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THE INTERACTION OF A HYPERSONIC PLUME

WITH AN EXTERNAL HYPERSONIC STREAM '

by

John T. Kelly*
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Farmingdale, New York

ABSTRACT

A theoretical study of the gas dynamic interaction between a

hypersonic plume and the opposed hypersonic external stream is
bresented. Steady, axisymmetric, inviscid, perfect gas flow is
postulated for both the bow and far field regions. Limiting

forms of solutions are obtained for the bow region by application
of the Newton-Busemann approximation (i.e., ee’eioqo M M —Q0

2 me CDio
such that M2 c. M €,,~0(1)) to both the exhaust plume and

e € mio 10
ambient air flow. Through asymptotic expansions and their matching,
it is found that six regions are required to adequately describe

the bow region. For the far field region, the hypersonic small-

disturbance form of the Nevton-Busemann approximation (i.e., eeao,
2 2 ) ) . §
Mooeﬁo,aeqo such that Mooeoeee~0(l)) is applied. From asymptotic ;
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expansions and their matching, it is found that "entropy wake"
solutions are required to adequately describe the exhaust flow and
the air flow near the contact surface. Analytical solutions are
obtained which (i) define scaling parameters for the bow and far
field flow; (ii) estimate the accuracy of the Newtonian impact

theory in predicting bow region geometry and properties; (iii) estab-
lish the variation of bow and far field properties with variation

in the primary system design parameters.
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INTRODUCTION

A theoretical study of the interaction of a highly underex-
npanded jet issuing into a high Mach number free stream that

is opposed to the jet's expansion along its axis is present-
ed. At some distance, characterized by the length Rsio

the jet and free stream gases interact. The jet flow is there-
by deflected downstream by the external flow. The particular
case of interest to be examined in this study concerns flows

where the typical dimension of the body D is much 1less

than Rsis (see schematic (1)).

SR

Mo;>>1 E:B

/

ok

AN Rsc. —

Schematic (1)

i
A

+
-
h




-

For this case, analytical models of the upstream and downstream

gas dynamic interaction processes are formulated herein. The
following approximations are postulated:’

1. Steady Flow

2. Axisymmetric Flow

3. Continuum

L. Inviscid

5. Thermally and Calorically Perfect Gas

In further studies, assumption 4 can be partially relaxed by
applying boundary layer concepts along the shear surfaces for

high Reynolds' number flows. Also, assumption 5 can he re-

laxed quite easily by applying Mollier charts or similar models

for equilibrium gas dynamic properties.

A general schematic of the flow structure under these assump-
tions is given in figure 1, where three distinct flow regions
are discerned. The major characteristics of these regions

are as follows:

Bow Region ' \

This region is characterized by nearly normal interior and
exterior shocks and relatively thin layers. The. flow within

the layers is then necessarily subsonic and of high density.

Corner Region

The layers thicken markedly and turn in a downstream direa~
tion. Both interior and exterior layers undergo transonic
expansions about the relatively motionless core region sur-

rounding the plume. The development. of the plume ahead of

Ly e e 3 B gy T e it it Bl i R St e i e b S B Uit e
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the internal shock resembles very closely that of a plume ex-

panding intec 2 quiescent ambient.

Far Field Region

The exterior shoct« and interface are at relatively small angles

with the freestream. The flow in all layers is supersonic and

nearly parallel to the axis.

Flow systems of these types are of considerable interest for the

practical applications of force vector control and attencant

surface thermal protection of re-entry vehicles. For force vec—

tor co. rol, the altered pressure distribution on the body, as

well as the jet thrust, has to be considered in calculating the

total force on the body. For thermal protection, although the

hot external gases are blown free from the nose by the jet, it

is still necessary to consider the heat flux due to the poss-

ible reattachment of this separated gas flow on the body.

In addition to the effects already mentioned, which are mani-

fested near the body, we must also be concerned with the flow

field far downstream of the body. In this wake-like region,

the mixing of the jet gases may affect the chemical processes

occurring in the wake to such an extent that observable prop-

erties and hence detection or communication may be greatly fa-

cilitated or decreased. It is apparent that if such a sys—-

tem were to be properly utilized, a detailed understanding of

the physical and chemical processes occurring within the dis-

turbed flow field must be obtained.
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Previous theoretical and experimental studies have added con-

siderably to our basic knowledge in this area. The first stud-
ies 1,2,3 were essentially experimental in nature, applying only
simplified modeling to correlaie the data. A significant result

of these early investigations 253

was that two modes of inter-
action were observed to exist. The modes were dependent upon
the jet exit lMach number Mj , free stream Mach number Mewe
ratio of jet stagnation pressure to free stream dynamic pres—
sure T y body size D , and shape. One mode is characterized
by large interaction distances with unsteady shocks and bound-

ing surfaces. This flow regime is designated as the unstable

case.

The second mode of interaction is characterized by a relatively
short interaction length and steady strong shocks. This flow
regime is the case investigated herein. The mechanism for
transition from the steady to unsteady flow was postulated by

Finley 3

to be a result of the development, for low T and
Moe or high Pﬂj y of a multiple cell structure for the un-
disturbed plume before the interaction region is reached. In
view of the subsonic flow existing behind the Mach disc sepa-
rating the cells, we have the possibility of upstream inf'lu-

ence from the surrounding gases affecting the interaction re-

gion in a possibly unsteady manner.




The boundary between stable and unstable flow,l’z’Bfor experi-

ments where the effect of body size on the flow is negligible

is given by:

Mooe M

J i

1 7.1 1.0 2

ﬁ Wi L.0 8

! L.85 15

g_'_' 7 5.30 20

] 2s Blyip) L

)

E 2.71 3.90 8

i Thus, to achieve stable flow, the jet stagnation pressure must
f be much larger than the free stream dynamic pressure (i.e.,’rr

>»1 ) for moderate values of P4j . These are the same con-
ditions under which Rsio becomes much larger than D (for D

approximately equal to jet exit diameter); therefore, the case

studied herein will always be of the stable type.

It should be noted that one investigator - observed a region
for largé values of TV where the flow became unstable and

\
continued to be so for all higher values of Tr ., This result

has not been duplicated by other investigators, and indica-

L
tirns of stable interactions by5y7 have been obtained from other

experiments at conditions that fall within the region of un-

stable flow found in Reference 2.

In addition, it has been observed 1y3,4 that the interaction

length F{sco for the stable condition is a function of 17'>2U

,8.,P1m‘,hh)ﬁneand that the contact surface separating the
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external stream from the jet gases is almost spherical in nat-
ure. These observations have been utilized in constructing
simplified models to describe the flow field associated wich

stable interactions.

Theoretical analyses of this jet interaction problem have ap-
peared only recently. In 1969, Laurmann 6,utilizing the
Newtonian impact theory, calculated quantitative results for
the upstream region. This paper presented general features of
the upstream bow interaction, but did not correctly treat such
areas as the corner region and the far field development of
the flow. 1In 1971, a f.ime~dependent numerical technique 7 was
employed by Rudman and Vaglio-Laurin to calculate detailed
quantitative dynamic properties of the upstream flow interac-
tion. ' In the calculations, the jet plume boundary layer in-
tersection with the shock layers was assumed to be a point in-
teracfion and the core pressure was assumed to be that of the
freestream. The downstream flow was not considered in the

above report and only the bow region was cvaluated.

The present study was vndertaken for the primary task of cor-
recting the errors inherent in a Newtonian impact analysis, to
estimate the effect of the corner region on the total flow

field, and to calculate the far field interaction.

An analytic approach was considered since such a method pro-

vides for the greatest insight into the physical processes and
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alsc defines the accuracy associated with various approxima-
tions. Finally, this study also acts as a model for extend—
ing calculations-to more complicated configurations; e.g.,
where the body influences the flow or where the jet is at an

angle of incidence to the free stream.

We must now determine the operating conditions under which our
simplifying assumptions are satisfied. For a missile or ve-
hicle re-entering the earth's atmosphere, we have the follow-
ing range of conditions from approximately 400,000 ft. alti-

tude down to approximately 50,000 ft. altitude.

Range of Typical Operahing Conditions for a te=Entry Vehicle

WUeoe (£t/sec) 15,000 23,000
Mw. 10 25
Pee (1bf/ft°) 6.92x10 > 23,27

Over this range of operating conditions, we generally find
that rarefaction, viscous, chemical or physical effects may be
significant. This would violate our assumptions and therefore
we must examine the relevant parameters and their numerical
values in order to ascertain when our assumptions are fully

satisfied.

