- Best
Available
Copy



AD-767 331

AUTOMATIC PROGRAM VERIFICATION I: A
LOGICAL BASIS AND ITS IMPLEMENTATION

Shigeru Igarashi, et al

Stanford University

Prepared for:

Advanced Research Projects Agency
National Aeronautics and Space Administration

May 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




e ————
STANFORD ARTIFICIAL NTELLl(:ENCE LABORATORY
1 vemo am-200

.3
Y STAN-CS-73-365

AUTOMATIC PROGRAM VERIFICATION I:
A LOGICAL BASIS AND ITS IMPLEMENTATION

BY

SHIGERU !GARASHI
RALPH L. LONDON
AND
DAVID C. LUCKHAM

AD 767331

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CONTRACT N§5005-020-500
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

MAY 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY ~ N -
[ GLT 4 9ig U

|}
Lu__@u'uv

e . g - $ e LN S -.

Reproduced by

NATIONAL TECHNICAL | 4
INFORMATION SERVICE

USDwo:anmom of Commerce \‘ RS

b

giield, VA, 22)




- ——

-y

gy —

Ml e

T ————p P R = B it

7 R R Iy T

Unclassified 1
Securtty Classification i - i A =
DOCUMENT CONTROL DATA-R&D  °* : L

Secutity classification of title, body of abstiact and indexing annotation nust be entered when the overall repott Is classilied)

OHIGINATING ACTIVITY (Corporate author)

20. REFPORT SECURITY CLASSIFICATION

Stanford University Unclassified

Dept. of Computer Science 2b. GROUP
Stanford, California 94305

REPORTY TITLE

AUTOMATIC PROGRAM VERIFICATION I:A LOGICAL BASIS AND ITS IMPLEMENTATION

DESCRIPTIVE NOTES (Type of report and Inclusive dates)

technical report, May, 1973

AU THOR(S) (First name, middle initial, 1aat name)

Shigeru Igarashi, Ralph L. London and David C. ILuckham

. PROJECT NO

6 REPORT OATE 78. TOTAL NO. OF PAGES 7b. NO OF REFS
May 1973 approx. 50

Aa. CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBE R(S)
ARPA-SD-183 STAN-GS-73-365

this report)

9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned

d. AIM200
10 OISTRIBUTION STATEMENT

Releasable without limitations on dissemination.
1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ABSTRACT

Defining the semantics of programming languages by axioms and rules of inference
yields a deduction system within which proofs may be given that programs satisfy
specifications. The deduction system herein is shown to be consistent and also
deductive complete with respect to Hoare's syscem. A subgoaler for the deductive
system is described whose input is a significant subset of Pascal Programs plus
inductive assertions. The output is a set of verification conditions or lemmas
to be proved. Several non-trivial arithmetic and sorting programs have been
shown to satisfy specifications by using an interac' ive theorem prover to auto-
matically generate proofs of the verification conditions. Additional components
tnr a more powerful verification system are under construction.

FORM
DD 1 NOV 051473 (PAGE 1) Unclasgsified

S/N 0101.807-6801 / Security Classification

Re
1




STANFORD ARTIFICIAL INTELLIGENCE LABORATORY MAY 18973
MEMO AIM-288

COMPUTER SCIENCE DEPARTHENT
REPORT STAN-CS-73-365

USC INFORMATION SCIENCES INSTITUTE
REPORT ISI/RR-73-11

AUTOMATIC PROGRAM VERIFICATION I:
A LOGICAL BASIS AND 1TS IMPLEMENTATION

by

Shigsru lgarashi
Raiph L. London
and
David C. Luckham

ABSTRACT: Defining the semantics of programming languages by axioms
and rules of inference yields a deduction system Wwithin which proofs
may be given that programs satisfy specifications. The deduction
system herein is shoun to be consistent and also deduction complete
with respect to Hoare's systsm. A subgoalsr for the deduction systenm
is described whose input is a significant subset of Pasce¢l programs
plus inductive assertions. Ths output is a set of verification
conditions or lemmas to bs provsd. Several non-trivial arithmetic
and sorting programs have been shoun to satisfy specificatione by
using an interactive theorem provsr to automatically generate proofe
of the verification conditions. Additional componente for a more
pouerful verification system are under construction.

Authors®' addresses: lgarashi, Research Institute for Mathematical
Sciences., Kyoto University, Kyoto 686, Japan; London, USC Infornation
Sciences Institute, 4676 Admiralty Way, Marina De! Rey, California
99291: Luckham, Computer Sciencs Department, Stanford Univsrsity,
Stanford, California 943085.

This resea~ch is supported by ths Advanced Ressarch Projects Agency
under Contracts 6S0-183 and DAHC 16-72-C-8308, and by the National
Aeronautics and Space Administration under Contract NSR 05-020-508.

The vieus and conclusions contained in this document are those of the
authors and should not be intsrprsted as necsssarily representing the
official policies, either expressed or implied, of ARPA, NASA, or the
U.S. Government.

Reproduced in the USA. Available from the National Tschnical
Information Service, Springfield, Virginia 22151,

¢ )

fl




AUTOMATIC PROGRAM VERIFICATION I:
A LOGICAL 2ASIS ANO ITS IMPLEMENTATION

by

Snigeru lgarashi, Ralph L. London, and David C. Luckham

1. [INTROOUCTION

Verifying that a computer program is correct has been discussed in
many recent publications, for example (Hoare 1963, King 1969,
McCarthy and Painter 1967]. . The “"correctness problem" or
"verification problem" has become popular essentially because it
represents a significant first stsp towards wuriting programs that can
be guaranteed to cdo what their authors intended. Thsre are eeveral
different interpretations of exactly what it means. Here, we adopt
the point of vied that a program has been "verified" when it is
proved within a system of logic to be consistent with documentation,
i.e. a statement of what it is supposed to do. Our discussion is
restricted to programs that can be uritten in a very precise mndern
programming !angage, Pascal [Wirth 1971]. Of course, we do not deal
Wwith all Pascal programs, but with a subset that is rich enough to
include published algorithms such as FIND [Hoare 1971b), TREESORT3
(Floyd 1964), and a simple compiler [McCarthy and Painter 1967].

Since Prscal is an Algol-like language uwe expect that what is done
here can be repeated without mucn effort for Algol or other euch
languages. We adopt a DOCUMENTATION LANGUAGE that is roughly

speaking the language of quantified Algo! Boolean expressions, (i.e,
first-order number theory wuWwith definitional extension and some
notational coneniences). It does not contain any constructs for
representing such notions as tense (time depsndency), possibility
{can do), etc. that may well prove useful in describing programs. So
the documentation language is a slight extension of what programmers
normally use to state those conditions un computations that control
their programs., Statemeints of the documentation |language are called
ASSERTIONS. A documented program is, for us, a Pascal program in
itmich assertions have been placed betueen its statements at certain
points. We refer to such prograns with documentation as ASSERTED
PROGRAMS.

The general idea of how to go about verifying an asserted program s
to reduce this problem to questions about whether certain associated
logical conditions (henceforth called VERIFICATION CONDITIONS) are
true of (i.e. theorems in) various standard first-order theories.
The usual method of reduction [Floyd 1967) involvss enumerating all
possible paths hetueen assertions in the program and then computing a
verification condition for each path in terms of operations and
assertions on that path; these verification conditions must then he
proved. See London [1372]) for a bibliography of existing programs
for generating verification conditions.
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However, in the case of Pascal, a rigorous definition of the
semantics has been given in terms of axioms and rules of inference
that must be valid for each syntactic constructor; this is contained
in the recent work of Hoare and Wirth (1972]. Thie approach to
defining the semantics of a programming |anguage yielde a deduction
system in which proofs that programs satisfy specificatione may be
given (see Hoare [1969,1971al). Such proofs, of course, depend on the
truth of first-order conditions, or to put it another way, standard
first-order theories are sub-systems of the deduction system for
Pascal. For the sake of illustration, Example 1 ehoue a proof in
Hoare's system that the program in step 13 computes the quotient aq
and remainder r of the inputs x and y. The rules of inference used
here are the rules in Table ! (Section 3.1) and the iteration rule
belou. The logical conditions assumed by this proof are |abeled
“lemma".

lteration: PAQ(A!P,PA*QDé

Piuhile @ do AIR

1. true » x =x +y x 8 Lemma 1
2 x = x +yx0 lrex) x=r+yx8 C1
3. x=r +yx98 {geBl xar+yxgq Cl
4, true {r « x} x =r +y %8 cs (1,2)

. true {r « x; g« B) x=r +y%xaq C7 (4,3)
x ar +yxaqgaysr+xa=(r-y +yx {1+q) Lemma 2

5

)

7. x = (r-y) +y x (1+g){r ¢ r-yl x = r + y x (1+q) C1
8

9

. x =r +yx (l4g)lg « l4gi x = r + Yy x q C1
. x = {r-y) + y x (l+gq) {r « r-y; aq ~ 1 + 4}
X = r +yx%xdq c7 (7,8)
1. x =r +yxagnaysrirer-yi qe l+q)
Xx = r +y %X q CS (6,9)
11. x =r 4+ yxgqa-ysra+-ysraxer+yxqg Lemma 3
12. x = «1 + q))

r+y xq {uhile y s r dofr « r-y3a

~y“ rAxesr+yx*xg lteration (18,11)
13. truel{{(r « x; qeB); while y s r do {r « r-y; q« l+g))]
~ysSrAaxse=r+yxaq c? (5,12)

EXAMPLE 1: FORMAL VERIFICATION OF QUOTIENT-REMAINDER PROGRAM
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It is possible to generate the verification conditions for an
asserted program merely by using a subgoaler for the deduction
system. EXAMPLE 2 shows how such a subgoaler works on the
Quotient-Remainder program of Example 13 it simply searches for a
rule of inference which has the current goal as its conclusion and
then generates the premisses of the rule as subgoals.

Goal. truel(r ¢« x; q « B; assert x = r + y x q;
while y S r do begin r « r-y;
q « l4g end) =(ysr) A (x = r + y x gl

Subgoal 1. true(r « x; g « 8} x «ar + yxqg C7 (Goal)
Subgoal 2. x =r +yxgq {uhile y s r do beginr « r-y;
g+ lig endl =~(y s r) A (x = r+yxq)
C7 (Goal)
Lemma 3. (x =r +yxg)l an=(ysr)+-(ysr)a(x = reyxql

Iteration (Subgoal 2)

Subgoal 3. (x = r+yxq) A (ysr)lr « r-ys;g « 14gq) x = r+yxqg
I[teration (Subgoal 2)

Subgoal 4. (x = reyxq) A (ysr) {r « r-yl x = reyx(l+q)
C7 (Subgoal 3},
then Cl (Subgoal 3)

Lemma 2. (xsreyxg)alysr)+ xa(r-y)+yx(l+q) Cl (Subgoal &),
then C5 (Subgoal 4)

Subgoal S. true{r « x} x = reyx@ C7 (Subgoal 1),
then C1 (Subgoal 1)

Lemma 1. true » x = x + y x € Cl (Subgoal 5},
then CS (Subgoal 5)

EXAMPLE 2: GENERATION OF THE VERIFICATION CONDITIONS FOR THE
QUOTIENT-REMAINDER PROGRAMN

Mote that, for example, subgoal % is obtained from subgoal 3 by using
C7 lcomposition rule)l to split the compound statement at the
semi-colon: O is seiw to x = r+yx{leg) by applying Cl1 (assignment
axiom) so that the cther subgoal is x = r+yxil+g)ig + l4gl x = rey=xg
which is an instance cf the assignment axiom and hence is satisfied.
1f the first-order "lewmas" produced by the subgoaler are true of the
relevant theorias (in this case, number theory)l then we knou that
there will be a proof verifyuing the Quotient-Remainder program in
Hoare's system, These wverification conditions are sufficient
conditions.
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This is the approach to generating verification conditions presented
here. MWe use a simple subgoaling program for Knare's deduction
systen. Although this program will accept a significant subset of
Pascal programs, it is itself véry simple since it does not analyze
the object program explicitly but merely repeatedly applies a list of
rules of inference. It is easily shoun to be sound (see belowu),
easily extended to accept additional syntax (FOR statements, neu type
declarations, etc.), and easily changed to take account of. new
definitions of the semantics. We refer to this subgoaler as VCG
(Verification Condition Generator); details of its implementation are
given in Section 4 and sample outputs in Section 5.

