursion to the Peter hierarchy.

I^^: NrH-l = ^n+l = ^V'

Robbin relates these results to an extended version of the Gzregorczyk

hierarchy and a linearly ordered portion of the Kleene hierarchy. He deals

with the problem of ordinal notations by specifying very carefully how

limit ordinals are to be approached.

Definitlon: For a a llmit 0^inal «A let a = u^Vl). Define \ncv(n)

such that lim a(n) = cv to be a(n) = cok+1. p4<i)
k.n.

Using this definition Robbin defines a sequence of Gzregorczyk-like

functions W^ which are quite similar to the modified Gzregorczyk functions

gn later introduced by Meyer and Ritchie.

Definition: For a < u)W, define w as follows: define w
a

x
1. W0(x) = 2

2- Vi(x) = v(a
X)(V

3. W^Cx) = Wa(x)(x) for or • limit ordinal.

Thew^'s provide a natural way to extend the Gzregorczyk hierarchy,

Definition: For each a < </. define E* to be E(W), that i« F* =
a

the functions elementary in W .
a

It is easy to see that a proper hierarchy is established. Robbin

is able to show that his extended Gzregorczyk hierarchy refines the hier-

archy of multiply recursive functions, and hence also the nested and

unnested ordinal recursion hierarchies.

mmmmmwmmm

-40-

Theorern: For a < ß, E* ^ Eß; moreover, for each k K = Q £

Pbbbin^ proof uses ideas which were employed later in the Meyer-

Ritchie account of the Gzregorczyk hierarchy. He proves a bounding le™

relating the size of the «^ t0 the multiply-recursive functions, and a

key step in his proof is an appeal to the honesty of the functions » .

We remarked earlier that the 1-recursive functions of Peter Je the

primitive recursive functions. If f(x) = g(*)(1)> we say that f ^ ^.^

from g by l-fold iteration, and we can generate the primitive recursive

functions by using this iteration sehen, instead of the schema for primitive

recursion. Robbin extends this equivalence, showing that the k-recursive

functions can be obtained by replacing the schema for k-recursion with a

schema for k-fold iteration, a generalization of l-fold iteraticn.

Using k-fold iteration. Robbin gives an analysis of a Kleene-type

-"-hierarchy in terms of the multiply-recursive functions. He defines his

hierarchy as Kleene does, but he chooses a single path through 0 out to

M , the path determined by his «(n) fundamental sequences.

Theorem: Let P^. a < ^ be the Kleene subrecursive hierarchy restricted

to the 0-path determined by the a(n) fundamental sequences. Then for
n ^ !. N = U , P .

Robbin's work is an excellent example of how short hierarchies can

yield information about various notions of difficulty for subclasses of

the recursive functions. His results relate nested and unnested ordinal

recursion to the multiply-recursive functions, and through the extended

Gzregorczyk hierarchy, to the actual size of functions.

M^MMMM

-41.

Earlier we discussed a construction of Cleave's which yielded an

(^-hierarchy of the elementary functions. In the same paper Cleave extends

his hierarchy to w , and shows that the resulting hierarchy exhausts the

primitive recursive functions.

2
Definition: The u -cleave hierarchy.

f e Z^j o f e (E) for some constant function h

(ü) forioo. fe^r+k «fMZ)11 for h e 2^^

(Hi) forr>0. fe^r «fe 0^.^

Cleave's work is of interest for several reasons. First, the con-

struction of a proper u length hierarchy of the primitive recursive

functions indicates that ordinal length, even for hierarchies which only

exhaust a portion of the recursive functions, can be a miäleading measure

of hierarchy strength. (Of course, the subsequent construction by Bass

and Young of a proper hierarchy in the full 0 which fails to exhaust E4

is a more spectacular example of this phenomenon.) Second, Cleave's con-

struction brings out some of the difficulties involved in the construction

of hierarchies by machine theoretic means. Indeed. Cleave points out that

his hierarchy must die out at co2. He argues as follows: since each program

is of fixed length, P = 1(1), 1(2), ..., i(k), If f c L 2 then all the

functions used to define f must appear in ^.k for some^k. Hence, extension
2

of the chain beyond u yields nothing new, since any f e L 2 , say, must
U) +1

already appear in some E , •
m«k

This inherent limitation of Cleave's approach is by-passed by Constable

■ ■- — -■ - ■ - -■' - ■-

-42-

[18], who uses RASP machines to extend the Cleave hierarchy to e., the limit
10 "

(J to
of the sequence u), CJ , co , A RASP machine is perhaps the closest

tc ttai computers of all theoretically proposed machines. Its fundamental

characteristic for our purposes is its ability to monitor and modify itself

in the course of a computation. This is a fundamental difference between

RASPs and register machines, and this difference accounts for Constable's

successful extension to Sn.

For ordinals a < en Constable carefully handles the problem of finding

nice fundamental sequences. He puts a in (unique) Cantor normal form.

Q'1 a
a = w «a, + -'-+u)n.a for a. ^ ••• s a , and

1 n 1 n

a,, •••, a integers,
i n

and then he defines his fundamental sequences;

Definition: Let a < s be a limit ordinal in Cantor normal form as above.

If a is successor ordinal, define
n

a
cKx) =w •a1 + *,*+u)

a -1
•x;

if a is a limit ordinal, define

or1 a (x)
a(x) ■ u «a. + ••• + co u

Using this formulation of fundamental sequences. Constable extends

the Cleave hierarchy using RASP machines, and he also extends the Gzregorczyk

10
classes (already extended to co by Robbin) to e . His Gzregorczyk extension

is a direct generalization of Robbin1s extension: for cv < e0» E = E(w),

where W (x) = w ,(x) if a is a limit ordinal, and W (x) = W . (x) iff a

a a-l a a(x)

is a limit ordinal. His RASP hierarchy of length

■«MaiklriHhtfMte ^ ^ .- - ■ - ■ ^UW^MMtflaHllMiHH

■43-

e0 Is proper because his RASP programs modify themselves in the course of

their execution, thus .«voiding the problems of the register machine

approach. Constable establishes the following result:

Theorem: For * < e0 E^
1 . RASP(1+a)+1. where RASPß is the ßth RASP

hierarchy class.

Thus Constable is able to extend to G0 the growing body of results

relating various generation methods for short hierarchies.

In [71], Schwichtenberg also considers the equivalence problem for

various ^-length hierarchies. He shows that the modified Kleene hierarchy,

the generalized Gzregorczyk hierarchy, and a standardized unnested recursion

hierarchy all coincide up to eQ. Ke defines standard fundamental sequences

exactly as Constable does, and his version of the extended GzregorcEyk

hierarchy is the same as Constable's. Moreover, he extends, with minor

modifications, Robbins version of the Kleene hierarchy to e . His un-

nested ordinal recursion classes, R^, are defined in a rather unusual way,

and the analysis of these classes is the m>Bt original part of the paper,

Definition: Define well-ordering S of N i s follows: S = co S
n 1 ' rrfrl

A standard well-ordering of type a < e0 is a well-ordering of the natural

numbers which is elementary-recursive isomorphic to an initial segment

of S for S < a s S^..
iH-1 n nrfl

Schwichtetiierg considers only standard well-orderings < e ; functions

defined by instances of unnested \-recursion for standard well-orderings

X < c0 are said to be defined by elementary X-recursion. The e^recursive

functions, then, are the. set of functions which can be defined by elementary-

S
n

■-■■•' ■ —

■■ • "" ■ " I """■ "■"■■ •——--"- ..p-.-—.- ■11^1 WIHBB I

-44-

X-recursion, ^ < EQ, from given e0-recursive functions and elementary

functions in an elementary way.

Schvichtenberg assigns ordinals < en to e -recursive functions, and he

uses this assignment to define his ordinal recursion classes. If f is

defined explicitly from g^ •••, gk in an elementary way, then f is

assigned the ordinal max^, •••, o^), where the a.'s are the ordinals

assigned to the g^i. If f is defined wsing an wcy-elementary recursion

from g1, •••, g^, then f is assigned the ordinal maxto , •••, a) + a.

Definition: R^ is the set of recursive functions which are assigned

ordinals s a.

This rather curious definition is the key to Schwictenberg's results:

by allowing R to contain functions defined by wa recursions, he gives

himself enough slack to prove his main result.

Theorem; For all cc < e0 the extended Gzregorczyk hierarchy class E -

Rcy = ^ the inodified Kleene class.

The critical part of the theorem is the proof that R c E . Here
a a

Schwichtenbaieg iutroduces a formal reduction system for the en-recursive

functions, and he develops a step-counting function s . for each f e R
t a

which keep? track of the reductions necessary to evaluate f. He shows

that for f e R , s e R Moreover, he shows that each function in R a z a a

can be defined from elementary functions alone by a single u»a recursion.

Using this he establishes his claim by proving that each function in R
a

is majorized by W (g(x)), where g is some elementary function.

■ '—-•■' ■ ■ ■■■— -■ ■ - ^

^■P

-45-

Schwichtenberg also notes that the ^-recursive functions are equal

to the so-called "provable recursive functions". A recursive function

f is provably recursive if for some index e for f Yx 3y T(e,x.y) is

provable in elementary number theory, where T is the Kleene T-predicate.

For a thorough account of the provably recursive function., see Fischer [40]

Schvichtenberg's very elegant paper is one of the best examples of

a successful hierarchy construction of constructive ordinal length. His

work is a natural extension of Robbin's work from coW to e .

In a sense the Schwichtenberg result may be one of the last investi-

gations in short hierarchy theory, while work in the Schwichtenberg frame-

work obviously could be extended beyond e0> it is not .lear what sort of

insight such an investigation would provide.

We turn therefore to a different method of classifying the recursive

functions, the method of subrecursive dagrees.

Section 4. Subrecursive Degrees

As we have seen, subrecursive hierarchies constitute an important and

extensively studied approach to the problem of classifying the recursive

functions. A fundamental problem with the hierarchy approach is the

difficulties inherent in attempts to exhaust the recursive functions in

any meaningful way. An immediate attraction of the degree approach, which

we turn to now, is inclusiveness: every total recursive function belongs

to some primitive recursive (or elementary recursive) degree.