The first limitation on the parameters involves the assump-
tion of steady flow and requires that TP3>1,Mame>> 1, Mj= 0Q)
The reasons for this have been di.scussed previously. A second

limitation relates to rarefaction effects occurring within the




flowfield. For the upstream region, we have three areas where
rarefaction effects may invalidate the application of the ana-
lysis. The first area is the plume core itself where the large

degree of expansion may take the free plume fiow into the tran-

sitional regime. From an analysis of a steady spherical source
flow expanding into a vacuum Hamel and 3/illis 8 cderived an ex-
pression for the distance beyond which the source gas becomes
collisionless., This is given by

F?+ “—(FEeJ!)3M r%

where Ty is the jet nozzle throat radius and F?e,‘is the Rey~

nolds' number evaluated at the nozzle throat. This value is
only a function of the nozzle throat conditions and hence is
a constant for a particular set of chamber conditions. This

can also be simply related to the thrust of nur jet

3% Ya
Re ~(Te ) (e ux
t Gt Tsp B;

where I‘P is the specific impulse, 1| is the thrust‘and E%; is
the jet chamber pressure. In order that the plume flow for
our problem be a continuum, the interaction distance, F{sge "
for the interior shock must be much less than thé distance Fit-

The interaction distance Fisto is determined by the condi- ;

tion of equal stagnation pressures along the axis. Therefore,

-2

R (gmu’}ey" i fen d9
Ste = Ik o St ) ( cos sn@
' P@euw: 2 0 %%w
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This expression is a result of assuming a source like behavior
for the undisturbed plume properties. The occurence of the
various quantities in the above expression will be detailed
in a later section relating to undisturbed plume properties.

The condition for continuum flow for the plume expansion is

then

:(Rei‘) 4& > 1
Rsi Risco

In terms of the thrust of the jet, the above becomes

2 d 0 sza
_R_'t_ = hp.h:ij“’s %""9 9) ( A&IS) *Su*‘/*l PoJ.VB

Rsie E:’.Vz(x L “'1)

s
i
-
- 4 4
-

Following Reference (9) we take the numerical value of Xt > 10

Rsio

to be safely within the continuum region. This bound is in-

i R

dicated in Figure 2 for the representative conditions of
Mee = 10, R; =50 dm. , tiw = 2x10° € [bf sec /Ft?, Uw=30005ps f
¥iL =128, I‘l' = 300 sec
We now direct our attention to the internal and external shock :
layers where rarefaction effects can result in the thickening
of the shocks and shear layers to such an extent that they
strongly influence the aevelopment of the layers. In a paper

th it was illustrated that the thickening of the shocks f

by Bus
and growth of the viscous shear layers are related for the
shock layers; and, therefore, we need only determine the thick-

ness of the shock with respezt to the layer thickness to de-
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termine where inviseid continuum theory is valid. It has been

11

shown that a continuum inviscid description of the flow is

appropriate when-
' -
6"“/553 ° 8“/552. = 3

where in the above S denotes thickness, and L denotes layer,
s snock and e, L y external and internal layers respect-
ively. From Adams and Probstein e we have for the thickness

of the shock for either external or internal flow

55 = Qﬁ/Cns

Where Cw and Ve respectively are the speed of sound and vis-

cosity evaluated at M= 1 ,

After introducing the interaction length Rs,t° as a signifi-

cant length, this then reduces to 13

_éf_io =~ Mozw/ﬁm = b,/ oo Reo
Where W is  the exponent for temperature in the power law
viscosity model, Re is the Reynolds' number and Me is the
Mach number, based on free strean properties. Ve now intro-
duce the first order thicknesses of the shock layers, which

will be derived in detail in a later section.

S‘Q‘ = €e ___q._“_s . o e.;:/z

R3£o RSio .




ihere €a,E;, are th: density ratios across the normal part of
the shocks along the axis of symmetry.

-

Therefore, .
62: =~ HMpe €e Rme SI. , ~ LLlecy e(_'o’/z Rmv'
Se ~Aloe Osc Ao

where Re is based on the interaction distance EELQ . Using
the source model for the plume properties and the equality of
stagnation pressures to determine F{sa,, we can reduce the
above ratios to functions of jet thrust,-r— y Jjet throat prop-

erties and external flow gas properties. The results of this

are.: \a

Y2
B 6 = Ce Ve%' Mlbe (T Poce Us ¢ =N
se Aop Uwe TepV¥2 Vg €; Vi ( j;"”cos "gg smpdy ) 2

: " T
S.Q b. = éi:y“’ de 3Hme‘ <TP°’e) 2); cos %Q_sm? 4? -L
-S;; A UL V2 \[ET IspV2

Using values stated previously which are representative of

typical flight conditions, the above can be plotted as a func-
tion of altitude for a given thrust, above which rarefaction-
effects have to be accounted for. This has been carried out
in Figure 2 and it can be seen that for Jets of 10 to 10°
pound force thrust, there is a large region of flow where the

continuum inviscid analysis will apply.

We must now examine the region where perfect gas behavior or
equilibrium gas behavior will apply. For the external shock
layer, there -are many analyses and data available which indi-

cate when nonequilibrium effects in such general flow fields

11
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become important. For the plume and internal flow, this is not
the case. The reason for this is that rocket exhaust chemi-
cal composition, especially those of the'solid propellant va-
riety, varies greatly from application to application and in
each caée the bounds of equilibrium are different. Therefore,
we cannot define a single general condition when nonequili-
brium flow occurs. Therefore, we will set down the bound for
the external flow as the limit for the combinedllayers above

which the flow cannot be considered to be in equilibrium.

The external layer nonequilibrium bound is adapted from a
paper by Chenglh and is based on the relaxation processes be-
hind a normal shock. When the distance for relaxation to equi-
librium conditions behind the shock becomes of the same order
of magnitude as the layer thickness, then nonequilibrium ef-
fects mus§ be taken into account. Cheng's resulté gave a sin-
gle point at high altitude, which when combined with binary
scaling led to the result in Figure 2, above which nonequili- .
brium effects rust be considered. Binary scaling derives from
the fact that at high altitude the probability for chemical
reactions to occur by three-body collisions is much less than
that for two-body reactions. Under these conditions, it can
be shown that if density and field dimension are held constant,

then the degree of nonequilibrium will be the same in each

case.,




Since the body dimension Rs;‘is related to jet thrust and den-
sity ‘Pme is related to altitude, we can then establish a
relationship between thrust and altitudé, which will maintain
the product of density ani dimensioﬁ constant, giving the
same degree of nonequilibrium. The binary scaling principle
only appiies to high altitude, for moderate to low altitude

collisions should be prevalent enough that equilibrium flow

is maintained.

Referring to Figure 2, it is shown that for typical re-entry
conditions the extent of the equilibrium, inviscid, continuum
flow is about one half of the complete continuum, inviscid
region; however, there is still a considerable region where

all the assumptions stated previously are fully satisfied.

Now that we have determined our bounds of validity for an ana-
lysis based on several assumptions, we can proceed to outline

the analysis in detail.

R T Al ot
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JET EXHAUST MODEL

The undisturbed plume which interacts with the external flow
to form the bow layer develops in an environment (the'core
region) where there is little fluid motion and hence nearly
constant pressure. Under these circumstances, the undisturbed
plume is analogos to the case of a jet exhausting into a
quiescent ambient which is at the core pressure. e can then
employ analyses developed for ﬁlumes exhausting into quies—
cent ambients to our retro plume case. To be consistent with
the analyses for the downstream and bow region, we will uti-
lize an analytical approach for the undisturbed plume. There
are many models available for describing the isentropic ex—
pansion of a jet far away from the nozzle exit. 'Many of them

have the form 15, 16, 17%

n
S (:92
f ¢ COo Ra_ (1)

Other properties can be determined from this esipresgion by use

of the isentropic flow relations (No's. 30.2-30.3 from the Bow
Analysis).

*¥In this reference, an expression for Mach number is given
which when substituted into the isentropic relationships for
high Mach number gives a result identical to (1).

