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SECTION 1 

INTRODUCTION 

1.1 GUIDE 

I 

I 

The reader is advised to start reading this paper by briefly 

reviewing the illustrations of some examples of picture processing on 

pages 115-122, and returnino to this point. The illustrations are 

pictures taken by a Polaroid camera from a ♦jlevision monitor, then 

processed to get negatives which are used to generate plates. These 

plates are then used for offset printing of the illustrations (that 

is why they are so "sharp" ). The white lines are overlaid by the 

program on the original picture. These lines represent the 

boundaries between regions that exist in the program's segmentation 

of the Mage. The programming system was applied to two problem 

domains. The first domain was images of the type shown in 

illustrations A through E which are road scenes. The second domain 

was left ventricular dngiograms illustrated in F and G. (A-7), IB- 

SI, (C-4), (D-5), (F-S) and (G-3) are examples of the desired output. 

These are images segmented the way humans would segment  them while 

: 
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GUIDE 1.1 

trying to describe them in the specific context of the problem 

domain. The achievement of our system is that this segmentation was 

done automatically after the program uas taught on the general 

proolem domain (semantics). Even though it is not apparent in the 

images, the program also understands the segmented images properly. 

That is, it assigns the same interpretation as humans assigns to the 

regions. The captions of the different images uill give the reade^ 

some idea of the terns used in this paper and the problem domains. 

Illustrations (B-l) through (B-5) show the different stages of 

processing (problem reduction steps). (A-2), (A-4), (A-5) and (D-3) 

are examples of possible er ors resulting from carrying any of the 

problem reduction steps beyond their proper stopping criteria. 

Since this paper describes the implemented system, the ideas are 

usually presented in the order of their application to the system. 

Section 1 is an introduction to the image processing problem domain. 

Section 2 descri is both the general data structures and the flavor 

of region growers in general, particularly the weakes:-boundary-first 

region grower. Section 3 is a detailed description of the 

initialization and reduction of the problem by region growing without 

semantics. Section 4 starts by redefining the problem in statistical 

terms and continues by describing the assumptions and structure of 

the semantics representation. Section 5 describes the application of 
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GUIDE 1.1 

the semantics to weakest-boundary-first region growing. Section B it 

devoted to describing an interpretation algorithm which is applied on 

the segmented image to assign meaning to the regions. Extensione of 

this algorithm which drive a region grower, evaluate the partition 

and provide for stopping criteria are described as well. Section 7 

describes the method which we adopted for collecting the 

probabilistic knowledge on the problem domain. Section 8 describes 

specific feature detectors available for regions and boundaries, as 

wull as the results of applications of the whole system to two 

problem domains. 

Most of the ideas presented in this paper were implemented in the 

programming system, but some of them are included as suggestions for 

future research and development. Since these suggestions are 

scattered in the paper we note them explicitly here. Subsection 3.2 

suggests improvements in local feature detectors and texture 

operators. Subsections 2.8 and 3.6 suggest using edge-following to 

achieve accurate shape contour and improvement in the existing shape 

description capabilities. Subsections 3.3 and 3.5 call for 

evaluation of the quality of various general boundary strength and 

state evaluation procedures. In subsections 4.4 and 4.B extended 

representatioris of the semantics are suggested for implementation. 

Section 6.2 describes extensions of the meaning assignment algorithm 
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GUIDE 1.1 

to drive a region grower with backup capabilities. Subsections 7.G- 

7.8 contain ideas for various aspects of automation of the learning 

which should be implemented to increase the effectiveness of the 

c lassi f icat ion. 

1.2 THE SEGMENTATION PROBLEM IN A.I. 

The problem of segmentation, breaking a complex image into sections, 

is a central problem in machir,, perception. The analogous problem 

arises in the analysis of speech [ VIC ] and. for that matter, in any 

problem of overwhelming size. Ue will concentrate on the image 

segmentation problem, but most of the ideas are of wider 

applicability. The main ideas are the application of Bayesian 

decision theory techniques and the use of problem-dependent 

information   (semantics)   to attack  the  image segmentation problem. 

The theory and implementation of a picture processing system which 

utilizes semantics will be described in this thesis. The 

segmentation process for pictures means breaking the picture area 

into regions fit', ng each other in a jig-saw puzzle sense. The 

interpretation of   the segmented picture means naming   (    assignment  of 
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SEGHENTATION 1.2 

meaning to ) the different regions. In addition to interpreting 

regions, boundaries and vertices will be interpreted. The naming of 

a region means at least identifying the 3-D (three dimensional) 

surface for which that region is part of the image in the current 

scene. For boundaries the interpretation will be the 3-D structure 

associated with it (in addition to naming it as a boundary between 

the two interpretations or the regions defining it). 

The segmentation problem for television images is as follows: given a 

picture of some scene, we have a rectangular grid composed of some 

280x308 points and for each point some information about the light 

intensitu and perhaps color. For any further processing 88888 points 

are far tco many; depending on the perception task that we have in 

mind, the image should be segmented into regions. That is, the G8888 

grid points should be clustered into relatively few regions, where 

each of the^e regions should be meaningful in the problem domain and 

the relevant information needed for the specific task should be 

easily obtainable. Meaningful segmentation for us means that each of 

the resulting regions may be named as being one of the regions known 

to the system a priori (like sky, grass, road, etc.), and the 

properties of the resulting segmentation structure will match the 

properties expected of that structure given the interpretation and a 

priori knowledge of the system about the problem domain. More 

rigorous definition of the problem will be given in Subsection 4.1. 
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1.3 riETHODOLOGY 

In the past, segmentation and interpretation were executed in two 

levels of programs, a low level am a high level. The interaction 

between the two levels was done on the basis of failure interrupts. 

The low level portion segmented the input. The high lovel tried to 

make sense of the segments produced by the low level. In case of 

difficulty in the high level, the low level was recalled to resegment 

the troubled portion of the picture with a different set of 

parameters. Certain limited success has been achieved utilizing that 

approach [ ROS ]. Some meteorological images can be segmented 

effectively using such techniques. However, for images like those 

arising in road scenes or confronting assembly-Iine robots, the 

existing algorithms do not suffice. A major problem is that the 

existing algorithms use absolute and local criteria such as intensity 

difference, boundary strength [ BF, BP ] , etc. to form regions. 

But the criteria for what is a "region" will surely vary with 

context. Certain shades of green, yellow and brown might be merged 

into a single region of grass in a scene, yet distinguishing the same 

s«t of colors might be crucial for region separation in another scene 

f or even  in another part of  the same scene (like distinguishing a 

yellow car  from green grass that  it partially occludes).  Another 

critical  consideration is the goal of  the perceiver.  For some 
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flETHODOLOGY 1.3 

problems, separating the green grass from yellow grase will be 

essentijl; in others it will oe completely redundant and cause 

needless complication. 

. 

Z 

The importance of goal direction and context-dependent information 

(semantics) for effective problem solving is now well understood and 

established in artificial intelligence and scene analysis is just 

another example. One can certainly write a special purpose region 

analyzer for a fixed class of images and it will work better than any 

general algorithm. This, in fact, has been done in various systems 

[ BF , HE ] and is sometimes just the right thing to do. The obvious 

difficulty with this ad-hoc approach is that it reauires a lot of 

work to build or modify each individual program. 

The current implementation tries to tie organically the two tasks of 

segmentation and interpretation so as to get a more reliable 

partition and interpretation of the Input.  The general  structure of 

the system can be applied to any combination of segmentation and 

in erpretat ion process subject to the  limits of the system with 

respect to the special structure of the semantics representation, and 

the classification capabilities. 

In all work done on segmentation of visual input which are known to 
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the author, semantics was hardly used. Uhen the semantics uas used 

it was used in an ad-hoc fashion. Our system provides direct 

incorporation of the semantics into the segmentation process. 

However, for practical reasons the representation of the semanticfa 

had to be constrained. He developed a structure which is in some 

sense first order semantics. It cannot be used to describe all that 

we know about the problem domain, jut what is describable can be 

directly incorporated in the segmrntation process. 

Before describing the system in more detail, we must make one 

additional point of clarification. It is a tenet of artificial 

intelligence research that any information that can be brought to 

bear will be helpful in a given task. This is especially true in 

machine perception, but our current efforts do not attempt to exploit 

it fully. Region analysis is assumed to be a preliminary (relatively 

fast) partitioning of an image before further processing. For this 

reason, we hove made no attempt to include semantic features like 

three-dimensional shape analysis in the current region analyzer. Ue 

are still studying the capabilities of our semantic structure. As 

results of more experiments become available, we will be able to 

determine which information should be used in the segmentation 

process and which should be left for higher level processing. 
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1.4 HISTORY AND LITERATURE REV1E.U 

h 

. 

■ 

The following is a brief review of successful computer systems for 

A.I picture processing and a brief literature review. No attempt is 

made to cover all the literature relevant to image processing. The 

reader who is interested in getting familiar with the literature is 

encouraged to consult the literature surveys [ R0S1 R0S2 R0S3 1 which 

survey over thousand recent articles on image processing topics. 

Relevant papers to our work appear in those surveys under the titles 

"Edge and curve detection", "Pictorial pattern recognition", "Picture 

parts", "Picture description" and "Scene analysis". Ue will 

reference only papers that had direcc effect on our work or deal with 

closely related topics. 

The hand-eye system at Stanford uses the edge detection approach. A 

procedure was developed [ HUEC ] which when applied on a circle 

around a point finds a best fit of a linear step function to the 

light intensity function in a neighborhood of the point 

u   Vx,y | a*x+b*ysc 
step(x,y)* 

v  Vx.y | a«x+b«y>c 

u*v 
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HISTORY AND LITERATURE REV I EU 1.4 

Depending on the quality of the fit and the difference between u and 

v the probability of the existence of an edge line between two 

different ligiit intensity regions passing in the circle is computed. 

The 2-cl fit is needed to overcome noise by the use of the 2-d 

structure of the edge line. Noise arises from both hardware noise 

and small irregularities in homogeneous region. Alternative edge 

detectors were developed by other researchers like [ GR ] which 

approach the problem as a statistical decision with yes/no answer. 

Some researchers have tried to use gradient techniques but it seems 

that gradient derived operators are very sensitive to noise). 

The recognition of eoge segments using the Hueckel operator is very 

reliable for simple scenes. The main problem is incorporating the 

local edge segments detected ii various points into a whole picture 

description. This becomes a very complicated task of edge following 

and making decisions as to how to close edges to create part (or all) 

of the contour line of a region and then to interpret the resulting 

objects by the world model t FALK GG ]. Then comes a complicated 

feedback loop to call the edge detection and following process again 

with different parameters to recognize predicted edges that were 

missed, or to delete some erroneous edges [ PT TEN ]. Algorithms for 

connecting reliably and efficiently edge pieces were developed by 

many researchers.  The common alternatives to edge following are 
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HISTORY AND LITERATURE REVIEW 1.4 

various algorithms derived from the minimal spanning tree algorithm 

uhere attempt to pass the shortest path through all edge segments is 

clone. Mn alternative approach is represented bg [ flON 1 which 

utilizes a simple version of dynamic programming for optimal curve 

detect ion. 

A region growing c.Igorithm was tr.ed at S.R.I. [ BF ]. This 

algorithm involved actually melting in random order all boundary 

lines iihose strength was less than some threshold. This threshold 

was supposed to be given a priori, and had to be adjusted for 

different pictures. The strength of the boundary was computed as a 

function of the length of the boundary and the» structure of the 

differences in light intensity across it. The main problems with 

that system are the heavy computational load resulting from lack of 

any sarnpling facilities, limited reliability because of randomly 

ordered merging of boundaries whose strength was less than some 

absolute a priori threshold and the lack of any facility to 

incorporate semantics directly into the region grower. A few 

researchers i;ave tried to develop techniques for local adjustment of 

the thresholds of the region growers mainly through local histogram 

analysis in various parts of the image; such work is now in progress 

in J.P.L. (oral communication). The work on region growing 

described in [HE 1 is ii many respects the nearest to our work.  It 
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HISTORY AND LITERATURE REVIEW 1.4 

is an attempt to tie region growing process with specific problem 

knowledge. The main difference is that our system is more general and 

more re!iable. 

World modeling for pictures was developed for planar surface scenes 

(block world of cubes and wedges) in parallel at Stanford A.1. 

laboratory by G.Falkand G.Grape for real images, and in II.I.T 

A.I laboratory by Guzmpn and Waltz for Idealized images. The result 

of this effort was a well understood world model of planar surface 

bodies which was able to sustain quita a lot of segmentation errors 

by the lower level portion. 

An attempt to use a semantic graph wi th some hints of associating 

probabilities with the links was developed in [ PEP ]. This was an 

attempt to model hand-input and hand-segmented images of outdoor 

scenes. 

