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PREFACE

Wofk on the development of a long bésé-liﬁe.interferometer tor
wavelengths in the neighborhood of 1 cm. started in the Space Sciences
and Radioastronomy Laboratories in 1970. In our annual report* for
1970-1971 we described the interferometer which we haa bullt at the
Hat Creek Radioastronomy'OBservatory and noted ﬁhat'radio sources had
been 1ocatéd which could serve for highly accurate work on geodesy
and navigation. Prof. Welch‘(co-principal—inﬁestigator) reported the
work, early in 1972, to the annual TAC meéting'for the review of the
electronics program held by the Electronics Research Laboratory of
the College of Engineerihg'and‘at that time put forth our ideas about
the use of an interferometer on board a ship as an Ilnstrument for
navigation.

Wé'ﬁhe; pfoceéded to study this matter éériously, The following
report covers a rather comprehénsive study Earried on by Mr. Michael
Morgan, a graduéte student in the Dept. of Electrical Engineering and
Computer Science, under the direction of Prof. Silver. The report is
not only a feasibility-study but also delineates the techniques to
be emplbyed, both analytically and operationally, for locating the

position of a ship on the sea from a knowledge of the position of a radio-

% .
R. Hills, W. Hoffman, M. Janssen, D.D. Thornton, 5. Silver, W.J.
Welch, The Development of an Interferometer for Millimeter Wavelengths,
Space Sclences Laboratory Report, Series 12, Issue 64, Aug. 1971,




soﬁrce in the sky.

For the waveléngth region of 1 cm. a long base-line interferometer
can be estéblished on board a ship by placing the two elements -- an-
tennas —- at the fore and aft positions of the deck; all of the lines
and complex electronics can be located below deck; it is, in fact,
desirable to do that. It is possible to go a step further, for, un-
less it 1s necessary to cﬁart position continuously, the antennas can
be used for other operations. Ohe needs only a switch arrangement
whe;eby the anﬁennas can be .connected to operate in the interfe;ometer—
mode or be disengaged from the electronics of the interferometer and
tied in to other systems. The point of mentioning this is-to allay

arguments -about costs and that the interferometer ﬁill rob the ship

'of other capabilities.

‘whether or not the techniques developed in this report find their
way into naval operations depends on the evaluation made of them by the
Department of the Navy. There are undoubtedly many operational consider-
ations to be taken into account but such matters lie outside our area
of competence And responsibility. The importanE poiht is that this work
stands as an example, of considérable-merit in this writer's opinion,
of how the pursuit of basic research, in this case in radioastronomy,
can and does lead to applications and operational systems. We trust

that what we are presenting in this work does have practical utility.

Samuel Silver
| Principal Investigator



I. INTRODUCTION
o | |
The subject of this report is an examination of the feasibility
of ﬁsiné a loné;baseline interferometer aboard a ship as a navigational
device. The ideal theoretical resolution of such. an interferometer‘with
a correlation-receiver has the potential of determining the latitude
and longitude of a ship at sea with great accuracy. For example, an
interféromefer whose base-line is 200 mefefs, opéraﬁing at a wavelength
of 1 cm., has a cént;‘.alfringe of aboutk‘ 10 seconds oif arc. By observing
discrete (i.e., point-like) radio stars, whose celes%ial coordinates
have been determined by land-based obsérvatories, in:the near zenith
position feiative to the ship the position of the sﬁip on the earth can
be established with an angular accuracy of about ;ﬁe fesolving power of
the interferometer, For the example quoted, a cpﬁservative estimate of
this accuracy is 10 sec. of arc for the angglar coordinates which re-
presents loﬁation of position to an‘accuraéy better than 1000 feet.

Iﬁ adaifion to the édvantage of résolving power‘there 1s the advan-
tage that thé instrﬁmenf is not limited to nighttime use. As in the
optical case, however, the use of the system is limited by meteoroldgical
conditions, The limitations imposed by meteoroclogical conditions are
strongly depgndént on the frequency (or wavelength) at which fhe system
operates. |

—%he report .that follows has two major subdivisions. The one
deals with topicé‘;;inéiiminary Topics =-- that providefihe framework
for computing position from certain types of data;thejbther deals with

o\
the special considerations of interferometry pertinént to a navigational

system and the navigational technique proper.
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II. PRELIMINARY TOPICS
2.1 Theory and Measurement of Ship Motions

The navigati&nal system envisaged in this report consists of a
microﬁave iﬁterferometer mounted on board a ship. On the océan, the
ship is a moving platform whose motions afe made up of translation
and rotations. The effect of such a moving platform'on the operation
of the interferometer 1s one of the major considerations in the devel-
opment of the navigational system. For this reason we present, in
this section, some elementary information from the theory of ship
motions. A much more detailed development can be found in such ref-
erences as thoée by Blagoreshchenskii, [1], or Beurs, [2].

A ship on the ocean is sketched in Figure 1. The cartesian axes
xl, x;, x3 are the body-fixed principal axes of the ship. The general
motion of the vessel can be resolved into translation of the origin
which 1s assumed to be at the center of gravity of the vessel and ro-
tations about the principal axes. The angular displacements are shown
in the figure as El(t), Ez(t)' E3(t); in nautical circles they are
known as the roll, pitch, and yaw angles, respectively. It is known
from experiment, [1; pp. 338-351], thatvwave height on the ocean and,
coﬁseqﬁently, the roll, pitch and yaw angles have amplitudes that are
random variables having Gausslan distributions. *he typlcal samplé
function for any of the three random variables Ei(ﬁ), i=1,2,3, is
sketched in Figure 2. The time dependence of these rotational dis-
placements in mild and moderate sea-states is quasi—sinuséidal with

an almost constant perlod of motion and a Gaussian distribution of

/



amplitudes. Typical standard deviations of roll, pitch, and yaw
arigles as functions of seastate for an 800 ft. vessel are given in
Table 1. Soﬁe typical period; of rolling in a mild seastate for
various éize vessels are given ianable 2.

| The geometrical factoré relétiﬁg the interferometer and a radio
source télthe principal axes are shown in Figure 3. The base-line

of the interferometer i1s along the xl-axis and its direction 1s speci-
fied by the unit vector &(t) which in a space—fiﬁed feference system

1s a function df'timé.-‘The.radio-star-source is located by the unit
vector £(t) which 15 a function of time in both the ship-fixed axes

and the space-fixed axes by virtue of the motion of the ship and the
rotétion of the earth. The angle betwéen §(t) and #(t) 1is denoted by
0(t). The length of the interferometer baseline is given by S(t).
There will be time-dependent perturbations in thils baseline length due
to both thé‘effects of mechanical stress and thermal expansion. To
obtain the maximum achievable resolution of the interferometer, of the
order of one "fringe width" it is ﬁecessary to kncwvthe length of the
physical baseline, at all times during the‘operation of the system,

to within a fraction of a wavelength. The variation in length due to
mechanical stress will depend upon the construction of the vessel. The
order of magnitudelof thermal effects can be obtained by assuming that
the ship'is constructed of steel with a mean linear coefficient of ex-
pansion of 1,2 x 1073 (C°)'I. A temperature variation of 25 °C = 45 °F
on a vessel made of such material generates a change in length in the
amount of 6 cm., in a baseline whose reference-length is 200 meters. If

the wavelength of operation is 1 cm., the apparent location of sources
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Table 1 Typical Standard Deviations (800 ft. vessel)

Seastate ‘

, -0 2 3 6
Roll og 0" 1-2° 5-6°  >10°
Pitch cug2 - 0° 2-3° "'5-45 40
Yaw 055 ' 0° 0-1° 3-4° 5-8°
Table 2 Typical Perlods of Rolling (mild seastate)
Vessel Type Displacement (Tons) Period (sec.)
Ocean Liners 30,000-50,000 . 20-28
Battleshiﬁs " " <.10,000 ' 14-18
Heavy Cruisers - <10,000 ’ 13-15
Destroyers < 10,000 ; ‘ 7-9

Patroi Boats < 10,000 46



Figure 3 Ship and Antenna Geometry
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can be changed by as much as six fringe widths. It is, therefore,

necessary to have a subsystem for monitoring accurately the length of

. the baseline. Several techniques are available for this purpose; one,

for example, is to measure pulsé return time on a tauﬁ, but stretchable,
shorted transmissioﬁ‘line;r We will aséﬁme in the subsequent discussion
that’s(t) is known to Qithin a fraction of a wavelength at all times.