 ■J^.J^.- L...... ^.. ^ - --■ ■'- -— ■ '

■T'^'^mmmimmmmm^mmmm^mmmmmmmmmi

-46-

The degree approa-.h was initiated by Kleene [27]. He directly

applied the concepts and notations of Turing degrees of unsolvability to

the subrecursive case to obtain primitive recursion degrees.

Definition: Let f and g be total functions. We say f is primitive

recursive in g, f ^ g, if f is definable in a primitive recursive way using

g as an additional initial function. The degree of f, d(f) = {g | f •■ g aid

Following the development of Turing degrees closely, he defines d(f)U

d(g) (the join of f and g), and d(f)' (the jump of f). d(f) U d(g) =

f g
d(2 • 3), and d(f)1 equals d(h), where h is an enumerating function for

the functions primitive recursive in f which is generated in a uniform,

primitive recursive way.

Kleene ends his work here, and Axt [12] continues Kleenes investigation

of the basic properties of primitive recursive degrees. His main result is

the analogue of the celebrated Friedberg-Muchnik Theorem.

Theorem: Jor each n there exists n pairwise incomparable primitive

recursive degrees contained in the recursive Turing degree.

«e emphasize that primitive recursiveness is not the only notion

which can be analyzed by a degree approach. Indeed, we could just as

easily study elementary degrees or multiply-recursive degrees and achieve

basically the same results. In fact, with few exceptions, theorems proved

for one such concept carry over to the others with little effort.

We can also consider studying subrecursive classes of functions,

rather than degrees.

 _

-47-

Definition: Pr(f), the primitive recursive class of f, is the set of

functions primitive recursive in f.

It is not hard to show that there is an order preserving isomorphism

between the primitive recursive degrees and the primitive recursive classes

(or, for that matter, between elementary degrees and elementary classes).

Indeed, the map which sends d(f) -♦ Pr(f) is the desired isomorphism.

Much of the work to date on the structure of subrecnrsive degrees has

actually centered around subrecursive classes rather than degrees, and

we consider these investigations now.

Early work on the structure of subrecursive classes was done by

Meyer and Ritchie [72]. They consider elementary honest classes, as

outlined in Section 1 of this chapter, and they show that between any two

Gzregorczyk classes En and E for n & 3, there are dense chains of

elementary honest classes. They prove their result by interpolating

between the iterates of g , where E(g) = En and E(g n) = L'\x g(xm =
n n ml 0n K '

They also prove the existence of denumerable incomparable families

of elementary honest classes between E and E ,

Feferman [38] also has a density result: he shows the existence of

dense chains in 0 , and hence that there are dense chains of primitive

recursive degrees.

Similar results by other investigators are discussed at the end

of Chapter 3.

■■■- —

■——

-48-

In a series of three papers [8]. [85], and [86], Machtey develops

an extremely elegant structure theory for elementary and primitive recursive

classes.

Definition: I et C(f) denote the subrecursive class generated by the

recursive function f. If the class under consideration is the set of

functions elementary in f, then C(f) = (C (f) | i £ N} . where C.(f) is the
.th r -*
i function elementary in f.

Central to Machtey's approach is his complexity-theoretic point of

view. He picks as a measure of computation Turing machine space (see

Section 2 of Chapter 2 for definitions). He then makes a fundamental

distinction: a class C(f) is an honest class if C(f) = C(S) for somp
~ ~ i

space function (measure function) S.; otherwise C(f) is said to be a

dishonest class. The fundamental property of honest subrecursive classes

is that they are complexity classes, that is, they equal the t-computable

functions for some recursive function t. Machtey establishes a great many

structure results in these papers, and we consider some of them.

Theorem: Every countable partial order can be embedded in the dishonest

subrecursive classes.

Machtey proves this result using techniques developed by Sacks to

analyze the structure of the r.e. Turing degrees.

Definition: Two sequences of honest functions f„, f,, ••• and g s
0 1 "O 1'

determine a gaj, if, for all i, cU.) C C(f.+1), C(gi+1) c C(g.), and

■S^V? E^)- An effective gap is a gap for which there is a set

^O' 11' ***»5 which is recursive in 0" (the complete r.e. Turing degree)

such that for all i f. = cp. and g = cp
:, ^j J i2j+l

i «■in

mmm-mf**—*****

-49-

Theorem: Any countable partial order can be embedded in the honest

subrecursive classes between any effective gap.

This rather complicated result has two important corollaries.

Corollary: The honest subrecursive classes are dense; that is, if f and

g determine honest classes C(f) C C(f), then there exists an h such that

C(h) is honest, and C(f) 5 C(h) 5C(g).

Corollary: No r.e, properly increasing sequence of honest subrecursive

classes has a least upper bound in the honest subrecursive classes.

Machtey also proves the following result, which is rather unexpected

given that the corresponding result fails for the r.e. Turing degrees.

Theorem: The partial ordering of the honest subrecursive classes is a

distributive lattice.

The novel element of Machtt. 's work is his distinction between honest

and dishonest subrecursive classes. This is a distinction which allows

the elegant methods of complexity theory to play a role, and leads to his

more interesting results, for example, his lattice result for honest

degrees.

In [92], Ladner examines the structure of subrecursive classes and

obtains results similar to Machtey's.

Theorem. The subrecursive degrees are dense, and are not a lattice.

He also considers the problem of minimal degress.

Theorem: There exist minimal pairs of elementary degrees. That is, there

exist recursive functions f and g such that if h <: f and h s g, then h is

elementary (here h <: f means h is elementary in f).

■ ^^^_a^MM^kM^^^^^M^^^MM-MaA-BMB^M^^^M^Ma^^^

•50-

Ladner is particularly interested in considering the range of his

(or Machtey's) results. His methods certainly apply to primitive recursive

or multiply-recursive degrees, etc., as do Machtey's. However, he also

discusses abstract notations of reducibilities which, hopefully, will shed

some light on concrete problems in theoretical computer science. We

discuss one such notion here.

Definition: A set S of unary functions is a space class if it is r.e.,

contains the identity, and for all f and g in S and constants c and c

there exists an h e S such that

(i) h ip increasing

(ii) h(n^ a c1'f(n) + c2

(iii) h(n) k f(x(n)),

(iv) h(n) :> max[f(n), g(n)].

The class of linear functions, and the class of polynomial functions

are examples of space classes.

Ladner considers 0-1 valued functions, that is "decision prohiems",

for his notion of reducibility. If p(x) and g(x) are 0-1 valued, he

defines p to be S-space reducible to g if some oracle Turing machine with

oracle g coinoutes p in space bounded by some function in S.

He then concludes that for the degree structure induced by S-space

reducibility, the two theoreim. of his paper quoted above are true.

HAÜ-MMMl-^MilMM

References -51-

1. Blum, M., A machine-independent theory of the complexity of
recursive functions, JACM U_, 1967, 322-336.

2. Rogers, H. Jr., Theory of recursive functions and effective
computability, Mcgraw-Hill, 1967.

3. Sacks, G., Degrees of UnPolvability, Annals of Math. Studies.
No. 55, Princeton, N.J., 1963.

4. Enderton, H., Degrees of computational complexity, JCSS 6
1972, 389-396. *' S '

5. Meyer, A., and Ritchie, D., Classification of functions by comp-
utational complexity, Proc. of the Hawaii International Conf.
on Sys.Sciences. 1968, 17-19.

6. Basu, S.K,, On classes of computable functions, ACM Symp. on
Theory of Computing. 1969, 55-61. —

7. Alton, D., Operator embeddability in computational complexity
Notices of the_AMS. T972, A-763.

8. Machtey, M., Augmented loop languages and classes of computable>
functions, JCSS 6, 1972, 603-624.

9. Feferman, S., Classification of recursive functions by means
of hierarchies, Trapr. of the AMS 104, 1962, 101-122.

10. Peter, R., Recursive functions, Academic Press, New York, 1967.

11. Anderson, D., Nested ordinal recursive functions and a subrecursive
hierarchy, doctoral thesis, Duke University, Durham N.C, 1961.

12, Axt, P., On a subrecursive hierarchy and primitive recursive
degrees, Trans, of the AMS 92, 1959, 85-105.

13. Axt, P., Enumeration and the Gzregorczyk hierarchy, Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik 9,

53-65.

14. Axt, P., Iteration on primitive recursion, Zeitschrift fur math-
ematische Logik unf Grundlagen der MathemPtik 11, 1965, 253-55.

15. Bennett, J.H., On spectra, doctoral thesis, Princeton University,
Princeton, N.J., 1962,

16,

17.

Church, A., and Kleene, S.C., Formal definitions in the theory
of ordinal numbers, Fundamenta Mathematicae 28, 1937, 11-21.

Cleave, J.P., A hierarchy of primitive recursive functions,
Zeitschrift Jur mathematische Logik und Grundlagen der Mathematik
9, 1963, 331-346.

■--■-—■- — ■ ■—'—' '—■ ■ - - -

-52-

18. Constable, R.L., Expending and refining hierarchies of computable
functions. Tech. Report 25, Comp. Sei. Dept., University of
Wisconsin, 1968.

19. Constable, R.L., Subrocursive programming languages for Rn

Tech. Report 70-53, Comp. Sei. Dept., Cornell University, 1970.

20. Jones, N.D., Classes of Automata and transitive closure. Infor-
mation and Control 13, 1968, 207-229.

Kazanovich, IA. B., A classification of.the primitive recursive
functions with the help of Turing machines, Problemy Kibernetiki
22, 1970, 95-106, in Russian.

21,

22.

23.

Kent, C.F., Reducing ordinal recursion. Proceedings of the AMS
22, 1969, 690-696. *

Kleene, S.C., On notations for ordinal numbers, JSL 3 1938
150-55. iL-tt -' '

24. Kleene, S.C., Arithmetical predicates and function quantifiers
Trans, of the AMS 79, 1955, 312-40.

25. Kleene, S.C., Hierarchies of number theoretic predicates. Bulletin
of the AMS 61, 1955, 193-213. ^^^

26. Kleene, S.C., On the forms of the predicates in the th-ory of
constructive ordinals, II, American Journal of Mathematics 77
1955, 405-28. —'

27. Kleene, S.C., Extension of an effectively generated class of
functions by enumeration. Colloquium Mathmaticum 6, 1958 67-78.

