
Best
Available

Copy

j ""WwwwpupijMui^'^ui'w-j"1 miiii» vtmmmw mswrnmrnv, ^ <i. ".'^»imwpi ^ - ■•^■F^!^pfr|ippppwpp?ifwr^wuj^"iiiLii

AD-767 331

AUTOMATIC PROGRAM VERIFICATION I: A
LOGICAL BASIS AND ITS IMPLEMENTATION

Shigeru Igarashi, et al

Stanford University

^

Prepared for:

Advanced Research Projects Agency
National Aeronautics aid Space Administration

May 1973

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

mmmm^m "-■

• i ,ii nnu II.I miiiu — nvfaannpmiPIPRpw^i'*''' '-'■'"> ><ui.'i>'>iv>i.niM/w i>.niiuijiu«ii«i|i,ml < '' i i. II»I u,imui nwviiup ii^iiiM i J^liiliijipUH

■M|

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-200

STAN-CS-73-365

CO
CO

3

AUTOMATIC PROGRAM VERIFICATION I:
A LOGICAL BASIS AND ITS IMPLEMENTATION

BY

SHIGERU IGARASHI
RALPH L. LONDON

AND
DAVID C. LUCKHAM

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CONTRACT NSR 05-020-500

AND
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

MAY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY 3 D

CCT 4

^ B

Reproduced bv

NATIONAL TECHNICAL
INFORMATION SERVICE

U S D»'j«rtm»nt of Commute*
Sprngf^d. VA. 23151

\

 —

--*■■ II.JH., RP. -vi wn^nmvimim'**" " ■ '}m 'imjmmmmr^-^r'

: I

Unclassified
StTtintv Classidc alum AD- 2LL2y

DOCUMENT CONTROL DATA R&D
I»,,*!, rto ..f.ct.on ol Uric, bod, ol *b*,r.c, „nd .ndeumj *nnol,l,on n.u.. be «nf.r.d *).>n gg ^e,.// report (1 rlggtlllt^

owtGiNA^'NG ACTIVTV fCorporafe au<hor>

Stanford University
Dspt. of Computer Science
Stanford, California 9^50^

2». REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

HF POR f TITLE

AUTOMATIC PROGRAM VERIFICATION I: A LOGICAL BASIS AND ITS IMPLEMENTATION

4 C) E sc RIP TivE NOTES (Type of report *nd incluuve dates)

technical report, May, 1973
I »u THORiSl (First name, middle iniliml, lall name)

Shigeru Igarashi, Ralph L. London and David C. Luckham

6 «E POR T DA T E

May 1973
««. CONTRACT OR GRANT NO

ARPA-SD-183
h PROJEC T NO

7«. TOTAL NO OF PAGES

approx. 50
76. NO OF RE FS

»•. ORIGINATOR1» REPORT NUMBERI»!

STAN-CS-73-365

9b. OTHER REPORT NOiSt (Any other numbers thmt may be assigned
this report)

kmzoo
10 DISTRIBUTION »TATEMEN1

Releasable without limitations on dissemination.

II SUPPLEMENTARY NOTES
12 SPONSORING MILI TARV ACTIVITY

11 ABSTRACT

Defining the semantics of programming languages by axioms and rules of inference
yields a deduction system within which proofs may be given that programs satisfy
specifications. The deduction system herein is shown to be consistent and also
deductive complete with respect to Hoare's sy^cem. A subgoaler for the deductive
system is described whose input is a significant subset of Pascal Programs plus
inductive assertions. The output is a set of verification conditions or lemmas
to be proved. Several non-trivial arithmetic and sorting programs have been
shown to satisfy specifications by using an interac ive theorem prover to auto-
matically generate proofs of the verification conditions. Additional components
lor a more powerful verification system are under construction.

DD FORM
I NOV 6»

S/N 0101-807.6801

1473 (PAGE 1) Unclassified
Security Classification

--- ttHUUH«

»imiw»W '-'f' P.PMiil' ' I .1 »111 «..IP I, I

I
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEHO Ain-28e

COMPUTER SCIENCE DEPARTnENT
REPORT STAN-CS-73-3G5

USC INFORMATION SCIENCES INSTITUTE
REPORT ISI/RR-73-11

MAY 1973

AUTOMATIC PROGRAM VERIFICATION I:
A LOGICAL BASIS AND ITS IMPLEMENTATION

by

Shigeru Igarashi
Ralph L. London

and
David C. Luckham

ABSTRACT
and rule
may be
system h
with res
i s descr
plus in
c o n d i tie
and sor
using an
0 ' the
powerful

: Defining the semantics of programming languages by
s of inference yields a deduction system within which
given that programs satisfy specifications. The ded

erein is shown to be consistent and also deduction co
pect to Hoare's system. A subgoaler for the deduction
ibed whose input is a significant subset of Pasc»1! pr
ductive assertions. The output is a set of verifi
ns or lemmas to be proved. Several non-trivial a"" i t
ting proyrams have been shown to satisfy specificati
interactive theorem prover to automatically generate
verification conditions. Additional components for
verification system are under construction.

axioms
proofs
uct i on
mpIete
system
ograms
cat ion
hmet i c
one by
proofs
a .lore

i

Authors' addresses: Igarashi. Research Institute f or Mathematica I
Sciences, Kyoto university. Kyoto G8B, Japan; London, USC Information
Sciences Institute. 4B7G AdmiraIty Uay, Marina Del Rey, California
98231; Luckham. Computer Science Department, Stanford Univers i ty,

Stanford, CaMfernia 94385.

This resea-ch is supported by the Advanced Research Projects Agency
under Contracts SD-183 and DAHC 15-72-0-8388. ^^y the National
Aeronautics and Space Administration under Contract NSR 85-828-500.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of ARPA, NASA, or the

U.S. Cover nment.

Reproduced in the USA. Available from the National
Information Service, Springfield. Virginia 22151.

Techn i ca

//

•

mnmmwmm'mm:

AUTOHATIC PROGRAH VERIFICATION I:
A LOGICAL BASIS ANO ITS IMPLEnENTATION

by

Shigeru Igarashi. Ralph L. London, and David C. Luckham

:

1 INTRODUCTION

Verifying that a computer program is correct has been discussed in
many recent publications, for example [Hoare 19BT, King 19B9,
McCarthy and Painter 19G7]. The "correctness problem" or
"verification problem" has become popular essentially because it
represents a significant first step towards writing programs that can
be guaranteed to do what their authors intended. There are several
different interpretations of exactly what it means. Here, we adopt
the point of view that a program has been "verified" when it is
proved within a system of logic to be consistent with documentation,
i.e. a statement of what it is supposed to do. Our discussion is
restricted to programs that can be written in a very precise modern
programming langage, Pascal [Uirth 1971]. Of course, we do not deal
with all Pascal programs, but with a subset that is rich enough to
include published algorithms such as FIND [Hoare 1971b]. TREES0RT3
[Floyd 19641, a.id a simple compiler [McCarthy and Painter 19G7] .
Since r-"=ical is an Algoi-like language we expect that what is done
here can be repeated without mucn effort for Algol or other such
languages. Ue adopt a DOCUnENTATION LANGUAGE that is roughly
speaking the language of quantified Algol Boolean expressions, (i.e.
first-order number theory with definitional extension and some
notational con-eniences). It does not contain any constructs for
representing such notions as tense (time dependency), possibility
(can do), etc. that may well prove useful in describing programs. So
the documentation language is a slight extension of what programmers
normally use to state those condition» jn computations that control
their programs. Statemprts of the documentation language are called
ASSERTIONS. A documented program is, for us, a Pascal program in
uhlch assertions have been placed between its statements at certain
points. Ue refer to such programs with documentation as ASSERTED
PROGRAMS.

I

I

The general idea of how to go about verifying an asserted program is
to reduce this problem to questions about whether certain associated
logical conditions (henceforth caI 1ed VERIFICATION CONDITIONS) are
true of (i.e. theorems in) various standard first-order theories.
The usual method of reduction [Floyd 1967] involves enumerating all
possible paths between assertions in the program and then computing a
verification condition for each path in terms of operations and
assertions on that path; these verification conditions must then be
proved. See London [19721 for a bibliography tif existing programs
for generating verification conditions.

MMM ua-H wmmm

jji"w»i:"."i"i ■■.in ■••'•». <t iiBii^wmujiiiii, .I. in"mi w .. :... ■,. 1. .. I.. II.. 1. II.Ul I «

However, in the case of Pascal, a rigorous definition of the
semantics has been given in terms of axioms and rules of inference
that must be valid for each syntactic constructors this It contained
In the recent uork of Hoare and Ulrtft [19721. This approach to
defining the semantics of a programming language yields a deduction
system in which proofs that programs satisfy specifications may be
given (see Hoare tlSG?.1971a]). Such proofs, of course, depend on the
truth of first-order conditions, or to put it another way, stanaard
first-order theories are sub-systems of the deduction system for
Pascal. For the sake of illustration. Example 1 shows a proof in
Hoare1s system that the program in step 13 computes the quotient q
and remainder r o* the inputs M and y. The rules of inference used
here arP the rules in Table 1 (Section 3.11 and the iteration rule
below. The logical conditions assumed by this proof are labeled

"lemma".

1 terat:on; PACHAIP.PA-QDR

Plwhi le Q do A}R

1. true -» x = x + y*0

2. x = x + y*0lr.-x)x-r + y*0

3. x=r+y*3(q-0ix-r+y«q

4. true Ir^xl x-r+y*0

5. true lr-x! q«-01 x-r + y*q

x.r + y*qAySr-»x- (r-y) + y « d+q)

x = [r.y| + y # (1+q) ir - r-yl x - r + y * (1+q)

x - r + y * (1+q) Ifj •■ l+q> x - r + y * q

B.

7.

8.

9. (r-y) + y * (1+q) Ir «- r-y; q «- 1 + q)
x - r + y * q

Lemma 1

Cl

Cl

CB (1. 2)

C7 (4 ?)

Lemm-j 2

Cl

Cl

C7 (7 .8)

16. x - r + y * q A y S rtr ^ r-y; q - 1+q)
x-r+y«q Ci tb,3)

11. x-r + y*qA-y<r-.-ySr/\x-r + y*q Lemma 3

12. x - r + y * q Iwhile y S r do(r ü r-y; :I ^ 1 + qM
-y''rAx-r + y*q Iteration (10,11)

13. true(((r - x; q^0); whiIe y S r do (r ^ r-y; q - 1+q))I
-.ySrAX-r + y«q C7 (b,l^)

EXAMPLE 1: FORMAL VERIFICATION OF QUOTIENT-REMAINDER PROGRAM

rmimmmmm nsn^dPFl mi n. I" il U.JI.WPI i niiiiiii|iwi|||iiiaw<mpK(|^«fQnpwm*vnPi^ ii i.i •. .i.n ■.•im IIIIUBIJIBII tun^rawmawMi^^pMnmp

It is possible to generate the verification conditions for an
asserted program merely by using a subgoaler for the deduction
system. EXAMPLE 2 shows how such a subgoaler works on the
Quotient-Remainder program of Example 1; it simply searches for a
rule nference which has the current goal as its conclusion and
then generates the premisses of the rule as subgoale.

Goal .

Subgoal 1.

Sub'joal 2.

Lemma 3.

Subgoal 3.

Subgoal 4.

Lemma 2.

Subgoal 5.

Lemma 1.

truelr •- x; q •• 0» assert x - r + y * qj
while y £ r do begin r ♦■ r-y;
q *• 1+q end) -(ySr) /\ (x - r + y « q)

trueir •-x;q*-0lx-r + y«q C7 (Goal)

x - r + y * q Iwhile y S r do begin r «- r-yj
q «- l>q end) -(y f r) A IK « r+y«q)

C7 (Goal)

(x - r + y * q) /\ -> (y S r) -» -• (y S r) A (x - r+y*q)
Iteration (Subgoal 2)

(x ■ r + y*q) A (ySr) Ir «- r-y;q ♦• 1+q) x - r + y*q
Iteration (Subgoal 2)

(x - r + y*q) A (y<r) ir •- r-y) x - r + y*(l+q)
C7 (Subgoal 3),
then Cl (Subgoal 3)

(x»r-ry*q) A(ySr)-» x-(r-y)+y* (1+q) Cl (Subgoal 4),
then C5 (Subgoal 4)

true Ir •- x) x • r + ymB

true-»x«x + y*f.

C7 (Subgoal 1),
then Cl (Subgoal 1)

Cl (Subgoal 5),
then C5 (Subgoal 5)

EXAMPLE 2: GENERATION OF THE VERIFICATION
QUOTIENT-REnAINHF.R PROGRAfl

CONDITIONS FOR THE

i

aaüMMM«. *^ --

i HIH.I.I«». ■ , in i I,«), l|p»7^p|pR ^mmr - mmvnvmr-mv

1 This is the approach to generating verification conditions presented
here. Ue use a simple subgoaling program for hoare's deduction
system. Although this program'will accept a significant subset of
Pascal programs, it is itself very simple since it does not analyze
the object program explicitly out merely repeatedly applies a list of
rules of inference. It is easily shown to be sound (see below),
easily extended to accept additional syntax (FOR statements, new type
declarations, etc.), and easily changed to take account of. new
defin'tions of the semantics. Ue refer to this subgoaler as VCG
(Verification Condition Generator); details of its implementation are
given in Section 4 and sample outputs in Section 5.

However, there are problems. At any step more than one deduction
rule may be applicable to generate further subgoals. To deal with
this ambiguity, we have choiren a set of deduction rules (some of them
derived rules in Hoare's system) for subgoa I generation which is
unambiguous. Ue shall show that this set ;s deduction complete. This
necne that if a particular verification can be proved in Hoare's
system, then VCG will produce a sufficient set of verification
conditions from which such a proof may then be constructed. However,
these conditions may not be provable unless the user supplies certain
crucial assertions at intermediate points in his program (e.g. an
invariant for each loop). Finally we also need to know '.hat the
deduction system is consistent.