The techniqué for détepmiﬁing‘the roll, pitch, and yaw angles of
the interferometer baseline utilizes highly accuraté'accelerometers,
pléced judiciously on the vessel, as shown in Figure 4. The sensitivity-

|
directions of these linear accelerometers are shown by the attached

“vectors. The magnitude of linear acceleration is given by ai(t)

ox bi(t), i =1,2,3. The subscript (1) is related to the angular dis-
placement Ei derived from the particﬁlar accelerometer's data. The
first‘set of accelerometers is located along the xz axis, one on the
starboard and oﬁe-on the pért side of the ship. The second and third
sets of.accelerometers,-(az,bé) and (aa,b3), are located at the antemnna

positions. The roll, pitch and yaw angles are obtained by "integrating"

the differential equations -

d2g, dg
i ds i _
s —* 4 2-F g - [2,¢0) - b, (t)] (1)

for t = 2,3 with appropriate initial conditions on Ei(t). The equatien

for El(t) contains the distance H(t) between the accelerometers al‘and

. ‘ ‘ W
b1 and there is no cross-product term gt %%l- .

' The{extent to which the time dependence of the length of the base~

line, S(t), and the time dependence of W is significant depends on thermal
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and mechanical stresses. Data on these factors will have to be ob-
tained before we pass judgment on the question.
To a first order approximation in which we neglect the cross-

-ds d ;
term = E%l the angles Ei(t) are given by

©LT la ) = b ()] |
E (t) = . — dn dt (2)
! o Jo W (n) '
t AT |
, [az(n) - b, ()]
E (t) = ' dn drt : (3)
2 0 S (T])
T la () - b,
£ (t) = [ 23707 30 dn dt (4)
T 0 S () '
on the assumption that
Ei‘(o) =& (0) =0 i=12,3 (5)

Tﬁe de;ired accuracy of the meaSqred roll angle, El(t), is not
extremely critical because rotation about the interferometer's base-
line does,nét affect the fringe pattern} Rolling motion will, however,
shift the position ofvthe'source‘in the main beamé of the element-

antennas of the interferometer. The angles Els 52 and Ea are needed
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to slowly track the two ;ntennas to comﬁensate for the ship's ﬁotion

én& keep the rosition of the sourée fairly constant in their méin beams.
For this reason the error in the determination of §,(t) should be much
smaller than the main beam—width. Typical beamswidths at centimeter
wavelengths for moderate size parabolic reflectors are usually of the

order of a few minufes of arc. For a 5 meter reflector and X = 1 cm

we have 6% ~ 7 win. The £equired accuracy of the pitch and &aW\

angles is much more stringent. These angles are used not only in the
antenna tracklng scheme but also in the datg-processing scheme for deter-
mining the‘éhip's position from the measurements of the phase-correlation
of the waves from the source detected by the two anﬁenﬁas,of the inter-
ferometer. The error-tolerance of the pltch and yaw angles must be iess"
than a fringe widtﬁ} which at déngimeter wavelengths 1s of the order of
magnitude of several seéonds of arc. The use of highly accurate accelero- -
meters located at the antennas should givé 52(t) and ga(t) with very

small error. Note that in this procedufe that we have just sketched

even the effects of bending of the baseline due to lack of perfect rigidity

of the vessel are included in the measurements.

2.2 Coordinate Systems and Transformations

We need to use three fundamental coordinate systems in developing
the theory of navigation by means of the interferometer. These sy;tems
which we name (a) the local Horizon system, (b) the 1atitude-iongitude"
system and (c) the celestial system are shown in Figures 5, 6, and 7;

respectively. In the local system, ?igure 5, the x', y', and z'

cartesian axes are oriented in the due West, due South, and zenith\direé—
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tions, respeétively. The orientation angles of the unit baseline

vector,lg*(t), are given by the azimuth and elevation angles, A(t)-

and E(t), respectively, as shown in Figure 5. These angles should
8 : ,

be monitored at all times and are given-by

‘A(t) . = By (6) 4 T+ p (0) : (6)
- B = =g, (0 | o (7)
-where
E?-(t) = pitch ang}e
Eé () = yaw apgié
Po (tj = sh}pbearing'(Eaé£ of North)

The ”aﬁparéntﬁ-source bosition unit vector, ia'(t);J\points‘in the
direction that the source appea£s to be located with respect to the
ship. This apparent,sgu;ce positibh may differ ffom the actuai source
position, fepresented by the unit vector 2'(t), because of atmospheric
effects. These effects will be‘considéred in more detail in the fbi—
lowing section wﬁére an‘appréximate linear transformation between
.;‘E'(t)_and‘?a'(t) will be derivgd by means of ray-theory on' the basis
that thé.effeccvié‘ascribable to refraction bylﬁhe atmosphere. Note )

that the exact cartesian components of £'(t) or 2,'(t) are mot known

a priori in the local horizon system.
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In the lati;udé—lbhgitude coordinate, system, Figure 6, the xy

plane is the equatorial plane of the earth while the yz'p}ane is the

Greenwich meridian plane and the z axis is the polaf axis. The

orientation angleé, 6 and A, of the unit vector, %', in'the direction

of the zenith relative to the ship, are the latitude and longitude

angles, respectively, of the position of the ship on the e?rth. It

is these angles:which the interferémeter,navigationél system will

supply to a very high degree of accuracy. The unit vector, §$(t),

1s parallel to the x'y' plane and corresponds to the rest position

that the unit baseline vector, &'(t), would have on a perfectly calm

sea. The azimuth and elevation angles of this unit baseline 'rest

position" vector are given by

A (1)

Eo(t?

T o+ po(t)

[}
o

}

(8)

(9)

13

The cartesian components of 3'(t) and Q;(t) will be known at all times

during the operation of the intefferometer-navigational—system and are

given by

s, (8)
s;(t)

s;(t)

sin A(t) cos E(t)

‘

= 0§ A(t) éoé E(t)

sin E(t)‘ o

(10)
(11)

(12)
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and

s;o(t) = sin Ao(t) w ; B | i (13)
s;o(t) = ¢cos Ao(t) ‘ ' (14)
S;O(t) = 0 7 (15)

The equivalent latitude and longitude angles of the actual source
position are given by SS and AS, respectively. These angles can be
found at any time using the tabulated declination and right ascension
of the particular source being considered. The cartesian components

of the un#t position vector of the actual source, $#(t), can be obtained

using

'rx(t_) = sin A_(t) cos &_ (16)
 ry(t) = cos As(t) cos Gs - (17)
rz(t) = sin ds . | (18)

Note that the exact cartesiap components of the unit baseline vectors
a(t) and Qo(t) are not known a pricri. It will be shown that simulta-
neous knowledge of the cartesian components of any vector in both the
local horizon system gnd the latitude-longitude sjstem is equivalent

to knowledge of the position of the ship on the earth.
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'The celestial coordinate s&étem.is shown in Figure 7. The
x"-axis points in the direction of the vernal equinox which is also
referred to as the "first point of Aries." (Years ago this axis was
oriented towards the constellation Aries while at present, due to
. precession of the earth's polar axis, the x" axis points towards the
constellation Pisces.) The x"y" pléne is the equatorial plane and the
z" axis 1is colinear ﬁith the z axis of the latitude-longltude system.
The poSition aggies of tﬁe actual soﬁrce'locatidn, @ and 65, are the
right asceﬁsion‘and declinati6n'angieg, respectively. The angles will .
be known for any particulaf source using tabulated data obtéinable
from groundeased measurements of positions and appropriate correction
procedures for the given epoch. A detailed description of the various
standard coordinate systems énd the procedure for making the necessary
corrections in the position of a source for a giveﬁ epoch using the
ebhemeris are given in manyvtexts on optical or radio astronomy such as
that by Kréus, [3, chapter 2].