14
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In (1) @ is the angle ‘measured away from the axis of sym-
metry, R is radius measured from the nozzle exit and N "
and € are constants for a given nozzle and jet gas compo-

sition. Various forms have been proposed for N\ and C as

functions of plume sr2cific heat ratio 8j y exit llach num-

ber MJ y and nozzle exit angle ©n . Using the form C =

Tr/zeoo,where Ow is the sum of the Prandtl-lMeyer limiting

turning angle into a vacuum and en,gives the correct theo-

retical result of zero density or infinite Ifach number when

q>= ©ea . For this value of C , we can extract from a

function of ¥{ is correct, its numerical value for a given X
) g J

is still not clear. This is because comparisons with numerical

Prandtl-lieyer analysis 15 near the nozzle lip the value forn.
&

n = _2 . (2) 4

-1 @

¥

This result can also be obtained from application of the small

g

disturbance theory to hypersonic jets expanding into a vacuum .

As will be shown in the bow layer analysis section, these va- Z%
lues for N and C give the physically realistic result in the %
limit as &{, > O that the density and other flow vari- s‘fg
ables remain of the same order as we go away from the axis. ‘”ﬁ
For any other choice of C and M as a function of &) the %
3 5
| density would be finite on the axis and either zero or infi- =
4 nite away from the axis. Even though the form of N as a %

results give different values for M , varying between the value

15
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f’ given in (2) and one half that value 19. The difficulty is
that the form of equation (1) is not general enough to be
valid over a full range of R and @ . This point is illus-
trated in an article by Boynton 15 where he shows for 9><-4
the proﬁortionality constant is approximately one and for

9> 4 the numerical results lie closer to the curve for a
proportionality factor of two. Since the bow shock layer and

downstream layer depend critically on the undisturbed plume

flow, (as will be shown in the bow and downstream analyses
sections) then it was felt that a review of numerically cal- ﬁ
& .lculated undisturbed plumes to give "best" values for N was |

i Justified. The expected value would probably lie somewhere 1

between the theoretical value -—é;——- and j 5 ;

Three sources of numerical plume calculation data were chosen
for examination to determine "best" values for N . Inre-
ference (20) numerical calculation of three plumes from super- : é
sonic nozzles expanding into a quiescent ambient were presented.
Two of the nozzles (Xj = 1.15,1."\8) are representative of
those used for launch vehicles, and the third (¥ =1-2"') is
representative of spacecraft nozzles. The method of charac-
teristics was used in this study to determine, for constant

¥
tributions along and perpendicular to the axis of symmetry.

The second reference 16 contained the calculation of the plume

» Mach number contours, and density and temperature dis-

resulting from the expansion of air through a sonic orifice.

Mach number distributions perpendicular to the axis of sym-

16
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metry were given. The third source used 15 contains results
of a numerical calculation, using a finite difference tech-

nique, of the flow from a nozzle representative of a launch

vehicle. CLensity is given as a function of angle from the i
axis in'this work. To determine Nfrom the above sources for ;
points away from the axis, we simply use the isentropic re-
lationships and the assumed distribution (1) to determine f
for a known value of the constant Op and f at agiven ¢
and R . However, near the axis this procedure does not ;
yYield good results since large changes in N produce little

measured change in j: or quin this region. In this case,

we then apply a derivative of the density distribution to ob-

tain a better relationship for determining M . For the first

A D e pe——
il & dara o e g ‘

and second references where Properties are given as functions

of T , the distance perpendicular to the axis, the expres-

sion

n = (&ieo) ( (__J.)_ 1% Em.o_.) |

ryru) 75(h7r3 (3)

establishes n from the density gradient perpendicular to the

axis. For the third reference, we use

(2 )—‘- ?_gﬁ.ﬁ__,.m ol . (4) :

- LR P I W

N TR0 Ll Py St S WO
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Values of 72 y the ratio of N calculated from 3 and L, to
2/(8_,"1) are plotted in figure (3) as a’'function of §/Beand
X/rJ‘ « From this graph, it is evident that n is not a con-
stant but varies both as a function of §/8e and X/r; . If
use 1s to be made of (1) in calculating retro plumes, then
for each change in ?(/FJ' a new value of * must be determined

from figure (3).

The variation of N with @/Buis not as critical as the axial
variation since the bulk of the mass flow, which determines
the plume external stream interaction, lies near the axis and
therefore the behavior for P/9e+S is not significant to the
interaction. Also, for 9/6& near zero the density is near
one for any value of h . Noting this, we then take the value
of N found at P/Bep=,25 to be the "best" value for a given
X/rJ' . Characteristic retro plume calculations have been
carried out with values of N determined from figure (3). Re-
sults of these calculations will be discussed in the sections

on bow and downstream analyses.

18




ANALYSTIS OF BOW REGION
For the problem studied here Maewe 3 Moo[o >> 1 and ,Be,ﬂa‘ =

The flow within the intcrnal and external shock layers are

determined by a perturbation theory for strong shock waves
and small layer thicknesseél | The procedure involves a limit*
of the governing equations and boundary conditions when
€e,€i, =+ O Mooe,Nooio"Oo and Mo}.éc,mm":egzofl-)where
€e, €'y are the density ratios across the shocks at the
axis. To elucidate some detail of the flows within the la-
yers, the coordinates normal to the shocks are expanded in
i

powers of €e™, eLo'“ where X,m are to be determined.

The orders of magnitude of the various flow quantities in terms
of €e, €El¢ and Mooe € e ,_Mcoaé.,éi.o are derived from the
requirement that the shock relations and flow equations yield
a nontrivial system which includes all the physical effects

of interest as €e,€¢, > O . The coordinate systems are

shock oriented and are illustrated in schematic (2)

" +
=)
) "SP.; / Pi Pt
’
!
//
- H’ 2;,4/ 6
'
- | |31 5 O

Jet
Schematic (2)

¥This limit will be denoted the N=B limit after Newton-Busemann

19
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Upon application of the N-B limit mentioned above, it is found
that the flow field divides into several regions within which
unique asymptotic expansions for the dependent variables must
be determined. Tt will be shown in the.following analysis

that four regions characterized by two major effects are re -
quired'to describe adequately the external flow and two re =
gions characterized by two major effects are needed for the in-
ternal flow. In both the internal and external layers, a re-
gion characterized by constant density to first order is formed
near the axis of symmetry. Away from the axis, the density

and other properties vary both along and across the layers.

For the external layer, a region characterized by non-constant
stream velocity is formed near the contact surface in both the
near and away from axis regions. This contrasts with the char-
acter of the region near the shock where the velocity is con-

stant to first order.

The regions are numbered one through six in schematic (2)*.
Once the flow properties are established in each of\ these re-
gions, then matching between the expanded properties will be
demonstrated to show their consistency and where necessary,
composite expansions will be formulated. The final step in the
solution to the bow region problem will consist of the numeri-
cal matching of contact surface pressure and position {i.e.,

flow deflection) between the external and internal shock layer

flows.

¥ These regions, of course, are not drawn to scale.

20




To achieve this result; (i) initial radii of curvatures and

positions of internal and external shocks will be found from

a scheme which uses solutions obtained for regions 1,3, and

5 (this scheme will be outlined in appendix (A)); (ii) shocks
will be extended away from the axis utilizing these radii of
curvature;(iii) external and internal contact surface pres-
sure and position will then be calculated, using solutions
from regions 2, 4 and 6. The pressures and positions are then
compared to determine if numerical matching is achieved; (iv)
if equality to a certain tolerance is not found, then the ra-
dii of curvatures are iterated until matching is achieved.
Having accomplished matching, the procedure starting from
step (ii) will be repeated gsing the newly found radii of cur-

vatures as the initial wvalues.

A brief outline of the regions considered and their major

characteristics is now given.

