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ABSTRACT

We want to build n components so as to form an n com-
ponent system which will function if at least k of the
components function, If x dollars is invested in building
a component, then this component will function with prob-
ability P(x) . Given a total income of A dollars, the
problem of interest is to determine how much money we should
invest in each component so as to maximize the probability
of attaining a functioning system. This problem is con-
sidered both in the sequential and in the nonsequential case.
Conditions under which it is optimal to allocate A/n units
at each stage, when A 1s your initial fortune, are
presented. The special case P(x) = min (x,1) is also
considered in detail,
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OPTIMAL ALLOCATIONS IN THE CONSTRUCTION OF

k-OUT-OF-n RELIABILITY SYSTEMS

C. Derman, G. J. Lieberman, S. M, Ross

1. Introduction.

We want to build n components so as to form an n component

system which will function if at least k of the components function,
If x dollars is invested in building a component then this component
will function with probability P(x), where P(x) is an increasing
function such that P(0) = 0. We have a total income of A dollars,
The problem of interest is to determine how much money we should invest
in each component so as to maximize the probability of attaining a
functioning system, We will be interested in this problem both in the
sequential and in the nonsequential case. In the sequential case we

assume that the individual components are built sequentially in time and

that knowledge as to whether or not a component functions is available
to us before we have to allocate our investment in the next component,
In the nonsequential case it is assumed that all allocations must be
simultaneously made.

In Section 2 of this paper we consider the case k = 1 and
present conditions on P(x) under which it is optimal to put an equal
investment in all n components and conditions under which it is optimal
to put the total fortune A into a single component, In Section 3, it

1
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is shown that the "equal investment" condition carries over to the case
of general k., In Section L we consider the special case P(x) = x
in the sequential situation and determine the optimal policy when k = 2,

A conjecture as to the optimal policy in the general case is also made.

Several remarks are made concerning the non-sequential case with P(x) = x

(considered in [1]) in Section 5. 1In the final section we consider a

related problem,

2. The Case k 1.

When k

[
1 the sequential and nonsequential cases are identical;

both are involved in determining x = (xl, coe x“) with X 20,

L n

2 X; = A s0 as to maximize (1 -m(1- P(xi))], the reliability in the

1 . n i-1

latter case, and the identical expression p(xl) + Z n (l-p(xj)) p(‘xi)
2 j=1

in the former case, The interpretation of x 1is that L dollars is to
be invested in component. i in the nonsequential case, and, in the
sequential case, X dollars is to be invested in the ith attempt if the
first i-1 attempts to build a functioning component are unsuccessful,

The above is equivalent to choosing Ky eee y Xg Xy 20, 21 X, = A

n
so as to .minimize 2 log(1l - P(xi)).
i=1

Proposition 1:

(a) If log(l - P(x)) is convex then the optimal allocation is

x1=x2=-..=xn=A/n

|
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(b) If 1log(l - P(x)) is concave then an optimal allocation is

Proof: Follows from standard resulcs about concave and convex

functions, ﬂ

Remarks:
(1) In part (b) the condition that 1log(l - P(x)) be concave can be
weakened to the condition that 1log(l - P(x)) be subadditive,
i.e., that is, (1 - P(x + y)) < (1 - B(x))(1 - B(y)).
(ii) The condition that log(f - P(x)) be superadditive, i.e.,
(1 - P(x+y))>2(1-P(x)) (1 - P(y)), would not be sufficient
to establish part (a). It would, however, necessarily imply that

the optimal x vector would have all positive components,

3. The General Case,

Part (a) of Proposition 1 remains true in the general case,

Theorem 1: If log(l - P(x)) 1is (strictly) convex then when one wants

to sequentially build k working components in at most n attempts,
n >k, then it is (uniquely) optimal to allocate A/n at each stage

when A is your total resources,




Proof: Assume first that log(l - P(x)) 1is strictly convex. The proof

is by induction on k, and, as we have already proven the result when

k=1, let us assume that it is true for all values less than k., Now

| consider the k component case, I1f the number of possible stages is

k then a policy reduces to a vector (x,, ..., xk) where x,
k
Z:xi.s A, with the interpretation that the policy invests 3 in the
1

29,

first stage and if the first i-1 stages all result in working components

then x

5 { is invested in the ith stage. (That is, when the number of

available stages is identical with the number of desired components then
the sequential problem reduces to the nonsequential one.) Thus, the

[
problem reduces to

i e o

k k
Maximizing I P(xi) subject to x, >0, h) x; = A
i=1 1
or, equivalently, to,
k k
Maximizing 21: log P(xi) subject to Xy >0, %xi = A,

Ncw the strict convexity vf log(l - P(x)) implies that log(P(x)) 1is
strictly concave (see the following Lemma 1). Hence, by standard

arguments, it follows that x, = A/k, i =1, ... , k is the (unique)

’

optimal allocation and the result is established in this case.

