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AUTOHATIC PROGRAH VERIFICATION I: 
A LOGICAL BASIS ANO ITS IMPLEnENTATION 

by 

Shigeru Igarashi. Ralph L. London, and David C. Luckham 

: 

1 INTRODUCTION 

Verifying that a computer program is correct has been discussed in 
many recent publications, for example [Hoare 19BT, King 19B9, 
McCarthy and Painter 19G7]. The "correctness problem" or 
"verification problem" has become popular essentially because it 
represents a significant first step towards writing programs that can 
be guaranteed to do what their authors intended. There are several 
different interpretations of exactly what it means. Here, we adopt 
the point of view that a program has been "verified" when it is 
proved within a system of logic to be consistent with documentation, 
i.e. a statement of what it is supposed to do. Our discussion is 
restricted to programs that can be written in a very precise modern 
programming langage, Pascal [Uirth 1971]. Of course, we do not deal 
with all Pascal programs, but with a subset that is rich enough to 
include published algorithms such as FIND [Hoare 1971b]. TREES0RT3 
[Floyd 19641, a.id a simple compiler [McCarthy and Painter 19G7] . 
Since r-"=ical is an Algoi-like language we expect that what is done 
here can be repeated without mucn effort for Algol or other such 
languages. Ue adopt a DOCUnENTATION LANGUAGE that is roughly 
speaking the language of quantified Algol Boolean expressions, (i.e. 
first-order number theory with definitional extension and some 
notational con-eniences). It does not contain any constructs for 
representing such notions as tense (time dependency), possibility 
(can do), etc. that may well prove useful in describing programs. So 
the documentation language is a slight extension of what programmers 
normally use to state those condition» jn computations that control 
their programs. Statemprts of the documentation language are called 
ASSERTIONS. A documented program is, for us, a Pascal program in 
uhlch assertions have been placed between its statements at certain 
points. Ue refer to such programs with documentation as ASSERTED 
PROGRAMS. 

I 

I 

The general idea of how to go about verifying an asserted program is 
to reduce this problem to questions about whether certain associated 
logical conditions (henceforth caI 1ed VERIFICATION CONDITIONS) are 
true of (i.e. theorems in) various standard first-order theories. 
The usual method of reduction [Floyd 1967] involves enumerating all 
possible paths between assertions in the program and then computing a 
verification condition for each path in terms of operations and 
assertions on that path; these verification conditions must then be 
proved. See London [19721 for a bibliography tif existing programs 
for generating verification conditions. 

MMM ua-H wmmm 
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However, in the case of Pascal, a rigorous definition of the 
semantics has been given in terms of axioms and rules of inference 
that must be valid for each syntactic constructors this It contained 
In the recent uork of Hoare and Ulrtft [19721. This approach to 
defining the semantics of a programming language yields a deduction 
system in which proofs that programs satisfy specifications may be 
given (see Hoare tlSG?.1971a]). Such proofs, of course, depend on the 
truth of first-order conditions, or to put it another way, stanaard 
first-order theories are sub-systems of the deduction system for 
Pascal. For the sake of illustration. Example 1 shows a proof in 
Hoare1s system that the program in step 13 computes the quotient q 
and remainder r o* the inputs M and y. The rules of inference used 
here arP the rules in Table 1 (Section 3.11 and the iteration rule 
below. The logical conditions assumed by this proof are labeled 

"lemma". 

1 terat:on; PACHAIP.PA-QDR 

Plwhi le  Q  do  A}R 

1. true   -»     x   =   x  +  y*0 

2. x   =   x   +   y*0lr.-x)x-r   +   y*0 

3. x=r+y*3(q-0ix-r+y«q 

4. true    Ir^xl    x-r+y*0 

5. true    lr-x!   q«-01   x-r   +  y*q 

x.r   +   y*qAySr-»x-   (r-y)   +  y  «   d+q) 

x   =    [r.y|   +   y   #   (1+q) ir   -  r-yl   x   -   r   +   y  *   (1+q) 

x      -   r   +   y   *   (1+q) Ifj  •■   l+q>   x   -   r   +  y  *  q 

B. 

7. 

8. 

9. (r-y)   +   y  *   (1+q) Ir  «-  r-y;   q  «-  1   +  q) 
x  -  r  +  y  *  q 

Lemma 1 

Cl 

Cl 

CB (1. 2) 

C7 (4 ?) 

Lemm-j 2 

Cl 

Cl 

C7 (7 .8) 

16.    x   -   r   +   y   *   q   A   y   S   rtr   ^  r-y;   q   -   1+q) 
x-r+y«q Ci   tb,3) 

11. x-r   +  y*qA-y<r-.-ySr/\x-r  +  y*q       Lemma  3 

12. x   -   r   +   y   *   q    Iwhile   y   S   r   do(r   ü  r-y; :I   ^   1   +  qM 
-y''rAx-r  +  y*q     Iteration   (10,11) 

13. true(((r   -   x;   q^0);   whiIe  y  S  r   do   (r  ^  r-y;   q  -  1+q))I 
-.ySrAX-r  +  y«q C7   (b,l^) 

EXAMPLE   1:        FORMAL  VERIFICATION OF  QUOTIENT-REMAINDER PROGRAM 
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It is possible to generate the verification conditions for an 
asserted program merely by using a subgoaler for the deduction 
system. EXAMPLE 2 shows how such a subgoaler works on the 
Quotient-Remainder program of Example 1; it  simply  searches  for  a 
rule nference  which has the current goal as its conclusion and 
then generates the premisses of the rule as subgoale. 

Goal . 

Subgoal 1. 

Sub'joal 2. 

Lemma 3. 

Subgoal 3. 

Subgoal 4. 

Lemma 2. 

Subgoal 5. 

Lemma 1. 

truelr •- x; q •• 0» assert x - r + y * qj 
while y £ r do begin r ♦■ r-y; 
q *• 1+q end) -(ySr) /\ (x - r + y « q) 

trueir •-x;q*-0lx-r + y«q  C7 (Goal) 

x   -  r  +  y  *  q   Iwhile  y  S  r   do  begin  r  «-  r-yj 
q  «-  l>q  end)   -(y  f r)  A  IK «  r+y«q) 

C7   (Goal) 

(x   -  r  +  y  *  q)   /\ ->   (y  S  r)   -»  -•   (y  S  r)   A   (x   -   r+y*q) 
Iteration (Subgoal 2) 

(x ■ r + y*q) A (ySr) Ir «- r-y;q ♦• 1+q) x - r + y*q 
Iteration (Subgoal 2) 

(x - r + y*q) A (y<r) ir •- r-y) x - r + y*(l+q) 
C7 (Subgoal 3), 
then Cl (Subgoal 3) 

(x»r-ry*q) A(ySr)-» x-(r-y)+y* (1+q)  Cl (Subgoal 4), 
then C5 (Subgoal 4) 

true Ir •- x) x • r + ymB 

true-»x«x + y*f. 

C7 (Subgoal 1), 
then Cl (Subgoal 1) 

Cl (Subgoal 5), 
then C5 (Subgoal 5) 

EXAMPLE 2:    GENERATION OF  THE VERIFICATION 
QUOTIENT-REnAINHF.R PROGRAfl 

CONDITIONS FOR  THE 

i 
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1 This is the approach to generating verification conditions presented 
here. Ue use a simple subgoaling program for hoare's deduction 
system. Although this program'will accept a significant subset of 
Pascal programs, it is itself very simple since it does not analyze 
the object program explicitly out merely repeatedly applies a list of 
rules of inference. It is easily shown to be sound (see below), 
easily extended to accept additional syntax (FOR statements, new type 
declarations, etc.), and easily changed to take account of. new 
defin'tions of the semantics. Ue refer to this subgoaler as VCG 
(Verification Condition Generator); details of its implementation are 
given in Section 4 and sample outputs in Section 5. 

However, there are problems. At any step more than one deduction 
rule may be applicable to generate further subgoals. To deal with 
this ambiguity, we have choiren a set of deduction rules (some of them 
derived rules in Hoare's system) for subgoa I generation which is 
unambiguous. Ue shall show that this set ;s deduction complete. This 
necne that if a particular verification can be proved in Hoare's 
system, then VCG will produce a sufficient set of verification 
conditions from which such a proof may then be constructed. However, 
these conditions may not be provable unless the user supplies certain 
crucial assertions at intermediate points in his program (e.g. an 
invariant for each loop). Finally we also need to know '.hat the 
deduction system is consistent. 

Section 3 deals with these logical problems. Ue give a small set of 
axioms and deduction rules, called the CORE, from which all of 
Hoare's rules can be derived; some sample derivations are included. A 
straight-forward set theoretic model of the core is constructed; this 
gives us a semantic proof of consistency of the core. The set of 
rules used by VCG is given and is shown to be consistent with the 
core and powerful enough to derive the core (hence deduction 
completeness). Preliminary comments, definitions and examples 
concerning Pascal programs, the assertion language and asserted 
programs are given in Section 2. 

VCG is already a useful tool. Numerous example programs have been 
verified by manually proving the verification conditions. No1"« 
interestingly, and of more protuise, VCG is intended to be the initial 
part of an automatic verification and debugging system, 
plan is shown in Figure 1. Asserted programs are input to VCG. 
output verification conditions are simplified relative to data files 
containing relevant properties of the operators and functions in 
conditions.  It  wil 

The overa I I 
The 
I es 
the 

that a  gre^t  deal 
conditions  is  both 
the conditions will 
Next.  the condition 
the theorem prover 

become evident from the examples in Section 5 
of  elementary  simplification  of  verification 
necessary and easy to do.  The truth of many of 

be  established at  the  linplifleitien  stage. 
Analyzer is intended to reduce problems given to 

and to find bugs.   It attempts  to classify 
verification conditions according to probable method of proof and to 
generate simpler subproblems, and also attempts to find the "closest" 
similar  condit:on that is provable when a proof of a given condition 

—-   
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is not found. This latter kind of analysii is one method of catching 
bugs — finding missing assumptions in verification conditions. 
Currently a development of the theorem-prover of Allen and Luckhatn 
[1970] is being used successfully by J. Horales to prove conditions 
output by VCG for various sorting programs (see Section 5.4). This 
proposed system thus appears to have a good chance of being developed 
into so.iething useful. 

Uhat ha:? become evident If that VCG is not a trivial element in this 
type of verification system. In order to make such a system 
practical, the amount of documentation the user is required to supply 
uith his program should be restricted to wh«t uould be considered 
natural for human understanding of what the program and its 
sub-programs do. At the moment VCG places rather more weight on 
documentafon than we would like. However it is already easy to see 
how to extend VCG by adding some additional rules that will permit it 
to deduce intermediate documentation for itself in some cases. 

I nput 

|  VCG  | 
->|       I 

DATA FILES | 

SiriPLIFIER | 

| DATA FILES1 

n 
I v 

OUTPUT | 

| ANALYZER |—>| THEOREM | 
.> i |<—IPROVER  | 

I 
I 
v 

OUTPUT 

FIGURE 1:  PLANNED AUTOflATIC VERIFICATION AND DEBUGGING SYSTEM 

) < 
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2.     PROGRAfIS  UITH  ASSERTIONS 

2.1     PASCAL. 

A        compre 
[1971,1972 
Programm in 
deduct i on 
Pascal    is 
have   no   tr 
generation 
Pascal   her 
concern     t 
a   program 
recursi ve 
procedure 
PascaI. 

h e n s i 
1 and 
g I a 
sys te 
an A I 
oub I e 

i n 
e, we 
o us 
conta 

f unc 
and f 

ve  defin 
Hoare and 
nguage  i s 
m and i ts 
go I - I i ke I 
understan 
this paper 
sha11 poi 

between Pa 
ining a pr 
tion defi 
unction; i 

ition  of Pascal  is published bg Uirth 
Uirth []972]. Our choic« of Pascal as the 
motivated by the des«lopment of Hoare's 

use to define the semantics of Pascal. 
anguage so a reader familiar uith Algol will 
ding the examples of progroms and condition 

Thus instead of indudi.ig a definition of 
nt out some of  the main differences  of 
seal and Algol.  The following example shows 
ocedure definition, variable declarations, a 
nition and a pr^g.-am body which calls the 
t is written first  in Algol  and  then  in 

I 

ALGOL   PROGRAfl: 

BEGIN 
INTEGER  ALPHA,   BETA,   QUOT,   REM,   Q,   R,   X,   Y,   I; 

PROCEDURE  QUOTREn(R,Q,K,Y)!   VALUE X,   Y;   INTEGER R,   Q.   X,   Y; 
BEGIN   R   :=   X;   Q   :-   0-, 

FOR   I    tm  I   UHILE   Y   ^  R  DO 
BEGIN  R   :-  R  -  Y;   Q   :-  1   +  Q  END 

END; 

INTEGER  PROCEDURE  FACT(N);   INTEGER N» 
BEGIN   IF  N  »  8  THEN  FACT   :-  1  ELSE FACT   :- N « FACT(N-l)   END; 

BETA   :-   3;   X   :-   G;     '   :-  4; 
ALPHA   :-  FACT(BETA); 
QUOTREniQUOT.   REM.   X-tY,   X-Y); 
Q   :-   QUOT;   R   : -   REtl 
END 

PASCAL   PROGRAM: 

VAR   ALPHA,   BETA.   QUOT.   REM,   Q,   R,   X,   Y   s   INTEGER; 

PROCEDURE  QUOTREM(VAR R,   Q   :   INTEGER;   X,   Y   ;   INTEGER); 
BEGIN  R   :-   X;   0   :-   8; 

UHILE   Y   <  R  DO 
BEGIN R  :- R - Y;  Q  ;-  1  + Q END 

END; 

FUNCTION FACTtN:INTEGER) : INTEGER; 
BEGIN IF N - 8 THEN FACT :- 1 ELSE FACT ;- N « FACT(N-l) END; 

^ _* 
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BEGIN  BETA   :-   3;   X   :-  G;   Y   s-  4j 
ALPHA   :-   FACT(BETA)j 
QUOTRErKQUOT.   REH.   X+Y,   X-Y)j 

Q   :-  QUOTj   R   : -  REfl 
END. 