For region two, which is of O(€e) in thickness and O(1) in
length, the N-B limit gives the familiar hypersonic blunt body
result, which has been investigated in whole or in part by
many authors L0 £Ls 22. The orders of magnitude of the flow
quantities in this region are the same as those directly be-
hind the shock. A major characteristic of the solution found
is that the velocity along streamlines is constant in the
first order gpproximation. This result, adequate for points

10 near the

near the shock, has been shown to be incorrect




contact surface in regi;n L3 and, therefore, a new expansion
must be sought. In reference (10) the initial orders of mag-
nitude of the flpow variables in region L4 were established as
well as the thickness of this region, which is C)Céfé). To
first order when the N-B limit is applied, the constant stream-
line velocity result of the region 2 analysis must be replaced
by an expression for velocity which accounts for pressure gra-
dients along streamlines which are found to be the same for all
streamiines in this layer. After determining expressions for
the flow variables in region 4 matching with region 2 is then
demonstrated and a composite expansion is then formed which

is valid throughout regions 2 and L. For general shock shapes
these expressions must be numerically integrated‘to yield va-
lues for the flow variables of interest. Having established
results for distances of O(1) away from the axis, we now wish

to determine expansions valid near the axis in the N-B limit
for use in the initial radii of curvatures of the shocks

scheme.,

10, 21, 22

In this study, unlike in past investigations, atten-

tion is focused on this near axis region because we are seek-
ing accurate and simple analytic expressions for the layer
thickness and contact surface pressure distribution as func-—

tions of shock radius of curvature to be used in the initial-

izing scheme. It will be shown that the near axis region 1

samaniat 3

A A
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will be of O(€s)in thickness andO(G.'")in length. This region is
characterized by constant density to first order. As in the
region away from the axis, the first order velocity along
streamlines is constant. Consequently, as in the away from
axis case in region 3 near the contact surface we must mod-
ify the expansions to include the effect of non-constancy of
velocity along streamlines. The dimensions of this region
are 0(6-!"" in thickness and 0(6?) in length. The variables
found in this region are demonstrated to match.with those of
region 1. A composite expansion for region 1 and region 3
is then formulated. Finally, matching between 1, 3 and 2y &
is demonstrated for the specific case of a spherical exter-

nal shock.

For the internal layer analysis, more details will generally
be included than for the external flow since this work ap-
pears here for the first time. For region 6, which is d‘l) i
length, the N-B limit leads to the results that the‘layer thick-
ness and streamline velocity to first order, for non-trivial
results, nmust be of 0(6]2&) . Also, the internal shock is
spherical in form and the first order pressure and density are
constant across the layer with an error ()(e;ﬁi) These re-
sults will lead to interesting conclusions, whiph will be dis-
cussed at the end of the analysis. The solution found in 6
unlike the external flow case is valid throughout the shock

layer for distances of of1) . For general shock shapes, these

e A S s . i




equations must be numerically integrated away from the axis.
. MY
As in the external flow case, a region of O(€&:o ) in thick=
),
ness and of O(e,;,’l) in length is required near the axis to

be used in the initializing scheme. As for the external la-

yer, the near axis region 5 is found to have constant density
to first order. A solution technique is then applied which
makes use of this characteristic to determine analytic expres-
sions for internal layer thickness and contact surface pres-
sure distribution near the axis to be used in the initializ-
ing scheme. Having found solutions for the variables in re-
gion 5, we then match these to the variables obtained in re-

gion 6 for the specific case of a spherical shock.

The detailed analyses for each of the six regioné will now be

given.




External Layer - Region 2 Analysis

Following previous invest:igat-ions,21 we obtain the orders of

magnitude of the variables inside the layer from the values

obtained from the shock relations. These relatinns are:

Pe - Poe = PaoeUwe (1 - €) sin? & (1.1)
8 = Uoe cosd (1.2)
V = Uee Esind {x:5)
ﬁ e 1/( - (1.4)

+ __&
Yetl Q-.u)n.;:- SIni& )

'

Non dimensionalizing the pressure byf,,_u.:,', velocity by

Uwe and density by fwe » We obtain from (1.1-1.4)

P = Y& + (1- ) sm?e (2.1)
R = css (2.2)
J = €ané (2.3)
F = 1z (2.4)
Taking the NB limit, we find from (2.1-2.4)
F = sn’S (3.1)
U = cos® (3.2)
J = eesin® (3.3)
ﬁ = t/e. | (3.4)




Using the orders of magnitude established by (3.1-3.4), we

can now write the following expansions:

=.-u.°+éelA1+“"

u (4.1)
V T €eVo + €2 Vg + ---. (4.2)
P = Po+ €cpa+ - (4.3)
P T Peofee * pat oo (4ok)

In order that the Ilow variables described previously lead
to a meaningful description of the flow, we must stretch the

normal coordinate y. From the continuity equation we find

for y

a' ~ m = ﬁﬂcuﬂﬁw - == REe
fuz:ﬂ"" 2 %Luﬁez.n—
[

Since \"'IO(RS.;.) which is set as the unit length scale, then
v =O(€e). Therefore, to obtain non-trivial results, we must
stretch y by O(ee). The exparsions of the variables and the

stretched coordinate y should now be applied to the govern-

ing equations

P- gir + Bgvar:H = © H =.1."K,a« (5.1)
= L = ' .
u‘%siw»Hv%% K“""’fssﬁ‘o (5.2)

uld¥ + Hvav 2
L vy Ku? +

H
Va S oy (5.4)
@)
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Before substituting in the expansions of the variables, it
will be advantageous for final integration of the equations

to change the above system to one employing the stream func-

tion as an independent variable.

%_‘E = Hrpv (6.1)

?:'. - _rf\* (6.2)
&

The above system under the transformation

B ="_3_‘£?3. + 9
% 2% 2P %

:.
0
i
3
o
3
A
.
v

3 Define’

2 = 2¥ &

g oy W

then becomes

Hrag = RY + ku (7.1)
Mm2+v2Vz + h = Us+wd)2 + ha (7.2)

(7.3)
¥ = J/oZ

f;/f HP* P (7.)
B - u

The distance across the layer in terms of V¥ is obtained from

-S@ r-fu. | (7.5)




-~

In this system we then must add

F=2ro + €ela + -

H=1- Ko&o€e+ g

Expanded boundary conditions at the shock are:

/P\ = éc/Mb‘ée + (l - €e(1 + Cr:i‘g.>>SW\ a
il = (_0_50"
V = €el(1+ cok?E ) Sh&
Mue*Se
A _ )
F=t/Celar atid))

(3.1)
(8.2)

(9.1)
(9.2)
(9.3)
(9.4)

This then gives the result for first and second order toun-~

dary conditions:

F; = sIn*&
Go = Cosa'
% = (1 + Cst}c‘/”éég) sSinto
R = 1/(1+ ot Made.)
Pr = YVMalee ~ (1 +cot?§/Muled)sin&
Uy =0
Aﬁ = 0
h<o

(10.1)
(10.2)
(10.3)
(10.4)
(10.5)
(10.6)
(10.7)
(10.8)

Substituting (4e1=k.4) into (5.1-5.4) and then collecting

terms of like order in €e we obtain
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First Order Problem

~ i
Fo = ’P\o ~ _%_ fuo* d\l” ' (11.1) 5
°/ ¥ | (11.2) %
= Po Pox 2
l’ fo = Pofem o (11.3)
: u° — Uo*
| Vo = uo Ry (11.4)
| ’ e ,2 (11.5)
\60 = d v
] \P ﬁouo ro
| Second Order Problem ,
| v
-- -'zz
P = P1 j[mgz +.L3_n + ma(k‘gorn 3ocosc')]d‘P (12.1) .
3 Y !
o e P = Pn/ o) P .
Vg = uo_sé:_ + Kog’g Vo + Vc(ui/(h) (12.5)
.B 4 o A Ug + r
S&\F = m (P‘/fo + /o 3-/"'0)
Equations (11.1)to (12.5) describe all the properties of in-
terest near the shock, with an error O(CG ) \
External Layer - Region 4 Analysis
Bush 16, has determined from these results that e'quations

(11.1) to (12.5) are not valid at the contact surface due to

the change in order of magnitude of streamline velocity and

hence another expansion is required. Following his results,
we derive the system of equations valid in the contact sur-

: L%
face region with an error O(ee a)




The expansions for the variables in this region are:

i w = 6;/1 "u‘o + €Ee Us. #r awu g (T3 )
V = € ‘\70 + eeS/z ‘\Z. L (13.2)

3 P=F + €t (13.3)
f - ﬁ/c‘ + .F" + e (13.4) ;
F T oo+ €Ml b (13.5)
i 4 4 Ko'go €r + - (13.6)

< =% (13.7)

f a’ - e‘yg_"g: (13.8)

These will be substituted into the governing equations (5.1)
to (5.4). The resulting systems of equations are:

First order system of equations

P = O (14.1)
ook + Volk + & 2B = o :
U x+o% ﬁ.s% (14.2)
,, B/ = Pox/Fin (14.3)
E egc ] -+ B o '% = O
: X 3§
: g, Second order system of equations
r: =0 (15.1)
WAL + WG + AW + W+ (15
o ;%i d * £y
e W -~ F 9B =o0
Y3 ‘%’* 5% (15.3)
Fx"'voﬁ;.v/ﬁog"'( _&‘1)” )
° Po* P°¥
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We can extract from (lbw.l) to (15.4)

First order results

Po = SNV - (16.1)
W = Uow - 2}'32,,%0},, ln'ﬁo/ﬁw (16.2)

ﬁ; = $°?°*/ P:* (16.3)

Second order results*

Fr = P00 (17.1)
A~ Ao ~ o ~ 2 [~ -
RUoUas = 2Uox Uay — ,%iﬁn%o—(%:—* (17.2)
8 Bk e

=% - e (17.3)
Py = Pofaw +(B2 - Pax)Ru P/ B
AL AN

These body layer results must be matched to the external 1la--
yer region 2 results in an intermediate region where both ex-

pansions are valid.