28. Kreider, D.L., and Ritchie, R., Predictably computable functionais
and definition by recursion, Zeitschrift fur mathematische logik
und Giundlagen der Mathematik 10, 1964, 65-80^ '— —

29. Kreisel, C, Nbn uniqueness results for transfinite progressions,
Bulletln de 1'Academie Polonaise des Science, Serie des Science
mathematicues. astronomiques et physiques 8, 1960, 287-290.

30. Kreisel, G., Shoenfield, J., and Wang, H., Number theoretic concepts
and recursive well-orderings, Archiv fur mathemathische Logik
und Grundlagenforschung 5, 1959, 42-64. ~~ — —

31. Liu, S., A theorem on general recursive functions. Proceedings
of the AMS U, I960, 184-187. "-

32. Liu, S., A generalized concept of primitive recursion and its
application to deriving general recursive functions, Hung-Ching
Chow 60th Anniversity volume. Institute of Mathematics, Academia
Sinica, Taipei, 1962, 93-98.

-^

-53-

33. Constable, R.L., On the size of programs In subrecurslve formalisms
Tech. Report 70-58, Dept. of Comp. Scl., Cornell University, 1970.

34. Cook, S.A., A survey of classes of primitive recursive functions
notes for Mathematics 290, University of California, Berkeley, 1967.

35. Fabian, R.J., Hierarchies of general recursive functions and

^ina!jfCUr8l0n' doctoral thesis. Case Institute of Tech., Cleveland
Ohio, 1964.

36. Constable, R.L., and Borodin, A.B., On the efficiency of programs
in the subrecurslve formalisms. Tech. Report 70-54, Dept. of Comp
Sei., Cornell University, 1970.

37. Fabian, R.J., and Kent, C.F., Recursive functions defined by ordinal
recursions. Proceedings of the AMS .21. 1969, 206-210.

38. Weihrauch, K., Hierarchien primitive-rekursiver Wortfunktionen I
Bericht 50, Instituts fur Theorie der Automaten Schalnetzwerke,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn Germany, 1972.

39. Feferman, S., and Spector, C., Incompleteness along paths in pro-
gressions of theories, JSL 2J_t 1962, 383-390.

40. Fischer, P., Theory of provable recursive functions. Trans, of the
AMS UZ, 1965, 494-529. E

41. Grzegorczyk, A., Some classes of recursive functions, Rozprawv
Matematvczne 4, 1953, 1-45.

42. Hart, J.,'/E'O-Arithmetic, Zeitschrift fur mathematische Logik und
Grundlagen der Mathematik 15, 1969, 273.

43. Heinermann, W., Untersuchungen über die Recursionszahlen recursiver
Funktionen, Dissertation, Munster, Germany, 1961.

44. Herman, G.T., A new hierarchy of elementary functions. Proceedings
of the AMS 20, 1969, 557-62. B-

45. Herman, G.T., The equivelence of various hierarchies of elementary
functions, Zeitschrift fur mathematische Logik und Grundlagen der
Mathematik H, 1971, 115-131.

46. Rodding, D., Über die Eliainierbarkeit von Definitionsschmnata
in der Theorie der recursiven Funktionen, Zeitschrift fur mathe-
mathische Logik v.nd Grundlagen der Mathematik _10, 1964, 315-30.

47. Rodding, D., Darstellungen der elemetaren Funktionen, Archiv fur
mathematische Logik und Grundlagenforschungen]_t 1965, 139-158.

- -----

-54-

48. Rodding, D., Darstellung der elementaren Funktionen II, Archiv
fur mathematische Logik und Grundlagenfurschune 9, 1966, 36-48.

49. Rodding, D. , Klassen rekuslven Funktionen, in Proceedings of the
Sumner School In Logic, Leeds, 1967, ed. M.H. Lob, Lecture Notes
in Mathematics 70, 1967, Springer-Verlag, Berlin.

50. Routledge, N.A., Ordinal recursion. Proceedings of the Cambridge
Philosophical Society 49, 1953, 175-182.

51. Schwichtenberg, H., Rekunionzahlan und die Grzegorczyk-Hierarchte,
Archiv fur mathematische Logik und Grundlaganferschuna 9 1966
36-48. ■ -' *

52. Tait, W. , Nested recursion. Mathematische Annalen 143. 1961
236-50. *

53. Thompson, D.B, Subrecursiveness and finite computers, doctoral thesis
Stanford university, 1968. '

54. Tsichritzis, D. , and Weiner, P., Some unsolvatle pcoblmis
partial solutions. Tech. Report 69, Princeton University, 1968.

55. Cleave, J.P., and Rose, H.E., E'n Arithmetic, in Sets, Models and
Recursion Theory, ed. J.N. Crossley. North Holland. Amsterdam.
1967, 297-308.

56. Cobham, A., The intrinsic computational difficulty of functions,
in Proceedings of the 1964 International Congress for Logic,
Methodology, and Philosophy of Science, ed. Y. Bar-Hillel, North
Holland, Amsterdam, 1964, 24-30.

57. Meyer, A., Depth of nesting of primitive recursion: another form-
ulation of the Grzegorczyk hierarchy, term paper for Applied
Mathematics 230, Harvard University, 1965.

58. Meyer, A., and Ritchie, D., Computational complexity and program
structure, IBM Tech. Report 1917, 1967.

59. Meyer, A., and Ritchie, D., The complexity of loop programs.
Proceedings of 22nd National Conference of the ACM, 1967, 465-69.

60. Myhil] , J., A stumbling block in constructive mathematics, abstract
in the JSL JJB, 1953, 190-191.

61. Nepomnyaschy, V.A., The rudimentary interpretation of two-tape
Turing's calculations, Klbernetika 6, 1970, 29-35.

62. Parikh, R., On non uniqueness in transfinit progressions. Journal
of the Indian Mathematical Society 3if 1967, 23-32.

-55-

63* ItllTfl' i' Hie"rchies of Primitive recursive functions, Zelt-
T968r?57ri.m ematlSChe L£2^ ^ Grundlage" der Mathe^a^iT ^

64. Ritchie, D Complexity classification of primitive recursive
functions by their machine programs, A term paper for Ippilid
Mathematics 230, Harvard University, 1965. Applied

65* S^ÜJ'n?;' ^g^/^cture and computational complexity.
Harvard University, doctoral thesis, 1968.

66, s^^-iSri^fi?"^!""7 computabie functions' ^^•
67' unction ^L^Jr'T8 0f "Cfsive actions based on Ackermann's

tunetIon, Pacific Journal of Mathematics _15, 1965, 1027-44.

68' Snivirslt;; ^6
b
5"

CUr8ive hierarchies, doctoral thesis, Princeton

69. Bass L. Hierarchies based on computational complexlfv and Ir-

ssir^:ift;^;7j:
twBinini mea8ured 8et8'doctorai the8is'

70, S; t^ap^ear?^8' '" ^^ ^"^ "* —'• cla8Se8'

71* ZeSchrl^'f8' H-'Eine/1f «"Nation der € -rekuslven funktlonen,
||i^i|| fur mathematische Lo^lk und ^undgagen der Mathmatlk iZ,

72. Meyer A., and Ritchie. D., A classification of the recursive fu
functions, jglts^hrlft fur mathematls.hp T^^ ..^ r^^,
dor Mathematik ^8, 1972, 71^82^ ^ K

73' 1970,' 452l640n the StrUCtUre of the ^ubrecurslve degrees, JCSS 4,

74. -^ossley, J.N., and Schutte, K., Non uniqueness at u2 In Kleene's 0
||£MZ fur matherr^lsche Logik und Grundlaeenfor^hnn^ 9, 1966,

75. WMkwtln, J.C., Small classes of recursive functions and relations
doctoral thesis. Research Report CSRR 2052. Dept. of Applied '
Analysis and Comp. Scl., University of Waterloo, Waterloo, Ontario,

76. Davis, M., Computabllity and Unsolvabllity. Mcgraw-Hill, New York,

1 ll

-56-

77. Kozhminykh V.V. On primitive recursive functions of one argument
il£||Eai Lo£lka.7,l, 75-90; translation: Algebra and Lo^ f,'

78. ^inson^R^M., Primitive recursive functions, Bull, of the ^S 53,

79. Thoopso, D.B., Subrecursiveness: machine-independent notions of

1^2" 3-15 y ^ re8trlCted tline and St0ra8e' ^äth. Sxstsns Theory 6,

80. Meyer, A. Depth of nestirg of primitive recursion: another form-
1965 342 Grzegorczyk hierarchy, Notices of the AMS ^

81' ZeSch^f ^ H7 ^ ,K1fssiflkatlon d« E-0 rekursiver Funktionen,
TftoÜl- 1; Wahrscheinlichskeitth^nr^P und verwandte Gebiete 17
iy/1, 61-74. —'

82. Mochovakis Y.N., A remark on subrecursive hierarchies, unpublished
memoir, 1964.

83. McCreight, E.M., and Meyer, A., Classes of computable functions
* A™ oy ^OUndS 0n comPutation: preliminary report, Conf. Record

or ACM Conf. on Theory of Computing, 1969, 79-88.

84. McCreight, E.M., Classes of computable functions defined by bounds
on computation, doctoral dissertation, Carnegie-Mellon University.
Pittsburgh, Fa., Dept. of Comp. Sei., 1969.

85. Machtey M., The honest subrecursive classes are a lattice. Purdue
University, Comp. Sei. Dept. Tech. Report 82, 1972.