Our world model is an extensior of these models to use both 

probabilistic world knowledge collected by the system, and an option 

to utilize the model directly whiIe segmenting the picture. The 

problem knowledge is collected by the system from training examples 

and is not limited to planar surface objects. The major deficiency 

of our current model with respect to the planar surface models is the 
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HISTORY AND LITERATURE REVIEW 1.4 

absence of vertices and explicit 3-d structure in our model, which 

an* of major importance in the planar surface model. Preliminary 

investigation indicates that vertices and 3-d structure information 

may be added to our model without significant change in the 

structures. 

: 

The first application of our system was to road scenes it is worth 

mentioning in that Connercion that outdoor scenes analysis tends to 

be | good source of tex'cure oriented problems. | RBJ ] describes work 

on texture which involved also texture derived from outdoor scenes. 

Though we provide easy hooks for utilizing textures, texture is not 

being used in our current system. 

Page 13 
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SECTION 2 

REGION GROUING - CLUSTERING BY MELTING UEAKEST-BOUNDARY-FIRST 

2.1 OVERVIEU 

This section is a description of the general region growing 

mechanism. The control mechanism of the ueakest-boundary-first 

region grower will be described briefly, while the specific details 

of decision criteria will be described in later sections. Section 3 

will deal with growing regions without direct use of the semantic 

model. Section 4 will show the semantics representation, and the 

following sections will show how we incorporate the model into the 

region growtrs and image interpreter. 

I will start with a brief overview of the system. The system consists 

of a sampling mechanism, region growing subsystem and optional edge 

following. Together they are intended to generate the basis for an 

efficient and reliable image segmentation system. The region growing 

algorithm will generate a sequence of partitions of the pictures and 

will maintain an approximate description of regions, boundaries and 
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OVERVIEU 2.1 

vertices for each partition of the picture observed. The features of 

the regions, boundaries and vertices will be used to make the 

decisions that control the algorithm. The basic step of the region 

groi-ier is to take pairs of regions with a common boundary and merge 

them to generate one bigger region, Uhen using the weakest-boundary- 

first region grower, the decision will be to melt the weakest 

boundary between two regions in the current partition. The 

evaluation of the strength of the boundaries will control the 

algorithm. Successful evaluation of the strength of a boundary will 

be the key to the success of the system. A large portion of the 

thesis surveys options used to compute the strength with and without 

the use of the specific problem knowledge. 

An evaluation of the quality of partitions of the image is needed to 

decide how to terminate the algorithm. This evaluation scheme will 

be used to identify the best partition observed and to restore it on 

termination. The evaluation procedure provides also for an 

alternative region grower which is driven from the model directly 

[ see Subsection G.2 1. The semantics of the model would is used to 

determine the evaluation of the quality of the partitions observed. 

Initially the picture will  be approximated using sampling  to save 

computing time, but  in any stage the option to call  an accurate 
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OVERVIEW 2.1 

tracing routine for the contour line of the regions will be 

availahle. This procedure uiII use the approximate description of 

the regions and boundaries in the current partition to get the 

accurate contour of the existing regions. After application of that 

procedure an accurate shape description ui I I be available. The 

optimal partition is to be passed along for further processing by 

special purpose routines which are determined by the specific task at 

hand. This special purpose routine can make much better use of 

special information about the problem domain which was not 

expressible in terms of the limited structure of the semantics used 

in   the region growing mechanism. 

Prior to the application of the region growing algorithm, the image 

to be processed is covered with many small regions. Uith each 

iteration of the region grower, two regions will be merged to become 

a larger region. It is not desirable to start the process with each 

single grid point as a separate region. There is too much redundancy 

if lie do that. The properties at each point are not reliable enough 

because uf noise.    Furthermore  for practical  application the smallest 
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k. 
2.2 

region that may toe encountered will be composed of very many grid 

points. For these reasons we place sample points over the image grid. 

In our enperiments. placing the sample points at every fifth point 

yielded a reasonable density. Each of the sample points is assumed 

to IM re-esentative of a different region for initialization. Doing 

this ue gained tuo things: first, local operators may be applied 

around each of the sample points to find more accurately the local 

properties (reduce noise), and second, the number of regions is 1/25 

of the number of grid points. 

Ue  start by placing sample points on the picture rectangle. The 

placement of the points is such that they cover the picture in some 

desired density. If  informal ion is available on the picture ue may 

"ant to place the samples so thatthetj uillbe concentratec. near 

edges of regions and less frequent in the center of regions (here 

"regions" means the regions that ue uant to te-minate uith as defined 

Pytheuorld model).  Local operators are applied to determine the 

local structure around each sample point.  This information maybe 

the dominant color, color texture, various histograms, color gradient 

and 3-d local structure  formation, depending on uhat  is available 

and is considered important in the problem domain.  This information 

is stored in a feature vector that is associated «ith the sample 

point.  In the current  imp'ementation it is just the dominant color 
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and light intensity around the sample point. Substantial amount of 

research is still required to develop good local texture operators 

[see Subsection 3.2 for more details]. 

On initialization each sample point is assumed to be representative 

of a different region, resulting in an implied region (area) 

associated uiith each sample point. Take any sample point and call it 

"sp". Then the implied region around "sp" is the intersection of all 

half planes which include "sp" and are defined by the perpendicular 

bisector of the line which connects "sp" and some othsr sample point. 

Practically, we do not need to take all such intersections because of 

the special structure of the placement of sample points [see Figure 

2.11. Between implied regions there are implied boundaries. The 

implied boundary between two sample points, if it exists, is the 

common line segment of their closed implied regions which is on their 

perpendicular bisector. The single segment of an implied boundary 

will be ca'led the basic implied boundary and will stand for two 

adjacent sample points from different regions. Later on, when more 

than one sample point belongs to a single region the implied 

boundaries will be composed of several segments of basic implied 

boundaries. Ue define a contour 1 ine to be the closed path that 

surrounds a region or a hole inside a region. This contour line may 

be composed of several boundaries which generate a closed circular 

path [see Figure 2.2]. 

Page 18 

' 

-  -• "  ■■■ • —   -  



mmm; .   .. ...    . 

INITIALIZATION 2.2 

I 
One point that should be mentioned is the treatment of the limit of 

the field of vision. Consider a point on the extreme end of the 

grid. By our previous definition it would have an unbounded implied 

region. Ue want to fix this case so that it will be treated 

uniformly. An easy way to take care of this case is to have an 

artificial region which will stand for the domain outside the field 

of vision. This region will be called 0. This region has a common 

boundary with all sample points that are on the border of the field 

of vision. This boundary will never be melted and will be used to 

close the contour line around sample points that had an unbounded 

domain associated with them by our previous definition. Now whenever 

we want to check if a region touches the border of the vision fie id 

all we have to do is to look for a common boundary of this rrgion 

with the outside domain (the artificial region). This ..pecial 

boundary provides for contour lines that are always closed paths 

around regions. This simplifies the edge tracing. The existence and 

shape of a common boundary between a region and the outside domain 

are extremely important in recognition of regions. For instance if a 

region touches the top of the vision field it increases its 

probability of being sky in the context of outdoor scenes. The shape 

of these boundaries indicates which of the four sides the region 

touches and the length of each of the boundaries. 
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2.3 UEAKEST-büUNDARY-FIRST REGION GROUER 

The description of the weaKest-boundary-f irst region growing 

algorithm is simplified if we consider the structure of regions and 

boundaries as a graph structure where the nodes are regions and the 

edge? (links) are the boundaries (Figure 2.3). Each link, 

representing a common boundary between two regions, has a value 

associated with it. This value reflects the probability that the two 

regions are of different interpretation in our world model. These 

values are called the boundary strengths. The evaluation of the 

boundary strengths is the responsibility of the control mechanism. By 

means of evaluating the boundary strengths, the control mechanism 

controls the region grower. The successful evaluation of these 

values is the key to the successful processing of pictures by the 

system. 

The basic step of this region grower is to take the weakest boundary 

in the current image segmentation and merge the two regions for which 

this is the common boundary into one bigger region. In the 

corresponding graph structure this meanj collapsing into a single 

node the two nodes joined by the weakest link. The resulting node 

(region) will include all the points of the two regions. The links 

(boundaries) of the new node (region) will be assigned new values 
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(strength evaluation) and tht next iteration mil start  (subject to 

non-term mat ion condition). 

The structure that is created after several collapsing stages is 

demonstrated in Figure 32.2 and in Figure 2.4. Each region is 

composed of one or several sample points. The boundaries between 

regions now are lists of pairs of sample points. Each such pair has 

one point from each of the two regions that the boundary connects. 

These two points are adjacent to each other. The pairs of sample 

points which define a boundary are ordered by the order that the real 

boundary line passes through them. There are two such orders, 

clockwise and counter-clockwise as seen from each of the two regions. 

The contour line is composed of one or more boundaries. Ue maintain 

a circular list for each contour line of a region, which is the list 

of the boundaries as they are encountered along the contour line. 

The maintenance of the above structure is necessary to the 

description of the boundary shape in each stage of the growth 

alrjorithm and for the later accurate contour tracing. No attempt was 

made at this stage to optimize the representation of the boundary and 

it is clear that better encoding and more compact approximations are 

avai I able. 
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2.4 THE REGION r.TLTER 

Uith each unification of tuo regions the data structure needs to be 

updated. The regions themselves are not ordered, so the combined 

region is just the union of the points included in the two subregions 

that compose it. Since the boundary structure is ordered, more 

elaborate updating is needed. The major complexity results from the 

fact that the boundary that was melted can be composcu of several 

discontinuous paths. In such a case the resulting region may not be 

simply connected and hence its boundary Mill be composed of several 

closer! contour lines. Another minor complexity occurs when a third 

region has a common boundary with both unified sub-regions. In this 

case if these two boundaries are continuous then they should be 

combined into one boundary for the new combined region. To cope with 

all possible combinations a special algorithm for updating was 

developed [see Figure 2.5 and Figure 2.B]. 

2.5 THE BOUNDARY STRENGTH LIST 

On each iteration of the weakest-boundary-first region grower we need 

to find the weakest boundary.  To reduce the search time, a  list of 
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the boundaries is maintained. Th.s list is sorted according to the 

strength of the boundaries on initialization of the algorithm. After 

each iteration of the region grower, the values of the strengths of 

boundaries around the new region are evaluated. The boundaries with 

new values are then relocated in the boundary list to maintain the 

proper order (by boundary strengthJ. The updating time usually I« 

reduced when starting the search for the new position of the new 

boundary from the location of the corresponding boundary of the old 

smaller region. It turned out that in many cases the new value is 

about the same as the old one. To utilize this property the strength 

list is doubly linked so that it is easy to float a boundary to its 

appropriate position in the list as determined by its new strength. 

2.8 SOME IMPLEriENTATION DETAILS 

The program relies heavily with LEAP features of SAIL [ SAIL ]. Each 

sample point is an ITEfl (pointer to data structure) which contains 

the local feature vector at that point. The regions are set ITEHs 

which contain all the sample points that belong to that region. 

Associated with e^ch region ITEM is a region feature vector which 

contains properties of that region. This vector is updated whenever 
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the region is merged into one of its adjacent regions. The 

boundaries are lists of pairs of sample points. Each boundary is 

associated with the two regions which define it. The boundary Met is 

ordered so that the pairs of points are ordered in the order of the 

boundary path that passes between them. Since there are two such 

orders there is an indication from which of the two regions the pairs 

are seen ordered in clockwise direction. Uith each boundary is 

associated a boundary feature vector which is updated as the boundary 

cirous. Now for each region and for each of its boundaries we 

indicate which boundary is next when going clockwise along the 

contour line of that region. This is done by the assoc iat i on 

structure. It should be noticed that the boundary may close the 

region and hence follow itself and there may be also several closed 

contour lines for a region when it is not simply connected (has holes 

). 

2.7 STOPPING CRITERIA 

One decision that has to be made is when to stop melting boundaries. 

There are three possible options for doing that. One is to stop when 

the ueakest boundary is stronger  than some threshold.  Another 
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possibilitg is to have a state evaluation and to use a back up 

niech:;r>ism to get to the most promising segmentation (that is the one 

with h.ghest state value) from all p^-titions generated by the region 

growing mechanism on its way to a single region. The third option it 

to find the best interpretation for the scene given the current 

segmentation. If the resulting intei pretation does not interpret any 

two adjacent regions as parts of the same region (in the world model 

sense) then we quit merging (see Subsection G.l). In the current 

implementation the first and the last options are used. 

2.8 EDGE FOLLOWING 

Edge following can be used for refinement and verification of the 

boundary structure between sample points for a given picture 

partition. In such a partition, the implied boundary structure 

generates implied contour lines around each of the implied regions. 