However, there are problems, At any step more than one deduction
rule may be applicable to generate further subgoals. To deal with
this ambiguity, we have chocen a set of deduction rules (some of them
derived rules in Hoare's system) for subgoal generation which is
unambiguous. We shall shouw that this set ‘s deduction complete. This
meana that if a particular verification can be proved in Hoare's
system, then VCG will produce a sufficient set of verification
conditions from which such a proof may then be constructed. However,
these conditions may not be provable unless the user supplies certain
crucial assertions at intermediate points in his program (e.g. an
invariant for each loop). Finally we also need to know that the
deduction system is consistent,

Section 3 deals with these logical problems. HWe give a small set of
axioms and deduction rules, called the CORE, from which all of
Hoare's rules can be derived: some sample derivations are included. A
straight-foruard set theoretic model of the core is constructed; thie
gives us a semantic proof of consistency of the core. The set of
rules used by VCG is given and is shown to be consistent With the
core and powerful enough to derive the core (hence deduction
completeness). Preliminary comments, definitions and examplee
concerning Pascal programs, the assertion language and asserted
programs are given in Section 2.

VCG is already a useful tool. Numerous example programs have been
verified by manually proving the verification conditions. More
interestingly, and of more promise, VCGC is intended to be the initial
part of an au*amatic verification and debugging system. The overall
plan is shoun in Figure 1. Asserted programs are input to VCG. The
output wverification conditions are simplified relative to data filee
containing relevant properties of the operators and functions in the
conditions. It will become evident from the examples in Section S
that a great deal of elementary simplification of verification
conditions is both necessary and easy to do. The truth of many of
the conditions will be established at the siiplification stage.
Next, the condition Analyzer is intended to reduc= problems given to
the theorem prover and to find buge. It attempts to claeeify
verificaticn conditions according to probable method of proof and to
generate simpler subproblems, and also attempts to find the "closest"
similar condition that is provable wuhen 3@ proof of a given condition

4
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is not found. This latter kind of analysit is one method of catching
bugs--finding missing assumptions in veriflcatlon condltions.
Currently a development of the theorem-prover of Allen and Luckham
{1978) is being used successfully by J. Morales to prove conditione
output by VCG for various sorting programs (see Section 5.4). This
proposed system thus appsars to have a good chance of being developed
into sonething useful.

What has become evident is that VCG Is not a trivial elemsnt in this
type of verification system. In order to make such a system
practical, the amount of documentation the user is required to supply
Wwith his program should be restricted to what would be coneidered
natural for human understanding of what the program and ite
sub-programs do. At the moment VCG places rather more weight on
documentation than we would like. However it |s already easy to see
how to extend VCG by adding some additional rules that will permlt it
to deduce intermediate documentation for I|tself In some cases.

| DATA FILES | | DATA FILES|
A | A
Input | v | v
| VCG | | SIMPLIFIER | | ANALYZER |-->|THEOREHM |
——==>] |===> | |=-=--> | |<--|PROVER |
) | |
! |
| |
v v
| QUTPUT | | OUTPUT |

FIGURE 1: PLANNED AUTOMATIC VERIFICATION AND DEBUGGING SYSTEM
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2. PROGRAMS WITH ASSERTIONS

2.1 PASCAL.

A comprehensive definition of Pascal |s publishea by MWirth
(1971,1972) and Hoare and Wirth (1972). Our choice of Paecal as the
programming language is motivated by the devalopment of Hoare's
deduction system and its use to define the semantics of Pascal.
Pascal is an Algol-like language so a reader familiar with Algol will
have no trouble understanding the examplies of progrome and condition
generation in this paper. Thus instead of including a definition of
Pascal here, we shall point out some of the main dlfferences of
concern to us between Pascal and Algol., The following example shoue
a program containing a procedure definition, variable declaratione, a
recursive function definition and a pr2og-am body which calle the
procedure and function; it is written firet in Algol and then in
Pascal.

ALGOL PROGRAM:

BEGIN
INTEGER ALPHA, BETA, QUOT, REM, Q, R, X, Y, I}

PROCEDURE QUOTREM(R,Q,X,Y): VALUE X, Y; INTEGER R, Q, X, V;
BEGIN R := X3 Q := 03
FOR I := 1 WHILE Y < R DO
BEGIN K := RR-Y; 0 := 1 + Q END
END;

INTEGER PROCEDURE FACT(N); INTEGER N;
BEGIN IF N = @ THEN FACT := 1 ELSE FACT :=« N x FACT(N-1) END;

BETA := 33 X = B; ¢ 1= &4;
ALPHA := FACT(BETA):
QUOTREM(QUOT, REM, XaVY, X-Y);
Q := QUOT; R := REM

END

PASCAL PROGRAM:
VAR ALPHA, BETA, QUOT, REM, @, R, X, Y : INTEGER;

PROCEDURE QUOTREM(VAR R, Q : INTEGER; X, Y : INTEGER);
BEGIN R := X; O := 8;
WHILE ¥ < R DO
BEGIN R :« R - Y; Q 3= 1 + Q END
END;

FUNCTION FACTEN: INTEGER) : INTEGER;
BEGIN IF N = B8 THEN FACT := 1 ELSE FACT := N x FACT(N-1) END;

Y = ol e b . o i
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BEGIN BETA := 33 X := B; Y 1= 43
ALPHA := FACT(BETA);
QUOTREM(QUOT, REM, X+Y, X-Y);

Q@ := QUOT; R := REM

END.

EXAMPLE 3: A PROGRAM IN ALGOL AND PASCAL

The differences in declaring variables are wurimportant for our

purposes. The type of the function Is indicated after the right
parenthesis in Pascal rather than before the word "PROCEDURE" in
Aigol. _  The opening "BEGIN" in Algol appears just before the main
program in Pascal. In the formal parameter part of procedure and

function definitions, Pascal includes the specification ot the formal
parameters inside the parentheses; in Algol this specification is
made after the |ist of parameters to be called by value.

The remaining difference may be ekipped wuntil procedures are
discussed in detail fater. The word "VAR" in the Pascal formal
parameter part means R and (0 are variable parameters. The

corresponding actual parameters must be variables (and not more
general expressions); assignment to R or Q in the body of the
procedure affects the corresponding actual parameters. The abeence
of "VAR" pbefore X and Y means X and Y are value parametere |In the
Algol 68 sense (representing a change in the revised Paecal from the
original definition). The corresponding actual parameters must
be expressions (of which a variable is a simple case). A value
parameter represents a variable local to the procedure to which the
value of the corresponding actual parameter is initially assigned
upon activation of the procedure, Assignments to value Dbparameters
from wWithin the procedure are permitted, but do not affect the
corresponding actual parameters. (For further details of Pascal see
Wirth {1871, 1972])).

At tae moment VCG will accept a subset of legal Pascal programe built
up from: assignment, while, conditional, and go to etatements;
recursive procedure and function definitions and callsg

one-dimensional arrays are allowed on either side of assignment
statements.

2.2 ASSERTIONS

Assertions are conditions on the state of the computation of a
program, Thus, if assertion P is placed at some point in program A,
the intention is that uhen A is run, every time P is encountered P
must be true of the current computation state of A.

Y
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Essentially, our assertion language allous aeeertione to contain any
well-formed formula of a standard first-order theory and in addition,
non-standard relations may be introduced by definitione. In practice
we have adopted a slightly more ueable and readable formal language
for the assertions of VCG.

(i) A term in the assertion language is a Pascal expression.

(ii) Atomic assertions are either predicatee (i.e. identifiere) with
terms as arguments or terms.

(iii) Assertions are well-formed logical formulas conetructed from
atomic assertions wusing logical connectivee and quantifiere
according to the usual well-knoun rules. ‘

Here are some examples:

(1) X = Y+Z

(2) =~(YsR) A (X = R+¥xQ)

(3) ZxPOWER (W, 1) = POUWER(X,Y)

(4) VYK((1<K) A (KsN-1) > AIK] s AlK+1))8&
PERMUTATION (A, AB).

The first three assertions are expressicns in Pascal (and in fact
Boolean expressions in Aigol) and use a precedence among operatore to
simplify notation (below). Assertion (4) is not a Boolean expreseion
in Algo!l (because it contains a quantifier) nor an expreseion in
Pascal (because of the quantifier and implication).

The assertion language contains different connective symbole for both
IMPLICATION and AND to improve readability of verification
conditions. The precedence order of connectives and arithmetical

operators, predicates, and quantifiers is:

1. &land); 2. » (implies), > (implies)s 3. =, w, <, >, S, 2% G, v, .+,
_. 5. A l(and), %, /, DIV, MOD: 6. -, Y, 3. -

This agrees uith the precedence in Pascal expreesions.

NOTATION: Assertions and Boolean sxpressions will usually be denoted
by P.Q,R,S. .

2.3 ASSERTED PROGRAMS

Assertions are added to programs as additional statements beginning
with the special symbol ASSERT, namely

8

REREE

o Sl A it < by =l A O S N

-




r
i
E~

cassert statement> :te ASSERT <assertion>

Thus an asserted program is; a legal Pascal program if we imagine that
the syntax of the Pascal statement is extended by adding the extra
clause below to the syntax diagram of "statement” (see appendix to
Wirth [19721): '

The assertions at the entry an! exit of a procedure definition,
function definition, or main program have the word "ASSERT" replaced
by "ENTRY" and "EXIT" respectively. Both entry and exit stataments
appear at *‘he beginning of the unit.

There are some further restrictions. The basic rule about placing
assertions in a source program is that everu loop must contain at
ileast one assertion, This requirement is met }f there is an
assertion at every iteration statement (i.e.,, immediateiy before the
statement) and an assertion at every label (i.e., just after the
label), Although these requirements are not a necessary condition,
they are a simple and convenient sufficient condition tc guarantee an
assertion in every loop. An assertion is required for the exit of a
program., With no loss of generality We assume a single exit.
Assertions may optionally be placed anywhere else. |¢ an aeeertion
is missing from the entrance, VCGC wili assume the entry assertion
"UNRESTRICTED", a synonym for "TRUE", A source program With
assertions placed to meet these requirements is called an ASSERTEOD
PROGRAM. Examples of asserted programs are given in Section 5.

NOTAT!N: Asserted programs will be denoted by A,B,C,D.

2.4 LOGIC OF ASSERTED PROGRAMS

We review briefly here the elements of Hoare's inference system for
proving properties of progranms.

STATEMENTS of the logic are of three kinds.
(i) assertions,

(ii) statements of the form P{A}Q where P,Q are assertions and A
is a program or asserted program.

P{A}Q means "if P is true of the input'state and A halts (or halts
normally in the case that A contains a GO TO to a label not in A)
then Q is true of the output state".
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{iii) procedure declarations (definitions) of the form p PRUC K uwhere
p is a procedure name and K is a program or aseerted program
{ the procedure body). 3

There is an irnfinite sst of variables p,q,r,... that range over
procedures. Thus undsclared procedure names occurring in statemente
are free variables ranging over procedures,

A RULE OF INFERENCE - a transformation rule from a set of statements
(premises, say H ,...,H) to a statement (conclusion, say K) that
1 n

is aluays of kind {(ii), Such rules are denoted by

R1.

The concept of PROOF in Hoare's system is defined in the usual way as
a sequence of statements that are either axioms or obtained from
previous members of the sequence by a rule, A sequence is a proof of
ite end statement. i

We use H ||- K to denote that K can be proved by assuming H, H |- K
denotes the same thing for first order logic.

Some rules have the existence of a subproof as a premise; they are of
the form

R2. = ccccmsmmccmccceaa-

Such rules permit deductions of assertions on recursive procedure
calls.