EXAMPLE 3:  A PROGRAM IN ALGOL AND PASCAL 

The differences in declaring variables are unimportant for our 
purposes. The type of the function Is indicated after the right 
parenthesis in Pascal rather than before the word "PROCEDURE" in 
Algol. The openinq "BEGIN" in Algol appears just before the main 
program in Pascal. In the formal parameter part of procedure and 
function definitions, Pascal includes the specification of the formal 
parameters inside the parentheses! in Algol this specification It 
made after the list of parameters to be called by value. 

The  remaining 
discussed  in 
parameter  par 
corresponding 
general expres 
procedure  aff 
of "VAR" befor 
Algol  S8 sens 
original defin 
be  expression 
parameter repr 
value  of  the 
upon activatio 
from  within 
correspond i ng 
Uirth [1971, 1 

difference may be skipped until procedures are 
detail later. The word "VAR" in the Pascal formal 

t means R and 0 are variable parameters. The 
actual parameters must be variables (and not more 

sions)? assignment to R or Q in the body of the 
ects the corresponding actual parameters. The abeence 
e X and Y means X and Y are value parameters in the 
e (representing a change in the revised Pascal from the 
it ion). The corresponding actual parameters must 
s (of which a variable is a simple case). A value 
esents a variable local to the procedure to which the 

corresponding actual parameter is initially assigned 
n of the procedure. Assignments to value parameters 
the procedure are permitted, but do not affect the 
actual parameters. (For further details of Pascal see 
972]). 

At tie moment VCG will accept a subset of legal Pascal programs built 
up from: assignment, while, conditional, and go to statements; 
recursive procedure and function definitions and calls; 
one-dimensional  arrays  are allowed on either  side of assignment 
statements. 

2.2  ASSERTIONS 

Assertions are conditions on the state of the computation of a 
program. Thus, if assertion P is placed at some point in program A, 
the intention if that when A is run, every time P is encountered P 
must be true of the current computation state of A. 

MM 
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Essentially,  our assertion language allows assertions «•«•"J; " J"11 

.e  - or.ed formula of a standard first-order theory and '-? add.t on 

non-standard relations may be introduced by ^lll ««•JJl^ " ?""£ 
We have adopted a slightly more usable and readable  formal  language 

for the assertions of VCG. 

(i)   A term in the assertion language is a Pascal expression. 

(ii) Atomic assertions are either predicates (i.e. Identifiers) uith 

terms as arguments or terms. 

(iii) Assertions are uell-formed logical formulas constructed from 
atomic assertions using logical connective» and quant.f.ere 

according to the usual uell-Knoun rules. 

Here are some examples: 

(1) X = Y+Z 

(2) -(Y<R) A (X - R+Y*Q) 

(3) Z*P0UER(U.n - POUER(X.Y) 

, Pascal  (and  in fact 

(4)  VKUISK) A (K«N-ll 3 ALK] S.  ALK+1]/« 
PERnUTATION(A,A0). 

The first three assertions are expressions ir 
Boolean expressions in Algol) and use a precedence among operators to 
!impM fy no a on (belo.) Assertion (4) is not a Boolean expression 
tnMgol (because it contains a quant i f i er) nor an expreee .on . n 

Pascal (because of the quantifier and implication). 

The assertion language contains different connective symbols for both 

nPLI?AT JN  and 'AND  to  Improve  readability  •*  ^iJ^J^ 
conditions.   The  precedence order  of connectives and ar,thmet.caI 

ope rators, predicates, and quantifiers is: 

1. «(and); 2. - (implies), o   (implies): 3. -. '. <. >. S. ix   4. V...+. 
-.  5. A (and). *. /. DIV. MOD; G. -,   V, 3. 

I 

This agrees with the precedence in Pascal expression«. 

NOTATION:  Assertions and Boolean expressions will u.ually be denoted 

by P.Q.R.S. 

2.3  ASSERTED PROGRAHS 

Assertions are added to programs as addit.onal  statements  beginning 

with the special symbol ASSERT, namely 

• ' 

MfMUgM^HM^ 
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«assert &tatement> ::- ASSERT <a88ertion> 

Thus an asserted program •> a legal Pascal prograir if we imaginw that 
the  syntax  of  the Pascal statement is extendeo by adding the extra 
clause be' ow to the syntax diagram of "etatemerit" 
Uirth CIS", 23): 

(see appendix  to 
:| 

(  ASSERT |  ASSERTION 

The assertions at the entry an' exit of a procedure definition, 
function definition, or main program have the word "ASSERT" replaced 
by "ENTRY" and "EXIT" respectively.  Both entry and exit  statements 
appear at 'he beginning of the unit. 
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equired for the exit of a 
assume a sing Ie  ex i t. 

re else.  Jf an assertion 
me  the entry assertion 
A  source program  with 
is called an ASSERTED 
given in Section 5. 

NOTATPN:  Asserted programs will be denoted by A,B,C,D. 

2.4  LOGIC OF ASSERTED PRGGRAnS 

Ue review briefly here the elements of Hoare's inference system for 
proving properties of programs. 

STATEMENTS of the logic are of three kinds. 

(1)  assertions, 

(ii)  statements of the form PIA1Q where P,Q are assertions and A 
is a program or asserted program. 

PIAIQ means "if P is true of the input' state and A halts (or halte 
normally in the case that A contains a GO TO to a label not in A) 
then Q is true of the output state". 

- 
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I 
(iii) procedure declarations (definitions) of the form p PRÜC K whore 

p is a procedure name and K is a program or assarted program 
( the procedure body). 

There ie an ir finite set of variables p,q,r,... that range over 
procedures. Thus undeclared procedure names occurring in statements 
are free variables ranging over procedures. 

A RULE OF INFERENCE io a transformation rule from a set of statements 
(premises,  say H ,, .,H ) to a statement  (conclusion,  say K)  that 

1     n 
is always of kind (ii).  Such rules are denoted by 

H ,H 

Rl 

I 

The concept of PROOF in Hoare's system is defined in the usual way as 
a sequence of statements that are either axioms or obtained from 
previous members of the sequence by a rule. A sequence is a proof of 
i t s end sta temen t. 

Ue use H M- K to denote that K can be proved by assuming H. H j- K 
denotes the same thing for first order logic. 

Some rules have the existence of a subproof as a premiss; they are of 
ehe form 

H  H , I ||- J 
1      n 

Such rules permit deductions of 
caI Is. 

assertions  on  recursive  procedure 
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Assumptions can b« discharged only if the rule i& of the form R2, In 
this case the assumption formula designated by 1 can be discharged 
from the set of assumptions associated with the conclusion designated 
by K, while other assumpti'nf are inherited. 

Intuitively I  I 
reads "for any r" 

j meanf i implies J, and a free variable, say r, 

The rules of inference discussed in tha following sections all have, 
with one exception, at most two premisses. Proofs may be represented 
in the usual way by binary trees. 

SUBSTITUTION of an expression t for a variable x in an  expression  E 

is denoted by   x 
El 

t. 

Ue not« that the termination of a program A is not expressable in 
Hoare's system by statements of the form PIAIQ. On the other hand, 
non-termination can be expressed by statevents such as TRUE(Al FALSE. 
There may be some indirect ways of constructing formulas that mean "A 
terminates for all inputr satisfying P", and if so. it would be nice 
to know to-- what class of programs this cf.n be done. 

I 

REMARKb- 

Ue presuppose a standard f i r <■, c-order theory, which shall be denoted 
by T. representing the properties of the primitive functions and 
predicates used in Pascal. However, our construction is uniform in 
that choosing different first-order theories characterizing possibly 
different functions and p-edicates does not affect the framework, A 
standard model of the theory T is fixed and denoted by M. 

In our formal system 
to distinguish: 
1) Procedure names 
procedure whose body 
I eve I  be Iongs  to 
regard the assignmen 
2) Procedure  names 
dec Iara t i ons as the 
constitute nonlogica 
Ue assume J does not 
3) Procedure names u 
use procedure names 
variables",  which 
metathtorems we will 

there are three kinds of procedure names we have 

for primitive procedures.  For instance a library 
is inherently written in  a  language  of  lower 

this  category.   (It  is even possible for us to 
t statement as such a procedure.) 

for declared procedures. Ue regard procedure 
"defining axioms" of such procedure names, which 
I axioms in our system and shall be denoted by J. 
assign more than one procedure to a name, 

sed in derivations. In the formal system we will 
which should intuitively be regarded as "free 
represent arbitrary procedures. In proving 
use a name for each declared procedure. 

Besides the above, each procedure name is assumed to have 'arity", so 
that it can represent or vary over declared procedures with, say, m 
variable parameters and n value parameters. Such a procedure will be 
called (m,n)-ary and the m (variable) parameters and  the  n  (value) 

11 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

paramete'-s  will  be called 
respectively. 

the  left and  the rigM parameters, 

If a primitive procedure name, say q, occurs in a program about which 
we are to prove a certain theorem, we have to either give a set of 
(nonlogical) axioms of the form Piq(x;y)IR or a defining axiom for q. 
In most cases, we shall assume that the procedure can be written in 
Pascal and that there is a defining axiom for it. 

12 
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THE  BASIS   INFERENCE  SYSTEfl FOR VCG. 

I In  this  section  ue study the 
rules of inference used by VCG. 
rules  of inference in V should 
one rule is applicable to gener 
ui I I  certainly  be  the case 
have common substitution instan 
The  rules  of  V, which appear 
combinations of Hoare's origina 
[1971a,  p. 1161.  Having chose 
sound and deduction complete 
simple  rules  (the  CORE)  is 
derived from C.  Ue then show t 
shall  begin  by  studying the 
sets of rules contains go to's 
equivalent to the following set 

properties of the set V of axioms and 
One of our main concerns is that the 

be unambiguous in the sense that only 
ate subgoals from any given goal. This 
if no two rules have conclusions which 
cas, a property which is  true  of  V. 
as Table 2 in section 3.3, are simple 

I set of rules H given in Hoare 
n V, we must establish that it is both 
Ue shall show first that a  set C  of 
sound and that any rule in H can be 

hat V and C are inter-derivable. Ue 
relative derivability when none of the 
or array variables.  The rules  H  are 
of rules. 

3.1      THE  CORE  RULES 

The set of axioms and rules of the core is given in Table 1. Rules 
D3 (iteration), 07 (adaptation) of H have been omitted; 04 
(alternation) has been replaced by C8 (conditional). Ue have added 
the frame axiom (C2) for procedure calls and the and-or rule (C6) ; 
Hoare's substitution rule (0G) corresponds to our left and right 
subs t i tution   rules. 

NOTATION: x, y. z - lists of variables; p.q.r - procedure names;8, t 
- lists of expressions; K - procedure body; p(x;y< - denotes CALL 
p(x;ij) where H and y are the left and right parameters of p. VAR(P) 
denotes the frre variables of P; p(x;y) PROC < denotes a declaration 
of    the   form   "PROJEOURE   p(x;y);   BEGIN  K   END". 

Axionn 

Cl.      v a      jnment   axioms; P| (x-tlP 
t 

i 

C2.  frame axioms: 

C3.  procedure declarations: 

C4.  logical theorems: 

RULES 

P(q(x;t)lP  provided -(x t VAR(P)) 

plx;y) PROC K. 

P  for all P 8. t. |- P. 

13 
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C5.  consequence: 
r'3Q,   QIAIR 

PIAIR 

PIAIQ-,   UDR 

PIAJR 

CG.      and/or: 

C7.      compos't i on: 

C8.      condi t i onal: 

C9.      subst i tut ion: 

P(A)Q.RiAlS PJAJQ,   RIA1S 

PARIAIQAS PvRlA)QvS 

P1A1Q.   QIB1R 

PiA-.BIR 

PARIAIQ,   PA-RIB»Q 

P11F R  THEN A ELSE BJQ 

(L)     P(x{g) (q(x!y)»Q(x;y) 

P(zsw)lq(zsy)lQ(z;y) 

(R)     P{K5y) lq(x:y))Q(><jy) 

PU;s) lq(x;s)iQ(x;9) 

SUBJECT TO THE RESTRICTIONS: (i) s does not contain members of x; (ii) 
members of z must be distinct and y and z are disjoint. 

C18. procedure call:      P<i«iyl PROG K(p). P lr (x; y)) Q | I-P IK (rH Q 

Pip(xty)lQ 

where  p does not occur in the proof of the right hand premiss, 
and r does not occur in any other assumption in that proof. 

TABLE 1 ::THE CORE RULES. 