Thus the result is true in the k component case when the
number of stages is also equal to k., So let us assume that the result
holds in the k component case whenever the numbe: of stages is less

than n  and try to prove that it also holds when the number of stages
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equals n. To do so suppose that an optimal policy* for a k-component
n-stage problem initially allocates an amount ;. Now if this initial
attempt is successful then the induction hypothesis (on the number of
desired components) tells us that it is uniquely optimal from that point
on to allocate (A-xl)/(n-l) for each of the remaining n-1 stages. On
the other hand even if the initial attempt is unsuccessful then as there
are only n-1 stages to go it follows by the induction hypothesis on the
number of stages in the k-component case thaf it is still optimal to
allocate (A-xl)/(n-l) on each of the remaining n-1 stages, If

Xy = A/n  then the result is proven., So let us suppose that 3 £ A/n
and obtain a contradiction., If 'xl # A/n then consider the policy that
allocates % [x1 + (A-xl)/(n-l)] for each of the first two stages and
then allocates (A-xl)/(n-l) for each of the last n-2 stages. This
policy is thus identical with the optimal policy during the last n-2

stages, Now the probability that at least one of the components built

during the first two stages is successful is

A-xl
(1) 1-[1- P(xl)] [1 - P — ]
under the optimal policy; while it is
A-x 2
1 1
(2) 1-[1-?(2(x1+—mn]

fIt is easy to show that an optimal policy exists for the n stage

problem. This is done by first proving recursively that the optimal
value function for an n stage problem is a continuous function of the
initial fortune whenever P(x) 1is continuous, An optimal policy then
exists since a continuous function obtains its maximum on a closed sct.

5
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under the new policy, Also the probability that both components are
successful is

A-x

(3) P{xl} P m‘l‘

for the optimal policy; while it is

A-x
1 1
(¥) SR

for the new policy, It follows by the results given for k = 1 that
(2) is greater than (1), and it follows from that fact that log(P(x))
is concave (Lemma 1) that (L4) is greater than (3). Hence, under the new
policy the number of successes during the first two stages is stochastically
greater than it is under the optimal policy. As the two policies are
identical after the first two stages it thus follows that the probability
of at least k successes is gteager under the new polic& than it is
under the optimal policy. This contradiction shows that x, = A/n,
which proves the result in the k-component case for any number of stages,
which also completes the initial induction proof.

If log(l - P(x)) is convex but not strictly so, then we can

approximate log(l - P(x)) arbitrarily closely by functions that are

strictly convex and then apply a continuity argument. l

The following lemma was used in the proof of the theorem,

I 1LYy
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Lemma 1: If 0 < P(x) <1, and 1log(l - P(x)) 1is convex then

log(P(x)) is concave.

Proof: Suppose the hypothesis of the lemma are true. Then

n

us-d— log(l - P(x)) =

P(x) P"(x) - (B'(x))° - P"(x)
ax? (1 - B(x))?

implying that

-(P'(x S
P“(") S 1 - p(x) S Y

Now

& oy pla o B PR - (2'(x)?

dx? (B(x))Z

which is negative since P"(x) < O.

Remarks,

(i) It follows from Theorem 1 that when 1log(l - P(x)) is convex the
optimal sequential policy is nonsequential is nature, and is
thus also the optimal policy when the allocations for each stage
must be made simultaneously rather than sequentially,

(i1) If we think of P(x) as being a probability distribution function

then the condition that log(l - P(x)) be convex is equivalent to

the condition that P(x) is a decreasing failure rate distribution,

Since mixtures of decreasing failure rate distributions are them-
selves decreasing failure rate distributions it thus follows that

log(1l - P(x)) will be convex whenever




(1i1)