86. Machtey, M., On the density of subrecursive classes, Purdue Uni-
versity, Comp. Sei. Dept. Tech. Report 92, 1973.

87. Lob, M.H., and Wainer, S.S., Hierarchies of number-theoretic

SrO aWU iE£M2 — Inathematt3che I^gik und Grundlaeonforsrhnn^ n,

88. Lob, M.H., and Wainer, S.S., Hierarchies of number-theoretic
functions II, Archiv fur matmematische Logik und Grundlagen-
forschung L3, 1970, 97-113. —

89. Lob, M.H., and Wainer, S.S., Hierarchies of number-theoretic
functions I,II,: a correction, Archiv fur mathematische Logik
und Grundlagenforschung 14. 1971, 198-199^ - —«—

»_—,

-57-
90. Marchenkov, S.S., Multiple recursion bounded In the class of

primitive recursive functions, Klbernetlka 6, 6, 1970, 53-59.

91. iozmidiadi, V.A., and Muchnik, A.A., Problems of mathematical
logic: complexity of algorithms and classes of computable functions
Ccllection of translations, MIR(Publ.), Moscow.

92. Ladner, R., Polynomial eia* reduclbillty, in Proceedings of Fifth

122-130ACM Symp08ium 0n Th2ory of coi"P"ting, Austin, Texas, 1973,

 ___,—_-— mmm

■—" ■■ ■

%

•58-

Chapter 2

Honest Bounds for Complexity Classes of Recursive Functions

1. Introduction

Let y(t) be the set of recursive functions computable by machines

using t(x) computation steps on argument x, for all but finitely many

inputs x. We call t a name for the complexity class 7(t) Suppose we

allow our machines to run longer, say h(x,t(x)) steps on argument x,

where h is some fixed recursive function. One might expect that for

large enough h, permitting our machines to run longer by an amount h

will always allow us to compute new functions, i.e. 3f(t) is a proper

subset of y(h(x.t(x)). This turns out not to be the case: the "gap

theorem" [2], [3] implies that for every recursive h there exists a

recursive t such that 9(t) = ?(h(x.t(x))). However, if we restrict our

attention to names from a certain subclass of the recursive functions,

then we can indeed uniformly increase the size of our ^-classes.

Informally, we call a recursive function t "honest" if some machine

computes t(x) in roughly t(x) steps for each argument x. (A precise

definition is given in Definition 1 below.) Then according to the

ft*«UMMM>IIMI

•59.

"compression theorem •• [3], there exists a single recursive function

h such that for every honest t. 9(t) is a proper subset of ^(h(x.t(x))).

Thus the phenomenon of the gap theorem is avoided by restricting attention

to honest functions. it is a surprising consequence of the "honesty

theorem" of McCreight and Meyer [4], [5] that there is no loss of

generality in this restriction. Namely, for any recursive function t

there is an honest recursive function f such that ^(t) = ^(t').

In this paper we present a new simplified proof of the honesty

theorem, and then we analyze the possible behaviors of precedures for

constructing honest names equivalent to arbitrarily given names. Part

of the motivation for this analysis springs from the construction of

hierarchies of recursive functions based oi computational complexity.

Bass and Young [7] have observed that application of the honesty theorem

followed by the compression theorem to a function t yields a reasonable

natural "jump" to a larger complexity class. The behavior of this jump

operation and the resulting hierarchy of course depend critically on the

honesty procedure being used.

Section 2 describes our notation and the axioms of Blum fl] which

provide a machine-independent characterization of running time; Blums

measured sets [1] and classes of honest functions are shown to be essentially

equivalent. Section 3 consists of our new proof of the honesty theorem.

In section 4 we consider honesty procedures which work on partial functions

-

■60-

as well as total functions, and we show that such procedures must generate

arbitrarily large names for any complexity class. As a corollary we

obtain another "gap"-like theorem which shows that every complexity class

has honest names which are arbitrarily large on all but a vanishing

fraction of arguments, thereby strengthening a result of [8]. In section

5 we show that honesty procedures restricted to total functions need not

yield arbitrarily large names for classes, and can preserve monotonicity,

thereby settling questions raised in [7], [4].

2. Preliminaries

For notatio- from recursive function theory we follow Rogers [9].

For each * i ft, P stands for the partial recursive functions of

n variables. R stands for the total recursive functions of n variables.
n

We use "(a.e.)" to denote "almost everywhere", which for our purposes

stands for "all but finitely many". Similarly "(i.o.)" stands for

"infinitely often".

If t and CD are partial furotions and CD is undefined at argument x

we adopt the convention that iKx) ^CD(X).

Suppose {CDQ. CD,,...} is a G<3del numbering of IP . A measure on

computation \l] $ = {$0, §^ ...] is a sequence of functions in P

satisfying

1) Vi ^ /^fdom (üi) = dorn (»)]

_.___.. IMMHIIMMI ___ _«.

ww^^^piiVB ii WH i ii w i^iiw >v^^^wi^pm|HnmB«mgpHp<viHiv«pHIII*n«MH^W^^^W^WMMi^lVI^H^W*^iw ■ ■■mi i« ■■■■^i ■ n ■ i. . i ■■ ■■! . W. i »■v,B iim» i ■ <•

■61-

2) M x yf$1(x) = y] is a recursive predicate.

If we think of our Godel numbering in the usual one-tape Turing machine

formalism, then

•i(x) = "the number of steps in the computation of the ith Turing

machine on argument x" is a measure on computation.

Henceforth let $ be some fixed measure on computation. Then we

define for any total function t

F(t) - (1 f 4r| flD1 € Rj and ». « t (a.e.)},

and

-(t) - ((p1 | 1 € F(t)}.

That is, F(t) is the set of (indices of) total machines or programs which

run in time t, and ^(t) is the set of total functions computable within

time t. Similarly we define for any partial function If

Pp(*) = {i € #] #< M (a.e.)]

and

y (♦) = (aDi I i € F (t)).

A sequence of partial functions *-(♦„. 1^, ...) !■ said to be an

r.e. sequence of partial functions if \i x|i|f (x)] 6 P .

- ■ - -
 B^mimmmiH | | -- - ^.. --- ■- -- -■

-6:-

Deflnltton 1. (McCreight-Meyer [4]) A function ^ € Pj is g-houest for

g € R2 if there is an i such that G^ - f and • * ^xg(x,i|f(x)) (a.e.)-

Definition 2. (Bl m fl]) An r.e. sequence of partial functions

* " i^Qt ^i* •••] is said to be a measured set if

\ixyf\lri(x) = y] is a recursive predicate.

The relationship between honest functions and measured sets is

explained by the following theorem of Meyer-M-.Creight [4]. Since the

proof appears only in McCreight's unpublished thesis [5], we reproduce

it here.

Theorem 1. f4], \5]. Every measured set f is made up of g-honest functions

for some g f «2; furthermore the set of g-honest functions form a measured

set.

Proof. Let Y = f^, il^, .,.] be a measured set. By Definition 2 and

elementary recursion theory there is an s € R. such that t -Q Define
1 i s(i)

g(x,y) = max[$s(i)(j) | i, j 5 x and ^(j) s y) .

Then for x > i we have $s(i)(x) s g(x, ®s(i)(x))r and so for each i

(»s (i. = f. is g-honest.

*
Measured sequence would be more accurate, but we conform to the
terminology of Blum fl].

_--- ■■_ — -.,■..._ . ^ —.—J.-^M „ . .- M^^.-.—

f^mm^^m^m**

-63«

To prove the second statement consider the partial recursive function

%i,j,k) for CT eR3' whlch, roughly, imitates (ü^X) whenoi^x) appears to

be g-honest from arguments j to x. More precisely

VX) l£f<x s J 2nd ^(x) ^ k or (x > j and

•jC«) s g(x, qB1(x)))]

and[(Vy s j^S^y) > k ^ ^(y) > x]]

■MKVyXJ < y ^ x)[il(y) < x ^ $ (y)
s g(y, cp^y))]]

otherwise.

Vi.j.k)^

It follows from the definition of measure on computation chat \i, j.

k. x' 2foa(i,j,k)(x) = z] l8 a "cursive predicate. Hence

S ^ff(l,J,k) ' i'i'k ^ 0) i8 a measured set.

We claim S equals the g-honest functions. Indeed if for fixed i. j. k

V*) « 8(x, »l(x)) for all x > j and

k :» maxf^Cy) I y s j and ^(y) convergent},

^"^(ij.k) =^i ^^(i.j.k) i« «"honest.

If however the preceeding condition is not met. th««^^ diverges

(a.e.). but such functions are also (by convention) g-honest. So S is

a subset of the g-honest functions.

■ ■ ■ - - ■ . . - til ■—■■■IB II 1 I Ml I

wmmmmummmmmmtmrn^r^^^ i -•^mmmmmmmm^m^m^—mmmm^mmmmmf^mmmmmmmmmmmmmm^^mmmmm^mmimummmmimmmmmimmmi

-64^

Furthermore, if y U any g-honest function, then y = ^ for some i

Puch that ^(x) ^ g(x. Vi(x)) for all x > j for some j. Let k =

maxr^Cy) I y S j and « (y) convergent]. Then y - <P ,, , , and we
CT(i,j,k)

conclude that S equals the g-honest functions. D

W« state, for completeness, the following generalized compression

theorem of Blum [1].* The compression theorem says that an r.e. sequence

of partial recursive functions is a measured set precisely when a uniform

procedure exists for constructing, for each function in the sequence, a

0-1 valued partial recursive function whose complexity is only a little

bit above the designated function.

Proposition. Let Y = (^ ^ ..0 be an r.e< sequence of partial recurslve

functions. Then Y is a measured set if and only if there is a p € R and

an r € ^ such that (D Vr(i) is 0-1 valued. (2) domain fer(i)) = domain C^).

(3) $r(i) s\xfP(i.x. ^(x)], and (4) «*, - 5>r(1), then »e > ^ (a.e.).

It is an immediate corollary of the compression theorem that if we restrict

attention to recursive functions t from a measured set Y. then we can

uniformly enlarge f(t) by composing t with a fixed recursive function h

independent of t.

Corollary- Let Y be a measured set. Then there exists an h € R such

that if t € Y. t €KV then5(t) c yc^x[h(x. t(x))]).

We remark that Blum's theorem in fl] p. 333 is Incorrectly stated-
the correct statement is given above.

 - - — ■— J -^

^^^^^^^.^^^ .J^..^. , ■_..,._-.. ^^. ._..._. ^ .—.- .■^^.—_

^m^i^^^^—^^^mmmmm^—

■65-

Proof. Let h(x,z) = SSi [p(e,x,z)], where p is the recursive function of
esx

the proposition.