* {/: is not considered since it does not alfect the calcu=—
lation of P,Y to error greater than ogMand is itself very
small of OCeM:
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We now demonstrate matching for the variables P;j’ and W ,

Matching occurs within the intermediate region defined by 71 .

In this region

'||m8,—->0 hw\g""w

€e»0 e

In terms of the variables P, and q))?*with 9, ¢ ot OfL)we have

from the expression for layer thickness, (7.5),

o(e*

Px =0 By

The order of 7( must then fall in the range

olel?*)< N <o

Following Cole23, matching will be achieved if for each power

of €e we have

wm (F-F) so0
€e>0O

where f is the variable of interest to be matched, Taking

the matching of the pressure first

m  (B(3) - p§,%~0) 30

€e»O
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Therefore, the pressuredin the body layer is equal to the
pressure at the inner boundary of the external layer. A com=-
posite expansion valid in both regions-can be determined by
subtracting the common term to both expansions which is the
pressure at the contact surface. The correct pressure dis-
tribution will then be that derived from the external flow.

For matching of the density, we must have
lim (F(@’@*"M) -f(g’?:q?*"'n%n» 20
€+ Q €'

From (16.3) and (17.3) we have

€e

Since P’ and ?1, are just functions of 9 thenF(ﬁ) there-

fore

o (f(cy) £(§.9) 30

The density within the body layer is then equal to that at

the inner boundary of the external layer. As in the case of
the pressure distribution, the uniformly valid density distri-
bution is simply given by that derived for the external layer.
The velocity now has to be matched. Once again, as for fD and

jb y we must find

33
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For the body layer, we have

Uox = Ou ?stf = ja;*' =1 Usx = O
F\i*:'—i-k i .Pl*:.

MaoeE e
Under the above conditions CI from (16.2) and (17.2) becomes
-~ Y > 2 ~ g V2
T = e* (B4 - 2nPB))

ﬁ.eL( 1/3(3(131(9’ ~ PO 3z, " >) B
(82~ 2n Pu(B)) (_‘\_11236: 1_) ln'ﬁ,,(@»

The near shock expression for the velocity is from (11.3) and

(12.3)

‘% w = 63,; - %%%g,\?? F@/%kn‘ %

For matching in the intermediate region ]Z we transform the

independent variables such that

*-enn > © €e » O
€./

Ox = e,,.,m 20 Q= Pt PC € >0
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The matching condition then becomes

J: o \? _%a
lina ( Ee.z( ____,_E —. (n €e
€>0 QV" Sun N 2Oup °

e (SPYR + e -1~ (Yhze. 1) Info)
Vo _ ~'3-3/?.+._,)

(Bagll - nPoe.

€= Gan 2 Gunn>
- e,u-nn + €Ee In Eo(@go> ) > O
Sun N
The above can be seen to match to error (6,/2') « A compo-

site expansion valid in both regions is then

2 1/ (18.1)
(6s% — 2€eln Po(gp,o)) e

€e ( Po*/ﬁ:*'t’l P°/Po* - 'h Pb(@:o))
(6x? - 2€eln po(@0))"?

The layer thickness can now be calculated from

y - (fur

Once the radius of curvature and position of the shock are

known, then all the layer properties may be calculated.
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Now that we have the results for the external flow away from
the axis, we will now determine if they apply in the region

near the axis. From the external flow, the velocity parallel

to the shock is given by
”
* U = Ox - Reeln FO(C}?,O)

As we approachthe axis both @3 and Py, as well as Ox be-
come smaller than QL) . For this situation, the expansions
based on the zbove quantities being of order one are then no
longer valid and new expansions must be obtained. It is of
importance to develop an accurate solution in this near axis
region as the final matching of the external stream layer flow
and jet layer flow depend on knowing the initial locations ' ?
and radii of curvature of the shock surfaces near the axis of

symmetry. b

External Layer - Region 1 Analysis
To establish these initial values for the external flow, it

is convenient to determine the shock layer thickness and con- :
tact surface pressure distribution in an analytic form. This ' i
leads us to describe the external shock as an expansion in

A,
even powers of 9) for the region near the axis. The expan-

sion is

P

1

"
N
+
'3

=2
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It is sufficient to retéin only the first two of the above
terms for accuracy consistent with the number of terms in the
dependent variable expansions. The expansions for the de-
pendent variables which give the relevant physical behavior

in the near axis case and are consistent with the shock re-

lations are

P + €epi +

4

Po'fec + p1 +

- ee'/z uol + eg%’z ul.( 4 e
/
= €e Vo, + éez Vi + -

- éé/ax / % - e.e, 3/(

Inserting th> above in equations (7.1) = (7.5), we obtain for

X < £
"

the first order results

%&,‘% ='Q (19.1)

P/ = Péx/Pox (19.2)

Ue! = Uox (19.3)
\/o’ = L(o/ - o’ (19.4)
! IAB' (1905)
g = | =t
le) PO uo "o
For the second order, we obtain ]
'BP; = kU + 2w
ro W, © 0 'S'xgl (20.1) .

(20.2)

E%-131*"+ ( ! .E%g:)f%glféin
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) ! 2 _ Y, - )
2Uo 4y + Vo , - RUoy Uy +V0'lt 2"(% Pox (20.3)

WV
pi=[oe (g e g ) e
O*fb W'k S ,u° o

The boundary conditions obtained from (1.1) = (1.4) are

Pox = fou =1  Usw = Qull-2ae) Veu=1

W =-(1+ Pu“(1-20)° - Y/ miee )
P =T @) g = - 07020076

x
For Rz 1+ae®’ (19.1 to 19.5) and (20.1 to 20.4) give for

first order

Po’ = Po =1 ’ (21.1)
Ue = (1-2ae) Py (21.2)
= (pu/®')* (21.3)

- - O/ B (21.)
m(l Pu/3’)

For second order, we have

p= =(1+ §-20* - 1/Mate) —

(1-20)*(3*~ u2§Ys - (- Qi/p)*))

_91' - !I-Znﬂa?'z +(cp'3 @'zXI-Zae)z'— (22.3)
et (ag gt - oy -1 (- 9,09

:5
u; = 1- zqe)zqz.( L———)j -2 (-? 2(1 Zae)a'
(@ -22(F - PV )s— (1 - /5)" /=) )2z

(22.1)
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External Layer - Region 3 Analysis

As in the case away from the axis, we must develop a body
layer solution near the contact surface. The relevant ex—

pansions for the variables in this region are

p = P"" + €e P,," +

P = piree + p o+
W = €eWU" +

vV = ég"Vo“ +

ya

X = €ex” 4 = €&y

Substituting the above in the equations (7.1) to (7.5), and

collecting terms of like power in €e, we obtain for first

order results

} " =
Sk = © (23.1)

Po/p = Pow/Poy (23.2)

For second order results

Wi =0

W T ’ (24.1)

Wo"* = Wey” + 2(P1y - P1") (2,.2)
" i ]} " 1y n ” " (2,+ ’ 3)
1 TP fax +(Pi _Pix)ps

f. R “Po Po;")_!;é:%

The boundary conditions which must be applied are

Pox' = fox =L Uow = (1 - 2a¢) Pur




SRR e

F"‘:“ = L/M2ee -1

The final results which must be matched to the near axis outer

4 region.case are then

Po = Po (X) (25.1)
o' = L1100 (25.2)
pa’ = PLCX) (25.3)
" " (25.4)
3 f+ = fa Cx) ;

"

Uo" = ((1-24e)* P~ + 2(Poy - Pi')) (25: 5)

