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PREFACE 

Work on the development of a long base-line interferometer for 

wavelengths in the neighborhood of 1 em. started in the Space Sciences 

* and Radioastronomy Laboratories in '1970. In our annual report for 

1970-1971 we described the interferometer which we had built at the 

Hat Creek Radioastronomy Observatory and noted that radio sources had 

been located which could serve for highly accurate work on geodesy 

and navigation. Prof. Welch (co-principal-investigator) reported the 

work, early in 1972, to the annual TAC meeting for the review of the 

electronics program held by the Electronics Research Laboratory of 

the College of Engineering'and at that time put forth our ideas about 

the use of an interferometer on board a ship as an instrument for 

navigation. 

We then proceeded to study this matter seriously.. The following 

report covers a rather comprehensive study carried on by Mr. Michael 

Morgan, a graduate student in the Dept. of Electrical Engineering and 

Computer Science, under the direction of Prof. Silver. The report is 

not only a feasibility-study but also delineates the techniques to 

be employed, both analytically and operationally, for locating the 

position of a ship on the sea from a knowledge of the position of a radio-

*' 
R. Hills, W. Hoffman, M. Janssen, D. D. Thornton, s. Silver, W.J. 

Welch, The Development of an Interferometer for Millimeter Wavelengths, 
Space Sciences Laboratory Report, Series 12, Issue 64, Aug. 1971. 
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source in the sky. 

For the wavelength region of 1 em. a long base-line interferometer 

can be established on board a ship by placing the two elements -- an-

tennas -- at the fore and aft positions of the deck; all of the lines 

and complex electronics can be located below deck; it is, in fact, 

desirable to do that. It is possible to go a step further, for, un-

less it is necessary to chart position continuously, the antennas can 

be used for other operations. One needs only a switch arrangement 

whereby the antennas can be_connected to operate in the interferometer-

mode or be disengaged from the electronics of the interferometer and 

tied in to other systems. The point of mentioning this is-to allay 

arguments about costs and that the interferometer will rob the ship 

of other capabilities. 

Whether or not the techniques developed in this report find their 

way into naval operations depends on the evaluation made of them by the 

Department of the Navy. There are undoubtedly many operational consider-

ations to be taken into account but such matters lie outside our area 

of competence and responsibility. The important point is that this work 

stands as an example, of considerable merit in this writer's opinion, 

of how the pursuit of basic ~esearch, in this case in radioastronomy, 

can and does lead to applications and operation-al systems. We trust 

that what we are presenting in this work does have practical utility. 

Samuel Silver 
\ Principal Investigator 
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I I. INTRODUCTION 

I( 
The subject of this report is an examination of the feasibility 

of using a long-baseline interferometer aboard a ship as a navigational 

device. The ideal theoretical resolution of such. an interferometer with 

a correlation-receiver has the potential of determining the latitude 

and longitude of a ship at sea with great accuracy\ For example, an 

is 200 meters, operating at a wavelength 
' \ 

interferometer whose base-line 

of 1 em., has a central fringe of about 10 seconds of arc. By observing 

i 
discrete (Le., point-like) radio stars, whose celes~ial coordinates 

have been determined by land-based observatories, in-the near zenith 

position relative to the ship the position of the ship on the earth can 

be established with an angular accuracy of about the resolving power of 

the interferometer,· For the example quoted, a c~nservative estimate of 

this accuracy is 10 sec. of arc for the angul·ar coordinates which r_e-

presents location of position to an. accuracy better than 1000 feet. 

In addition to the advantage of resolving power there is the advan-

tage that the instrument is not limited to nighttime use. As in the 

optical case, however, the use of the system is limited by meteorological 

conditions, The limitations imposed by meteorological conditions are 

strongly dependent on the frequency (or wavelength)_ at which the system 

operates. 

The report .that follows has two major subdivisions. The one 
.1-~ 

deals with topics -- Preliminary Topics -- that provide~'the framework 

for computing position from certain types of data; the .othe-r deals with 
/\. 

the special considerations of interferometry pertinent to a navigational 

system and the navigational technique proper. 

/ 
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II. .PRELIMINARY TOPICS 

2.1 Theory and Measurement of Ship Motions 

The navigational system envisaged in this report consists of a 

microwave interferometer mounted on board a ship. On the ocean, the 

ship is a moving platform whose motions are made up of translation 

and rotations. The effect of such a moving platform on the operation 

of the interferometer is one of the major considerations in the devel-

opment of the navigational system. For this reason we present, in 

this section, some elementary information from the theory of ship 

motions. A much more detailed development can be found in such ref-

erences as those by Blagoreshchenskii, [1], or Beurs, [2]. 

A ship on the ocean is sketched in Figure 1. The cartesian axes 

x , x , x are the body-fixed principal axes of the ship. The general 
1 2 3 

motion' of the vessel can be resolved into translation of the or/gin 

which is assumed to be at the center of gravity of the vessel and ro-

tations about the principal axes. The angular displacements are shown 

in the figure as~ (t), ~ (t), ~ (t); in nautical circles they are 
1 'l. 3 

known as the roll, pitch, and yaw angles, respectively. It is known 

from experiment, [1; pp. 338-351], that wave height on the ocean and, 

consequently, the roll, pitch and yaw angles have amplitudes that are 

random variables having Gaussian distributions. lhe typical sample 

function for any of the three rand~m variables ~i(t), i = 1,2,3, is 

sketched in Figure 2. Tite time dependence of these rotational dis-

placements in mild and moderate sea-states :l.s quasi-sinusoidal with 

an almost constant period of motion and a Gaussian distribution of 

/ 
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amplitudes. Typical standard deviations of roll, pitch, and yaw 

angles as functions of seastate for an BOO ft. vessel are given in 

Table 1. Some typical periods of rolling in a mild seastate for 

various size vessels are given in Table 2. 

The geometrical factors relating the interferometer and a radio 

source to the principal axes are shown in Figure 3. The base-line 

of the interferometer is along the x -axis and its direction is speci-
1 

fied by the unit vector s(t) which in a space-fixed reference system 

is a function of time. The radio-star-source is located by the unit 

vector t(t) which is a function of time in both the ship-fixed axes 

and the space-fixed axes by virtue of the motion of the ship and the 

rotation of the earth. The angle between s(t) and r(t) is denoted by 

0(t). The length of the interferometer b~seline is given by S(t). 

There will be time-dependent perturbations in this baseline length due 

to both the effects of mechanical stress and thermal expansion. To 

obt;ain the maximum achievable resolution of· the interferometer, of the 

order of one "fringe width" it is necessary to know the length of the 

physical baseline, at all times during the operation of the system, 

to within a fraction of a wavelength. The variation in length due to 

mechanical stress will depend upon the construction of the vessel. The 

order of magnitude of thermal effects can be obtained by assuming that 

the ship is constructed of steel with a mean linear coefficient of ex-

· f 1 2 lo-s (C 0
)-

1 • panSl.On 0 •. X A temperature variation of 25 °C = 45 °F 

on a vessel made of such material generates a change in length in the 

amount of 6 em. in a baseline whose reference-length is 200 meters. If 

the wavelength of operation is 1 em., the apparent location of sources 



Figure 1 Ship Principal Axes and Rotational Displacement 
Angles 

"--------~--1-- XI 
e 1 (t) 

Figure 2 Typical Sample Function 

time 

6 
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Table 1 Typical Standard Deviations (800 ft. vessel) 

Seas tate 
0 2 3 6 

Roll a~ oo 1-2° 5-6° >10° 
·•· 2 

Pitch 0~ oo 2-3° 3-4° 4-6° 
2 

Yaw crl; oo 0-1° 3-4° 5-8° 
3 

Table 2 Typical Periods of Rolling (mild seas tate) 

Vessel .Type Displacement (Tons) Period (sec.) 