Section 3 deals with these logical problems. Ue give a small set of
axioms and deduction rules, called the CORE, from which all of
Hoare's rules can be derived; some sample derivations are included. A
straight-forward set theoretic model of the core is constructed; this
gives us a semantic proof of consistency of the core. The set of
rules used by VCG is given and is shown to be consistent with the
core and powerful enough to derive the core (hence deduction
completeness). Preliminary comments, definitions and examples
concerning Pascal programs, the assertion language and asserted
programs are given in Section 2.

VCG is already a useful tool. Numerous example programs have been
verified by manually proving the verification conditions. No1"«
interestingly, and of more protuise, VCG is intended to be the initial
part of an automatic verification and debugging system,
plan is shown in Figure 1. Asserted programs are input to VCG.
output verification conditions are simplified relative to data files
containing relevant properties of the operators and functions in
conditions. It wil

The overa I I
The
I es
the

that a gre^t deal
conditions is both
the conditions will
Next. the condition
the theorem prover

become evident from the examples in Section 5
of elementary simplification of verification
necessary and easy to do. The truth of many of

be established at the linplifleitien stage.
Analyzer is intended to reduce problems given to

and to find bugs. It attempts to classify
verification conditions according to probable method of proof and to
generate simpler subproblems, and also attempts to find the "closest"
similar condit:on that is provable when a proof of a given condition

—-

w~-- iiii.i im ■.».■MIJUP,*«"«JI«I«JI.VJIIIIII »■^•vnj|<<mi!f!^pmp)|pMp nvnii^ rT»wwBn«B " iiilOTaHOTICTnv^KB^^PW^HHMni

'■<*'

is not found. This latter kind of analysii is one method of catching
bugs — finding missing assumptions in verification conditions.
Currently a development of the theorem-prover of Allen and Luckhatn
[1970] is being used successfully by J. Horales to prove conditions
output by VCG for various sorting programs (see Section 5.4). This
proposed system thus appears to have a good chance of being developed
into so.iething useful.

Uhat ha:? become evident If that VCG is not a trivial element in this
type of verification system. In order to make such a system
practical, the amount of documentation the user is required to supply
uith his program should be restricted to wh«t uould be considered
natural for human understanding of what the program and its
sub-programs do. At the moment VCG places rather more weight on
documentafon than we would like. However it is already easy to see
how to extend VCG by adding some additional rules that will permit it
to deduce intermediate documentation for itself in some cases.

I nput

| VCG |
->| I

DATA FILES |

SiriPLIFIER |

| DATA FILES1

n
I v

OUTPUT |

| ANALYZER |—>| THEOREM |
.> i |<—IPROVER |

I
I
v

OUTPUT

FIGURE 1: PLANNED AUTOflATIC VERIFICATION AND DEBUGGING SYSTEM

) <

*Lz**mamä ■MMMM ^MftMMMIMHM

J UH«,I.I1UJ1,]I| mim ■ " Wllii.t(, IWUVV. '■"'- lU|«l,l|i)WlWlll'rtl

2. PROGRAfIS UITH ASSERTIONS

2.1 PASCAL.

A compre
[1971,1972
Programm in
deduct i on
Pascal is
have no tr
generation
Pascal her
concern t
a program
recursi ve
procedure
PascaI.

h e n s i
1 and
g I a
sys te
an A I
oub I e

i n
e, we
o us
conta

f unc
and f

ve defin
Hoare and
nguage i s
m and i ts
go I - I i ke I
understan
this paper
sha11 poi

between Pa
ining a pr
tion defi
unction; i

ition of Pascal is published bg Uirth
Uirth []972]. Our choic« of Pascal as the
motivated by the des«lopment of Hoare's

use to define the semantics of Pascal.
anguage so a reader familiar uith Algol will
ding the examples of progroms and condition

Thus instead of indudi.ig a definition of
nt out some of the main differences of
seal and Algol. The following example shows
ocedure definition, variable declarations, a
nition and a pr^g.-am body which calls the
t is written first in Algol and then in

I

ALGOL PROGRAfl:

BEGIN
INTEGER ALPHA, BETA, QUOT, REM, Q, R, X, Y, I;

PROCEDURE QUOTREn(R,Q,K,Y)! VALUE X, Y; INTEGER R, Q. X, Y;
BEGIN R := X; Q :- 0-,

FOR I tm I UHILE Y ^ R DO
BEGIN R :- R - Y; Q :- 1 + Q END

END;

INTEGER PROCEDURE FACT(N); INTEGER N»
BEGIN IF N » 8 THEN FACT :- 1 ELSE FACT :- N « FACT(N-l) END;

BETA :- 3; X :- G; ' :- 4;
ALPHA :- FACT(BETA);
QUOTREniQUOT. REM. X-tY, X-Y);
Q :- QUOT; R : - REtl
END

PASCAL PROGRAM:

VAR ALPHA, BETA. QUOT. REM, Q, R, X, Y s INTEGER;

PROCEDURE QUOTREM(VAR R, Q : INTEGER; X, Y ; INTEGER);
BEGIN R :- X; 0 :- 8;

UHILE Y < R DO
BEGIN R :- R - Y; Q ;- 1 + Q END

END;

FUNCTION FACTtN:INTEGER) : INTEGER;
BEGIN IF N - 8 THEN FACT :- 1 ELSE FACT ;- N « FACT(N-l) END;

^ _*

mnmumn» w

BEGIN BETA :- 3; X :- G; Y s- 4j
ALPHA :- FACT(BETA)j
QUOTRErKQUOT. REH. X+Y, X-Y)j

Q :- QUOTj R : - REfl
END.

EXAMPLE 3: A PROGRAM IN ALGOL AND PASCAL

The differences in declaring variables are unimportant for our
purposes. The type of the function Is indicated after the right
parenthesis in Pascal rather than before the word "PROCEDURE" in
Algol. The openinq "BEGIN" in Algol appears just before the main
program in Pascal. In the formal parameter part of procedure and
function definitions, Pascal includes the specification of the formal
parameters inside the parentheses! in Algol this specification It
made after the list of parameters to be called by value.

The remaining
discussed in
parameter par
corresponding
general expres
procedure aff
of "VAR" befor
Algol S8 sens
original defin
be expression
parameter repr
value of the
upon activatio
from within
correspond i ng
Uirth [1971, 1

difference may be skipped until procedures are
detail later. The word "VAR" in the Pascal formal

t means R and 0 are variable parameters. The
actual parameters must be variables (and not more

sions)? assignment to R or Q in the body of the
ects the corresponding actual parameters. The abeence
e X and Y means X and Y are value parameters in the
e (representing a change in the revised Pascal from the
it ion). The corresponding actual parameters must
s (of which a variable is a simple case). A value
esents a variable local to the procedure to which the

corresponding actual parameter is initially assigned
n of the procedure. Assignments to value parameters
the procedure are permitted, but do not affect the
actual parameters. (For further details of Pascal see
972]).

At tie moment VCG will accept a subset of legal Pascal programs built
up from: assignment, while, conditional, and go to statements;
recursive procedure and function definitions and calls;
one-dimensional arrays are allowed on either side of assignment
statements.

2.2 ASSERTIONS

Assertions are conditions on the state of the computation of a
program. Thus, if assertion P is placed at some point in program A,
the intention if that when A is run, every time P is encountered P
must be true of the current computation state of A.

MM

T-* »■MBjiiwuppni.pii.iiiii^ JWWW^^WW' IHII^IIII llll.i Ullff iflWWV^W' '■' ' ,J-I-'1 '^"IW"-<»-" -^ —--

I

I
1
I
I

Essentially, our assertion language allows assertions «•«•"J; " J"11

.e - or.ed formula of a standard first-order theory and '-? add.t on

non-standard relations may be introduced by ^lll ««•JJl^ " ?""£
We have adopted a slightly more usable and readable formal language

for the assertions of VCG.

(i) A term in the assertion language is a Pascal expression.

(ii) Atomic assertions are either predicates (i.e. Identifiers) uith

terms as arguments or terms.

(iii) Assertions are uell-formed logical formulas constructed from
atomic assertions using logical connective» and quant.f.ere

according to the usual uell-Knoun rules.

Here are some examples:

(1) X = Y+Z

(2) -(Y<R) A (X - R+Y*Q)

(3) Z*P0UER(U.n - POUER(X.Y)

, Pascal (and in fact

(4) VKUISK) A (K«N-ll 3 ALK] S. ALK+1]/«
PERnUTATION(A,A0).

The first three assertions are expressions ir
Boolean expressions in Algol) and use a precedence among operators to
!impM fy no a on (belo.) Assertion (4) is not a Boolean expression
tnMgol (because it contains a quant i f i er) nor an expreee .on . n

Pascal (because of the quantifier and implication).

The assertion language contains different connective symbols for both

nPLI?AT JN and 'AND to Improve readability •* ^iJ^J^
conditions. The precedence order of connectives and ar,thmet.caI

ope rators, predicates, and quantifiers is:

1. «(and); 2. - (implies), o (implies): 3. -. '. <. >. S. ix 4. V...+.
-. 5. A (and). *. /. DIV. MOD; G. -, V, 3.

I

This agrees with the precedence in Pascal expression«.

NOTATION: Assertions and Boolean expressions will u.ually be denoted

by P.Q.R.S.

2.3 ASSERTED PROGRAHS

Assertions are added to programs as addit.onal statements beginning

with the special symbol ASSERT, namely

• '

MfMUgM^HM^

l^^—'^■^™~^———- i-ni— —in i i i IMI—»nrTIT'

«assert &tatement> ::- ASSERT <a88ertion>

Thus an asserted program •> a legal Pascal prograir if we imaginw that
the syntax of the Pascal statement is extendeo by adding the extra
clause be' ow to the syntax diagram of "etatemerit"
Uirth CIS", 23):

(see appendix to
:|

(ASSERT | ASSERTION

The assertions at the entry an' exit of a procedure definition,
function definition, or main program have the word "ASSERT" replaced
by "ENTRY" and "EXIT" respectively. Both entry and exit statements
appear at 'he beginning of the unit.

There a r
a s s e r t i o
least on
a s s e r t 1 o
s t a t e m e n

I abeI).
tney are
a s s e r t i o
program.
Asser t i o
is m i s s i
"UNRESTR
assert i o
PROGRAfl.

e so
ns
e as
n
t)

a
n
Ui t

ns
ng f
ICTE
ns p

E

me f
i n
ser t
t ev
ncl a
I tho
i m p I
n ev
h n
may
rom
D".

I ace
xamp

ur the
a so
ion.
ery I
nass
ugh t
e and
ery I
0 I o
opt i

the e
a

d to
1 es o

r res
urce

Th
t^rat
er t i o
hese
conv

oop.
ss 0
ona I I
ntran
syno

meet
f ass

tr i et i on
program

is requ
i on stat
n at eve
requi rem
enient s
An asse

f gener
y oe pla
ce, VCG
nym for
these re
erted pr

s.
i s

i re
erne
ry
ent
uff
rti
a! i
ced
wi I

II

qu i
ogr

'he ba
that

men I
nt (i

I abe
s are
i c i ent
on i s r
ty we
anywhe

i assu
TRUE",
rements
ams are

sic rule about placing
very loop must contain at
s met if there i s an
., immediately before the
(i.e., ju«(t after the

ot a necessary condition,
condition to guarantee an
equired for the exit of a
assume a sing Ie ex i t.

re else. Jf an assertion
me the entry assertion
A source program with
is called an ASSERTED
given in Section 5.

NOTATPN: Asserted programs will be denoted by A,B,C,D.

2.4 LOGIC OF ASSERTED PRGGRAnS

Ue review briefly here the elements of Hoare's inference system for
proving properties of programs.

STATEMENTS of the logic are of three kinds.

(1) assertions,

(ii) statements of the form PIA1Q where P,Q are assertions and A
is a program or asserted program.

PIAIQ means "if P is true of the input' state and A halts (or halte
normally in the case that A contains a GO TO to a label not in A)
then Q is true of the output state".

-

mvrnwwjinjKM H uM.'vp^nfivnp^nnim^nnpiaMim^iiPT 11 ■-I|i" " ■■ll"1 •»»»^^■W^^^P^^W^W»^^

I
(iii) procedure declarations (definitions) of the form p PRÜC K whore

p is a procedure name and K is a program or assarted program
(the procedure body).

There ie an ir finite set of variables p,q,r,... that range over
procedures. Thus undeclared procedure names occurring in statements
are free variables ranging over procedures.

A RULE OF INFERENCE io a transformation rule from a set of statements
(premises, say H ,, .,H) to a statement (conclusion, say K) that

1 n
is always of kind (ii). Such rules are denoted by

H ,H

Rl

I

The concept of PROOF in Hoare's system is defined in the usual way as
a sequence of statements that are either axioms or obtained from
previous members of the sequence by a rule. A sequence is a proof of
i t s end sta temen t.

Ue use H M- K to denote that K can be proved by assuming H. H j- K
denotes the same thing for first order logic.

Some rules have the existence of a subproof as a premiss; they are of
ehe form

H H , I ||- J
1 n

Such rules permit deductions of
caI Is.

assertions on recursive procedure

Ue i
or d
pr oo
form
Each
form
end
assu
rule
the
In
cone

x tend the
ependency.
f sequenc
u I a i dent i

formuI a
u I a s, u h i c

formu I a
m p t i o n s un

of the
set-theore
other ui

I us i ons.

de f i n i t i on of pro
An arbi trary ue

e. But in such
c a I u i t h itself a
in the sequenc

h can be empty, a
in the sequence.
less spec i f i ed ot
form Rl is depen

tic un i on of thd
ords, assumption

of to include
I I-formed for
a case that f

s its (un i qu
e has an asso
nd which must

Each rule of
herwise. Thus
dent on the se
sets of assump
s are inheri

the 'pot
mu I ci c
ormuI a
e) ass
ciated
be empt

i nfere
the

t of as
tions o
tsd fr

i on of
an app
is said
umpt i on
set of
y i f i
nee pre
cone I us
sumpt io
f the
om pre

assu
ear
to
fo

assu
t i
serv
i on
ns t
prem
miss

mpt i OP
i n a

have a
rmula.
mpt i on
s the
es the
of a

hat is
i sses.
es to

ie

—M mm ^ MM —•— —■-■ '*■

■ •iH»i|»«w,«iii,;'iiw!» i ipnimiin i n,.i w*^**vmmr- mi ji iiinii>mpHw>^«i^pmnnpH ■II IIBWI

Assumptions can b« discharged only if the rule i& of the form R2, In
this case the assumption formula designated by 1 can be discharged
from the set of assumptions associated with the conclusion designated
by K, while other assumpti'nf are inherited.

