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INTRODUCTION 

The analysis of the attack transients of vocal or musical 

tones joes back as far as 1932 with Backhaus' [1,21 tunable resonator 

and drum recorder. Luce and Clark [3.4.51 used filtering methods to 

select partial tones for analysis and recording, flore recently, with 

the advent of computer music, analysis of musical instruments for the 

purpose of simulation of timbre has been done by what will be called 

a "hetrodyne filter" for want of a better name. Beauchamp (61 

analysed each partial of a complex waveform by first multiplying the 

waveform by a sin and cosine at the frequency of the partial  In 

question.  The result was then low-pass filtered, then squared and 

summed Freedman [7.8.91. and later Keel er [18.111 used a discrete 

finite summation over one period of the fundamental frequency 1n 

place of Beauchamp's low-pass filter, an effect which as we sha.l 

show later conveniently places a zero of transmission at all harmonic 

partials other than the one in question. 

It is the purpose of this article to explore this method. 

report its characteristics, its limitations, its uses and some simple 

ex tensions. 
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List of Figures 

Figure 1  - Frequency response of a hetrodyne filter with center 

frequency of 400 Hz and summation period of 10 mi I Iiseconds. 

Figure 2 - Frequency response of a hetrodyne filter with center 

frequency of 100 Hz and summation period of 10 milliseconds. 

' 

Figure 3  - Frequency response of a hetrodyre  filter with center 

frequency of 3ki0 Hz and summation period of 10 milliseconds with the 

signal   beginning halfway through the summation. 

Figure 4 - Hetrodyne  filter applied to a signal  which  is a sum of 

sinusoids of  frequencies 100,  200.  and 300 Hz,  with exponential  attacks 

of   time constants 30.  20 and 10 milliseconds respectively.  The graphs 

are of   the outputs of a hetrodyne filter with summation period of 

10 milliseconds.   The center  frequencies are,   top to bottom,   100,  200 

and 300 Hz. 

Figure 5 - Same data as  in figure 4,  but  the attacks are  linear rather 

than exponential. 

Figure S - The magnitude and phase of  the output of  the hetrodyne 

filter  when applied  to a 132 Hz guitar  tone.  The apparent modulation 

is the result of beating with an inharmonic partial  at 18B Hz. 

Figure 7 - Frequency response of a hetrodyne filter when the center 

frequency is not exactly an integral multiple of the summation 

frequency. 
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THE METHOO 

Let us define the hetrodyne filter as follows. Ue begin with 

a discrete function Fi which represents a continuous function F(t) 

at discrete intervals t-ih, where h is the time between samples, h 

is called the "sampling interval." The reciprocal of h is called the 

"sampling frequency" or the "sampling rate." Let us define a and b 

as follows: 

a = 

E 

Fl cos(u)Oih + Go) 

Fi 8ln(u3oih + 9o) 

fa     will  be called the "center  frequency". 

Uithout   loss of generality,  ue may define 

11) 

^u «= 9o + ah 
(2) 

and thus rewrite the sum as goiivj from 8 to N-l. 

N-l 
a = ^Fi cos((üoih + ^o) 

i=0 

N-l 
b = 52 Fi sin(a)oih + ^o) 

i=0 

(3) 

v 

y 
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This change of variables hides the time-position of the 

filter in the phase. Ue must remember thai as the filter is advanced 

through time, the phase angle wi11 increase, and that any results 

which depend on this phase angle will be functions of time. 

Since the summation operation is linear, we may represent the 

input waveform Fi as a sum of sinusiods and may thus examine the 

response of the filter to a sinusiodal excitation, as is commonly 

done with linear filters. 