Definition 3. Let s € R . s is an honesty procedure on P. if \mtxtykp (x) =
1 ^s(e)

y] is a recursive predicate, and if for every e ? fo) = "? fo)
P e p 8(e)

Definition 4. L«t ■ € J^. s is an honesty £rocedure on R. if Xe.x.xfo , , (x) = 1 s(e)
y] is a recursive predicate, and if for every totals , © , x is total and

e 8(e)

e s(e)

Notice that not every honesty procedure on J^ need be an honesty procedure

onR1: an honesty procedure on Pj need not map total functions to total

functions. However, suppose s is an honesty procedure on P which also

preserves F-classes. That is, suppose that for every t, F (») - F fa)
P e pv 8(e)

Then a minor modification of s yields an honesty procedure on P and CT

R1. Indeed, it is easy to show that ■' € R, defined by

V(e)(x) = niin[cD8(e)(x), (^(x) +$e(x))]

in such a procedure.

Constable has observed that no honesty procediu-e onR, can be P.

total ef'-ctive operator. We prove a corresponding result for honesty

procedures on 5^ and effective operators (see [9] for definitions).

Proposition. No honesty procedure on Pj can be an effective operator.

Proof. Let s be any honesty procedure on P^ and let t = cp. be any recursive

function. Define using the recursion theorem-

CDjtx) Ifa.fe^C) ^CP8(e)(z)]

© (x) =
e

otherwise.

■-■ -

•66-

The computation of CD (x) is effective since © , N and m are in a
8(e) s(j)

measured set. Clearly^ is either total or empty, if ^ is empty> it

follows that s cannot be an honesty procedure on P., for then 5 fej
1 P s(e)

7
P
(CD
S(J)

)

= 'p^j) ^Pi = ypto,)- So(pe must be total. Then c^ » q,

and CD . . ^ co ws(e) rvs(j)

) =

n

3. The Honesty Theorem

The honesty theorem says that given any function we can effectively

find an honest, function which names the same class. Our proof expliclty

exhibits an honesty procedure on ^ Recall from section two, however, that

with a minor modification we can obtain a procedure on R as well.

The0rein 2- There exists an honesty procedure on P^ Moreover, s preserves

F classes, namely for every e, F fo) = F fo)
* p e p^s(e)

Proof. Let e be -n index for Jr. A function y such that F (Jr) = F (A1)
P P

is defined in stages beginning with stage 0. At stage n the integers

from 0 to n will be ordered in a sequence or queue = %l q^ ^ which

is updated from stage to stage. Also a zero-one valued function -pop" on

the integers from 0 to n is defined and updated from stage to stage. Let

< x,y > be a one-one onto pairing function with projection functions TT

and TT2. As a technical convenience we use the fact that the pairing function

< x,y > is strictly increasing in its second argument, so that stage < x,y >

always precedes stage < x, y+1 >.

^^^w^^^p^^

■67-

We outline the idea of the construction. Dovetail the computations

of ♦• V $i» •••• ^n ••■ at all arguments. Whenever it is discovered

that tOO < ^(x) Set pop(i) = 1, and try to define ^ (t) < $ (2) for

some argument z. When pop(j) = 0. try to keep V (z) * I (.). The pop

conditions on i and j may be inconsistent, and the queue assigns priorities

to the integers (programs) to resolve the conflict. The dovetail nature

of the construction guarantees that f will be honest.

Stage n.

A) Put n on the bottom of the queue (i.e. set q = n) Set
n

pop(n) = 1. Let ^(n) = x, n^n) = y.

B) If $e(x) = y, then for 0 <: i s n, if l^x) > ^(x) set Pop(i) = 1.

C) If f(x) has already been defined at some previous stage, go to

stage n+1.

D) Find the least I «: n (if any) such that

1) pop(qi) = 1

2) $ (x) > y
qi

3) (Vj < i)[pop(q) - 0 -> | (x) S yl
J q. J '

j

If i exists, define ^ (x) = y. set pop^) = 0. and put ^ on the bottom

of the queue. Go to stage nfl. if no such i exists, go to stage nfl. D

^mm^mm

-68-

For any q^ = ^ and any i, :> 0, stage n in the computation of ^ is

effective and will terminate. Condition (C) guarantees that if t'(x) is

defined, it is defined at only one stage, and ^o *' is well defined.

Furthermore since our procedure is uniform in e, *' -« for some
s(e)

s 6 R1. Condition (P) guarantees that if ^(x) is defined, it is

defined at stage n - < x. fCx) >; hence the predicate \e x yto (x) = vl
s(e) J '

is recursive (we need only run our procedure until stage < x.y >), and so

(qVe)}e=0 iS a Ineasu«d set. This implies by Theorem 1 that r will be

g-honest for some g € 5?2 independent of ^.

We now show that for each i. ^ s ^ (a.e.) « $i s ♦'(•.•.)• This

immediately implies F (\|;) = F (ilr1).

The proof divides into cases depending on the final positions of the

integer i on the queue. If i reaches a final location on the queue we

shall say that i is stable; otherwise we say i is unstable.

Case 1: j is unstable.

If i does not stabilize it must be moved to the bottom of the queue

by step (D) at stage < x.y > for infinitely many x. Step (D) defines

♦'(x) = y < ^(x), and hence $. > ^(i.o.). Moreover step (D) moves i

to the bottom of the queue only if pop(n = 1, at which time pop(i) is

reset to 0. In order for step (D) to apply again to i, pop(i) must be

reset to 1 by step (B) at some later stage. But condition (B) sets pop(i)

to 1 only at stages < x, IJx) > such that l^x) > *(x). Thus • > * (I.O.).

i —

■69-

Case 2: i is stable.

If i reaches a stable position on the queue, then pop(i) must also

stabilize since it is set to 0 only by a step (D) execution, at which

time i is moved to the bottom of the queue.

Case 2a: pop(i) stable at 0.

Pop(i) can be set to 1 by step (B) at only finitely many arguments,

hence Si s f (a.e.). Elements above i on the queue can only be moved

finitely often by step (D), for otherwise i would be unstable. So for

almost all arguments x in the domain of ^ ^r' (x) is defined via step

(D) for some j below i on the queue with pop(J) = 1. But then condition

(2) of step (D) guarantees that 9 (x) <: if'ix). Hence t <: ^'(a.e.).

Case 2b; popm stahlP at 1.

Consider any x such that i, the elements above i on the queue, and

their pops have stabilized at stage < x,0 > and all later stages. By

case 2a we may assume x is sufficiently large that $. (x) s min(iHx). Kfx))

for those (finitely many) j which are above i on the queue with pop(j) = 0. Let

m = max($ (x) | j is above i on queue and pop(j) = 0}.

We observe that m ^ minfiK*), t'OOJi and thus if m is infinite, both

llf(x), ilr'Cx) are undefined, implying by convention that * (x) <r \|f(x),

J^x) <: ^'(x). So suppose m is finite. Since ^he pairing function is

monotone in its second argument, < x,m > is the earliest stage al which

i|f'(x) could be defined without violating condition (3) of step (D) and our

assumption that the queue above i has stabilized. But i has stabilized as

well, and so i must fail to satisfy condition (2) of step (D) at stage

< x,m >. That is, Mx) <: m, and we therefore have $.(x) ems min(iKx). t'OO)

-70-

Combining cases we have ^.(x) ^ \|f(x) (a.e.) » 1 is stable »

i^x) * r(x) (a.e.)-

Corollary. There exists ar honesty procedure on R^.

Proof. Immediate from section two and the fact that the procedure of

Theorem 2 preserves F-classes as well as 5-classes.

4. Large Honest Bounds on Computation

Given a recursive function t we can think of t as a name for the

class of functions ^(t). Now in a sense we have understood a complexity

class if we know how to compute its name, t. It follows that more easily

computed functions (i.e. functions which can be computed rapidly) are

more satisfactory names for a given class than long-running functions.

Honest functions seem to be good candidates for names, then, because they

are only as hard to compute as they are large. We now show that in general

honest functions are not necessarily satisfactory names in the sense

described abo> <;. Indeed we exhibit an honesty procedure on R^ which takes

any recursive class name to an honest recursive name for the same class which

is arbitrarily large (and therefore arbitrarily long-running) on all but

a rapidly vanishing percentage of arguments. Furthermore we prove that any

honesty procedure on P, must (almost) have this property. We remark that

this phenomenon is closely related to the gap theorem mentioned in the

introduction; in both cases we pass from a recursive function t to a much

larger recursive function t' while preserving class size.

-71-

TheoresU. There t. „ honesty pr„cedure s> „„ ^ such ^ ^ ^ ^

Hm l{y s x | y 6 domain fo)i I
x« . slelj.1 _, 0

Proof of the Th.orem. The procedure of the theorem 1. oo.y e sllght

variant of the procedure of Theorem 2. As before f Is defined In stages

winning „1th stage 0. A fusion ■■pop" frOT integers to Integers Is

defined and updated durl^ successive stagea Cause (D, has the added

raatrlctlon that „hen pop», is iarger than x, 1 Is excluded from the

Priority scheme of the ,ueue at argents . x. The pop fu.tlon Is sufficient^

f«t..rM4 to insure that only a SM„ r,aceion of ,„. entrles ^ ^

queue can he used to define ,■ at arguments S x. Hence at .■»„.. .^„„ents
s x, ^ will be undefined.

A) Put n on the bottom of the queue, (I.e. set c^ = n); set

Pop(n) - 2°. Set x - TT^n). y -^(n).

B) If $e(x) - y. then for each I. 0 < i . n. lf rpop(i) . 0 and

• jCx) > iKx)] set pop(i) = 2n.

C) If r(x) has been defined previously go to stage nfl.

