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INTRODUCTION

The analysis of the attack transients of vocal or musical } :
tones Joes back as far as 1932 with Backhaus' [1,2] tunable resonator

and drum recorder. Luce and Clark (3,4,5) used filtering methods to

select partial tones for analysis and recording. More recently, with
the advent of computer music, analysis of musical instruments for the
purpose of simulation of timbre has been done by what will be called
a "hetrodyne filter” for want of a better name. Beauchamp [6]
analysed each partial of a complex waveform by first multiplying the
waveform by a sin and cosine at the frequency of the partial in
question. The result wuas then lou-pass filtered, then squared and
summec Freedman (7,8,9], and later Keeler (18,111 used a discrete

finite summation over one period of the fundamental frequency in

show later conveniently places a zero of transmission at all harmonic

partials other than the one in question.

It is the purpose of this article to explore this method,

report its characteristics, its limitations, its uses and some simple

extensions.

l place of Beauchamp’'s low-pass filter, an effect which as we shail
¥




List of Figures

Figure 1 - Frequency response of a hetrodyne filter with center

frequency of 488 Hz and summation period of 18 milliseconds.

Figure 2 - Frequency response of a hetrodyne filter with center

trequency of 188 Hz and summation period of 18 milliseconds.

Figure 3 - Frequency response of a hetrodyre filter With center
frequency of 3¢@ Hz and summation period of 18 milliseconds With the

signal beginning halfuay through the summation.
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Figure 4 - Hetrodyne filter applied to a signal which is a sum of
sinusoids of frequencies 108, 288, and 388 Hz, with exponential attacks
of time constants 38, 28 and 18 milliseconds respectively. The graphs
are of the outputs of a hetrodyne filter with summation period of

18 milliseconds. The center freguencies are, top to bottom, 180, 200

and 380 Hz.

Figure 5 - Same data as in figure 4, but the attacks are linear rather

than exponential.

Figure 6 - The magnitude and phase of the output of the hetrodyne
filter wuhen applied to a 132 Hz guitar tone. The apparent modulation

is the result of beating with an inharmonic partial at 186 Hz.

Figure 7 - Frequency response of a hetrodyne filter when the center

frequency is not exactly an integral multiple of the summation

frequency.




THE METHOD

Let us define the hetrodyne filter as follous. We begin with

a discrete function Fi which represents a continuous function F(t)

at discrete intervals tsih, where h is the time between samples. h

is called the "sampling interval." The reciprocal of h is called the

"eampling frequency" or the "sampling rate." Let us define a and b

as follous:

oatN-1
a =%t Fi cos(woih + @p)
=o

oN-1
b= Z Fi sin(woih + ©0)
i=y
(e will be called the "center frequency" .

Without loss of generality, we may define

® = Qo + gh

and thus rewrite the sum as goirg from 8 to N-1.

N-1
> Fi cos(woih + %)
=0

o
"

N-1
Z Fi sin(woih + %)
i=0

o
]

(1)

(2)

(3)
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This change of variables hides the time-position of the

filter in the phase. We must remember that as the filter is advanced
through time, the phase angle will increase, and that any results
which depend on this phase angle will be functions of time.

Since the summation operation is |inear, we may represent the
input waveform Fi as a sum of sinusiods and may thus examine the
response of the filter to a sinusiodal excitation, as is commonly

done wWith linear filters.

N-1
a=) A cos(uih + %)
1=0

(4)

N-1
b= }E A cos(wih + ©) sin(wih + ®o)
i=0
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With the help of the summation calculus [12] and some trigonometric

identities, we may compute the summation in closed form without

error as follous:

{ sin[ (etwo)Nh/2] cos[ (whwo) (N-1)h/2+0+ wo]

a = ‘%‘&- sin[ (w-wo)h/2]
P sin[ (y-wo)Nh/2] cos[ (w-go) (N-1Yh/2 +© - 0]
sin[ (w-wo)h/2] } (5) .
b = A_ sin (ertwo)Nh/2] sin[ (wtwo)(N-1)n/2+0+% !
oN sin[ (wtwo)h/2]

+ sin[ (w-wo)Nh/2] sin[(ux-u»o)(N-l)h/2+‘°-C00}

sin[ (w-wo)h/2
This is not a very useful expression as it stands, but it may be
simplified someuhat by computing the sum of the squares of a and b.
2 2
2_ & { sin [(w+u)0)Nh/2]+ sin2[ (=4 )NB/2] 1
LN2 \ sin?[ (wwo)h/2] ~ sin?[ (w=no)h/2 -

sin[ (gtwo)Nh/2]sin (w-wo)Nh/2]
sin[(uﬁ’.)z)hfe] 212[(21-:33%/2] cos[ wo(N-1)h + 2coo]}

a2+b

(6)
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Now if one chooses N to be such that

Nhwo = 21k, k = any integer # (

Then some terms in equation & collapse to produce

2
2.2 _ Ao 2o o L 1
atb” = 3o sin (0*\“’/2){ sinttao)h/2] T Sin2[ (w-wo)h/2]

2cos[ goh - 2%o]

o sin[-((lr"(|)0)h/2] Sin[('n-u‘.O)h/?] }

(7)

The 3quare root of the above expression wWill be termed the
"magni tude" of the output of the hetrodyne filter. The arctangent of
the ratio of a to b will be called the "phase" of the cutput of the
hetrodyne filter.