The declination angie, 65; and the equivalent létitude angle, SS,
are,of course, the same. The-relationship'between the right ascension
angle, as(t), and the equivalent longituQe angle, As(t), is shown 1in
Figure 8. The angle, u(t), measured in radians, 1s given by

w(t) = Iz (5.T. + E.T.) \ (19)

where

S.T. = sidereal time

E.T. = ephemeris time
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8.T. can be obtained directly from "The American Ephemeris and Nautical

Almanac" or similar ephemeris. E.T. can be obtained from Greenwich mean

time, G.M.T., using
E.T. = G.M.T. + AT - (20)

where the correction term, AT, is given for the particular epoch in

any standard ephemeris. The relationship between ag and As(t) is,

as shown in Figure 8,

+ = :
a As(t) p(t), _ (21)
Later in thils report we will use explicitly the linear transfor-
mation between the cartesian components of a vector in the latitude-
longitude system and those of the same vector in the local horizom

cocordinate system. This transformation can be represented in matrix

from by
U = a0 . (22)

where U' and U are colum vectors whose elements ere.the components of the
given vecter in the respective coordinate systems. The elements of the
transformation matrix can be ob;ained easily by censidering‘the total
transformation to be composed of two successive unitary rotaﬁion trans-
formations. Using the 1-2-3 representation, x + l,jy > 2,Iz > 3,

the transformation in (23) can be written as
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Figure 7 'Celestial Coordinates
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U= 2 AU, , i = 1,2,3 (23)
i j=1 ij '3

The elements of the transformation matrix, K; are gilven directly in
terms of the latitude- and longitude-coordinates of the ship, &(t)

and A(t), respectively,

[ cos At) -sin A(t) 0 1
At) = sin A(t) sin §(t) cos A(t) sin 6(t)  -cos 6(¢)| (24)
Lsin A(t) cos &6(t) = cos X(t)‘cosné(t)‘ siﬁ S(t)]

As was previdusly mentioned, the simultaneous knowledge of the car-
tesian components of any vector in both the horizon system and lati-
tude-longitude system 1s equivalent to a knowlgdge of the ship's lo-
cation on the earth. .We will now obtain equations of evolution of

: )
the terms in this transfprmation matrix. These equations will be
needed at a later time. ‘We note that the latitude and loQgitudelangles

may be expressed in the form

1

I

§(t) G(to) +  Ad(t) ’ ©(25)

ait) X(t;)’ + Ax(t) . (26)

Bt
The changes of these angles may be obtained by considering the motion
of the vessel cn the'planar projected latitude-longitude curvilinear

coordinates shown in Figure 9. The equations. of evolution of these ‘
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position coordinatequf,the ship are given by

t '
1 .
§(t) = 5(ty) + R f v(T) ‘cos po‘(T) dr (27)
. : - tO
t-
() = A(to), - ‘% 'J[K v(1) sec &(1) sin p;(r) dr (28)
tO ' ‘ _
where po(t) = measured bearing of ship (E of N), (radians)
"v(t) = measured speed of the ship, (ﬁ/sec)

i

R radius of the earth, (me;efs)

We now substitute (27) énd (28) intéithe matrix elements of (24)
gnd use the angle sum formulas. Defining
¢ -
f v(7) sec §(7) sin p,(x) dr (29)
to '

ne

. fl(t) Ccos

o |-

t

-/” v(T) seé §(t) sin pé(T) dt (30)

(1=

fz(t) sin

m | =

to

and

ne>

cOoSs

‘/- v(1) cos po(T) dr : (31}

o | b

81(t)
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t

./. v(1) cos pult) dr : _ (32)
. .

I
w
'—l
o

| =

g, ()

(o]

and using the zbvoreviations

a () = a. . i,y =1, 2,3 | (33)

we obtain the equations cf evoluticn

a/ () = foa  +fa - | (34)

a,(t) = fia,, - f,a ] (33)
aZI(t) = flgi521o - f1g23310 + fzgla220 - f2g23320 o (36)
a,(t) . = flglazzo - fi8p83; - D18y, faBp34 ‘  (37)
a23(t) h gl"szD - gzaasol (38)
3,0 = fra, rfea, * TR, * g, Q9
2,0 = flgla3;o * flgzézzo - fzg1a319 - fégzazlo (40)

az(t) = 81333 T ByBp3 | (41)
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i

2.3 The Refraction Matrix Approximation

As was mentioned in the Previous section We\Qill‘now derive an
approximéte lj;éar matrix transform#tioh between the unit vector, |,
2'(t), in the direction of the actual sourqé-pbsipion and the unit
vector, ia'(f),‘in the direction of the apparent source-position,
using ray theory. The ray path in fhe earth's atmosphere of an inci-
dent monochromatic‘plane wave of frequency w is shown in FigurellO.

The curved ray pﬁth taken by the incident field will be determined

by Fermat's principle [4, p. 356].

§ fn(f, w) ds = 0 .o (42)

=

where

n{?, w) = 1index of refraction as a function of position

and frequency.

If n(F, w) is a known function the variational equation in (43) may
be solved for the opticél path, s,.using the Euler-Lagrange equations.
At the po;ition of'the‘ship on the surface of the ocean the incident
field yill,apéear'to be coming from the direction, fa'(t). The error

) } :
angle between the actual and apparent source directions is given by
e. If we assume that the refractive index is only a function of height
above the earth, with no horizontal gradients, then it can be‘shown,

{5, pp. 82-871], that the error angle, ¢, is given by the integral




ng - , ‘ | ‘ ‘
_ . dn
e = cot x = % cot x dn . ' | (43)
1 - ' .

where ng is the surface indgx'of refraction and y 1is the angle of the

24

ray pth with respect to the horizontal, as shown in Figure 10. If we

assume that n=1 along the path, (since ng~1.0003), the approximate
form on the R.H.S. of Equation (44) is obtained. Substituting the
refractivity . ‘ L

N2 (a-1) x 10 o : (44)

into (44) and integrating by parts we obtain

N, ‘  Xs
. ~ —6 . -5 l ‘ . . ' N
e =, 10 f cot y dN = 10 Ngeot xg + f dx}(45)
o ' siny
0

/

2.4 Time-Domain Antenna Response

In this section we treat briefly the '"voltage"-response* of an
antenna to a source that is moving slowly through its main beam in

‘terms of a'quasi—static time-varying linear system approximation."The

*When the line into which the antenna‘feeds energy is a waveguide in
which the dominant mode is one other than a TEM-mode the transmission
~ line voltége and current requife special definltions. This is well-
knowp‘and treated in a number of books; for example, see R. E. Collin

(6, pp. 145-197].
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JFigure 12 Méving Antenna Geometry
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Figure 13 Equivalent Time-Varying Linear System

Linear Transfer
. Operator

N1

E(pw)l—= L(w,t) -fa—'VA(w,t) =L‘(ug.t)‘f8f',(,3iw)
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distant celestial source and the M6Ving‘antenna are shown in Figure
12, where the position of the source 1s to be regarded as being fixed
in the chosen coordinate system. The unit vectqr 5(t) points in the
‘direction of the center (axis) of tﬁe main beam of the antenna at a
given angular frequencf of operation w. The unit vector p' is a "dummy"
direction—vectof; The equivalént time-varying linear system for the
antenna and all‘sou¥ces of frequency w in all directions is shown dia-
grammatically in Figure 13, The driving term for the time-varying
linear system operator, L(w, t), is the Fourier time-transform of all
incident electric fields of the par;icular polarization to which the
antenna responds; we designate this quantity by Ep(ﬁ', w). The output
of the system, VA(m, g), is not a true Fourier transform becausg it
contains a slowly varying time-dependence. The time-domain response
of the receiving system is 6btained from VA(w, t) £y inverse Fouriler

transformation.

[+

v, (e) = %; f V(e T 39t 44 o (54)

-0

The time-dependent linear operator, L(w, t), involves an integration
over all solid angles of the Fdurier time-transforms of the incident
electric fields of particular polarization that the antenna is sensi-

tive to, weighted by an "antenna response function," A{p(t), p', w).