In order to demoistrate that C is as "powerful" as H we show that «nu 
proof in H of PIMQ can be transformed into a proof in C of PIA IQ 
where A' is a program equivalent to A. An application of a rule R 
(that 19 not a rule in C) in the given proof is to be replaced by a 
derivation in C of the conclusion of R assuming the premisses of R. 
The transformed proof wiII use only rules of C and will prove 
essentially the same formal statement. It is clear that applications 
of Hoare's substitution rule (OB) can be replaced by successive 
applications of the left and right ruI es (CS). He therefore need 
only consider the following three rules. 

14 
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(DA)  A Iternat ion: 

(D7)  Adaptation; 

(D3I  Iterat ion! 

P1IAIQ,   P71BJQ 

if R then PI else P2Iif R then A else B)Q 

P(a:e) {p(a; e) I R(a;e) 

P(a;c)AVa(R(a;e)^S(a;e)),p(a;e)lS(a;e) 

PIAJS. S|- if Q then P els; R 

Sluhile Q do A)R 

(a)  04 is derivable in C. Let P in the conditional rule (C8) bes 
i f R then PI eIse P2. 

1. P1IA1Q, P21B1Q assumptions (premisses of D4) 

2. PARDPI. PA-R3P2 

3. PARIAIQ, PA-RIBIQ consequence (C5) 1,2 

4. if R then PI else P2Iif R then A else BJQ 
condi t ional (C8) 3. 

(b)  07 i s der i vabIe in C. 

1.  P(a!e)(p(a:e)lR(a;e) assumption (premiss 07) 

2. Va(R(aie)3S(a;e)J ip(aie))Va(R(aie)3S(a;e)) 
frame ax iom (C2). 

3. P(aie)AVa(R(a!e)DS(a;e))lp(ö:e))R(a;e)A 
Va(R(a!e)3S(a:e)) 

and rui» (C6) 1,2. 

4. P(a;e)AVa(R(aie)DS(aie)) ip(a5e))S{aje)   C5.3. 

Corresponding  to  any uhiI« statement "while Q do A" we can define a 
recursive procedure: 

procedure whiledef (x;v)j 

if Q then begin A; call whi Iedef(*;v);end 
eIse end 

where  H  is the list of variables in A that are subject to change in 
the body A, and v is the list of all other variables in Q or A. 

Ue ronsider a modified form of the iteration rule: 

15 
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I 
li (D3')   PIAIS. S D if Q then P else R 

b leal I whi ledef ;«!v)lR 

(c).  03' is derivable in C. 

1. PIAIS 

2. SAQDD 

3. SA-CbR 

4. SIctM   r (xi v)lR 

5. P IA;ca; I    i  (x;v)IR 

G. SAQ IA;ca I I   r(«i vi i fi 

7. SIi f   Q   then  begin  A;   col 
eIse  end!R 

8. S IcaM uhi ledef (x; v)IR 

Assumption (premiss D3') 

Assumption (premiss 03') 

Assumption (premiss 03') 

Assumpt ion 

C7, 1,4 

C5. 2,5 

r ix;v);end 
C8, 6,3 

C18, 4,7 

If ue are given a proof in H of PIA1Q we may replace applications of 
D'> and 07 by the proofs (a) and (b) ; an application of 03 is replaced 
t-. y a proof (c) of 03', Ue will then have a proof in C of PIA'IQ 
uhere A' is the result of replacing each while statement in A by a 
call to the corresponding whilede- procedure. This is easily proved 
ty induction on the length of the froof. Clearly A' is equivalent to 
A. This completes the proof that C is as powerful as H. 

In the other direction, all of the core rules except the frame axiom 
and the and-or rule appear in H with m'-.or diffcrenos and are easily 
shown to be derivable in H. Thus, to show that proofs in C can be 
carried out in H, we need only be ;oncerned with eliminating C2 and 
CG. 

Recall that a Pascal program must contain definitions of all called 
procedures except library procedures and there are a finite number of 
those. T^ls places a finite bound on the number of different 
procrJtjres that can ever be called in any computation of a program. 

d.  L ■: mm a 

|-   TRUE IAITRUE   for   any  program  A. 

PROOr 

IG 
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Ule can construct a proof of TPUEIAITRUE by using the rules (Dl-Dä) to 
generate  subgoals starting from the goal TRUE (Al TRUE.  Assume a list 
of variables r , r , r ... distinct from the list of procedure  names 

1   2   3 
that  may be called in a computation of A.  Subgoals are generated by 
applying the rules recuioively as follows (03 and DU are  equivalent 
to D3* and D^*): 

(D2) Subgoa I s TPUEIAITRUE,       TrtUEIBlTRUE 

TRUEiAiB)TRUE 

(Dl) Subgoal 

(03)« 

Goa 1 

(Dl) Subgoa 1 s 

(04)«       Goa 

TRUE IBITRUE 

TRUEAPIBITRUE.   (TRUEA-P)3TRUE 

TRUEIuhi le P  do B1TRUE 

TRUE IB)TRUE TRUE(ClTRUE 

TRUEAP (B)TRUE.TRUEA-P(Cl TRUE 

TRUE lif  P   then  B  else  C)TRUE 

(D5) Subgoa! 

Goa I 

where   K  i s the body 

TRUE IKCf 11 TRUE 
 p -- 
TRUE(p(x;v)!TRUE 

of p and a  unique variable to be 

5ubc 

the 
rule 
f i n i 
is f 
s u b g 
bran 
be 
subg 
TRUE 

appi 
I s 
TRUE 

t i tute 
goa I . 
s 02 - 
tely 
i n i t e 
oa I s 
Ch is 
ca I led 
oa I s 
lr (x; 

P 
i cat i o 
a  su 
IA1TRU 

r  i s 
P 

ri for the procedure name p In every subsequent  subgoal  of 
The procedui e terminates since the subgoa.y in each oV the 
D4 are shorter than the goals, and D5 can be applied  only 

nu'ny times since the list of procedure names that can occur 
;nd one of these  names  is  eliminated  from  all  further 
u*  a goal to uhich 05 applies.  The length of any subgoal 
bounded by 2nI uhere n is the number of procedures that can 
by A and i is the number of statements in A.  The terminal 
are   of   two   kinds:    TRUE (x«-tl TRUE    (axioms)    or 

vllTRUE.    The  second kind  is  the  assuinption  for  an 

n of 05 to derive a goal below it (i.e. a goal of which it 
bgcal). Thus the final subgoal tree is a proof of 
E. 

(e)     Plq(x;v)IP  is provable if -(x(VAR(P)). 

Thif follows from , emma  d  by applying the adaptation rule (07): 
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1. TRUE(q(xiv)ITRUE 

2. TRUE /viVx) (TRUEsP) iq(><;v))P 

lemma d. 

07,1. 

3.  P(q(i 

Thi s 
der i 
argu 
ANP- 
ded 
e I i m 
i t 
prem 
con t 
furt 
mov i 
appl 
to 
expr 
with 

est 
v a t i o 
3 as 
OH, w 
c t i on 
i n a t e 
i s r 
i s s e s 
a i n i n 
her t 
ng u 
i ed i 
or i g i 
•• S i 0 
a or 

'IIP 

a b I i s h e s t 
n in Hoare 

f o I i cms. 
i thout Ios 

Ue sh 
d a i togeth 
eplaced b 
of the or 

g on Iy e 
hat in the 
p prouedur 
n any neu 
rally. S 
n« this es 
OCM in whi 

01,2 since x do ,s not 
occur in TRLE or in 
P Iby assumption). 

ha* C2 can always be re 
's system. To e I iminat 
Suppose a given proof 

s of genera Iity, I et 
oui that this occurre 
er or ''moved up" the pr 
y an AN0-0R applicat 
igi naI app I i cat ion. Th 
xpressions  that are 
second case where the 

e i s repeated the rule 
proof to the same fair 
ince the given proof 
tablishes that our novi 
ch alI appIi cat i one of 

placed in a CORE proof by a 
e CG trom a CORE proof ue 
contains an application of 

us say it is the f i naI 
nee of AN0-0R can on either 
oof tree in the sense that 
ion to the premisses of the 
is gives us a neu oroof 
in the old proof. Ue show 
rule is "mfved up", If the 
uill never again need to be 
of premisses it was applied 
contains a finite number of 
ng up procedure terminates 
4N0-0R have disappeared. 

(f)  LEMMA 

There li a constructive procedure for eliminating applications of the 
AND-OR rule from CORE proofs. 

PROOF. 

Suppose a given CORE proof contains one deduction by AND-OR  of  the 
form 

H1,H2  H3,H4   (rule R) 

D. 1      J    (AND-OR) 

K 

where R is not AND-OR. 

Ue give a procedure whereby either 

(a) 0 can be replaced by a deduction of K from axioms by the rule 
of consequence, 

or 

(b) 0  can be  replaced  by 
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Hr'.HS'  HZ',HA'  (AND-OR) 
01.          

II     Jl     (rule R) 

K 

In case (b) , for »s^li i, the subproof Hi* in 01 contains only 
statements occurring in the subproof Hi in 0. Repeated application 
of the procedure cannot result in (AND-OR) being applied to the pair 
I,J  of  premisses  agp.n. 

Ule note that sirce the same orogram part must appear in both 
premisses of an app ication of AND-OR, the immediately preceding 
rules deducing those premisses must either be the same rule R or on« 
of them must be the rule of consequence. 

Let us consider the AND-case o.e this rule first. Ue give the 
replacement procedure for different cases of rule Ri 

(i)    AX ions. ■'■ 

An  application of  AND-OR  to  axioms 

P|    Ix^-elP 
e 

R|   (K«-e)R 
e 

X     X 

P| AR| {X^BIPAR 

6 e 

is eliminated entirtlg and replaced by the axiom 

x 
{PAR)| {x-e)PAR 

e 

Applications  of   ANO-rule   to   frame  axioms are eliminated  similarly, 

di)     CONSEQUENCE. 

An   occurrence  of  AND-OR  of   the   form 

PIAIOI.QIDQ 

PIA1Q     ,     RIAIS 

PARIAIQAS 

Is   rep Iaced  by 
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PIA1Q1.   RIAIS 

PARiA^QlAS     .     QIASDQAS 

PARIAIQAS 

The   other   cases   (omitted)   are   similar. 

(ill!      UKiLE 

"AUIAIP.   (PA-U)DQ RAUJAIR,   (RA-.U)DS 

P (while U do A)Q Rlwhile U do A1S 

PARIuhile U  do AIQAS 

is   rep I acecl  by 

PAUIAIP.RALKAIR 

(PAR)AU(AI (PAR)      .      (PAR)A-.U3{QAS). 

PARIwhi le U  do AIQAS 

(iv)      CONDITIONAL 

PAUIAIQ.   PA-UIBIQ RAU(A)S,   RA-UIB)S 

Plif  U  then A  else B Q,   Ruf U  then A else BIS 

PARM f  U  then A else B)QAS 

i s   replaced  by 

PAUIAIQ.   RAUIAIS PA-UIB1Q,   RA-U(BIS 

(PARIAUIAIQAS .           (PAR)A-UIBIQAS 

PAR li f  U then  A  eIse BIQAS 

Clauses   f or  Composition and Substitut ion are    similar     to     (iii)     and 

( i v)   and   are   omi tted. 

(v)     PROCEDURE  CALL 

Procedure     p    has  body    K(p). 

PlrlQ   ||-  PIK(r)lQ RlrJS   ||- RlK(r)IS 

PIplQ . RlP'S 
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PAR IplQAS 

is   rep I aced  by 

P IrlQI l-PIK(r)lQ 

Plr21Q 
[subproof3 
PIK(r2)IQ 

RlrlSI |-R{K(r))8 

R(r21S 
[subproof] 
R{K(r2)lS 

PAR ITZIQAS PARIK(P2)IQAS 

This last 
rep I aceme 
asser t i on 
call rule 
assumpt io 
have to b 
existence 
subproof 
CALL rul 
procedure 
then rep 
However, 
is proved 
neu AND- 
subproof s 
are exact 
r. I f 
PAR (K(r2) 
or hypot 
true. 

tran 
nt. t 
5  on 

i s n 
n i s 
e app 

of 
of PI 
r       i| 
P. T 

eat 
no as 
. Thu 
OR  a 

at 
ly th 
the P 
IQAS. 

heses 

PAR IplQAS 

s format i o 
he AND-OR 

K(p) i 
on app I i 

PARIPZ! 

ended; t h 
these s 

K(r)lQ fr 
lous us 
he assump 
the subp 
sumpt i on 
s, the co 
ppI i cat i o 

" assu ipt 
ose of th 
epIacemen 
the AND- 
dj' th p 

n rule requires a word of explanati 
rule has been  "pushed up"  and 

nstead of assertions on call p.  Th 
ed  to  PAR IK(r2)lQAS  so  that  th 
QAS.   Subproofs  for P{K(r2)IQ an 
e given procedure rule applications 
ubproofs.   For example,  we know 
om the assumption PlrlQ; an applica 
to deduce Plr21Q, where r2 is a n 

tion PlrlQ is discharged at  this 
roof  again  with r2 replacing r 
is necessary in this repetition  si 
mplete subproof trees for the premi 
n  contain  copies  of  the  given 
ion nodes".   The statements in ea 
e old tree except possibly for r2 i 
t procedure is applied to this new 
OR rule need not be applied to the 
2 for p) again since PARlr21QAS is 

on. In the 
applied to 
e procedure 
e re I evant 
d RI<(r2)lS 
ensure the 
there is a 

t i on of the 
eu name for 
point. U e 
everywhere, 
nee Pfr21Q 
sses of the 
aux i I I i ary 

ch new tree 
n place of 
subproof of 
same pair 

now assumed 

This completes the description of the replacement procedure for AND; 
the OR case contains almost identical clauses except that the 
replacements in cases (iii) and (iv) contain intermediate 
applications of consequence: (PvR)AUS(PAU)V(RAU) . 