N-l 
a = 2_ A cos(ud.h + ^o) 

1=0 

N-l 
b = ^ A co8(ud.h + to) 8in(u»lh + tto) 

1=0 

(4) 

fT 
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Uith the help of the summation calculus [121 and some trigonometric 

identities, we may compute the summation in closed form without 

error as follows: 

f slnrMupW2l   cosr(un-u)oUN-l)h/24<P + coo] 
a -- ^ \ sin[ (u5-u)o)h/2] 

2N 

sinf (,.1-,no)Nh/2l   cos[f,n-ino)(N-l^h/2+c"-cro]-> 
+ 8ln[ (rj-U)o)h/2] J 

= A_ | sin| (frm)o)Nh/2l   slnf fua^u») (N-l)n/2 + 1^+^o 

(5) 

f'N sin[ (u^aw)h/2] 

sinf (a}-u)o)Nh/2l   sin[ (QV ^) (N-l)h/2 + ^ - cpp "j 
sin[ ((D-u)o)h/2 ) 

This   is    not  a very    useful  expression    as  it  stands,    but   it  may    be 

simplified pomewhat by computing the sum of  the squares of a and b. 
.2       .      .    2r /    ,     _ \.,,_ /^n       -j_2r/. .\„I./Q1 

2    2 
a +b 

A£    r sin f ((trf(.p)Nh/2l     sin [ (>o-,r-}Nh/2: 
" U2 t sin^[(ur:-(üo)h/2j       sin^[ (,.>-,.«o}h/2 

+ sin[(,^o)Nh/2lsin[(,.,-coo)Nh/2]   cos[ (),o(N.1)h + 2CP0]) 
sin[ (ciThno)h/2]   iin[ (ar«o}h/2] J 

(6) 

Hft 
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Now  i f one chooses N to be such that 

Nhu'o = 2TTk, k = any  integer / C 

Then some terms  in equation 6 collapse to produce 

,2 
l2+b2 = ^2 sin'(^h/2){ si/[Ju)o)h;o] 

+ sin'{ {1-^/2 1 

+ ?cosUoh-2®o] 
sinf ((if+-(i)0 

[ iiPh - 2^0]   \ 
)h/2]   sinl ^i)-(ro)h/2] J 

(7) 

The square root of the above expression will be termed the 

"magnitude" of tne output of the hetrodyne filter. The arctangent of 

the ratio of a to b uiil be called the "phase" of the output of the 

hetrodyne fiIter. 

This process is similar to the d'screte Fourier transform, 

except that only one frequency Is processed instead of many. The 

results of this analysis can easily be generalized to represent the 

output of the DFT by setting the period of the center frequency to a 

multiple of the sampling interval. 
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If    one    further assumes    that    the    frequency of    the    input 

sinusoid  is close to the center  frequency,   then ue see  inat 

11m a?+b? = fe? / 0 + N? + 0 ) =  ^? 

define /^u1 = UD~(IIO 

b 
a 

clnf?luoh[ (N-D/P+aTH-Nslnf^nhr (N-1)/P+Q]l 
BB-^O cos,r?U)oh[ (N-ll/P+öjV-Ncosf^hl (N-D/P+o] 1 

If N   >   1  then 

Urn - * tan  I&DM (N-l   /? + oil 

1 

I 
1 
I 
I 
I 
I 
! 

I 

Thus we see that in the limit, the magnitude of the output of the 

filter becomes independant of time and becomes a measure of the 

amplitude of the input sinusoid. The phase of the output of the 

filter remains always a function of time, but is also a linear 

function of time, its slope being determined by the differtnee of the 

center frequency and the input frequency. 

? 
mmmm m 



—•v^if^m^rmmrrm^mwr^m^mm^mf a a m m&imimfmmmummmmm 

-■r^0 

This reveals a method of determining the amplitude of the 

input sinusiod and cutting a better estimate of its frequency. If the 

center frequency of the summation is near the ?ctual frequency of the 

input sinusoid, the phase will be very nearly ä linear function of 

time, thus we may find the frequency deviation by fitting the phase 

with a straight line and observing its slope. 

The consequences of choosing N as above are significant. If 

the center frequency is a multiple of so.ne fundamental frequency, 

then we may choose N to coinc'^e with the period of the fundamental 

and thus cancel out all the harmonic partials except the center 

frequency. Figure 1 shows the log of the magnitude of the output 

of the hetrodyne filter for a range of sinusoidal inputs. The 

center frequency in this plot is 489 Hz and the summation period, Nh, 

is 10 mi Mi seconds. Figure 2 shows the log of the magnitude versus 

frequency for a center frequency of 108 Hz and the same summation 

period. Notice the zeros of transmission at all multiples of the 

summation period except the center frequency. 