V(u, ) = [[ e, (o'y w) AG(E), o', w) dg (55
«
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This antenna response function has a magnitude that is proportibnal to
the square root of the antenna power pattern, p(p(t), f', w). In the
cqée of celestial sources the incident spectrum eole'y w) will, of
coursé,lbe annown, or,‘ét best, ﬁill be known statistically since the
processes that geﬁerate these incideﬁt fields are raﬁddm in natﬁre“
If we feed the aﬁtenna véltége into a narrow band-pass R.F.

amplifier, as shown in Figure 14, having a transfgr function as shown
in Figure 15, output voltage of the amplifier, in 'the time-domaih, may
be expressed in the form

'VR.E.(t)‘ = 8(t) [Vc(t) cos mo'; - Vs(tj sin mot] + Ng(t) + NR(t) {56)

e

The first term in the R.ﬁ,s.‘of (56) is the output due. to the particu-
‘lar source‘being obsérved; it COnsiéts of the portion of the integral
in (SS) over only the extent of the source being.passéd through the
narrow band R.F. amplifier with center frequency at Wy The terms in
the brackefs_are one of the canonical representation for a narrowband
sign31; [7, pp. 132-136]. 1In this case this bracke;ed‘term'represents
‘the narro&band random signal due to the source when the antenna is not
moving. The 3{t) multiplier represents phe very‘slowly chapging ampli-
tude variation of the récei;ed sigﬁal thét is due to the motion of the
antenna patt?rn, ‘Theugecond term in (56), Ns(t),,is an unde:siréd nar-
Fowgand "noise” ferm generated by_thé extended integration in (55)
'oyer.all gouﬁcés othervthan‘that‘being obsefved. ‘This term should be
kgpt felativéiy.small by using a highly directive antenna with very

small side loﬁés and by observing a strong source in a sparsely occupied




Figure 14 Bandpass R.F. Amplifier
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(w,t) = Hlw) -V, (w,t)

Figure 15 R.F. Amplifier Transfer Function

JH(wW)




29

Tegion of the celestial sphere. The tird term in (56), NR(t), is
thermal noise generated in the receiver which appears in the output
of the R.F. amplifiérf This term will depend upon the structure and
temperature of the various sféges of the entire receiver including
the antenna and R.F, amplifier. The interferometer system, to be
discussed in the -following chapter, incorporates two predetection
antenna/receiver subsystems. The NR(t) generated by each of these
two predetection sgbsystems are statistiéally indepéndent and hence
uncorrelated. The use of the correlation detection system will eli-
minate most cf the uncorrelated thermal noise but will not eliminate

the correlated, but undesired, nolse terms, Ns(t).

2.5 Antenna Tracking Equations

" In the preceding section there appeared a multiplicative term,
8{t), that represented the variation in the amplitude of the received
signal induced by the changing position of the source in the power

', w), of the antenna.

pattern or "antenna response function,” A(p(t), p
For a ship on the oceaﬁ fhis relative mption of the source in the an-
tenna's power pattern is induced by bpth the rotation of the earth

and the motiop of the ship on the sea. If‘the‘gntenna does not track

on the source to compensaﬁe‘for the roll, pitch, and yaﬁ motions of the
ship, coﬁsiderablé‘Signai—aﬁﬁiitude variations can result. These ampli-
tudelvariations will be roughly periocdic in nature, at least for an
axially symmetric main beam power pattern, and will have a periodicity

of the order of the mean value of the roll, pitch and yaw periods. The

magnitude of this amplitude variation will depend upon the ratio of the
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roll, pithh.and yaw angle variations to the main beam width of the an-
tenna.

In this section w? wiil develop tracking equations to keep the
source iﬁ a relatively constant location in the main Beam‘of the antenna.
For antenna beamwidths smaller than the supremum of the standard devia-
tions, Qﬁ‘ §é’ §é.in a given seastate, it will be mandatory for the
antennas of the interferometer-navigational-system to track on the
squrceland at least partially compensate for the ship's motion. The
equations which we shall develop in this section will be based on as-
-sumed initial values of the coordinates of the position of the ship.
This assumed position could be based on initial conventional naviga—
tioﬁal'procedures during the startup of the interferometer or could
be based on highly accurafe po;ition—fixes obtained previously by the
interferometer system.

The right ascension and declination of a given discrete source
will be known in the celestial coordinate system of Figure 7. The
cartesién components of this‘source direction can be obtained.in the
latitude~longitude system of Figure 6 by calculating the equivalent
longitude angle using (21) and also using the fact that &g = DEC.

We ;hen use équatiéns (16), (17), and (18) to obtain the cartesian
compoﬁénts of £{t). What we desire is an expressionlfor the assumed
(or actual) apparent position of the source in the local horizon system
of Figure 5 using an initial guess (or knowledge) of the position of
the ship on the earth. If this assumed (or known) position is given

by the longitude ana latituQe angles, Aq(t) and Go(t), respectively,

we may then obtain the assumed actual source position unit vector,
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(), iq Fhe local horizon system ?y substitgting Ag(t) and 84(t)
inte the Kkt) matrix in equation (24). This gives us the approximate
(or actual) tfansformation Ké(t), and we obtain

2o(t) = Ay(t) o £(v) | | (57)
To obtain the cartesian components of the assumed apparent position
unit vector, ia;(t), we use the assumed refraction matrix, ﬁé(t),
given in (53), where, from measurements, the surface refractivity is

known and we use assumed (or actual) values €6 and ASo' From (46)

we have

, 2 12 _
rx- + r
10-en, Y2 o (58)

go(t) =
r
Tzg
and from equations (49) and (50)
. (e _ | ‘
Aso(t) = tan ;;— (59)
. , o o ‘

The assumed apparent position unit vector, f;o(t), is then given by
$L(t) = R(t) o Ag(t) o #(t) (60)

This vector gives the direction in which the optical axes of the inter-

ferometer antemnas should be pointed. To track the antennas in this
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Figure 16 The "Rest" and "Moving" Ship Coordinate Systems
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direction we will‘need équations of motion for direction coordinates
that are fixed with réspect to the ship. These coordinates are the
longitudinél, transverse and zenith coordinates defined preﬁiously
for both the "rest" and "moving' ship positions as shown in Figure 16.

The coordinate system X, X X, is the same as that shown in Figure 1

2!

and moves with the ship. The system x X defines the coor-

1,0 M2 T3,
dinates that the ship would have on a perfectly calm sea. The roll
pitch and yaw aﬁgles, El(t), Ez(t), and Eg(t), are assumed to be known
at all‘times using the techniques described in section 2.1.

‘What we will now obtain are the cartesian components of the as-
sumed apparent position unif vector of the source in the "moving"
;oordinate Systém (x,, %,, X3). By means of this information it
‘will be possible to transform to any convenient angular coordinate
system attached to the ship (and the antenna mounts), such as a local
altitude-azimuth system, to continually track on the assumed (or actual)
source-position, By using this scheme we shall pget direct equations
of mation tﬁat,not‘oﬁly consider the rotation of the earth but also all
motions of_the‘ship‘on the sea. We obtéin the final transformation in
two more steps. The first of theselis a coordinate transformation from
the local horizZon system te the rest-position-cartesian system. It is

apparent by inspection of Figure 5 that this transformation is given

by the matrix
—cos Ay () " =sin Ao(t) ‘ ' OW

T,(t) = sin Ag(t) cos Ay (t) o] (61
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ﬁe now will obtain the transformation matrix from the "rest'" system

to the moving system. This can be done in three successive rotations,
one for each angle El(t), Ez(t) and ES(t). The total transformation
matrix is tHe product of these successive rotational transformations.
Using Figure 16 the individual rotation transformations can be obtained

by inspection; The total transformation is thus found to be

1 0 0 ] Zos £, 0 =-sin 52- rcos 53 sin 53 Oﬁ
?;(t) = 0 cos £, sin El 0 1 0 -sin 53. cos 53 01(62)
P -sin 51 cos El fin 52 0 cos EZJ i 0 . 0 1

If we denote the assumed apparent position-unit-vector as fao(t)‘in the

X X

1» Xy Xg coordinate system. attached to the ship, this vector can be

found at any time t from

(63)