We extend the cdefinition of proof to include the notion of assumption
or dependency. An arbitrary well-formed formula can appear in a
proof sequence. But in such a case that formula is said to have a
formula identical with itself as its (unique) assumption formula.
Each formula in the sequence has an associated set of assumption
formulas, which can be empty, and which must be empty if it is the
end formula in the sequence. Each rule of inference preserves the
assumptions uvnless specified otherwise. Thus the conclusion of a
rule of the form Rl is dependent on the set of assumptions that ie
the set-theoretic union of tha sets of assumptions of the premisses,
In other Wwords, assumptions are inherited from premisses to
conclusions,

1e
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Assumptions can be discharged viily if the rule is of the form R2. In
this case the assumption formula designated by ] can be discharged
from the set of assumptions associated with the conclusion designated
by K, uhile other assumpticne asre inherited.

Intuitively 1 ||- J means | implies J, and 2 free variable, say r,
reads "for any r".

The rules of inference discussed in the following sections all have,
With one exception, at most two premisses. Proofs may be represented
in the usual way by binary trees.

SUBSTITUTION of an expression t for a variable x in an expression E
is denoted by x
El
t.

e rote that the termination of a program A is not expressable in
Hoare's system by statements of the form P{A)Q, On the other hand,
non-termination can be expressed by stateuents such as TRUE (A} FALSE.
There may be some indirect ways of constructing formulas that mean "A
terminates for all inpute satisfying P", and if so, it would be nice
to know for what class of programs this can be done.

REMARKS::

We presuppose a standard fircc-order thecry, which shall be denoted
by T, representing the properties of the primitive functions and
predicates used in Pascal. However, our construction Is uniform in
that choosing different first-order theories characterizing possibly
different functions and p-edicates doss not affect the framework. A
standard model of the theory T is fixed and denoted by M.

In our formal system there are three kinds of procedure names we have
to distinguish:

1) Procedure names for primitive procedures, For instance a library
procedure uhose body is inherently w-itten in a language of |ower
level belongs to this category. (It is even possible for us to
regard the assignment statement as such a procedure.)

2) Procedure names for declared procedures. We regard procedure
declarations as the "defining axioms" of such procedure names, which
constitute nonlogical axioms in our system and shall be denoted by J.
We assume J does not assign more than one procedure to a name.

3) Procedure names used in derivations. In the formal system we Wwill

use procedure names which should intuitively be regarded as "free
variables", which represent arbitrary procedures. In proving
metatheorems we Will use a name for each declared procedure.

Besides the above, each procedure name is assumed to have “arity”, so
that it can represent or vary over declared procedures with, say, m
variable parameters and n value parameters. Such a procedure will be
called (m,n)-ary and the m (variable) parameters and the n {value)

11
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called the left and the right parameters,

parameters will be
respectively.

lf a primitive procedure name, say q, occure in a program about which
we are to prove a certain theorem, We have to either give a set of
(nonlogical) axioms of the form Piq(xjy)}R or a defining axiom for q.
In most cases, we shall assume that the procedure can be written in

Pascal and that there is a defining axiom for it.

12



3. THE BASIS INFERENCE SYSTEM FOR VCG.

In this section we study the properties of the set YV of axioms and
rules of inference used by YCG. One of our main concerns is that the
rules of inference in V should be unambiguous in the sense that only
one rule is applicable to generate subgoals from any given goal. This
will certainly be the case if no tuo rules have conclusions khich
have common substitution instances. a property which is true of V.
The rules of V, uhich appear as Tabls 2 in section 3.3, are simple
combinations of Hoare's original set of rulee H given in Hoare
[1971a, p. 116]. Having chosen V, we must establish that it is both
sound and deduction complete. We shall show first that a set C of
simple rules (the CORE) is sound and that any rule in H can be
derived from C. We then show that V and C are inter-dsrivable. We
shall begin by studying the relative derivability when none of the
sets of rules contains go to's or array variables. The rules H are
equivalent to the follouwing set of rules.

o SR iy b S S T b o A Wt o 5 S Pl 3 m a 4

3.1 THE CORE RULES

The set of axioms and rules of the core is given in Table 1. Rules
D3 (iteration), 07 (adaptation) of H have been omitted: 04
(alternation) has been replaced by C8 (conditional). We have added
the frame axiom (C2) for procedure calls and the and-or rule (C6);
Hoare's substitution rule (DB) corresponds to our left and right
substitution rules.

NOTATION: x, y, z - lists of variables; p,q,r - procedure names;s,
- lists of expressions; K - procedure body; pl(x;y) - denotes CALL
pixiy) where x and y are the left and right parameters of p. VARI(P)
denotes the free variables of P; p(xiy) PROC K denotes a declaration
of the form "PROCEDURE pix;y); BEGIN K END".

AX10MS

X

Cl. 3 ynment axioms: Pl ixet)P
t

C2. frame axioms: Plqix;t))P provided =~(x ¢ YAR(P))

C3. procedure declarations: p{x;y) PROC K.

C4. logical theorems: P for ali P s.t. |- P.




CS. consequence: b50Q, Q(AIR . P(A)Q, uUoR

P{AIR P{AIR
C6. and/or: P{AIQ,R{A}S P{A)Q, RIAIS
PARIAIGNS  PWRIAIOVS
C7. composition: P{AIQ, QIBIR
TPiBIR
C8. conditional: PAR{AIQ, PA-RI{BIQ

P{IF R THEN A ELSE BlQ

C9., substitution: (L) Plx;y) (gixsy))Qixsy)

Plzyy) (qlzsy)iQlzsy)
(R) Pixsy) lalxsy)1Qlxsy)

P(x:;s) (qgix;s)iQix;s)

SUBJECT TO THE RESTRICTIONS: {i) s does not contain members of x; (ii)
members of z must be distinct and y and z are disjoint.

Cl@. procedure call: pixsy) PROC K(p), Pirix;y))Ql|-PiK(r))Q

Pip(xsy)lQ

where p does not occur in the proof of the right hand premiss,
and r does not occur in any other assumption in that proof.

TABLE 1 C:THE CORE RULES.

In order to demoaistrate that C is as “"powerful” as H ue shou that any
proof in H of PtAlQ can be transformed into a prooft in C of PIA"]Q
where A' is a program equivalent to A. An application of a rule R
{(that i3 not a rule in C) in the given proof is to be replaced by a
derivation in C of the conclusion of R assuming the premisses of R.
The transformed proof will use only rules of C and wuill prove
essentially the same formal statement. It is clear that applications
of Hoare's substitution rule (06) can be replaced by successive
applications of the left and right rules (C3). We therefore need
only consider the following three rules.

14




(D4) Alternation: P1(A)Q, P2(B1Q

if R then Pl else P2{if R then A else BiQ

(D7) Adaptation: P(a:se) (pltaje)}R(ase)

PlajetnYa(R(a:e)oS(asel) Iplase)iS(aje)
(D3} lteration: P(A)S, S|- if Q then P elsa R

S(uhile Q do A}R

(a) D& is derivable in C. Let P in the conditiunal rule (C8) be:
if R then Pl else P2,

1. Plia)lQ, P2(BlQ assumptions (premissee of D4)

N

PARDPLl, Pa-ROP2
3. PaR!{AIQ, PA-R(BIQ consequence (CS) 1,2
4., if R then Pl else P2{if R then A else B)Q
conditional (C8) 3.
(b} D7 is derivable in C.
1. Pla:e} (plase)lR(a;e) assumption (premiss 07)

2. VYalR(ase)oS(ase)){plaje)iVa(R(ase)dS(ase))
frame axiom (C2).

3. Plas;e)nYalR(aje)oS(ase)) {plese)llR(aseln
Ya(R(a;e)>S(ase))
and ruls (CB) 1,2.
4, Plaje)lnaVa(R(aje)dS(aje)) (plajel}S(ase) €5, 3.
Corresbonding to any while statement "while Q do A" wWe can define a
recursive procedure:

procedure whiledef (x:v);

if Q then begin A; call whiledef(x;v)iend
else end

where x is the list of variables in A that are subject to change in
the body A, and v is the list of all other variables in Q or A.

We ronsider a modified form of the iteration rule:

15
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(D3") PIAIS, S > if Q then P else R

Slcall uwhiledefi{x;v))R

(c). 03' is derivable in C.

1. P1AIS Aesumption (premies D3'), 4

2. SaQ>R Assumption (premiss D3') é

3. Sa-03R Assumption (premie! 03") E

4. Sicall rix3v)IR Assumption | ) j

5. PlAscail rix;v)iR C7, 1,4 E J

6. SaQtAjcall rix;viin cs, 2,5 5 1

7. Siif U then begin &; call rix;v)send : |
else endlR c8, 6,3 :

8. Slcall uhiledef{x;v)}R Ccie, 4,7

If we are given a proof in H of P{AlQ ue may replace applicatione of
D4 and 07 by the proofs (a) and (b); an application of D3 is replaced
hy a proof (c) of D3'. HWe will then have a proof in C of P{A’']Q
vhere A' is the result of replacing each while statement in A by a
call to the corresponding whiledei procedure, Thie is eaeily proved
ty induction on the length of the proof. Clearly A* is equivalent to
A. This completes the proof that C is as powerful as H,

In the other direction, all of the core rules except the frame axiom
and the and-or rule appear in H with minor differencee and are eaeily
shoun to be derivable in H., Thus, to shou that proofe in C can be
carried out in H, we need only be zoncerned with eliminating C2 and

Ce.

Recall that a Pascal program must contain definitione of all called
procedures except library procedures and there are a finite number of
those. This places a finite bound on the number of different

procedures that can ever be called in any computation of a program.

d. Laomma
I]- TRUEIAITRUE for any program A,

PROGF
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{ We can construct a proof of TRUE{AJTRUE by using the rules {01-05) to

generate subgoals starting from the goal TRUE{AITRUE. Assume a list

of variables r , r , r ... distinct from the |list of procedure names
1 2 3

that may be called in a computation of A, Subgoals are generatsd by

applying the rules recursively as follous {03 and D4 are equivalent

to D3x and D4x):

(D2) Subgoals TRUE {A} TRUE, TRUE {B} TRUE

TRUE {A; B} TRUE

(D1} Subgoal TRUE {B} TRUE

(D3) # TRUEAP (81 TRUE, (TRUEA=P)>TRUE
Goal " IRUE(wnile P do BITRUE

{01) Subgoals TRUE (B} TRUE TRUE {C} TRUE

(D41 % Goal TRUEtif P then B else C}TRUE
{D%S) Subgoal TRUE {K (r )} TRUE
Goal TRUE {p {x:v) ] TRUE
where K is the body of p and r is a unique variable to be
p

substituted for the procedure name p in every subsequent subgoal of
the goal. The proceduie termin-tes since the subgoais in each of the
rules D2 - D4 are shorter than the goals, and DS can be applied only
finitely many times since the list of procedure names that can occur
is finite end one of these names is eliminated from all further
subgoals uf a goal to which OS5 applies, The {ength of any subgoal
branch is bounded by 2nl where n is the number of procedures that can

be called by A and | is the number of statements in A. The terminal

subgoals are of tuo Kinds: TRUE tx«t} TRUE faxioms) or

TRUE {r (x;v)| TRUE. The second kind is the assumption for an
p

application of DS to derive a goal below it {i.e. a goal of which it

s a subgoall. Thus the final subgoal tree is a proof of

TRUE 1Al TRUE.,

{e) Plg{x:v)IP is provable if ~{(xe¢VAR(P)).
Thie follows from lemma d by applying the adaptation rule (07):

17
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E 1. TRUE (g(x;v)}TRUE lemma d.
2. TRUE aiv¥x) (TRUESP) (qix;v)}P 07,1,
i | 3. Plglx;v)1P D1,2 since x doss not
’ occur in TRUE or in
t P{by assumption).

This establishes that C2Z can always be replaced in a CORE proof by a

{ derivation in Hoare's system. To sliminate C6 irom a CORE proof we
arguz as follows., Suppose a given proof contains an application of

AND-0OR, without loss of generality, let us say it is the final

ded .ction. We show that this occurrence of AND-OR can ve either

eliminated altogether or "moved up" the proof tree in the eense that
it is replaced by an AND-OR application to the premisees of the
premisses of the original application. This gives us a nsuw proof |
containing only expressions that are in ths old proof. We show b ¥
further that in the second case whers the ruls is "moved up", If the -
moving up prccedure is repeated the rule will nsver again need to be
applied in any new proof to the same pair of premisses it was appiied
to originally. Since the given proof contains a finite number of .
expressiona this establiehes that our moving up procedure terminates g i
with a nroaf in which all applications of AND-OR have disappeared.