Following the same procedure as in the away from the axis

case, matching requires that

P:CX) = PJ =1 ;

(26.1)
PeCx) = po’ = 1 ; 2 (26.2) |
Pl =pi@o) = - (5 + 4P 2l ey
P PG00 4812097 + & (2651)

The values obtained for (26.3) and (26.4) are simply those de~ ;
rived from the near shock region expressions evaluated at the

contact surface. The value of Lh:is then

X Ay
e’ = (@ -2 g™ + 2(-% + 59 (-2a9) (26.5)

g s SE 8 s v
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Matching to outer layer results, we require that

Vi (U‘ -H"> >0

Ce"o

lw. (e'/a(l-;ﬂe)?(n +_eg."’_’:____(-2.(1-zcae)"%’)?’/é —

B (P laad+ (-2ad (@ - 9327/57)/5-

1-(1- 94'0Y§™)) - € (@-2ae Qézf ¥
2.(-31-@ (1-za=)2-z)) + € (_1)**)

2(1- Zae) EV2

Expanding the square root

» (ee"‘(t’m)%n +2_:(e_e_3f‘_"__5(-2 1-2ae “%Sns

Ee>O

5%2 9 -2a0*+ Q- 20¢)* (9"- 9 0/6 /s —

_;2,_'_(1 = 7(‘*/@"') ~ €e <Q. -2ae)PnN/ec’> + .
- e g - |

ge)* -
2%3”3(4/390 (1-2 1/2.) 2@ zq.)( ))

¥¥* From boundary conditions derived on the basis of mass flow
through body layer
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It is seen that matching is assured. A uniformly valid re-

sult for velocity in both regions is then

1/2
(ée'/‘%((i ‘R.ae’-@* + 2€=O:Lg) *(1-2ae _%))

2 (_%(1-2.%)‘\‘ ;‘ __2(_»\:2.(1 2Qc)a+(1 . ) (A,z
2p/s -1 - TP 4 (3 -2 1))/

A2 orh *e 1 V2
2,((1-2.%) Qp + 2.&(53—9’(1-2%) —2-_)) (27.1)

Using the uniformly valid results, we calculate the layer

thickness from (22.2) (27.1) and (7.5), which gives

((1+%e W2 —(_3_6)1/2) + € 2.6

]
& T @20

11 1 D* (28.1)
+ &a-20(fg + 15+ Sa.e )T
4

The contact surface pressure distribution is given by (21,1)
and (22.1)

B - - R, A2 + > "
P‘s =1 % (l ZQe) g_? €e ﬁé—a (28.2)

Expressions (28.1) and (28.2) are then used in a scheme, out-
lined in Appendix A, which determines the external shock ra-

dius of curvature and position along the axis of symmetry,

for given external flow and Jjet conditions. These values are

then used as initial conditions for determining flow proper-

ties away from the axis.
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The solutions found for regions 1 and 3 as the variable

@' tends to infinity must match the solution found for re-~
gions 2 and 4 as @ vanishes, If matching is achieved, then
we have proof that the expansions for the region near the

axis was the correct one.

For this analysis, a composite expansion for the near axis

and away from axis regions is not sought. Therefore a match~
ing of these regions for the special case of a spherical shock
will demonstrate the consistency of the expansions and will in-
volve a much smaller calculational effort than if the general

shock case were attempted.

Y

The away from axis results, equations (12.1), (12.2), (18.1),

. o~
for a spherical shock and small ? are

ut = Qu” = 9uY3 + ee(PFL -Pu/35 - PuT) 1
e LA JREE L
RS T L
+.3&€e%i: - & "z :

4
= 2 = - 13 = ;
(19 -g @) -y 40P
k) 4 A 3 %
- - LWy 4+ R + o —Qi; + (1 + Qg

-9) + (im0 (1 -0k 40 eigsed)




e =

The near axis results for a spherical shock, Qe=Q , from

equations (27.1), (21.1), (22. 1) and (22, 2) are given by

u*= €e P + e (- -2(-0""+ Zb_’f_}’&_’ég’?_’)
- (1 -d59")

ID = 1 - €2 "“'1‘/36.:@12 + 6e%3/3$,+ EC/Ma;ee
= &%’.7@”3

p= 1+ Ee Pic/Mod €e + eg(@a&’-—@") ~ €e(
@lt_gl!j«, - 32- ( 1 - @*I/@/)‘*))

3

T Y

Following the same matching procedure as was outlined for re-
gions 1 and 3 and 2 and 4, we define a variable '}z which des~
cribes an intermediate region where both the away from axis

]
and near axis expansions are valid. For this case,O0, N <o)

and therefore for lematching

2o 4 b Aa _m3 _M2n
e':v:()(@,:,m L Qup* + Ré€e (Py N %— %énﬁ; %177)

- €Qupl -er(-4 M +1-(%11>"'-—2.(
%'%"(M— QL) + (1(%19):»0

Y 3Ce 9)}

Matching is assured for W,
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For P we have

b, (1 - em -uginys « oinsady - Gigs |
—~€e @iﬂ‘/ﬂ&ee + 46‘?"1@7[7?1/3 - € @1"727‘2%2
- €PunNY/39, + &/eMa, - eeCP;*i/z@nq %
16e¢*‘n77‘/3¢n’ - €e ?;” 72/2¢”a 1 + Efa +
APy nY3 — € PNV B Pew — €steaME.
cPuh /2By )0

Therefore, matching of |> to this order is assured.
For f) we have

el'_':g( 1 - 49°nY3 + @5171‘/3¢h - %?zh‘(l/n:,ee = 1) |
+ € (-1 + WP (1 - tMdete - 13/12) + Y2 +
HTnPenh/3 — TP nY/ P12 = PgNY35n — Pun/235
t2Qup N3Py + &/ — €Ph/Fn -1 —
PN/ Masee = (Pup -P5)n* + (Pn/s - %:”%35??1
~€e/2(1 - %tz/@n"») =0

O

Therefore, matchingf to this order is assured.
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Internal Layer - Region 6 Analysis
We start the analysis from the shock relations, which are:

"S = Poi + 8¢ Peos Me: sinzd (1 - &) (29.1) :
~ A A~ i
.= Pui/€ (29.2)

Q= Uoi cos@ (29.3)
V z €Ux;sng (29.4)
2 = ¥i-1 ) (29.5)
€& = ¥.- + ;_

r:'u. (‘r{-&?)aﬁ,g,_- s\nig |

. . A A ~ ,
- Unlike the external uniform stream case fla) Hoo;, Peo. are not
constants but functions of the undisturbed plume flow. Their

functional relationships are determined by the assumed source

distribution

A N A
coi = P S8 1% (30.1)
f e (30.2)
Peoi = Pm.,@oo../ eom) Va
~ 1 M3e) - 2\ (30.3)
Mai = (F(Ses ‘3-3,,,) (s "Rl W) Py
where n = b/(¥-1)

O = ({BEL -1)T - @(hﬁ/%(n&-z} + i:a%ﬂ/n;,.-x)

St A g Sy

We now expand the boundary conditions for€:+0, H,,.+oo such that

et.MQ -» 0(1.) « This will then indicate the orders ‘?

i

of magnitude of the variables within the layer near the shock. :
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It is hoped that the orders of magnitude found for the vari-
ables will be valid through to the contact surface. If this
is not the case, then the solution based on the orders of mag-
nitude near the shock will break down and a second expansion
valid near the contact surface will be required. Expanding

the undisturbed plume parameters, we find that

é“’-b-)"‘ ~ Of%- ) |
| Beo =\I§5¥: (- o B et 1)) -+ fan i ~o(§.?"7;

When applied to (30.1),(30.2) and (30.3), we obtain

-footo?_i Tz%n ~ o(1) (31.1)
Pm' = Pauo %gﬁw ~ O(l) (31.2)

ﬂ b’.- ﬁz%.,) (14‘_.;__"1»(6) .Z._ ~O( )(31-3)

The first order expressions, (31.1), (31.2), and (31.3), are
\

then introduced into the expanded form of the Rankine-Hugoniot ]
relations, (29.1), (29.2), (29.3), (29.4) and (29.5), which
then give the order of magnitude results
~ [} o~ 1 z-
O v

-~ O(éc.'o) Umi

where © is the angle the free stream makes with the direction

normal to the shock.
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At the axis of symmetry, €(e is the density ratio across the