This process is similar to the discrete Fourier transform,
except that only one frequency is processed instead of many. The
results of this analysis can easily be generalized to repfesent the
output of the DFT by setting the period of the center frequency to a

multiple of the sampiing interval,
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1f one further assumes that the fraquency of the input

sinusoid is close to the center frequency, then we see .nat

2
2,,° A { 2 2
= + = 1
ulig a+b N2 O+N O} 1A
define A= w-wo
b
lia = ® cin{2goh{ (N-1)/2+oHNsin{Agh[ (N-1)/2+g]1

@m0 cos{2woh[ (N-1) /2o WNcos {Awh[ (N-1)/2+q4)}

if N » 1 then

lim % ~ tan {Awh[ (N-1)/2 + 41}

Thus we see that in the limit, the magnitude of the output ofthe
filter becomes independant of time and becomes a measure of the
amp!itude of the input sinusoid. The phase of the output of the
filter remains always a function of time, but is also a linear
function of time, its slope being determined by the difference of the

center frequency and the input frequency.




This reveals a method of determining the amplitude of the
input sinusiod and getting a better estimate of its frequency. I the
center frequency of the summation is near the actual frequency of the
input sinusoid, the phase will be very nearly & linear function of
time, thus we may find the frequency deviation by fitting the phase
Wwith a straight line and observing its slope.

The consequences of choosing N as above are significant. [f
the center frequency is a multiple of some fundamental frequency,
then we may choose N to coincide with the period of the fundamental
and thus cancel out all the harmonic partials except the center
frequency. Figure 1 shous the log uf the magnitude of the output
of the netrodyne filter for a range of sinusoidal inputs. The
center frequency in this plot is 488 Hz and the summation period, Nh,
ie 18 milliseconds. Figure 2 shous the log of the magnitude veraus
frequency for a center frequency of 188 Hz and the same summation
period. Notice the zeros of transmission at all multiples of the

summation period except the center fregquency.




ERROR ANALYSIS

Freedman (9] and Keeler [11} both show that this method is
sufficiently accurate for their purposes even when the input signal
is not a perfect sum of sinuscids. Keeler does not even bother
computing the summation at each point, but at regular intervals only,
and presents us with an e'egant proof that the error in doing so is
negligable. The above wcrk may wel| seduce one as it did the author
into believing that this is a perfectly accurate method, universally
applicable. This is not so. To persue the matter further, let us
reformulate the equations somewhat. We shall compute not tuwo

summations but one:

atN-1
& iw0h+eo
Gd 5 Fie (9)

i=y

The result will be a complex guantity whose real and imaginary parts
correspond to the a and b discussed earlier. We will be interested
in the magnitude and the phase of G. For the input waveform, Fi, we

shall take a complex sinusoid wWith exponential decay.

N-1 . o
G = % e(3+Jw)ih+GeJmo1h+Go

o i=o

= eOIh[ a+j(u)+u)0)]+j(e+go) eNh[ 3+j(w+w°)]_ 1
eh[a+j(m+m0)T -1 (10)




Again, we see the magnitude is related to the amplitude of
the input sinusoid and the phase drift with time is related to the
frequency differece. The exponential decay of the input signal
causes imperfect cancellation of other harmonic partials, and
depending on the speed of the attack, the deviation can be
important.

A more revealing case wouid be to assume the signal begins
at zero amplitude, and rises exponentially to its steady-state value

and that the signal begins somewhere during the summation, say at

i=0.
otN-1
carg= 5 (1)

i=gt+p

ejw1h+e erOih“'@O

L (N-8) Jh(utwo) _
- e(a+8)jh(w+wo)+j(9+9°) Th(two)

= 1 (11)

eh[a+i(w+w°)] -1

This is equivalent to setting N to some smaller value. As the
filter progresses through the attack, the effective wuidth of the
window will approach N, and the response of the filter will become

more representative.

[
i
!
!
|
|
|
I
i
1 _ oh(ore)  (N-phlati(uwrue)] _
I
i
|
I
I
{
I
I
{
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Here ue see that even if N and the center frequency are

careful ly chosen, the frequency response is not the same. Figure 3
shous the response for a center freguency of 300 Hz, a summation
interval of 18 milliseconds, and $=N/2. We see that the neighbor ing
harmonics are not canceled out. This shous that if the signal begins
anywhere uithin the sindow, the ocutput should not be taken to be an
accurate indication of the amplitude of the partial., It is exactly
analagous to taking N to be a non-multiple of the period of the
fundamental frequency. Figure 4 shows the output for an averaging
window of 18 milliseconds and center frequencies of 188, 208, and
389 Hz. The input was a sum of sinusoids of unit amplitude and
frequencies 108, 2088, and 388 Hz with exponential attacks of time

constants 38, 28, and 18 milliseconds respectively. The leakage

among the harmonics is apparent here,

can occur. Figure S shous the magnitude of the filter output for the

same input and center frequencies as figure &, but with linear

attacks rather than exponential.