D) Find the least I * n (if any) such that

1) 0 < pop(i) < x

2) 9 (x) > y, and

3) (VJ < i)(pop(j) - 0 -»» (x) ^ y)

•72-

If such an i exists, set popCq^ = and move q to

the bottom of the queue. Go to stage nfl. If no such

i exists, go to stage n+1. n

We omit the proof that our procedure is indeed an honesty procedure

on P^ the proof here is virtually identical with that given in Theorem 2,

We prove the limit condition of the lemma. Given any x, step (A)

guarantees that at any stage n = < y.z > where y * x, at most log^x)

indices on the queue can have pops which might be used in step (D)

condition (1) to define t'(y). Furthermore, if i is such an index and if

i is u.ed again at stage n = < y,, >, y s x> to define r(y)> then if it

is to be used again at some later stage to define f („) for some other

w ^ x, its pop will be at least 2^\ Hence i can be used to define at

mos. riog2(x).i](the greatest integer in (log2(x)-i)) arguments y ^ x.

Thus ^'(x) can be defined on at most

riog2x]

7 riog2(x)-j]

arguments s x. So

riog2(x)]

ll^ x | y g domain.,^ I < L [l0*2^

but the right hand expression goes to 0 in the limit, proving the

theorem. □

—

■73-

Theorem 3 leads naturally to the following result about honesty

procedures on R..

Theorem 4. There is an honesty procedure on R. such that given any

t € R1 and any b € B^ there exists an e, cp = t, such that

lim Jirll_Kle) (y) <b(y)}l
x-m V ■* 0-

Proof. Let s be the honesty proceuure ou f>l described in Theorem 3.

Recall that we can make s into en honesty procedure on R- by defining

V(e)(x) = Si£tqp8(e)(x), .ye(y.) + ^(x))]. Let t be any recursive

function. Blum fl] shows that every recursive function has arbitrarily

bad (i.e. arbitrarily long running) programs. That is, we can choose

CDe = t such that $e(x) > b(x) for all x. Hence given t and b, choose

such an e, q^ = t, and thenQD8l(e) satisfied the theorem. D

The following theorem describes the behavior of any honesty procedure

on P-,

Theorem 5. Let s be any honesty procedure on ^ and let t and b be

any recursive functions. Then there is a CD = t such that
e

|{y s x |CD (y) <b(y)]|
lim inf §1SJ—. ^ 0>

Bass and Young [7] prove a somewhat weaker form of this theorem: they show
that an e can be found such that co . . will be larger than b with
recursive frequency. s^'

.74-

Proof. Define using the recursion theorem a program © such that
e

B (X) =
e

t(x) if r(x = 0) or (x > 0 and ra (x-1)

convergent)] and 3z > x such that

l(y *z I qos(e)(y) < b(y)n 1

00 otherwise.

Clearly, i f q^ is total, thencDa = t. Suppose«^ is not total, and let

x be the Ijast y such that ^(y) diverges. ThencD^z) diverges for all

z :> x, but since QDe(x-l) converges, the first clause in the definition

of CD (x) implies thai, for all z > x

Ify ^ z I ^S(e)(y) <b(y))l l
z ^+1'

In particular, domain (C0s(e)) must be infinite. However, it is easy

to show that If ♦ € P- has infinite domain, then Sf (♦) ^ P . Hence
P 1

yp(<P8(e)) ^ Pl = ^p^e^ contradicting the fact that s is an honesty

procedure on P . Therefore, © = t.
1 e

Now for each x let zx be the least z > x for which the second conjunct

in the definition of cp hold.. Then [zj" is a subsequence of the

i=0
integers for which

lim
l(y^x'Wy)<^y))l ^ o

**m \

and the theorem is proved. □

 -- MMMMtaMM«*

•75-

We remark that the "lla inf appearing in Theorem 5 cannot be

replaced by "lim". We sketch breifly why this is so. Let s be the

honesty procedure on ^ of Theorem 2. and let t be any g-honest recursive

function. We construct an honesty procedure 6t on ^ in the following

manner. Given index e. begin constructing^^ as prescribed in the

theorem, if at some stage n it is discovered that (^ has converged on

a new initial segment, see If^ - t on that Initial segment. If ^

find the least x such that stage < x.O > has not yet been reached and

define qoCz) = t(2) for x ^ z S 2x. It is not hard to show that s
t t

is a legitimate honesty procedure on P^ and furthermore for any cp = t

'{y * X ' ^s (e)(y) < tWl
lim sup 1 1^

In particular not all honesty procedures on ^ satisfy Theorem 3.

——Good Honest Names for Complexity Classes

In this section we consider honesty procedures that work for total

functions only. We show that by relaxing the requirements on honesty

procedures in this way we can indeed build well-behaved honest bounds

for complexity classes which often significantly improve on the original

bound for the class. We first build an honesty procedure yielding

honest bounds which are no larger than the original class bound on a

significant percentage of arguments. Next we show how to keep honest

 -- ■ ■ —^^A—^—.^--^^^ —. . -. .^.^

-76-

bounds for ?(t) bounded (a.e.) in a manner independent of the program

we choose for t. Lastly we exhibit an honesty procedure on R which

preserves monotonicity.

Implicit in the work of Constable [11] is the observation that there

are complexity cl .ses all of whose honest names are much larger (l.o.)

than some dishonest name. Indeed any class ?(t) where t is obtained

vie the gap theorem has this property. Theorem 6 shows that this result

is false if we replace "(l.o.)" with "(a.e.)".

Theorein 6- There is an honesty procedure on R., s , such that if m 1 e
is total, then

[(xs n | 9 (Ax) >» (x)}|
lim inr 2liZ e_ J_ =

n-»oo n

Proof of the Theorem. The proof follows the general outline of Theorem 2.

In the course of the procedure we define a "percentage" function P(n)

which monitors the frequency with which (ps(e) is small, m addition the

pop function in this proof is 0-1-2 valued. Here pop(l) = 2 means that

V.) haS been defined to be less than 1^ but movement of i to the bottom

of the qneue has been delayed.

Stage n:

Let n1(n) = x, rr^n) = y,

A) Set q^ = n, and set pop(n) = 1.

-J^^.—... .—-..- ■—^J—^^-^—t.... ..■. -- .—.-^-_^^-.

■77-

B) If $eCx) = y. then for 0 ^ i ^ n. if ^(x) ^(x) and pop(i) = 0.

set pop(i) = 1.

O If fCx) has been defined at some previous stage, go to stage ^1.

D) Find least i s n, if any, such that

1) pop(qi) = 1 or 2

2) I (x) > y
qi

3) (VJ < i)[pop(q1) = o -► $ (x) < y]
q.i

If such an i exists, set r(x) = y. and set poP(q) = 2.
* i

E) See if 3w ^ n such that w > p(n) and

->- 1 - '
P(n)

If such a w exists, set all 2's on queue to 0, and move them to

the bottom of the queue. Set P(r*l) = P(n) + 1. Go to next stage.

If no such w exists, set P(n+1) = P(n), and go to next 8tage D

As in the proof of theorem 2, there is an r € ^ such that the procedure

yields, for ever e, a function*^ = r. Furthermore, i*t(%))^ is

a measured set. Define

t(x) =qps(e)(x) =!nin[CPr(e)(x),^e(x) +»#(x)J;

then fe8(e)}e(:R is a measured set, and s is the desired procedure.

Clause m involves an implicit use of the recirsion theorem.

^MM«

•78-

To prove the limit condition of the theorem, we need to show that

Clau8e (E) is executed infinitely often for recursive t - c^. Suppose

therefore that (E) is executed only finitely often, and let < x.O > be

a stage after which there are no Clause (E) executions. We can assume

without loss of generality that by stage < x,0 > all pop 0 entries on the

queue which are ever set to 1 have been set to 1, and furthermore < x,0 >

is large enough that an index for the empty function appears on the queue

(its pop at stage < x,0 > must be 1 or 2). Then for all z ^ x and all

i such that pop(i) = 0, 1^.) ^ t(z). and so clause (D) and the presence

of an index for the empty function on the queue guarantees that *•(,) will

be defined and *•(z) * t(z). Therefore the percentage of arguments where

♦ '(.) * tC) will eventually move above 1- j~ ^ - , and at that ^

clause (E) will get executed.

To show that ?«pe) = y<fP-(g)) in the case where ^ G B^ notice that

if i stabilizes on the queue, its pop cannot be 2. Using this observation

it is easy to show that the classes are the same by using the techn. ues

developed in theorem 2, and we omit the proof.

Our next theorem illustrates the striking difference between honesty

procedures on ^ and honesty procedures on P^ Theorem 5 s.ye that given

any t € f^, every procedure on P, must map some program for t to an

arbitrarily large honest name for ?(t). We now construct a procedure on

Rj which produces uniformly bounded honest names for 5f(t) independent

of the program chosen for t. The procedure of Theorem 7 is an example of

an honesty procedure on ^ which cannot be extended to an honesty procedure

on P,

*"-- - ■-■■- —

■79-

Theorem 7- There i8 an honesty procedure on R^ s, with the property

that for every recursive t, there is a h f ft, such that If ffl - t
1 e '

thenC,s(e) S b (a-e-)-

Proof. let s' be any honesty procedure on 5^ with the property that if

CPe is total, then Ffe^) = Ffe,^). Say that ooe S^e, if after n steps

of the dovetailed computation of ^ •Ild(Pe,, ^ and (p^, have not differed

on any argument. Define

^s(e)(x) =HliS^s.(e)00.Oe,(x) +$e,(x) | ,. se. Oe, «^J. (*)

{CDs(e)1e€/H iS a mea8ured !et since both C«»,.^)^ . and {^ + f^^^

are measured. Furthermore F(cos(e)) = F^). Suppose $. ^ m^a.e.) • Then

for sufficiently Urg« x those e' s e which compute functions which differ

from e will be omitted from the expression *)for « . .. From then on if
s (e;

Ve,(y) convenes for a^- e' s e, ©^(y) will equal ^(y). Therefore since

fi ^^s'Ce)^'60' ^i ^ :D
s(e)

(a'e')- If on the other hand $ >(£ (I.e.),

then$i >cos,(e)(i.o.), and since Gos,(e) Z*^ everywhere, ^ > ?s(e) d-o.)

Let e' be the least index for » €R . Then for every o. = ra ,
i e

Our last theorem shows that every class» with a monotone name has a

monotone honest name, settling a question raised in [4].