Intuitively I I
reads "for any r"

j meanf i implies J, and a free variable, say r,

The rules of inference discussed in tha following sections all have,
with one exception, at most two premisses. Proofs may be represented
in the usual way by binary trees.

SUBSTITUTION of an expression t for a variable x in an expression E

is denoted by x
El

t.

Ue not« that the termination of a program A is not expressable in
Hoare's system by statements of the form PIAIQ. On the other hand,
non-termination can be expressed by statevents such as TRUE(Al FALSE.
There may be some indirect ways of constructing formulas that mean "A
terminates for all inputr satisfying P", and if so. it would be nice
to know to-- what class of programs this cf.n be done.

I

REMARKb-

Ue presuppose a standard f i r <■, c-order theory, which shall be denoted
by T. representing the properties of the primitive functions and
predicates used in Pascal. However, our construction is uniform in
that choosing different first-order theories characterizing possibly
different functions and p-edicates does not affect the framework, A
standard model of the theory T is fixed and denoted by M.

In our formal system
to distinguish:
1) Procedure names
procedure whose body
I eve I be Iongs to
regard the assignmen
2) Procedure names
dec Iara t i ons as the
constitute nonlogica
Ue assume J does not
3) Procedure names u
use procedure names
variables", which
metathtorems we will

there are three kinds of procedure names we have

for primitive procedures. For instance a library
is inherently written in a language of lower

this category. (It is even possible for us to
t statement as such a procedure.)

for declared procedures. Ue regard procedure
"defining axioms" of such procedure names, which
I axioms in our system and shall be denoted by J.
assign more than one procedure to a name,

sed in derivations. In the formal system we will
which should intuitively be regarded as "free
represent arbitrary procedures. In proving
use a name for each declared procedure.

Besides the above, each procedure name is assumed to have 'arity", so
that it can represent or vary over declared procedures with, say, m
variable parameters and n value parameters. Such a procedure will be
called (m,n)-ary and the m (variable) parameters and the n (value)

11

I

iHnwiH.K^R^pppp^Hi«luipp^ni q^mip«CSPPi^>li!^ff«i Jjuwiii. i .iii»TpiP!PP^w»wiiy HIDIIIIP PI «IIW."1 m***********'*******-' ■'WJI L#.I JJ

I
I
I
I
I
I
I
I
I
I

paramete'-s will be called
respectively.

the left and the rigM parameters,

If a primitive procedure name, say q, occurs in a program about which
we are to prove a certain theorem, we have to either give a set of
(nonlogical) axioms of the form Piq(x;y)IR or a defining axiom for q.
In most cases, we shall assume that the procedure can be written in
Pascal and that there is a defining axiom for it.

12

am^^^aaammm bM«! ! _

ffMpapt^pp|l!mip,.i|IHlfM|Jfmil mmmi JIJ ■ipwmwnR •^"WWWIP

I

THE BASIS INFERENCE SYSTEfl FOR VCG.

I In this section ue study the
rules of inference used by VCG.
rules of inference in V should
one rule is applicable to gener
ui I I certainly be the case
have common substitution instan
The rules of V, which appear
combinations of Hoare's origina
[1971a, p. 1161. Having chose
sound and deduction complete
simple rules (the CORE) is
derived from C. Ue then show t
shall begin by studying the
sets of rules contains go to's
equivalent to the following set

properties of the set V of axioms and
One of our main concerns is that the

be unambiguous in the sense that only
ate subgoals from any given goal. This
if no two rules have conclusions which
cas, a property which is true of V.
as Table 2 in section 3.3, are simple

I set of rules H given in Hoare
n V, we must establish that it is both
Ue shall show first that a set C of
sound and that any rule in H can be

hat V and C are inter-derivable. Ue
relative derivability when none of the
or array variables. The rules H are
of rules.

3.1 THE CORE RULES

The set of axioms and rules of the core is given in Table 1. Rules
D3 (iteration), 07 (adaptation) of H have been omitted; 04
(alternation) has been replaced by C8 (conditional). Ue have added
the frame axiom (C2) for procedure calls and the and-or rule (C6) ;
Hoare's substitution rule (0G) corresponds to our left and right
subs t i tution rules.

NOTATION: x, y. z - lists of variables; p.q.r - procedure names;8, t
- lists of expressions; K - procedure body; p(x;y< - denotes CALL
p(x;ij) where H and y are the left and right parameters of p. VAR(P)
denotes the frre variables of P; p(x;y) PROC < denotes a declaration
of the form "PROJEOURE p(x;y); BEGIN K END".

Axionn

Cl. v a jnment axioms; P| (x-tlP
t

i

C2. frame axioms:

C3. procedure declarations:

C4. logical theorems:

RULES

P(q(x;t)lP provided -(x t VAR(P))

plx;y) PROC K.

P for all P 8. t. |- P.

13

 ««■»MM

• V<IM«<P «—»T-..; ^«~ ■ - ' ^^ " "■-'•■■ iiuj iiiniji. ..«Hi!jw.ni.nn^iv»R>vi» mrjmumUIIIIWIP^SHWWIIBW™

C5. consequence:
r'3Q, QIAIR

PIAIR

PIAIQ-, UDR

PIAJR

CG. and/or:

C7. compos't i on:

C8. condi t i onal:

C9. subst i tut ion:

P(A)Q.RiAlS PJAJQ, RIA1S

PARIAIQAS PvRlA)QvS

P1A1Q. QIB1R

PiA-.BIR

PARIAIQ, PA-RIB»Q

P11F R THEN A ELSE BJQ

(L) P(x{g) (q(x!y)»Q(x;y)

P(zsw)lq(zsy)lQ(z;y)

(R) P{K5y) lq(x:y))Q(><jy)

PU;s) lq(x;s)iQ(x;9)

SUBJECT TO THE RESTRICTIONS: (i) s does not contain members of x; (ii)
members of z must be distinct and y and z are disjoint.

C18. procedure call: P<i«iyl PROG K(p). P lr (x; y)) Q | I-P IK (rH Q

Pip(xty)lQ

where p does not occur in the proof of the right hand premiss,
and r does not occur in any other assumption in that proof.

TABLE 1 ::THE CORE RULES.

In order to demoistrate that C is as "powerful" as H we show that «nu
proof in H of PIMQ can be transformed into a proof in C of PIA IQ
where A' is a program equivalent to A. An application of a rule R
(that 19 not a rule in C) in the given proof is to be replaced by a
derivation in C of the conclusion of R assuming the premisses of R.
The transformed proof wiII use only rules of C and will prove
essentially the same formal statement. It is clear that applications
of Hoare's substitution rule (OB) can be replaced by successive
applications of the left and right ruI es (CS). He therefore need
only consider the following three rules.

14

L^ mmm

|p)^Wim> «.<P>U?II'< >. IIJUIMl.l JM* .Jl IIHIIMlll.1,11111,1 IIL.I J|li^P^IWPHpi-».l|J<IJP.»l.Ml.,lW l"""' "■ ■", !■■«"••■■' IM.■.»■■■■ Ul I I • ■ W-'W-'^V^mn^HH

(DA) A Iternat ion:

(D7) Adaptation;

(D3I Iterat ion!

P1IAIQ, P71BJQ

if R then PI else P2Iif R then A else B)Q

P(a:e) {p(a; e) I R(a;e)

P(a;c)AVa(R(a;e)^S(a;e)),p(a;e)lS(a;e)

PIAJS. S|- if Q then P els; R

Sluhile Q do A)R

(a) 04 is derivable in C. Let P in the conditional rule (C8) bes
i f R then PI eIse P2.

1. P1IA1Q, P21B1Q assumptions (premisses of D4)

2. PARDPI. PA-R3P2

3. PARIAIQ, PA-RIBIQ consequence (C5) 1,2

4. if R then PI else P2Iif R then A else BJQ
condi t ional (C8) 3.

(b) 07 i s der i vabIe in C.

1. P(a!e)(p(a:e)lR(a;e) assumption (premiss 07)

2. Va(R(aie)3S(a;e)J ip(aie))Va(R(aie)3S(a;e))
frame ax iom (C2).

3. P(aie)AVa(R(a!e)DS(a;e))lp(ö:e))R(a;e)A
Va(R(a!e)3S(a:e))

and rui» (C6) 1,2.

4. P(a;e)AVa(R(aie)DS(aie)) ip(a5e))S{aje) C5.3.

Corresponding to any uhiI« statement "while Q do A" we can define a
recursive procedure:

procedure whiledef (x;v)j

if Q then begin A; call whi Iedef(*;v);end
eIse end

where H is the list of variables in A that are subject to change in
the body A, and v is the list of all other variables in Q or A.

Ue ronsider a modified form of the iteration rule:

15

aUMn_MM _ fttlM -

'^ww^^pww WHMUIW"»!!

I
li (D3') PIAIS. S D if Q then P else R

b leal I whi ledef ;«!v)lR

(c). 03' is derivable in C.

1. PIAIS

2. SAQDD

3. SA-CbR

4. SIctM r (xi v)lR

5. P IA;ca; I i (x;v)IR

G. SAQ IA;ca I I r(«i vi i fi

7. SIi f Q then begin A; col
eIse end!R

8. S IcaM uhi ledef (x; v)IR

Assumption (premiss D3')

Assumption (premiss 03')

Assumption (premiss 03')

Assumpt ion

C7, 1,4

C5. 2,5

r ix;v);end
C8, 6,3

C18, 4,7

If ue are given a proof in H of PIA1Q we may replace applications of
D'> and 07 by the proofs (a) and (b) ; an application of 03 is replaced
t-. y a proof (c) of 03', Ue will then have a proof in C of PIA'IQ
uhere A' is the result of replacing each while statement in A by a
call to the corresponding whilede- procedure. This is easily proved
ty induction on the length of the froof. Clearly A' is equivalent to
A. This completes the proof that C is as powerful as H.

In the other direction, all of the core rules except the frame axiom
and the and-or rule appear in H with m'-.or diffcrenos and are easily
shown to be derivable in H. Thus, to show that proofs in C can be
carried out in H, we need only be ;oncerned with eliminating C2 and
CG.

Recall that a Pascal program must contain definitions of all called
procedures except library procedures and there are a finite number of
those. T^ls places a finite bound on the number of different
procrJtjres that can ever be called in any computation of a program.

d. L ■: mm a

|- TRUE IAITRUE for any program A.

PROOr

IG

IH MMMMUBMI

.i„ miiDjpmi jawv«...! i n i . n , k WMII IHPIIPHBIUMUI n uiiiwunw^uw.Bn1»"! «^nninMi.jngijj i w. i.naii.j "w. niKiiji^iw^^^m^wiww

Ule can construct a proof of TPUEIAITRUE by using the rules (Dl-Dä) to
generate subgoals starting from the goal TRUE (Al TRUE. Assume a list
of variables r , r , r ... distinct from the list of procedure names

1 2 3
that may be called in a computation of A. Subgoals are generated by
applying the rules recuioively as follows (03 and DU are equivalent
to D3* and D^*):

(D2) Subgoa I s TPUEIAITRUE, TrtUEIBlTRUE

TRUEiAiB)TRUE

(Dl) Subgoal

(03)«

Goa 1

(Dl) Subgoa 1 s

(04)« Goa

TRUE IBITRUE

TRUEAPIBITRUE. (TRUEA-P)3TRUE

TRUEIuhi le P do B1TRUE

TRUE IB)TRUE TRUE(ClTRUE

TRUEAP (B)TRUE.TRUEA-P(Cl TRUE

TRUE lif P then B else C)TRUE

(D5) Subgoa!

Goa I

where K i s the body

TRUE IKCf 11 TRUE
 p --
TRUE(p(x;v)!TRUE

of p and a unique variable to be

5ubc

the
rule
f i n i
is f
s u b g
bran
be
subg
TRUE

appi
I s
TRUE

t i tute
goa I .
s 02 -
tely
i n i t e
oa I s
Ch is
ca I led
oa I s
lr (x;

P
i cat i o
a su
IA1TRU

r i s
P

ri for the procedure name p In every subsequent subgoal of
The procedui e terminates since the subgoa.y in each oV the
D4 are shorter than the goals, and D5 can be applied only

nu'ny times since the list of procedure names that can occur
;nd one of these names is eliminated from all further
u* a goal to uhich 05 applies. The length of any subgoal
bounded by 2nI uhere n is the number of procedures that can
by A and i is the number of statements in A. The terminal
are of two kinds: TRUE (x«-tl TRUE (axioms) or

vllTRUE. The second kind is the assuinption for an

n of 05 to derive a goal below it (i.e. a goal of which it
bgcal). Thus the final subgoal tree is a proof of
E.

(e) Plq(x;v)IP is provable if -(x(VAR(P)).

Thif follows from , emma d by applying the adaptation rule (07):

17

MMM^M m^t

^ i.i!»-,,ijiji. • 1,1.« .•|ul|lnmvm|^n■l■lp•l<ln■'■^'>, m". fmrmumm^m^mwm'i mi' i||J'-'^w«if(SK|p«»wt»' >.kMi'uii<«|pmw>piiii iipipiMwm-'" " ".wim^JwwwiMit^pxwiM1» ■•»•" »"«ii"

■ | ■■■

I

1. TRUE(q(xiv)ITRUE

2. TRUE /viVx) (TRUEsP) iq(><;v))P

lemma d.

07,1.