This contour line is an approximat on of the real contour line of the 

region. Each basic implied ooundary is a segment that is located 

along the perpendicular bisector of the two sample points. By edge 

following, we want to replace this implied boundary by a real 

boundary; that is we want to replace it by the actual pairs of grid 
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points which define the boundary. To do that, we scan along the line 

between each pair of sample points which define the basic implied 

boundary ( two adjacent sample points from different regions) to find 

the exact edge point. Since the two sample points belong to 

different regions there must bj a point along the line that connects 

them which is the best real edge between the two regions. Ue can use 

any available edge operators to detect the optimal location for the 

edge. This task is especially easy since we know the distinguishing 

properties between the two regions. Ue repeat this process for all 

pairs of sample points which define the basic implied boundaries. 

Next ue want to connect the edge points that we collected, and to 

find the exact edge curve that pasaes along the boundary. The 

implied boundary structure also includes the linkage between the 

basic implied boundaries. This linkage is the order that the contour 

line passes between the sample points. Our task is to connect the 

pieces of edges that we found to create the whole contour line. Ue 

clo it pairwise for adjacent edge points. (Ue know the adjacency by 

the linkage structure). This is done using edge tracing which is 

relatively easy since we know the properties of each of the two 

regions that define that edge line and we know two edge points that 

we uant to connect with a simple edge line. 

Ue may expect to find some discrepancies between tha implied boundary 
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structure and the real boundary structure. There are tuo sources of 

problems. One problem is the discoverj of new regions when scanning 

the lines between two sample points. This may happen because the 

sampling was not dense enough. The other occurs when two regions that 

were assumed disconnected turn out to be connected by a bottle-neck 

that was missed by the sampling process. Both problems require 

special treatment. In the current implementation we assume such 

cases will not occur. This means we assume a dense enough sampling 

that fine details will not be lost. If special ,jrpose techniques 

were used they would be along the lines of those described in 

Subsection 3.4. In the current implementation this edge following 

is still missing, but it will become essential when more region and 

boundary shape descriptors are added to our system. 
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SECTION 3 

REGION GROUING UITHOUT USING SEHANTICS 

1 

This section more thoroughly describes that part of ihi system which 

is active prior to the incorporation of the semantics into the region 

grower. This portion of the system is intended to be a problem 

reducer. It tries to reduce the complexity of the image from G0000 

points to about 100 regions. The resulting regions are assumed to be 

subparts of the regions with which we want to terminate. That is, we 

assume that only very few and minor false merges occur in this phase, 

and if errors do occur they will be both tolerable, and anticipated 

by the next phases of the system which utilizes the problem semantics 

(e.g the semantic world model is generated by working experimentally 

on real typical images of the problem domain and hence false merges 

occur while training the system and hence stored in its semantic 

base). To minimize the risk of erroneous merges, this region grower 

is stopped with veru conservative stopping criteria. This level is 

more efficient computationally than the run with the semantic model 

because of a simpler decision mechanism. On the other hand, it is 

much less reliable and for that reason it has to be stopped quite 

early, before the decision as to which region to merge becomes 

unreliable in the world model sense. 
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REGION GROWING WITHOUT USING SEMANTICS 3.8 

The aspects of the system that will be described here are: 

1) Placement of sample points. 

2) The local measurements at each sample point. 

3) Evaluation of boundary strength. 

4) Evaluation of a given partition. 

5) The information on regions and boundaries carried with the grower 

a I gor i thm. 

These details are not essential to understand the subsequent sections 

so the reader may skip points that are too technical to be 

interest ing. 

3.1 PLACEMENT OF THE SAMPLE POINTS 

The  initialization of the region growing algorithm  is done by 

placement of the sample points.  Each of these sample points is 
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consiJered on initialization representative of a different region. 

There are two conflicting goals here. On the one hand we want to 

have as few sample points as possible so that the computational load 

will be reduced. On the other hand we want dense sampling so that 

the finer details nf the picture will not be lost. The density of 

the sampling should satisfy the following two conditions: first, from 

each region that we want to terminate with, at least one sample will 

be taken. Second, every "bottle neck" in a region will be sampled, 

meaning that a connected region will not appear disconnected. In many 

but not all classes of scenes ue can find a satitfactory density, 

which is also sparse. 

To ease the computation effort, a fast way of eliminating redundant 

sample points is provided. This will effectively allow us to increase 

the sampling density and still keep the number of samples low. Ue 

assume that two adjacent sample points are in the same region if the 

dlfterences between their property vectors is less than some 

threshold. This implies that a sample point for which the difference 

between its feature vector and feature vectors of all neighboring 

sample points is le'is than that threshold will always be inside a 

region and not on a boundary. Such points are not interesting for us 

and we z^n ignore ♦hem. and connect their neighboring points into one 

region immediately.  This way we reduce the number of samples.  As a 
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result  samples from the center of big homogeneous regions are 

ignored.  In the current system it was found to be effective  to set 

this threshold as .05 of the maximum possiblf- difference between the 

property vectors of two sample points as computed by the histogram of 

lirjht intensity over the grid. Using a higher value caused failures 

Py collapsing  into one region sample points that should belong to 

different  regions.   This sample  point  reduction  is  faster 

computationally  than the region grower. Because this reduction is 

faster  than  the melting procedure  it  allows effectively denser 

sampling.  Most of the simple region growing systems use versions of 

this path-wise connectivity criterion as the major  tool  in their 

region growing a Igorithm.  This clustering mechanism  is extremely 

sensitive to noise and causes severe errors very early.  That  is why 

we stop it with a very conservative stopping criterion.  Ideally with 

a more efficient implementation of the weakes.-boundary-first region 

grower  this stage could be avoided completely. Note that  the 

elimination of points from center of regions is more conservative 

than the path connectivity, because in a sense we demand "wide" path 

connect ivi ty. 

< 

If some prior approximation to the location of boundaries is'given, 

then ue will place the oamples mainly in tht» neighborhood of the 

boundaries. This way with fewer sample points we still get a good 
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rlescription of the regions and boundaries (this uill be very 

effective in multi-picture processing where uie have slowly varying 

pictures). In the case where no prior information was available, the 

most effective initial placement of the sample points is done by 

placing the points so that initially all regions will be equal 

rerjular hexagons. In this case, the smallest region or bottle neck 

detected is twice the radius of the hexagon. The advantage of the 

regular hexagon cover over square or equilateral triangular covers of 

the picture area is the symmetry of its boundary structure. If 

squares or equilateral triangles are used as the basic units of the 

cover, there are pairs of regions that have only a single vertex in 

rommon. These vertices make the two covers based on equilateral 

triangle and on square units ambiguous, because it is not clear 

uhether two regions that have only one common boundary point (vertex) 

in common should be considered adjacent. Ue ignore the single vertex 

boundaries for the rectangle cover. 

If ue chose any of the special structure covers of the plane (like 

the one which is composed of equal squares), the initialization of 

the boundary and region structure becomes trivial, because the 

special ct.'-cture conveys directly the structure of the regions and 

boundaries. Ihe uistance between the sample points will be called 

tie quantization factor, which in the current application is a number 
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hetuoen 5 and 20. This number reflects the quality of the 

description of the shape of the region« and boundaries that we want 

to get. The full size picture frame is a rectangle of 200x390 points 

«^0 uf.1 have 2400 to 153 sample points (depending on the sampling 

density). In simple scenes ( composed of a few relatively homogeneous 

regions ) the use of the initial point reduction reduces the number 

of regions in the denser case to about 580. 

3.2 LOCAL FEATURE DETECTORS 

The information associated with each sample point depends on the 

hardware available. In passive input divices it is the local light 

intensity which reaches the image plane of the videcon at each of the 

grid points. In our case we measure the intensity through three 

filter? (red. green and blue), to get color information. In active 

input devices where the source of light is available (mainly laser 

beams), depth information and 3-d surface orientation are also 

available. (For the capabilities of an active light system see [ 

GJA ]).  laser light for scanning over the scene. 

In the  current application, only  color and  light  intensity 

Page 39 

 ,     —. —. ^ 



LOCAL FEATURES 3.2 

informatiün uas used. The color was used only to find the dominant 

color around the sample point. A problem arises when the sample 

point directly hits an edge between two regions. Dealing effectively 

with such cases will require application of "structure operators". 

These operators will try to find a compact description for the light 

intensity and color as a three valued function in a two dimensional 

neighborhood of the sample point. If we had such structure operators 

they would have recognized the edge. Currently though we do not 

apply them. To reduce the confusion resulting from such a case the 

dominant color is taken to be the most frequent color, not the 

average color. This way, in most cases, the properties of one of the 

regions near that point will be associated with the point. 

More elaboration will be needed to effectively use sensitive input 

devices (more than the current IB gray level input for each color) to 

detect gradual changes and texture. Gradual change can be detected 

easily by approximation of a planar fit to each of the color 

coniponents in some neighborhood of the sample point, instead of just 

finding the dominant color. Detection of edges has been investigated 

quite thoroughly and a few good edge detectors and operators are 

available [ HUEC GRIP ]. Detection of texture is extremely hard, and 

largely an unsolved problem. It is likely that texture and edge 

detection will be tried in cases where the planar fit for  the light 
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intensity is insufficient. Ue anticipate that in that case a 

sequential and conditional application of texture classification 

operators will be called to classifg the texture. One such class of 

operators correlates the local intensity (color) with itself shifted 

in different directions. These operators will detect directionality 

and frequency in the local texture. Another approach is to locally 

partition the picture into small regions (using threshold or local 

clustering) to detect the local shape of the small regions which 

compose the texture. The most powerful system for texture 

recognition known to the author was implemented by t RBJ I, and is 

based on local Fourier analysis. It is probable that sequential 

classification of texture of the same statistical nature as the 

classification of objects for the world model ( see Subsection 7.3 ) 

will be very helpful in texture recognition. There are many other 

local measurements which may prove useful in certain scenes. The 

understanding of which measurements distinguish objects in scenes is 

I central problem in machine perception. A major advantage of the 

system described here is that new operators can be incorporated 

easily as they are developed. 
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STRENGTH 3.3 

BOUNDARY STRENGTH EVALUATION 

The evaluation of the boundary strength depends on the context of the 

scene which is being analyzed. This strength should reflect the 

probability that the boundary is 'real' in the semantic sense. In 

the description that follows we try to present some general 

parameters that can be considered in the evaluation of boundary 

•trangth. None of these schemes uses the world model. Only direct 

use of the boundary properties is utilized. No attempt is made to 

understand what each boundary means in the world model semantics. On 

the other hand the semantics of the world can be used to help 

evaluate the weights of the different criteria used in evaluating the 

boundary strength. Ue will return to this point in the descriptions 

of the semantic boundary evaluation. 

The first factor in evaluating the boundary strength is the 

difference between the values of properties of the sample points at 

each pair along the boundary. A strong boundary will usually be one 

where the differences across it are high and consistent along the 

boundary line. This is quite standard, although no previous work 

known to the author utilizes multi-property differences. All of them 

worked with a single property for evaluating boundary strength. 
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Let (x(i) . y{i) )     be the feature vectors of the pairs of sample 
i-l.N 

points along the boundary. x(i) is the value of the measurements at 

-♦ 

the i-th point on one side and yd) the value of the measurements at 

the point on the other side. 

The average difference in properties along the boundaries will then 

be 

>  (x(i)-y (i))  /N 

In our system ue have a 3-VBC ior associated with each sample point. 

This 3-vector is derived from the three readings of the dominant 

intensity of each color components in a small neighborhood of the 

sample point. If (r,g,b) are the light intensities through the red, 

cjreen and blue filters, then 

v(l)«-r+g+b 

v(2).-(-r+cos(2«n/3)*(g+b))/v(l) 

v(3)«-(sin(2«n/3)*(b-g))/v(l) 
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STRENGTH 3.3 

v(l) is the intensity, v(2) and v(3) are the x.y coordinates  in the 

color plane. 

It is reasonable to assume that in general ue want to give different 

iieights to different components in the feature vector. The values of 

the weights are not obvious. Ue may want to scale each property so 

that the maximum difference will be at most 1, and this is done in 

our current implementation. It may turn out to be useful to reduce 

the neicjht of a property when the variance of the differences of that 

property along the boundary is high. A high variance of a property 

inside each region may also decrease the weight of the differences of 

that property. Ue also tried to give very high weight to the two 

color components as compared to intensity, under the assumption that 

color is a function of the material of the region and hence less 

sensi:iveto Iighting conditions (shadows and orientation), but it 

turned out in those limited experiments not to be of any help. 

In the future when more structure than just the dominant color at 

each sample point will be used, the consistency of the features of 

the tuo regions will be more complicated to evaluate. There will oe 

more involved structure in the properties that will be compared. 

Such a property is, for instance, local variance of the color around 

the point which we want to match. If it is high we mag want to 
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compare distribution structure on the two sides and not just the mean 

or histogram peak. Gradual changes would be detected by the slope of 

the 2-d linear fit to the property in a 2-d neighborhood of the 

point. If such a fit is done, then the inconsistency between the 

fits in the two sample points will be the measurement of the boundary 

strength. Dore elaborate matching evaluation will be neeoed if 

texture detection  in areas around sample points  is computed. 