Theorem 8. There is a g € R2 such that for every monotone recursive

t ;> \x[xl there is a g-honest monotone recursive t' such that Sr(t) = ^(f).

^^^«^^^^

•80-

Proof. Our construction will again follow the lines of Theorem 2. However,

t' will be total and monotone whenever t is total, and so y(t) may differ

from^t') in the case where t is not monotone. Define^ ^(x) = maxf? («).xl.
a(i) zsx *

^CT(l)'l€fll i8 a mea8ured 8et' Moreover for monotone t :> \x\x] we have that

* s t (a.e.) •© ,.. s t (a.e.). Let t = cp .

Stage n. Let TT1(n) = x, rr (n) = y

A) Set q = n; set pop(q) = 1
n n

B) If $e(x) = y, then for 0 5 i s n "^/^(x) > t(x), set pop(i) = 1.

C) If t'(x) has already been defined at some previous stage, go to

stage nfl; if 3z < x such that t'(z) > y, go to stage nfl; if x ^ y,

go to stage n+1.

D) Find least i ^ n (if any) such that

1) pop(q1) = 1

2) ^(q^^ >y

3) (Vj < i)[pop(q) = 0 -♦^ . .(x) s y]

If i exists, set t'(x) = y, set pop(q) = 0, and move q to

the bottom of the queue.

E) If (D), find greatest z < x such that t^z) has already been defined;

set t'Cw) = y for z < w < x. Go to stage n+1. D

The procedure yields, for each e, a partial functioncp , ,. Moreover
s(e)

((I)s(e)^eeiMiS * mea',ured set: to te8t:(P8(e)(
x) " 7. merely run the pro-

cedure through the first < x,y > stages and check to see it a , Ax) is

defined to be y at one of these stages. Clause (C) guarantees that© , N (x)
8(e)

can never be set equal to y after stage < y,y >.

■■ -■ ■ - -

■81-

If t is total, then f will be total and monotone by clause (C) and

the fact that Clause (D) must be executed infinitely often. If t > \xfx],

then pop stability analysis and the fact that each (p(y(1) is monotone shows

that for every i. ^ * t (....) m 9 $ t. (mm) But then ^

monotone t we have

•l S ' (t-*-) ^a(i) S t a-e- 0^(i)
s f (a.e.)

•• #1 « t' (a.e.).

Corollary. There is an honesty procedure onff^, s , such that for every

recursive monotone t ^ \x[x]. if ^ = t th«« *, . is monotone.
e s (e)

Proof. Let s be the procedure of Theorem 7. and let s1 be any honesty

procedure on R^ Define s* as follows:

V(e)(x)

Let V(e)(x) =

^sCe)^

if, within x steps it is discovered

that <$e is not monotone, or within x

steps it is discovered that gj <: \x[x];

otherwise.

The first clause on the right is obviously recursive, and so s* € 5? .

If (»t ^ \x[x] and is monotone, then V(e) -«>i(-). Otherwise ?,s*(e) =

^s'Ce) (a>e-)- Hence s is the desired honesty procedure rn R .

We remark that the lower bound \xfx] of the theorem and the corollary

may be replaced by any slow-growing unbounded function. Borodin [2] shows

that some lower bound is necessary, and thus our result is best possible.

-

•82-

Blbliography

1.

2.

3.

A.

6.

7.

9.

10.

11.

12.

Blum, M. "A machine-Independent theory of the complexity of recursive
functions", JACM 14 (1967), pp. 322-336.

Borodin, A. "Complexity classes of recursive functions and the exist-
ence of complexity gaps", JACM 19 (1972), pp. 158-174.

Trachtenbrot, B.A., "Complexity of algorithms and computations".
Course notes, Novosibirsk U. , Novosibirsk, Russia (1967).

McCreight, E M. and A.R. Meyer, "Classes of computable functions
defined by bounds on computation: Preliminary Report", Conf. Rec.
ACM Symp. on Th. of Computing (1969), pp. 79-88.

McCreight, E.M. "Classes of computable functions defined by bounds
on computation", Doctoral Thesis, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pa. (1969).

Bass, L. "Hierarchies based on computational complexity and ir-
regularities of class determining measured sets" Doctoral Thesis,
Purdue University (1970).

Bass, L. and P. Young, "Ordinal hierarchies and naming classes",
JACM, to appear.

Meyer, A.R, and E.M. McCreight, "Properties of bounds on computation",
Proc. of T.iird Ann. Princeton Conf. on Info. Sei. and Systems (1969),
pp. 154-155.

Rogers, H. Th* Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1967).

Robertson, E.L "Complexity classes of partial recursive functions",
PTJJC. of the Third Ann. Symp. on Th. of Computing (1971), pp. 258-265.

Constable, R. "Upward and downward diagonalizations over axiomatic
complexity classes", Cornell University, Department of Computer Science,
Tech. Report (1969).

Hartmanis, J. and J. Hopcroft, "An overview of the theory of compu-
tational complexity", JACM 18 (1971), pp. 444-475.

— — - - - ---

•83-

13.

14.

15.

16.

landweber, 1 and E. Robertson. "Recursive properties of abstract
complexity classes", JACM 19 (1972), pp. 296-308.

Constable, R., "The operator gap" JACM ^9 (1972), pp. 175-183.

Meyer, A.R and R. Moll, "Honest bounds for complexity classes of

Th^rf slD "r'r"' ^ ^ Ihe Third Ann. sLchi and^tolta
iheory gag.. College Park, Md. (1972), pp. 6Ü66.

^"fi: P" "n887 con8truction8 in complexity theory: speed-up and

KJort fclAS^r UniVerSity, COmPUter Sci— ^P-t-^/Tech.

-84-

Chapter 3

F^nc?"™" Elnbeddln8 Theore,n for Complexity Clasaes of Recursive

1. INTRODUCTION

Let f(t) be the set of functions computable by some machine using

no more than t(x) machine steps on all but finitely many arguments x.

If we order the ?-classes under set inclusion as t varies over the

recursive functions, then it is natural to ask how rich a structure

is obtained. We show that this structure is very rich indeed. If R

is any countable partial order and F is any total effective operator,

then we show that there is a recursively enumerable sequence of

recursive machine running times (i,^)^ such that if jRk, then

^Vj)^ 5 7(*s(k))' and if J and k are Incomparable, then f(| , x) <
~ 8(j)

*s(k) on infinitely many arguments, and F(»8(k)) < 1^ on infinitely

many arguments.

An interesting feature of our proof is that we avoid appealing

explicitly to the continuity of total effective operators; indeed our

proof follows directly from a single appeal to the recursion theorem.

Several investigators have considered this and related problems, and

in Section 4 we briefly sumarite these investigations and compare them

to our own.

■ —' — -■

•85-

2. PRELIMINARIES

For notation from recursive function theory we follow Rogers [2].

For each n 6 N, Pn stands for the partial recursive functions of

n-variables, and ti^ stands for the total recursive functions of n

variables.

We use (a.e.) to denote "almost everywhere", which for our

purposes stands for "all but finitely many". Similarly (i.o.) stands

for "infinitely often".

Suppose {CD0,O1,...) is a Godel numbering of P^ A measure on

Computation [1] $ = [Ig.f^...] is a sequence of functions in P-

satisfying

1. Vi € N [domC©) = dom($)]

2. \ixy[$1(x) = y] is a recursive predicate.

If we think of our Godel numbering in the usual one-tape Turing machine

formalism, then

*i(x) = "the number of steps in the computation of the ith Turing

machine on argument x" is a measure on computation.

Henceforth let $ be some fixed measure on computation. Then we

define for any total function t

and

F(t) = fi € N ((üi € R, and $ <: t (a.e.)},

9(t) - (q^ I 1 g F(t)}.

- ..._■. , _ . _ ._ ._

-86-

That is, F(t) is the set of (Indices of) total machines which run

in time t, and y(t) is the set of total functions computable within

time t. ?(t) is called a complexity class.

A sequence of partial functions* = [i|r ,^ ,...] is said to be

an r.e. sequence of partial functions if \ixfi|f (x)] g P .

The following theorem of Blum [1] shows that we can uniformly

enlarge complexity classes f(t) if t is a sufficiently well-behaved

function.

Theorem. (Compression Theorem) There is a g ^ R? such that for every

#i € R1, ?(*.-'"^ '(^xg(x,«1(x)). g is called a compression function

for $.

An operator is a map which takes functions to functions; we

write F(f)(x) to mean the value of the operator F applied to the

function f, evaluated at x. An operator F: D c P -» P is called an

effective operator if there is an s € R, such that Ffe) (x) -n (x)
J- ~ e s(e)

An effective operator F is total effective if for every f € R ,

F(f) is defined and F(f) f R

3. THE EMBEDDING THEOREM

Theorem. Let F be any total effective operator, and let R be any recursive

countable partial order on N. Then there exists an r.e. sequence of

recursive functions p0, p^ ... pn ... such that if jRk, then F(p) <

Pk (a.e.), and if j and k are incomparable, then F(p) < p (i.e.), and

Pk <F(p) (l.o.).

mm

■87-

Proof. We assume without loss of generality that R orders N-(0}

rather than N, and in addition that R contains kRO for each k > 0.

Let a0 = < i0, ko >, a1 - < i^ kj > ^ = < i^ ^ >, ... be a

recursive listing of all incomparable pairs in R such that if x and

y are incomparable, then < X. y > and < y X > both appear infinitely

often in the list. As a technical convience we define maxftf] = 0.

Lef s € R2 be the ij function of the s-m-n theorem defined by the

equation

C0e«x, y» =C.s(e>x)(y).