3. P(q(i

Thi s
der i
argu
ANP-
ded
e I i m
i t
prem
con t
furt
mov i
appl
to
expr
with

est
v a t i o
3 as
OH, w
c t i on
i n a t e
i s r
i s s e s
a i n i n
her t
ng u
i ed i
or i g i
•• S i 0
a or

'IIP

a b I i s h e s t
n in Hoare

f o I i cms.
i thout Ios

Ue sh
d a i togeth
eplaced b
of the or

g on Iy e
hat in the
p prouedur
n any neu
rally. S
n« this es
OCM in whi

01,2 since x do ,s not
occur in TRLE or in
P Iby assumption).

ha* C2 can always be re
's system. To e I iminat
Suppose a given proof

s of genera Iity, I et
oui that this occurre
er or ''moved up" the pr
y an AN0-0R applicat
igi naI app I i cat ion. Th
xpressions that are
second case where the

e i s repeated the rule
proof to the same fair
ince the given proof
tablishes that our novi
ch alI appIi cat i one of

placed in a CORE proof by a
e CG trom a CORE proof ue
contains an application of

us say it is the f i naI
nee of AN0-0R can on either
oof tree in the sense that
ion to the premisses of the
is gives us a neu oroof
in the old proof. Ue show
rule is "mfved up", If the
uill never again need to be
of premisses it was applied
contains a finite number of
ng up procedure terminates
4N0-0R have disappeared.

(f) LEMMA

There li a constructive procedure for eliminating applications of the
AND-OR rule from CORE proofs.

PROOF.

Suppose a given CORE proof contains one deduction by AND-OR of the
form

H1,H2 H3,H4 (rule R)

D. 1 J (AND-OR)

K

where R is not AND-OR.

Ue give a procedure whereby either

(a) 0 can be replaced by a deduction of K from axioms by the rule
of consequence,

or

(b) 0 can be replaced by

18

mmmtam

r^ p|»l|RnnP»MWPVWm>«>miU'lllJi lll.llllllll >l. „«l^lll. "mi r^BPWPIlüW^JPBKBPULJJIIIIIHUHpil VlHIHIIIIi

Hr'.HS' HZ',HA' (AND-OR)
01.

II Jl (rule R)

K

In case (b) , for »s^li i, the subproof Hi* in 01 contains only
statements occurring in the subproof Hi in 0. Repeated application
of the procedure cannot result in (AND-OR) being applied to the pair
I,J of premisses agp.n.

Ule note that sirce the same orogram part must appear in both
premisses of an app ication of AND-OR, the immediately preceding
rules deducing those premisses must either be the same rule R or on«
of them must be the rule of consequence.

Let us consider the AND-case o.e this rule first. Ue give the
replacement procedure for different cases of rule Ri

(i) AX ions. ■'■

An application of AND-OR to axioms

P| Ix^-elP
e

R| (K«-e)R
e

X X

P| AR| {X^BIPAR

6 e

is eliminated entirtlg and replaced by the axiom

x
{PAR)| {x-e)PAR

e

Applications of ANO-rule to frame axioms are eliminated similarly,

di) CONSEQUENCE.

An occurrence of AND-OR of the form

PIAIOI.QIDQ

PIA1Q , RIAIS

PARIAIQAS

Is rep Iaced by

19

'"■'■■■'-

«i "»mmim^mrnmim mm^ I»I H njiBii^g^i^^p ■1 I«III i, nuiiiaiiiiii

PIA1Q1. RIAIS

PARiA^QlAS . QIASDQAS

PARIAIQAS

The other cases (omitted) are similar.

(ill! UKiLE

"AUIAIP. (PA-U)DQ RAUJAIR, (RA-.U)DS

P (while U do A)Q Rlwhile U do A1S

PARIuhile U do AIQAS

is rep I acecl by

PAUIAIP.RALKAIR

(PAR)AU(AI (PAR) . (PAR)A-.U3{QAS).

PARIwhi le U do AIQAS

(iv) CONDITIONAL

PAUIAIQ. PA-UIBIQ RAU(A)S, RA-UIB)S

Plif U then A else B Q, Ruf U then A else BIS

PARM f U then A else B)QAS

i s replaced by

PAUIAIQ. RAUIAIS PA-UIB1Q, RA-U(BIS

(PARIAUIAIQAS . (PAR)A-UIBIQAS

PAR li f U then A eIse BIQAS

Clauses f or Composition and Substitut ion are similar to (iii) and

(i v) and are omi tted.

(v) PROCEDURE CALL

Procedure p has body K(p).

PlrlQ ||- PIK(r)lQ RlrJS ||- RlK(r)IS

PIplQ . RlP'S

20

MMMO^MMMMI MMMMMHI

I.U upULMiira^pVKV Jli^lil«.mvia^M«^IU«IUIJHiflp|i|.ull i— IIWVIII i.wiiBiiii« i«'.!"1 W'^-II-U1 M im-immm'tmrnimpm^eww^**

PAR IplQAS

is rep I aced by

P IrlQI l-PIK(r)lQ

Plr21Q
[subproof3
PIK(r2)IQ

RlrlSI |-R{K(r))8

R(r21S
[subproof]
R{K(r2)lS

PAR ITZIQAS PARIK(P2)IQAS

This last
rep I aceme
asser t i on
call rule
assumpt io
have to b
existence
subproof
CALL rul
procedure
then rep
However,
is proved
neu AND-
subproof s
are exact
r. I f
PAR (K(r2)
or hypot
true.

tran
nt. t
5 on

i s n
n i s
e app

of
of PI
r i|
P. T

eat
no as
. Thu
OR a

at
ly th
the P
IQAS.

heses

PAR IplQAS

s format i o
he AND-OR

K(p) i
on app I i

PARIPZ!

ended; t h
these s

K(r)lQ fr
lous us
he assump
the subp
sumpt i on
s, the co
ppI i cat i o

" assu ipt
ose of th
epIacemen
the AND-
dj' th p

n rule requires a word of explanati
rule has been "pushed up" and

nstead of assertions on call p. Th
ed to PAR IK(r2)lQAS so that th
QAS. Subproofs for P{K(r2)IQ an
e given procedure rule applications
ubproofs. For example, we know
om the assumption PlrlQ; an applica
to deduce Plr21Q, where r2 is a n

tion PlrlQ is discharged at this
roof again with r2 replacing r
is necessary in this repetition si
mplete subproof trees for the premi
n contain copies of the given
ion nodes". The statements in ea
e old tree except possibly for r2 i
t procedure is applied to this new
OR rule need not be applied to the
2 for p) again since PARlr21QAS is

on. In the
applied to
e procedure
e re I evant
d RI<(r2)lS
ensure the
there is a

t i on of the
eu name for
point. U e
everywhere,
nee Pfr21Q
sses of the
aux i I I i ary

ch new tree
n place of
subproof of
same pair

now assumed

This completes the description of the replacement procedure for AND;
the OR case contains almost identical clauses except that the
replacements in cases (iii) and (iv) contain intermediate
applications of consequence: (PvR)AUS(PAU)V(RAU) .

Ue note that Lemma I shows also that the AND-OR rule can also be
omitted from the CORE. In the presence of the other core rules,
ADAPTATION may be replaced by the FRAME axioms. The previous
discussion may be summarized by the following theorem:

cj. THEGREn

If | |- P iAI
equivalent
II- PIAIQ.

Q then PIA'IQ is provable from the CORE where A' is
to A. Conversely if PIA1Q is provable from the CORE then

21

mm^mm ■MMHM
.

T Wt'-IV^i—- "■"■■■«HllHipil.-W^ J IWI'^WJI»»«.:* I» * M""1 I« '.-«-'■WnWpiWHWWSpWII1»'l111 ■■ -^—^

3.2 A nODEL FOR THE CORE

Ue assume given a standard model H for the theory T of the trus
Boolean expressions of Pascal and a set J of procedure definitions.
Essentially H is the standard model for arithmetic possibly augmented
by standard models for data types other than the integers. The
details of M itself do not concern us. Ue show how to extend H to a

model n* for the CORE.

To simp, y the i.otation we assume a fixed ordering of the variables
x ,x , x ,,.. Thlf allows us to represent computation state vectors

12 3
over the domain 0 of fl by infinite sequences of elements of D, a-
<a .a .a ...>. D* shall denote the set of all such sequences.

12 3
Intuitively, state a assigns the value or interpretation a to x ;

this I 5 denoted py (x)
i I

i i

The interpretation

or value t of Boolean expressions t is defined in the usual way from

standard interpretation of the orimitives +.*.etc. The value of t

applied to state a will be denoted by t (a). A Boolean expression

of n variables, say P(x x). is interpreted in H as a subset
n In

p of 0 . Thus P(x x) is true for the state vector a if

n 1 n
<a a >tP .

1 n n
This allows us to extend the interpretation of P(x ,...x) to D«:

1 n

P (>
1

x) - la|<a a >tp I.
n 1 1 n fl

rioreover. the interpretation of substituticn instances by definition

satisfies:

ac(P(x x)|XI) <-> <a a .e(a).a .. . >tP (x . . . x) .
1 n e I 1 1-11 i+1 1 n I

The interpretation jf an (m,n)-ary procedure is a partial function

f of the type NX D - (0* - D*) having the following properties:

1) Frame property:

(f(i (1) i (m):c ,....c) (a)) - a ,
1 n j j

j is different from i (k) for any k such

22

■MamMBk.« —mm

nww^^wpw ■■■I IIIIIWI^II. ■ "-•! Ill lllllll» li.-^^B«p»jWp"».™^«

that 1 < k < m.

2) Substitution property:

(f (i (1) i (m) jc c) (a))
1 n i (k)

- (f (j (1) j (m)i c c) (a))
1 n j(k).

1 < k < m.

The definition of f proceeds as follows.

Ue define by cases the computation sequence F(A,a) of program A
relative to M given input a as follows.

If a is an infinite state vector, then:

(i) F U »-e, a) = <a
I 1

a ,e (a),a ,...>
i-1 I i+1

(11) F(A;B,a) ■ F(A,a) «F(B.U(A,a))

(i i i) |F(A,a) if <aa >cP
F(if P(xx) then A else B,a) - -| 1 n I

1 n |F(B,a) otherwise.

(iv) F(q(2!t).a) - a«F(K(z;t) ,a) where J contains a defining axiom
for q of the form "q(><;v) PROC
K(x;v)" and K(z;t) is obtained
by sutstituting the actual
parameters z,t for the formal
parameters x,v.

Here aab is the sequence obtained by appending b onto the end of a.

lend state of F(A,a) if F(A,a) is finite
U(A,a) = -I

|undefined otherwise.

The interpretation of program A is now defined:

A - Ua.b>|U(A.a) - b)
I

and M is extended to H* by adding the function A for each Pascal CORE
program A. I

Ue can now sau when a statement of the form PIAIQ is true in M*
(denoted by n¥ |- P IA)Q):

23

^Ml MH^y^

n* I- P IAIQ <-> A (P) c Q .
Ill

Finally, a statement S(r r) with assumptions A (r r),...,
1 m 11m

A (r P) where r r are free procedure variables, is true
n 1 m 1 m

in M* if and only if the following condition holds:

If A (p p).... A (p p) are true for any declared
11 ■ n 1 m

procedure names p p from J, eajh p having the
1 ■ I

same arity as r (Is i ^ m), then S(p ,...,p) is true.
| 1 m

Hen» are some simple properties of this models

(|) If the range of A is empty then for any P and Q, M« |- PIAIQ
1

(ii) if n* |= PIK{q)IQ then fl* |-PiqlQ where K is the body of
procedure q.

(iii) If p PROC K(r) and q PROC K(s) and r c s then p cq .

(iv) A Boolean assertion is true in M* if and only if its universal
closure is true in M.

To »how that n* is a model for the CORE we will show that the axioms
are true in n* and that each of the rules of inference preserves'
truth (i.e. if the premisses of the rules are true in M* then so also
are the conclusions). For simplicity we consider examples o' the
axioms and rules in which the statements have one free variable
(three variables for the substitution rule) and in which the
premisses do not have governing assumptions except in the case of the
recursion rule: the argument for the general case is identical.

Consider first a typical assignment axiom P(e)ix «- elP(x).

Ue note that (» *■•) - Ua.b>sb-<e (a),a .a ,...>), and that
li 12 3

acP(e) <=> <e(a),a>cP(« I . Thus (x -e) (P(e)) c P<«)
I 2 II 1111

so that the assignment axiom is true in H*.

The frame axioms are clearly true in M*:if P does not contain x , say,

and i|ti differ only at the first position, then acP <->btP . If

q(x .v) Change« only the value of x then q (P)cP .
^ 1 1 1 I

24

mtmm

"wnfl"»'*""!«!?" ■ ^«-t •■■' ■ i iiiKwmPVNumPOT ■"■"-"J,,~ in. i|, ■ii.niw i J i JJii ininniiipui^nii

f

Logical theorems are true in R« since they are true in M.
Procedure declaration axioms are assumed to be in J.

Ue consider next the rules of inference. The fact that Consequence,
Composition and Conditional all preserve truth in n* can be shown by
elementary set theoretic arguments on the 1 nterpretat i one of Boo'"n

expressions and programs. Simply note that if P:>Q ll tru« i n n* then
P cQ . that (PAR) - P n R , and that -R -C«-R .
II 111 II

The arguments are as follows!

CONSEQUENCE: I f P cQ and A (Q) c R thtn A (P)cR .
II II I 111

COMPOSITION: If A (P) cQ and B (Q) cR then B (A (P)) c R .
II I II 1 I ' ' 0 ' A

CONDITIONAL: I f A (P n R) cQ and B (P fHR)cQ then (if R then A
III 1 I I I 1

else B) (P)cQ
I I I

I

SUBSTITUTION

Consider the case when the procedure 9<« •* •« , ha9 tu0 left

pa-ameters and one right parameter since this is sufficiently
general. Let q have body <. Assume that x and >« are the only

variables whose values can be changed by K , and that x is the only
I •

value that its computation depends on. Ue require a simple lemma
which may be proved bL induction on the composition of K.

h. LEnriA.