Ocean Liners Jo.ooo;..5o.ooo 20-28 

·~ 

Battleships < 10,000 14-18 

~~ Heavy Cruisers < 10,000 13-15 

Destroyers < 10,000 7-9 

Patrol Boats < io,ooo 4-6 
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Figure 3 Ship and Antenna Geometry 
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Figure 4 Accelerometer Placement 
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can be changed by as much as six fringe widths. It is, therefore, 

necessacy to have a subsystem for monitoring accurately the length of 

the baseline. Several 'techniques are available for this purpose; one, 

for example, is to measure pulse return time on a taut, but stretchable, 

shorted transmission line. We will assume in the subsequent discussion 

that S(t) is known to within a fraction of a wavelength at all times. 

The technique for determining the roll, pitch, and yaw angles of 

the interferometer baseline utilizes highly accurate accelerometers, 

placed judiciously on the vessel, as shown in Figure 4. The sensitivity-

directions of these linear accelerometers are shown by the attached 

vectors. The magnitude of linear acceleration is given by ai(t) 

or b1 (t), i = 1,2,3. The subscript (i) is related to the angular dis­

placement ~i derived from the particular accelerometer's data. The 

first set of accelerometers is located along the x axis, one on the 
2 

starboard and one·on the port side of the ship. The second and third 

sets of accelerometers, (a ,b) and (a ,b), are located at the antenna 
2 2 3 3 

positions. The roll, pitch and yaw angles are obtained by "integrating" 

the differential equations 

s (t) + (1) 

for t = 2,3 with appropriate initial conditions on ~i (t). The equation 

for ~ (t) contains the distance W(t) between the accelerometers a and 
1 1 

dW .fu_ 
b

1 
and there is no cross-product term ~ dt 

The extent to which the time dependence of the length of the base-

line, S(t), and the time dependence of W is significant depends on thermal 



and mechanical stresses. Data on these factors will have to b~ ob-

tained before we pass judgment on the question. 

term 

To a first order approximation in which we neglect the cross-

d~ .5!il 
dt dt the angles t,:i (t) 

-[tiT E;, (t) -
2 

t,(t)-{{ 

are given by 

[a
1

(n) -'-b
1
(n)] 

w (n) 

[a
2

(n) -b2 (n)) 

s (n) 

dn d-r 

dn dt 

dn dt 

on the assumption that 

, 
= t,:i (O) = 0 i .. 1,2,3 

The desired accuracy of the measured roll angle, t,: (t), is not 
1 

extremely critical because rotation about the interferometer's base-

10 

(2) 

(3) 

(4) 

(5) 

line does. not affect the fringe pattern. Rolling motion will, however, 

shift the position of the source in the main beams of the element-

antennas of the interferometer. The angles E;.l' f;.
2 

and t.: 3 are needed 
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to slowly track the two antennas to compensate for the ship's motion 

and keep the position of the source fairly constant in their main beams. 

,For this reason the error in the determination of ~ 1(t) should b-e much 

smaller than the main beam-width. Typical be~dths at centimeter 

wavelengths fo~ moderate size parabolic reflectors are usually of the 

order of a few minutes of arc. For a 5 meter reflector and A ,. 1 em 

we have ~ ~ 7 m~. The required accuracy of the pitch and yaw· 

angles is much more stringent. These angles are used not only in the 

antenna tracking scheme but also in the data-processing scheme for deter­

mining the ship's position from the measurements of the phase-correlation 

of the waves from the source detected by the two antennas. of the inter­

ferometer. The error-tolerance of the pitch and yaw angles'must be less 

than a fringe width, which at centimeter wavelengths is of the order of 

magnitude of several seconds of arc. The use of highly accurate accelero- , 

meters located at the antennas should giv~ ~2 (t) and ~ 3 (t) with very 

small error. Note that in this procedure that we have just sketched 

even the effects of bending of the baseline due to lack of perfect rigidity 

of the vessel are included in the measurements. 

2.2 Coordinate Systems and Transformations 

We need to use three fundamental coordinate systems in developing 

the theory of navigation by means of the interferometer. These systems 

which we name (a) the local horizon system, (b)- the latitude-longitude 

sys,tem and (c) the celestial system are shown in Figures 5, 6; and 7, 

respectively. In the local system, Figure 5, the x', y', and z' 

cartesian axes are oriented in the due West, due South, and zenith direc-



tiona, respectively. The orientation angles of the unit baseline 

A . ' vector, s' (t), are given by the azimuth and elevation angles, A(t) · 

and E(t), respectively, as shown in Figure 5. 

be monitored at all times and are given by 

.where 

A(t) = 1;3 (t) 

E(t). = -.;2 (t) 

+ TT + p ( t) 
0 

t; 2 (t) = pitch angle 

' 
t; 3 (t) = yaw angle 

These angles ;should 
·' 

(6) 

(7) 

p
0 

(t) = ship bearing (East of North) 

The "apparent" source position unit vector, ra'(t),,. points in the 

direction that the source appears to be located with respect to the 

ship. This apparent source positfon may differ from the actual source 

12 

position, represented by the unit vector r'(t), because of atmospheric 

effects. These effects will be considered in more detail in the fol-

lowing section where an approximate linear transformation between 

- f:'(t) andra'(t) will be derived by means of ray-theory on· the basis 

that the effect is ascribable to refraction by the atmosphere. Note 

that the exact cartesian components of f''(t) or ra'(t) are not known 

a priori in the local horizon system. 



.. 

/ 

In the latitude-longitude coordinate.system, Figure 6, the xy 

plane is the equatorial plane of the earth while the yz plane is the 
I 

Greenwich meridian plane and the z axis is the polar axis. The 

orientation angles, 6 and A, of the unit vector, z1
, in'the direction 

of the zenith relative to the ship, are the latitude and longitude 

angles, respectively, of the position of the ship on the earth. It 
' \ 

is these angles·which the interferometer navigational system will 

supply to a very high degree of accuracy. The unit vector, § 1 (t), 
0 

:is parallel to the x''y 1 plane and corresponds to the rest position 

that the unit baseline vector, s 1 (t), would have 'on·'·a perfectly calm 

sea. the azimuth and elevation angles of this unit baseline "rest 

position" vector are given by 

/ 

A (t) = rr + p (t) 
0 0 

E (t) = 0 
0 

(8) 

(9) 

The cartesian components of § 1 (t) and s 1 (t) will be known at all times 
0 . 

during the operation of the interferometer-navigational-system and are 

given by 

s 1 (t) = sin A(t) cos E(t) 
. X ' 

s 1 (t) = cos A(t) cos E(t) 
y 

s 1 (t) = sin E(t) 
z 

(10) 

(11) 

(12) 

13 



-* --- ~ ---I 



. - _,_ 

15 

and 

- -· 
S I (t) = sin A (t) (13) . xo 0 

s' ( t) = cos A (t) (14) 
Yo 0 

s' (t) "' 0 (15) 
Zo 

The equivalent latitude and longitude angles of the actual source 

position are given by c and A , respectively. These angles can be 
s s 

found at any time using the tabulated declination and right ascension 

of the particular source being considered. The cartesian components 

of the unit position vector of the actual source, t(t), can be obtained 

using 

r (t) = sin A (t) cos c 
X S S 

(16) 

· r (t) = cos A (t) cos 5 
y s s 

(17) 

r (t) = sin c 
z s 

(18) 

Note that the exact cartesia~ components of the unit baseline vectors 

s(t) and s (t) are not known a priori. It will be shown that simulta­
o 

neous knowledge of the cartesian components of any vector in both the 

local horizon system and the latitude-longitude system is equivalent 

to knowledge of the position of the ship on the earth. 
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The celestial .coordinate system is shown in Figure 7. The 

x"-axis point,s in the direction of the vernal equinox which is also 

referred to as the "first point of Aries." (Years ago this axis was 

oriented towards the constellation Aries while at present, due to 

precession of the earth's polar axis, the x" axis points towards the 

constellation Pisces.) The x"y" plane is the equatorial plane and the. 

z" axis is colinear with the z axis of the latitude-longitude system, 

The position angles of the actual source ·location, <l . and o , are the 
s s 

right ascension and declination angles, respectively~ The angles will 

be known for any particular source using tabulated data obtainable 

from ground-based measurements of positions and appropriate correction 

procedures for the given epoch. A detailed description of the various 

standard coordinate systems and the procedure for making the necessary 

corrections in the position of a source for a given epoch using the 

ephemeris are given in many texts on optical or radio astronomy such as 

that by Kraus, [3, chapter 2]. 