Define ilr 6 o as follows:

0 lfx<kor3n<k

t(«, <k,x >)

such that $ (< 0, n >) > x, (1)

IRk

[(S5.(..ln)(x)+^.(..ln)><^l.

where n ■ jjm i x[((m - 0) and (x = k)) or

[(m > 0) and (k = k) and [(wi (0 ^ i < m))

('3zi S x) such that (z = k) and

(2)(i)

(2)(ii)

(«1+1 = z. + $

such an n exists and (1) is not true, and

i+i= zi + $s(e.ki)
(2i>) aaä (zm = x)]i]. if

^ bs(e.j)(x) +^s(e.j)
)(x)1 otherwise.

iRk

(3)

•88-

♦ ^ P2 since all the test computations in clauses (1) and (2) are

recursive by the second measure on computation axiom. By the recursion

theorem there is an e such that He, ^x >) = ^«k.x»; we apply the

s-1-1 version of the s-m-n theorem to obtain He, <k,x>) =© (x).
8(e>K)

To simplify our notation we now suppress mention of e and write p (x) =
K

"•(•.It)00' Similarly we write • (x) for » (x). Our definition
rj^ S ^ e , K ^

now becomes

f 0 ifx<kor^n<k such that $ (n) < x, (1)

aaEip4<x) + F(p.)(x)]) +
jSx J ~ J
iRk

[P1. (x) + F(pi)(x)],

Pk(x) -

(2)(i)

(2)(ii)
n "n

where n = Mm ^ x[((m = 0) and (x ^ k)) or

[(m > 0) and (k = k) and [(V1(0 < 1 i m))(3z s x)

such that (z0 = k0) and («^ - ^ + t (z)) and
k.

1
(«n ■ x)Jlli if such an n exists and (1) is not

true, and

max [p/x) + F(p .)(x)] otherwise.
J^x J ~ J
jRk

We first establish that at most finitely many of the functions

^k}k€N Can be non-total- Suppose pk(x) diverges. Since p0 is defined

by (3) at all arguments, PQCX) must diverge, and so by (1) p . (x) = 0

for all j > x#

(3)

'i

wmmm^-—*—

•49-

We now prove that for all k pk is total.

Say that an is serviced at x If pk (x) is defined by (2), and if

n is the least m S x satisfying the bod^ of (2) in the definition of

P^Cx). We allow the possibility that P (,) may diverge, if a is

serviced at x, (2) guarantees that x = . -^ + , (^ ^ so
n i=l 1 Pk i

an is serviced at no other argument. Moreover, if an is'serWced at x

and p^Cx) diverges, then for „• >n %t will never ", serviced) sincfc

an, is serviced at y only when y bounds the computation of $ fx)

Let k be an R-minimal element in the finite set (k. | ^."„on-to tall

Then if Pk(x) diverges, it must do so because of (2)(ii). That iS(a

is serviced at x for some n. and ^ must be non-total.
n

But suppose p^(y) diverges by an instance of (2)(ii) for some y.

This means that ^ I k. for some j and aj is serviced at y. If j < n>

then y must equal .jl but since an is serviced x. . (.) < x and helce

Pk (tj) must converge. If j > n. then since a is serviced at x and

Pk(x) is assumed to diverge. ^ is never serviced. Moreover j cannot

equal n. for then in would equal k^ Hence pi must be non-total because
n

of C2)(i) or f3), and so some funetion p such that i'Ri is non-total.
n-

n

_ — —, .-* _

-90-

Let i be R minimal amor^ (1' | i'R ^ and i' ncn-total). Then

p. must be non-total by an instance of (2)(ii), say at argument y.

Hence i = k^ for some J, and aj must be serviced at y =]E z +

ip=0

p, ^m5 If J < n. Pk (y) must converge since a is serviced at x

by assumption; and if j = n, then ^ and kn are comparable, i contra-

diction. Furthermore if j > n, then a. will never be serviced. Hence

Pi is total, and we conclude that for every k ^ € Ä .

If JRk, then F(Pj)(z) ^ pk(t) for all z > ^ = max[k,j,$ (0),

• (1). ... t (k-1)]. P0

P0 PQ

If j and k are incomparable, then < j,k > = k , a , ... a

for some infinite sequence n_ < n. < n • • • r •.. . q

0 12 q

For arguments z > Tn0 p^«) is defined by (2) or (3). Since the

sequence of z.'s is strictly increasing, there is an , such that for

1 > ^^i * m0- At tho8e arguments «i t i > i i = n , p (zj will
" *-! K 1

be defined by clause (2) and p^z^ > F^)^). A symmetric argument

shows that p. > F((,k)(i.o.), and the theo-em is proved.

CorolUry. Let F be any total effective operator, and let R be any

countable partial order on N. Then there exists an r.e sequence of

recursive measure functions $r(0), f^. ... such that if jRk> then

^rCj)^ $r(k) (a-e') and ^^(j)»? y<»r(k)). ««» ^ J ^d k are

incomparable, th.n F(»r(J)) < $r(k)(i.o.), and F($r(k)) < $r(.)(i.0.).

-9U

Proof. Mostowski [3] has shown that there is a countable partial
*

order R into which any countable partial order may be embec'ded.

Moreover, Sacks [4] has shown that R is recursive.

We assume without loss of generality that F is at least as large

as the identity operator, and that the compression function for I, g,

is strictly increasing in its second argument, Blum [1] has shown

th«t there is an h € R2 such that for all i 5, (x) < h(x, $.(x))(a.e,)• We

assume tl.at h is strictly increasing in lt<j second argument. To prove

the corollary, apply the theorem to R , rewrite clause (2) as

n** [p.(x>fh(x,g(x.F^)(x)))] + [p (x) + h(x,g(x.F($)(x)))],
J^* Pj n ~ Pi
IRk

and we rewrite clause (3) as

maxjp (x) + h(x,g(x,F($)(x)))l,

jRk

It is easy to see that the theorem goes through as before, and the

monotonicity restrictions on g and h guarantee that the functions

(• }k€N satisfy the corollary.

- -- -

'^^^^mmmmmmmmmmmmmmmttmmmmmmmmmmmmmmmmmmmmmmmi^m^mm^^^m

■92

4. RELATION TO OTHER WORK, AND OPEN PROBLEMS

McCreight [5] is the first investigator to prove an embedding

theorem for subrecursive classes. He shows .-hat any countable partial

order can be embedded in the complexity class as ordered under set

incli.dion. However, Ms theorem is weaker than our results in that

the functions of his partial order are "separated" by composition

with a fixed recursive function, whereas our functions are separated

by a total .ff-ctive operator. In [6] Enderton also proves a universal

embedding theorem for subrecursive classes. His notion of a sub-

recursive class is quite weak, however, and his result is an immediate

corollary of McCreight's theorem.

Ear y work on the structure of subrecursive classes was done by

Feferman [12], Meyer and Ritchie [7], and Basu [8]. Feferman shows

that dense chains exist for various notions of subrecursive classes.

Meyer and Ritchie define what they call elementary honest classes, and

they show the existence of dense chains and infinite anti-chains for

such classes. Moreover, they are able to exhibit certain functions f

such that dense chains of classes will exist between f and the iterate
(x)

of f, \x[f ' (xM. Basu builds dense chains of subrecursive classes, where

these classes are closed under the application of a fixed recursive operator,

Machtey [11] has announced universal embedding theorems for both

the "honest" primitive recursive degrees and the "dishonest" primitive

recursive degrees. Both of these theorems follow immediately from our

results.

 -J"t- ■ — - - ■mil in iMiaii Mil M. i i iiilwiiliiii I m in I MI.I »■iiiiiiBiinir MM.a—ii

mmm^—****

-93-

We also note that Alton . 9] has Independently announced our

embedding theorem.

We leave open the question of the size of the functions in our

embedding theorem. That is. given F, what is a reasonable upper bound

on the size of Po in terms of F(recall that p0 bounds all the functions

^Pk^k€N on a11 arguments).

The author wishes to acknowledge the generous assistance of Professor

Albert R. Meyer in the conception and preparation of this paper.

J--J" -"■ ■ -•-- ---- —■ ■ n mi—nMhi MIMII Tiiian^iar rtii 1 m niMiiaiM^lfc'1 1 1

^m*m^^^~^^mi^i^mmm^^m^m^^^^~~' m~t^^^mimm^amm^i^mmmm^mim^m^^~~*^m^

-94-

REFERENCES

1. M. Blum, A machine-independent theory of the complexity of
recursive functions, JACM JL4, 1967, 322-336.

2. H. Rogers, Jr., Theory of recursive functions and effective
computability, McGraw-Hill, 1967.

II

3. A. Mostowski, Über gewisse universelle relationen, Ann. Soc.
Polon. Math. 17, 1938, 117-118.

A. G. Sacks, Degrees of unsolvability. Annuals of Math. Studies,
No. 55, Princeton, N.J. 1963.

5. E. McCreight, Classes of computable functions defined by bounds
on computation. Doctoral Dissertation, Carnegie-Mellon University,
Department of Computer Science, 1969.

6. H. Enderton, Degrees of computatio \al complexity, JCSS No. 6.
1972, 389-396. "

7. A. Meyer and D. Ritchie, Classification of functions by compu-
tational complexity, Proc. of the Hawaii Internat'1 Conf. on Sys.
Sciances, 1968, 17-19.

8. S.K. Basu, On classes of computable functions, ACM Symp. on Theory
of Computing. 1969, 55-61.

9. D. Alton, Operator embeddability in computational complexity.
Notices of the AMS, 1972, A-763.

10. A. Meyer and P. Fischer, Computational speed-up by effective operators,
JSL. No. 37, 1972, 55-68.

11. M. Machtey, Augmented 1-»op languages and classes of computable
functions, JCSS, to appear.

12. S. Feferman, Classifications of recursive functions by means of
hierarchies. Trans, of the AMS, Ifo. 104, 1962, 101-122.

-95-

Blographlcal Note

Robert Moll „a3 born 0KmbKl 17j ms ln pltt8burgh_ ^^

He attended pubUc 8chool t„ plttsbur8h_ As ^ undergra(|uate ^ ^^

Carnegie Institute of Technology. spendlng hls ju„lor year at ^

diversity of Vienna. After two yeara of graduate aehool at CarnegU.

he transferred to MIT. „e „ou lives at the Lee street co^ne In

abridge, Massachusetts. In . few „eeks he ulu ba ^^ ^ ^

Folsom, the famous artist.

Ha has recently accepted a position as an .ssl.tant professor at

the University of Massachusetts at «erst In the Department of Co.-

puter and Information Science.

mtmam