For any a if K(x .x |M) (al-b and K(M x ;K) (a) - c then b - c and
12 3 1 i j 3 1 I'

b ■ c provided i*j^3.
2 j

Let f.g be partial functions mapping D* into D such that K(x ,x jx)

(a) = <f(a). g(a).a ...> and hence also K(x ,x ;x) (a) - <a .a ,a ,
2 33 4531 l^o

f(a) gia),...>. If the premisses of the substitution rule are true,

3 3 '

acP(x x x) implies <f(a).g(a), a ,...>cQ(x * *)
12 2 3 3 3 12 3 1

25

tfdBS^M ^■«■M

' ■ -,i">n^wiw»WiWBB^^i^ ii, l.« iji^Arapw^» ,'wm'i l "■"■ -IIN"».!,.«»»!".»") ' "■ '"• 11 ■■nia^nr^pnrw

, ..,-,-

■vi

This is equivalent to:

<a ,a ,a >cP implies <f(a),g(a),a >cQ .
i : 3 n 3 3 3 n

Suppose P(P(x .x ;x) so that <b ,b ,b >cP .
4 5 3 1 4 5 3 fl

Then <f(b). g(b).b xQ and this implies that K(x .x ;x)
3 3 3 M 4 5 3 1

(b)(Q(x .M IM 1 . So the conclusion of the L-rule is true. On the
4* 5 3 I

other hand, if bcP'x ,x ;s(x)) ••.then <b .b .8 (b)>cP and therefore
12 3 1 2 I 3 n

< f (5 (b)) . cj (s (b ») . b x Q .
13 13 3 n

By the lemma at:ove,

K(M x |«(M)) (b) - <f(s (b),g(8 (b)),b > so that the
l' 2 3 I 13 13 3

conclusion of the R-rule is also true.

For each of thi previous rules we have shown that truth in N* is

preserved.

The case of the recursive procedure call rule is more complicated and
depends on the elementary properties of M« stated above.

PROCEDURE CALL

Ule prove that any proof containing applications of the procedure call
rule proves a statement true in H« if all premisses of the proof are
true in H«. Our proof is by induction on the number n of
applications of the call rule.

Clearly the case n-0 is alrerdy proved. Therefore, assume it is
provpd for proofs containing n call rule applications, and consider
the last application in a tree with n+1. Suppose this has
P(x;v) Ip(x;v)1Q(x;v) as conclusion.

Ule may assume

I . if n* I- P(x; v) lr (x;v))Q(x',v)
then fl* I- P(xj v) (K(r)}Q(x;y), for any procedure name r,

since the subproof of the premiss of this final application can
itself contain at most n occurrences of the call rule.

Let us define a sequence of procedures from p:

1 I. p8(x;v) PROC K(LOOP),
p m+1 (xiv) PROC K(pm)

2G

Ll I 1 I «

where LOOP is a procedure that nevtr halts.

CLAIM: For all m, n»|-P (K; vMpm (xj v",) Q(x; v).

PROOF: By induction on ■. Clearly the claim it true for BI-0 by
property (i)and ! above.

Suppose n*|=PlpmlQ. Then, substituting pm for r in d) we have
n«|.F(K(pM)»Q. Therefore n*|-Plpiii+llQ by property (i i). This proves IP
the claim.

Next we note that p is the least upper bound of the sequence ((pni)J:
1 '

(1) (p8) c (pi) c (p2) c...
I I 1

(2) For all i (pi) c p .
1 I

These follow by induction using property (iii).

(3) For any a, if p (a) is defined there is an m such
I

that p (a) - (pm) (a).
I I

This is so because U(p.a) - U(pm,a) for any m such that m>|F(p,a)|,
the Iength of F (p,a).

From the claim and these facts ue conclude p (P)cQ . so that indeed

n*|-P(*;v) lp(x;v)lQ(x;v).

Thus we have established the following soundness theorem:

(i) THEOREH If PIAIQ is provable in the CORE then P(A)Q is
true in fl*.

3.3 RULES FOR VCG

The rules V used by VCG to generate subgoals and uItimateIy produce
verification conditions are simple combinations of the CDRt rules.
There are two additions: an extension to the assignment axiom for
the case when assignment is made to an array element, and a rule for
c,o to statements provided the corresponding labels are in the same
nrocedure (or block). A rule for array assignments was^given in King
[1963] and the addition of a go to rule to Hoare • eystetn is
considered in CI int and Hoare [19721. The extended systems C and H
remain relatively sound and still have the same deductive power (i.e.

27

MMMMM.

'■WW.1 ^" rW

i

""• ■,""
mimtmmv'u in ill ill l«i|

Theorem (g) still holds). The rules for VCG are given in Table 2.
It is easily checked that the set is unambiguous in that no two
conclusions have a common substitution instance.

I
I

VI. SIMPLE ASSIGNMENT

PIAIQ(e)

PIA^-elCKx)

V2. ARRAY ASSIGNMENT

PIAlRuf 1-j then e else BIN

PIA;B[j]«-elR(Bm)

V3. CONSEQUENCE

fU PsQ , (ii) PIAlQ.QsR ,

PINulllQ PIAiQIR

(iii) PIAIQsR

PIAiQ-lf»R

VA. ITERATION

P(A)R, RASIBIR, RA-SSQ

P IA;R;uhile S do BIQ

VS. CONDITIONAL

PIAiQ-ifiBIR, PIAi-Q-ifjCIR

PIA; i f 0 then B eIse CIR

VS. GOTO

PiAlASSERT(L)

PIAlCOTO LIQ

V7. PROCEDURE CALL

U(x:v) lq(x;v))U(x;v) | |-

where R is an assertion

P(A)U(a;e)AVa(U(a}e)DR)

P{A:q(a;e)iR

28

■ ■■■■l»"l •«• -' •') 'Ulli ■l'J»:ir nmnnm" _i in iiw ■ ■ in •! a m

I V8 PROCEDURE DECLARATION

Plclx; v)lR | |- PIA1R

Piprocedure q(x;v);AlR

NOTATION:

P,Q,R,S are Boolean Assertions. Null denotes the empty
program. Q(e) denotes the substitution of e for x in Q(x).

th
BCi] denotes the i element in array B. In each of the rules
A can be Null. Q-if denotes a "marked" Boolean assertion Q.

TABLE 2
ViRULES OF VCG

The ru
genera
rule V
it is
rule i
a m b i g u
asser t
tests
asser t
n o r n\ a I
ver i f i
i nvoIv
P and
3 and

I es in
te su
1. the
true a
s not
i ty) b

ions a
i n t

i ons t
r u i

cat i on
i n g R .
in sue
5, Sec

Table 2 are stated in the form in which they are used to
bgoals. Thus, for example in the rase of the assignment
axiom Q (e) Ix^elQ(x) is omitted from the premisses since

nd therefore not generated as a subgoal. The composition
used to generate subgoals (it would be a source of
ut is included in the other rules. VCG does not require
t conditional statements. It "marks" the conditional
he subgoals of the conditional rule, and uses them as
hat permit a slightly different rue of consequence. The
e of consequence, V3(ii) would usually lead to a
condition of the form QDR' where R' is some formula
Most likely the proof of R' would depend on the premiss

h a case QDR' is unlikely to be provable. (See examples
t ion 5).

It should be dear that any statement that can be proved in V can be
proved in C. flore precisely:

(j) REMARK

If v||-PIAIQ where A is a program with intermediate assertions then
CM-PIA'IQ where A' is an equivalent program without the intermediate
assertions.

The converse of remark (j) implies the deduction completeness of V.
To prove the converse, first oerive from V the composition rule (C7)
by an induction argument on the statement length of B, the statement
fol lowing the ";". Rules Cl, C3, CA, C5, and C18 are straightforward
to derive. Lemma f shows that CB is directly derivable in C. It

29

— - .MM^M

——~—m—i—i—i—T

,»■■■■»l•W^""'»■^WI■l■WPB^P^■i^Wml»■^■»^n^»■ -i • Mwm -mivmn •• IIII>I|,IIIII ii ii

remains to derive C2, C8. and C9.

(C2) Lemma c. holds in V as is easily checked.
1. TRUE lei (x:v)l TRUE
2. P - (TRUE A VxlTRUE - P) I
3. Plnul M TRUE A VK(TRUE -» P)
4. P'c|{x:v)IP

(C8) 1. PAQIBIR PA-QICIR
2. P-.(Q-.PAQ) P-.(-Q-*PA-Q)

3. P inul I IQ-PAQ P lnuMl-Q-«PA-Q
4. PIQ-iflPAQ Pl-Q-iflPA-Q
5. PIQ-if:BlR PI-Q-if;ClR
G. PIi f Q then B else C1R

(C9) 1. PUivl lq(x:v)IR(x;v)
2. Plase) - P(a;e) A Va(R(aie) -» R(a,e))
3. P(a;e)lq(a;e)IR(a;e)

39

Lemma d
MxtVARCP))
V3i (2)
V7 (1,3)

Gi ven
Lemmas
V3i (2)
V3iii (3)
C7 (4,1)
V5 (5)

Given
Lemma
V7 (1,2)

«MMMBI -"—-— „^^

ii in • HM I i • ■ . iwmi • um lau i/m^^mmß

4. DESCRIPTION OF VCG

4. 1 COnMENTS ON THE RULES

Array assignment 3ncl go to

The ru e V2 for array assignment includes the usual conditional
substitution operation. This rule is equivalent theoretically to the
techniques jrofDOseci and implemented by King [19B9J in that equivalent
verification conditions result. Our rule makes the conditional
expressions explicit while at the same time trying to keep the case
analysis under control. Though our rule enables us to verify
programs invo ving array assignment, we canno' state which array

assignment «tthod is preferable.

The no to rule (V8). following Clint and Hoare [19721, is for simple
go to statements. By "simple" we mean jumps which stay, for example,
within the current block or procedure definition. The rule is
included so that a useful, but restricted class of go to statements
could be processed.

Procedures

H a n d
pr ocecl

i s nn
the no
into a
m a ci ■:■ 13
b r i e f ,
c o r r c s
not *
[137la

h..

ur

iy
t i

P
et

po

1 .

nee
e S.

a
on
ar a
wee
as

nd i
e

i s

V place several restrictions on the definition and use of
First, procedures may contain no global variables. This
conceptual restriction; Hoare and Uirth [19721 introduce

of "implicit parameter" which makes each global variable
meter, at least notationaI Iy. Second, a key distinction is
n variable (VAR) and value (non-VAR) parameters. In
signments to variable formal parameters affect the
nr; actual parameters; assignments to value parameters do
discussion in section 2.1). The notation, following Hoare

variab I e va i ue

formal parameters
a c * Li a I parameters

v
e

uhere fach of x, v. a, and e represents a list of parameters. The
two restrictions are that the list "a" must contain distinct
Identifiers and that no "a" parameter may appear in any of the
expressions of the "e" list. The last restriction could be removed
with a slight increase in the complexity of the rules of inference.

Simple examples suffice to show what can happen if these restrictions

are violated;

a. procedure P'var XI,X2 : integer);
begin XI :« 2; X2 :■ 3 end

31

mmm

'" ■'.U-»1HU|HJWWIU -——~-»-
-"■"'■ -rv-"!""""1""»" * ■>'<»'

One can verify
trutlbodu) (X1-2)A(X2-3). iti , , .

Tre call B(A.A). uhich violates the distinct "a" list, will yield
true leal I B(A,A)1 (A-2)A(A-3)

an impossibility.

b. procedure CUar X : integer; V : integer);
been n X := V + 1 end

One can verify
true IbodylX-V + l.

The call C(A.A). uhich has an "a" parameter also appearing as an

parameter, will yield
true lea M C (A,A)1A-A+l

another impossibility.

For
ass

each procedure call the corresponding procedure declaration i
umed to be verified as stat^ in rule V8. The hypothecs of th

i s

e

procedure call rule is thus achieved so th« procedure ca I ™[e ,s

applicable to both recursive and non-recur9ive dec Iaratione a I i ke.
Recall that the recursion ruIe (D5) . i.e. the procedure declaration

(V8), allocs the desired conclusion to be used as an assumption rule
1 n ver 1 f y i ncj (the body 0 f) a recursive procedure declaration.

VCG does not a I 1ou a component of an array as an a parameter. Th 1 •
restriction it implied by H [Hoare 1971a. p. 115. last paragraph].
VCG clops not permit the names of procedures or functions to be
(actual) parameters: this could be allowed if one were «' '»"»*«
vsrifg separately the procedure definit.on for ea^h caM 1nvoIv 1 ng
procedure parameters, or if sufficiently general assertions could be

5 u p p I i e d.

The procedure call rule (V7) in V i9 based on the adaptation ru I e
(07) in H. Both of these rules provide for extreme generality at an
increase in complex ty. An a I ternative ruIe is used in Hoare and
Uiirth [19721 uhich treats a procedure caK as general,zed and
concurrent assignment. That is. for each variable parameter x a
function is assumed which, given the ent-y values of the parameters.
computes the exit value of x. These functions accompI 1sh the

generalized assignment.

Functions

Four of the rule« of V have been expanded to allow function calls to
occur m Pascal expressions. Function calls may occur only in
assignment. conditional. iteration. or procedure caI I statements.
Since Pascal functions have no global variables and no VAR
narameters. none of the restrictions needed for procedures apply in
the casp of functions. Recursively defined functions are allowed.

32

■I

K**^.
ITÄV'^^^^IWPJB^PMIIU '«lift UMUl !!■ II «^IW^WPI I! RMHI ^^PS^J^WWBBWWiBr-^F" »rw-- ■■ i"iit"

To give the expanded rules, let P be the conjunction of the
preconditions of all the function calls occurring in a statement.
Similarly let R be the conjunction of the reeuite (postconditions).
The expanded rules are

assignment PA (R-»S (e)) lx :■ elS(x)

where P and R include any function call if x is an array
e I e m e n t

conditional Q-«P. QARAUIAIS, QARA-UIB)S

Qli f U then A else BIS

where P and R only include function calls in U

iteration Q-P. QARAUIBIQAP. QARA-.U-»S

Q luhlle U do BIS

where P and R only include function calls In U

procedure P.G(x,v) (G(x,v)1R.G(x,v)
cal I

PA(R-.P.GAVa(R.G-»S)) lG(a,e)lS

where P and R refer to the function calls in "e";
P.G and R.G refer to the procedure G.

function U(q(v)lU | |- UIAIU
declaration

U{function q(v);A1U

Each of the first four rules assumes that for each function call, the
corresponding function declaration is verified as stated in the
function declaration ru*. If there are no function calls in a
statement, then P and R may be taKen as "TRUE". In such cases the
expanded rules reduce to the original rules. VLG actually omits such
vacuous P and R terms. (The definition of P and R as conjunctions
means some loss of generality if nested function calls occur such as
in Y :- G(H(X)), A more complicated definition of P and R is known
for such cases but it is not implemented.)