P(x) = [ P dF
(x) < | 2ofx) 4F(a)

log(1l - Pa(x)) is convex for all q,

F(a) 1is a probability distribution function,

In particular, any P(x) of the form

P(x) = [ (1 - &%) dF(q)
(0]

will be such that log(l - P(x)) is convex.
If we let Vn(A) denote the probability that at least k successes

will occur in the n stages under an optimal policy then from

Theorem 1 it follows that
q { i
V_(4) - iZ‘.k (D (R(A/n))" (1 - p(a/m)™

If P(x) 1is differentiable then

1m 28 . 1ym pr(x) = BY(0) =
x -0 x -0
and thus from the Poisson approximation to the binomial distribution

it follows that

v (A) ! e M ;ii (AA)k/k: as nt o

(This is so since V (A) = Prob{Bin(n, P(A/n)) >k where
Bin(n, P(A/n)) represents a binomial random variable with
parameters n and P(A/n) .) It should be pointed out that this

convergence is not necessarily monotone for an arbitrary differ-

entiable function P(x) with P(0) = O,
8



4, The Sequential Case P(x) = x.

While the analovgue of part (a) of Proposition 1 remains true
in tie case of arbitrary k it is obvious that the same cannot be said
of part (b). In this section we consider the special case P(x) = x.
Suppose that we need to sequencially build two {k = 2) function-
ing components in at most n attempts when P(x) = min(x,1l). Suppose
that our initial fortune is A and consider the policy 1 which sequentially
allocates A/n at each stage until a functioning component is built, and,
at this point all ..tes all of the remaining fortune ior the next stage.
In other words if our present fortune is y and at most r additional
components can be built then ’
(a) if two additional functioning components are still needed then 7
allocates y/r for the next component;
(b) 1if only one additional functioning component is needed then 1
allocates y for the next component.

Denote by Un(y), the probability that two functioning components

will be built when our initial fortune is y and policy 7 is employed,

Proposition 2: For y <1

u(y) = (1-§>n+y -1

Proof: By conditioning on the time of the first successful component we

see that
n-1 y r-1 y Ty
u(y) = 21“ -4 Iy -

vhich simplifies to prove the proposition, l

9




The next proposition states that U (y) satisfies what, in

dynamic programming terminology, is known as the optimality equation,

Proposition 3: For y <1

U(y) =  Max (x(y-x) + (1l-x) Un_l(y-x)] |

Proof: Definc

£(») = x(y-x) + (1l-x) Un_l(y-x) ,

x(y-x)+(1.x)[(-ﬁ“’*”_x_l] | i
!
|

L]

Differentiation yields

-2 il
£'(x) = (1-x) (1-ﬁn -(1-}'_““ o

n-1 |

implying that f'(x) = 0 1if and only if

1 -x=1-XX

n-1

x=-x
n

Since £"(y/n) = 0, it follows that f(x) attains its maximum value at

x = y/n. This proves the result since f(y/n) = Un(y)..

Theorem 2: For an initial fortune of A <1 the policy 7 maximizes the

probability of obtaining two functioning components.




Proof: From Proposition 3 we see that

(5) Un(y)_z x(y-x) + (1l-x) Un_l(y-x) for all 0<x <y

The right side of the above can be interpreted as the return (i.e.,
probability of obtaining two functioning components) if x is allocated
for the first stage and then policy 7 1is used for the remaining stages,
As the inequality (5) holds for all x, 0 <y < x, and, as we already

know that ¢ is optimal when only one additional functioning com, onent

is needed (Proposition 1), we can interpret (5) as stating that using
policy m 1is better tham doiag, anything else for one stage and then
switching to 7. Repeating this argument yields that using 7 is better
than duing anything else for two stages and then switthing to 7. Finally,

by repeating the same argument a total of n times we cee that using

policy 7 1is better than doing anything else for the first n stages.

This completes the proof. E

Since Theorem 2 states that Un(y) is the maximal probability when
at most n stages are available it follows that Un(y) is an increasing

function of n and thus, for 0 <y <1,

n
U =(1-3) +y-11teVsy-1 as nta

n
(This constitutes another proof that the convergence of (1 - %) to

e”? is monotone when 0<y<Ll) In fact, for any positive y it it well
known and can be easily shown that the convergence is monotone for all

n>N where y/N < 1. 1
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The policy w7 is no longer optimal when our initial fortune
can be greater than 1, Let us define the policy m* to be such that
when the present fortune is y and at most n additional components

can be built.

(a) allocates y if only one additional working component is needed;
and
(b) 1if two additional working components are needed, allocates

n

y -1 if yzn—-f
b 4 L
n if y< n-1

[

1f we let Vn(y) denote tne probability of a success (two working

components) when our initial fortune is y and policy w* is employed

then, as y < n/(n-1) implies that y - %.S ﬁf% , it follows that, for
0<y<2
n
Un(y) ERs n-1

v(y) =
n
y - 14+ (2-y) Un_l(l) if y>=—=

or, equivalently, for 0 <y <2
? b

SR .
(1-%5) +y-1 if y<—
v (y) =
n-2 L n
(Bv) ) +v -1 i y2gy

Theorem 3: Policy w* is optimal. !