2]
[W]
P
T
fa—
I
=
[+]
=3
[s]
o
el
a
o )
o]
=)
o~
T
p—

All caicuiatioﬁs involﬁéd in this equation can be done by a com-
puter and the antennas can be se;ﬁo-controlled to.track on this posi-
tion, The motions of the anfennas involved in this tracking procedure
wiil-be of a very small angulér‘velocity such as one-tenth or two-tenths
of a degree per second. Such.tracking motions should not be difficult
to realize, We will assume that sﬁéh altracking procedure 1s carried
out for each of the two interferometer antennag. Such a tracking pro-

cedure will, to a very close approximation, make the term 8(t) for each
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antenna a constant. This occurs because the pasition of the source in
the antenna pow2r pattern remains fairly constant even though it may
not bé located exactly iﬁ-the middle of the power pattern owing to an
initial slight‘error in the assumed ship position. |

It will bé assumed later that the term R(t) at each antenna of the
interferometer is never so small as to effectively extinguish the source
signal when compared to the background noise at the output of the corre-
lation receivér dﬁring the course of any measurement of position. The
time involvaed in a singlé measurement is one or two minutes. The
tracking~procedure muét therefofe,"initialize" the pointing of the an-
tennas so that the source is well within the main beams of the antennas
and then keep it there throughogt the measurement of one or Fwo minutes.
The initial pointing, using (63), requires an a priori knowledge of
. the ship's position on‘the earth tb within 1/3 or 1/4 of the main beam-
width of the antennas in both latitude and longitude coordinates. As
:an example, & dish 3 meters in diameter‘operating at fo = 30 GHz will
have a main beam width, 6% ~ 3,3 x 1073 radians. When observations of
the source are made, close to the zenith, on the basis of an assumed
ship position to within aboutle%/3 radians we are guaranteed that the
source is initiélly lqcated well within the main beam of the antenna.
Thus A, and §, must be within about 1.1 x 1077 radians = .0625 degrees

of the true‘ship—position, This 1s equivalent to an initial knowledge

.

of position to within about 4.3 miles of the true position. Of course,
once the interferometer system is operating continuously the ship posi-
tion will be known at all times to within a distance of one-hundredth,

or a smaller fraction of the above figure.
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'~ III. THE INTERFEROMETER NAVIGATIONAL SYSTEM
3.1 Time-Varying Phase Path Differences

In this section we consider a very géneral fdrmulation for repre-
senting the output voltages of the two antenna/R.F. amplifier "front
ends" of the interferometer in terms of phase path differences. Con-
sider the two antennas and R.F. amplifiers shown in Figure 17. The
unit vectors, %é(t) and §'(t), are in the direction of the apparent
source and along the baseline, respectively. The baseline distance

is given by S(t), and the angle 0'(t) is the angle between §'(t) and

£,(t).  In vector notation we have
3'(t) - By(t) = cos @'(e) (64)

As was shown in section 2.&, equation (56}, the output voltages of the

first and second bandpass R.F. amplifiers may be written in the forms

VRF:EIZ) = B,(t) .I:cht) cos wyt - stt) Sin‘mot] + ngt) + NRg‘t) (65)

(t) B, (L) [Vcét) cos w t - Vsét) sin wot] + ngt) + NRgt) (66)

t
The terms Bl(t) and Bé(t) are slowly varying amplitude functions gene-
rated by the source moving through the main lobes of the antennas. 1If
the antennas are identical and are always pointing in the same direction,

we have Bl(t) = B8,(t). If the antennas are tracking on the source so

that the source position does not change in the main beams of the antennas,
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Figure 17 Interferometer Phase Path Geometry
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Sl(t) = g,(t) = B,, a constant term. The terms in the brackets repre-
sent narrow-band random signals generated by the incident fields from
the source. These incideﬁﬁ fields.at‘each antenna differ by a time de-
lay factor due to the different phase path lengths fof the Fourier time
éomponents arriving‘at each antenna. If we assume that the R.F. ampli-
fiers have identical narrow-band transfer functions, as shown in Figure
15, and‘tﬁat the frequency dependence of the index of refraction profile,
n(?', ), ic smooth in the frequency neighborheood of wg,, then, to a
close appfoxima;ion, each Fourier component of the incident random,
narrow-band sourcé—signal will have the same time delay. We may then

write

V. (t) cos wot = Vg(t) sin wot = V(b - 1) cos wo(t = 1) - Vs§t - 1)
2 . 2 ' . 1 ) . d

sin wo(t - 1) ' (67)

' 1(t), is a function of time given by the difference

The time "delay,'
Eetwegn the phase path integrals from the source to the second and
first anfenhas; réspectively,'divided by the free space velocity of
‘ L)

light, c. Note that a negative "delay" corresponds to a time advance-

ment of the signal at antenna #2 compared to the signal at antenna #1.

T(t)

0|~

[ n(Ié(t), @O) dE; - [ n(fi(t‘j, wg) dﬂ,i (68)
P£t) ‘ Pl(c)

Where P2 and P1 are the actual phase paths from the source to the second

and first antenna, as shown in Figure 17, and n(Eé(t), wo)-énd n(Zi(t), wo)



are the respective indices of refraction at the center frequency, w

OD
along the phase paths. We now replace the indices of refraction in
equation (68) by thelr representations in terms of refractivity, N,
using

n = 1+ 0Nx 1076 (69)

and note that to a very good approximation

f dﬂ.é = [ d!;; + d(t) (70)

BNOEEEES N

where d(t) is the straight line approximation- to the last section of

phase path, Pz’ as shown in Figure 17. The result 1isg

' =6
(t) = dét) . 10 f N, wp) di) - fN(Ei, 6g) 42 | (71)

c
P2 ‘ Pl

Looking at Figure 17 we see that
d(t) = 8(t) cos @'(r) = s(r) 8'(t) - 2;(0) (72)
which yields the formula

v = H2 e - gy + et (73)

39



40

where AT(t) is the second term cn the R.H.S. of (71). 1f we assume that
of the refractivity of the atmosphere is‘only a function of height (ra-
diallyrstratified modél), the integrals in A1(t) over P1 and P2 - d(t)
are equal. If, then, we.apprcximate N(Eé, ws). in the last section of
integra;ion in P, of lengthrd(t), by Ng(t, wo); the refractivity at the

surface which 'is also, in general, a function of time, we obtain

-6
sr(e) = 22 N (e, wy) (o) (74)

Substitution into (73) and the use of (69) and (72) yields

ng(t, wO)S(t)

T(t) = S s'(t) - f;(t)' (75)

Let us define the time-varying phase difference

nSI(t’ wo) S (t) wo

. s'(t) - th(t) (76)

o(t) = wot(t) =
We may then vewrite (67) as-
ch(t) cos wot - Vsz(t) sin wet =

V;l(t - T) cos (wot - ¢(t)) - Vsl(t - 7) sin (wot - ¢(t» (77)

The noise te;ms*Nsl(t) and-st(t) are generated, as explaihed in
section 2,4, by sources other than that dbserved. These two noise
. terms will be weakly correlated but will not differ by a simple time
delay since they are each generated by'fields incident from sources
at all angles weigh;ed by the antenna response function, as shown in

equation (55).
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The receiver noise terms, Ng (t) and NR (t), are, in general, un-
‘ 1 2
correlated and their effects are greatly reduced by the correlation re-

ceiver to be described in the following section.
3.2 The Correlation‘Receifer

We proceed now to cons%der‘the operation of a basic correlation
receiver to be used.for navigation by cbserving a discrete radio source
whose celestial coordinateé are knoﬁn as a function of time. In the
following section we will present the technique for utilizing the in-
terferometer and correlation receiver for'navigation. ‘The basic cor-
reiation receiver is shown in block diagram form in Figure 18. The
output signals from thé bandpass R.F. amplifiers are of the form given

in the precading section by equations (65) and (66).