The  size and shape of the boundary and  the regions should be    used   in 

the  boundary strength evaluation.   In general   the shorter   the boundary 

elative  to    the area of  the    regions defining    it,   the    stronger we 

require   i t   to be. 

In   the  current   implementation  the  following scaling  is used. 

Let: 

 MCU?'2g of  I-st  region)  + sarUsize of 2-nd reaion) 

r 

length of boundary 

then: 

(eci 0) 

tK2    -t-g] where K2<K3 
strength of  boundary - average differences*    K3+a 
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STRENGTH 3.3 
* 

In cases where the sampling is fine enough to reflect the shape of 

the boundary, the strength of a jagged boundary is likely to be 

decreased. This will be especially true when the surfaces of our 

objects have smooth edges. In this case jagged boundaries will 

usually result from some gradual lighting change on a smooth surface. 

The jriggedness is not trivial to compute because of the noise effect 

of the quantization of the picture which results from application of 

the sampling, it can be measured as the local deviation from a 

smooth approximation (like straight line or low order polynomial) 

scaled by the quantization size. This principle was considered in 

[ BF ] to evaluate reliably the boundary strength. Other 

considerations in boundary strength evaluation may involve more shape 

evaluation and broader context. These considerations are not 

incorporated, though they can be used, mainly because they are left 

for the semantic region growers which makes better use of many 

additional properties. 

3.4 BOUNDARY STRENGTH EVALUATION THROUGH EDGE FOLLDUING 

There is another possible approach to the evaluation of  the boundary 

strength.  One could scan the picture frame along the  line segment 
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SCAN 3.4 

connecting the pair of sample points and look for edge structure 

across this  line.  The use of an edge detection operator  lik« the 

Hueckel operator ( HUE I could help to evaluate the probability that 

there is an edge line between the two sample points and that they 

therefore belong to different regions.  This option was used in early 

versions of the system,  it was dropped in favor of denser sampling 

because of the complexity it added to the program structure.  Uhen 

this option is used,  the scan is done once on initialization. 

Scanning is effective mainly for dea-1 ing with gradual  changes and 

reducing the requirement on the density of the initial sampling.  The 

strength of the boundary between two adjacent sample points  is taken 

as the strength of the strongest edge structure which intersects the 

straight line segment connecting the two sample points using some 

edge detector.  In case a new region is detected, a new sample point 

iii I I be placed and a new region will be generated. 

The treatment of a new region discovered by the scan between sample 

points is relatively easy. For the sake of uniform treatment a new 

Mapl« point is taken from the new region. The implied region and 

impled boundaries of the new point are generated, in the same manner 

as for the initial sample points. For pairs of implied regions whose 

common boundary is changed by the new sample point. the boundary 

structure is updated. An intricate case may arise if the new region 
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is very thin and hence a line of some sort.  Then we want to invoke a 

line  following  routine and  avoid disconnecting  the regions. 

Currently there is no treatment of this case in the system.  But it 

should he included if | world model that includes line shapes dike 

characters) were added to the system. It turned out to be ver'j useful 

inimediatehj on creation of the new sample point to check  if its 

boundary strength with neighboring points is  less than  the lowest 

value of current implied boundaries. In this case it  is immediately 

collapsed into the nearest region.  In order to make sure that we do 

not generate too many new sample points there should be a threshold 

that prevents generation of new sample points if the strength of the 

boundary of the new point (region) with one of the two points that 

defined this point is  less than this threshold. This threshold will 

be  set to be greater  than or equal to the value of  the weakest 

existing implied boundary, and will be increased over that  value as 

there are more sample points generated so as to promise termination 

and 5 imp Iic i ty. 

3.5 STATE EVALUATION 

The evaluation of the quality of a partitioning of  thepict picture 
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nithout using the semantics can be done only on the basis of a 

simplicity criterion. TNO such effective decioion criteria are 

•valI able: 

to maximize 

SUIT of  strength of  boundaries 

total number of regions 

or to maxi mi re 

sum over regions of the region's average boundaryi strengths 

total  number of regions 

excluding the outside of the picture and the external boundaries. 

Thpsf.- cimplicity criteria try to minimize the complexity (the number 

of regions) and maximize the confidence (strength of boundary). It 

uas found that in a few experiments that the optimal partition with 

respect to these simplicity criteria was very near to the optimal 

partition in the world model sense. 

it should be mentioned in connection with these quality criteria that 

the strength of the weakest boundary does not necessarily increase as 
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the region grower is carried further. If a mistaken unification 

happens, the differences along the boundary may be inconsistent and 

result in a weaker boundary (recall that the boundary strength is 

computed by using t'ne absolute sum of the differences and not the sum 

of their absolute values along the boundary and scaling them by their 

length relative to the area of the regions defining them). 

These state evaluation functions are not used in the current system. 

This phase of region growing is used as a problem reducer for the 

semantic region grower. Currently we stop the merging by threshold. 

That is, once the weakest boundary is stronger than some threshold we 

quit. The threshold chosen is relatively conservative and was taken 

to be .15 of the maximum possible boundary strength for road scenes 

and 280 regions for the angiograms. We chose a consirvative stooping 

criterion so as to reduce the problem and still keep the risk of 

erroneous region merges low. 

3.6 MAINTENANCE OF REGION AND BOUNOARY PROPERTIES 

Throughout the run of the algorithm the basic pronerties of regions 

and boundaries need to be maintained. The current portion does not 
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make thorough use of  them but the semantics controlled part does. 

Most of the needed features e<cept shape are easy to maintain, mainly 

because the measurements are derived from various  integrations.  On 

initialization each region  is given  its basic color,  size and 

position (the same as the sample point that constitutes  it).  Uhen 

tuo regions are collapsed,  the tuo feature vectors are  just added 

correspondingly and associated with the new region.  This sum is used 

to compute the average of  the property over the region, but we need 

to remember  that the average is not always what we want.   If the 

variance of some property is required, then the num of squares of 

that property is kept and the variance is easily obtainable.  The 

same holds true for the length of the boundaries.   For  the 

differences along the boundary for different color components and 

different directions, the direction of the differences  is im  tant. 

A convention based on the clockwise and counter-clockwise convention 

of the regions and boundaries structure is used to decide whether to 

add or subtract properties of the two growing boundaries.   It should 

be noted also that in the current implementation we have a very rich 

representation of the structure.  Ue do not make any attempt to 

compact the data.  The reason is that this is an experimental system 

uhere we wanted to have maximum convenience of access to information 

uhen needed.  Thus the finer details o' compacting data were 

completely ignored. A substantial saving in compute time and storage 
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requirement is achievable by compact approximation to properties and 

description of regions and boundaries instead of keeping them in the 

raw form that ne are using currently. 

If in addition to features derived from integratione, we have other 

properties, then updating of properties will become more complicated. 

For example '.uch properties are shape descriptors which require 

keeping extreme points in various directions (extrema of a linear 

functional along the boundary path as function of the length) and 

cross section length. 

3.7 FINAL COIiriENTS ON THE NON SEMANTIC REGION GROWER 

Ue can compare this part of our system with other region analysis 

alcjor i the s. First, this algorithm, which uses sampling over the 

rjricl. is substantiaMy more efficient than other algorithms that use 

exhaustive search on the whole picture and treat all grid points. 

Our approach in a sense allows us to concentrate our attention very 

rapidly on the important portions of picture, the boundaries between 

regions. Secondly ue do not collapse regions in random order as long 

as the boundary is weaker than some a given priori  threshold. Ue 
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first merge the globally weakest boundary on the whole picture. This 

m-kes the region grower much more reliable (see illustration A ), and 

enables us to use more sophisticated stopping criteria. 

The major gain resulting from ordering the merges is that doubtful 

merges ni I I occur after obvious merges. The result is very often that 

I long boundary that has a local weak part will not be destroyed, 

since often by performing more obvious merges, the boundary will grow 

to Itfl full length and then the strength computed by the average 

differences will be high. A stopping criterion which is more general 

and uses state evaluation can be applied to stop and back up to an 

optimal state. The optimality can be determined using general 

criteria on the types of regions and their anticipated inter- 

relations or complexity. 

It is possible to keep with each region a binary tree which will 

tr.ace how a region was generated (the pairs of regions whose merge 

generated that region). 'juch a tree can be used further bi, higher 

level processing, either to get finer resolution on parts of the 

regions or to decrease the number of regions by reunification. 

Sonip of the simple region growing heuristics used in the past have 

cjross difficulties. Consider the following slmtjle example. Assume 
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that lie grow regions by melting all boundaries with a value less than 

some threihold independent of order. This is usually done by 

starting with a point and trying to grow around it the region of all 

points which satisfy the following property: there is a path of 

adjacent points with property differences less than some given 

threshold connecting them to the first point. Often the threshold is 

not an effective criterion as shown in the following example: 

1118 8 8 

2 2 2 8 8 8 

3 3 3 8 8 8 

Here we consider a Gx3 grid where the distance between nodes is just 

the absolute difference between the values in the grid points. If we 

riive | threshold of less than 1 it will end with 4 regions but any 

threshold greater than 1 will result in a single region which wi I I be 

the whole grid with an external boundary. On the other hand, our 

techniciue use the weakest boundary first, with the boundary 

evaluation as in eq. 8. The result is that going down from 4 

regions the areas with values 1, 2 and ^ will always be merged first 

before collapsing them into the 8 region ( remember that we also 

count the length of boundary relative to size of region in boundary 

strength evaluation). This means that we have a more reliable 

mechanism to overcome smooth changes where pieces of the boundary are 
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END 3.7 

obscured,  a situation very common in real  pictures where shading 

causes loss of some pieces of edges. 
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4.8 

SECTION 4 

UORLD nOOEL 

4.1 THE STATISTICAL PROBLEM DEFINITION 

The uorld model is statistical  in nature, and in order to define it 

more rigorously we need to define statistically the problem that we 

tM,     In abstract terms ue have Mi]    . the possible meanings of 
i-l.L 

I grid point, where X(i) is the name of the object in the real world 

for which this grid point is part of the image. Assume that we have a 

grid of xCi.j) p0intSi „here „^j, ,, the feature VeCtor 
i-i,N,j-i,n 

of that point ( in our case x,y coordinate and r.g.b of the three 

measured color components). An interpretation of the scene will be 

Ml assignment of some X(i) to each point, that is. identifying image 

points with objects. Our task is to find a good assignment. Ue will 

■adopt the maximum likelihood principle. That is. we want an 

assignment 

I: NKH - X 
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DEFINITION 4.1 

Inhere I(i,j)  is one of the X(k)     which Is assumed to be the 
k-l.L 

meaniny of the (i,j)-th point which has feature vector xCi.j)), such 

that the total joint probability of 

P (x(i,j) ) 
I      i-l.N j-l.M 

is  maxi nn zed over  all   possible  I. 

Unfortunately this probability measure in that space is extremely 

hard to approximate, and even if we had it in terms of this raw 

assignment function, finding the optimal assignment would require a 

horrendous amount of search. Ue are interested in image domains 

nhere there is a variety of changes between images. It may be easy 

to compute some probaLiIities  like 

P (x) 
Mk) 

that is, the probability that the point has property x if it is of 

meaning X(i). However it is extremely difficult to extend this to 

the joint probability of all  features of points  in a scene, since 
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there is a high degree of dependence between properties and meaning 

of different points.  Our attempt is to reduce the dimensionality of 

the possible assignment by grouping points into domains (regions) 

where we constrain all points in the domain to be of the same 

meaning. By this reduction we gain two things: first, the number of 

possible choices is reduced significantly, and secondly we claim that 

it is much easier to express the structure (and hence to approximate 

the joint probability function)  in terms of  the domains and their 

properties.  The problem is  then  transformed into  the problem of 

segmenting the global scene  into regions so that all points  in a 

single region will be of the same meaning,and trying to find maximal 

segments.  That is,  we do not want to be left with two adjacent 

domains of  the same meaning.  In the initialization process, which 

was described in the previous sections, we assumed that adjacent 

points that have about the same local  features are of  the same 

meaning independent of what the meaning is. The clustering process 

was carried out using this assumption to reduce the problem.  However 

to play safe we had to use a very conservative criterion for 

similarity which left us with about 108 regions and more reduction is 

des irable. 
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ASSUHPTION 4.2 

4.2 THE BASIC ASSUHPTION 

In this section we try to represent a probabilistic model with the 

following claims: First, it is a good approximation to the real 

probabilistic structure for many picture domains. Secondly, it may be 

U«*d effectively in reducing the problem by allowing reliable 

clustering which is far more advanced than the one based directly on 

the feature vectors. For region analysis, we define the utility to 

be: 

P(cilobal_interpretation | context.values of measurements) 

This expression actually stands for 

PUII.JI ) x P   (1) / P      ( [x(i.j)) ) 
I      i-l,N j-l.fl     a priori  a priori i-l,N.j-l,n 

uhere x(i,j) are all the measurements in all points and I(i,j) is the 

meaning assigned to point (i.j). which will be its interpretation. 