Ue note that Lemma I shows also that the AND-OR rule can also be 
omitted from the CORE. In the presence of the other core rules, 
ADAPTATION may be replaced by the FRAME axioms. The previous 
discussion may be summarized by the following theorem: 

cj. THEGREn 

If    | |-   P iAI 
equivalent 
II-   PIAIQ. 

Q   then  PIA'IQ   is     provable     from     the    CORE     where     A'      is 
to  A.     Conversely   if   PIA1Q   is  provable   from   the  CORE   then 
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3.2  A nODEL FOR THE CORE 

Ue assume given a standard model H for the theory T of the trus 
Boolean expressions of Pascal and a set J of procedure definitions. 
Essentially H is the standard model for arithmetic possibly augmented 
by standard models for data types other than the integers. The 
details of M itself do not concern us. Ue show how to extend H to a 

model n* for the CORE. 

To  simp,  y the i.otation we assume a fixed ordering of the variables 
x ,x , x ,,..  Thlf allows us to represent computation  state  vectors 

12  3 
over  the domain 0 of fl by infinite sequences of elements of D, a- 
<a .a .a ...>. D* shall  denote the set of all  such sequences. 

12  3 
Intuitively, state a assigns the value or  interpretation a  to x  ; 

this I 5 denoted py (x ) 
i I 

i   i 

The   interpretation 

or value t of Boolean expressions t is defined in the usual way from 

standard interpretation of the orimitives +.*.etc. The value  of t 

applied to state a will be denoted by t (a).  A Boolean expression 

of n variables, say P(x  x ). is interpreted  in H as a  subset 
n In 

p of 0  .   Thus    P(x   x  )       is    true     for     the    state    vector   a   if 

n 1 n 
<a     .... a  >tP  . 

1 n       n 
This   allows  us   to  extend   the   interpretation of    P(x   ,...x   )   to  D«: 

1 n 

P   (> 
1 

x  )   -   la|<a   a  >tp  I. 
n 1 1 n     fl 

rioreover.    the   interpretation  of   substituticn   instances  by  definition 

satisfies: 

ac(P(x    x)|XI)     <->   <a    a       .e(a).a       .. . >tP (x   . . . x   )    . 
1 n     e     I 1 1-11 i+1 1 n   I 

The   interpretation   jf   an     (m,n)-ary   procedure   is  a  partial   function 

f   of   the   type       NX    D  -   (0* - D*)     having  the   following  properties: 

1)      Frame   property: 

(f(i (1) i (m):c ,....c ) (a)) - a , 
1     n    j   j 

j is different from i (k) for any k such 
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that 1 < k < m. 

2)  Substitution property: 

(f (i (1) i (m) jc  c ) (a)) 
1     n    i (k) 

- (f (j (1) j (m)i c  c ) (a)) 
1     n    j(k). 

1 < k < m. 

The   definition   of   f   proceeds   as   follows. 

Ue   define   by   cases   the     computation     sequence     F(A,a)      of   program   A 
relative   to  M   given   input   a   as   follows. 

If   a    is   an   infinite   state   vector,    then: 

( i )   F U »-e, a) = <a 
I 1 

a   ,e (a),a   ,...> 
i-1  I    i+1 

(11)  F(A;B,a) ■ F(A,a) «F(B.U(A,a)) 

( i i i ) |F(A,a)  if <a ....a >cP 
F(if P(x ....x ) then A else B,a) - -| 1     n   I 

1    n |F(B,a) otherwise. 

(iv)  F(q(2!t).a) - a«F(K(z;t) ,a)  where J contains a defining axiom 
for q of the form "q(><;v) PROC 
K(x;v)" and K(z;t) is obtained 
by sutstituting the actual 
parameters z,t for the formal 
parameters x,v. 

Here aab is the sequence obtained by appending b onto the end of a. 

lend state of F(A,a) if F(A,a) is finite 
U(A,a) =     -I 

|undefined otherwise. 

The interpretation of program A is now defined: 

A  - Ua.b>|U(A.a) - b) 
I 

and M is extended to H* by adding the function A for each Pascal CORE 
program A. I 

Ue   can  now  sau  when  a  statement   of   the       form      PIAIQ   is   true   in     M* 
(denoted  by  n¥   |-  P IA)Q): 
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n*   I-  P IAIQ  <->  A   (P   )   c Q   . 
Ill 

Finally,   a   statement  S(r    r   )   with  assumptions  A   (r    r   ),..., 
1 m 11m 

A   (r    P   )   where  r    r     are   free  procedure  variables,    is     true 
n      1 m 1 m 

in  M*   if   and  only   if   the   following  condition  holds: 

If     A   (p    p   )....   A   (p    p  )   are   true   for   any  declared 
11 ■ n    1 m 

procedure names p  p  from J, eajh p  having the 
1     ■ I 

same arity as r  (Is i ^ m), then S(p  ,...,p ) is true. 
| 1      m 

Hen» are some simple properties of this models 

(|)  If the range of  A  is empty then for any P and Q, M« |- PIAIQ 
1 

(ii) if n* |= PIK{q)IQ then fl* |-PiqlQ where K is the body of 
procedure q. 

(iii) If p PROC K(r) and q PROC K(s) and r c s then p cq . 

(iv)  A Boolean assertion is true in M* if and only if  its universal 
closure is true in M. 

To »how that n* is a model for the CORE we will show that the axioms 
are true in n* and that each of the rules of inference preserves' 
truth (i.e. if the premisses of the rules are true in M* then so also 
are the conclusions). For simplicity we consider examples o' the 
axioms and rules in which the statements have one free variable 
(three variables for the substitution rule) and in which the 
premisses do not have governing assumptions except in the case of the 
recursion rule: the argument for the general case is identical. 

Consider   first  a  typical  assignment  axiom   P(e)ix «- elP(x ). 

Ue  note  that   (» *■•)     - Ua.b>sb-<e (a),a .a ,...>),    and that 
li 12  3 

acP(e) <=> <e(a),a ....>cP(« I . Thus (x -e) (P(e) ) c P<« ) 
I 2        II 1111 

so that the assignment axiom is true in H*. 

The frame axioms are clearly true in M*:if P does not contain x , say, 

and   i|ti  differ only at   the first position, then acP <->btP .  If 

q(x .v)  Change« only the value of x  then q (P )cP . 
^ 1      1  1   I 
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f 

Logical   theorems are  true  in R« since  they  are  true  in  M. 
Procedure declaration axioms are assumed to be in J. 

Ue consider next the rules of inference. The fact that Consequence, 
Composition and Conditional all preserve truth in n* can be shown by 
elementary set theoretic arguments on the 1 nterpretat i one of Boo'"n 

expressions and programs. Simply note that if P:>Q ll tru« i n n* then 
P cQ . that (PAR) - P n R , and that -R -C«-R . 
II 111 II 

The arguments are as follows! 

CONSEQUENCE:  I f P cQ and A (Q ) c R  thtn A (P )cR . 
II     II    I      111 

COMPOSITION:  If A (P ) cQ and B (Q ) cR  then B (A (P )) c R . 
II I     II   1      I  '  '   0  '   A 

CONDITIONAL:  I f A (P n R ) cQ and B (P fHR )cQ then (if R then A 
III 1     I  I  I  1 

else B) (P )cQ 
I  I   I 

I 

SUBSTITUTION 

Consider the  case  when  the  procedure 9<« •* •« ,  ha9  tu0  left 

pa-ameters   and  one  right  parameter   since this is sufficiently 
general.  Let q have body <.   Assume that x and  >«  are  the  only 

variables whose values can be changed by K , and that x is the only 
I • 

value that its computation depends on.  Ue require a simple  lemma 
which may be proved bL induction on the composition of K. 

h.  LEnriA. 

For any a if K(x .x |M ) (al-b and K(M x ;K ) (a) - c then b - c  and 
12     3   1 i   j     3  1 I' 

b     ■   c     provided     i*j^3. 
2 j 

Let   f.g  be  partial   functions  mapping D*   into D  such   that     K(x   ,x   jx   ) 

(a)   =   <f(a  ).   g(a  ).a  ...>  and hence  also K(x  ,x  ;x  )   (a)   -  <a   .a   ,a   , 
2 33 4531 l^o 

f(a   )   gia   ),...>.     If   the  premisses  of   the  substitution  rule   are   true, 

3 3  ' 

acP(x  x  x  )     implies  <f(a  ).g(a ),   a  ,...>cQ(x * * ) 
12 2 3 3        3 12  3   1 
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This   is   equivalent   to: 

<a   ,a   ,a  >cP     implies  <f(a  ),g(a  ),a >cQ  . 
i   :   3     n 3        3     3     n 

Suppose     P(P(x   .x   ;x   )     so   that   <b   ,b   ,b  >cP   . 
4     5     3   1 4     5    3      fl 

Then   <f(b   ).   g(b   ).b  xQ     and   this   implies   that     K(x   .x   ;x   ) 
3 3       3       M 4    5     3   1 

(b)(Q(x   .M  IM  1     .     So   the  conclusion  of   the L-rule   is   true.     On   the 
4*   5     3     I 

other   hand, if     bcP'x   ,x   ;s(x   ) ) ••.then  <b   .b   .8   (b   )>cP     and   therefore 
12 3 1     2     I     3 n 

< f ( 5   ( b   )) . cj ( s   (b   » ) . b   x Q   . 
13 13 3      n 

By   the    lemma   at:ove, 

K(M     x   |«(M   ))      (b)   -  <f(s   (b  ),g(8   (b  )),b  >     so   that   the 
l'   2 3     I 13 13 3 

conclusion  of   the  R-rule   is  also   true. 

For   each   of   thi   previous  rules  we  have   shown   that   truth   in  N*   is 

preserved. 

The case of the recursive procedure call rule is more complicated and 
depends   on   the   elementary  properties  of  M«  stated  above. 

PROCEDURE  CALL 

Ule prove that any proof containing applications of the procedure call 
rule proves a statement true in H« if all premisses of the proof are 
true      in     H«.       Our     proof     is    by     induction    on     the     number     n     of 
applications   of   the   call   rule. 

Clearly   the  case  n-0   is  alrerdy     proved. Therefore,     assume     it     is 
provpd     for     proofs  containing  n  call   rule applications,   and  consider 
the last application in a tree with n+1. Suppose this has 
P(x;v) Ip(x;v)1Q(x;v)   as  conclusion. 

Ule   may   assume 

I .  if  n* I- P(x; v) lr (x;v))Q(x',v) 
then fl* I- P(xj v) (K(r)}Q(x;y), for any procedure name r, 

since the subproof of the  premiss  of  this  final  application  can 
itself contain at most n occurrences of the call rule. 

Let us define a sequence of procedures from p: 

1 I.  p8(x;v) PROC K(LOOP), 
p m+1 (xiv) PROC K(pm) 

2G 
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where  LOOP   is  a  procedure   that   nevtr  halts. 

CLAIM:      For   all   m,   n»|-P (K; vMpm (xj v",) Q(x; v). 

PROOF:     By   induction  on ■.     Clearly   the  claim     it     true     for     BI-0     by 
property   (i)and   !   above. 

Suppose   n*|=PlpmlQ.     Then,   substituting  pm     for     r     in     d)      we     have 
n«|.F(K(pM)»Q.     Therefore n*|-Plpiii+llQ by property   (i i).     This  proves IP 
the   claim. 

Next     we  note   that  p   is  the   least  upper  bound of   the  sequence   ((pni)J: 
1 ' 

(1) (p8) c (pi) c (p2) c... 
I      I      1 

(2) For all i (pi) c p . 
1   I 

These follow by induction using property (iii). 

(3) For any a, if p (a) is defined there is an  m  such 
I 

that p (a) - (pm) (a). 
I I 

This      is     so  because  U(p.a)   -  U(pm,a)   for  any  m  such   that   m>|F(p,a)|, 
the    Iength   of   F (p,a). 

From   the  claim  and   these   facts  ue  conclude  p   (P  )cQ   .   so   that   indeed 

n*|-P(*;v) lp(x;v)lQ(x;v). 

Thus   we   have  established   the   following  soundness  theorem: 

(i)      THEOREH     If  PIAIQ   is  provable   in   the CORE   then P(A)Q   is 
true   in  fl*. 

3.3  RULES FOR VCG 

The rules V used by VCG to generate subgoals and uItimateIy produce 
verification conditions are simple combinations of the CDRt rules. 
There are two additions: an extension to the assignment axiom for 
the case when assignment is made to an array element, and a rule for 
c,o to statements provided the corresponding labels are in the same 
nrocedure (or block). A rule for array assignments was^given in King 
[1963] and the addition of a go to rule to Hoare • eystetn is 
considered in CI int and Hoare [19721. The extended systems C and H 
remain relatively sound and still have the same deductive power (i.e. 
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Theorem (g) still holds). The rules for VCG are given in Table 2. 
It is easily checked that the set is unambiguous in that no two 
conclusions have a common substitution instance. 