The declination angle, o , and the equivalent latitude angle, 6 , 
s s 

are,of course,the same. The relationship between the right ascension 

angle, <ls(t), and the equivalent longitude angle, As(t), is shown in 

Figure 8. The angle, ~(t), measured in radians, is given by 

where 

JJ ( t) = 
n . 
lZ (S. T. + E. T.) 

S.T. ~ sidereal time 

E.T. = ephemeris time 

(19) 
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S.T. can be obtained directly from "The American Ephemeris and Nautical 

Almanac" or similar ephemeris. E. T. can be obtained from Greenwich mean 

time, G.M.T., using 

E.T. = G.M.T. + liT (20) 

where the correction term, LIT, is given for the particular epoch in 

any standard ephemeris. The relationship between a and A (t) is, 
s ' s 

as shown in Figure 8, 

a + A (t) = ~ (t). 
s s 

(21) 

Later in this report we will use explicitly the linear transfer-

mation between the cartesian components of a vector in the latitude-

longitude system and those of the same vector in the local horizon 

coordinate system. This transformation can be represented in matrix 

from by 

= = A u (22) 

where U' and U are column vectors whose elements are the components of the 

given vector in the respective coordinate systems. The elements of the 

transformation matrix can be obtained easily by considering the total 

transformation to be composed of two successive unitary rotation trans-

formations. Using the 1-2-3 representation, x +-+ 1, ,Y +->- 2, z +-+ 3, 

the transformation in (23) can be written as 



Figure 7 Celestial Coordinates 
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II 

x Verna I 
Equinox 

II II . 
x y plane = Equatonal Plane 

Figure 8 The Equatorial . Plane 

y Greenwich 
Meridian 

' Actual * Source 

Vernal Equinox 
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i 

3 

2: 
j=l 

A .• U. 
1] J 

i 1' 2' 3 (23) 

The elements of the transformation matrix, A, are given directly in 

terms of the latitude- and longitude-coordinates of the ship, 6(t) 

and A(t), respectively. 

cos ,l,(t) -sin ,\(t) 0 

19 

A(t) = sin ,l,(t) sin o(t) cos A(t) sin o(t) -cos o(t) (24) 

sin ,\(t) cos o(t) cos X(t) cos o(t). sin ~ ( t) 

As was previously mentioned, the simultaneous knowledge of the car-

tesian' components of any vector in both the horizon system and lati-

tude-longitude system is equivalent to a knowledge of the ship's lo-

cation on the earth. We will now obtain equations of evolution of 

the terms in this transformation matrix. These ~quations will be 

needed at a later time. We note that the latitude and longitude angles 

may be expressed in the form 

0 ( t) (25) 

,\(t) = + liA(t) (26) 

The changes of these angles may be obtained by considering the motion 

of the vessel on the planar projected latitude-longitude curvilinear 

coordinates shown in Figure 9. The equations. of evolution of these 



position coordinates of,the ship are given by 

<5 ( t) 

t. ( t) 

where 

= 

= 

+ .!. 
R 

1 
R 

t' 

J v(i) sec <S(T) sin p 0 (T) d1 

p (t) = measured bearing of ship (E of N), (radians) 
0 

1 v( t) measured speed of the ship, (m/sec) 

R = radius of the ea~th, (meters) 

(27) 

(28)· 

We now substitute (27) and (28) into the matrix elements of (24) 

and use the angle sum formulas; Defining' 

. f
1
(t) ~ oos (t. f v(<) seo 6(c) sin p0 (c). de\ 

. to } 

(29) 

f,(t)! sin(t.f 
to 

(30) 

and 

(31) 

20 
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Figure 9 Planar Projected Latitude- Longitude Curvilinear Coordinates 

N 
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(32) 

and using the e.boreviations 

= a .. 
~Jo 

i, 'j = 1, 2, 3 (33) 

we obtain tl-\e equations of evolution 

a11(t) = f1a11 + f2a12 (34) 
0 0 

/ 
; 

a12(t) = f1a12o - f a 
2 11 0 

(35) 

a ( t) = f1gla21 f lg2a31 + f2g1 3 22 f2g2 3 32 
(36) 

21 0 0 0 0 

azz ( t) f1g1 3 22 f1g2a32 f2g1 3 21 + fzgza::n (37) 
0 0 0 0 

a ( t) = g1<).23 - g2 3 33 
(38) 

n 0 0 

' 

a ( t) = f g a + f g a + f2g1 3 32 + f2g2 3 22
0 

(39) 
31 . 1 1 310 1 2 21 

0 0 

\ 

a32 ( t) = f1g1a32 + f g a - f2g1a31 - f:ig2a21
0 

(40) 
0 1 2 220 0 

a 3 3 ( t) = g1a33 
·0 

+ g2a23 (41) 
0 
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2.3 The Refraction Matrix Approximation 

As was mentioned in the previous section we,will' now derive an 

approximate ljnear matrix transformation between the unit vector, 

r' (t), in the direction of the actual source-position and the unit 

vector, ra' (t), in the directhm of the apparent source-position, 

using ray theory. The ray path in the earth's atmosphere of an inci-

dent monochromatic plane wave of frequency w is shown in Figure 10. 

The curved ray p~th taken by the incident field will be determined 

by Fermat's principle [4, p. 356]. 

where 

J n(r, w) ds 

s 

0 (42) 

n(r, w) = index of refraction as a function of position 

and frequency. 

If n(r, w) is a known function the variational equation in {43) may 

be solved for the optical path, s, using the Euler-Lagrange equations. 

At the positior. of the ship on the surface of the ocean the. incident 

field will. appear' to be coming from the direction, r '(t). The error 
a 

angle between the actual and apparent source directions is given by 

23 

~. If we assume that the refractive index is only a function of height 

above the earth, with no horizontal gradients, then it can be shown, 

[5, pp. 82-87], that the error angle, ~. is given by the integral 

\. 
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e: r cot X d~ ~ ]' cot x dn (43) 

1 1 

where ns is the surface index of refraction and x is .the angle of the 

ray path with respect to the ho,rizontal, as shown in Figure 10. If we 

assume that n ""1 along the path, (since ns ""1. 0003), the approximate 

form on the R.H.S. of E~uation (44) is obtained. Substituting the 

refractivity c 

N ·~ (n - 1) x 105 (44) 

into (44) and integrating by parts we obtain 

E cot X dN = 

-0 

2.4 Time-Domain Antenna Response 

In this section we treat brie.fly the 11 voltage"-response* of an 

antenna to a source that is moving slowly through its main beam in 

-terms of a quasi-static time-varying linear system approximation. The 

*When the line into which the antenna feeds energy is a waveguide in 

which the do~nant mode is orie other than a TEM-mode the transmission 

line voltage and current require special definitions. This is well-

known and treated in a number o.f books; for example, see R. E. Collin 

[6, pp. 145-197). 
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, Figure 12 Moving Antenna Geometry 

Figure 13 Equivalent Time-Varying Linear System 

Linear Transfer 
Operator 

L (w, t) 

25 
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distant celestial source and the moving antenna are shown in Figure 

12, where the petsi tion of .the source is to be regarded as being fixed 

in the chosen coordinate system. The unit vector p(t) points in the 

direction of the center (axis) of the main beam of the antenna at a 

given angular frequency of operation w. The unit vector p' is a "durruny" 

direction-vector. The equivalent time-varying linear system for the 

antenna and all sources of frequency ~ in all directions is shown dia-

grarrunatically in Figure 13. The driving term for the time-varying 

linear system operator, L(w, t), is the Fourier time-transform of all 

incident electric fields of the particular polarization to which the 

antenna responds; we designate this quantity byE (p', w). The output 
p 

of the system, VA(w, t), is not a true Fourier transform because it 

contains a slowly varying time-dependence. The time-domain response 

of the receiving system is obtained from VA(w, t) by inverse Fourier 

transformation. 