The context here means the underlying probability space of the 

picture domain, which we collect experimentally (see section 7 on 

learning). The probability space is defined for each problem domain 

by the variations in the scenes that are in that problem domain. Ue 
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Mill keep the concli t ionali ty on context to remind the reader of the 

special probability space uhich is problem dependent, and perhaps 

also variable. He should also note that our discussion is immediately 

extendable to more complex utility functions than the linear utility 

uhich   is   identical   in  this case  to  the maximum   likelihood principle. 

An     interpretation    divides  the     image     into regions    and    attaches  a 

meanincj  to    each region.      One choice    of   the    overall   interpretation 

evaluation      would      be      attained      by      considering      each      region 

independently.     If  for a given partition of  the   image   into regions  we 

have R(i) regions,   then  the   interpretation assigns     label   INT(i) 
i-l.N 

to  region R(i).     The values of  INT(i)   will  be sky,   grass,   road,   etc., 

depending    on    the    context and    goals.       If    we    assume   independence 

between region  features,   we want   to maximize  the expression 

JK   PI R(i)   is  INT(i)   |  context,values of measurements on R(i)   ] 
rl(i) 

over all partitions of the image into regions and assignments of 

label? to regions. This is quite conventional so far and is, in 

fact, too simple for our purposes. Ue want to account for two 

additional considerations. First we must use the mcdel to get a good 

seumentation of   the   image    into regions.     For example,   we    might  want 
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to merrje green, yellow and loroun patches to create the whole area 

that we call grass. Secondly we want to use additional semantic 

constraints (like the grass is below the sky) to influence the total 

probability that an analysis of the scene is correct. 

In an attempt to enrich the semantic structure to support more of the 

problem knowledge and to provide for a control iiechanism on the 

region growing algorithm, the semantic structure was allowed to have 

• Iso a "first order structure". In addinon to the properties of 

each individual region, we have, for each pair of adjacent regions of 

some interpretation, expected relative properties and some expected 

features of their common boundary line. For instance, if we have two 

adjacent regions, one of which is named "sky" and the other "hill", 

then we expect that the sky is above the hill, is a brighter blue 

than the hills, and that the boundary is usually a more or less 

horizontal, smooth line. The relative properties are usually more 

siqnificant than the absolute properties since they are less 

vensitive to variation between pictures. This semantic model is too 

limited to describe all that is known of a scene, but many classes of 

scenes can be segmented properly with first order methods. The model 

is limited to first order to avoid the combinatorial explosion in the 

number of terms that have to be considered. 
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Remember  that we want to get a partition of  the  input and 

interpretation for the regions (segments) and boundaries so as to 

maximize the likelihood of having the right interpretation.  Let R(i) 

he the i-th region, B(i,j) the boundary between region R(i)  and R(j) 

(if it exists) and the laoel of Rd) be INT(i).  Then with our first 

order assumption, the expression that we want to maximize is: 

eq. 1 

P[    global     interpretation     |  values of measurements ]   - 

jt PI R(i)   is INT(i)   |   values of measurements on R'i)   ) 
R(i) 

*     J L        P[ B(i,j)   is between INT(i)   and  INT(j) 
B(i,j) 

B(i,j)'s      measurements] 

The use of eq. 1 represents more than just our belief that 

properties of individual regions and boundaries will suffice for our 

semantics. It also entails an assumption that the probability can be 

factored into the product above. This amounts to assuming that the 

probabilities of interpretations of each region (boundary) are 

dependent on the local properties of the individual region (boundary) 

and are independent of all otner measurements. The interpretations of 

regions and boundaries are    tied only by  the    consistency constraint. 
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that is. a boundary B'i.j) which is the boundarg between R(i) and 

R(j) must be evaluated as a boundary between INT(i) and INT(j), where 

R(i) is labeled INT(i) and R(j) is labeled INT(j). For example, if 

INT(i) is "sky" and INKj) is "hill", the evaluation of the common 

boundary of R(i) and R(j) will include factors involving the expected 

direction, smoothness, etc. of a boundary betwen sky and hill. These 

factors are assumed to be independent of the particular color etc. of 

the sky and hill. This assumption that we can find local properties 

for regions that will be independent of both the relative properties 

of the regions and the boundari»«!' properties is essential in making 

our approach feasible. Assuming independence, we do not need to 

consider all cross combinations of the two classes of features. For 

instance if we have sky that may be cloudy or bright then we will use 

boundary properties of the sky with the hill which are independent of 

the particular type of sky. However, if such properties are 

insufficient to classify the sky boundaries, we will have to use two 

separate objects cloudy sky and bright sky each as separate possible 

interpretations. If the independence assumption seems to be 

unreasonable, consider the following argument: 
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. M| i. 

P [ interpretation | values of meat'irement.context ] = 

P[ values of measurements | interpretation,  context] 

*P(interpretation a priori ] context) 

/Plvalues of measurements I context) 

Not. 

P[ values of measurennnti on R(i) | R(i) is INT(i), context ] 

and 

PI values of measurements on B (i,j) | R(i) is INT(i) and R(j) is 

INT(j), context 1 

arc plnusioUj considered independent of each other. A similar 

arcjument can be used for the factorization of the other two terms in 

the expression on the right of eq 1. 
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4.3 THE TASK OF THE UORLD HODEL 

For | yiven utility function (in our case the maximum likelihood eq. 

1 ) there are standard techniques in decision theory for finding the 

maximum utility. Unfortunately, the general techniques are too slow 

and much of our effort has gone into developing algorithms for 

efficiently computing an approximately optimal partition. The region 

cirouing algorithm starts with many small regions, and on each 

iteration, merges two adjacent regions (regions with a common 

boundary). The two basic decisions are which pair of regions to 

merge on each iteration and when to stop the algorithm. These two 

decisions can be controlled directly by the limited probabilistic 

semantic world model that we have. In general, on each iteration of 

the weakest boundary-first region growing, the pair of regions whose 

common boundary is the weakest in the current image partition will be 

merged. Hence the control of the region growing algorithm is by 

•valuation of the boundary strength. Ue will show how our semantic 

reprpscntation can be used directly to compute the boundary strength. 

Alternatively, we can grow regions based directly on assignment 

procedures (see Subsection 6,21. 

The second task of the semantics is to produce the stopping 

criterion.  In our case we want to maximize: 
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P( interpretation | measurement V«IUM, context ]. 

Ideally.  the optimal  partit^n «ill be the one that has  the 

interpretation uhich maximizes this  likelihood estimate overall 

partitions and all possible interpretations of partitions.   In order 

to have an effective uay to determine that probabi I i ty. ue need a 

relatively fast uay to compute or estimate for a given partition the 

value of its optimal inte.pretation.  In the next sect ion,  we wi II 

describe relatively fast methods for computing upper and lower bounds 

on the optimal value of the probability of a given partition.  These 

hounds will be used as follows: The algorithm wiI I  collapse regions, 

and generate a sequence of  image partitions.  For each partition 

generated.   the bounds  on the  possible value  of  the best 

interpretation will  be evaluated. Then,  when the region col lapsing 

has been carried too far (as observed by a strong dec I ine of the 

possible state value) the system will back-up to the most promising 

partitions observed while growing the regions (as indicated by the 

lower and upper bounds estimates of the quality of  the partition 

observed).  Next we will  search for the best interpretation  for the 

partitions observed whose bounds were high enough to make it possible 

that they are the best partitions observed.  The current algorithm 

nill  simply choose the oest of these,  but more sophisticated 

proceilures can be used if necessary. 
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It  turned out that  maxlmirlng the utility (eq.  1)  for  n given 

partition frequently yields the best global  interpretation.  However 

to compare different partitions ue need some modifications  that are 

not available in our current implementation.  The major modification 

required is  teaching the system about properties of  false merges, 

th.^t i«, what are the properties of a region resulting from merging 

tiio rerjions that should not be merged. In the current implementation 

the system is taught on false boundaries (that is. boundaries between 

sub-regions of the same terminal region like a boundary between part 

of | hill and anotKer part of a hill).  When evaluating the quality 

of i partition we should not allow any region to be interpreted as a 

merge of two regions of different meaning . and no boundary should be 

interpreted as a boundary between tuo regions of the same meaning. 

Cut rent Iy we use a different approach.  Ue allow false boundaries in 

the interpretation.  If any of the bour.daries is interpreted as false 

for the best interpretation found for the current structure,  then we 

continue merging.  Otherwise we stop.  The assignment  procedure used 

it described in Subsection 6.1. 

4.4 EXTENSIONS OF IIOOEL TO 3-D 
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The simplified structure of first cder relations between objects is 

just an approxin? ion of the real world. It is clear that more 

involved relations between regions and boundaries hold. One group of 

such relations is the relation whose terms are the regions and 

boundaries meeting at a vertex. These relations were found to be key 

relations in analyzing plane surfaced objects [ UAL GG I, mainly, as 

constraints on the 3-d structure of the surfaces and boundaries on 

that vertex. If 3-d structure analysis wore added to the mode, then 

the vertices would be essential. In this case we would have three 

cl^sse^. of objects: regions, boundaries between regions, and vertices 

(intersections of several boundary lines). For each class of objects 

each object can take one of a few possible meanings which will be its 

i nterpretat i on. 

The interpretation for a region will be the name of the 3-d surface 

for uhich the region is part of the image. (We say part to provide 

for partial occlusions or for the early stages of the region growing 

alcjor i thm, uhen the regions are only portions of what they should 

be ). Some such interpretations are; hill, road, horizontal face of 

cube, or the x-ray image of a rib. In addition to naming regions, 

some assumption about their 3-d structure will be made (like 

orientation, distance, etc.). 
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The boundaries will be named as boundaries between two regions of 

some meaning e.g the boundary between sky and hill. In addition, 

each boundary will have its own interpretation, which is the 3-d 

structure associated with it. If a boundary is the common boundary of 

regions X and Y then it may happen thav: 

1) X occludes Y. 

2) Y occludes X. 

3) X and Y create a convex corner. 

4) X and Y create a concave corner. 

(concave or convex relative to the included 

sol id volume ) 

5) X and Y surfaces are smoothly continuous. 

(There may be other more complex 3-d structures which we will ignore 

currently). 

Vertices are the intersections of several boundary lines. The 

vertices were found to be extremely important in processing scenes of 

planar surface objects. Their main use was to constrain the 

geometrical structure associated with the boundaries. In scenes of 

curved surface objects their role may dimiiish, but it seems that 

they are  going  to  be an  important   tool.   In  our  current 
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interpretation they are not used, mainly because ue are not trying to 

solve explicitly for the 3-d structure. An important extension of 

the current system would cope with the 3-d structure achievable 

throuyh the use of the vertex and boundary 3-d structure. 

In addition to being potentially useful in 3-d analysis, vertex 

properties may turn out to be useful for adding edge following 

information to the region grower. That is, we can check to what 

extent the regions and boundaries meeting at the vertex continue each 

other. Hence vertex properties may aid in boundary strength 

evaluation and the interpretation procedures. 

4.5 EXTENSION OF MODEL TO INCLUDE GLOBAL CONTEXT PARAHETERS 

One major deficiencj of our system is the lack of global pai ameters 

uhich are changeable as information is collected. One such parameter 

could be the domain from which the current image is drawn. That is 

having the system also define the class of pictures from which the 

current image was drawn. For instance interpreting a region as a 

telephone or part of telephone will increase the probability that we 

have "m indoor scene, while interpreting a region as a tree  (or part 
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of tree) increases the probability that the observed scene is an out- 

door imarie. It is likely that such capabilities can be added and tied 

easily to the tree search for optimal assignment as additional 

variables that are updated on each assignment of meaning to a region 

(see Subsection B.l). Other parameters of this nature are 

orientation and position of the camera which observed the image. 

These parameters may scale all the features to normalize to standard 

ObMrvw orientation. In general when these parameters are used the 

rontext parameters will je additional variables that m will want to 

use In optimizing. 