Questions such as array bounds and division by zero can be handled by
treating each such operation as an appropriate precondition of a
func t i on.

I

33

——ii

iilJ|.Mi."«MPMPV —>—
 ■•■"■'

!**■*- '■ i'«HFIl"l

I
4.2 A RECURSIVE DEFINITION OF VCG

The operation of the verification condition generator is described by
the following equations. Let H(P,B,R) denote the LIST of
verification conditions for the formula PIBIR where B is an asserted
Pascal program and uhe-e P and R are assertions. HIP.B.R) is given by
cases on the form of B. "A" denotes all but the last statement of
B. "(?" Henotes the append operation on lists, "car" and "cdr" denote
the list operations of first and rest, and "5" is the Pascal
composition connective.

assignment (VII H(P. A;x-e. R(x)) -H(P.A,R(e))

array H(P, A;c[jKe. RCcUl)) -
assi gnment (VZ) HlP.A.RUf i-j then e else cMl))

nul I (V3(i)) H(P. nul I . R) » P - R

assert (V3(i i)) H(P. Aijssert Q. R) - H(P,A,Q) • Q -• R

iteration(V4) H(P, A;3ssert Q;while S do C, R) -
HIP.A.O) a HCQAS.C.Q) « -QAS -• R

conditional H(P,
(V5 and V3(i i i)l

A; i f S then C else 0, R) -
H(P.A.car(H(S.C,R)))»cdr(HCS.C.R))«
H(P.A.car(HNS.D.R)))«cdr(H(-S,D.R))
where a missing "else" means D is nul

go to(VG) H(P, A^o to L, R) - H (P, A, asser t i on at L)

procedure
calI(V7)

H(P, A;go to L, R) - H(P, A, assertion at L)

H(P, Atqla.e), R) - H (P, A.U (a. e) AVa (I4(a, e)-»R (a, e)))
where U(x,v){q(x,v)1U(x,v) is an assumption
for the procedure q

procedure H(P, procedure H(X,V);C, R) - H(P,C,R)
declaration(V8) where Piq(x,v))R ij assumed in

evaluating H(P,C,R)

c 2 ~ p 0 ^ n d

The equat i on
following: An
t OP * doun from
constituents,
starting with
rule of infers
of i nference i
derivation,
premises are
two assignment
computing the
asser t i on on t

H(P, Asbegin C end. R) - H(P. A;C, R)

s for de
asser ted
the out

The r, 0 n s t
the last

nee that i
s appI i ed
Thus, fro
generated
rules and
a s s e r t i 0

he right 0

f i n i n g
Pasc

ermost
i tuent
const

s appl
in the
M the
as sub
go to

n on
f the

H(P
a I p

syn
s of
i tuen
i cab I
reve
des

goal s
ru le
the

cone I

34

,A,R) may be expla
rogram is recursive
tactic structure to
a compound statement
t. Accordingly, ther
e to each const Ituent
rse sense from its us
ired conclusion the
to be processed recu
are each appIied

right of the p-em
usion. The procedur

i ned b
ly pro
its inn
are pro
e i s a

Each
e i n a

appro
r s i v e I y
di rect

i se fr
e cal I

y the
cessed
ertnost
cessed
un i que

ru I e
forma I
pr i ate

The
ly by
om the

ru I e

maMaaM muamm

"->*

uorks somewhat ana
premise is computed
and from the two
means VCG uses what
thai is VCG works
thr-ough trie program.

logously: the assertion on the right of the
from the assertion on the right of the conclusion
assertions of thr hypothesis. In all cases this

is called "backward substitution" by King [19B9] ,
backwards (opposite to the execution direction)

That this 1= possibl
p. 13] state. "The P
that the ... pr
const i tuents from po
facilitated. The P
proofs of properties
a ' t o p - cl o w n' d i r e c t i

e is far from accidental: Hoare and Uirth [1972,
u I es of inference are formulated in such a way
ocess of deriving necessary propert;es of the
stulated properties of the composite statement is
eason for this orientation is that in deducing
of programs it is most convenient to proceed in

on. "

Uihile the notion of "a path between assertions" is not an exr licit
part of VCG. the recursive processing of subgoals implicitly computes

the required paths between assertions. Each resulting a
verification condition covers one such path.

A Pascal source program consists of zero or more procedure
definitions. zero or more function definitions, and a single main
program. VCG produces a separate set of verification conditions for
each procedure definition, each function definition, and the main
program. If P represents the initial assumption (entry assertion)
for a unit and if R represents the desired result (exit assertion)
from that unit, then the verification conditions are computed from

P Iprocedure body! R
P ifunction body) ft
P Ima'm program) R

e assertion R must be present; if P it missing, the assertion
UNRESTRICTED" is jssumed which is a synonym for "TRUE". Since
-•dscal returns a function value by assigning the value
function identifier (as in Algol). the exit assertion
modified by deleting the arguments from the defined
This is necessary in order that the assignment rules work properly

to the
must be

func t i on name.

To Illustrate the equations for defining H(P,A,R) two examples are
given. The first shows the subgoaling process on the
Quotient-Remainder algorithm of Examples 1 and 2 where the while
statement has been replaced by an equivalent go to construction.

Goa true Ir-x;q-0; 10:assert
i f y<r then beg;

q-l+q; go to 18

x»r+y*q;
n r«-r-y;
endl-'(y<r)A(x-r + y*q)

Only V5 is applicable to the goal
cars are computed.

first the arguments of the two

35

HMHWMHMI tttmtm

•vmnGf^rvnm L ii.Mw.iii II i limn i inim^nnvmK '"-^^mim

Subgoal 1.

Subgoal 2.
Argument 1
Subgoal 3.

Subgoal 4.
Subgoal 5.
Argument 2.
Hence the appI
3 r e null,

Subgoal G.

S u b r; o a I 7,

y<r tr»-r-y j q

11
ly<

liq

-(y<r
-(y<r

y<r lr

) Inul

-r-y;

♦-1+qj go to IP'I
Sr)A(x«r+y*q)
I -(y<r)A(x"r + y*q)
r)A (x«r + y#q)
1+q;Ix-r+y*q

y<r lr
y<r In
y Sr-»K

cat ion

«-r -y
ulll
■ (p-
of

VSIGoal)
V5(Goa ,m i as i ng
V3i(Subgoal 2)
veiSubgoal 1).
assertion at 10
i s X"r + y*q
VI (Subgoal 3)
VI (Subgoal 4)
V3i(Subgo?! 5)

else)

■r+y*(1+q)
(r-y)+y*(1+q)
+y*(1+qi
to the Goal requires, since the cdr terms

Lemma 3
Lemma 2
S u b g o a i
SubgoaI
SubgoaI
Lemma 1

8.
3.
10.

true lr<

true lr<

x»r+y*
x = r + y*
true \r
true lr
true In
true-'x

x!

y
q--

q-y

ul I
= x +

n^e;a
(y<r)
ci«-8; a
<r-»x"
(y<r)
< r -•• x •
Cl-81 x
x»r+y
I x»x +
y*0

ssert x«r+y*ql
-»-(ySr) A (x»r+y*q) V5 (Goa I), argument 1
ssert x»r+y*ql
(r y)+y><(l+q) V5 (Goa I), argument 2
-♦-(y<r) A (x-r+y*q) V3ii (Subgoal 6)
(r-y)+y*(l+q) V3ii (Subgoal 7)
•r+y*q V3i;(SubgoalsG,7)
>.& ' VI (Subgoal 8)
y*8 VKSubgoal 9)

V3i(Subgoal 10)

EXAMPLE 4i SUBGOALING ON QUOTitNT-REMAINDER UITH A GO TO CONSTRUCTION

After logical simplification the three lemmas in Example 4 are
identical to the lemmas in Examples 1 and 2. The second example,
taken from Hoare il371a]. shous the subgoal ing process on a recursive
procedure for computing the factorial function.

Goa I .
SubgoaI 1.

On Iy V5 is appI I cab I
cars are computed.
Subgoal 2.
Subgoal 3.
SubgoaI 4.
Argumen t 1.
Subgoal 5.
Subgoal G.

a>0 (procedure factlvar r: integer, a:integer)lr
a>0(fact(r.a)Ir-a1 ||-

a>0 M f a»0 then r«-l else
begi n fact(-,a-1)s
r.-a*r endl r-a ' V8 (Goal)

to 'ubgoal 1; first the arguments of

l

the two

a»0 IP«-1 I r = al

-(a-CI) Ifact (r.a-l i
a»0 Inul 111-a1

a-0-.Ua1

-(a=0) ifact(r.a-l'
-(a-8) Inul

r»-a*r I r-a

a*r-a

V5(Subgoal 1)
V5(Subgoal 1)
VKSubgoal 2)
V3i (Subgoal 4)
VKSubgoal 3)

Argument 2.

Hence the
terms are
Subgoal 7,

-(a

a p p i i c a t i
null.

a>0

.0)-.(a-l>0)Ayr»(r#

on of V5 to Subgoa

(a-l>0)AVr#(r#-(a-l),-a*r»-a!)
V7(Subgoal 5,
assumption of
Subgoal 1)

a-1) ! ->a*r#-a !)
V3i (Subgoal G)

1 requires, since the cdr

Inul n Ma-0)-»(a-l>ki; AVr«(rtf-(a-l) l-.a«rff-al I
V5(Subgoal 1), argument 2

3G

Lemma 2. a>0-.-(a = 9) - (a-1 >8)/\Vr# (r#-(a-1 H-a#r«-a !)
V3i (Subgoal 7)

SutKjoal 8. a>8inuM I a-e-'l-a1 V5(Subgoal 1), argument 1
Lemma '. aa8-.a-9-.l-a1 V3i (Subgoal 8)

EXAPIPLE 5: SUBGOALING ON THE FACTORIAL PROCEDURE

4.3 SPECIFIC inPLEMENTATION OF VCG

The verification condition generator is written in HLISP2 [Smith and
Enea 1373], a version of Lisp which has an Algol-like syntax and an
extendable parser. Uniting BNF-like syntax equations and associated
semantics for each equation permits the rapid, easy construction of a
parser for Pascal source programs. The parser handles all details of
scanning such as creating identifiers and numbers from individual
characters, recognizing delimiters, and processing blanks. The
parser produces a list-structured representation of the Pascal source
in which all statements and expressions are converted from infix to
prefix notation.

The qenerator is a loop each cycle of which processes one of the
subgoals of the form PIAlR. This loop repeatedly determines for each
subgoal the single next applicable rule of inference and applies it
to the subgoal. As new subgorils are created they are stacked. The
result is a list of verlficdclon conditions for the input Pascal
source program.

Tables 3 and 4 give more detailed information on the subset of Pascal
which VCG processes.

statements implementation status and comments

assignment

procedure call

compound
i f-then-eIse and
case
while
repea t
for

with
go to

i f-then

left hand side must be either an
identifier or a 1-dimensionaI array
element
there must be at least one actual
parameter (a zero parameter call is
no use without global variables);
restrictions on actual
parameters apply
no restrict'! ons
no restrict!ons
not implemented
no restrictions
not implemented
not implemented

no problems forseen

no problems forseen
rev i sed Pasca I

has a changed definition of the for
statement and a new rule of inference
not implemented
a label may appear at most onco in
the entire source program; go to's

37

MM

I

nu I

may only be "local" jumps within a
block.
deleted by parser

TABLE 3: PASCAL STATEMENTS IN VCG

other syntactic units implementation status and comments

procedure and function
definitions

variable and 1-dimensiona I
array dec Iarat i ons

formal parameter declarations

const declarations

type dec Iarat i ons

express i on

pointer, set, scalar, record,
file

constant

no global variables permitted

syntax implemented; not further
included in verification conditions -
no problems forseen
crucial to operation of procedure
call rule
not implemented - no problems
forseen
not implemented - problem status not
c lear
no restrictions; augmented to allow
assertions to include quantifiers
(V,3), implication (-».D), and a
second type of conjunction (&) (v and
A are already in Pascal); & is used
to conjoin assertions user fewer
parentheses than A requires
not implemented - some problems
expected
integer only; no real numbers or
str i ngs

TABLE 4: OTHER SYNTACTIC UNITS IN VCG

Tie substitution done in the assignment rules (V2 and V3) need not
check for a variable becoming bound by the substitution because of
three circumstances. First, by convention all quantified variables
in the supplied assertions are assumed to be distinct from the
program variables. Second, the bound variables introduced by the
procedure call rule (V7) are distinct from the program variables
because such introduced bound variables all contain the character "#"
uhile no program variable (or supplied assertion variable) may
include a "#". Third, these are the only occurrences of quantifiers.

The existential quantifier in the adaptation
eliminated similarly by notation conventions.

ru l e (D7) can be

VCG makes very few checks on its input. The major assumption is that
the source program obeys all the restrictions of the Pascal language.
Uhile these restrictions could relatively easily be checked, they are

38

MMa

wR»*(p*^g^ppww^r^

not sinc»r it is reasonable to assume that all input has been
processed hy a Pascal compiler. There are additional restrictions on
the tource program imposed by V. Since these might also be enforced
by an augmented compiler, little effort was expended in this
direction In VCG. Another simplifying and unchecked assumption is
that a source program does not contain duplicated variable names; the
introduction of fresh variables for duplicated names, using the
declaration rule (08), ui II remove this restriction.