VRF (t)

1 B, (1) [Vc§t) cos wyt —.ng‘t) sin mot] * Ng(t) + Np(t). (65)

v (t)

s, B,(t) . [cht) cos wgt = Vg(t) s:.in mot] + Ng(t) + Ng(c) (66)

For the interférometer navigational system to be described, we as-
sume that the identical antenqas making up thg elgments of the interfero-
meter are tracking on the aséuméd source position so.closely that the
source stays well'within the main beams. Therefore, the terms Bl(t) =
Bz(t) = Bo(t) change very, very slowly and never become so small that
the signal from the source gets lost in the noise at the output of the
correlation receiver. We assume also that the R.F. and I.F. amélifiers

i
of both predetection subsystems have respectively identical bandpass
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Figure I8 The Interferometer and Correlation Receiver
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characteristics such as afe shown in Figure 19 (p. 68). The R.F. am-
plifiers are "narrow-band"; the refractivity function, N(L', w), ®

assumed to be smooth with respect to frequency in the neighborhood of
W . We can thus represent the relative variations of the two'éource—

signals VeF and Ver by a simple time delay (or advancement) as
1 2 ’

explained in the previous section. Using equations (65), (66) and

(77), we have

Var, (8)

Bo(t) [?cgt)‘cos wot = Vg(t) sin wot] + Ng(£) + Np(r) (78

vep (8= Bo(E) Pc§t - 1) cos'(wot - ¢(t» - stt - 1) sin (wot - ¢

+ Ng(e) + NRét)' | (79

where from (75) and (76)

ng(t, w,) S(t)

T(t) 8'(t) - £h(c) (75)

c

wang (t, wy) S(t)

- . §'(t) - £ (6) (76)

$(t)

The signals (78) andl(79) are mixed with signals from the local oscil-
lators as shown in Figure‘lS.‘ These local oscillators are phase con-

trolled with voltages given by

43
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W

v (t)

Lo 2 cos vﬁwo - wIF) t] (80)

2 cos Bwo - mIF) t - ¢0(tﬂ (81)

<

~

(s
-
]

Lo,

The phase term ¢O(t) will be explained in the following section. The

mixed signals are given by

vml(t)‘ = Bo(t) [cht)v cos wypt - ngt) sin wIFt] + [stt) + NRgt):leol(t)
+ 1, (200 - wpp 1) | (82)
vmét) = fo(t) [cht— 1) cos GDIFt + A?(tn

Vg(t - 1) sin (mIl;t + A¢(t))] + [ngt) + NRét)jl VLoét)
| ‘+ f2 (ug = wyp) £) | (83)
where
ae(t) = $o(r) - d;(t) (84)

and fl and fz_are‘the upper side band terms at 2ug - that will be

“1F

eliminated when the signals pass through the I.F. filters. The signals

at the I.F. outputs will have the forms
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vIFft) = .Goﬁo[yc§t) Cos w ot - ngt) sin wIFt} + NIFft) (85)

IF
VIFét) = Goﬁo{?c{t - 1) cos (wIFt + A¢(t» - stt - 1) sin (wIFt + A¢(tj]

+ NIFét) . (gé)

where G_ is the I.F. amplifier gain and NIth) and Nngt) are the total
non-signal ncise terms at the outputs of respective 1.F. amplifiers.
The time delafs at tﬁe outputs of the I.F; amplifiers are con-

trol%ed'togetber to recorrelate the_termslvcgt - 1) and ngt - 1) in
(86) with their non-delayed counterparts in (85). This can be done in
one of two ways depending upon the sign of the "delay,” t(t). The

sign of this tecm will.be known even though its exact magnitude will

be unknown when the ship's exact'position is unknown. For 1 > 0 we set
T, = 0 and set Tl(t) to an assumed value for t(t) based on the assumed
ship-position. This is done using the assumed unit source direction
vector, faO(t), given in equation (63) of section 2.5. Denoting the

assumed apparent position of the source in the local horizon frame by

the unit vector, fa;(t), we define, using (75),

ng(t, wy) S(t) .
() = S 8T(E) » Ea (1) (87)

c

Now,‘using the invariance of the scalar product‘and the fact that in

the "moving” system attached to the ship the unit baseline vector has

the fepresentation Xl, we obtain from (87)
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ng(t, wg) S(t)
To(t) = . [éao(t)]Xl _ - (88)

where the Xl component of %ao(t) will be known using (64). Since
Vc(t) and VS(t) afe random signals of bandwidth Av their auto
1 1 .

IF’
correlation coefficients approach zero very rapildly for time separations
1 : .
greater than —=— ., It is, therefore, mandatory that the error in

Avrp

10(t) be only a fraction of Substituting ng ~ 1 and denoting

1
Avig

the angles from the &' vector to the actual and assumed apparent unit

direction vectors ] and fa; as 9] and Géo, respectively, we obtain with

a _ 1
[rao]x = ¢os an

At o= () - T, (t) << cos O, - cos Oéo << (89)

VIF

where AAIF,iS the equivalent wavelength of the I.F. bandwidth fre-

quency. For observations near the zenith we expand the cosine func-

tions in Taylor's series about © = 7/2. The result is

A
- A IF _ ] o
AB an Qp << 500) (zenith observatlons) (90)
’ )
I1f we assume AvIF = 200 MHz and S(t) = 200 meters, we find, for example,
AD << 7.5 x 10'3 radians = 26 min ' (91)

Requirements for accuracy of this order of magnitude will net introduce
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additional problems in the procedure since use of the antenna tracking
technique in section 2.5 requires a Aemax’ that is, a fractionlof the
main beam widrh. Such antenna tracking requirements will usually satisfy
the additional requireme;t in (89) easily.

For the casz of 7 < 0 we set T, = 0 and set 1, = 1,(t). The time

2
delay circuits in Figure 18 may consist of binary sequenced delay lines
such as are ndw‘used in the Hat Creek interferometer system. In usiﬁg
such a discrete delay circqit the resolution must be kept small enough
so that the errcr, At, is always less than l/AvIF.
The inputs into the final multiplier, v§t) and v%t), as shown in

Figure 18, will have alternate forms, depending upon whether t(t) is

positive or negative, These forms are given, for 1 > 0 and v < 0,

respectivelv, by 1 > 0 §>T2‘= 0, T, T g T TS At
vi(t) = G&B(t - TO){cht -1 +‘AT) cos wIF(t - 1)

- ngt’—‘r + Ar) sin w o (t - TO)] + Nlift -1, (92)
v2(t) = GOB(t)[cht -WT) co; (wIFt‘- Ad)

- ngt - 1) sin (mI?t - A¢)] + Nlpét) (93)
Tt <0 =1 =0, T, = Tp =T - A1

v, () = GOS(t)[\cht) cos wypt = Vg(t) sin wIFt:] + NpF(O) BERNCTS



Vz(t) = Goﬁ(t - Toﬂycgt + AT)Kcos (wIF(t - Tg) -~ A¢)

- Vs§t + A1) sin (mI?(t - 1) - A@H + NIth - T4) (95)

Thebpaired inputs in (92) and (93) or (94) and (95) are now mul-
tiplied and thé resultant put through the final low-pass filter or

t

"integrator.” The transfer function of this low-pass filter is showm

in Figure 19. The prodﬁcts put into this filter are of the forms
T>0

v (v, () = GBB(E)B(t - o) *

Ve(t - 1+ 81) Vot = 1) + Vgt - 1 + A1) Vg(t - 1)
1 1 1 1

7 cos {Ad - wIFTo)

Ve(t = 14 AT) Vg(t = 1) = Velt - 1) Vg(t - T + AT)
1 1 1 1

-*.- - 5 - sin (8¢ - mIFTd)
+ g(20ppt) + No () . (96)

T < 0 B

v (v, (8) = GEe(r)B(r - 1o) »

—

VC(E +-“0Vc§t) + ngt + AT)VS§E)
l N '
7 cos (Aq: + LL)IFTO))

Vc§t + AT)ngt) ~ cht)ngt + A7)

+ 5 | sin(@ + wppTofi +hQuppt) + No(t) (97




The terms g and h represent upper side band terms at a frequency of

2 that will be eliminated by the low-pass filter. The terms N,
1

“1F

and NO2 are noise terms with bandwidths ‘of 2w When the product

IF’
in (96) or (¥47) is passed thrbugh the low pass filter only the low

frequency components of the noise terms will remain., The time average
noise power is directly proportional to the noise bandwidth so we must

make the low pass cutoff fréquency W, , as small as possible while

LF

-

'still passing the first term in (96) or (97). Note also that since

At is much smaller than the reciprocal of the bandwidth of Vc1 or Vg
v ’ : 1

we will have with t' = t or t' =t = 1

’ /\ A
Velt' + a0)V.(t") + Vg(t' + AT)vg(t') L V%(t‘j + Vi(t") (98)
o1 Tl 1 1 ' 1 1 :
and .