00 

1 J jwt 
2n VA(w, t) e dw (54) 

-oo 

The time-dependent linear operator~ L(w, t), involves an integration 

over all solid angles of the Fdurier time-transforms of the incident 

electric fields of particular polarization that the antenna is sensi-

tive to, weighted by an "antenna response function," A(p (t), p 1 , w). 

ff 
r2 

E (p 1 
, w) A(p ( t), 

p 
p I I w) drl (55) 
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This antenna response function has a magnitude that is proportional to 

the square root of the antenna power pattern, p(p(t), 6', w). ln the 

case of celestial source~ the incident spectrum Ep(P', w) will, of 

course, be unknown, or, at best, will be known statistically since the 

processes that generate these incident fields are random in nature. 

If we feed the antenna voltage into a narrow band-pass R.F. 

amplifier, as shown in Figure 14, having a transfer function as shown 

in Figure 15, output voltage of the amplifier, in the time-domain, may 

be expressed in the form 

The first term in the R. H. S. of (56) is the output due to the particu­

lar source being observed; it consists of the portion of the. integral 

in (55) .over. or.ly the extent of the source being passed through the 

narrow band- R. F. amplifier with center frequency at w
0

• The terms in 

the brackets are one of the canonical representation for a narrowband 

signal, [7i pp. 132-136]. In this case this bracketed term represents 

the narrowband random signal due to the source when the antenna is not 

moving. The S (t) multiplier represents the very slowly changing ampli­

tude variation of the received signal that: is due to the motion of the 

antenna patt~rn. The second term in (56), Ns(t), is an undersired nar­

rowband "noise" term generated by the extended integration in (55) 

over all sources other than that being observed. This term should be 

kept relatively small by using a highly directive antenna with very 

small side lobes and by' observing a strong source in a sparsely occupied 
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Figure 14 Bandpass R. F. Amplifier 
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region of the celestial sphere. The tird term in (56), NR(t), is 

thermal noise generated in the receiver which appears in the output 

of the R. F. a1r.plifier. This term will depend upon the structure and 

temperature of the various stages of the entire receiver including 

the antenna and R.F. amplifier. The interferometer system, to be 

discussed in the following chapter, incorporates two predetection 

antenna/receiver subsystems. The NR(t) generated by each of these 

two predetectioo subsystems are statistically independent and hence 

uncorrelated. The use of the correlation detection system will eli-

minate most cf the uncorrelated thermal noise but will not eliminate 

the correlated, but undesired, noise terms, N (t). 
s 

2. 5 Antenna Tracking Equ'ations 

In the preceding section there appeared a multiplicative term, 

S(t), that represented the variation in the amplitude of the received 

signal induced by the changing position of the source in the power 
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pattern or "antenna response function," A(p(t), p', w), of the antenna. 

For a ship on the ocean this relative motion of the source in the an-

tenna's .power pattern is induced by both the rotation of the earth 

and the motion of the ship on the sea. If the antenna does not track 

on the source to compensate for the roll, pitch, and yaw motions of the 

ship, considerable signal-amplitude variations can result. These ampli-

tude variations will be roughly periodic in nature, at least for an 

axially symmetric main beam power pattern, and will have a periodicity 

of the order of the mean value of the roll, pitch and yaw periods. The 

magnitude of t:1is amplitude variation will depend upon the ratio of the 
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roll, pitch and yaw angle variations to the main beam width of the an-

tenna. 

In this section w7 will develop tracking equations to keep the 

source in a relatively constant location in the main beam of the antenna. 

For antenna beamwidths smaller than the supremum of the standard devia-

tions, ~1 , ~· ~in a given seastate, it will be mandatory for the 

antennas of the interferometer-navigational-system to track on the 

source and at least partially .compensate for the ship's motion. The 

equations which we shall develop in this section will be based on as-

-sumed initial v:tlues of the coordinates of the position of the ship. 

This assumed poDition could be based on initial conventional naviga-

tional procedures during the startup of the interferometer or could 

be based on highly accurate position-fixes obtained previously by the 

interferometer system. 

The right ascension and declination of a given discrete source 

will be known. i!'l the celestial coordinate system of Figure 7. The 

cartesian components of this source direction can be obtained in the 

latitude-longitude system of Figure 6 by calculating the equivalent 

longitude angle using (21) and also using the fact that as = DEC. 

We then use equations (16), (17), and (18) to obtain the cartesian 

components of r(t). What we desire is an expression for the assumed 

(or actual) apparent position of the source in the _local horizon system 

of Figure 5 using an initial guess (or knowledge) of the position of 

the ship on the earth. If this assumed (or known) position is given 

by the longitude and latitude angles, A0 (t) and 8 (t), respectively, 
. 0 

we may then obtain the assumed actual source position unit vector, 



r~(t)' in th.e local horizon system by substituting >-o(t) and oo(t) 

into the A(t) matrix in equation (24). This gives us the approximate 

(or actual) transformation A0 (t), and we obtain 

(57) 

To obtain the. cartesian components of the assumed apparent position 

unit vector, ra' (t), we use the. assumed refraction matrix, R0 (t), 
0 

given in (53), where, from measurements, the surface refractivity is 

known and we use assumed (or actual) values c
0 

and As . From (46) 
. . 0 

we have 

= 

and from equat1ons (49) and (50) 

As ( t) 
0 

r' zo 

(58) 

(59) 

The assumed apparent position unit vector, r~0 (t), is then given by 

(60) 
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This vector gives the direction in which the optical axes of the inter-

ferometer antennas should be pointed. To track the antennas in this 
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Figure 16 The "Rest" and "Moving" Ship Coordinate Systems 

Assumed * Apparent 
Position 

r~ ( t) /0 

- - - ----~---~ ~01 ( t) 
-- X -- lo 



direction we will need equations of motion for direction .coordinates 

that are fixed with respect to the ship. These coordinates are the 

longitudin~l, transverse and zenith coordinates defined previously 

for both the "rest" and "moving" ship positions as shown in Figure 16. 

The coordinate system x
1

, x
2

, x
3 

is the same as that shown in Figure 1 

and moves with the ship. The system x
1 

, x2 , x 3 defines the coor-
0 0 0 

dinates that the ship would have on a perfectly calm sea. The roll 

pitch and yaw angles, ~ 1 (t), ~ 2 (t), and ~ 3 (t), are assumed to be known 

at all times us.ing the techniques described in section 2. 1. 

What we will now obtain are the cartesian components of the as-

sumed apparent position unit vector of the source in the "moving" 

coordinate system (x 1 , x2 , x), By means of this information it 

will be possible to transform to any convenient angular coordinate 

system attached to.the ship (and the antenna mo~nts), such as a.local 
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altitude-azimuth system, to continually track on the assumed (or actual) 

source-position. By using this scheme we shall get direct equations 

of motion that not only consider the rotation of the earth but also all 

motions of the. ship on the sea. We obtain the final transformation ih 

two more steps. The first of these is a coordinate transformation from 

the local hori;:on system to the rest-position-cartesian system. It is 

apparent by inspection of Figure 5 that this transformation is given 

by the matrix 

= (61) 

0 0 
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We now will obtain the transformation matrix from the "rest" system 

to the moving system. This can be done in three successive rotations, 

one for each angle sl (t), s2(t) and s3(t). The total transformation 

matrix is the product of these successive rotational transformations. 