4.4 TERniNATION OF THE TOP LEVEL OF VCG

The existence of the assertion
follows since each subgoal
assertion at least at the
inclusion of "UNRESTRICTED"
recursive manipulation of the
always terminate, but this
top level of VCG.

needed condi t i ona ru I e
is well-formed, i.e., there is an

start of each subgoal. Recall the
needed. No claim is made that the i f

expressions in the assertions will
is separate from the termination of the

"

39

■mm

mm

■i •■

5. EXAMPLES

5.1 FACTORIAL AS A FUNCTION

This example shows the factorial function written a« a Pascal
recursive function. The next example iIlustretes the factorial
function uritten as a Pascal recursive procedure. Upper case 'FACT*
denotes the program and lower case 'factorial' denotes the
mathenr tical object usuaML, denoted by !. Except for a 'change of
notation' the verification conditions are the eame in both examples.

PASCAL EXIT ARBITRARY:
FUNCTI ON FACT(N:INTEGER):1NTEGER;

ENTRY N>8; EXIT FACT(N) - Factorial(N);
BEGIN IF N - 2 THEN FACT - 1 ELSE FACT - N * FACT(N-l) END;

BEGIN X .- X END.;

llcikjkjkjli

PASCAL PROGRAM SUCCESSFULLY PARSED

FOR FACT THE
2 VERIFICATION CONDITIONS ARE:

I -

i '
T
i

n i N>e-*N=8

l-Factorial(N)

n 2 N>e-.MN=0)

^N-1>0)A(FACT(N-1)-Factorial (N-l)-»N*FACT(N-l)-Factor ial (N))

FOR THE MAIN FflOGRAM THE
1 VERIFICATION CONDITIONS ARE:

tt 1 UNRESTRICTED

ARBITRARY

«

48

■■

5.2 FACTORIAL AS A PROCEDURE

See comments for previous example.

PASCAL ENTRY B>0; EXIT C = Factorial (B) i
PROCEDURE FACT(VAR R:INTEGER; A: INTEGER);
ENTRY A > 8; EXIT R = Factorial(A);
BEGIN IF A = 8 THEN R » 1 ELSE

BEGIN FACT(R.A-l); R •■ A*R END
END;

BEGIN FACT(C.B) END.;

PASCAL PROGRAH SUCCESSFULLY PARSED

FOR FACT THE
2 VERIFICATION CONDITIONS ARE:

M 1 A>0-A=8

1-Factor ial(A)

d 2 A>8—(A = 0)

(A-l>8)AVRtf(Rö»Factorial (A-l)-.A*R#-Fartorial (A))

FOR THE DA IN PROGRAM THE
1 VERIFICATION CONDITIONS ARE:

* 1 B>8

(B>8)AVC«0=Factorial (B)-C#-Factorial (B))

41

■—-

5.3 INTERCHANGE SORT

This example, tdken from King [19S91, sorts by successively finding
the smallest element of the a-ray A. The assertions include
provision for showing that the array A at the exit is a permutation
of the array ft at the entry. The entry array is denoted by the array
name A0. The assertions contain two definitions.
SAMESET (A.A0,A[arbi trary]) denotes that A and A0 are the samp, set of
elements including repetition. The term AEarbitrary] is a trick to
allow VCG to check that an array is unaltered over a path between
assertions. The trick is needed because array substitution is done
by array element, not by array name. The second definition is for
nULTISET(A,A0.J,K,L,M) where < and H denote array elements of A, and
J and L denote subscripts of A. MULTISET denotes that A and A8 are
the same set of elements including repetition even if Jt-K and Li-tl
are simuitaneously done. Thus, e.g.,

MULTISET (A, A0.J,AUl,LOC,AtLOC])
and

nULTISET(A.A0,J,A[LOC] .LÜC,A[J])
both are true, but

nULTISET(A.A0.J.A[J].J+l.A[J])
is not true yenerally.

This asserted program and resulting verification conditiors were the
initial input to the AI len-Luckham theorem prover when it was able to
discover the verification condit'on which could not be proved.

PAbCAL ENTRY N > USAME3ET (A. A0, A [ARBI TRARY]);
EXIT VK((liKiA(K<rj-l) D A[K]<A[K+imSAnESET(A,A0,A[ARBITRARY]);
BEGIN J-Ni
ASSERT VK(U+liKKIKiN-l) 3 A[K]<A[K+11) &

vn((iLn)A(ri<j)A(j<N-l) a AWUsAU+lJ) &
IsJÄJsN & nULTISET(A.A8,J+l,AU+l].L0C,A[L0C])i

j >2 no UH
BE

LE
;IN

BIG - All]; LOG - 1: I - 2i
ASSERT VK((J+1<K)A«<N-1) D A [K] <A [K+l]) &

VL((1<L)A(L<I-1)A(1-1<N) D A[L]<BIG) &
vn((i<n)A(ri<j)A(j<N-i) D A[n]sA[j+i]) &
BIG=A[L0C]&1<L0C&L0C<J&I>2 &
2SJ«JSN & SAMESET(A,A8,A[ARBITRARY]);

IF A[I]>BIG THEN
BEGIN BIG^AII]; LOC^I END;

UHILE \<J DO
BEGIN

M+l
END;

ALLOC] - A[J]
A[J] - BIG:
J-J-l

END
END.;

^

42

mm mmm mmm

*...,:. *v.#-.'«

PASCAL PROGRAH SUCCESSFULLY PARSED

FOR THE MAIN PROGRAtl THE
8 VERIFICATION CONDITIONS ARE:

0 1 Nil^SAHESET(A.A8.A [ARBITRARY])

VK((N+1<K)A(K<N-])DA[K]<A[K+l])&
vn ((i<n) A (ri<N) A(N<N-I I DA mi <A IN+I:)&I<N&NSN&
nULTISET(A,A0.N+l.A[N+l],LOC.A[LOC])

Note: A[N+1] is undefined and. since LOC is undefined, so is AtLOC].
Nevertheless, by convention this HULTISET term may be considered true.

U 2 (VK((J+l£K)A(K<N-l)DA[K]<A[K+l])&VI1{(lsm/\msJ)A(JsN-
1 < J&J<N&nULT 1 SET (A, A8. J+l. A [J+l 1 , LOC, A [LOCI)) A Ui2)

j3Am]sA[j+i])&

II
I

VK((J+l<K)A(K<N-1)3A [<]<A[K+l])&
VL((l<L)A(L<2-l)A(2-l<N)3A[L]<A[l])&Vn((l<f1)A(nsJ)A(JsN-l)3A[n]<A[J+l])&
A [1] =A [1] SI<1&1<J&2>2&2<J&J<N&SAnESET(A, A8, A[ARB1TRARY])

* 3 (VK((J+1--K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LSI-1)A(I-1SN)DA[L]<BIG)&

vn (llstl) A (n<J) A (J<N-1) DA m SA [J+l])&BIG-A [LOCI«ISLOC&LOCSJ&I >2«2SJ&J<N&

SAnESET(A,A8.A[ARBITRARY]))A(IsJ)-*A[I]>BIG

V<((J+1<K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LS1+1-1)A(I+1-1SN)3A[L]<A[1])ä

VM (I i <n) A (n< J) A (J<N-I) DA [MI SA [J+I]) &A [i] -A [n SI S I SI S JäI +I üZ&ZSJäJSNS

SAHESET (A.A8,A [ARBITRARY])

tt 4 (VK((J+1<K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LS1-1)A(I-1SN)3A[L]SBIG)&

vn ((1 <n) A (M<J) A(J<N-1) DA HIM <A [J+l])&B1G-A [LOCI «ISLOC&LOCSJ&I 2:2&2SJ&JSN«
SAriESET(A.A8.A[ARBITRARY]))A(I<J)-.-(A[Il>BIG)

VK((J+1<<)A(K<N-1)DA[K]<A[K+1])&VL((1SL)A(LS1+1-1)A(1+1-1SN)DA[L]<BIG)&

VH ((1 sH) A (n<J) A (J<N-1) DA [n] <A [J+l])&BIG-A [LOG&l<L0C&L0CsJ&I+l22&2<J&JiNS
SAttESET(A.AC,A [ARBITRARY])

« 5 (VK(U+iiK)A(K<N-l)DA[K]<A[K+l])&VL((lsL)A(L<l-l)A(I-lsN)3A[L]<BIG)«
vn((i<n)A(n^ j)A(J<N-IIDA in] <A u+i] I&BIG-A [LOG]&i<LOC&LOCsJdiS2&2<J&J<N&
SAnESET(A,A8.A[ARBITRARY]))A-(I<J)

VK((J-U1'K)A(K<N-1)D IF J.K THEN BIG ELSE IF LOCK THEN A[J] ELSE A [K] i
IF J=K+1 THEN BIG ELSE IF LOC=K+l THEN A[J] ELSE A[K+l])&
vn((iin)A(n'.j-i)A(j-i<N-i)D IF j.n THEN BIG ELSE IF LOC-H THEN AUI ELSE A[n]<
IF J-J-l+1 THEN BIG ELSE IF LOC-J-1+1 THEN A[J] ELSE
A[J-1+1])&1<J-1&J-1<N&
MULTISET (A, A0,J-1+1, IF J-J-l+1 THEN BIG ELSE IF LOC-J-1+1 THEN A[J] ELSE AU-1+1]
LOC, IF J=LOC THEN BIG ELSE IF LOC-LOC THEN A[J] ELSE A[LOC])

A3

J

„

ti G (VK ((J+l <K) A (K<N-1) DA [KJ <A [K+l])«Vfl ((Isfl) A (MSJ) A(JSN-1) aA im SA U+l))&
l<JiJ<N1SnULTISET(A,A3.J+l.A[J+l].L0C.A[L0C]))A-(Ji2)

V<((1<K)A(K<N-1)3A[K]<A[K+1])äSAHESET(A,A0,A[ARBITRARY))

I :

I 44

mtam ■MI

i pxi-i ,wii.iwinp^fB7ii ' - ' ' " " " -" '■ *■ WPl pi I ■ ■ ■■«!

5. A A SAMPLE PROOF FOR ONE OF THE VERIFICATION CONDITIONS OF THE
FRÜGRAH iNTF^CHANGE SORT

BPIOW ue give a proof of part of the last verification condition («B
from Section 5.3). This proof was obtained by a theorem proving
program [Allen and Luckham] from the set of axioms and statements
•hown belou. This simple set of axioms was found to b? sufficient to
obtain proofs of all parts of verification conditions for interchange
sort not involving the theory of permutations.

Below P(X) means X-l and SIX) means X+l.

VAR: K.Y.Z.K.n.L;
INF_PRED:<.=,<;
PRE_0P:P.S.A.J.N.1.2;
EQUAL1TY:=!
AXiOnS: XiX;

(X<YAY<Z)-X<Z;

(X<YAY<X)-.Y=X;

X<Y"(X<YA-.(X.Y))!

X<YvY<X;
X<S(X);
P(X)<X;
S(P(X))-XI

P(S(X))-X|
S(l)=2;
P(2)=l;
((X<YAP(Y)<X)-P(Y)-X)J

(X<Y-.X<P(Y))
(X<Y-.S(X)sY)
(X<Y-.P(X)<Y)

LEriMA: J-l;
PREM'SSES: ((S(J) <K) A(K<P(N)) NA«) <A(S{K!) •,
((i£ri)A(n<j)A(j<P(N)))-A(n)<A(S(J))i

UJi
J<NA-(2<J)i
THEOREM: (VK) (l<KAk:<P (N))-A «) <A(S(K)) •,

Note that ue have added as hypothesis the fact that J-l. The proof of
this statement reauired some computation and uas derived by the
theorem proven while trying to prove the theorem. The proof that J-l

follows Pel on: i

I

1 = J; 1 2
1 P(2)= IjAXlOn
2 P(2)= Jj3 A
3 1 < J;AXI0n
4 1 < JDP(2)= JJS G
5 P(2)= liAXIGM
G P(2)< JDP(2)= J;7 8

45

■Hto

, ,,.,..,....:.... mm miitmm i. i ■j > i II« in ai i HI ■ 1 ■ »vm

7 Y < KAP(X)S YDP(X)- Y;AXIOn
8 J < 2:3 10
3 X < XjAXIOM
ia J < XA2 < XDJ < Kill 12
11 K < YDX < YvX - YjAXIOn
12 -2 < JiAXlOn J - 1; 1 2

The proof of the last verification condition follows
THE0REH2 arises from the negation of the theorem):

(the constant

NIL 1 '.2
1 A (THEOREM) < A(S(THE0REn2)):3 4
3 J < JDA(J)< A(S(J));5 6
4 X < K;AXIOM
5 1 s J;AX10n
G 1 < XAX < JDA(X)< A(S(J));7 8
7 J < P(N);9 18
8 1 < XA(X S JAJ < P(N))DA(X)< A(S(J));AXI0M
3 j = THEOREtlZjll 12
U J - THEnnEn2vA(THE0REn2)< A(S (THE0REn2)) ;13 14
p ^A(THE0REM2)S A (S (TH[.0REn2)) THEOREM
13 J = THE0REn2/S(J)< THEOREM; 15 IG
14 5(J)s THEüREn2DA(THE0REn2)< A(S(THEOREM)); 17 18
15 1 < THEOREnZvl - THE0REn2:19 28
16 X < YDS(X)< Y;AXlOn
17 S(J)< XAX < P(N)DA(X)< A(S(X));AXI0M
18 THEOREM < P(N) i THEOREM
19 X < YDX < YvX = Y;AX10n
2a i < THE0REri2; THEOREM

AB

'

«ini|Uii PI.UJ i M in iiiiiiwii.im^JiiUi'i Hi- «■»■•iH .^■". i») i I. ■IIV-ll «mv ii jii»'.-, i ■■!.■« iwmmimm

5.5 BINARY TABLE SEARCH

This exampie. from Clint anci Hoare (1972], is a table lookup routine
which trie? to find the location of the input X in the array A. A is
a sorted arrag of distinct elements, a fact denoted in the assertions
by SORTED(A). If K it not in the array an ERROR exit is to be taken.
(Our conversion of their program renders this as setting the flag
ERROR to TRUE.) Note the use of a go-to for leaving the while loop
and the other cjo-to's. NC "'DIX.n.N) expresses that X is not in
the array segment from AIR] to i). This program for binary table
search is »Mentially the same as the example in Floyd [1972]. The
last verification condition is of the form A ■♦ A because VCG does not
allou a transfer to the EXIT assertion.