{(f) LEMMA

There is a constructive procedurs for sliminating applications of the
AND-OR rule from CORE proofs.

PROOF.
Suppose a given CORE proof contains one deduction by AND-OR of the b
form
H1,H2 H3,H4 {(rule R)
0. I J (AND-OR)

uhere R is not AND-OR.

We give a procedure whereby either
} {a) D can be repiaced by a deduction of K from axiome by the rule
of consequence,

or

{b) D can be replaced by

18
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H1',H3' H2',H4' (AND-OR)
Dl. = eeeees ae----
11 J1 {(rule R)

In case (b}, for ez¢ch i, the subproof Hi' in Dl contains only
statements occurring 1n ths subproof Hi in 0. Repeated application
of the procedure cannot result in (AND-OR) being applied to the pair
I1,J of premisses again.

We note that sirce the same program part must appear in both
premisses of an appl!ication of AND-OR, the immediately preceding
rules deducing those prenisses must either be the same rule R or onc
of them must be the rule of consequence.

Let us consider the AND-case o! this rule first, We give the
replacement procedure for different cases of rule R:

(i) AXIOMS. o]
An application of AND-OR to axioms

x x
P| (xeelP R| (xe~elR

X X
P| AR| (x+~elPaR
e e
is eliminated entiresly and replaced by the axiom
x
(PAR}| (xee}PaR
e
Applications of AND-rule to frame axioms are eliminated eimilarly.
{ii) CONSEQUENCE.

An occurrence of AND-OR of the form

P1A101,01-0

PAR (A} QAS

is replaced by




P{AfQl, RIAIS

PAR {A) QAS

The other cases (omitted} are similar,

{iii}  WHILE
PAUIAIP, (Pa-U}>0 RaU (AIR, (Ra=U)>S
Piuhite U do AlIQ R(while U do A}S

PAR{uhite U do A}QAS

is replaced by

PAU{A{P,RAU(AIR

PaR{uhile U do AlQAS

{ivl CONDITIDNAL
PAUA{Q, Pa-UIBIQ RAU(A}S, RaA=UIBIS

PARIif U then A eise B}QAS

is replaced by

PAU{A}Q, RAUIALS Pa-U{B)Q, RA-UIBIS

PAR{if U then A else BIQAS

Clauses for Composition and Substitution are similar to (iii} and
{ivl and are omitted.

{v) PROCEDURE CALL
Procedure p has body Kipl.
P(riQ ||- PiKir)iQ R(r)S ||=- R(K(r}}S



I
|
|
|
I
!
!
!
I
!
b
[
|
I
|

PaR {p)QAS
is replaced by

P(riQ]|-PIK(r)iQ RirtS||-R{K(r)is

(subproof] {subproof)
PiK(r2)1Q ; R{K(r2)1S

PAR{r2)QAS |-
PAR {pt QnS

This last transformation rule requires a word cof explanation. In the
replacement, the AND-OR rule has been "pushed up" and applied to
assertions on K(p) instead of assertions on call p. The procedure
call rule is nou applied to PARIK(r2)10AS so that the relevant
assumption is PaRI{r210naS. Subproofs for PIK(r2}1Q and R{K(r2))S$S
have to be appended; the given procedure rule applications ensure the
existence of these subproofs, For example, wWe know there ie a
subproof of P(K(r)1Q from the assumption P{r)Q; an application of the
CALL rule allouws us to deduce P{r2iQ, where r2 is a neu name for
procedure p. The assumption P(r}Q is discharged at this point. We
then repeat the subproof again wWith r2 replacing r everyuhere,.
However, no assumption is necessary in this repetition since Pi{r2)Q
is proved. Thus, the complete subproof trees for the premisses of the
new AND-OR application contain copies of the given auxilliary
subproofs at ‘"assuiption nodes", The statements in each new tree
are exactly those of the old tree except possibly for r2 in place of
(o 1f the replacement procedure is applied to thie new subproof of
PARIK (r2)1QnS, the AND-OR rule need not be applied to the eame pair
ot hypotheses (uith r2 for p) again since PAR{r2)QAS is now aeeumed
true.

This completes the description of 'the replacement procedure for AND:
the OR case contains almost identical clauses except that the
replacements in cases (i) and (iv) contain intermediate
applications of conseqguence: (PvR)aU>(PaU)v(RAU).

We note that Lemma f shows also that the AND-OR rule can also be
omitted from the CORE. In the presence of the other core rules,
ADAPTATION may be replaced by the FRAME axionms, The previous
discussion may be summarized by the following thecrem:

g. THEOREM
I1f ||- PIAIQ then P{A'1Q is provable from the CORE where A’ s

equivalent to A. Conversely if P(AIQ is provable from the CORE then
| |- P{A}Q.




3.2 A MODEL FOR THE CORE

e assume given a standard model M for the theory T of the trus
Boolean expressions of Pascal and a set J of procedure definitions.
Essentially M is the standard model for arithmetic possibly augmented
by standard models for data types other than the integers. The
details of M itself do not concern us. We shou hou to extend M to a
mode! Mx for the CCRE.

To simp! 7y the notation We assume a fixed ordering of the variables

X X +X ,e0. Thie allous us to represent computation state vectore
1 2 3
over the domain D of M by infinite sequences of elements of O, a=
<a .a ,a ...>. Dx shall denote the set of all such sequences.
1 2 3

Intuitively, state a assigns the value or interpretation a to L
this is denoted by (x') ’ The interp;etati;n
or value t of Boolean expressions t'ii defined in the usual way from
standard iLterpretation of the orimitives +,%,etc. The value of t

applied to state a will be denoted by t (a). A Boolean axpreseioL

of n variables, say Pix ,...,x ), is intecrpreted in M as a subset
n 1 n
P of D . Thus Plx ,ueex ) is true for the state vector a if
M 1 n

€8 se.,a >¢P .

1 n M
This allouws us to extend the interpretation of P{x ,...x } to Dx:

1 n

P (X ,e00.x ) = la]j<ca ,oev,a@ >¢P ),
1 nl 1 n N

Moreover, the interpretation of substituticen instances by definition
satisfies:
xi
ac(P{x ,...,x )] ) <=><a,...,8 e (a),a veod€P{x coux )
1 n e | 1 i-1 1 1+l 1 n 1

The interpretation >f an (m,n)-ary procedure is a partial function
" n
f of the type N X D -+ (Dx » Dx) having the following properties:

1) Frame property:
(F(i(1),ven itmlsc yoee,c)ia@)) = a

1 n j j
j is different from i(k) for any k such

22
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that 1 < k < m,
2) Substitution property:

(FCi (1), 0ue,ilmlse ,ouu,c )la))
1 n i (k)
= (f(j(l).....j(M):C.---.C)(a))
1 n j k),
1 <k g m.

The definition of f proceeds as follows.

We define by cases the computation sequence F(A,a) of program A
relative to M given input a as follous.

I1f a is an infinite state vector, then:

(i) F(x «e,a) = <a ,...,8 e {a),a P S
i 1 i-1 1 i+l

(ii) F(Ai;B,a) = F(A,a) a F(B,U(A,a))

fiii) |[F(A,a) if <a ,...a >¢P
F(if P(x ,...x ) then A else B,a) = -| 1 n |
1 n |F(B,a) otheruise.
(iv) Flglz;t),a) = aeF(K(z;t),a) where J contains a defining axiom
for q of the form "q(x;v) PROC
Kix;v)" and K(z;t) is obtained
by sutstituting the actual
parameters z,t for the formal

Here a@b is the sequence obtained by appending b onto the end of a.

jend state of F(A,a) if F(A,a) is finite

UlA,a) = -
|undefined otherwise.

The interpretation of program A is nou defined:

A = {<ca,b>|U(A,a) = b)
|

and M is extended to Mx by adding the function A for each Pascal CORE
program A, I

We can now sau when a statement of the form P(AIQ is true in Mx
(denoted by Mx |= P(A)Q):

23
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Mx |« PiAIQ <=> A (P ) c Q.
I 1 1

Finally, a statement S(r ,...,r ) With assumptions A (r ,...,F J,c0e,
1 m 1 1 m
A (r ,...,r ) uhere r ,...,r are free procedure variables, is true
n 1 m 1 m
in Mx if and only if the folliowing condition holids:

1f A .ooocoPlyeee Alp,.c.,p) are true for any declared

1 1 m n 1 m
procedure names p ,....p from J, each p having the
m i
same arity as r (1< i € m), then S(p ,...\P ) is true,

i 1 m
Here are some sinple properties of this model:

(i) 1f the range of A is empty then for any P and @, Mx |= P{AIQ
1
(ii) 1f Mx |= P{K(g)}Q then Mx |«P{qlQ where K is the body of
procedure q.

(iii) 1§ p PROC K(r) and q PROC K(s) and r c 8 then p cq .
I l I 1
(iv) A Boolean assertion is true in Mx if and only if its universal
closure is true in M.

To shou that Mx is a mode! for the CORE we will show that the axioms
are true in Mx and that each of the rules of inference preserves'’
truth (i.e. if the premisses of the rules are true in Mx then so also
are the conclusions), For simplicity we consider exampies of the
axioms and rules in which the statements have one free variable
(three variables for the substitution ruie) and in which the
premisses cdo not have governing assumptions except in the case of the
recursion rule: the argument for the general case is identical.

Consicder first a typical assignment axiom P(e)ix « elP(x ),
1 1
We note that (x «e) = {<a,b>ibece (a),a .3 ,...>), and that
1 i 1 2 3
acPle) <=> <ela)l,a ,...>Plx ) . Thus {x «~e) (P(e) ) c P(x )
1 2 11 1 1 11

so that the assignment axiom is true in Mx.

The frame axioms are clearly true in Mx:if P does not contain x , say,
1
and a,b differ oniy at the first position, then a¢P <=>be¢P . If
I I
al{x ,v) chenges only the value of x then q (P )YcP .
1 1 I 1 I
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Logical theorems are true in Mx since they are true in M.
Procedure declaration axioms are aseumed to be in J.

We consider next the rules of inference. The fact that Coneequence,
Composition and Conditional all preserve truth in Mx can be shoun by
elementary set theoretic arguments on the interpretations of Boolean
expressions and programs. Simply note that if P>Q is true in Mx then
P cQ , that (PAR) = P n R, and that -R «Cx-R .

I 1 I I I I l

The arguments are as follous:

CONSSQUENCE: 1f P cQ and A (Q) c R then A (P JeR .
I 1 11 I 11 i

COMPOSITION: If A (P) cQ and B (Q) cR then B (A (P)) cR .
I 1 | I 1 I 1 1 1 1
CONDITIONAL: If A (PNnR) cQ and B (P n~R )cQ then (if R then A
I 1 | | I 1 I |
else B) (P )c@
I 1 |

SUBSTITUTION

Consider the case when the procedure glx ,x jx ) has tuo left
parameters and one right parameter siicezth?s is sufficiently
general. Let g have body K. Assume that x and x are the only
variables whose values can be changed by KIT and thit xais the only

value that its computation depends on. We require a eimple Ilemma
which may be proved by induction on the composition of K.

h. LEMMA,

For any a if K(x ,x ix ) (a)=t and Kix x jx ) (a) = ¢ then b = ¢ and
1 2 31 iy 31 1
b = ¢ provided iwj=3.
2 J

Let f,g be partial functions mapping Dx into D such that Kix ,x $x )
1 2 31
(a) = <fla), gla),a ...> and hence also Kix ,x 3x ) (a) = <a ,a ,a ,
3 3 3 4 5 31 1 2 3
§(a ) gia ),...>. [1f the premisses of the substitution rule are true,
3 3
then:
acPix x x ) implies <fla ),gla ), a yeee2€Qx x x )
123 3 3 3 1231

25




This is equivalent to:

<a ,a ,a >P implies <f(a ),gla ),a >0 .
1 2 3 M 3 3 3 AN
Suppose be¢Pi{x ,x ;x ) so that <b ,b ,b >eP .
4 S5 31 4 5 3 M
Then <f(b ), g(b ),b >0 and this implies that Kix ,x 3x )
3 3 3 M 4 § 31
(b)¢Q(x ,x :x ) . So the conclusion of the L-rule is true. On the
4 5 3 1
other hand,if bePix ,x ;s(x ))«then <b ,b ,s (b )>¢P and therefore
1 2 3 1 2 1 3 M
<fls (b V),gls (b )),b >Q .
I 13 I 3 3 M

By the lemma above,
Kix .x 1s(x)) (b) = <f(s (b ),g(s (b )),b > so that the
L 2 3 1 I 3 I 3 3

conclusion of the R-rule is also true.