4.6 EXTENDED FIRST ORDER 

The relations between regions that the current system observes are 

relations between pairs of adjacent regions. We imy extend this to 

relations between any pair of regions. All the current structure and 

algorithms will remain valid uith minor modification, but the 

romhinatorics will  grow prohibitively. If before we had,  for N 

2 
regions, approximat.-ly 4xN relations,  now we ui I I have N relations 

to he co  idereel in the various algorithms.  There are ways to reduce 

the number of relafons by restricting  the classes of  relations of 
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non adjacent regions. For instance, we might allou on'y relations 

betueen non-adjacent regions of specific meaning or of special 

relative  properties. 
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SECTION b 

UEAKEST-BOUNDARY-FIRST REGION GROUEr"' BASED ON SEnANTlCS 

5.1   SEHANTICS BOUNDARY STRENGTH EVALUATION 

Ue -eturn heif' to the description of the system. The initialization 

level-, iiero used to reduce the problem to about 180 regions. Our 

next step is to try to evaluate the boundary strength based on the 

MOrld model. This part of the algorithm first computes additional 

prnperties (like shape) of the regions and bou.daries resulting from 

the initialisation. It then assigns probabilities to the alternative 

interpretations of  the regions,   i.e.     computes 

PC R(II    is X   |   values of measurement on R(i)   ]. 

Thp boundary strength may be evaluated by two related methods: 1) The 

probability that the boundary is a real boundary (a boundary between 

rüff«?i'.nt objects in our semantic world model), and 2) the change in 

♦hf value (probability of correctness) of the interpretation as a 

result   of   eliimndting   the boundary.     Ue will   describe here     the   first 
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of these uhlch is the one currently used for the weakest boundary 

meltec' first region grower. The second method has some advantages 

and will he discussed below. 

Ue approximate *he probability of the boundary to be real as follows. 

The estimate of the probability that the boundary B(i.j) which is 

hotuHPo R(i) and R(|> should not be there (false boundary), is : 

false  Xc int 

P[ B(i,j) is a boundary between two subregions of X | 

measurement  values on u(i,j) ] 

* P[ R(i) is X I measurement values on R(i) ] 

* Pi R(j) is X | measurement  values on R(j) ]. 
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SEriANTICS HOUNDARY STRENGTH EVALUATION 5.1 

The estimate of   the probability  that  boundary B(i,j)   is real   is: 

p    - £ 
real   xTTxiY 

P[ B(i,j)  is a boundary betueen X and Y | 

measurement values on B(i,j) ] 

* P[ R(i)is X | measurement values on R(i) ] 

* P[ R(j) is Y | measurements' values on R(j) |a 

Thi?. is the Bayesian probability (which is in our case the utility) 

that, given the properties of the boundary and two regions defining 

it, the boundary is a boundary between sub-parts of images of 

■ I i f terent objects. 

The strength of the boundary is then computed to be 

__tVejJ  

Preal+Pfalse 

( f'real+Pfalse may be different from 1 since the independency 

ass'imption   is only approximation of   the reality  ). 
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SEHANTIC STOPPING CRITERIA 5.2 

5.2 SEMANTIC STOPPING CRITERIA 

Ue My apply three possible stopping criteria. The simplest one is 

the threshold stopping criterion, that is once the strength of the 

ueakest boundary in the segmentation is above I certain threshold we 

ciuit merging. The second stopping criterion is to look for a good 

interpretation for the current segmentation and if there is no 

boundary iihich is interpreted as a false boundary then quit merging, 

othernise continue merging (see Subsection G.l for the assignment 

algorithm ). Alternatively we can use the state evaluation for 

backup and hence avoid usinrj a stopping criterion. That is, back up 

to the segmentation with the highest state value observed while the 

region grower is working. The current interpretation provides for 

utiliring the first two options, or a combination of the two. 

Page 7B 



6.8 

SECTION G 

STATE EVALUATION FOR A GIVEN IMAGE SEGHENTATION 

Stnte eva'nation is required foi- effectively recognizinc) the most 

proMiting state of image ■3egmr>ntat ion. Evaluating an image partition 

will ■.ilso involve a search for the best interpretation for all 

region* simultaneously, and hence will effectively provide a nay for 

really understanding the scene. Currently, we use the state 

evaluation only as a procedure to assign meaning to all regions (and 

hence hound.?'-1 es). The assignment procedure is used to verify that 

the system really understands the segmented image, and to provide for 

a stopping criterion for the region grower. The difference in state 

value could also be used in region merging as criterion for melting 

bounderies« though it is not being used this way in the current 

imp Iementat i on. 

6.1 INTERPRETATION 0^ THE SCENE - LOUER BOUND EVALUATION 

A  IOIMT hound on the value of an image partition is computed by 

actually finding a good global interpretation using a simple fast 
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■"fvinm,, aMignaml .ilttorith». Hrirtlu, ne |«k« ihr te^i^n ».r IH.J»*»« 

conficitfnc« inttrprutAtion and assign to it its most probable 

int. t |.. ft.it ion. Next, using the boundary features of the newly 

at» igiwd region, Iho probabi I iti«t of different interpretat ions of 

•di«C«n< rerjions of the neuly interpreted region is updated. Then 

the region of hirjhest confidence from all un-interpreted regions is 

assigned, etc. This is essentially a depth first search of the \ ee 

of region interpretations and yields a value for the partition which 

is the desired lower bound. Extending this search to a full tree 

secirrh would yield the optimal interpretation. More details on the 

sequential assignment process are given below. 

Recall that we want to approximate the maximum possible value of the 

expression 

ec| 1 

n 
Rll) 

PI Rd) is INT(i) | values of measurements on R(i) ] * 

*/(. PI boundary B(k,l) between R(k.) and R(l) is a boundaru 
B(k, I) 

between INT(k) and 1NT(1) | B(k,l) features] 
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I 
over  .311   possible values of   INT(,)   for a given picture partition. 

The irsiynment ilgorithm that we use to estimate the best possible 

asMrjnment of IfJT (t) for all R(i) for a given image partition is as 

folIons: 

[ 1 1 Compute for each region the ratio (based just on local 

measurements of the region) between the most likely 

interpretation and the next mott likely interpretation. This 

ratio Mill  be called the CONFKREG).  Let xl be such that 

pi R(i)   is xl   |   values of  measurements on R(i)   ] 

is maximized  for R and   let  x2 be such  that 

P[ Rii)   is  x2  |   values of  measurements on R(i)   ] 

is   the  next  highest.   Then 

ronf i (R(iI)=P(R(i)   is xl   I   measurements of R(i)   ) 
P[ R(i)   is x2   |   measurements of R(i)   ] 

[  2  )   Sort   the regions by  their  confidence ratio. 
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i 3 1 Assign the region with highes-, confidence (the one with highest 

ratio) its most likely interpretation. 

[ A ] Update prohabi lities for various interpretations of regions 

that are not currently assigned meaning, assuming that the last 

assignment is true. Let the region assigned most recently be 

R(l) and its interpretation be INT(l). Now if R(i) has 

boundary B(l.i) witn R(l), then for any interpretation x of 

R(i) in evaluating eq 1 above, there will be a term of the form 

PI R(i) is x | values of measurtment on R(i) ] 

from the first product and one of the form 

PI B(l.i) is boundary between INT(l) and x | B(i,i)'s features } 

from the second product. Since both terms have only one 

variable x now, a better approximation of the probability of 

R(i) being x, assuming that R(l) is INT(l), is 

Pnew[ R(i)  i E x 1 = PoId[ R (i)  i s x ] * « 

P[ B(l,i) is a boundary between x and INT(i) | 

B(l.\)'s  features 1 
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Thus lie use the neu information to find updated probabilities 

for the different possible assiynments for R(i), by counting 

the newly interpreted region R(l). 

Ue do that updating to all possible interpretations for all 

ndj-icent regions of R(l). 

I 5 ) Compute the neu confidence ratio and sort the regions by the 

new confidence ratios. 

[ 6 ] I f any region is still unassigned goto I 3 ) else exit. 

This process of asfigning interpretations iteratively provides a good 

guese  toout  the possible best  interpretation,  but  it  does not 

guarant«« the total maximization of our product.  Ue can extend the 

ci rent algonthn. into a full tree search ( undoing some assignments 

and trying alternative ones )  to get the best  interpretation.  This 

in II be a depth first search in the tree of all possible assignments. 

Each node  in  the  tree mil  stand  'or  the assignment  of  an 

interpretation to a region. In all sons of such a node the assignment 

done in that node mil be assuned to be true. The terminal nodes will 

Stand for  a totally interpreted scene.  For efficiency purposes we 

an use various pruning and tree search techniques [ NILSSON ch 3 ] 
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• 

to rvduc« the numhpr of toinunoi node;* neolod to Ut ohx .1 vn.l to 

secure optimal ity. Our current •IgorttlW is the portion ot clöpth 

first tree search of the aMign—n< tree up to the point where ue get 

to th.? fiist terminal node (first cjlooai assignment). 

One f.houlci also note that the same sequential assignment and 

extension into tree search can be applied to the extended first order 

uorld model described, uhere we allow relatio' I between any two 

regions (not ^essarily adjacent) if M« continue to assume 

independence. The only difference is tlvt »he probabi I i t ies and 

confi.ience ratio of not only the adjacem regions of the newly 

interpreted region, but of all elated regions, will have to be 

updated. 

Uorkinfj on extended models, where relations involving more then two 

variable assignments exist, will cause only minor changes. Uhenever a 

region is interpreted, all the relations in which it appears will be 

reduced by one degree. That is. an n-ary relation Mill become an n-1 

-ary relation. If there is an n-1 -ary relation already existing 

with the same variables, the two will be united (by multiplication). 

Except for that difference, everything will stay the same. 
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6.2 REGION GROUING BASED ON ASSIGNMENT 

UP use the assignment procedure described in the last section as a 

r-prnon grower by takmg all pairs of adjacent regions thatuere 

issi inpd the same meaning and merging them. To avoid false merging, 

ue consider all regions which were assigned meaning after the first 

.issitmment of a meaning to a region uith low confidence level 

meaningless and hence not mergeable into other regions. This 

approach may be extended by adding into the meaning assignment 

algorithm another step I 3.5 ). 

I 3.S I If any adjacent region of the newly interpreted region is 

already assiyned a meaning identical with the meaning assigned 

to the newly interpreted region, then merge the two together. 

Undo the effect, of the two small regions on their neighbors 

interpretations. From this point on. the unified region will 

be considered m updating probabi I ities of other, not yet 

interpreted regions. 

Ue con use the two exten'ions ( merging while assigning meaning, and 

full depth first  tree search) together.   This will generate a very 

leliahle  meaning assignment  concurrent  with a  region growing 

precedura which has backup capabilities.  It will,  however, be 

r elat1veIy slow. 
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G.3 UPPER BOUND FOR STATE VALUE 

Tht upper Pound could be computed by relaxing the consistency 

constraint. This condition means that a boundary between two regions 

of kncwn interpretation has to be counted in as a boundary between 

those 'wo mlerpretations. We could relax this condition by breaking 

the product (eq.l) into local sub-produc .s and finding the best local 

interpretation for the terms involved in this subprcduct. Ue would 

take the best possible value for edch sub-product separately, and 

multiply them, with proper scaling of common terms. This would 

result in an upper bound on the value of the best global 

interpretation. For example such relaxation is to consider all 

reyions and boundaries independently and to assign for each the best 

possible interpretation considering only its owr. properties. The 

product of all these probabilities is an upper bound on the value of 

pq 1. It is this sort of estimate which could be used to approximate 

the single step improvement in the second method of boundary 

fv.i I u-it ion mentioned above. An exact computation of the change in 

interpretation value would be too time consuming. Ue do not yet know 

whether this boundary stiength computation will be better than the 

one described in subsection G.l. 

The  local  upper bound estimation may be used also to get more 
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r«liabi« evaluation of ti.e Mining »f a region, by con^cler inci also 

it« neighbors in evaluating the probabilities of different 

lnt«rpr«t«tioni for that region. This is analogous to various graph 

iMMWphiM algorithms, which use deeper structure around a node for 

finer  node  type classification. 
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SECTION 7 

THE PROBABILITY SYSTEh IMPLEnENTATlON 

7.1 GENERAL CONSIDERATION 

Up to now ue were dealing uith our probabilities in abstract terms 

Mlthout worrying about how to get these probabilities, or which 

■••»urMMntf (feati.ires) to consider. This problem is actually one 

thru appears generally in pattern recognition problems and decision 

anaiytiti The general problem is to try to develop a classification 

system for the objects which will be able to indicate often and with 

hicih probability the real meaning of the object. This section 

describes the structure of the probability model implementation in 

general terms. The next section describes the specific measurements 

applied to our two classes of objects: regions and boundaries. 

The thing that makes our case so^iewhac special is the fact that the 

probabilities are dependent upon themselves. In the region grower 

alfiorithms the decision as to which pair of regions to merge is based 

on the probabi I'ir t ic world model.  Ue are working with probabilities 
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of events protluced by the algorithm (remember that 

l>l Interpretation | measurement ) means the probability that an 

i'hject uith those measureinents ill 11 be proiiuced by the region nrower 

algorittw as par t of an object of that interpretation). For that 

reason ue should be careful about generating "steady state" 

probabilities, in practice the recursive effect uas ignored uith the 

assumption that the model will be stabilized after a feu learning 

cycles. HoMPvpr, thl«; »llael should be modeled theoreticallu to see 

the effect of the recursive relation. 