Using Figure 16 the individual rotation transformations can be obtained 

by inspection. The total transformation is thus found to be 

1 0 0 cos £;2 0 -sin sz cos £;3 sin s3 0 

i 2 Ct) = 0 cos sl sin E; 
1 

0 1 0 -sin £;3 cos £;3 0 

0 -sin sl cos .;
1 sin .;2 0 cos sz 0 0 1 

If we denote the assumed apparent position-unit-vector as ra
0

(t)_ in the 

x 1 , x2 , x 3 coordinate system attached to the ship, this vector can be 

found at any time t from 

o R0 o A o r ( t) 
0 

(63) 

All calculations involved in this equation can be done by a com-

puter and the &1tennas can be servo-controlled to track on this posi-

tion, The mo~ions of the antennas involved in this tracking procedure 

will be of a very small angular velocity such as one-tenth or two-tenths 

of a degree per second. Such tracking motions should not be difficult 

to realize. We will assume that such a tracking procedure is carried 

out for each of the two interferometer antennas. Such a tracking pro-

cedure will, to a very close approximation, make the term B(t) for each 

(62) 
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antenna a constant. This occurs because the position of the source in 

the antenna power pattern remains fairly constant even though it may 

not be located exactly in the middle of the power pattern owing to an 

initial slight error in the assumed ship position. 

It will be assumed later that the term S(t) at each antenna of the 

interferometer is never so small as to effectively extinguish the source 

signal when compared to the background noise at the output of the corre-

lation receiver during the course of any measurement of position. The 

time involved in a single measurement is one or two minutes. The 

tracking proc.edure must therefore "initialize" the pointing of the an-

tennas so that the source is well within the main beams of the antennas 

and then. keep it there throughout the measurement of one or two minutes. 

The initial pointing, using (63), requires an a priori knowledge of 

the ship's position on the earth to within 1/3 or 1/4 of the main beam-

width of the antennas in both latitude and longitude coordinates. As 

an example, ~ dish 3 meters in diameter operating at f
0 

= 30 GHz will 

have a main beam width, 81 ~ 3.3 x 10- 3 radians. When observations of 
. . ~ 

the source .are made, close to the zenith, on the basis of an assumed 

ship position to within about 81 /3 radians we .are guaranteed that the 
·'2 

source is initially located well with~n the main beam of the antenna. 

Thus A
0 

and 6
0 

must be within about 1.1 x 10-3 radians~ .0625 degrees 

of the true ship-position. This is equivalent to an initial knowledge 

of position to witihin about 4.3 miles of the true position. Of course, 

once the interferometer system is operating continuously the ship posi-

tion will be known at all times to within a distance of one-hundredth, 

or a smaller fraction of the above figure. 
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III. 'i'HE INTERFEROMETER NAVIGATIONAL SYSTEI'! 

3.1 Time-Varying Phase Path Differences 

In this section· we consider a ve.ry general formulation for repre-

senting the output voltages of the two antenna/R.F. amplifier "front 

ends" of the interferometer in terms of phase path differences. Con-

sider the two antennas and R.F. amplifiers shown in Figure 17. The 

unit vectors, r~(t) and s' (t), are in the direction of the apparent 

source and along the baseline, respectively. The baseline distance 

is given by S(t), and the angle 8' (t) is the angle between s' (t) and 

r~(t). In vector no.tation we have 

s' (t) • r~(t) "' cos 0' (t) (64) 

As was shown in section 2.4, equation (56), the output voltages of the 

first and second bandpass R.F. amplifiers may be written in the forms 

(66) 

The terms S1 (t) and S
2

(t) are slowly varying amplitude functions gene-

rated by the source moving through the main lobes of the antennas. If 

the antennas are identical and are always pointing in the same direction, 

we have 6
1 

(t) ~ S2 (t)'. If the antennas are tracking on the source so 

that the source position does not change in the main beams of the antennas, 



Figure 17 Interferometer Phase Path Geometry 
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B1 (t) = S2 (t) = 60 , a constant term. The terms in the brackets repre-

sent narrow-band random signals generated by the incident fields from 

the source. These incident fields .at each antenna differ by a time de-

lay factor due to the different phase path lengths for the Fourier time 

components arriving at each antenna. If we assume that the R.F. ampli-

fiers have idencical narrow-band transfer functions, as shown in Figure 

15, and that the frequency dependence of the index of refraction profile, 

n(I', w), is smooth in the frequency neighborhood of w0 , then, to a 

close approxima~ion, each Fourier component of the incident random, 

narrow-band source-signal will have the same time delay. We may then 

write 

(67) 

The time "delay," -r(t), is a function of time given by the difference 

between the phase path integrals from the source to the second and 

first antennas, respectively, divided by the free space velocity of 

light, c. Not~ that a negative "delay" corresponds to a time advance-

ment of the signal at antenna #2 compared to the signal at antenna #1. 

1 ( t) 
1 ( 68) 
c 

Where P
2 

and P
1 

are the actual phase paths from the source to the second 

and first antenna, as shown in Figure 17, and n(R:; (t), w0 )· and n(9:"~ (t), w
0

) 



are the respective indices of refraction at the center frequency, w
0

, 

along the phase paths. We now replace the indices of refraction in 

equation (68) by their representations in terms of refractivity, N, 

using 

n ; 1 + N x 10-6 

and note that to a very good approximation 

J d.Q,' 
2 

p 1 (t) 

c 

d.Q,' + d(t) 
1 

(69) 

(70) 

where d{t) ~-s the straight line approximation to the last section of 

phase path, F 2 , as shown in Figure 17. The result is 

T ( t) = 
d(t) . 10-6 

+--
c c 

Looking at Figure 17 we see that 

d(t) = s(t) cos e' (t) 

which yields the formula 

S(t) s' (t) • r' ( t) a 

T (t) lltl. s' (t) • r~ (t) + llT(t) 
c 

(72) 

(73) 

39 
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where lic(t) is the second term on the R.H.S. of (71). If we assume that 

of the refractiv.i.ty of the a-tmosphere is only a function of height (ra-

dially stratified model), the integrals in lic(t) over P
1 

and P2 - d(t) 

are equal. If, then-, we approximate N(.Q,;, w
0

). in the last section of 

integration in P
2

, of length d(t), by N8 (t, w0 ), the refractivity at the 

surface which is also, in general, a function of time, we obtain 

I'll: ( t) 
c 

Substitution i:H.o (73) and the use of (69) and (72) yields 

1 ( t) 
c 

s ' c t) • r' ( t) a 

Let us define thP. time-varying phase difference 

¢ ( t) 
ns(t, w0 )S(t)u.'0 

c 

We may then rewrite (67) as· 

s' (t) • r~(t) 

(74) 

(75) 

(76) 

The noise terms N6 (t) and·Ns (t) are generated, as explained in 
l 2 

section 2.4, by sources other thari that observed. These two noise 

terms will be weakly correlated but will not differ by a simple time 

delay since they are each generated by fields incident from sources 

at all angles weighted by the antenna response function, as shown in 

equation (55). 
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The receiver noise terms, NR (t) and NR (t), are, in general, un-
l 2 

correlated and :heir effects are greatly reduced by the correlation re-

ceiver to be described in the following section. 