For each of the previous rules we have shown that truth in Mx is
preserved.

The case of the recursive procecure call rule is more complicated and
depends on the elementary properties of M stated above.

PROCEDURE CALL

We prove that any proof containing applications of the procedure call
rule proves a statement true in Mx if all premisses of the proof are
true in Mx. Qur proof is by induction on the number n of
applications of the call rule.

Clearly the case n=8 is alreidy proved. Therefore, assume it s
proved for proofs containing n call rule applications, and consider
the last application in a tree wWith n+l, Suppose this has
P{x;v) lp(x;v)iQ(x;v) as conclusion.

We may assume

I. if Mx |= Plxsv) {r(x;v))Qix;v)
then Mx |= P(x3;v) (K(r))Qix3v), for any procedure name r,

since the subproof of the premiss of this final application can
itself contain at most n occurrences of the call rule.

Let us define a sequence of procedures from p:
11. pB(x;v) PROC K(LOOP),
p m+l (x3v) PROC K(pm)
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where LOOP is a procedure that never halts.

CLAIM: For atl m, Mx|=P (x3v) {pm(xsvi)Qixsv).

PROOF: By induction on m, Clearly the claim is true for m=8 by
property (iland | above.

Suppose Mx|=PipmiQ. Then, substituting pm for r in (I) we have
Mx|=P{K(pm)1Q. Therefore Mx| =P {pm+1)Q by propsrty (ii). This proves
the claim.

Next, we note that p is the least upper bound of the sequence {{pml}}:
1 I

(1) (pB) c (pl1) < (p2) covne
| ] I

(2) For all i (pi) cp
l l

These follouw by induction using property {(iii),
(3) For any a, if p (a) is defined there is an m such

that p (a) = (pm} (al.
| 1

This is so because U(p,a) = U(pm,a) for any m such that m>|Fip,al|,
the length of F(p,al.

From the claim and these facts we concluds p (P )eQ , so that indeed
I ‘
H*|=P(x;v)[p(x:v)lﬂ(x;v).

Thus we have established the following soundness theorem:

(i) THEOREM 1f P(AIQ is provable in the CORE then P{A)}Q ie
true in Mx.

3.3 RULES FOR VCG

The rules V used by VCG to generate subgoals and ultimately produce
verification conditions are simple combinations of the CORE rules.
There are tuwo additions: an extension to ths assignment axiom for
the case uhen assignment is made to an array element, and a rule for
go to statements provided the corresponding labels are in the same
procedure (or block]. A rule for array assignments wae given in King
(1969] and the addition of a go to rule to Hoare’s system e
considered in Clint and Hoare (1972). Ths extended syeteme C and H
remain relatively sound and still have the same deductive power (i.e.
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Theorem (g) still holds). The rules for VCG are given in Table 2,
It is easily checked that the set s unambiguous in that no two
conclusions have a common substitution instance.

V1. SIMPLE ASSIGNMENT

PtAlQ(e)

PlA;xeelQ(x)

V2. ARRAY ASSIGNMENT

P{AIR(if iej then e else Bli]

PlA:;BljleelR(BILi))
V3. CONSEQUENCE

PiNull}lQ P(A;QIR
(iii) P (A}Q>R

P{A;0-ifIR
V4, [TERATION

P{AIR, RAS(BIR, Ra=S>Q
....... el = e S whsre R is an assertion
P(A:R;uhile S do BIQ

VS, CONDITIONAL

P{A:Q-if;BIR, P{A;-0-if;CIR

PtA;if O then B else C)R

P{A}ASSERT (L)

P{A;GOTO LIQ

V7. PROCEDURE CALL

P(AlU(ase)aYa(l(ase)oR)
Uleiv) 1q v M Ixsv) | [= mmeccccmacaee L

Pl(Ajqlase)iR




V8 PROCEDURE DECLARATION

Plgix:v)IR | |- PIAIR

Piprocedure gix;v) ;AR

NOTATION:

P,Q.R,S are Boolean Assertions. Null denotes the empty

program. Qle) denotes the substitution of e for x in Q(x).
th

Bli) denotes the i element in array B, In each of the rules

A can be Null, Q-if denotes a "marked" Boolean assertion Q.

TABLE 2 .
V:RULES OF VCGC

The rules in Table 2 are stated in the form in which they are used to
generate subgoals. Thus, for example in the case of the assignment
rule V1, the axiom Qfe) {xelQi(x) is omitted from the premisses since
/i is true and therefore not generated as a subgoal. The composition
rule is not used to generate subgoals (it would be a source of
ambiguity) but is included in the other rules, VLG does not require
assertions at conditional statements. It "marks" the conditional
tests in the subgoals of the conditional rule, and uses them as
assertions that permit a slightly different ru/e of consequence. The
normal rule of consequence, V3(ii) wWould wusually lead to a
verification condition of the form OQ>R' where R' is some formula
involving R. Most likaly the proof of R’ wWwould depend on the premiss
P and in such a case QoR' is unlikely to be provable. (See examples
3 and 5, Section 5!,

It should be clear that any statement that can be proved in V can be
proved in C., {lore precisely:

(j) REMARK

¢ V||-P{A1Q wWhere A is a program with intermediate assertions then
Cl|-P1A')Q uhere A’ is an equivalent program without the intermediate
assertions.

The converse of remark (j) implies the deduction completeness of V.
To prove the converse, first verive from V the composition rule (C7)
by an induction argument on the statement length nf B, the statement
following the ";". Rules Cl, C3, C4, C5, and C18 are straightforward
to derive. Lemma f shows that C6 is directly derivable in C. It
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remains

(C2) Lemma « holds in ¥V as is easily checked.

(C9)

S Wry)»—

U & We) —

W=

tc derive C2, C8, and C3.

TRUE {1 ix:v) ) TRUE
P - (TRUE A ¥x(TRUE = P})
Plnultl TRUE A ¥Yx{TRUE =+ P)

Pig(xsv) )P

PAQ IBIR PA-Q(CIR

P (Q-PAQ) Pa (-0+PA-0)
Plnul t1Q-+PAQ Plnulll-0-+Pa=Q
PI1Q-if)PAQ P{-Q-if)Pa=-Q
P1Q-if;B)R P{-Q-if;CIR

Plif Q then B else CIR

Pixsv) {gix;v)IR(x;v)
Plase) » Plase) A Ya(R(a;e) » R(a,e))
Plase) {qlase)lR(a;e)
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~{xeVAR(P))
v3i (2)

v7? (1,3)

Given
Lemmas
v3i {2)
v3iii (3)
C7 {4,1)
VS (S)

Given
Lemma
v7 (1,2)




4, DESCRIPTION OF VCG
4,1 COMMENTS ON THE RULES

Array assignment and go to

The ru'e V2 for array assignment includes the wusual conditional
substitution operation. This rule is equivalent theoretically tc the
techniques wroposed and implemented by King [1963] in that equivalent
verification conditions result. Qur rule makes the conditional
exprescions cxplicit while at the same time trying to keep the case
analysis uncder control. Though our rule enables us to verify
programs invo ving array assignment, we canno’ state wWhich array
assignment me:hod is preferable.

The o to rule (VB), follouing Clint and Hoare [1972], is for simple
go to statements., By "simple" we mean jumps which stay, for example,
within tre current block or procedure definition., The rule is-
‘nclud=d so that a useful, but restricted class of go to statements
could be processed.

Procedures

' H and hence YV place several restrictions on the definition and use of
procedures, First, procedures may contain no global variables., This
is onlu a conceptual restriction; Hoare and Wirth [1972]) introduce

' the notion «f "implicit parameter" which makes each global variable
into a parameter, at least notationally. Second, a key distinction is
made betueen variable (VAR) and value (non-VAR) parameters. In
brief, assignments to variable formal parameters affect the

I corresponding actual paraneters; assignments to value parameters do
not f(see discussion in section 2.1). The notation, following Hoare

l {1371al), is:

L]

3 3 variable value
: formatl parameters | x v

4 ac*ual parameters | a e

g

|

; |

where each of x, v, a, and e represents a list of parameters. The
tuo restrictions are that the list "a" must contain distinct
identifiers and that no "a" parameter may appear in any of the

expressions of the "e" list, The last restriction could be removed
with a slight increase in the complexity of the rules of inference.

Simple examples suffice to show what can happen if these res'rictions
are violated:

R N R T ™ F e

a. procedure Blvar X1,X2 : integer);
begin X1 := 2: X2 1= 3 end
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Cne can verify
true tbodyl (X1=2)A(X2=3).

Tre call B(A,A), wuhich viclates the distinct "a" list, Wwill yield
truelcall B(A,A)} (A=2)A(A=3)

an impossibility.

b. procedure Clvar X : integer; V : integer);
begin X := V + 1 end

One can verify
truetbody! X=V+1.
Tve call C(A,A), uhich has an "a" parameter also appearing 8s an
parameter, will yield
truelcall C(A,A)IA=A+]
another impossibility,

" . R———— "
ol g T e d ey B B Ry e o

For each procedure call the corresponding procedure declaration is
assumed to be verified as stated in rule V8. The hypothesis of the
procedure call rule is thus achieved so ‘*he procedure call rule is
applicable to noth recursive and non-recursive declarations alike.
Recall that the recursion rule {DS), i.e. the procedure declaration
rule (V8), allows the desired conclusion to bu used as an assumption
in verifying (the body of) a recursive procedure declaration.

restriction is implied by H [Hoare 1871a, p. 115, last paragraphl.
VCG cdoes not permit the names of procedures or functions to be
(actual} parameters: this could be allowed if one were wWilling to
verify separately the procedure definition for each call involving
procedure parameters, or i sufficiently general assertions could be
supplied,

The procedure call rule (V7) in V is based on the adaptation rule
(D7) in H. Both of these rules provide for extreme generality at an
increase in caonplex’ty. An alternative rule is used in Hoare and
Wirth [1972] which treats a procedure cali as generalized and
concurrent assignment, That is, for each variable parameter x a
function is assuned which, given the entry values of the parameters,
computes the exit value of x. These functions accomplish the
generalized assignment.

Functions

Four of the rules of Y have been expanded to allow function calls to
occur in Pascal expressions. Function calls may occur only in
ascsignment, conditional, iteration, or procedure call statements.
Since Pascal functions have no global variables and no VAR
parameters, none of the restrictions needed for procedures apply in
the case of functions. Recursively defined functions are aliowed.