3 3] ’ — x‘-l ._L——-
shock and is given by €. %{_:I -+ Moot . Up to

this point, the magnitude of the velocity a parallel to
the shock has not been determined in terms of € ; however,
its lower bound can be determined from the condition that the
shock layer is of zero thickness in the limit as €/=+ O and,
therefore, the flow must be turned 90 degrees upon crossing

the shock. The deflection angle is given by

A A~
tan & = (._ao:émté-_l)giﬁ_
E‘%}‘ ot — (goo':sm’g -1)

N\

where & =3% ='9 for near normal shock ©<<1 Me>> 1

tan§ = cos*O tan® = e > 00

(Bir: - c_osze) 4+ -1 +0%*
2 .
This then yields

fim e fe's)
I Je) O@—’;%}-ec’o + e=>

We can conclude that © > O(€le) and is obviously less than

O(1) . This result can be written as

w = olewn) LSm>0

The dependent variables can now beé expanded in terms of € ,

L a
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following the first order magnitudes found from the shock re-~

lations. The non~dimensionalized expansions will then be:

P/poolea; = Po + €i"P1 +€igPa + -t
F/foio = Po/€ic + €"MPy + €L p, +
W/ lewi = €"Uo + €0*"Us + €:° U + -+

V/ umt. - e‘.o Vo + 6‘:°M+1V1 + écozm+1 Vz +

It is assumed that X will be of order one, from geometry,and

% will depend on €¢y to some power n' The unknown pow-—
ers m and n’ will be determined by requiring that the govern-
ing equations, when written in terms of €/ ,' yield a physic-
ally reasonable non-trivial system of equations. The govern—

ing equations are:

E.%Lé(r + B%/Sr:_li =0 continuity
! Hvdu — + 1 =0 t
L&g& + V%__% Kuv f%i X momentum
uy + Hvy + kouz+H?p =0 moment um
) % 75T d o
uope® + Hvap/e® = o &
DX 3‘6’
where KK is the radii of curvature of the shock surface and

H= l-K.g. is che ratio of the radius of curvature of a constant

p surface, with respect to the shock curvature at a given

value of X.
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Substituting the expansions into the governing equations, we

obtain the following results relating the unknowns m and n%

P = o(e™)
3, =, O(eu )~ O(éc.o )

I
€ia T = O(eio i ) continuity

X momentum

? momentum

Applying the source condition '%%q.‘: O(l)we find that m = 3.
It then follows that n'= 3 from the other two relationships.
Since 6=% -AB is now found to be proportional to 6.,':/2' ’
then in the limit as €/,»©, A must equal T/2 . The

shock surface is then a spherical shell which is centered at

the jet exit. The magnitude of the pe~turbation from this
spherical shell will then be derived by the use of the known
value ¢f O :0(5¢‘:h). The radius can be written as Rz 1 + G(x)
From this, the value of © can be calculated R(x) GCX) éhe
The magnitude of G(X) is then O(&c’e )which then leads to

the result R(X) = 1 + Fex) €% . This will be the

form used for R(®) . With the values of m and n’established

the expansions are
P = b + PLEL? + Pa€is *
ﬂ ‘Po/€co + fl/ﬁ’vz =+ PZ"'

U= eL°/2u°+ € Ug + ém U = -

<l
|}

€ioVo + €i2Vy + €42V, + -

€L y X = X

og!
()]
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The flow equations become considerably simplified for inte-

gration across the layer if they are written in terms of the

Mises variables X,\‘P .

The distance downstream is ¥ and Y is the streamfunction.

The flow equations in this coordinate system are

Hr‘%‘p‘g = kKU + %ﬁ( (32.1)y momen-

tum eguation

i+v? + i p = C(‘P) (32.2) inte-
Z brd P grated %X mo-
mentum
P/‘szr = D(W) (32.3) energy
-equation
d I | ' (32.4) stream- 1
> - pur function defi- q
nitions which ;
satisfies con- ‘
- tinuity direct-
Ho=1-ky ly
® - HX .
% = Hx (32.5)

After substitution of these expansions and introducing an ex-

g s it

pansion for '3, and F in terms of X and ¥ and collecting
terms of like order, we then develop the following system of
equations.

First Order Expressions
Momentum equation across layer

>pg - (33.1)
g =0
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Integrated momentum equation
Uo® = Uo; — RLPow ‘Vl 4%* (33.2)
. SPow

Integrated energy equation

P° .“:_Fo (3303)

Definitions of streamfunction equations

9 = = 1 (33.4)
%3“'9‘3 fouo o

Definition of streamfunction

R = Vo (33.5)
%3;- We

For the second order results, we obtain for the momentum

equation across layer

dpr = kolo (34.1)
Y Mo
Integrated momentum equation

RUoUy = 2UoyUsy = RPow Pi (34.2)
Fow po

- 3 ooty Seo

e s
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Integrated energy equation

Pr = £ | (34.3)

Definition of streamfunction equations

E&_

U1 T
Foior, (e %+ 2) o

Definition of streamfunction

b;x = KoYoVo + Vi = VpUa (3L.5)
X3 OB&T‘&‘ U’: Ue2

For the third order results, we obtain momentum equation

across layer

‘;P-- Kor%:. +a_2_s_g+ Ma((,mgﬂ, "'1)(35 )

\

Integrated momentum equation

Us® + 2U2U, + Voo = ZUgale, + Uz, +(35.2)
Vo;- -+ 2‘&!82! ln e - g_'%zg lh s -
PO*" %ﬂ L %
2
2 P _ an) = .=l Qn )
&ﬁ(PO R‘ 6(0 %
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Integrated energy equation
R R G R
U

Definitions of streamfunction

+ B +Paa + L3 U

%%. = fouo'—o ( (Po + u-b o _Po"h ‘Pouo
um) (fi—; + I'Ff; + L*_*-) > (35.4)

We must apply the expanded shock boundary conditions to the

outer edge of the layer. Tn the limit as €o 20 , M+ ®
kS

such that € Ma;, = O(1) we obtain

First order results

,ﬁo osn]%%c (36.1)
P = ees” g@m (36.2)
G (36.3)
(36.4)
(36.5)
(37.1)

(37.2)




. = -F'F (37.3)
{}L = O\ - (37.4)

Third order results

cos U&(BF -1 - F -+ eu) (38.1)

-y)
i

F= °°5"].Iz%9(3 F* * P, L (>r2r:)r1 *)x

o
b*§ -1V e - F/2) (38.2)
G, = FF' - F'%/e (38.3)
gz = (38.4)

Before we integrate the equations, we introduce another
transformation of the independent variable \P + This vari-
able describes the streamfunction in terms of the position
at which the streamline has crossed the shock. It is de-

fined from the source conditions as:

Px
= f cos" TIOx SinQwe d@ah (39.1)
s 20

A point within the layer will then be described by the co-
ordinates ( ®, Pw) . Substitusing (36.1 to 39.1) in the

equations (33.1 to 35.4) and integrating across the layer

we obtain
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First crder system

h— (=] L ) | .
Po = cos 12[80 (L0.1)
PQ = Cps“gg?’ao (40.2)
| 12 1/2
w = (F = 2ln Po/Po...) (40.3)

% forOI cos %sm (L0.14)

Vo = Wo %% (ho-5)

Second order system

CH
Py = ~2Fcs"I® + %L.uocos‘%’smg&d%(hl.l)
Ug = _?3__ -ZF'ZF - 2P1/Po) (41.2)
pr = Py (41.3)
3+ = P,roL“"“E%&““ sefadge (4 e 4 ) G20)

W (g v ogu) 049 o

Third order system

pr = cs"m@ (3F* -1 - F'* + (42.1)

P T T

1 + fE;___+-1-§_\,"g+ U £y
Mae Edo Q@ ? b

(r‘o K Yo = rz.)) cos” sm% d P
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P2 = pPol(P2/po - PsP1/pe +(f;/f°)” -
(P’-*/Po* e faik/fO» + lj.s.e::%\n&;)) (L2 2)

U, = 1/2.Uo (?—uzyuo.‘, + u& + Vo% - Uy - V.2

(2 Porfpoi) Pl Brbon = 2 pan /o In Py (12.3)
ZPowon (Pr/po = Popuy) =5 (In Povian)™ )

A

9
Ya = L/rp %f“"l,f%:m?* 1w (- (%Z‘ + Y2 4

fa. + £ars
L8 + Ug + Uil) + L 4+ UL 4

Te Peolo %:Toi uo\"o) (%o— Wo

'8

Vo
Examining the above integrals, we note that the calculated
variables remain finite and non-zero from the vicinity of
the shock through to the contact surface. This indicates
that the solution is uniformly valid. We now must exam-
ine the behavior of the solution as we approach the axis
of symmetry. This is important since in order to evaluate

the matching of the shock layers we must determine the ini-

tial radius of curvature of the shock surface, as well as
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its position in space. This requires that we know both la-
yer thickness and contact surface pressure in an analytic
form so that the matching of contact surface pressure and
position can be determined. For the case when R(x) = 1.0
the variables can be expanded in even powers of 9 near the
axis, and then integrated across the layer. These results
will then be used to illustrate the change in order of mag-

nitude of some of the dependent variables near the axis of
symmetry.