3. 2 The Correlation .Receiver 

We proceed now to cons~der the operation of a basic correlation 

receiver to be used for navigation by observing a discrete radio source 

whose celestial coordinates are known as a function of time. In the 

following section we will present the technique for utilizing the in-

terferometer and correlation receiver for navigation. The basic cor-

relation receiver ~s shown in block diagram form in Figure 18. The 

output signal~ from the bandpass R.F. amplifiers are of the form given 

in the preceding section by equations (65) and (66). 

vRF (t) 
1 

VRF (t) 
2 

= sin (66) 

For the interferometer navigational system to be described, we as-

sume that the identical antennas making up the elements of the interfere-

meter are tracking on the assumed source position so closely that the 

source stays well within the main beams. Therefore, the terms B1(t) = 

B2 (t) = B0 (t) c~ange very, very slowly and never become so small that 

the signal from the source gets lost in the noise at the output of the 

correlation receiver. We assume also that the R.F. and I.F. amplifiers 
I 

of both predetection subsystems have respectively identical bandpass 



Figure 18 The Interferometer and Correlation Receiver 
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characteristics such as are shown in Figure 19 (p. 68). The R.F. am-

plifiers are "narrow-band"; the refractivity function, N(i', w), w 

assumed to be smooth with respect to frequency in the neighborhood of 

w • We can thus represent the relative variations of the two source­
a 

signals vRF and vRF 
l 2 

by a simple time delay (or advancement) as 
' 

explained in the previous section. Using equations (65), (66) and 

( 77), we hav.a 
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VRF (t) 
l 

sin (78) 

VRF (t) 
2 

where from (75) and (76) 

T (t) 
c 

¢ ( t) 
c 

s'(t) • r1Ct) 

s' (t) • r' (t) 
a 

(79) 

(75) 

(76) 

The signals (78) and (79) are mixed with signals from the local oscil-

lators as shown in Figure 18. These local oscillators are phase con-

trolled with voltages given by 



VL (t) 
01 

(80) 

(81) 

The phase term ¢0 (t) will be explained in the following section. The 

mixed signals are given by 

v (t) 
ml 

Vm (t) 
2 

where 

= 

6¢ ( t) ¢0 (t) - ¢(t) 

(82) 

(83) 

(84) 
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and f
1 

and £
2 

are the upper side band terms at 2w0 - w
1

F that will be 

eliminated when the signals pass through the I.F. filters. The signals 

at the I.F. outputs will have the forms 
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(85) 

(86) 

where G is the I.F. amplifier- gain and N1F(t) and N1f(t) are the total 
0 1 2 

non-signal r.cise terms at the outputs of respective I. F. amplifiers. 

The ti<nP- delays at the outputs of the I.F. amplifiers are con-

trolled together to recorrelate the terms Vc(t - T) and V (t - T) in 
1 s 1 

(86) with their non-delayed counterparts in (85). This can be done in 

one of two ways depending upon the sign of the "delay," T(t). The 

sign of this t8rm will be known even though its exact magnitude will 

be unknown wh€'.n the ship 1 s exact position is unknown. For T > 0 we set 

T2 " 0 and set 1: 1 (t) to an assumed value for T(t) based on the assumed 

ship-position·. This is done using the assumed unit source direction 

vector, ~a0(t), given in equation (63) of section 2.5. Denoting the 

assumed apparent position of the source in the local horizon frame by 

the unit vector, ~a' (t), we define, using (75), 
0 . 

c 
§' (t) • ~a' (t) 

0 
(87) 

Now, using the invariance of the scalar product and the fact that in 

the "moving" sy3tem attached to the ship the unit baseline vector has 

the representation X , we obtain from (87) 
1 



• 

.. 

46 

c 
(88) T 0 (t) = 

where the X component of ra (t) will be known using (64). Since 
l 0 

Vc(t) and Vs(t) are random signals of bandwidth 6viF' their auto 
l l . 

correlation coefficients approach zero very rapidly for time separations 

greater than It is, therefore, mandatory that the error in 

1 
1 0 (t) be only a fraction of 

6viF 
Substituting n5 ~ 1 and denoting 

the angles from the s' vector to the actual and assumed apparent unit 

direction vectors r~ and ra~ as 8~ and 8~0 , respectively, we obtain with 

[ra
0

]X = cos 8~0 

cos e' - cos e' << a a0 
(89) 

where ll:\IF is the equivalent wavelength of the I.F. bandwidth fre-

quency. For observations near the zenith we expand the cosine func-

tions in Taylor's series about 0 = n;2. The result is 

ll8 << (zenith observations) (90) 

If we assume 6v 1F = 200 MHz and S(t) = 200 meters, we find, for example, 

<< 7.5 x 10- 3 radians 26 min (91) 

Requirements for accuracy of tqis order of magnitude will not introduce 



additional probl~ms in the procedure since use of the antenna tracking 

technique in section 2.5 requires a 60 , that is, a fraction of the 
max 
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main beam widLh. Such antenna tracking requirements will usually satisfy 

the additional requirement in (89) easily. 

For the cas2 ofT< 0 we set 1
1

; 0 and set T
2

; T0 (t). The time 

delay circuits in Figure 18 may consist of binary sequenced delay lines 

such as are no~ used in the Hat Creek interferometer system. In using 

such a discrete delay circuit the resolution must be kept small enough 

so that the error, CT, is always less than l/6v
1

F . 

. The inputs into the final multiplier, vft) and v£t), as shown in 

Figure 18, will have alternate forms, depending upon whether 1(t) is 

positive or negative. These forms are given, for 1 > 0 and 1 < 0, 

respectively, by 1 > 0 =>T
2

; 0, 1
1

; T
0

; T- 61 

(92) 

(9 3) 

T<O =>T 
1 

U, T 
2 

T
0 

; T - 6T 

(94) 
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The pair•~d inputs in (92) and (93) or (94) and (95) are now mul-

tiplied and the resultant put through the final low-pass filter or 

"integrator." The transfer function of this low-pass filter is shown 

in Figure 19. The products put into this filter are of the forms 

T > 0 

Vs(t ~ T) - Vc(t - T) V8 (t - T + ~T)J 
l l l 

2 
sin 

(96) 

1 < 0 

v
1 
(t)v

2 
(t) = 'G~S (t)S(t - T0 ) >: 

{ ~v c f i + M) v_'"'_· ~-· ~....,:,---+_. _v_s_~-t~+-t:,_T_)_v_s_f_t_) ] 

6T)Vs(t) ~ Vc(t)V5 (t 
1 l l 

(97) 
2 



The terms g and h represent upper side band terms at a frequency of 

2w1F that will be eliminated by the low-pass filter. The terms N0 ' 1 

and N
02 

are noise term5 with bandwidths'of 2wiF' When the product 
''-

in (96) or ('::17) is passed through the low pass filter only the low 

frequency compo~ents of the noise terms will remain. The time average 

noise power is directly proportional to the noise bandwidth so we must 

make the low pass cutoff frequency w
1

p as small as possible while 

·still passiug the first term in (96) or (97). Note also that since 

tiT is much sll'.aller than the reciprocal of the bandwidth of Vc or Vs 
1 ' 1 

we will hav~ ~ith t' = t or t' = t ~ 1 

(98) 

and_ 

(99) 

The final output, v
1
p(t), will have the form 

.(100) 

where< >indicates the passage of the enclosed term through the low 

pass filter. If this low pass filter were an ideal integrator these 
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brackets would indicate time averaging. The term K(t) is a very slowly 

varying, almost constant, function whose origin lies in the antenna 
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amplitude function B(t). The term n 0 (t) is a very small noise term 

residual that w2s pass,ed through the low pass filter. Typical sample 

functions for the terms K(t), [ V~(t') 
1 

+ V~(t') ], and n 0 (t) are shown 
l . 

in Figure 20. For the sake of brevity we will denote the multiplicative 

term of the cosine function as V0 (t). 

( 101) 

This term will, in general, be almost constant with a slight quasi-

h'armonic variation about the mean value <V
0
> as shown in Figure 21. 