_/‘. '..-
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To gyive the expanded rules, let P be the conjunction of the
preconditions of all the function calls occurring in a statement.
Similarly let R be the conjunction of the results (postconditions).
The expanded rules are

assignment PA(R2S(e)) Ix := e)S(x)
where P and R include any function call if x is an array
element

conditional 0-+P, QaRAU(AYS, QaRA-U(BIS

Qtif U then A else B)S
where P and R only include function calls in U

iteration Q-P, QARAU(B}QAP, QARA=U-S

Qluhile U do B}S
uhere P and R only include function calls in U

procedure P.G(x,v) (G{x,v)}IR.G(x,v]

call = ecccememcmcermccccm e e mee
Pa(R4P.GAYa(R.G-S)) (G(a,el}S

where P and R refer to the function calls in "e";

P.G and R.G refer to the procedure G.

function Ulg(v)IW | |- UAIU
declaration -—---c-ccccceeca----
Ulfunction qiv);AlUW

Each of the first four rules assumes that for each function call, the
corresponding function declaration is verified as stated in the
function declaration rule. 1f there are no function calls in a
statement, then P and R may be taken as "TRUE". In such cases the
expanded rules reduce to the original rules. V(G actuaily omits such
vacuous P and R terms. (The definition of P and R as conjunctions
means some loss of generality if nested function calls occur such as
in Y = G(HIX)). A more complicated definition of P and R is knoun
for such cases but it is not implemented.}

Questions such as array bounds and division by zero can be handled by
treating each such operation as an appropriate precondition of a
function.
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4.2 A RECURSIVE DEFINITION OF VCG

The operation of the verification condition generator is described by
the follouwing equations. Let H(P,B,R) denote the LIST of
verification conditions for the formuia P{(BJR uhere B is an asserted
Pascal program and where P and R are assertions. H{(P,B,R) is given by

cases on the form of B. “A" denotes all but the last statement of
B, "e" denotes the append operation on lists, "car" and "cdr" denote
the list operations of first and rest, and "i:" is the Pascal

composition connective.

assignment (V1) H(P, Aijxee, R(x)) = H(P,A,R(e))

array H(P, A:cljlee, Ri(clil)) =
assignment (V2) H(P,A,R(if i=j then e else cli)))
nul 1 (V3(i)) H(P, null, R} = P - R

assert(V3(ii)) H(P, Asassert Q, R} = H(P,A,0) @« Q@ » R

iteration(V4) H(P, A;assert Q;uhile S do C, R) =
H(P,A,Q) @ H(QAS,C.Q) @ -0QAS =+ R

conditional H(P, A;if S then C else D, R) =
(VS and V2(iii)} H(P,A,car (H(S,C,R)))ecdr (H(S,C,R))e
H(P,A,car (H(-S5,0,R)))ecdr (H(-5,0,R))
where a missing "else" means D is null

go tol(VB) H(P, Asgo to L, R) = H(P,A,assertion at L)
procedure H(P, Aiqla,e), R) = H{P,A,U(a,e)nYa(li(a,e)+R(a,e)))
call(V7) where Uix,v) {gix,v)IUW{x,v) is an assumption

for the procedure ¢

procedure H(P, procedure g(x,v):C, R) = H(P,C,R)
declaration(V8) where Piq(x,v))R i3 assumed in
evaluating H(P,C,R)

compound H(P, A;begin C end, R) = H(P, A:C, R)

The equations for defining H(P,A,R) may be explained by the
follouwing: An asserted Pascal program is recursively processed
top-doun from the outermost syntactic structure to its innermost
constituents. The zonstituents of a compound statement are processed
starting wWith the last constituent, Accordingly, there is a unique
rule of inference that is applicable to each constituent, Each rule
of inference is applied in the reverse sense from its use in a formal
derivation. Thus, from the desired conclusion the appropriate
premises are generated as subgoals to be processed recursively., The
tuo assignment rules and go to rule are each applied directly by
computing the assertion on the right of the premise from the
assertion on the right of the conclusion. The procedure call rule
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works somewuhat analogously: the assertion on the right of the
premise is computed from the assertion on the right of the conclusion
and from the tuo assertions of the hypothesis. In all cases this
means VCG uses what is called "backuard substitution” by King {19691,
that is VCG works backwards (opposite to the execution direction)
through tne program.

That this ie possible is far from accidental: Hoare and Wirth {1872,
p. 19) state, "The rulgs of inference are formulated in such a way
that the . . . process of deriving necessary properties of the
constituents from postulated properties of the composite statement is
facilitated. The reason for this orientation is that in deducing
proofs of properties of programs it is most convenient to proceed in
a ‘top-doun’ direction.”

While the notion of "a path betueen assertions” is not an explicit
part of VCG, the recursive processing of subgoals implicitly computes
all the required paths betueen assertions., Each resulting
verification condition covers one such path.

A Pascal source program consists of zero or more procedure
definitions, =zcero or more function definitions, and a single main
program. VCG produces a separate set of verification conditions for
each procedure definition, each function definition, and the main
program. |f P represents the initial assumption (entry assertion)
for a unit and if R represents the desired result {exit assertion)
from that unit, then the verification conditions are computed from

P Iprocedure bodyl R
P {function bodyl A
P imain program} H

e assertion R must be present; if P is missing, the assertion
JUNRESTRICTED" is assumed which is a synonym for "TRUE". Since
Jascal returns a function value by assigning the value to the
function identifier (as in Algol), the exit assertion must be
modified by deleting the arguments from the defined function name.
This is necessary in order that the assignment rules work properly.,

To iliustrate the equations for defining H(P,A,R) tuo examples are
given, The first shous the subgoaling process on the
Quotient-Remainder algorithm of Examples 1 and 2 where the uhile
statement has been replaced by an equivalent go to construction.

Goal. truelrex:sgeB; 10:assert x=r+yxq;
if ysr then begin rer-y;
q-1+g; go to 18 endl~(ysr)a(x=r+yxql

Only VS is applicable to the goal; first the arguments of the two
cars are computed.
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Subgoal 1. ysr (rer-ysqel+q; go to 121
= (ysr)axsr+yxq) V5 (Goal)

Subgoal 2. ~(ysr) (nul 1) =(ysr)a(x=sr+yxq) VS (Goa ,missing else)
Argument 1. ~(ysr)Ya~(ysr)alxsr+yxq) V3i (Subgoal 2)
Subgoal 3. ysrirer-yiqel+qsl xsr+yxq VB (Subgoal 1),

assertion at 18

is xsr+yxq
Subgoal 4. ysrlrer-yl xsrsyx(l+q) V1 (Subgoal 3)
Subgoal 5. y<r {nul Il x= (r-y)+yux(1+q) V1 (Subgoal 4)
Argument 2. ysraxs={r-y)+yx(1+q; V3i(Subgoal 5)

Hence the application of V5 to the Goal requires, since the cdr terms
are null,

Subgoal 6. true lrex;ne@;assert xsr+yxq)

~(ysr)a-(ysrin(xsr+yxq) VS(Goal!),aryument 1
Subgoal 7. truelrex;qeB;assert xsr+yxgl

ysraxs(r-yleyri(leq) V& (Goal},argument 2
Lemma 3. x=r+ykga-(ysrla~(ysr)alxsr+yxgq) V3ii(Subgoal B)
Lemma 2. x=r+ykxq-ysr-xs=(r-y) +yx{l+q) V3ii{Subgoal 7)
Subgoal 8. true fr-x;q-8l x=r+yxq V3ii(Subgoals 6,7)
Subgoal 3. truelrex! xer+ynd V1 (Subgoal 8)
Subgoal l1d. true{nul Il x=x+yx@ V1 {Subgoal 9)
Lemma 1, true-xex+y%d V3i(Subgoal 18)

EXAMPLE 4: SUBGOALING ON QUOTIENT-REMAINDER WITH A GO TO CONSTRUCTION

After logical simplification the three iemmas in Example &4 are
identical to the lemmas in Examples | and 2. The second example,
taken from Hoare (1971al, shows the subgoaling process on a recursive
nrocecdure for computing the factorial function,

Goal. a2Biprocedure fact(var r:integer, a:integer)irsa!
Subgoal 1. a0 (fact(r,a))r=al ||-

a2B(if a=@ then rel else

begin fact(~,a-1};

reaxr endire=a!l V8 (Goal)
Only VS is applicable to ‘ubgoal 1; first the arguments of the two
cars are computed,

Suhgoal 2. a=@lrelir=a! VS (Subgoal 1)
Subgoal 3, -(a=0) (fact(r,a-1)irecaxrlr=al VS (Subgoal 1)
Subgoal 4, a=B{nullll=a! V1 (Subgoal 2)
Argument 1. a=@-l=a' V3i(Subgoal 4)
Subgoal 5. ~{a=8){fact(r,a-1"taxr=a! V1 (Subgoal 3)
Subgoal 6. ~(a=8) (nul Il (a-128)AVr#(rH#s(a-1}!saxrts=a!)

V7 (Subgoal 5,
assumption of
Subgoal 1)
Arqgument 2. -(asB)2{a-120)AVr#(rH={a-1)!saxrf#s=a!l)
V3i(Subgoal 6)
Hence the application of V5 to Subgoal 1 requires, since the cdr
terms are null,
Subgoal 7. a201inul 1 ~(a=0)+(a-126;A¥Vr#(r#e(a-1)'vaxri=a!)
VS (Subgoal 1}, argument 2
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Lemma 2. a20--(a=0)-(a-120)AVr#(r#=(a-1)"'+axr#=a!)

V3i (Subgoal 7)
Subgoal 8. a2@inullla=B+l=a! V5(Subgoal 1), argument 1
Lemma !. az0-a=0-+1=a! V3i{Subgoal 8)

EXAMPLE S: SUBGOALING ON THE FACTORIAL PROCEDURE
4.3 SPECIFIC IMPLEMENTATION OF VCG

The verification condition generator is written in MLISPZ [Smith and
Enea 1973], a version of Lisp which has an Algol-like syntax and an
extendable parser, MWriting BNF-like syntax equations and associated
semantics for each equation permits the rapid, easy construction of a
parser for Pascal source programs. The parser handles all details of
scanning such as creating identifiers and numbers from individual

characters, recognizing delimiters, and processing blanks. The
parser produces a list-structured representation of the Pascal source
'n which all statements and expressions are converted from infix to

prefix notation,

The generator is a loop each cycle of which processes one of the
subgoals of the form PIAIR. This loop repeatediy determines for each
subgoal! the single next applicable rule of inference and applies it
to the subgoal. As neu subgouls are created they are stacked. The
result is a list of verification conditions for the input Pascal
source program,

Tables 3 and & give more detailed information on the subset of Pascal
wuhich VCG processes.

statements implementation status and comments

assignment left hand side must be either an
identifier or a l-dimensional array
element

procedure call there must be at least one actual
parameter {(a zero parameter call is

no use wWwithout global variables);:
restrictions on actual
parameters apply

compound no restrictions

if-then-else and if-then no restrictions

case not implemented - no problems forseen
uhile no restrictions

repeat not implemented - no problems forseen
for not implemented - revised Pascal

has a changed definition of the for
statement and a new rule of inference
Wwith not implemented
go to a label may appear at most once in
the entire source program; go to's
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TABLE 3:

other syntactic units

procedure and function
definitions

variahle and l-dimensional
array declarations

formal parameter declarations

const declarations

type declarations

expression

pointer, set, scalar, record,
file
constant
TABLE 4&:

T'e substitution done in the assignment rules (V2 and V3)

check for a
three circumstances.

in the supplied assertions
program variables. Second,
procedure call rule (V7)

because such
while no program
include a "#".

variable

The existential aquantifier

may only be "local" jumps within a
block.
deleted by parser

PASCAL STATEMENTS IN VCG

implementation status and comments

no global variables permitted

syntax implemented; not further
included in verification conditions -
no problems forseen

crucial to operation of procedure
call rule

not implemented - no problems
forseen

not implemented - problem status not
clear

no restrictions; augmented to allow
assertions to include quantifiers
(v,3), implication (»,2), and a
second type of conjunction (&) (v and
A are already in Pascalls & is used
to conjoin assertions user fewer
parentheses than A requires

not implemented - some problems
expected

integer only: no real numbers or
strings

OTHER SYNTACTIC UNITS IN VCG

need not

variable becoming bound by the substitution because of
First, by convention all

are assumed to
the bound

quantified variables
be distinct from the
variables introduced by the
distinct from the program variables

introduced bound variables all contain the character "#"
{or supplied
Third, these are the only occurrences of quantifiers.

assertion variable) may

the adaptation rule (B7) can be

eliminated similarly by nutation conventions.

VCG makes very few checks on its input.

The major assumption is that

the source program obeys all the restrictions of the Pascal language.
While these restrictions could relatively easily be checked, they are
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not since it is reasonable to assume that all input has been
processed by a Pascal compiler. There are additional restrictions on
the source program imposed by V. Since these might also be enforced
by an augmented compiler, |littie effort was expended in this
direction in VCG. Another simplifying and unchecked assumption is
that a source program does not contain duplicated variable names; the
introduction of fresh wvariabies for duplicated names, using the
declaration rule (D&}, will remove this restriction.