PASCAL ENTRY (UN) ..SORTED(A) A(A 11] <X) A(X<A [Nl);
EXIT (A [LOOKUP) - X)A(ERROR.FALSE) W NOTFOUNDIX.tl.N) MERROR - TRUE);
BEGIN n-li N-N; ERROR-PALSE;
ASSERT (n<N)MA[m<X)MX<A[N])ASORTED(A) A (ERROR-FALSE);

UH1LE n+l<N DO BEGIN
I-dl+N) DIV 2:
IF X < All) THEN N-l ELSE IF Mil < X THEN fl •■ I

ELSE BEGIN LOOKUP «- I: GO TO 1 END

END:
IF Atni * H THEN GO TO 2 ELSE BEGIN LOOKUP * tl; GO TO 1 ENDs
2: ASSERT NOTFOUND(X.n.N); ERROR •■ TRUE: „,,._
1: ASSERT (AILOOKUP) - X)A(ERROR-FALSE) v N0TF0UND(X,n.N) A(ERR0R - TRUE)

END.;

PASCAL PROGRAH SUCCESSFULLY PARSED

FOR THE MAIN PROGRAM THE
8 VERIFICATION CONDITIONS ARE;

ft 1 (1<N)AS0RTED(A)A(A[11<X)A(X<A[N])

(1 <N) A(A[1]<X)A(X<A [N])ASORTED(A)A(FALSE-FALSE)

tt 2 (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A(n+l<N)-

X<A[(M+N) DIV 2]

m<(H+N) DIV 2)A(A[n]<X)A(X<A[(n+N) DIV 2])AS0RTED[A)A

(ERROR=FALSE)

U 3 (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A(n+l<N)-

^(X<A[(n+N) DIV 2]NA[(n+N) DIV 2] <X

Un+N) DIV 2<N)A(A[(n+N) DIV 2]<X)A(X<A[N])AS0RTE0(A)A

(ERROR=FALSE)

47

■

:

<

mmmm ■ -.-.■ ^ ^ -■^

i MniuiiRiiR^ii yi ij i ii|^iiLi|9iipi.ij jiii^n^^^pr^iiiwifMiMu^^uHi,.

tf 4 (n<N)A(A[n]<X)A{X<A[N])ASORTED{A)A(ERROR-FALSE)A(n+l<N)-.
-(X<A[(n+N) DIV 2])-.-{A[(n+N) D1V 2]<X)

(AKfUN) DIV 2]-X)MERR0R-FALSE)vN0TF0UND(X,ri,N)A(ERR0R-TRUE)

ti 5 (n<N)A(A[n]<K)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A-{n+l<N)-*A[m*n

NOTFOUND(X.n,N)

ti G (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR.FALSE)A-{n+l<N)-»-(A[n]^n)

(A[n]=X)A(ERROR=FALSE)vNOTFOUND(X,n.N)A(ERROR-TRUE)

U 7 MOTFOUND(X.n.N)

(A [LOOKUP]=X)A(TRUE.FALSE)vNOTFOUND(X,n,N)A(TRUE-TRUE)

tt 8 (A [LOOKUP!-X)A(ERROR-FALSE)vNOTFOUND(X,n.N)A{ERROR-TRUE)

(A[LOOKUP]=X)A(ERR0R»FALSE)vNOTFOUND(Xin.N)A(ERR0R-TRUE)

48

MM ■JMba Mi^MBBki ^^-

5.6 THE McCARTHY-PAINTER COHPILER AS A FUNCTION

This example is the McCarthy-Painter compiler for arithmetic
expressions [flcCarthy and Painter 19B7] written as a Pascal racursive
function. The assertions given in this example are the same
statements that U. Diffie used when he proof-checked the published
proof of the compiler correctness. If a "library function" ALPHA is
unknown to VCG. it prints a message "ALPHA NOT FOUND". For
precondtions and results of that function, tha names "PRE_ALPHA" and
"RES_ALPHA" are invented.

PASCAL EXIT RESULT;

FUNCTION COMPILE(EtEXPRESSION; T:INTEGER)rCJDE;
ENTRY ISEXP(E)MT>AC) A (ISVAR(V)D((LGC (V.MAP) < T) A (C(L0C(V.MAP))-C (V.SRST))));
EXIT (C (AC.OUTCOME(COMPILE(E.T),OBST))-VALLE(E,SRST))

A

((U<T) D (C(U.0BST)=C(U.0UTC0ME(C0MPILE(E,T),0BST))))i

BEGIN IF ISCONST(E) THEN COMPILE - MKLI(VAL(E))
ELSE IF ISVAR(E) THEN COMPILE «- MKL0AD(L0C(E,nAP))
ELSE IF !SSUM(E) THEN

COMPILE -
COMPILE(SI(E).T)*nKST0(T)*C0nPILE(S2(E),T+l)«nKA0D(T)

END;

BEGIN RESULT - COMPILE (EXPRESSION.LENGTH(VARS))EN0. i

PASCAL PROGRAM SUCCESSFULLY PARSED

I SCONST NOT FOUND

ISVAR NOT FOUND

ISSUn NOT FOUND

51 NOT FOUND

MKSTO NOT FOUND

52 NOT FOUND

MKADD NOT FOUND

MKLOAD NOT FOUND

LOC NOT FOUND

MKLI NOT FOUND

49

^MMHMUM^a..., I I I J

LIM ^«■Mll. *** ■<~r**v^^mW^,

■mi

VAL NOT FOUND

FOR COMPILE
4 VER1FICAI

THE
:ON CONDITIONS ARE:

« 1 ISEXP(E)A(T>AC)A(ISVAR(V)D(L0C(V,nAP)<T)A(C{L0C(V.f1AP))-C(V.SRST)))-.
PRE_ISC0N5T(E)A(RESJSC0NST(E)A1SC0NST(E)

PRE_nKLI(VAL(E))APRE_VAL(E)/v(RES_nKLI(VAL(E))ARES_VAL(E)-.
iC(AC.OUTC0nE(nKLI(VAL(E)).0BST))-VALUE(E.SRST))A
(U<TDC (U.OBST).C(U.OUTCOnE(HKLl(VAL(E)).OBST)))))

* 2 lSEXP(E)A(T>AC)A(ISVAR(V)D(LOC(V,nAP)<T)A(C(LOC(V,nAP))-C(V,SRST)))^
RES.ISCONSTiEJA-ISCONSTIEJ-PRE.ISVARIEJACRESJSVARCEJAlSVARlE)

PRE MKLOAD(lOC(E.nAP))APRE LOC(E.MAP)A(RES_nKL0A0lLOC(E,nAP))A

RES_LOC (E. HAP)-(C (AC.OUTCOME (MKLOAD (LOC (E.MAP)) .OBST)) -VALUE (E.SRST)) A
(U<T:,C(U.DBST)»C(U.OUTCOME(MKLOAD(LOC(E,MAP)),OBST)))))

M 3

tf 4

ISEXP(E)A(T>AC)A(ISVARIV)O(LOC(V.MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))-

RES_I SCONST (E) A-.1 SCONST (E) *RES_I SVAR (E) A-I SVAR (E) -PRE.l CSUM (E) A
(RESJSSUM(E)AISSÜM(E)

IqEXP(Sl(E))A(T>AC)A(ISVAR(V)D(LOC(V,MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))A
PRE SKEIAPRE MKST0(T)AISEXP(S2(E))A(T+1>AC)A(1SVAR(V)3

(LOC^V nAP)<TZl)A(C(L0C(V,MAP))-C(V,SRST)))APRE.S2(E)APRE_MKADD(T)A
((C (AC. OUTCOME (COMPILE (SliE).T).0t:ST))-VALUE(31(E).SRST))A(U<T3

C (U OBST)=C (ü.OUTCOME(COMPILE(Sl(E).T).OBST)))ARES_S1 (E)ARES_MKSTO(T) A
|;C(ÄC.0UTC0ME(C0MPILE(S2(E).T+1).OBST))-VALUE(S2(E).SRST))A(U<T+1D

C (U OBST) =C (U,OUTCOME (COMPILE (S2 (E). T+l) .OBST))) ARES_S2 (E) ARES_MKADO (T) ^
(C(AC OUTCOME(COMPILE(Sl(E).T)*MKST0(T)*C0nPlLE(S2(E),T+l)*nKADD(T).ÜBST))
VALUE (E.SRST))A(U<TDC(U.OBST).C(U,OUTCOME (COMPlLE(Sl(E),T)*nKSTO(T)*
COMP ILE(S:(E).T+l)*MKADD(T),OBST'»)))

1SEXP(E)A(T>AC)MISVAR(V)D(LOC(V.MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))-.

RES J SCONST (EK-lSCONSTfENRESJSVAR (E)A-ISVAR(t-.)-.RESJSr..Un(E) A

-issun(E)

(C (AC.nUTCOME(COMPILE.OBST))=VALUE(E.SRST))A
(U<TDC(U.OBST)=C(U.OUTCOME(COMPILE.OBST)))

LENGTH NOT FOUND

FOR THE MAIN PROGRAM THE
1 VERIFICATION CONDITIONS ARE:

50

mm mammßmM

i ii nmamp-.Hip »M-'M mu'-mimw—mi n n >i i ■ n ■ « m^*mmu^**Krwr**^mmma*m*p* mmi^mmw

'•'■*■■•-

$ 1 UNRESTRICTED

isEXP (EXPRESSION) A(LENGTH(VARS)>AC)A(1SVAR(V)3(L0C(V,MAP) <LENGTH(VARS)) A

(C(LOC(V.nAP)!-;(V.SRST)))APRE_LENGTH(VARS)A
((C(AC.OUTroriEiCOnPILE(EXPRESS I ON.LENGTH(VARS)).OBST))-
VALUE(EXPRESSION.SRST))A(U<LENGTH(VARS)3C{U,CBST)-
C (U.OUTCOME (COtlPILE (EXPRESSION.LENGTH(VARS) I.OBST))) ARES.LENGTH (VARS)*
COnPlLE (EXPRESSI ON.LENGTH(VARS)))

i

I

51

aaabaMaMflHMMaB_Mlll

.11 i.i ;iiipi^RjRUJiimji^|iri!^iiLJmv«^gp^qiULH[.||**.i III.II*-IIP" WWPpipiB"»?^PfWW- »"W wtm v*

REFERENCES

Allen, J.R.; and Luckham. 0. 1970. An interactive theorem-proving
program, Hachine Intelligence 5, Heltzer. B. and flichie, D.
(eels.), Edinburgh University Press, 1979, 321-336.

Clint, n.; and Hoare, C.A.R. 1972. Program proving: Jumps and
functions, Acta Informatica, 1, 3, 1972, 214-224.

Floyd, R.U. 1964. Algorithm 245, TREESDRT 3, Comm. ACM, 7, 12,
December 19G4, 701.

Floyd. R.U. 19S7. Assigning meanings to programs, Proc. of a
Symposium in Applied riathematics, Vol. 19--Matheiiia t i ca I Aspects
of Computer Science. Schwartz, J. T. (ed.), American
nathematical Society, 19G7, 19-32.

Floyd. R.U. 1372. Toward interactive design of correct programs,
Proc. of the IF1P "ongress 71, Vol. 1, 1972, 7-18.

Hoare, C.A.R. 19G9. An axiomatic basis for computer progr?mming,
Comm. ACH, 12, 10, October 1969, 576-580, 583.

Hoare, C.A.R. 1971a. Procedures and parameters« An axiomatic
approach, m Symposium on Semantics of Algorithmic Languages,
Enrjel?r, E. (ed.), Springer-Verlag, 1971, 102-116.

Hoar«, C.A.R. 1971b. Proof of a program! FIND, Comm. ACtl. 14, 1,
January 1971, 39-45.

Ho«re, C.A.R.; and Uirth, N. 1972. An axiomatic definition of the
programming language Pascal, Berichte der Fachgruppe
Computer-Wissenschaften 6, E.T.H., Zurich, November 1972.

King, J.C. 1969. A program verifier, Ph.D. thesis, Carnegie-Me I I on
University, 1959. See also 1FIP Congress 71 Booklet TA-2,
142-146.

London. R.L. 1972. The current state of proving programs correct,
Proc. of ACM Annual Conference, ACM, 1972, 39-46.

McCarthy. J; and Painter, J.A. 1967. Correctness of a compiler for
arithmetic expressions, Proc. of a symposium in Applied
Mathematics, Vol. 19--MathematicaI Aspects of Computer Science,
Schwartz, J. T. (ed.). American Mathematical Society, 19G7,
33-41.

Smith, D.C.; and Enea, H, J. 1973. MLISP2, Artificial Intelligence
Memo AiM-195. Stanford University. April 1973.

52

MMMMMMH mmmmm

imminvvim. . ijainp | uni n ■ n ip. ^iiii .ivii ii mMn IM JMI 4ll|IHRVmii,*i ■

■ -• •«f>w«wP '1*-'

Uirth, N. 1971. The programming language Pascal, Acta Informatica,
1. 1. 1971. 35-G3.

Uirth, N. 1372. The programming language Pascal (Revised Report),
Berichte der Fachgruppe Computer-Wissenschaften 5, E.T.H.,
Zurich, November 1972.

ACKNOULEDGEMENTS

Ue are indebted k. ' R. Hoare and Nikiaus Uirth for preprints of
several of theii ners, especially drafts of the Pascal
ax i omat i zat i on. Ue alb.. ">K Nor i Suzuki for pointing out errors in
VCG and Jorge Horaks for K. "'ng the sample proof in Section 5.4.

Most of this uork was; completed u. 'he authors were members of the
Stanford Artificial Intelligence i t during the academic year
1971-72. Ue are grateful to John HcCar ^ - making it possible for
us to hf together in such a stimulating env., «nt. Horace Enea and
David S ith. developers of the HLISPZ system, pv 'Mly answered our
m a ti y ci u e s t i o n s about its use.

53

iMMBMMB MMBMBI