I 
I 

VI.     SIMPLE  ASSIGNMENT 

PIAIQ(e) 

PIA^-elCKx) 

V2.      ARRAY  ASSIGNMENT 

PIAlRuf   1-j   then e  else BIN 

PIA;B[j]«-elR(Bm) 

V3.     CONSEQUENCE 

fU       PsQ ,        (ii)     PIAlQ.QsR       , 

PINulllQ PIAiQIR 

(iii)       PIAIQsR 

PIAiQ-lf»R 

VA.      ITERATION 

P(A)R,   RASIBIR,   RA-SSQ 

P IA;R;uhile  S  do  BIQ 

VS.     CONDITIONAL 

PIAiQ-ifiBIR,   PIAi-Q-ifjCIR 

PIA; i f  0   then B  eIse CIR 

VS.     GOTO 

PiAlASSERT(L) 

PIAlCOTO LIQ 

V7.      PROCEDURE  CALL 

U(x:v) lq(x;v))U(x;v) | |- 

where R   is an  assertion 

P(A)U(a;e)AVa(U(a}e)DR) 

P{A:q(a;e)iR 

28 



■     ■■■■l»"l •«• -' •'  ) 'Ulli ■l'J»:ir nmnnm" _i  in     iiw   ■ ■ in •!   a  m 

I V8   PROCEDURE DECLARATION 

Plclx; v)lR | |- PIA1R 

Piprocedure q(x;v);AlR 

NOTATION: 

P,Q,R,S are Boolean Assertions.  Null denotes the empty 
program.  Q(e) denotes the substitution of e for x in Q(x). 

th 
BCi] denotes the i  element in array B.  In each of the rules 
A can be Null.  Q-if denotes a "marked" Boolean assertion Q. 

TABLE 2 
ViRULES OF VCG 

The ru 
genera 
rule V 
it is 
rule i 
a m b i g u 
asser t 
tests 
asser t 
n o r n\ a I 
ver i f i 
i nvoIv 
P and 
3 and 

I es in 
te su 
1. the 
true a 
s not 
i ty) b 

ions a 
i n t 

i ons t 
r u i 

cat i on 
i n g R . 
in sue 
5, Sec 

Table 2 are stated in the form in which they are used to 
bgoals.   Thus, for example in the rase of the assignment 
axiom Q (e) Ix^elQ(x) is omitted from the premisses since 

nd therefore not generated as a subgoal. The composition 
used to generate subgoals (it would be a source of 
ut is included in the other rules. VCG does not require 
t conditional statements. It "marks" the conditional 
he subgoals of the conditional rule, and uses them as 
hat permit a slightly different rue of consequence. The 
e  of  consequence,  V3(ii)  would usually  lead  to  a 
condition of the form QDR' where R' is some formula 
Most likely the proof of R' would depend on the premiss 

h a case QDR' is unlikely to be provable. (See examples 
t ion 5). 

It  should be dear that any statement that can be proved in V can be 
proved in C.  flore precisely: 

(j)  REMARK 

If v||-PIAIQ where A is a program with intermediate assertions then 
CM-PIA'IQ where A' is an equivalent program without the intermediate 
assertions. 

The converse of remark (j) implies the deduction completeness of V. 
To prove the converse, first oerive from V the composition rule (C7) 
by an induction argument on the statement length of B, the statement 
fol lowing the ";". Rules Cl, C3, CA, C5, and C18 are straightforward 
to derive.  Lemma f shows that CB is directly  derivable  in  C.   It 
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remains to   derive  C2,   C8.   and C9. 

(C2)   Lemma   c.   holds   in  V   as   is  easily  checked. 
1. TRUE lei (x:v)l TRUE 
2. P   -   (TRUE   A  VxlTRUE  - P) I 
3. Plnul M TRUE  A VK(TRUE  -» P) 
4. P'c|{x:v)IP 

(C8)   1. PAQIBIR PA-QICIR 
2. P-.(Q-.PAQ) P-.(-Q-*PA-Q) 

3. P inul I IQ-PAQ       P lnuMl-Q-«PA-Q 
4. PIQ-iflPAQ Pl-Q-iflPA-Q 
5. PIQ-if:BlR PI-Q-if;ClR 
G. PIi f   Q   then  B  else  C1R 

(C9)    1. PUivl lq(x:v)IR(x;v) 
2. Plase)   - P(a;e)   A Va(R(aie)   -» R(a,e)) 
3. P(a;e)lq(a;e)IR(a;e) 

39 
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MxtVARCP)) 
V3i    (2) 
V7   (1,3) 

Gi ven 
Lemmas 
V3i    (2) 
V3iii    (3) 
C7   (4,1) 
V5   (5) 

Given 
Lemma 
V7   (1,2) 
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4.  DESCRIPTION OF VCG 

4. 1  COnMENTS ON THE RULES 

Array assignment 3ncl go to 

The ru e V2 for array assignment includes the usual conditional 
substitution operation. This rule is equivalent theoretically to the 
techniques jrofDOseci and implemented by King [19B9J in that equivalent 
verification conditions result. Our rule makes the conditional 
expressions explicit while at the same time trying to keep the case 
analysis under control. Though our rule enables us to verify 
programs invo ving array assignment, we canno' state which array 

assignment «tthod is preferable. 

The no to rule (V8). following Clint and Hoare [19721, is for simple 
go to statements. By "simple" we mean jumps which stay, for example, 
within the current block or procedure definition. The rule is 
included so that a useful, but restricted class of go to statements 
could be processed. 

Procedures 

H a n d 
pr ocecl 

i s nn 
the no 
into a 
m a ci ■:■ 13 
b r i e f , 
c o r r c s 
not * 
[137la 

h.. 

ur 

iy 
t i 

P 
et 

po 

1 . 

nee 
e S. 

a 
on 
ar a 
wee 
as 

nd i 
e 

i s 

V place several restrictions on the definition and use of 
First, procedures may contain no global variables. This 
conceptual restriction; Hoare and Uirth [19721 introduce 

of "implicit parameter" which makes each global variable 
meter, at least notationaI Iy. Second, a key distinction is 
n variable (VAR) and value (non-VAR) parameters. In 
signments to variable formal parameters affect the 
nr; actual parameters; assignments to value parameters do 
discussion in section 2.1).  The notation, following Hoare 

variab I e va i ue 

formal    parameters 
a c * Li a I   parameters 

v 
e 

uhere fach of x, v. a, and e represents a list of parameters. The 
two restrictions are that the list "a" must contain distinct 
Identifiers and that no "a" parameter may appear in any of the 
expressions of the "e" list. The last restriction could be removed 
with a slight increase in the complexity of the rules of inference. 

Simple examples suffice to show what can happen if these restrictions 

are violated; 

a. procedure P'var XI,X2 : integer); 
begin XI :« 2; X2 :■ 3 end 
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One   can   verify 
trutlbodu) (X1-2)A(X2-3). iti     ,   , . 

Tre   call   B(A.A).   uhich  violates   the  distinct   "a"   list,   will   yield 
true leal I   B(A,A)1 (A-2)A(A-3) 

an    impossibility. 

b.   procedure  CUar   X   :    integer;   V   :    integer); 
been n   X   :=   V   +   1   end 

One can verify 
true IbodylX-V + l. 

The call C(A.A). uhich has an "a" parameter also appearing as an 

parameter, will yield 
true lea M C (A,A)1A-A+l 

another impossibility. 

For 
ass 

each procedure call the corresponding  procedure  declaration  i 
umed  to  be verified as stat^ in rule V8.  The hypothecs of th 

i s 

e 

procedure call rule is thus achieved so th« procedure ca I ™[e ,s 

applicable to both recursive and non-recur9ive dec Iaratione a I i ke. 
Recall that the recursion ruIe (D5) . i.e. the procedure declaration 

(V8), allocs the desired conclusion to be used as an assumption rule 
1 n ver 1 f y i ncj ( the body 0 f) a recursive procedure declaration. 

VCG does not a I 1ou a component of an array as an a parameter. Th 1 • 
restriction it implied by H [Hoare 1971a. p. 115. last paragraph]. 
VCG clops not permit the names of procedures or functions to be 
(actual) parameters: this could be allowed if one were «' '»"»*« 
vsrifg separately the procedure definit.on for ea^h caM 1nvoIv 1 ng 
procedure parameters, or if sufficiently general assertions could be 

5 u p p I i e d. 

The procedure call rule (V7) in V i9 based on the adaptation ru I e 
(07) in H. Both of these rules provide for extreme generality at an 
increase in complex ty. An a I ternative ruIe is used in Hoare and 
Uiirth [19721 uhich treats a procedure caK as general,zed and 
concurrent assignment. That is. for each variable parameter x a 
function is assumed which, given the ent-y values of the parameters. 
computes the exit value of x. These functions accompI 1sh the 

generalized assignment. 

Functions 

Four of the rule« of V have been expanded to allow function calls to 
occur m Pascal expressions. Function calls may occur only in 
assignment. conditional. iteration. or procedure caI I statements. 
Since Pascal functions have no global variables and no VAR 
narameters. none of the restrictions needed for procedures apply in 
the   casp   of   functions.     Recursively  defined   functions  are  allowed. 
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To  give  the  expanded  rules,  let P be  the  conjunction  of the 
preconditions of all the function calls occurring  in  a  statement. 
Similarly  let  R be the conjunction of the reeuite (postconditions). 
The expanded rules are 

assignment    PA (R-»S (e) ) lx :■ elS(x) 

where P and R include any function call if x is an array 
e I e m e n t 

conditional   Q-«P. QARAUIAIS, QARA-UIB)S 

Qli f U then A else BIS 

where P and R only include function calls in U 

iteration     Q-P. QARAUIBIQAP. QARA-.U-»S 

Q luhlle U do BIS 

where  P  and R  only   include   function  calls   In U 

procedure            P.G(x,v) (G(x,v)1R.G(x,v) 
cal I      

PA(R-.P.GAVa(R.G-»S)) lG(a,e)lS 

where P and R refer to the function calls in "e"; 
P.G and R.G refer to the procedure G. 

function      U(q(v)lU | |- UIAIU 
declaration     

U{function q(v);A1U 

Each of the first four rules assumes that for each function call, the 
corresponding function declaration is verified as stated in the 
function declaration ru\*. If there are no function calls in a 
statement, then P and R may be taKen as "TRUE". In such cases the 
expanded rules reduce to the original rules. VLG actually omits such 
vacuous P and R terms. (The definition of P and R as conjunctions 
means some loss of generality if nested function calls occur such as 
in Y :- G(H(X)), A more complicated definition of P and R is known 
for such cases but it is not implemented.) 

Questions such as array bounds and division by zero can be handled by 
treating each such operation as an appropriate precondition of a 
func t i on. 

I 
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4.2  A RECURSIVE DEFINITION OF VCG 

The operation of the verification condition generator is described by 
the following equations. Let H(P,B,R) denote the LIST of 
verification conditions for the formula PIBIR where B is an asserted 
Pascal program and uhe-e P and R are assertions. HIP.B.R) is given by 
cases on the form of B. "A" denotes all but the last statement of 
B. "(?" Henotes the append operation on lists, "car" and "cdr" denote 
the list operations of first and rest, and "5" is the Pascal 
composition connective. 

assignment (VII  H(P. A;x-e. R(x)) -H(P.A,R(e)) 

array H(P, A;c[jKe. RCcUl)) - 
assi gnment (VZ)       HlP.A.RUf i-j then e else cMl)) 

nul I (V3( i ) )     H(P. nul I . R) » P - R 

assert (V3( i i ) )  H(P. Aijssert Q. R) - H(P,A,Q) • Q -• R 

iteration(V4)   H(P, A;3ssert Q;while S do C, R) - 
HIP.A.O) a HCQAS.C.Q) « -QAS -• R 

conditional     H(P, 
(V5 and V3(i i i)l 

A; i f S then C else 0, R) - 
H(P.A.car(H(S.C,R)))»cdr(HCS.C.R))« 
H(P.A.car(HNS.D.R)))«cdr(H(-S,D.R)) 
where a missing "else" means D is nul 

go to(VG)       H(P, A^o to L, R) - H (P, A, asser t i on at L) 

procedure 
calI(V7) 

H(P,   A;go   to  L,   R)   -   H(P, A, assertion   at   L) 

H(P,   Atqla.e),   R)   - H (P, A.U (a. e) AVa (I4(a, e)-»R (a, e))) 
where    U(x,v){q(x,v)1U(x,v)   is  an  assumption 
for   the  procedure  q 

procedure H(P,   procedure   H(X,V);C,   R)   -   H(P,C,R) 
declaration(V8) where Piq(x,v))R   ij  assumed   in 

evaluating H(P,C,R) 

c 2 ~ p 0 ^ n d 

The   equat i on 
following:  An 
t OP * doun  from 
constituents, 
starting  with 
rule of infers 
of i nference i 
derivation, 
premises  are 
two assignment 
computing  the 
asser t i on on t 

H(P, Asbegin C end. R) - H(P. A;C, R) 

s  for  de 
asser ted 
the  out 

The r, 0 n s t 
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*"*->* 

uorks  somewhat  ana 
premise is computed 
and  from  the  two 
means VCG uses what 
thai  is  VCG  works 
thr-ough trie program. 

logously:   the  assertion  on  the  right of the 
from the assertion on the right of the conclusion 
assertions of thr hypothesis.  In all cases this 

is called "backward substitution" by King [19B9] , 
backwards (opposite to the execution direction) 

That this 1= possibl 
p. 13] state. "The P 
that the ... pr 
const i tuents from po 
facilitated. The P 
proofs of properties 
a ' t o p - cl o w n' d i r e c t i 

e is far from accidental: Hoare and Uirth [1972, 
u I es of inference are formulated in such a way 
ocess of deriving necessary propert;es of the 
stulated properties of the composite statement is 
eason for this orientation is that in deducing 
of programs it is most convenient to proceed in 

on. " 

Uihile the notion of "a path between assertions" is not an exr licit 
part of VCG. the recursive processing of subgoals implicitly computes 

the  required  paths   between  assertions.    Each   resulting a 
verification condition covers one such path. 