4.4 TERMINATION OF THE TOP LEVEL OF VCG

The essential reasons why YCG terminates are as follows: All rules
except the conditional rule generate one or tuo subgoals as they
process a goal each with fewer statements. Tha conditional rule
generates tuo subgoals each including a2 set of statements from just
before the if statement back until an assert statement is reached
such that this assertion is at the same "indentation level" as the if
statement. But even this process is "decreasing” since any further

replication of subgoals will be bounded by the same assert statement.
The existence of the assertion needed for the conditional rule
follows since each subgoal is welii-formed, i.e., there is an
assertion at least at the start of each subgoal. Recall the

inclusion of "UNRESTRICTED" if needed. No claim is made that the
recursive manipulation of the expressions in the assertions will

aluways terminate, but this is separate from the termination of the
top level of VCG.
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5. EXAMPLES
5.1 FACTORIAL AS A FUNCTION

This example shows the factorial function wriiten as a Pascal
recursive function. The next example illustrztes the factorial
function uritten as a Pascal recursive procedurs. Upper case ‘FACT’
denotes the program and lower case ‘'factorial’ denotes the
mathen’ tical object usually denoted by !'. Except for a ‘change of
notation’ the verification conditions are the same in both sxamples.

PASCAL EXIT ARBITRARY;
FUNCTION FACT (N: INTEGER) : INTEGER;

ENTRY N28; EXIT FACT(N) = Factorial (N);

BEGIN IF N = 8 THEN FACT « 1 ELSE FACT « N x FACT(N-1) END;
BEGIN X « X END.:

IR HK
PASCAL PRNGRAM SUCCESSFULLY PARSED

FOR FACT THE
2 VERIFICATION CONDITIONS ARE:

# 1 N20-N=0
;aFactorial(N)

# 2 N28-+-IN=0)
?N-lzB)A(FACT(N-l)-Factorial(N-l)»N*FACT(N-1)-Factoria|(N))

FOR THE MAIN FROGRAM THE

1 VERIFICATION CONDITIONS ARE:

# 1 UNRESTRICTED

ARBI TRARY
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5.2 FACTORIAL AS A PROCEDURE
See comments for previous example.

PASCAL ENTRY B28: EXIT C = Factorial (B);
PROCEDURE FACT(VAR R:INTEGER; A:INTEGER);
ENTRY A = @; EXIT R = Factorial (A);
BEGIN IF A = 0 THEN R « 1 ELSE

BEGIN FACT(R,A-~1); R « AxR END
END;

BEGIN FACT(C,B) .ENC.;

AKX
PASCAL PROGRAM SUCCESSFULLY PARSED

FOR FACT THE
2 VERIFICATION CONDITIONS ARE:

# 1 A20-A=0

IaFactorial(A)
4 2 A20--(A=0)
?A-IZB)AVR#(RdsFactorial(A-l)eA*Rﬁ-Factorial(A))
FOR THE MAIN PROGRAM THE
1 VERIFICATION CONDITIONS ARE:

# 1 BB

-

(B2@)AVCH(CH=Factorial (B)+CHsFactorial (B))
KKK
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5.3 INTERCHANGE SORT

%

This example, taken from King (1969], sorts by successively finding
the emallest element of the array A, The assertions include
provision for shouing that the array A at the exit is a permutation
of the array /v at the entry. The entry array is denoted by the array
name AQ. The assertions contain two definitions,
SAMESET(A,AB,Alarbitraryl) denotes that A and A are the same set of
elements including repetition. The term Alarbitrary]l is a trick to
altouw VCG tu check that an array is unaltered over a path betueen
assertions. The trick is needed because array substitution is done
by array element, not by array name. The second definition is for
MULTISET (A, AR, J,K,L,M) uwhere K and M denote array elements of A, and
J and L denote subscripts of A. MULTISET denotes that A and A@ are
the same set of alements including repetition even if J:aK and L:s=M
are simultaneously done, Thus, e,g.,

MULTISET(A,AB,J,A[J],LOC,ALOC])
and

MULTISET (A, A, J,A[LOC),LOC,A L))
both are true, but

MULTISET(A,AB, J,A[J], J+1,A1J])

e not true generally.,

1

] \ l
4 I

v' I
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This asserted program and resulting verification conditiors were the
initial input to the Allen-Luckham theorem prover when it was able to
diacover the verification condition which could not be proved.

PASCAL ENTRY N = 18SAMESET(A,AQ,A[ARBI TRARY]);
ExiT WK (1<Kl AlK<N-1) o AIK)<A[K+1))8SAMESET (A,AB,A[ARBITRARY]);
BEGIN J-H;
ASSERT WK ((J+1<K)a(KeN-1) o> AIKI<AIK+1]) &
VMM aMsd)a(JeN-1) o> AIMI<A[J+1)) &
1<J8J<N & MULTISET(A,AB, J+1,ATJ+1],LOC,ATLOC) )
WHILE J 22 DO

e -

BEGIN
BIG « Alll: LOC « 15 1 « 2
! 9 ASSERT YK ((J+1sK)A(KSN-1) > AIKI<A[K+1]) &
1 YL ((1sL)aflgl-1)a(l-15N) > AILI<BIG) &
¢ VHOL M)A (M)A (UsN=1) > AIMISATI+1]) &
i BI1G=A[LOC)&1sLOC8LOCSJ&I22 &
1 2<J8J<N & SAMESET(A,AB,A[ARBITRARY]);
WHILE 1<J DO
. BEGIN IF A[1]>BIG THEN
3 BEGIN BIG~A{l]; LOCel END;
: Tel+l
F END:
AILOC) ~ ALJ):
AlJ] - BIG:
Jed-1
END
END. s
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HAKAK
PASCAL PROGRAM SUCCESSFULLY PARSED

FOR THE MAIN PROGRAM THE
6 VERIFICATION CONDITIONS ARE:

# 1 N218SAMESET (A, AB,A[ARBITRARY])

YK ((N+1sK)A(KsN-1)oA (K] sA[K+1])8&
YM (1M A(MsSN) A (NSN-1)2A [M] <A IN+11) 81 <NENSN&
MULTISET(A,AB,N+1,AN+1],LOC,ALOC])

Note: A(N+l) is undefined and, since LOC is undefined, eo is A[LOC].
Never theless, by convention this MULTISET term may be coneidered true.

# 2 (VK ((J+1<K)A(KEN-112AIK] A TK+11)8YM(1sM A (MsJ) A(JISN- ) DA M sA [J+1]) &
1<J8JSNSMULTISET (A, AB, J+1,A[J+11,L0C,AILOCI) ) A(J22)

VK ((J+1<K)A(KsN-1)5A K] <A K+11)8
VL((1sL)A(Ls2-1)1A(2-1sN) DA ILI <A TL])&YM (1M A(MSIIA(JSN-110ATM] <A [J+1]) &
Al1)=A11181<1815J822282<J8JsNESAMESET (A, AB, A [ARBI TRARY] )

# 3 (VK((J+1<K)A(KsN-1)oA KT <A [K+11)8VL ((1sL)A(L<I-1)All-1sNIDA L] <BIG) &
YM(L<M) A (M)A (JsN=-1)2A (M)A [J+1])8BIG=A [LOCI 81sLOCBLOCSJ8122825J8JsN&
SAMESET (A, AB, ATARBITRARY]) ) A(15J)-AL11>BIG

VK ((J+1 <K) A(KSN-1) oA (K] A [K+11)8YL ((1sL)n(LsT+1-1)A(l1+1-1sN)DAILIsA(I])&
YM((1<M) A(MSIYA(JSN-1) DA M1 A [J+11)8A LT =ATT]1 815181 <J8]+1 228258 IsN&
SAMESET (A, AB, A [ARBI TRARY])

YM((1sM A (M) A(JsN-1) DA M <A[J+1])8BIG=A[LOCI 81sLOCELOCSJ&122825J8JsNE
SAMESET (A, A, A [ARBITRARY1 ) ) a(lsJ)4=~(A(11>BIG)

VK ((J+12K) A(KSN-112A K] <A IK+11)8YL ((1sL)A(LsI+1-1)A(141-1<N)DA[L]1<BIG) &
VM ((1sM) A(Msd)A(JsN-1)oA M) <A[J+1))8BIG=A[LOCI 81<LOCELOCSJ81+122825J8J<NE
SAMESET (A, AC, ATARBITRARY])

# S (VK((J+lsK)A(KSN-1)2A KT <A IK+11)8YL((1sL)A(Lsl-1)A(1-15N)DA (L] <BIG) &
YM((1<M) A (M) A(JsN-1) A [M] A [J+11)8BIG=A[LOC] 81<LOCELOCSJ8122825J8 J<N&
SAMESET (A, AB, A [ARBI TRARY] ) ) A-~(15J)

VK ((J-1412K) A(K<N-1)> IF J=K THEN BIG ELSE [F LOC=K THEN A[J] ELSE A[K] <

IF J=K+1 THEN BIG ELSE [F LOC=K+l THEN A[J] ELSE A[K+1] )&

VM1 A(Me)-1)alJ-1¢N=1)> IF J=M THEN BIC ELSE IF LOC=M THEN A[J] ELSE A[M)s

IF J=J-141 THEN BIG ELSE IF LOC=J-1+1 THEN A[J] ELSE

AlJ-1+11 )81<J-18J-1<N&

MULTISET (A,AB, J-1+1, IF J=J-1+1 THEN BIG ELSE IF LOC=J-1+1 THEN A[J] ELSE A({J-1411,
LOC, IF JeLOC THEN BIG ELSE IF LOCsLOC THEN A[J] ELSE AILOC] )
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H 6 (YK ((J+12K)A(KsN-1) o8 (K] <A [K+11 ) 8YM((1sM) A(MSII A(JSN-1) DA (M) sA (J+1]) &
1<J8JSNEMULTISET (A, AB, J+1,A[J+1],L0C, A LOC)) ) A=(J22)

YK ((1sK)n(KsN-1)2A (K] <A (K+1))8SAMESET (A, AG, A [ARBI TRARY] )
KKK
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5.4 A SAMPLE PROOF FOR ONE OF THE VERIFICATION CONDITIONS OF THE
PROGRAM INTERCHANGE SORT

Below we give a proof of part of the last verification condition (#6
from Section 5.3). This proof was obtained by a theorem proving
progran [Allen and Luckham] from the set of axioms and statements
shoun below. This simple set of axioms was found to be sufficient to
obtain proofs of all parts of verification conditions for interchange
sort not involving the theory of permutations.

Below P(X) means X-1 and S(X) means X+l.