The minimum period of this quasi-harmonic variation will be limited 

by the low p~ss filter and will be approximately equal to the reci-

procal of vLP' The"minimum value of WLP will be set by the requirement 

that we must pass the cosine term showri in (96) or (97). The ?rgumefit 

of this cosiw'! t'erm is the key .~o using the interferometer for navi-

gation. To pass this cosine term the low pass filter must have an 

upper cutoff frequency of at least 

d 
dt 

(102). 

We will now define,the. local oscillator phase shift term ¢0 (t) and 

1 

show how the interferometer may be used for navigation. For a more 

comprehensive discussion of the correlation-receiver and ot?er types 

of receivers the reader is referred to such references as.Kraus, 

[3, pp. 236- 290], Bracewell, [8), or Christiansen.and Hogbom, [9, 

pp. 190 - 210]. 
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Figure 19 R. F., I. F., and Low-Pass Filter· Transfer' Functions 
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Figure 21 The Amplitude Multiplier of the Cosine Function 
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3.3 The Navigational Technique 

All wock np to this point was done to lay a foundation .for this 

section. As was shown in the preceding section the output of the 

correlation receiver with the interf~rometer antennas tracking on a 

discrete sourr.e is given by 

(103) 

The phase difference ~erm is given by 

(84) 

where the term ¢(t) is the unknown fringe phase of the source and 

¢> 0 (t) is the known phase injected into the local oscillator //2 as 

shown in Fig•Jre 18. The method to be presented in this section will, 

. in principle, work for almost any ¢0 (t) that is chosen. There is, 
I 

however, an optimum choice for ¢
0
(t). Recall that in the last part 
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of the previous section we discussed the minimum low pass filter cutoff 

frequency. Sin•:e the time-average noise power in n
0 

(t) is directly 

proportional to WLP' we should make this cutoff frequency as small as 

possible while still passing the cosine term. The minimum cutoff fre-

quency required to accomplish the passage of the cosine term is given 

in equation (102). It is apparent that a minimum w
1

p will be allowed 

by minimizing ~t(t) at all times. The optimum choice for ¢ 0 (t) is thus 

the best guess we can come up with for ¢(t). This best guess is obtained 



directly from the, antenna tracking procedures developed in section 2.5, 

as was also Lhe best guess for c
0

(t) that was obtained in the previous 

section. If we obt'ain the best guess of ra (t) in the "mo'ving" coor­
o 

din~te system, (x 1 , x 2 , x 3 )~ attached to the ship using equation (63) 

r a (t) 
0 

= (63) 

where T1 , T2 , R0 and A0 are given using the procedures in section 2.5, 

the best guess for ¢(t), namely ¢
0
(t), will be given by 

( 104) 

This is, of course, just equal to w0 c 0 (t). The rationale behind the 

"best choice" for ¢0(t) can be summarized by stating that we wish to 

make the "frequency aperture" of the low pass filter as small as pos-

sible to restrict the passage of the noise term. At the same time we 

need to collapse the frequency spectrum of the phase term ¢(t) so it 

\~i 11 fit through the low pass fr-equency aperture. To accomplish this 

we subtract a best guess for ¢(t), namely ¢ 0 (t). Once the collapsed 

phase term passes through the low frequency ,aperture we add back the 

known term ¢ 0 (t) and obta_in ¢ 0 (t) •...rith a minimum noise transfer. 

We will now discuss how we add back the ter-m ¢
0
(t) onto the output 
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phase. We will also subtract or add the known term w
1

FT 0 (t) so we obtain 

the term ¢ (t) alene. The correlation receiver output, v
1

p (t) is sketched in 

Figure 22 includj_ng the noise term n 0 (t) and the amplitude term V0 (t). 

Since the low p.c.ss filter is chosen to just pass the cosine term the periods 
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of variation of V0 (t), n 0 (t) and cos (~~ ± w1FT 0 ) will be about the 

same. The noise term n0 (t) and the amplitude term V0 (t) will inherently 

introduce slight errors in the measurement of the phase of the cosine 

term. The output, v1p(t), can be fed into a phase detector directly 

or can be prepared for phse detection using a shaping circuit. The 

phase detector can not detect the absolute phase of the cosine term but 

will give the relative changes of phase of the cosine term. There is 

thus an ambiguity of 2NTI in the measured phase of vLP(t). This does 

not matter since we will only be interested in phase variations of 

¢(t). To obtain these phase variations of ¢(t) we use the system shown 

in Figure 23. The input to the phase detector is the correlation-re-

ceiver's output, vLP(t), in analog form. The phase detector gives a 

digital output of the term 

= (105) 

where 2NTI is the unknown ambiguity in the absolute value and tK are 

the discrete time values for which this function is read out. The 

resolution of tK must be small enough to track the variation of ~(t) 

closely. The measured numerical phase is then read into the adder 

circuit which adds the known ¢0 (tK) and± w1FT 0 (tK) to ~(tK). The 

numerical output of the adder will be ¢(tK) + 2NTI. Using this output 

' we can obtain the change of pha.se of Ht) between any two discrete times 

ti and tj by simple subtraction. Let us define this measured phase 

difference as 



Figure 22 Correlation Receiver Output (Dashed lined indicates 

the output without noise and with a constant 
multiplier Vo ) 

VL.P.(t) 

----

Figure 23 Fringe Phase Recovery System 

Phase A/D Adder Detector 
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y < ti I t.) 
J 

(106) 

To see how we will use this measured phase variation to obtain 

the position of the ship we use (57) and (76) to write ¢(t.) as 
l 

= 
c 

Using (106) we obtain 

= 

(107) 

(108) 

A few approximations can be made for this expression. The first of 

these is the assumption that ns(t) is approximately constant over the 
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course of several minutes. The second approximation will be to replace 

R with the known matrix R0 • These approximations are made only to sim-

plify the navigational technique and should introduce no serious errors. 

The success of the method is not contingent upon these assumptions and 

a more general, but·messy, technique can easily be developed along the 

same lines as our simplified method, but wi.thout the above assumptions. 

Substituting the above assumptions into (108) we obtain 

c 

(109) 



When we look at this expression we notice that:all terms on both the 

L.H.S. and R.H.S. of this equation are known or measured except A(t.) 
1 

and A (tj), That is 

a) y(t1 1 tj) is measured. 

b) S(t), the baseline length, is measured. 

c) s(t), the unit baseline vector is measured in the hori-

zon system. Its cartesian components are given in equa-

tions (11) to (13). 

d) R
0

(t) is known using the technique of section 2.4. 
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e) r(t), the unit source direction vector in latitude-longi-

tude coordinates, is known from tabulated data. 

To simplify the notation to follow let us define the vector 

B(t) = 
w n_ 

0 s 
c 

s (t) ~' (t) R Ct) 
0 

(110) 

The components of this vector will be known. Substituting into (109) we 

obtain the equation 

Using the 1,2,3 representation for the cartesian components of B and 

r we can rewrite equation (111) in the form 

3 3 

.~ L Bm(ti) am.t(ti) r~ (ti) 
m=l £=1 

Bm(tj) am1(tj)ri(tj) = y(t 1ltj) 

(112) 

On examining A(t) in equation (24) we notice that its unknown elements 

am£(t), if found, would give us the position-longitude and latitude co­

ordinates of the ship on the earth. Let us say we desire to know the 



59 

position of the ship at tj = t
0

• A knowledge of the matrix elements 

am9.(t
0

) will provide us with the ship's position. We notice in equa­

tion (112) that there are two sets of unknowns, a" (t.) = a0 (t ) and 
.... m J .... m o 

a9.m(ti). To express a9.m(ti) in terms of the desired unknowns atm(t
0
), 

where ti ~ t
0

, we use the equations of evolution derived in section 2.2. 