A Pascal source program consists of zero or more procedure 
definitions. zero or more function definitions, and a single main 
program. VCG produces a separate set of verification conditions for 
each procedure definition, each function definition, and the main 
program. If P represents the initial assumption (entry assertion) 
for a unit and if R represents the desired result (exit assertion) 
from that unit, then the verification conditions are computed from 

P Iprocedure body! R 
P ifunction body) ft 
P Ima'm program) R 

e assertion R must be present;  if  P  it  missing,  the  assertion 
UNRESTRICTED"  is  jssumed  which is a synonym for "TRUE".     Since 
-•dscal returns a  function  value  by  assigning  the  value 
function  identifier  (as  in  Algol).  the  exit  assertion 
modified by deleting the arguments from the  defined 
This is necessary in order that the assignment rules work properly 

to  the 
must be 

func t i on  name. 

To Illustrate the equations for defining H(P,A,R) two examples are 
given. The first shows the subgoaling process on the 
Quotient-Remainder algorithm of Examples 1 and 2 where the while 
statement has been replaced by an equivalent go to construction. 

Goa true Ir-x;q-0; 10:assert 
i f y<r then beg; 

q-l+q; go to 18 

x»r+y*q; 
n   r«-r-y; 
endl-'(y<r)A(x-r + y*q) 

Only   V5   is   applicable   to   the  goal 
cars   are   computed. 

first   the     arguments     of      the      two 
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Subgoal 1. 

Subgoal 2. 
Argument 1 
Subgoal 3. 

Subgoal 4. 
Subgoal 5. 
Argument 2. 
Hence the appI 
3 r e null, 

Subgoal G. 

S u b r; o a I 7, 

y<r tr»-r-y j q 

11 
ly< 

liq 

-(y<r 
-(y<r 

y<r lr 

) Inul 

-r-y; 

♦-1+qj go to IP'I 
Sr)A(x«r+y*q) 
I -(y<r)A(x"r + y*q) 
r)A (x«r + y#q) 
1+q;Ix-r+y*q 

y<r lr 
y<r In 
y Sr-»K 

cat ion 

«-r -y 
ulll 
■ (p- 
of 

VSIGoal) 
V5(Goa ,m i as i ng 
V3i(Subgoal 2) 
veiSubgoal 1). 
assertion at 10 
i s X"r + y*q 
VI (Subgoal 3) 
VI (Subgoal 4) 
V3i(Subgo?! 5) 

else) 

■r+y*(1+q) 
(r-y)+y*(1+q) 
+y*(1+qi 
to the Goal requires, since the cdr terms 

Lemma 3 
Lemma 2 
S u b g o a i 
SubgoaI 
SubgoaI 
Lemma 1 

8. 
3. 
10. 

true lr< 

true lr< 

x»r+y* 
x = r + y* 
true \r 
true lr 
true In 
true-'x 

x! 

y 
q-- 

q-y 

ul I 
= x + 

n^e;a 
(y<r) 
ci«-8; a 
<r-»x" 
(y<r) 
< r -•• x • 
Cl-81 x 
x»r+y 
I x»x + 
y*0 

ssert   x«r+y*ql 
-»-(ySr) A (x»r+y*q) V5 (Goa I ), argument   1 
ssert   x»r+y*ql 
(r   y)+y><(l+q) V5 (Goa I ), argument   2 
-♦-(y<r) A (x-r+y*q) V3ii (Subgoal   6) 
(r-y)+y*(l+q) V3ii (Subgoal   7) 
•r+y*q V3i;(SubgoalsG,7) 
>.&   ' VI (Subgoal   8) 
y*8 VKSubgoal   9) 

V3i(Subgoal   10) 

EXAMPLE   4i   SUBGOALING  ON  QUOTitNT-REMAINDER  UITH  A  GO  TO  CONSTRUCTION 

After logical simplification the three lemmas in Example 4 are 
identical to the lemmas in Examples 1 and 2. The second example, 
taken from Hoare il371a]. shous the subgoal ing process on a recursive 
procedure   for   computing   the   factorial    function. 

Goa I . 
SubgoaI   1. 

On Iy V5 is appI I cab I 
cars are computed. 
Subgoal 2. 
Subgoal 3. 
SubgoaI 4. 
Argumen t 1. 
Subgoal 5. 
Subgoal G. 

a>0 (procedure factlvar r: integer, a:integer)lr 
a>0(fact(r.a)Ir-a1 ||- 

a>0 M f a»0 then r«-l else 
begi n fact(-,a-1)s 
r.-a*r endl r-a ' V8 (Goal ) 

to 'ubgoal 1; first the arguments of 

l 

the two 

a»0 IP«-1 I r = al 

-(a-CI) Ifact (r.a-l i 
a»0 Inul 111-a1 

a-0-.Ua1 

-(a=0) ifact(r.a-l' 
-(a-8) Inul 

r»-a*r I r-a 

a*r-a 

V5(Subgoal 1) 
V5(Subgoal 1) 
VKSubgoal 2) 
V3i (Subgoal 4) 
VKSubgoal 3) 

Argument 2. 

Hence the 
terms are 
Subgoal 7, 

-(a 

a p p i i c a t i 
null. 

a>0 

.0)-.(a-l>0)Ayr»(r# 

on of V5 to Subgoa 

(a-l>0)AVr#(r#-(a-l),-a*r»-a!) 
V7(Subgoal 5, 
assumption of 
Subgoal 1) 

a-1) ! ->a*r#-a ! ) 
V3i (Subgoal G) 

1  requires,  since  the cdr 

Inul n Ma-0)-»(a-l>ki; AVr«(rtf-(a-l) l-.a«rff-al I 
V5(Subgoal 1), argument 2 

3G 



Lemma 2.       a>0-.-(a = 9) - (a-1 >8)/\Vr# (r#-(a-1 H-a#r«-a !) 
V3i (Subgoal 7) 

SutKjoal 8.     a>8inuM I a-e-'l-a1 V5(Subgoal 1), argument 1 
Lemma '.       aa8-.a-9-.l-a1 V3i (Subgoal 8) 

EXAPIPLE 5: SUBGOALING ON THE FACTORIAL PROCEDURE 

4.3  SPECIFIC inPLEMENTATION OF VCG 

The verification condition generator is written in HLISP2 [Smith and 
Enea 1373], a version of Lisp which has an Algol-like syntax and an 
extendable parser. Uniting BNF-like syntax equations and associated 
semantics for each equation permits the rapid, easy construction of a 
parser for Pascal source programs. The parser handles all details of 
scanning such as creating identifiers and numbers from individual 
characters, recognizing delimiters, and processing blanks. The 
parser produces a list-structured representation of the Pascal source 
in which all statements and expressions are converted from infix to 
prefix notation. 

The qenerator is a loop each cycle of which processes one of the 
subgoals of the form PIAlR. This loop repeatedly determines for each 
subgoal the single next applicable rule of inference and applies it 
to the subgoal. As new subgorils are created they are stacked. The 
result is a list of verlficdclon conditions for the input Pascal 
source program. 

Tables 3 and 4 give more detailed information on the subset of Pascal 
which VCG processes. 

statements implementation status and comments 

assignment 

procedure call 

compound 
i f-then-eIse and 
case 
while 
repea t 
for 

with 
go to 

i f-then 

left hand side must be either an 
identifier or a 1-dimensionaI array 
element 
there must be at least one actual 
parameter (a zero parameter call is 
no use without global variables); 
restrictions on actual 
parameters apply 
no restrict'! ons 
no restrict!ons 
not implemented 
no restrictions 
not implemented 
not implemented 

no problems forseen 

no problems forseen 
rev i sed Pasca I 

has a changed definition of the for 
statement and a new rule of inference 
not implemented 
a label may appear at most onco in 
the entire source program; go to's 
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nu I 

may only be "local" jumps within a 
block. 
deleted by parser 

TABLE 3:  PASCAL STATEMENTS IN VCG 

other syntactic units implementation status and comments 

procedure and function 
definitions 

variable and 1-dimensiona I 
array dec Iarat i ons 

formal parameter declarations 

const declarations 

type dec Iarat i ons 

express i on 

pointer, set, scalar, record, 
file 

constant 

no global variables permitted 

syntax implemented; not further 
included in verification conditions - 
no problems forseen 
crucial to operation of procedure 
call rule 
not implemented - no problems 
forseen 
not implemented - problem status not 
c lear 
no restrictions; augmented to allow 
assertions to include quantifiers 
(V,3), implication (-».D), and a 
second type of conjunction (&) (v and 
A are already in Pascal); & is used 
to conjoin assertions user fewer 
parentheses than A requires 
not implemented - some problems 
expected 
integer only; no real numbers or 
str i ngs 

TABLE  4:       OTHER  SYNTACTIC  UNITS   IN  VCG 

Tie substitution done in the assignment rules (V2 and V3) need not 
check for a variable becoming bound by the substitution because of 
three circumstances. First, by convention all quantified variables 
in the supplied assertions are assumed to be distinct from the 
program variables. Second, the bound variables introduced by the 
procedure call rule (V7) are distinct from the program variables 
because such introduced bound variables all contain the character "#" 
uhile no program variable (or supplied assertion variable) may 
include   a   "#".     Third,   these  are   the  only  occurrences  of   quantifiers. 

The   existential     quantifier      in     the     adaptation 
eliminated   similarly  by  notation  conventions. 

ru l e (D7) can be 

VCG makes very few checks on its input. The major assumption is that 
the source program obeys all the restrictions of the Pascal language. 
Uhile these restrictions could relatively easily be checked, they are 
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not sinc»r it is reasonable to assume that all input has been 
processed hy a Pascal compiler. There are additional restrictions on 
the tource program imposed by V. Since these might also be enforced 
by an augmented compiler, little effort was expended in this 
direction In VCG. Another simplifying and unchecked assumption is 
that a source program does not contain duplicated variable names; the 
introduction of fresh variables for duplicated names, using the 
declaration rule (08), ui II remove this restriction. 

4.4  TERniNATION OF THE TOP LEVEL OF VCG 

The existence of the assertion 
follows since each subgoal 
assertion at least at the 
inclusion of "UNRESTRICTED" 
recursive manipulation of the 
always terminate, but this 
top level of VCG. 

needed condi t i ona ru I e 
is well-formed,  i.e.,  there  is  an 

start  of  each  subgoal.   Recall  the 
needed.  No claim is made that the i f 

expressions     in     the     assertions     will 
is  separate  from  the  termination  of   the 

" 
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5.     EXAMPLES 

5.1    FACTORIAL AS A FUNCTION 

This example    shows    the    factorial    function    written   a«   a   Pascal 
recursive     function. The    next    example    iIlustretes the  factorial 
function uritten as a Pascal recursive procedure. Upper case 'FACT* 
denotes the program and lower case 'factorial' denotes the 
mathenr tical object usuaML, denoted by !. Except for a 'change of 
notation'   the verification conditions are the eame  in both examples. 

PASCAL EXIT ARBITRARY: 
FUNCTI ON FACT(N:INTEGER):1NTEGER; 

ENTRY N>8;  EXIT FACT(N)   - Factorial(N); 
BEGIN  IF N - 2 THEN FACT - 1 ELSE FACT - N * FACT(N-l)  END; 

BEGIN X .- X END.; 

llcikjkjkjli 

PASCAL PROGRAM SUCCESSFULLY PARSED 

FOR FACT THE 
2 VERIFICATION CONDITIONS ARE: 

I  - 

i ' 
T 
i 

n i N>e-*N=8 

l-Factorial(N) 

n 2 N>e-.MN=0) 

^N-1>0)A(FACT(N-1)-Factorial (N-l)-»N*FACT(N-l)-Factor ial (N)) 

FOR THE MAIN FflOGRAM THE 
1 VERIFICATION CONDITIONS ARE: 

tt  1 UNRESTRICTED 

ARBITRARY 
***** 

« 
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5.2    FACTORIAL AS A PROCEDURE 

See comments  for  previous example. 