cht' + AT)ngt') - cht')vsgt' +4a1) £ 0 (99)
The final output, VLP(t), will have the form
VLP(t) = K(t) [(V%Et')) + <V§ft')>] cos (A¢ * wIFTO) + ng(t) . -(100)

where € 2 indicates the passage of the enclosed term through the low

pass filter. If this low pass filter were an ideal integrator these

49

brackets would indicate time averaging. The term K(t) is a very slowly

varying, almost constant, function whose origin lies in the antenna
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amplitude function B(t).. The term n,(t) is a very small noise term
residual that was passed through the low pass filter. Typical sample
functions for the terms XK(t), [ vi(t') + Vg(t') ]}, and n (t) are shown

1 1 : '

in Figure 20. For the sake of brevity we will denote the multiplicative

term of the cosine function as V,(t).

e

Vo (t) x(t)[<vg§t')> f-<vg§t')>] o (101)

!

This term will, in general, be almost constant with a slight quasi-
hérmoniclvariation about the mean value <V,> as shown in Figure 21,
The minimum’period of this quasi-harmonic variation will be limited
by the low pass filter and wili be approximately equal to the reci-

The minimum value of W _ will be set by the requiremeﬁt

procal of Vipe LP

that we must pass the cosine term shown in (96) or (97). The argument
of this cosiue term is the key to using the interferometer for navi-
gation. To pass this cosine term the low pass filter must have an

upper cutoff frequency of at least

wLPmin > *%E (a¢(t) x mIFro(tﬂ{nax ‘ (102)
'We will now define . the local cscillator phase shift term ¢,(t) and
show how the in:erfefometer may be used)for navigation., For a more
comprehensive discussion of the correlation-receiver and other types
of receivers the reader is referred to such references as. Kraus,

[3, pp. 236 - 290], Bracewell, (8], or Christiansen and H®gbom, [9,

pp. 190 - 210].
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Figure 19 R.F, I.F, and Low-Pass Filter Transfer’ Functions
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Figure 21 The Amplitude Multiplier of the Cosine Function
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3.3 The Navigational Technique

All work up to this paint was done to lay a foundation:for this
section. As was shown iﬂ the preceding sectioﬁ the output of the
correlation receiver with the interferometer antennas tracking on a
discrete source is given by

VLP(t) = Vogt) cos Ad(t) i wIFfo(t) + ﬁo(s) | ‘ FlOB)

7

The phase difference term is given by

ae(t) = 9(t) - $,(0) C - (8%

where the term ¢(t) is the unknown fringe phase of ;he source and

$o(t) is the known phase injected into the local oscillator #2 as

shown in Figure 18, Thé method to be presented in this section will,
Jin principlé, work for‘aimost any ¢,(t) that is chosen. There is,
however, an optimum choice for ¢o(t). Recall that in the last part

of the previous section we discussed the minimum low pass filter cutoff
frequency. Sinﬁé the time-average noise po;er in no(t) is directly

proportional to W__ we should make this cutoff frequency as small as

LP
‘'possible while still passing the cosine term. The minimum cutoff fre-
- quency required to accomplish the passage of the cosine term is given
in equation (102). It is apparent thét a minimum WLP will be allowed

by minimizing A¢(t) at all times. The optimum choice for ¢,(t) is thus

the best guess we can come up with for ¢(t). This best guess is obtained
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directly from the antenna tracking procedures developed in section 2.5,
as was also the best guess for To(t) that was obtained in the previous
section. If we obtain the best guess of %ao(t) in the "moving'" coer-

dinate system, (x, xz,_x3)¢ attached to the ship using equation (63)

Fa (1) = T,() + T (1) » Ry(t) * Ag(0) - (1), (63

where Tl’ TQ, RO and K& are given using the procedures in section 2.5,
the best guess for ¢(t), namely ¢O(t), will be given by
wong ()5 (t) - C
dolt) = — ty, (1) . ' , . (104)
. 1 :

This is, of cource, just equal te wgoTe(t). The.ratioﬁale.behind the
"best choice" for ¢6(F) can be summarized by stating that we wish to
make the ''frequency aperture' of the low pass filter as small as pos-
sigle to restrict the passage of tﬁe noise term. At'the same time we
need to collapse the frequency spéctrum of the phase term ¢(t) so it
will fit tﬁrough the low pass frequency aperture. To accomplish this
we subtract a best guess for ¢(F), namely ¢,(t). Once the collapsed
phase term passes through the low frequency aperture we add back the
known term ¢,'t) and obtain ¢,(t) with a minimum noise tragsfer,

We Qill now discuss how we add back the.term $,(t) onto fhe‘output
phase. We will also subtract or add the known term wIFTo(t) SO werobtain
the term ¢{t) alcne. The correlation receiver oupput, VLP(t) is sketched in
Figure 22 including the noise term'no(t) and the amplifude term V,(t).

Since the low pass filter is chosen to just pass the cosine term the periods
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of variation of Vy(t), ny(t) and cos (A¢ = w ) will be about the

IF'©
same. The noise term ny(t) and the amplitude term Vo(t) will inherently
introduce slight errors in the measurement of the phase of the cosine
term. fhe output, VLP(t), can be fed into a phase detector directly

or can be prepared for phse detection using a shaping circuit. The
phase detector caﬁ not detect the absolute phase of the cosine term but
will give the relative éhanges of phase of the cosine term, There is

thus an ambiguity of 2N7m 'in the measured phaselof v _(t). This does

LP
not matter since we will only be interested in phase variations of
¢(t). To obtain these phase variations of ¢(t) we use the system shown
in Figure 23. The input to the phase detector is the correlation-re-

celver's output, v__(t), in analog form. The phase detector gilves a

LP
digital output of the term

e(tg) = A¢(tg) 2 wooTo(ty) + 2Nm, o (105)

where 2N7w 1s the unknown ambigulty in the absolute vaiue and ty are

the discrete time values for which this function is read out. The
resolution of tyg must be small enough to track the variation of ¢(t)
closely. The measured numerical phase is then read inte the adder
circuit which adds the known &o(tk) and + mIFTO(tK) to ¢(tK). The
numerical output of the adder will‘be ¢(tK) + 2Nw. Using this output

we can obtain the change of phése of $(t) between any two discrete times
ty and tj by simple subtraction. Let us define this measured phase

difference as
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vieg] £) £ ee) - o(ep) | (106)

To see how we will use this measured phase variation to obtain

the position of the ship we use (57) and (76) to write ¢(ti) as

wWo — _
¢(Fi) = fz' ns(ti, mo) S(ti) é'(ti) . R(ti) . A(ti) . f(ti) (107)

Using (106) we obtain

Wwo = -
vty lty) = 7 ngleg)8(ry)s' (£5) « R(ry) - Alty) - 2(ty)

“ns (t4)S(t)8" (t5) * R(tg) « Aty « £(t) (108)

A few approximations can be made for this expression. The first of
these is the aséumption that ng(t) ié approximately constant over the
course of several minutes. The second approximation will be to replace
R with the known matrix E;. These approximations are made only to sim-
plify the navigatiohal technique and should introduce no serious errors.
The success of the method 1s not contingent upon these assumptions and
a more general, but messy, technique can easily be developed along‘the
same lines as our simplified method, but without the above assumptions.

Substituting the above assumptions into (108) we obtain

wons

ity £y = S(E)8'(tq) - Ro(ty) + Alry) - 2(ty)

- S(£)8"(8,) * Role) - Alty) » #(ty) (109)
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When we look at this expression we notice that:all terms on both the
L.H.S. and R.H.S. of this equation are known or measured except Kkti)

‘and A (£,). That is

a) Y(ti!tj) is measured.

b) S(t), the baseline length, is measured.

c¢) s(t), the unit baseline vector is measured in the hori-
zon system, Its cartesian cbﬁponents are given in equa-
tions (11) to (13).

d) =;(t) is known using the technique of section 2.4.

e} r(t), the unit source direction vector in latitude-longi~-

tude cbordiﬁates, is knowﬁ;from tabulated data.