1 
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ERROR ANALYSIS 

F-eedman [9] and Keeler [11J both show ttMt this method is 

sufficiently accurate for their purposes even uhen tne input signal 

is not a perfect sum of sinusoids. Keeler does not even bother 

computing tne summation at each point, but at regular intervals only, 

and presents us uith an e'egant proof that the error in doing so is 

negligable. The above werk may well seduce one as it did the author 

into believing that this is a perfectly accurate method, universally 

applicable. This is rat so. To persue the matter further. let us 

reformulate the equations somewhat. He shall compute not two 

summations but one: 

iujoh+Go (9) 

The result will be a complex quantity whose real and imaginary parts 

correspond to the a and b discussed earlier. Ue wiI I be interested 

in the magnitude and the phase of G. For the input waveform, Fi, we 

shall take a complex sinusoid with exponential decay. 

m   9p"1 e(»+jU})ih+eeJ(roih+äo 

i=o 

ow^^mjc**») £       - i Nhfjj+jU+up)! 
(18) 

10 
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Again, we see the magnitude is related to the amplitude of 

the input sinusoid and the phase drift with time if related to the 

frequency di fferece. The exponential decay of the input signal 

causes imperfect cancellation of other harmonic partials. and 

depending on  the speed of the attack, the deviation can be 

important. 

A more revealing case would be to assume the signal begins 

at zero amplitude, and rises exponentially to its steady-state value 

and that the signal begins somewhtre during the summation, say at 

i-0. 

Ga.B = X   (     ' 

e(N-p)jh(urt-a)o). 1 

?((yfp)Jh(a)+a)o)+J(e^o)  jh(^) — 

»hfc^-ß)  e(N-0)h[»+j(u^uio)l _ i 

h[»+j(u3+u)0)]     77 

(11) 

This is equivalent to set tint. N to some smaller value. As the 

fi Iter progresses through the attack, khe effective width of tha 

window will approach N. and the response of the filter will becoire 

more representative. 

? 
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Here we see that even if N and tN center frequency are 

cdrefully chosen, the 1-equency response is not the same. Figure 3 

shous the response for a renter frequency of 388 Hz. a summation 

interval of 18 milliseconds, and ß'H/2.   He see that the neighboring 

harmonics are not canceled out. This shows that if the signal begins 

anywhere within the sindow. the rutput should not be taken to be an 

accurate indication of the amplitude of the partial.  It is exactly 

analacjous to taking N tobe anon-multiple of the period of  the 

fundamental frequency. Figure 4 shows the output for an averaging 

window of 18 milliseconds and center frequencies of 188.  288.  and 

300 Hz.  The input was a sum of sinusoids of unit amplitude and 

frequencies 188.  288. and 388 Hz with exponential attacks of time 

constants 38. 28,  and 18 mi II i seconds respectively. The leakage 

amonij the harmonier, is apparent here. 

If the attack is not exponential, another form of distortion 

can occur. Figure S shows the magnitude of the filter output for the 

same input and center frequencies as figure 4, but with linear 

attacks rather than exponential. 

The presence of inharmonic partials can cause an effect 

similar to amplitude modulation. Figure G shows the magnitude and 

phase of the fundamental of a guitar note at 132 Hz. The apparent 

modulation is caused by an inharmonic partial at 186 Hz. the 

frequency of a known box resonance. 

Another source of error is that of frequency quantization. N 

can not in general be chosen such that Nh is exactly the period of 

the fundamental frequency and still have N be an integer. This can be 

tolerated, but it also implies that the center frequency must be a 

multiple of 2n/Nh rather than a multiple of the fundamental 

frequency.  I f we do not set the center frequency to exactly a 

I 
/2- 
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multiple of 2n/Nh. we get imperfect cancellation of a pole and a 

zero. Figure 7 shows the magnitude versus frequency of such a case. 