PASCAL  ENTRY B>0;   EXIT C  = Factorial (B) i 
PROCEDURE FACT(VAR R:INTEGER;  A: INTEGER); 
ENTRY A  >  8;   EXIT  R  = Factorial(A); 
BEGIN  IF  A  = 8  THEN R » 1 ELSE 

BEGIN FACT(R.A-l);  R •■ A*R END 
END; 

BEGIN FACT(C.B)  END.; 

PASCAL PROGRAH SUCCESSFULLY PARSED 

FOR FACT THE 
2 VERIFICATION CONDITIONS ARE: 

M  1 A>0-A=8 

1-Factor ial(A) 

d  2  A>8—(A = 0) 

(A-l>8)AVRtf(Rö»Factorial (A-l)-.A*R#-Fartorial (A)) 

FOR THE DA IN PROGRAM THE 
1 VERIFICATION CONDITIONS ARE: 

*  1 B>8 

(B>8)AVC«0=Factorial (B)-C#-Factorial (B)) 
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5.3  INTERCHANGE SORT 

This example, tdken from King [19S91, sorts by successively finding 
the smallest element of the a-ray A. The assertions include 
provision for showing that the array A at the exit is a permutation 
of the array ft at the entry. The entry array is denoted by the array 
name A0. The assertions contain two definitions. 
SAMESET (A.A0,A[arbi trary]) denotes that A and A0 are the samp, set of 
elements including repetition. The term AEarbitrary] is a trick to 
allow VCG to check that an array is unaltered over a path between 
assertions. The trick is needed because array substitution is done 
by array element, not by array name. The second definition is for 
nULTISET(A,A0.J,K,L,M) where < and H denote array elements of A, and 
J and L denote subscripts of A. MULTISET denotes that A and A8 are 
the same set of elements including repetition even if Jt-K and Li-tl 
are simuitaneously done.  Thus, e.g., 

MULTISET (A, A0.J,AUl,LOC,AtLOC]) 
and 

nULTISET(A.A0,J,A[LOC] .LÜC,A[J]) 
both are true, but 

nULTISET(A.A0.J.A[J].J+l.A[J]) 
is not true yenerally. 

This asserted program and resulting verification conditiors were the 
initial input to the AI len-Luckham theorem prover when it was able to 
discover the verification condit'on which could not be proved. 

PAbCAL ENTRY N > USAME3ET (A. A0, A [ARBI TRARY] ); 
EXIT VK((liKiA(K<rj-l) D A[K]<A[K+imSAnESET(A,A0,A[ARBITRARY]); 
BEGIN J-Ni 
ASSERT  VK( U+liKKIKiN-l)   3 A[K]<A[K+11)   & 

vn((iLn)A(ri<j)A(j<N-l) a AWUsAU+lJ) & 
IsJÄJsN & nULTISET(A.A8,J+l,AU+l].L0C,A[L0C])i 

j >2 no UH 
BE 

LE 
;IN 

BIG - All];   LOG - 1:   I  - 2i 
ASSERT  VK((J+1<K)A«<N-1)   D A [K] <A [K+l])   & 

VL((1<L)A(L<I-1)A(1-1<N)  D A[L]<BIG)   & 
vn((i<n)A(ri<j)A(j<N-i) D A[n]sA[j+i]) & 
BIG=A[L0C]&1<L0C&L0C<J&I>2 & 
2SJ«JSN & SAMESET(A,A8,A[ARBITRARY]); 

IF A[I]>BIG THEN 
BEGIN BIG^AII];  LOC^I END; 

UHILE \<J DO 
BEGIN 

M+l 
END; 

ALLOC] -  A[J] 
A[J]   - BIG: 
J-J-l 

END 
END.; 

^ 
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PASCAL PROGRAH SUCCESSFULLY PARSED 

FOR  THE MAIN PROGRAtl THE 
8 VERIFICATION CONDITIONS ARE: 

0  1  Nil^SAHESET(A.A8.A [ARBITRARY]) 

VK((N+1<K)A(K<N-])DA[K]<A[K+l])& 
vn ((i<n) A (ri<N) A(N<N-I I DA mi <A IN+I: )&I<N&NSN& 
nULTISET(A,A0.N+l.A[N+l],LOC.A[LOC]) 

Note:   A[N+1]   is undefined and.   since LOC  is undefined,   so  is AtLOC]. 
Nevertheless,   by convention  this HULTISET  term may be considered  true. 

U  2   (VK((J+l£K)A(K<N-l)DA[K]<A[K+l])&VI1{(lsm/\msJ)A(JsN- 
1 < J&J<N&nULT 1 SET (A, A8. J+l. A [J+l 1 , LOC, A [LOCI)) A Ui2) 

j3Am]sA[j+i])& 

II 
I 

VK((J+l<K)A(K<N-1)3A [<]<A[K+l])& 
VL((l<L)A(L<2-l)A(2-l<N)3A[L]<A[l])&Vn((l<f1)A(nsJ)A(JsN-l)3A[n]<A[J+l])& 
A [1 ] =A [1 ] SI<1&1<J&2>2&2<J&J<N&SAnESET(A, A8, A[ARB1TRARY]) 

* 3   (VK((J+1--K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LSI-1)A(I-1SN)DA[L]<BIG)& 

vn (llstl) A (n<J) A (J<N-1) DA m SA [J+l] )&BIG-A [LOCI«ISLOC&LOCSJ&I >2«2SJ&J<N& 

SAnESET(A,A8.A[ARBITRARY]))A(IsJ)-*A[I]>BIG 

V<((J+1<K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LS1+1-1)A(I+1-1SN)3A[L]<A[1])ä 

VM ( I i <n) A (n< J) A ( J<N-I ) DA [MI SA [J+I ]) &A [i ] -A [ n SI S I SI S JäI +I üZ&ZSJäJSNS 

SAHESET (A.A8,A [ARBITRARY]) 

tt 4   (VK((J+1<K)A(K<N-1)DA[K]<A[K+1])&VL((1<L)A(LS1-1)A(I-1SN)3A[L]SBIG)& 

vn ((1 <n) A (M<J) A(J<N-1) DA HIM <A [J+l] )&B1G-A [LOCI «ISLOC&LOCSJ&I 2:2&2SJ&JSN« 
SAriESET(A.A8.A[ARBITRARY]))A(I<J)-.-(A[Il>BIG) 

VK((J+1<<)A(K<N-1)DA[K]<A[K+1])&VL((1SL)A(LS1+1-1)A(1+1-1SN)DA[L]<BIG)& 

VH ((1 sH) A (n<J) A (J<N-1) DA [n] <A [J+l] )&BIG-A [LOG&l<L0C&L0CsJ&I+l22&2<J&JiNS 
SAttESET(A.AC,A [ARBITRARY]) 

« 5   (VK(U+iiK)A(K<N-l)DA[K]<A[K+l])&VL((lsL)A(L<l-l)A(I-lsN)3A[L]<BIG)« 
vn((i<n)A(n^ j)A(J<N-IIDA in] <A u+i] I&BIG-A [LOG]&i<LOC&LOCsJdiS2&2<J&J<N& 
SAnESET(A,A8.A[ARBITRARY]))A-(I<J) 

VK((J-U1'K)A(K<N-1)D  IF  J.K THEN BIG ELSE    IF LOCK THEN A[J]   ELSE A [K]     i 
IF J=K+1   THEN BIG ELSE     IF LOC=K+l  THEN A[J]   ELSE A[K+l]     )& 
vn((iin)A(n'.j-i)A(j-i<N-i)D IF j.n THEN BIG ELSE   IF LOC-H THEN AUI ELSE A[n]< 
IF  J-J-l+1  THEN BIG ELSE    IF LOC-J-1+1  THEN A[J]  ELSE 
A[J-1+1]     )&1<J-1&J-1<N& 
MULTISET (A, A0,J-1+1,   IF J-J-l+1 THEN BIG ELSE    IF LOC-J-1+1  THEN A[J]   ELSE AU-1+1] 
LOC,   IF J=LOC THEN BIG ELSE    IF LOC-LOC THEN A[J]  ELSE A[LOC]     ) 

A3 

J 



„ 

ti G   (VK ((J+l <K) A (K<N-1) DA [KJ <A [K+l])«Vfl ((Isfl) A (MSJ) A( JSN-1 ) aA im SA U+l))& 
l<JiJ<N1SnULTISET(A,A3.J+l.A[J+l].L0C.A[L0C]))A-(Ji2) 

V<((1<K)A(K<N-1)3A[K]<A[K+1])äSAHESET(A,A0,A[ARBITRARY)) 

I   : 
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5. A A SAMPLE PROOF FOR ONE OF THE VERIFICATION CONDITIONS OF THE 
FRÜGRAH iNTF^CHANGE SORT 

BPIOW ue give a proof of part of the last verification condition («B 
from Section 5.3). This proof was obtained by a theorem proving 
program [Allen and Luckham] from the set of axioms and statements 
•hown belou. This simple set of axioms was found to b? sufficient to 
obtain proofs of all parts of verification conditions for interchange 
sort not involving the theory of permutations. 

Below P(X) means X-l and SIX) means X+l. 

VAR: K.Y.Z.K.n.L; 
INF_PRED:<.=,<; 
PRE_0P:P.S.A.J.N.1.2; 
EQUAL1TY:=! 
AXiOnS: XiX; 

(X<YAY<Z)-X<Z; 

(X<YAY<X)-.Y=X; 

X<Y"(X<YA-.(X.Y))! 

X<YvY<X; 
X<S(X); 
P(X)<X; 
S(P(X))-XI 

P(S(X))-X| 
S(l)=2; 
P(2)=l; 
((X<YAP(Y)<X)-P(Y)-X)J 

(X<Y-.X<P(Y)) 
(X<Y-.S(X)sY) 
(X<Y-.P(X)<Y) 

LEriMA: J-l; 
PREM'SSES: ((S(J) <K) A(K<P(N) ) NA«) <A(S{K!) •, 
((i£ri)A(n<j)A(j<P(N)))-A(n)<A(S(J))i 

UJi 
J<NA-( 2<J)i 
THEOREM: (VK) (l<KAk:<P (N) )-A «) <A(S(K)) •, 

Note that ue have added as hypothesis the fact that J-l. The proof of 
this statement reauired some computation and uas derived by the 
theorem proven while trying to prove the theorem. The proof that J-l 

follows Pel on: i 

I 

1 = J; 1 2 
1 P(2)= IjAXlOn 
2 P(2)= Jj3 A 
3 1 < J;AXI0n 
4 1 < JDP(2)= JJS G 
5 P(2)= liAXIGM 
G P(2)< JDP(2)= J;7 8 
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7 Y  <  KAP(X)S  YDP(X)-  Y;AXIOn 
8 J < 2:3 10 
3  X  <  XjAXIOM 
ia J < XA2 < XDJ < Kill  12 
11 K < YDX < YvX - YjAXIOn 
12 -2 < JiAXlOn J - 1; 1 2 

The  proof  of   the   last  verification condition    follows 
THE0REH2 arises  from the negation of  the theorem): 

(the    constant 

NIL  1   '.2 
1 A (THEOREM) < A(S(THE0REn2)):3 4 
3 J < JDA(J)< A(S(J));5 6 
4 X  < K;AXIOM 
5 1   s  J;AX10n 
G 1   <  XAX  < JDA(X)< A(S(J));7 8 
7 J  < P(N);9 18 
8 1   < XA(X S JAJ < P(N))DA(X)< A(S(J));AXI0M 
3 j = THEOREtlZjll  12 
U  J -  THEnnEn2vA(THE0REn2)< A(S (THE0REn2)) ;13 14 
p  ^A(THE0REM2)S A (S (TH[.0REn2)) THEOREM 
13 J  =  THE0REn2/S(J)<  THEOREM; 15 IG 
14 5(J)s  THEüREn2DA(THE0REn2)< A(S(THEOREM)); 17 18 
15 1   < THEOREnZvl  - THE0REn2:19 28 
16 X  < YDS(X)< Y;AXlOn 
17 S(J)<  XAX  < P(N)DA(X)< A(S(X));AXI0M 
18 THEOREM < P(N) i THEOREM 
19 X   <   YDX  <  YvX   =  Y;AX10n 
2a  i   <  THE0REri2; THEOREM 

AB 
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5.5    BINARY  TABLE SEARCH 

This exampie. from Clint anci Hoare (1972], is a table lookup routine 
which trie? to find the location of the input X in the array A. A is 
a sorted arrag of distinct elements, a fact denoted in the assertions 
by SORTED(A). If K it not in the array an ERROR exit is to be taken. 
(Our conversion of their program renders this as setting the flag 
ERROR to TRUE.) Note the use of a go-to for leaving the while loop 
and the other cjo-to's. NC "'DIX.n.N) expresses that X is not in 
the array segment from AIR] to i). This program for binary table 
search is »Mentially the same as the example in Floyd [1972]. The 
last verification condition is of the form A ■♦ A because VCG does not 
allou  a   transfer   to  the EXIT  assertion. 