Another difficulty is the effect of the state of the algorithm. There 

»re cjooci reasons to assume that the probabilities of occurrences of 

events depend on the state of the algorithm. In the early stages of 

thn sigoritha there mil be quite a few small regions which are 

portions of the regions with which we want to terminate. In an 

advanced state of the algorithm most of the regions will be bigger 

and near the whole terminating region. For this reason it is 

desirable to break the model into sub-models, each of them applied in 

different stages of the algorithm. An indicator for the state of the 

airjorithm is the number of regions. In our practical implementation 

the process was broken mto only two phases: the initialization, 

where no attempt to assign meaning was done, and the second portion 

which exploited the world model.  In the initialization we used only 
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GENERAL CONSIDERATION 7.1 

a uniformly applied procedure for boundary strength evaluatirn 

[section 3). In the second portion, the probability model is used, 

and all the probabilities are counted only over that portion of the 

region grower. 

The system has to provide for experimental collecting of the 

probabilities. Ue need to collect the probabilities of measurements 

<?xperimen tally. It turned out that in most cases we did not have a 

good a priori idea of the distribution of the measurements and ♦he 

program KM to learn them experimentally. Apparently, in most cases 

our conscious knowledge of the visual world provides only a very 

rough idea of the distribution of measurements. 

7.2 THE PROBABILITY APPROXinATION TECHNIQUE 

Al present we use a simple form of learning in which th'3 bCtRputof 

only helps in updating the probabiIity estimates inside a given 

classification scheme. This is a version of the traditional non- 

paramet.-ic adjustment of the probability density function. In the 

futur«? we intend to use a more advanced learning p.iase in which the 

prociram will keep a complete historical list of objects observed in 
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thi? past along Mtth their real interpretations,  and will use  it to 

improve the existing classification scheme.   In both cases the 

learninp will  be  supervised (since  the  intended meaning  of the 

troini'-.g objects will be given manually). 

The probabilistic Model  that we have is as follows:  we have 

c< (i)  il.N possible parameters (meaning of the object).  Picking an 

obipct randomly, it will be of type a(i) with a priori probability 

P       (i).  He .^re given a set X(j)  j»l,M of  random variables 
a pr i or i 

-» 
which are our measurements.  Ue try to estimate P   ( X )  (that is 

a(i) 

-» 
the probability that an object of type a(i) will have properties X ) 

•* 
Ue  do that by estimating P  [S] where S is a subset of X space (the 

a (i) 

features space).  Once these two terms are available (approximated) 

ue can compute the Bayesian probability (likelihood) that ar unknown 

object whose measurements fell into S is drawn from ad) as; 

P [SI *P (i) 
c< (i) a pr I or i 

JL     P    18 ]*P (j) 
j a(j) a pr i or i 
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TECHNIQUE 7.2 

Ue use seriuential classification estimates to generate a good cell 

structure. Our task is to estimate the joint probability of the 

random variables in this space. This is done by breaking the random 

variable space into cells S(i) (not necessarily Cartesian) and 

assuming that the densities (of each of the probability density 

functinns) are uniform on the subcell. Using training runs, we count 

the number of objects of each meaning whose measurements fall into a 

cell. This gives us an effective way of estimating the Bayesian 

probability (likelihood) that an object is of some meaning if its 

MMWMtntt fell into a cell. This estimate is the standard 

Bayesian probability estimate and in our case is 

p(Obj«et is c<(i) | measurements fall into the cell)» 

// of objects of meaninci c<(i) whose measurements fell into that cell 

total (t  of objects observed whose measurements fe'l into that cell 

Our task is to break the random variable space (that is the space of 

■TII possible cDmbinations of measurements) into cells that will 

enoble us tc get an effective classification. That is, given that the 

values of the measurements of an object fall into some cell, we 

frequently want to have a high probability estimate for  the real 
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TECHNIQUE 7.2 

« 

meaning of the object. Given such a fixed partition of the random 

variable space into cells, learning the probabilities of different 

interpretations of objects whose measurement values fall into a cell 

Mill be done automatically. This is done by simply keeping, for each 

cell and for each possibie interpretation, the count of hoM many 

minies in the past the value of the measurements of objects of that 

interpretation fell into this cell. The real meaning of the objects 

is indicated manually (supervised learning), and the learning is 

applied for both regions and boundaries. 

7.3 THE CLASSIFICATION TREE 

Thi?. brings us to the classification tree structure which tries to 

generate a cell structure with as few cells as possible while 

attaining a good classification among the possible interpretations. 

It i? critical to keep the number of cells down. Otherwise the whole 

approach becomes impractical. For this purpose we utilize an 

augmented decision tree whose leaves correspond to the cells into 

uhich we broke the space of all possible combinations of 

measurements. This structure, which is a version of sequential 

classification, enables us to treat in a special way special sub- 
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spaces and hence to apply very special-purpose classifying procedures 

uhpn necessary. The option to use an augmented tree allows us also to 

utilize, if known, the independency of some measurements and thus 

reduce the number of terminal nodec. 

The classification tree is quite standard. It corresponds to 

Eequential application of measuremonts. In each call the current 

me^surenient called depends on the values returned by the previous 

nie^snrenient. This way we may apply very specialized measurements if 

necessary to classify objects, and still keep the classification 

inexpensive since the special measurements will be used only when 

needed, as indicated by result? of already evaluated measurements. 

By calling only on very effective features the number of terminal 

nodes is minimized, and this way we still have an effective way of 

computing the probabilities (keeping the counts for each terminal 

node). 

The tree structure is as follows. There are three types of nodes: 

terminal nodes, parallel branch nodes and function call nodes. A 

teiminal node stands for a subspace of the random variable space. 

Uith each terminal node we keep counters of how many times in the 

past the measurements of objects of some interpretation fell into 

this subspace.  A function call  has an integer  function associated 
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uith it.  This function can return a numöer from 1 to n where n is 

the number of sons of that node. This function is a function of the 

e.asurements of the object. Each of the sons corresponds to part of 

the subspace associated uith tne father node which includes all 

points of the father's subspace for which the function returns that 

alue. That is, If f function has n values we break the subspace 

OSTOC i^ted with the node into n subspaces. one for each possible 

nncwer. Obviously the root of the tree has the whole space 

as^nciated with it (all possible combinations of measurements). Ue 

• Mow also for branch nodes where we allow several independent 

branches to propagate from then 01 in parallel, and the value 

propagated from that node back up will be the product of each of the 

son-? multiplipd. and scaled to one (see below). The parallel branch 

nodes were allowed in order to reduce the number of terminal nodes 

when it is known that some features may be treated independently. For 

instance, we may want to treat color Matures independently from 

sh.npe features of a region. Suppose that the color feature space was 

broken into n cells (equivalent to having n terminal nodes for 

classification based only on color), and suppose that the shape 

features give us m terminals. Then, treating them without assuming 

independence, if we consider all possible combinations, there will be 

mm terminals. Treating them assuming independence will produce n+m 

♦enninal nodes. 
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TREE 7.3 

7.A PROBABILITY COMPUTATION 

Computing the probability vector (the probability for each 

interpretation) for a given object for a fixed tree structure is done 

hy I recursive procedure described below. In the description the 

value returned is always a vector of all the probabilities of each 

interpretation for that object. All these values will be non- 

negative. By scaling such a vector to one we mean that we sum all 

those non-negative numbers and divide each of the numbers by the sum 

so the new sum will be one. The product (division) of two such 

vectors means here the pointuise multiplication (division) of the 

elements of the vectors which results in s  vector and not the scalar 

-< 
product. P       is the vector which for each interpretation has 

a pr i or i 

the probability that an object picked at random will be of that 

i nterprMat i on. 

The  probability vector  returned   is: 
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ansuer^. (top_nocle)*P 
a priori 

scaled to one. 

'P is    the vector    resulting from scaling    to one    the vector 
I  pr i o.~ i 

Nhose   i-th element   is  the  total  # of objects of   ti^pe   i   observed). 

f(node)* 

if node is a terminal then the returned vector is: 

( c;unt of occurences of obil in that node 

'otal number of counts of objl 

count of occurences of obi2 in that node 

total number of counts  of obj2 

counts of occurences of ob in in that node 

total number of counts of objn ) 
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scaled to one. 

If the node is a function call then 

f(node)"f(i-th son of node) 

where: 

i is the value returned for the current 

object by function associated 

wi th the node. 

f the node is a parallel ^r-ocr. "ode then 

K f(node) - /£.   f(son) scaled to one. 
son 

7.5 LEARNING: PROBABILITY ADJUSTHENT 

Keeping the counts of occurrences of each interpretation for each 

terminal node is done by pointing at an object and indicating its 

intended meaning (the meaning the user likes it to have). The program 

then increments the count associated with this interpretation  in all 
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PROBABILITY ADJUSTMENT 7.5 

terminals into which the properties of the current object lead. Ule 

maij have several such because of parallel branch nodes where we have 

one terminal for each parallel branch. To ease the chore of naming 

regions (and hence boundaries) we developed an interactive graphic 

system. The system displays one region at a time by drawing its 

boundaries over the original image on a television monitor and asks 

for Itt meaning. Once all regions are interpreted, there is an option 

to have a training run in which the region grower makes use of what 

it knows on the real meaning of regions in order to increment the 

counts associated with the real meaning of the object every time an 

object is observed, while growing the regions in all terminal nodes 

into which the properties of the jbject lead (an object is either 

region or boundary). 

7.G LEARNING: TREE GENERATION 

At present, generating the tree and increasing its effectiveness are 

done interactively. The user may look at terminal nodes that cause 

errors in the region grower (in the training runs, these errors are 

detected automatically by the system), or at terminal nodes where the 

classification is not reliable. The latter are terminal  nodes where 
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there are relatively many occurrences of objects which are not of the 

meaning uhich is the most frequent meaning in that terminal cell. 

What the user can do in this case is to change the terminal node into 

a non-terminal node, hence replace the cell associated with that node 

by finer sub-cells such that in each of the smaller cells the 

classification will be more reliable. 

In the future we intend to use an automatic system to generate the 

classification tree. For an automatic generation of a sub-optimal 

classification tree the system will keep a historical libt which 

contain? objects observed in the past, their properties and their 

real meanings. Based on this history the system could try to order 

the application of measurements so as to get good and cheap 

classification, by creating as few as possible cells (leaves), and 

still keeping the good classification probability high. It wi I I be 

able to point out cells that are not sufficiently discriminating so 

that they may be worked on interactively (as it is now) or 

automatically (mainly breaking each such cell into finer subcells 

such that, for each subcell the classification is more reliable). 

Techniques for organizing the classification tree so as to get near- 

optimal sequential classification are described in [ SR ). In [ SR ] 

the tree generation is considered as a game with nature where the 

score is a quality measure of the cla^si f icat ion. Game (a-ß) type 

tree search is utilized in creating the decision tree. 
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These types of learning are general to mang pattern recognition and 

sequential decision problems. A vast amount of research, both 

theoretical and exper imental, has been done in this area. [ FU ] is 

a good description of the theory and [ DH ] is a good introduction to 

the various applicable techniques. [ SR ] which was mentioned above 

is an interesting example of trying practical automatic generation of 

a sub-optimal  classification tree. 

7.7 LEARNING:  GENERATING NEU CLASS4.-IERS 

One additional phase of learning is generating the discriminating 

procedure. This may be both setting thresholds for already available 

real-valued functions ( to get integer answers), and the generating 

of the functions themselves. There are some standard techniques for 

generating such functions, mainly various linear discrimination 

procedures (see DH). It is not reasonable to assume though, that 

this level will be automatic in the near future and it is likely that 

generation of  discriminating functions will   rely on human  intuition. 

Page  100 

■MMMM^^HaMMMa 



"I1"" ' '■  

NEAREST NEIGHBOR 7.8 

7.8 NEAREST NEIGHBOR CONSIDERATIONS 

It is interesting to compare our technique with the nearest neighbor 

classification which is investigatsd in various papers [ COV ]. This 

principle is to take for a new unknown occurrence of an object the 

interpretation of the object observed in the past whose features are 

nearest to the features of the new object. There are two 

deficiencies in this approach. First, only rarely is there an obvious 

metric on the space of values of measurements, and hence only rarely 

is it clear exactly how to measure distance between the feature 

vectors of two objects. Secondly, it is very hard to search for the 

nearest object observed in the past (unless we are in one dimension) 

since we have to compute the distance from all examples observed to 

get the minimal distance. An effective way of reducing the search 

time will call for breaking the space into cells the way we do. That 

is, locating first the cell into which the measurements of the new 

object fall and then searching for the nearest one only among known 

objects whose measurements fall into that cell (and stored 

associatively with that cell), ignoring objects which fall into other 

cells. Thirdly, the answer returned is just one possible 

interpretation and not a list of different possible interpretations 

gith various probabilities. Extending the nearest neighbor principle 

to fmci the n- nearest objects and computing the probabilities of 
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different interpretations based on them will make the computation 

even less efficient because of search time and uiII force even more 

reliance on space partitioning than the method ue currently use. 