Using these equations, (34) to (41), we substitute for an (t.) in terms 
"'m ~ 

of a" (t) in (112). The result can be expressed in the simplified 
.... m o 

form 

= 

Where the coefficients Fm.e are given on the following· page in terms 

of known or measured functions. The functions f
1

, f 2 , g, and g
2 

are 

given in equations (29) to (32) and are measurable. Using (25), the 

matrix A(t ) is given by, 
0 

cos ;1. ( t ) 
0 

-sin A.(t ) 
0 

0 

(113) 

A.ct ) 
0 

sin ;l.(t ) sin o(t ) 
0 0 

cos A ( t ) sin 8 ( t ) 
0 0 

-cos6(t ) 
0 

sin ;l.(t ) cos 6(t ) 
0 0 

cos ;l.(t )cos 6(t ) 
0 0 

sin6(t ) 
0 

(114) 

To obtain f
1

(t) and f
2
(t) from (29) and (30) we use the assumed value 

00 (t) for the declination 6(t). 
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The values of Fmt are: 

F
11

(t
1 

lt
0

) = B
1
(t

1
)[ f 1(t

1
)r1 (t

1
)- f 2 (t

1
)r

2
(t

1
)] - B

1
(t

0
)r

1 
(t

0
) 

F 12 (t
1

1t
0

) B1(t
1
)[ f 2 (t

1
)r 1 (t

1
) + f

1
(t

1
)r2 (t

1
)] - B

1
(t

0
)r2 (t

0
) 

F
21

(t
1 

lt
0

) = B2 (t
1

) [ f
1
(t

1
)g

1
(t

1
)r

1
(t

1
)- f

2
(t

1
)g/t

1
)r2 (t

1
)] 

+ B3(ti) [ fl(ti)g2(ti)ri (ti) - f2(ti)g2(ti)r2(ti)] 

- B 2 (t
0
)r

1
(t0 ) 

F22 (t
1 

lt
0

) = B2 (t
1

) [f2 (t
1

)g 1 (t
1
)r 1 (t

1
) + f

1
(t

1
)g1(t

1
)r

2
(t

1
)] 

+ B3(ti) [f2(ti)g2(ti)rl(ti) + fl(ti)g2(ti)r2(ti)] 

- B2 (to)r2 (to) 

F23(tilto) = B2(ti) [gl(ti)r3(t:i) + g2(ti)r3(ti)J- B2(to)r3(to) 

F3l(tilto) = B2(ti) [fl(ti)g2(ti)rl(ti) + f2(ti)g2(ti)r2(ti)J 

F ( ti It ) 
32 0 

+ B3(ti) [fl(ti)gl (ti)rl (ti) + f2(ti)gl (ti)r2(ti)] 

- B (t )r (t ) 
3 0 1 0 

= -B2 (t
1

) [f (t
1
)g (t.)r (t.) 

2 2. ]. 1 ]. 

- B (t )r
2
(t ) 

3 0 0 

+ f (t
1
)g (t.)r (t.)] 

1 2. ]. 2 ]. 

F33(tilto) = r3(ti)[B3(ti)gl(ti) - B (t
1
)g

2
(t

1
)l- B (t )r (t ) 

2 J 3 0 3 0 

(115) 
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There are several algebraic techniques for extracting the position 

coordinates A(t ) and o(t ) from the set of equations in (113). All 
0 0 

of these techniques, but one, require the solution of a nonlinear and 

mixed system of equations. Looking at (114) we see that there are 

only two "independent" variables, A(t) and o(t ), that generate the 
0 0 

= eight nonzero elements of the A matrix. These independent variables 

generate the matrix elements in a nonlinear manner through transcendental 

equations. Even though there are only two "independent" variables A(t ) 
0 

and o(t ) the equation (114) can generate eight "linearly independent" 
0 

equations in the eight linearly independent variables am~(t0) (with 

a
13

= 0 ). As an example of the linearization of a nonlinear system con­

sider the equation 

sin X + y (t) cos X = Z(t) 
0 0 

(116) 

This is a nonlinear transcendental equation in the single unknown X • 
0 

If we let W = sin x then this becomes a nonlinear equation in lti · 
0 0 0 

w 2 
0 

= Z(t) 

The functions y(t) and Z(t) are parametric in the variable t. They 

are not independent but can assume different but coupled values as t 

· is changed. The system (one equation) in (117) can be solved for W 
0 

directly using only one value of t. We can, however, also solve the 

system by defining a second linearly independent variable W = cosx 
l 0 

(117) 
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and rewriting (116) as 

z ( t) (118) 

If we let t take on the values ta and 1b we obtain the coupled system 

of two linearly independent equations 

z (t ) 
a 

which can be solved directly by elimination. 

(119) 

In the same manner as we converted the nonlinear equation in (116) 

to the linear system in (119) we will now convert the nonlinear system 

in the two variables; /.(t ) and o(t ), in (113) to ·a higher order system 
0 0 

in the eight linearly independent variables arnl(t
0
). Thus, the 

technique for obtaining the ship's position at any time, t • is to 
0 

measure and calculate the values Fm!(ti t
0

) and y(ti t
0

) for eight 

consecutive discrete times ti > t
0 
•. We then simply solve the linear 

system of eight equations in eight unknowns. 

3 3 

L:l: 
m=1 £=1 

F .(t. It) a_.Ct) = y(tilt
0

) 
m.,· 1 o w.<. o 

i = 1,8 

We need only to solve this linear system for two unknowns such as 

and 

a (t ) = cos/.(t ) 
ll 0 0 

a ( t ) 
3~ 0 

sino(t ) 
0 

(120) 

(121) 

(122) 
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to obtain the ship's position at any time, t • 
0 
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This solution can 

be obtained easily using numerical methods such as Gauss' elimination 

or even a direct use of Cramer's rule. Note that our solution for 

position will be at a previous time, t • To obtain the position 
0 

measurement at a future time we obtain 

a (t ) = -...}1 - all 
2 (t ) 

12 0 0 

and 

a (t ) = -~1 - a 2 (t ) 
23 0 38 0 

then directly use the equations of evolution in (35) a~d (42) 

cos A. (t) f (t) a (t ) + f (t) a (t ) 
1 11 0 2 12 . 0 

sin o(t) = g ( t) a ( t ) + g ( t) a ( t ) 
1 33 ° 2 23 ° 

In the preceding sections we used the term "assumed (or known)" 

ship position, unit direction vector, etc. The technique involved 

(123) 

(124) 

(125) 

(126) 

here is a convergent one in that after we start up the system by "assuming" 

a position so we can point the antennas and begin reading data, the data 

we obtain will yield position measurements that are superior to our 

initial assumption. Once the system is started up it should operate 

continuously even in moderately heavy seastates. In this way our 

"assumed" position will. be based on past measurements and the, use of 

the equations of evolution'; and the position should be very accurate. 
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• 

There are six sources of measurement error in this formulation 

whose effects will have to be considered in more detail in a future 

study in order to make a final evaluation of the realizable accuracy 

of the interferometer-navigational system. These sources of error, 

not necessarily in order of dominance, are 

a) The effect of the noise term n· (t) on the phase 
0 

measurement of the cosine term. 

b) The accuracy of the ship motion measurements using the 

c) 

accelerometer technique described in section 2.1. 

The accuracy of the bearing angle measurement, y (t). 
0 

(In this worker's opinion this measurement may be the 

dominant source of error in the entire technique). 

d) The error induced by assuming a spherically symmetric 

e) 

stratified index of refraction in developing the 

refraction matrix approximation in section 2.3 and in 

developing the time-varying phase path difference 

formulation in section 3.1. 

The error in measuring the surface refractivity N (t,w ) s 0 

and index of refraction n (t,w ) used in the refraction 
s 0 
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matrix approximation and time-varying phase path difference 

formulation. 

f) The accuracy of the ship velocity measurement used in 

f , f , g and g given in equations (29) to (32). 
1 2 1 2 
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