Proof: The proof would follow exactly as in the proof of Theorem 2,

if we could show that
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(6) Vn(y) > x Min(y-x, 1) + (1-x) V__,(y-x)  for all x < Min(1,y)

When y <1, (6) is identical to (5) and thus we only need prove (6)

when 1 <y <2, Hence we must show tnat, for 1<y <2,

(7) Vn(y) > Max[ Max (x + (1-x) Vv (y-x)),
0 <x<y-1 n-1
Max (x(y-x) + (1-x) Vﬁ_l(y-x))]

y-1<x <1 '

We consider 2 cases.

Case 1, ySr.

-

Now

Max {x + (1-x) V.. 1(¥-%))
0<x<y-l

-x n-1
= Max (x + (1-x) [(1-;—_—1) +y-x-1])
0<x<y-1

Define the function £(x) by

-1
f(x) =x + (1-x) [(I-H)n +y-x-1]

Now

£'(x)

-x -2 —x. D=1
La (Ll - 557 0 - Z5H™ Ly xin

and

} 03 -2 B2
£(x) = (1ox) (22) (1- XX L LN I o0

5 RO el
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Hence f£(x) is a convex function in the region 0 < x < y-1, and thus

obtains its maximum value in this region either at x = 0 or x = y-1,
Now

n-1
£(0) = (1 - ;%T) sy -1
and

-1
f(y-1) =y - 1+ (2oy) (&)

Now the fun~* on

e n-2 n-1 y n
8(y) = £(y-1) - V (y) = (2-y) (7)) - (1-2%)
is zero at y = n_nf ] Differe;}tiation shows that it is an increasing

function when y < SR

1 and thus it follows that

f(y-1) =y - 1+ (1- %)n =V (¥)

n
As was previously noted (1 - %) is increasing in n, it follows that
£(0) Svn(y); thus,

Max f(x) < V (y) when y < _n_l
0<x<y-1 -

Also, since when Yy 5% , the inequality

vV (y) > Max

(x(y-x) + (1-x) V__,(y-x))
y-1<x<1

is identical to the inequality (5), it follows that (7) is established

when vy 5;‘_‘—1- . We are thus ready for

14
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Case 2: y > —

n-1
In this case
Max (x(y-x) + (1-x) V__,(y-x)]

n-1
Max  (x(y-x)-+ (1-x) [(1 - -"—'—’1‘)

y-1<x<1 -

+y -x-1])

n

Now the function in brackets above is a decreasing function of x for

x > y-1 (to show this we use the fact that x >y-1,y _>_?£—1 implies

that nx >y), and thus the Max above is equal to

n-2 n-1
=Yy - 1""' (2-y) (n_]_)
= vn(y)
Hence, if we can show that Vn(y) > Max g(x) when y > -—?i R
0<x<y-1 n
where g(x) is defined by
g(x) = x + (1l-x) Vn_l(y-x) ’
then the proof will be complete.
Now, let us suppose that y 2%:—1 . Then
Max g(x) = Max Max g(x), Max g(x)
0 Sk st 0.x<y-5t SRl <y
XSy . y o = X y-
But
n-3. n-2
Max g(x) = Max (x +(1-x) [(2-y+x) (_zn-2) +y-x-1])
05x<y-5 o_<_x<y-'—;-:—21-

Now the function in brackets above can be easily shown, upon differentiation,

to be a convex function and thus it attains its maximum value either at

15




x=0 orat x=y - —= , Thus

(8) Max 8(x) = Max(g(0), g(y - 23)]

-x.n-1
Hax B(x) = Max (x +(1-)[(1 L)+ y-x-1])
n-1 n-1
y-o53x5y-l y-53Sx5y-1

Now it has previously been shown that the above function in brackets is

a convex function and thus

(9) Max g(x) ="Max[g(y - %:—%), g(y-1)]
y - 2—:- <x <y-1

Hence, from (8) and (9) we see that when y 2'27'2]‘
( 10) Max  g(x)
0<x<y-1
5 ) -2
(2-y) (22" 4y -1 1
= Max y--::%-;+[£:—-‘2-)'] [(n—-'z) +-nT2-]
'| y - 1+ (2-y) ( )

On the other hand, when -::—l: >y > —1- we obtain thac




With the help of a little algebra we obtain from (10) and (11) that
when y > ;?—1-
n-2, 01
Max g(x) =y -1+ (2-y) (;jT) = Vn(y)
0<x<y-1

and the proof is complete.