The presence of inharmonic partials can cause an effect
similar to amplitude modulation, Figure & shous the magnitude and
phase of the fundamental of a guitar note at 132 Hz. The apparent
modulation is caused by an inharmonic partial at 186 Hz, the
frequency of a knoun box resonance.

Another source of error is that of freguency quantization. N
can not in general be chosen such that Nh is exactly the period of

the fundamental frequency and still have N be an integer. This can be

tolerated, but it also implies that the center frequency must be a
multiple of 2r/Nh rather than a multiple of the fundamental

frequency. 1f we do not set the center frequency to exactly a

] I 1f the attack is not exponential, another form of distortion

| 2
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multiple of 2n/Nh, we get imperfect cancel lation of a pole and a
zero. Figure 7 shous the magnitude versus frequency of such a case.
Note the doublet around 488 Hz, the center frequency.

Since Nh is not exactly the period of the fundamental
frequency, the harmonic partials are not exactly cancelled out.
Furthermore, most string instruments shouw a deviation from perfect
integral multiples of the furdamental frequency. This deviation also

contributes to leakage among the harmonics. Equation 18 may be used

to determine exactly how much leakage is present.




A SIMPLE EXTENSION

Although there would seem to be no good solution to the
problem of the note beginning Within the summation period, there is
a technique for dealing With the inharmonic partials. If the attack

time of the partial in question is not too suift, it can be filtered

e Pt e 4 W L

out before analysis of the harmonic partials is done. Tha harmonic
partials may then be filtered out to allow analysis of the
inharmonic partials.

The filter advocated here is a comb filter. This is

described simply by the recurrence relation:

i
|
g
?

Y =X -X (12)

PSR S

With frequency response

2

2(gnh) + [cos(gmh)-1] (13)

(ia(w)| = Vsin

We see that the comb filter has a zero of transmission at all
mu'tiples of the base frequency 1/mh. The only hazards with the comb
fiiter are those of transient response and preturbing the harmonic
partials. The transient response of a comb filter is explicit. It is
identically =zero beyond mi seéonds. If this can be tolerated, then
the filter may be useful.

1f the ftrequencyy of some harmonic partial falls near one of

i
i
i
|
i
i
i
I
|
I
l
l
1
i
I
I
I
I
|

&
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the zeros of transmission of the comb, it will be attenuated. We may
prevent this by a method which sppeared in Gold and Rader (13,14).
At those zeros of the comb that we wish to eliminate, a digital
resonater is used to cancel out the zero. The details of the
configuration are described in full detail in the references and
uill not oe repeated here.

For analysis of an inharmonic partial, the harmonic partials
may all be elimnated with a single comb, subject to the limitation
that the partials may not be exact multiples of the fundamental, and
that the frequency of the fundamental becomes gquantized when the
comb length, m, is chosen.

The comb wWill, of course, attenuate the signal under
analysis by some amount. We may predict the attenuation from
equation 13 and then multiply the results of the hetrodyne analysis
by the reciprocal of the attenuation tactor to obtain a better

estimate of the amplitudes of the partials.

g T O



CURRENT USES

The technique ¢f combing out unwanted signals and then
analysing the remaining waveform is the basis for an automated
system for the analysis of polyphonic music currently being
developed bt the author. When tuwo or more instruments are playing
simul taneously, a Fourier analysis is used to get an estimate of the
pitch and duration of each note. All notes but one are then
el iminated by combing, ard the hetrodyre filter is applied to
determine the attack time of the note and to correct the estimated
L itch ~f the note. This s iterated for each of the notes in the
piece. The result is subjected to a heuristic analysis and is
eventual ly displayed as a musical score of the piece under analysis.

Also under study by & colleague is hou the physical
parameters of musical tones such as risetimes of the partials,
tremelo, and steady-state value contribute to the perceived timbre
of the instrument. The hetrodyne method as outlined above ig'useu to
determine these parameters from digitized recordings of tones of

actual musica! instruments.

p—




CONCLUSION

The hetrodyne filter has Leen shoun to be a useful method
for the analysis of the partials of musical tones as 'ong as its
limitations are observed. 1t can fail if the attack times are too

quick, if the frequencies of the partials deviate too far from

perfect integral multiples of the fundamcntal frequency, or if the

samp!ing rate is so louw that frequency quantization effects become
significant. It can also fail if substantial frequen<y modulation
(vibrato) is present.

An extention of the method to tcres with inharmonic partials
and even to multiple simultaneous notes was shown to be possible by
use of the comb filter as long as the effects of the transient
response of the comb was judged to be ‘olerable.

These methods are currently in use by the author and his

colleagues in the analysis of digitized musical sound.
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