To simplify the notation to follow let us define the vector

_ wn. " ___ ’
B(t) =~§—-§— 5() s'(t) R (D) (110)

1

The components of this vector will be known. Substituting into (109) we

obtain the equation

B(r)e A(e) e re) = Ble) Al Tt = v(r e (111)

3 3 3

Using the 1,2,3 representation for the cartesian components of B and

~

r we can rewrite equation (111) in the form

3 3
o 2 Bl e (e) Te) = B(e) A, (e (e = vkl
m=1 2=1 . (112)

On examining E?t) in equation (24) we notice that its unknown elements
amj(t), if found, would give us the position-longitude and latitude co-

ordinates of the ship on the earth. Let us say we desire to know the
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position of the ship at tj = to' A knowledge of the matrix elements
aml(to) will provide us with the ship's posifion. We notice in equa-

tion (112) that there are two sets of unknowns, aZm(tj) = aRm(to) and

azm(ti)' To express aEm(ti) in terms of the desired unknowns alm(to)’

where ti > to, we use the equations of evolution derived in section 2.2.
Using these equations, (34) to (41), we substitute for alm(ti) in terms
of aEm(to) in (112). The result can be expressed in the simplified

fofm

P>
Z Fag Byt ag(t) = vl (113)
2=1 , ‘

=1

Where the coefficients le are given on the following page in terms
of known or measured functions. The functions fl, f2, g, and g, are

given in equations (29) to (32) and are measurable. Using (25), the

matrix :Rto) is given by,

cos l(to) -sin A(to) 0
Z(to) = sin‘A(to) sin G(toj cos A(t_)sin S(to) -cosd (t )
sin A(to) cos G(to) cos l(to)cos G(to) siné(to)

(114)

To obtaln fl(t) and f2(t) from (29) and (30) we use the assumed value

§,(t) for the declination 6(t).
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Fll(tilto)
‘Flz(tilto)

le(tilto)

2

= Bl(ti)

+
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are.;

-
B (e | £1(e ), () ~ fZ(ti)rz(ti)] - B (tr, (t,)

[

£4(t)r; (£ + fl(ti)rz(ti)} - B (e )T, (£)

B,(t)) _fl(Fi)gl(ti)rl(ti) - fz(ti)gl(ti)rz(ti)j

- _
B,(t;) _fl(ti)gz(ti)rl(ti) - fz(ti)gg(ti)rz(ti)]

BZ(to)rl(tO)

Fop (tilto) = B,y(t) [fz(ti)gl(ti)rl(ti) + f](ti)gl(ti)rz(ti)}

F23(ti|t0)

Fsl(ti to)

F32(ti'to)

e
Faa(ti 0)

+

+

+

Ba(ti) fz(ti)gz(ti)rl(ti) + fl(ti)gz(ti)rz(ti)
B, (t )r,(t)

-

B,(t) | g (e (e + gz(ti)ra(ti{] - B, (t )r (t)

B,(e) [ £, (e, (edr (£ + f2<ti>gz<ti)r2(ti)]

Ba(ti) fl(ti)gl(ti)rl(ti) + fz(ti)gl(ti)rz(ti)]

B (t ) (t)

-Bz(ti) [fz(ti)gé(ti)rl(ti) + fl(ti)gz(ti)rz(ti)}
‘B3(ti) [fz(ti)gl(fi)rl(ti) + fl(ti)gl(ti)rz(ti)]
B, (e ), (t)

r3<;1> [Ba(ti)gl(ti) - Bz(t1>g2<ci)] - B_(t)r, (k)

(115)
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There are several algebralc techniques for extracting the position
coordinates A(to) and G(to) from the set of equations in (113). All

of these techniques, but oﬁe, require the solution of a nonlinear and
mixed system ofvequations. Looking at (l1l4) we see that there are

only two "independent” yariables, A(to) and G(to), that generate the
eiéht nonzero elements of the A matrix. These independent variables
generate the matrix elements in a‘nonlinear manner through transcendental
equations; Even though there are only two "indéﬁendent" variables A(to)

and G(to) the equation (114) can generate eight ''linearly independent"

equations in the eight linearly independent variables aml(to) {(with-

a, .= 0 ). As an example of the linearization of a nonlinear system con-

sider the equation

sin x + vy (t) cos x_ = Z(t) (116)
) o

This is a nonlinear transcendental equationbin the single unknown Xg

If we let wo = sin X then this becomes a nonlinear equation in Na

W, + y(t)\ll - wc)2 = 2(t) (117)

The functions y(t) and Z(t) are parametric in the variable t. They

are not independent but can assume different but coupled values as t

"is changed. The system (one equation) in (117) can be solved for wo

directly using only one value of t. We can, however, also solve the

system by defining a second linearly independent variable wl = cosx,
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and rewriting (116) as

W+ y(e) W Z(t) (118)

If we let t take on the values ta and tb we obtain the coupled system

of two'linearly independent equations

) w0 + y(ta) Wl z (ta)

Wy + v () Wy

Z (tb) : (119)

which can be solved directly by elimination.

In the same manner as we converted the nonlinear equation in (116)
to the linear system in (119) we wlll now convert the nonlinear system
in the two variables, l(to)‘and 6(to), in (113) to'a higher order systeﬁ

in the eight linéarly independent variables a (to). Thus, the

mb

technique for obtaining the ship's position at any time, Lo is to

measure and calculate the values F to) and T(ti to) for eight

me (T4

consecutive discrete times t, > to. .We then simply solve the linear

system of eight equations 1in eight unknowns,

mE Z (t: | ¢ ) a, (t) = Y(tilto) i

1,8 A (120)

We need only to solve this linear system for two unknowns such as

cosA(to) (121)

1}
—~
rt
(o]
g™
i}

and

[
—~
[md
o
~
It

SinG(to) (122)
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to obtain the ship's position at any time, t, This solution can

be obtained easily using numerical methods such as Gauss' elimination
or even a direct use of Cramer's rule. Note that our solution for
position willlbé at a previous time, t, To obtain the position

measurement at a future time we obtain

a (to)

L -\}1 - 3112 (t,) (123)

and

a (to)

- - 2
.3 Yi-a, 2 () (124)

then directly use the equations of evolution in (35) énd (42)

cos A(t) fl(t) all(to) + fz(t) alZ(FQ) . (125)

sin §(t) gl(t) a33(to) + gz(t) aza(to) (126)

In the preceding sections we‘used the term "assGmed (or known) "
ship position, ﬁnit direction vector, etc. The technique involved
here is a convergent one in that after we start up the system by "assuming"
a position so we can point the antennas and begin reading data, the data
we obtain will yield position measurements that are superior to our
initial assumption. Once the system 1s started up i1t should operate
continuously even in moderately heévy seastates. In this way our

"assumed" position will be based on past measurements and the use of

the equations of evolution; and the position should be very accurate.
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There are six sources of measurement error in this formulation
whose effects will have to be considered in more detail in a future
study in order to make a final evaluation of the realizable accuracy
of the interferometer-navigational system. These sources of error,

not necessarily in order of dominance, are

a) The effect of the noise term na(t) on the phase
measurement of the cosine term.

b) The accuracy of the ship motion measurements using fhe
accelerometer‘technique described in section 2.1.

c) The accuracy of the bearing angle measurement, yo(t).
(In this worker's opinion this measurement may be the
dominant source of error in the entire technique)n'

d) The error induced by assuming a spherically symmetric

- stratified index of refraction in developing the
refraction matrix approximation in section 2.3 and in
developing the time-varying phase path difference
formulation in section 3.1. »

e) The error in measuring the surface refractivity Ns(t,wo)
and index of refraction ns(t,wo) used in the refraction
matrix approximation and time-varying phase path difference
formulation.

f) The accuracy of the shiﬁ velécity measurement used in

£, f, g and g given in equations (29) to (32).
1 2 1 2
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