Hence the optimal policy is determined in the case k = 2,
If n =, it can be seen that no optimal policy exists. The dynamic
programming functional equation will have a solution; however, the
solution is not the return function of any policy. The policy determined
by the solution is the non-optimal policy of allocating x = O at

)

every stage,

In the general case considcr the policy 7% which is such that

if our present fortune is y and if k additional working components

are needed with at most n stages to go, then m* calls for allocating

P4 L A
m if y < = (k-1)
n
y - (k-l) if yZ;._f(k'l)

(Note that 1* corresponds to the previously defined m* when k = 2,)
Define Vn k(y) to be the probability of success under m* when our
s

present fortune is y and k additional working components are needed

and at most n additional components can be built., If we can show

that

(12) v .(y)> = Mas [xv (y-x) + (1-x) V__} (y-x)]
n,k - O S X S min(y, 1) n-l,k‘l l'l-l.’k

17
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x* = (xf, cee ﬁ:) is such that all of the non-zero element of x*

GRbi P i i

then it would follow that m* is the optimal strategy. We have, at
present, been unable to verify (12) but we conjecture that it is valid
and that % is optimal,

A simple formula for Vn,k(y) in the case y <1 1is obtained

by conditioning on the number of steps required to obtain k-1 success-

ful componentsi., This yields

et k-1 , r-k¢l
- r-1 - l ) .Ez ‘
Vn,k(Y) = L . (k-2) (%) (L-3) (y-=2), 0<y<l, ]

5. The Non-Sequential Case; P(x) = x.

The non-sequential case with P(x) = x and general k was

s B

considered in [1] where it was shown that the optimal x vector

are equal, A problem of interest is to determine for 0 <y <k that

value of r that maximizes

Q(r)

Pr[at least k components work}

1]

r j -
Io@a-yr

for r =k, k¢l, ... , n, From Proposition 1(b), r = 1 when k= 1,
In general the optimal value of r 1is a function of y and k but
at present only seems obtainable by numerical methods, However, we
can make several remarks:

(1) If y is near enough to k then the optimal value of r is

r = k. To see this note that when y = k, Q(k) = 1 and Q(r) <1

18
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if r >k, Since Q(r) is a continuous function of y for each
r the substance of the remark follows.

(2) For every r there exists an €. > 0such that for y <e,
Q(r+l) > Q(r) with strict inequality holding if k > 1. Thus,
loosely speaking, for small y the amount of redundancy in the
optimal allocation is large., We show this by considering for
r>k

lim g1-5)—-(1+-1]:-')k( LS

g 5o AT T gt

it

R(k) (say).

We need only show that R(k) <1 with strict inequality holding for
[

k >1, Now R(l) =1, R(2) =1 - ]./r2 <1l. However, as long as

r > k+l, (£+_1)k+1 - E)
R{ k+1) r r+l

R(k) = k
Eh (-9

Then, R(k) <1 for all k > 1 and the proof of the remark follows.
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6. A Related Problem.

Rather than maximizing the probability of sequentially building k

successful components within a budget of A we shall now assume that

our budget is unlimited and that the problem is to minimize the expected

amount of money spent in obtaining the k successful compouents,
Consider first the case k = 1. If x 1is initially allocated and
the component built is not successful (which will occur with probability
1 - P(x)) then the situation will be exactly the same as it was before
the initial investment, Hence, if it was initially optimal to allocate
x then it will still be optimal to allocate x for the second component,
Hence a policy corresponds to a value x (in dynamic programming termi-
nology we are restricting attention to stationary policies), and the
expected cost to obtain a functioning component under such a policy would

equal x/P(x). Thus, the problem is to

Min
P
x>0 EX)

It should perhaps be pointed out that when log(l - P(x)) is convex
then x/P(x) 1is an increasing function of x and hence no optimal policy

exists, Similarly if 1log(l - P(x)) is superadditive then

- lim
X -0

ipf

x>0 F(x)

P(x)

and again no optimal policy exists,




The case of general k is solved by noting that it is identical

to the k = 1 problem taken k times. Hence, an optimal (if one

exists) policy would be to invest x* units at each stage until a

total of k working components are obtained, where x¥ (if it exists)

is such that
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