PASCAL  ENTRY   (UN) ..SORTED(A) A(A 11] <X) A(X<A [Nl); 
EXIT   (A [LOOKUP)   - X)A(ERROR.FALSE)  W NOTFOUNDIX.tl.N)   MERROR - TRUE); 
BEGIN n-li   N-N;   ERROR-PALSE; 
ASSERT   (n<N)MA[m<X)MX<A[N])ASORTED(A)   A (ERROR-FALSE); 

UH1LE n+l<N DO BEGIN 
I-dl+N) DIV 2: 
IF X < All) THEN N-l ELSE IF Mil < X THEN fl •■ I 

ELSE BEGIN LOOKUP «- I: GO TO 1 END 

END: 
IF Atni * H  THEN GO TO 2 ELSE BEGIN LOOKUP *  tl; GO TO 1 ENDs 
2: ASSERT NOTFOUND(X.n.N); ERROR •■ TRUE: „,,._ 
1: ASSERT (AILOOKUP) - X)A(ERROR-FALSE) v N0TF0UND(X,n.N) A(ERR0R - TRUE) 

END.; 

PASCAL PROGRAH SUCCESSFULLY PARSED 

FOR  THE  MAIN PROGRAM THE 
8 VERIFICATION CONDITIONS ARE; 

ft  1   (1<N)AS0RTED(A)A(A[11<X)A(X<A[N]) 

(1 <N) A(A[1]<X)A(X<A [N])ASORTED(A)A(FALSE-FALSE) 

tt 2   (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A(n+l<N)- 

X<A[(M+N)  DIV 2] 

m<(H+N)  DIV 2)A(A[n]<X)A(X<A[(n+N)  DIV 2])AS0RTED[A)A 

(ERROR=FALSE) 

U 3   (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A(n+l<N)- 

^(X<A[(n+N)  DIV 2]NA[(n+N)  DIV 2] <X 

Un+N)  DIV 2<N)A(A[(n+N)  DIV 2]<X)A(X<A[N])AS0RTE0(A)A 

(ERROR=FALSE) 
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tf 4   (n<N)A(A[n]<X)A{X<A[N])ASORTED{A)A(ERROR-FALSE)A(n+l<N)-. 
-(X<A[(n+N)  DIV 2])-.-{A[(n+N)  D1V 2]<X) 

(AKfUN)  DIV 2]-X)MERR0R-FALSE)vN0TF0UND(X,ri,N)A(ERR0R-TRUE) 

ti 5   (n<N)A(A[n]<K)A(X<A[N])ASORTED(A)A(ERROR-FALSE)A-{n+l<N)-*A[m*n 

NOTFOUND(X.n,N) 

ti G   (n<N)A(A[n]<X)A(X<A[N])ASORTED(A)A(ERROR.FALSE)A-{n+l<N)-»-(A[n]^n) 

(A[n]=X)A(ERROR=FALSE)vNOTFOUND(X,n.N)A(ERROR-TRUE) 

U 7 MOTFOUND(X.n.N) 

(A [LOOKUP]=X)A(TRUE.FALSE)vNOTFOUND(X,n,N)A(TRUE-TRUE) 

tt 8   (A [LOOKUP!-X)A(ERROR-FALSE)vNOTFOUND(X,n.N)A{ERROR-TRUE) 

(A[LOOKUP]=X)A(ERR0R»FALSE)vNOTFOUND(Xin.N)A(ERR0R-TRUE) 
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5.6    THE McCARTHY-PAINTER COHPILER AS A FUNCTION 

This example is the McCarthy-Painter compiler for arithmetic 
expressions [flcCarthy and Painter 19B7] written as a Pascal racursive 
function. The assertions given in this example are the same 
statements that U. Diffie used when he proof-checked the published 
proof of the compiler correctness. If a "library function" ALPHA is 
unknown to VCG. it prints a message "ALPHA NOT FOUND". For 
precondtions and results of that function, tha names "PRE_ALPHA" and 
"RES_ALPHA"  are  invented. 

PASCAL  EXIT RESULT; 

FUNCTION COMPILE(EtEXPRESSION;   T:INTEGER)rCJDE; 
ENTRY   ISEXP(E)MT>AC)   A   (ISVAR(V)D( (LGC (V.MAP)  < T)  A  (C(L0C(V.MAP))-C (V.SRST)))); 
EXIT  (C (AC.OUTCOME(COMPILE(E.T),OBST))-VALLE(E,SRST)) 

A 

((U<T)   D  (C(U.0BST)=C(U.0UTC0ME(C0MPILE(E,T),0BST))))i 

BEGIN   IF   ISCONST(E)   THEN COMPILE - MKLI(VAL(E)) 
ELSE  IF  ISVAR(E)   THEN COMPILE «- MKL0AD(L0C(E,nAP)) 
ELSE  IF  !SSUM(E)   THEN 

COMPILE - 
COMPILE(SI(E).T)*nKST0(T)*C0nPILE(S2(E),T+l)«nKA0D(T) 

END; 

BEGIN RESULT - COMPILE (EXPRESSION.LENGTH(VARS) )EN0. i 

***** 
PASCAL PROGRAM SUCCESSFULLY PARSED 

I SCONST NOT FOUND 

ISVAR NOT FOUND 

ISSUn NOT FOUND 

51 NOT FOUND 

MKSTO NOT FOUND 

52 NOT FOUND 

MKADD NOT FOUND 

MKLOAD NOT FOUND 

LOC NOT FOUND 

MKLI NOT FOUND 
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VAL NOT  FOUND 

FOR COMPILE 
4  VER1FICAI 

THE 
:ON CONDITIONS ARE: 

« 1   ISEXP(E)A(T>AC)A(ISVAR(V)D(L0C(V,nAP)<T)A(C{L0C(V.f1AP))-C(V.SRST)))-. 
PRE_ISC0N5T(E)A(RESJSC0NST(E)A1SC0NST(E) 

PRE_nKLI(VAL(E))APRE_VAL(E)/v(RES_nKLI(VAL(E))ARES_VAL(E)-. 
iC(AC.OUTC0nE(nKLI(VAL(E)).0BST))-VALUE(E.SRST))A 
(U<TDC (U.OBST).C(U.OUTCOnE(HKLl(VAL(E)).OBST))))) 

* 2  lSEXP(E)A(T>AC)A(ISVAR(V)D(LOC(V,nAP)<T)A(C(LOC(V,nAP))-C(V,SRST)))^ 
RES.ISCONSTiEJA-ISCONSTIEJ-PRE.ISVARIEJACRESJSVARCEJAlSVARlE) 

PRE  MKLOAD(lOC(E.nAP))APRE LOC(E.MAP)A(RES_nKL0A0lLOC(E,nAP))A 

RES_LOC (E. HAP)-(C (AC.OUTCOME (MKLOAD (LOC (E.MAP)) .OBST)) -VALUE (E.SRST)) A 
(U<T:,C(U.DBST)»C(U.OUTCOME(MKLOAD(LOC(E,MAP)),OBST))))) 

M  3 

tf  4 

ISEXP(E)A(T>AC)A(ISVARIV)O(LOC(V.MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))- 

RES_I SCONST (E) A-.1 SCONST (E) *RES_I SVAR (E) A-I SVAR (E) -PRE.l CSUM (E) A 
(RESJSSUM(E)AISSÜM(E) 

IqEXP(Sl(E))A(T>AC)A(ISVAR(V)D(LOC(V,MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))A 
PRE SKEIAPRE MKST0(T)AISEXP(S2(E))A(T+1>AC)A(1SVAR(V)3 

(LOC^V nAP)<TZl)A(C(L0C(V,MAP))-C(V,SRST)))APRE.S2(E)APRE_MKADD(T)A 
((C (AC. OUTCOME (COMPILE (SliE).T).0t:ST))-VALUE(31(E).SRST) )A(U<T3 

C (U OBST)=C (ü.OUTCOME(COMPILE(Sl(E).T).OBST)))ARES_S1 (E)ARES_MKSTO(T) A 
|;C(ÄC.0UTC0ME(C0MPILE(S2(E).T+1).OBST) )-VALUE(S2(E).SRST) )A(U<T+1D 

C (U OBST) =C (U,OUTCOME (COMPILE (S2 (E). T+l) .OBST))) ARES_S2 (E) ARES_MKADO (T) ^ 
(C(AC OUTCOME(COMPILE(Sl(E).T)*MKST0(T)*C0nPlLE(S2(E),T+l)*nKADD(T).ÜBST)) 
VALUE (E.SRST))A(U<TDC(U.OBST).C(U,OUTCOME (COMPlLE(Sl(E),T)*nKSTO(T)* 
COMP ILE(S:(E).T+l)*MKADD(T),OBST'»))) 

1SEXP(E)A(T>AC)MISVAR(V)D(LOC(V.MAP)<T)A(C(LOC(V.MAP))-C(V,SRST)))-. 

RES J SCONST (EK-lSCONSTfENRESJSVAR (E)A-ISVAR(t-.)-.RESJSr..Un(E) A 

-issun(E) 

(C (AC.nUTCOME(COMPILE.OBST))=VALUE(E.SRST))A 
(U<TDC(U.OBST)=C(U.OUTCOME(COMPILE.OBST))) 

LENGTH NOT FOUND 

FOR THE MAIN PROGRAM THE 
1 VERIFICATION CONDITIONS ARE: 
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$  1 UNRESTRICTED 

isEXP (EXPRESSION) A(LENGTH(VARS)>AC)A(1SVAR(V)3(L0C(V,MAP) <LENGTH(VARS)) A 

(C(LOC(V.nAP)!-;(V.SRST)))APRE_LENGTH(VARS)A 
( (C(AC.OUTroriEiCOnPILE(EXPRESS I ON.LENGTH(VARS)).OBST))- 
VALUE(EXPRESSION.SRST))A(U<LENGTH(VARS)3C{U,CBST)- 
C (U.OUTCOME (COtlPILE (EXPRESSION.LENGTH(VARS) I.OBST))) ARES.LENGTH (VARS)* 
COnPlLE (EXPRESSI ON.LENGTH(VARS))) 

***** 

i 

I 

51 

aaabaMaMflHMMaB_Mlll 



.11   i.i ;iiipi^RjRUJiimji^|iri!^iiLJmv«^gp^qiULH[.||**.i III.II*-IIP" WWPpipiB"»?^PfWW- »"W wtm v* 

REFERENCES 

Allen, J.R.; and Luckham. 0. 1970. An interactive theorem-proving 
program, Hachine Intelligence 5, Heltzer. B. and flichie, D. 
(eels.),   Edinburgh  University  Press,   1979,   321-336. 

Clint, n.; and Hoare, C.A.R. 1972. Program proving: Jumps and 
functions,   Acta   Informatica,   1,   3,   1972,   214-224. 

Floyd, R.U. 1964. Algorithm 245, TREESDRT 3, Comm. ACM, 7, 12, 
December   19G4,   701. 

Floyd.   R.U.     19S7.        Assigning     meanings     to programs,     Proc.      of     a 
Symposium     in  Applied  riathematics,   Vol. 19--Matheiiia t i ca I   Aspects 
of     Computer     Science.        Schwartz,       J. T.        (ed.),        American 
nathematical   Society,   19G7,   19-32. 

Floyd. R.U. 1372. Toward interactive design of correct programs, 
Proc.   of   the   IF1P  "ongress 71,   Vol.   1,   1972,   7-18. 

Hoare, C.A.R. 19G9. An axiomatic basis for computer progr?mming, 
Comm.   ACH,   12,   10,   October   1969,   576-580,   583. 

Hoare, C.A.R. 1971a. Procedures and parameters« An axiomatic 
approach, m Symposium on Semantics of Algorithmic Languages, 
Enrjel?r,   E.    (ed.),   Springer-Verlag,   1971,   102-116. 

Hoar«,      C.A.R.      1971b.        Proof   of  a  program!     FIND,   Comm.   ACtl.   14,   1, 
January   1971,   39-45. 

Ho«re, C.A.R.; and Uirth, N. 1972. An axiomatic definition of the 
programming language Pascal,       Berichte       der       Fachgruppe 
Computer-Wissenschaften  6,   E.T.H.,   Zurich,   November   1972. 

King, J.C. 1969. A program verifier, Ph.D. thesis, Carnegie-Me I I on 
University,     1959.        See     also     1FIP    Congress     71   Booklet   TA-2, 
142-146. 

London. R.L. 1972. The current state of proving programs correct, 
Proc. of ACM Annual Conference, ACM, 1972, 39-46. 

McCarthy. J; and Painter, J.A. 1967. Correctness of a compiler for 
arithmetic expressions, Proc. of a symposium in Applied 
Mathematics, Vol. 19--MathematicaI Aspects of Computer Science, 
Schwartz, J. T. (ed.). American Mathematical Society, 19G7, 
33-41. 

Smith, D.C.; and Enea, H, J. 1973. MLISP2, Artificial Intelligence 
Memo AiM-195. Stanford University. April 1973. 

52 

MMMMMMH mmmmm 



imminvvim. . ijainp |    uni       n ■ n ip. ^iiii .ivii ii mMn IM JMI 4ll|IHRVmii,*i    ■ 

■ -• •«f>w«wP '1*-' 

Uirth, N. 1971. The programming language Pascal, Acta Informatica, 
1. 1. 1971. 35-G3. 

Uirth, N. 1372. The programming language Pascal (Revised Report), 
Berichte der Fachgruppe Computer-Wissenschaften 5, E.T.H., 
Zurich, November 1972. 

ACKNOULEDGEMENTS 

Ue are indebted k. ' R. Hoare and Nikiaus Uirth for preprints of 
several of theii ners, especially drafts of the Pascal 
ax i omat i zat i on. Ue alb.. ">K Nor i Suzuki for pointing out errors in 
VCG and Jorge Horaks for K.   "'ng the sample proof in Section 5.4. 

Most of this uork was; completed u. 'he authors were members of the 
Stanford Artificial Intelligence i t during the academic year 
1971-72. Ue are grateful to John HcCar ^ - making it possible for 
us to hf together in such a stimulating env., «nt. Horace Enea and 
David S ith. developers of the HLISPZ system, pv 'Mly answered our 
m a ti y ci u e s t i o n s about its use. 

53 

iMMBMMB MMBMBI 