It seems that when the historical list is added to our system to 

allow automatic generation of the classification tree, then we will 

have associated with each cell the properties and meaning of objects 

uhi'ch fell into the cell, in this case it may be worthwhile to use 

versions of nearest neighbor classification or some continuous 

parameter probability adjustment procedures for each cell to improve 

the classi ficat ion. 
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SECTION 8 

RESLLTS 

8.1 PROBLEM DOMAINS 

Ule aptolled our software system to two picture domains. Tiie first 

domain was road scenes as they may be seen while driving a car. The 

second domain was left ventricular angiograms ( x-ray images of the 

left ventricle made visible by injection of a radio-opaque dye). 

These angiograms are useful for various cardiologic applications 

since they allow ob^rvation of myocardial movement. In the first 

domain the system was taught about existence and properties of 

regions which are whole or parts of images of the following objects: 

sky, tree. road, car, shadow of cars and roadside vegetation. The 

semantics used in the second domain described the heart interior, 

chest cavity background a.id the dark frame border. Illustrations 

given at the end of this section indicate the results of the 

experiments. All the pictures are taken from a computer graphic 

terminal with gray level capabilities. There are six bits available 

per  image point.  Five bits are used for displaying the original 
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picture,  and the high order bit  is used for the overlay of the 

boundary lines between regions. 

The library of integer value procedures currently available for 

generating the classification tree nodes for regions and boundaries 

is still quite limited. Ue have only crude estimates of the features 

of regions and boundaries, and there is still a long way to go before 

a good description system is available. Our attempt was mainly to 

implement the ideas presented in this thesis on the A.I. laboratory 

hardware-software system to prove the feasibility and effectiveness 

of our approach. He consider the result a positive indication of the 

feasibility of getting an automatic analysis of PMI world images by 

computer. 

The propertips which are currently available in the system are 

described below. Before getting into their detailed description I 

would like to make the following general comment. It turned out that 

individual region properties are very much special purpose mainly 

because of the weakness of the shape descriptor. Variations between 

pictures, and the necessity of classifying sub-regions of the 

terminal regions (as produced by the region growing algorithms) are 

mainly responsible for the weakness of any classification based on 

region properties alone. The weakness of classification based solely 
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on regions features is very significan* near initialization when 

almost only local (point-wise! prope-ties (light intensity color and 

position) are avai lable, Howe/er when we consider boundaries and 

relative properties of regions the description becomes much more 

general and less sensitive to variations between pictures. 

■ 

8.2 REGION PROPER"I ES 

The region properties available are: 

, 

I 1 ] The size, computed as size of region relative to the whole 

picture area (five degrees (ranges) logarithmically). 

[ 2 ] Vertical  position of center of gravity of  the region  in the 

picture frame ( five degrees ). 

[ 3 ]  Horizontal position of center of gravity of  the region in 

picture frame ( five degrees ). 

[ 4 ] Does the region touch top of picture frame? (yes/no) 

t 5 ] Does the region touch bottom of picture frame?  (yes/no). 
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REGION PROPERTIES 

[ G ] Length of boundary with bottom of picture ( four degrees). 

8.2 

[ 7 ] Average light intensity of tht region relative to the histogram 

of the lignt intensity in the entire image (four degrees). 

( 8 ] Color saturation (4 degrees). 

(( 9 ] Color hue (eight degrees) 

[ 18 ] Does the region touch the frame of the picture on the side? 

(yes/no). 

I 11 1 Ratio of height to width of the minimal upright rectangle 

which bounds the region. This rsctangle has vertical and 

horizontal sides. 

[ 12 ] Position of center of gravity of the region relative to the 

center of the minimal upright rectangle which bounds the 

region. 
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8.3 BOUNDARY FEATURES 

The boundary properties available are: 

[ 1 } Light intensity differences between the two regions defining 

the boundaries (six degrees). 

[ 2 ] Shape of boundary based on breaking into four sets the pairs of 

sample points which define the boundary. The four claases of 

pairs of points are defined by the position of the sample 

point from the reference region relative to the other sample 

point in the pair it may be below, above, left or right. For 

each of the four sets we compute whether it is null, and if it 

is not the average location of the po.nts in the set. See 

Figure 8.1 for the twenty one basic boundary types which this 

procedure recognizes. (21 degrees). 

[ 3 1 Relative size of the two regions (6 degrees). 

( 4 ] Boundary length relative to the length of the whole image 

perimeter ( 5 degrees). 

[ 5 J Relative position of the two minimal upright rectangles that 
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bound the  two regions defining the boundaries  [ A functions 

with 5 possible classes for each ]. 

[ G 1 Location of center of gravity of boundary in picture frame ( 5 

horizontal degrees and 5 vertical ). 

[ 7 ] Some quantitative measurements on the relative length of the 

boundary in the four directions defined in [2 1. 

' 

[ 8 1 Color differences between the two regions ( 4 functions with 3 

degrees each I. 
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8.4 RESULTS 

In the first problem domain, the road scenes, the interpretation for 

regions can be road,  tree, sky, roadside vegetation, car and shadow 

of car.  The possible boundary interpretations are all  the GxB 

combinations  possible (, emember  that boundary  properti s are 

MUMMtrlc with respect to the reference region).  The learning 

(collecting  the probabilities  and interactively  refining and 

extending the classification tree) was done by training the system on 

five pictures and then the collected probability estimates were 

applied to another five pictures and worked successfully.  (See 

i I lusi. ations below for some jample runs). The non-semantic weakeet- 

boünclanj-first region grower threshold was set to .13 of the maximum 

possible boundary strength, or 18a regions, whichever came first. 

The semantic weakest-boundary-first region grower was stopped with 

strength threshold 8.1. From that point on the region grower derived 

from the sequential assignment was used until no two adjacent regions 

were interpreted as parts of the same object. The total computing 

time for processing one picture is about five minutes, lie  believe it 
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can be speeded up on the current hardware by a factor of 180 by 

optimizing the code and data structures. 

Illustration C is a good demonstration of some of the limitations of 

the system. First, notice that the small car on the top right part of 

the road is considered to be part of the roadside vegetation. If we 

used the relative position of the two we would have done better. The 

major difficulty is that in this case we need more involved relations 

than the purely first order oiea available now. Ue may need to 

consider the road, the small car and the roadside vegetation, in 

order to distinguish the small car from similar structure of roadside 

vegetation and road on the bottom left part of the picture. Also 

better shape descriptors are needed in order to recognize more 

accurately the boundary between the car and its shadow. 

The assignment alcjor'M.hm is driven by the confidence values of 

regions ( the ratio between the probability of the moet likely 

interpretation and the probability of the next moet likely 

interpretation). The recognition of the bigger regions like the sky, 

road and the bigger parts of the trees and roadside vegetation 

usually have unique interpretations even on the basis of local region 

properties alone, and hence the assignment usually starts by 

assigning them their correct meaning. For instance the bigger part 
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of the sky is unique because there is only the sky which is big, is 

very bright, touches the top of the picture along a long line and has 

nearly blue color. The bigger part of the road is also unique because 

only it can touch the bottom of the picture with a long line and be 

relatively bright and almost colorless and horizontally near the 

center. The bigger parts of the tree arc usually unique because they 

are big, very dark and near the top of the image (see an example of 

classification for demonstration). Only later are regions which are 

parts of the car or its shadow interpreted, based on their local 

properties and the structure of their boundaries with the road and 

the bigger roadside vegetation areas. Later s+ill smaller parts of 

the roadside vegetation and trees are interpreted, mainly because it 

is usually unclear which of the two interpretations to assign to 

them. In cases where we are looking for the road, we may use a 

utility that assigns a very low price to a confusion between a tree 

and roadside vegetation, because such confusion has only a minor 

effect on the analysis of the road. Currently though, we assign equal 

vp I ue for a I I errors. 

In the problem domain of the left ventricular angiograms, no color 

was available. As a result light intensity, position and shape are 

the major recognition tools. In addition the non-semantic region 

grower had to stop at a relatively early stage because of noise and 
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lack of high contrast border. The number of reyions on termination of 

the non-semantic region grouer was two hundred. From that point on 

the sequential assignment region grouer was used (see illustration). 

The run time was again around five minutes per image. It is 

encouraging that the adjustment to the second domain was very easy. 

Ue hope that in the future a general and rich library of feature 

extracting routines with the capability of working on many models 

will be dev | looed. 

8.5 CONCLUSIONS 

The successful application of the system to two problem domains is 

very encouraging. Especially so, because it is clear that we can do 

much better on each of the components of the system. The author 

knows of no previous system able to work on such complex images 

successfully. Our system is also based on a general structure that 

provides hooks for ;ncorporating sophisticated subsystems for each of 

the components. This paper suggests in many places ways of improving 

the current implementation. The author believes that major 

improvements may be achieved by the following developments: first, 

aut latically generating a sub-optimal classification tree; second, 
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improving the available shape classifier« ( which will require the 

option to pass from the sample point description to the finer grid 

point description); and third, adding options for more complex 

relations in the semantics representation. 

To conclude, the generality of the ideas behind the system provides 

for ways of incorporating improvements and special knowledge in every 

one of the components. The author hopes that the generality of the 

system will enable researchers to concentrate on each of the 

components separately of the system, hence allowing this üoun9 

experimental research field to mature as an unified research field. 
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I 
(A-l) The output of the 
segmentation based on path 
connectivity when it is stopped by 
the default stopping criterion. 
The resulting image is segmented 
into a few hundred regions. 

(A-2) The effect of reducing the 
number of regions to 48 using the 
path connectivity region grower 
with a more liberal threshold than 
our current stopping thre^hni'' 

jS^tÄ^»». *•** 
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(A-3) The output of the region 
grower which melts weakest boundary 
first, with non-semantic boundary 
strength evaluation. This is 
the result of stopping with the 
default stopping criteria" 

(A-4) Result of merging regions 
down to 30 regions using weakest 
boundary first algorithm ^ id 
non-semantic boundary strength 
evaluation. Note that the top of 
the car is melted into the roadside 
vegetat ion. 
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(A-5) Result of attempt to reduce 
the number of regions to 20 without 
using semantics ( melting weakest 
boundary first non-semantic 
boundary strength evaluation). 

(A-G) Output of region grower based 
on semantics. (Melting weakest 
boundary first where boundary 
strength is computed using the 
semantic world model). 

(A-7) Final grouping of regions 
based on the interpretation 
assigned to them by the world 
model. Regions whose meaning was 
assigned with confidence less than 
10 are i,ot mergable. They occur 
usually on the real boundary 
between two regions. 
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(B-l)   Original  picture. (B-2) Output of the non-semantic 
weakest boundary melted first 
region grower. 

(B-3)     Output of  the semantic based 
region grower 
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(B-4) Result of grouping regions by 
their assigned meaning, taking only 
regions which uere assigned meaning 
with    confidence    greater     than 10, 

(B-5) Grouping regions by their 
assigned meaning, all regions 
considered mergable. 
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(C-li Original. (C-2) Output of non-semantic region 
grower. 

(C-3) Output of the semantic reg.on 
grower. 

(C-4) Grouping regions by meaning 
wi th conf idence 10. 
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. (D-l)   Original (0-2)  Output of non-semantic region 
grower. 

(0-3) Attempt to use non semantic 
region grower with more liberal 
stopping eri terion. 

(0-4)   Output of  the semantic region 
grower. 

mm 

(0-5)  Final   output    after    grouping 
regions by  their assigned meaning. 
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(F-l) Left ventricular angiogram. 
Output of the non-semantics weakest 
boundary first region grower. The 
stopping criterion is to stop when 
the merger gets down to two hundred 
regions. 

(F-2-3-4) Iterations of semantic 
region grouer. Regions are grown 
hy grouping all adjacent regions 
which are assigned the zaice meaning 
by the seciuential assignment 
procedure, before        the      first 
assignment    with       lo'^      confidence 
level     occurs. On each .iteration 
the confidence threshold is 
I oupted. 

(F-5)    Final     output    . The heart 
interior is the dark center, around 
it is the chest cavity and on the two 
sides  there   is the dark frame border. 
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(G-l) Output of the  non-semantic 
weakest boundary firbt region grower. 

(G-2) First iteration of semantic 
region grower. The region grower 
used here is grouping of adjacent 
regions that are assigned the same 
meaning, before the first assignment 
with low confidence was done. 

(G-3) Another iteration like (G-2) 
wher« all assignments are considered 
valid. 
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