Note the doublet around 408 Hz, the center frequency. 

Since Nh is not exactly the period of the fundamental 

frequency, the harmonic partialsare not exactly cancel led out. 

Furthermore, most string instruments show a deviation from perfect 

integral multiples of the fundamental frequency. This deviat'on also 

contributes to leakage among the harmonics. Equation 18 may be used 

to determine exactly how much leakage is present. 

I 
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A SinPLE EXTENSION 

Although there would seem to be no good solution to the 

problem of the note beginning within the summation period, there is 

a technique for dealing with the inharmonic partials. If the attack 

time of the partial in question is not too swift, it can be filtered 

out before analysis of the harmonic partials is done. Th-j harmonic 

partials may then be filtered out to allow  ana I yi is of the 

inharmonic partials. 

The filter advocated here  is a comb filter. This is 

described simply by the recurrence relation: 

n   n   n-m 
(12) 

Uith  frequency response 

\M{m)\  "   V8in2(,iph)  + [cos(u^h)-ll' (13) 

Ue see that the como filter has a zero of transmission at all 

trultiples of the base frequency 1/mh. The only hazards with the comb 

filter are those of transient --esponse and preturbing the harmonic 

partials. The transient response of a comb filter is explicit. It is 

identically zero beyond irli seconds. If this can be tolerated, then 

the fi Iter may be useful. 

If the trequencyy of some harmonic partial falls near one of 

H 
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the zeros of transmission of thf comb, it will be attenuated. Ue may 

prevent this by a method which ippeared in Gold and Rader 113, HK 

At those zeros of the comb that we wish to eliminate, a digital 

resonater is used to cancel out the zero. The details of the 

configuration are described in full detail in the references and 

uill   not  oe repeated herr. 

For analysis of an inharmonic partial, the harmonic partials 

may all be eliminated with a single comb, subject to the limitation 

that the partials möy not be exact multiples of the fundamental, and 

that the frequency of the fundamental becomes quantized when the 

comb   length,   m,   is chosen. 

The comb will, o* course, attenuate the signal under 

analysis by some amount. Ue may predict the attenuation from 

equation 13 and then multiply the results of the hetrodyne analysis 

by the reciprocal of the attenuation factor to obtain a better 

estimate of   the amplitudes of  the partials. 

: 
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CURRENT USES 

The technique of rj^bing out unwanted signals and then 

analysing the remaini'ig uaveform is the basis for an automated 

system for the analysis Of polyphonic music currently being 

developed L'j the author. Uhe i two or more instruments are playing 

simultaneously, a Fourier analysis is used to get an estimate of the 

pitch and duration of each note. All notes but one are then 

• I inlntUd by combing. ird the hetrodyne fil:er is applied to 

clecermine the attack time of the note and to correct the estimated 

Ditch "f the note. This .s iterated for each 'jf the notes in the 

piece. The result is subjected to a heuristic analysis and is 

eventually displayed as a musical   score of   the piece under analysis. 

Also under study by ? colleague is how the physical 

parameters of musical tones such as risetimes of th* partials, 

tremelo, and steady-state value contribute to the perceived timbre 

of the instrument. The hetrodyne method as outlined above is usea to 

determine these parameters from digitized recordings of tones of 

actual  musica.   instruments. 

A 
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CONCLUSION 

The hetrodyne filter has ueen shown to be a useful method 

for the analysis of the partials of musical tones as !ong as its 

limitations are observed. It can fail if the attack times are too 

quick, if the frequencies of the partials deviate too far from 

perfect integral multiples of the fundam'ntal frequency, or if the 

sampling rate i» so low that frequency quantizaNon effects become 

significant. 11 can also fail if substantial frequen-y modulation 

(vibrato) is present. 

An extention of the method to ton«! with inharmonic partials 

and even to multiple simultaneous notes was shoun to be possible by 

use of the comb filter as long as the effects of the transient 

response of the comb was judged to be '.olerable. 

These methods are ct-rentlu ".n use by the author and his 

colleagues in the analysis of digitized musical sound. 
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