VAR: X,Y.Z,K,M,L;
INF_PRED: <, =, <3
PRE_OP P,5,A,J,N,1,2;
EQUALITY:=;
AXIOMS: XsX;
(XSYAYSZ) »X<Z;
(X<YAYEX) aY=X;
X<Ya (XY~ (X=Y))}
YeYvY<Xs
X<S(X);
P(X) X3
S(P(X})=X:
P(S{X)) =X
S(l1)=2;
P(2)=1:
((X<YAP(Y)SX)4P(Y)-X):
(X<Y-X<P(Y));
(XcYaS(X)gY);
(XgY-P (X)<Y)
LEMMA:  J=1;
PREMISSES: ((S(J)<K)A(KSP(NY))-A(K)SA(S(K)) s
((L<MAM A (ISP INI) ) A (M <A(S (D)) g
1<J;
JeNa=t 2¢J)
THEOREM: (¥K) (1sKAK<P (N))=A(K) <A (S(K) )

Note that we have added as huypothesis the fact that J=1. The proof of
this statement reaquired some computation and was derived by the
theorem prover wWhiie trying to prove the theorem. The proof that J=1
fol lous belowu:

AXIOH
3P(2)= Ji7 8

UL S Wy —
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Y < XAP(X)2 YoP(X)= Y;AXION
J «2;918
X < XiAXI0M
J € Xa2 <€ Xod < X311 12
X < YoX < YuX = Y3;AXIOM
-2 < JiAXIOM J =15 12

The proof of the last verification condition follows (the constant
THEOREMZ arises from the negation of the theorem):

I gl
{THEOREMZ) < A(S(THEOREM2));3 4
JoA () A(S(J) )5 6
o AXTON
JeAXIOH
XAX € JoA{X)< A(S(J)):7 8
P(N};9 18
VAaX < Jad < PIN)IDA(X) < A(S(JI)):AXION
THEOREMZ: 11 12
11 J = THEQREM2VA (THEOREM2) < A(S(THEOREM2));13 14
2 _A(THEORENZ) < A(S(THLOREM2)) ; THEOREM
13 4 = THEOREMZVS(J)< THEOREMZ2:;15 16
14 S(J)¢ THEOREMZ2oA (THEOREMZ) < A(S{THEQREM2) )17 18
15 1 < THEQOREM2v1 = THEOREMZ2;18 28
16 X < YoS5(X)z Y;AXIOM
17 S(J)< XaX < P(N)oA(X)< A(S{X));AXION
18 THEOREMZ2 < P (N); THEOREM
19 X < YoX < YuX = Y;AXIOM
28 1 < THEOQREM2: THEQREM

WoeNOINEwWw—IZ

L
A
J
X
1
1
J
1
J

N IA A A A A A
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5.5 BINARY TABLE SEARCH

This example, from Clint and Hoare (1972, is a table lookup routine
uhich tries to find the locatior of the input X in the array A. A is
a sorted array of distinct elements, a fact denoted in the assertions
by SORTEQ(A). [f X is not 'n the array an ERROR exit is to be taken.
(Dur conversion of their program renders this as setting the flag
ERRCR to TRUE.) Note the use of a go-to for leaving the while loop
and  the other go-to's. NC  “™O(X,M.N) expresses that X is not in
the array segment from ANl to . This program for binary table
search 1s essentially the sane as the example in Floyd (19721, The
last verification condition is of the form A » A because VCG does not
allow a transfer to the £EXIT assertion.

PASCAL ENTRY (1<M)ASORTEQ(A)A(A[L}sX)A{X<AIN]);
EXIT (A[LOOKUP) = X)~(ERROR=FALSE) v NOTFOUND (X,M,N) A{ERROR = TRUE):
BEGIN Me1: teH; ERROR-FALSE:
ASSERT  (M<N) ~ (A M) <X) A (X<A [N]VASORTED (A) A (ERROR=FALSE) 3
WHILE M+1<N 00 BEGIN

T« (M+N) OIV 23

IF X < A[l) THEN Nel ELSE IF All) < X THEN M « |

ELSE BEGIN LOOKUP « 1: GO TO 1 ENO

END:
IF AIM) = M THEN GO TO 2 ELSE BEGIN LOOKUP « M; GO TO 1 END;
2. ASSERT NOTFOUND(X,M,N): ERROR « TRUE:
1: ASSERT (A[LOOKUP] = X)A(ERROR=FALSE) v NOTFOUNG (X,M,N) A(ERROR « TRUE)
END.:

KHAKK
PASCAL PROGRAM SUCCESSFULLY PARSEQ

FOR THE MAIN PROGRAM THE
8 VERIFICATION CONOITIONS ARE:
# 1 (1<N)ASORTED(A)A(A[1]<X)A(X<AIN])
(1<N)A{A L] €X) A (X<A [N)) ASORTEOQ (A) A (FALSE=FALSE)

# 2 (M<N) A (A M $X) A (X<A N} ) ASORTEQ (A) A (ERROR=FALSE) A (M+1<N) »
X<A [(M+N) OIV 2]

(M (M+N) DIV 2)A(A M XD A (X<AL(M+N) OIV 21)ASORTEQ (A) A
(ERROR=FALSE)

(M<N) A (A [M] €X) A (X<A [N] ) ASORTED (A) A (ERROR=FALSE) A (M+1<N) »
~{X<A[(M+N) DIV 21)-AT(M+N) DIV 2] <X

({M+N) OIV 2<N)A(AT(M#N) OIV 21 <X)A(X<AN])ASORTED (A) A
(ERROR=FALSE)
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H 4 (M<N)A(ATM) <X)A(X<AN]) ASORTED (A) A (ERROR=FALSE) A (M+1<N)
~(X<A[(M+N) DIV 21)4-(AT(M+N) DIV 2] <X)

?A[(N+N) DIV 21 =X)A(ERROR=FALSE) vNOTFOUND (X,M,N) A (ERROR=TRUE)

#'S (M<N)A (AN <X) A (X<AIN]) ASORTED (A) A(ERROR=FALSE) A=~ {M+1<N) +A [M] =M
QOTFOUND(X,H,N)

# 6 (M<N)A(AMI sX)A(X<A N])ASORTED (A} A (ERROR=FALSE) A~ (M+1<N) 2~ (A [M] M)
TA[N]=X)A(ERRUR=FALSE)vNOTFOUND(X.H.N)A(ERROR-TRUE)

# 7 NOTFOUND(X,M,N)
TA[LOOKUP]=X)A(TRUE-FALSE)vNOTFOUND(X.H.N)A(TRUE-TRUE)

# S (A[LOOKUP) =X) A (ERROR=FALSE) vNOTFOUND (X, M,N)} A (ERROR=TRUE )

(A [LOOKUP] =X) A (ERROR=FALSE) vNOTFOUND (X, M,N) A (ERROR=TRUE)
HAKAHK
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5.6 THE McCARTHY-PAINTER COMPILER AS A FUNCTION

This example is the McCarthy-Painter compiler * for arithmetic
expressions [McCarthy and Painter 1967) written as a Pascal recursive
function., The assertions given in this example are the same
statements that W. Diffie used when he proof-checked the published
probf of the compiler correctress. If a "library function" ALPHA is
unknown  to VCG, it prints a message "ALPHA NOT FOUNO". For
precondtions and results of that function, the names "PRE_ALPHA" and
"RES_ALPHA" are invented.

PASCAL EXIT RESULT;

FUNCTION COMPILE(E:EXPRESSION; T:INTEGER):CuUDE;

ENTRY ISEXP(E)A(T>AC) A (ISVAR(V)>((LOC(V,MAP} < T) A (C(LOC(V,MAP))=C(V,SRST))));

EXIT (C(AC,OQUTCOME (COMPILE (E, T),0BST) ) =VALUE(E,SRST))
N
({U<T) > (C(U,0BST)=C(U,0UTCOME (COMPILE(E,T),0BST)}));
BEGIN IF ISCONST(E) THEN COMPILE « MKLI (VAL (E))
ELSE IF ISVAR(E) THEN COMPILE « MKLOAD(LOC(E,MAP))
ELSE IF ISSUM(E) THEN
COMPILE «

COMPILE (S1 (E}, TIxMKSTO (T} *COMPILE (S2(E) , T+1) »«MKADD (T)

END;
BEGIN RESULT « COMPILE (EXPRESSION, LENGTH (VARS))END.

HOKAKK,
PASCAL PROGRAM SUCCESSFULLY PARSED

ISCONST NOT FOUND
ISVAR NOT FOUNO
[SSUM NOT FOUND
S1 NOT FOUND
MKSTO NOT FOUND
S2 NOT FOUND
MKADD NOT FOUND
MKLOAD NOT FOUND
LOC NOT FOUND

MKL1T NOT FOUND
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VAL NOT FOUND

FOR COMPILE THE
4 VERIFICATION CONDITIONS ARE:

# 1 ISEXP (E)A(T>AC)A(ISVAR (V)5 (LOC (V,MAP) <T) A(C(LOC(V,MAP))=C(V,SRST))) »
PRE _1 SCONST (E) A (RES_I'SCONST (E) Al SCONST (E)

PRE_MKL1 (VAL (E)) APRE_VAL (E) A(RES_MKL 1 (VAL (E) ) ARES_VAL (E) +
(C (AC, OUTCOME (MKL! (VAL (E)),0BST)) =VALUE (E,SRST) ) A
(U<T>C (U, 0BST)=C (U,0UTCOME (MKLI (VAL (E)),0BST)))))

# 2 ISEXP (E)A(T>AC) A (ISVAR (V)5 (LOC(V,MAP) <T) A(C(LOC(V,MAP) ) =C(V,SRST))) »
RES_ISCONST(E)A"[SCONST(E)*PRE_ISVAR(E)A(RES_ISVAR(E)AISVAR(E)

PRE_MKLOAD (LOC (E, MAP) ) APRE_LOC (E,MAP) A (RES_MKLOAD(LOC (E, MAP) ) A
RES_LUC(E.MAP)*(C(AC.OUTCO“E(“KLOAD(LOC(E.“AP)).UBST))HVALUE(E.SRST))A
(U<T>C (U, 08ST) aC (U, QUTCOME (MKLOAD (LOC (E, MAP)),0BST)))))

# 3 1SEXP (E)A(T>AC)A(ISVAR (V)2 (LOC (V,MAP) <T)A(C(LOC(V,MAP)) =C(V,SRST) ) ) »
RES_ISCONST(E)A~ISCONST(E)wRES_ISVAR(E)A~ISVAR(E)aPRE_ISSUH(E)A
(RES_1SSUM(E} AISSUM(E)

ISEXP (S1 (E) ) A(T>AC) A(ISVAR (V)5 (LOC(V,MAP) <T) A(C(LOC(V,MAP)) «C(V,SRST) ) ) A
PRE_S1 (E) APRE_MKSTO(T) AISEXP (S2(E) ) A (T+1>AC) ALISVAR(V)>

(LOC (V,MAP) <T+1) A(C (LOC (V,MAP) ) =C(V,SRST} ) ) APRE_S2 (E) APRE_MKADD (T) A

((C (AC, OUTCGME (COMPILE (S1{E}, T),0BST) ) =VALUE (51 (E) ,SRST) ) A (U<T>

C (U, 0BST) =C (U, OUTCOME (COMPILE (S1(E), T),0BST)) ) ARES_S1 (E) ARES_MKSTO(T) A

(C (AC, OUTCOME (COMPILE (S2(E}, T+1),0BST) ) =VALUE (S2(E), SPST) ) A (U<T+15

C (U, 0BST) =C (U, OUTCOME (COMPILE (S2(E), T+1) ,0BST)) ) ARES_S2 (E) ARES_MKADD(T) »

(C (AC, OUTCOME (COMPILE (S1 (E), T)&MKSTO (T) xCOMPILE (S2(E) , T+1) %MKADD(T) ,0BST) ) =
VALUE (E, SRST)) A (U<TC (U, 0BST) =C (U, OUTCOME (COMPILE (S1 (E) , T) AMKSTO(T) %
COMPILE (S2(E), T+1)xMKADD(T),0BST!V)))

# 4 1SEXP(E)A(T>AC)A(ISVAR (V)5 (LOC (V,MAP) <T) A(C(LOC(V,MAP))=C(V,SRST)) )~
RES_ISCUNST(E)N“ISCONST(E)*RES_ISVAR(E)A—ISVAR(t)*RES_ISSU“(E)A

-~1SSUM(E)

(C (AC, OUTCOME (COMPILE,0BST) ) =VALUE (E,SRST) ) A
{U<T>C (U, 0BST) =C (U, OUTCOME (COMPILE,0BST)))

LENGTH NOT FOUND

FOR THE MAIM PROGRAM THE
1 VERIFICATION CONOITIONS ARE:
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# 1 UNRESTRICTED

ISEXP(EXPRESSIDN)A(LENGTH(VARS)>AC)A(ISVAR(V)>(LOC(V,HAP)<LENGTH(VARS))A
(C(LOC (V,1AP)} -2 (V,SRST))) APRE_LENGTH(VARS) A
( (C (AC, OUTCOME {COMPILE (EXPRESSION, LENGTH(VARS) ) ,0BST) )
VALUE (EXPRESSION, SRST) ) A (U<LENGTH (VARS) 5C{(U,LBST) =
C(U.DUTCOHE(CDMPILE(EXPRESSION.LENGTH(VARS)).DBST)))ARES_LENGTH(VARS)4
COMPILE (EXPRESSION, LENGTH(VARS}))

RRHKKK
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