From the source conditions, we can write for small Qw, &
R
which then leads to the first order results
Po = Pe= L - ()P
B, = (né&)z(§z_ %a.)>y?.

3o = (Y C -Gve))"
vo = (9w/3)*
The second order results then become
Px B * %w("?z ?:)J/z |
P1 -‘--ﬁ-gew(@ - )Y
us = 1/35 (P* - g’k‘)




It can be seen that as we approach the axis g*, @ -» O(é Ya)

.
to j

and .
> € U = 0feg.)
é(:o VO = O(et'o)

u

Y,

P = Pot+ €upPr = 1 + ole,)
p o=
X

P

= Po/€lo * Prled® = Ol/e.) + 0OQ)
olei) y = ole B I

i

The change in orders of magnitude of the variables then ne-

cessitates that a new expansion procedure be applied. To

first order P,f and VY do not change; however, WL and X

are altered and the new expansions must reflect this,




Interunal Layer = Region 5 Analysis

The shock position in this region is described by an expan-
”~

sion in terms of even powers of 97 away from the axis;i.e.,

~ 2 ~
R=1+ Q€+ a,€020%+ -~
Based once again on the shock relations, we can expand the

dependent variables in the form

W= Ello + € Uy +

V = €iVo + €5 Vot -
P ?S; + ‘EioF;L + 8a"

P =F°/&Lo+Fz+""
x = Xewr y = ’géco/"

Substituting the above in the governing equations, we obtain

the first order system

Qo Vo B_E. =0

%U‘é 4 —,%";Bi‘
Go2Va + VodVe + 1-2P1 = O
3 "% Py

These are of the same form as the constant density flow equa-

tions.
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We therefore apply a constant density flow solution method
to this first order system. A streamfunction is defined
which will satisfy the continuity equation identically. This
is
?%J = -Flo %:;E = "V%

If qj is known throughout the layer, then Uo and Ve can
be calculated. The equation forcp to this order of approxi-
mation is

20%) + 2(Yg) = -3

-X 3R Btr X
Where'g is the vorticity within the layer. For an incom-
pressible flow, the circulation must remain constant through-
out the flow region and this leads to the constancy of the
product of vorticity and distance away from the axis. Not-
ing this, we can then develop the vorticity inside the layer

in terms of its wvalue at the shock and its radial position

within the flow. The result is
F =95 = - (@S 1?7
r

The equation that must be solved is then

P35(R) + Gk T




Substit,uting in a streamfunction of the form

Y = A‘q‘z‘g*# B+ CP '+ DY+ EZ® + F + G@‘g

| (b 1) i
| we find from (43.1) that |
T: z (
3 = - J_(h (:u'_ + qu‘ |
From the definition of the streamfunction we have "

i = R (15.1)
¥ =-%RQ (45.2)
Yy |

From (L5.1) we find

- (M) +4a)F G + 2¢T + 26FF. = "% .
(16.1) _
At gg = O which is the shock surface, we have T‘/'o =1
which then gives from (46.1) C=1/2 1
From (45.2) we find = (n@ér'-r‘-lai)@zg +D+ G@z = ~Fo Uo

at the shock ?" =0 Ue = ZQI.? and from (47.1)
; we obtain
b=0 G = -2q




These results then give us the first order velocity compo-

nents in this region.

Vo = 1 - Haig, = (”(lajéi.)z"'qq‘) g'z (L8.1)

Uo = O ((w@leyw ‘-!Q{)Tai-t- 2aa) (48.2)
and P° = .P" = W

The normal coordinate E} to first order as a function of‘qs*

A
and @ can now be calculated from
2% = Vo (L9.1)
? Ue

Substituting in Vo and We in (49.1) and integrating, we

obtain after applying the shock boundary conditions

1 - HaiJe - (@Y +H20)Fe = (@/5)"

or

Yo = —Ha: + \ﬁéa;z—q(h@g—.)%%:X@‘- 1)
z(n(:ztg;)z_.. :.m) (50.1)

The pressure field can now be calculated from the known ve-

locity field given by (48.1) and (48.2). We must integrate
the streamwise momentum equation to obtain the variation of

pressure along the streamlines with velocity. This result is

U2 +Vo® = Tog + Vou — 2(Ps - -P—:.as) (51.1)
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From the shock relations

Pix = M]:;'oéio ~( %G%;):L+ 20:)52—- 1

Applying this to‘(Sl.l), we then obtain

'|51'= S Y2+ L/ Maei, ~ 9 /2 (("'(%;)1*"'“‘)5 * 2“92
~(1 - Hail,— (NEE*+4a) 80 )2 (52,1

From the conservation of entropy along streamlines relation-

ship, we also have

Ft = F; - F:.* +F“* (53.1)

Making use of the value of F&-Fiigand noting from the shock

relations that .131*: —(%(%Ie;)hmc)@: e can then write
forn(53:1)

Pr= 22038 = (1 -vacge - (nfe +4a0)3R) /2
_'@"((n(g;)*qu)'go + :aa.:)’yz_ + Yz -~
( 9@5;32*‘ an) @vz

The complete expansions for the dependent variables in the

near axis region can now be written

W = €l + 0lewd) (55.1)
vV = E,‘_QVa % 0(6"63) (55-2)
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P= 1+ €x(-%+ 'ﬁ:?'e";_%t ((n%;)z.,_ ‘4a:) Yo + zqf
- (1 - HaiGo - (nfgg)*+Ha)%%)* + o(ew)

P =Ele + 2000 - (1 ~Yarge ~ ( n(iz";qr-t- 402)33)72
-3 (B +Hai)Fe +20)%2 + Y2 -
(%(&)14' QQ{,) ?*z + O(et'o) (55.4) ,

These variables in the linmit as 6,@* tenc to infinity must
match the variables obtained from the equations away from
the axis as the variables@;% vanish. If matching is ac-
hieved, then we have proof that the expansion for the region
neer the axis was the correct one. Since in this analysis

a composite expansion for the near and far away from the axis
regions is not sought, then a matching of the solutions for
@ cpecial case will be adequate to indicate the correctness
of the expansions and will be easier to perform than a gen-
eral matching procedure. The special case chosen is that
for a spherical shock. For this case Al = O and the inner

expansions can be written as

p=1- € ~ €iln %’é;)z@;{g;*(‘"’(ﬁﬁ"z}%‘ 5’@%.)’9@( £6.1)
b -G ENEHET B e
U= €n@@) F g + Olew)* - (56.3)
V= en(l- nZ)RY) + 0k

(56.4)




For the away from axis region, we have the following equa-

tions for small @, P

F.
,P=
U
\'/

"

1- 5(5)'P" + olew) (57.1)
(t - 2E) ¥ e, + okl (57.2)
€™ E(IL;)9(1. @*/cp)‘) + Oles) (57.3)
= € ®/§)? + Ofen) (57.4)

Following the same matching procedure as that for the exter-
nal layer flow, we define a variable?] which describes an in-

termediate region where both the away from axis and near axis

expansions are valid.

since § = 0@ ana @ = Olew™) o oleik 71 < o)

In this region, we have

-~ = P /.
= ndy 7 = nones
then  lim @ -0 and |l [
€20 e X°)

Applying the above limiting procedure in the region of common

validity, we must have

i  (Fo - Fi) >0

€o-0
(?r‘ fixed

Where J:o and fﬂ denotes the various expansions for the vari- .

ables for the outer and inner region respectively.
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E latching v

; 2 T '/2

E lina (eto N - €L (.1 - h%qrgo.) )
E €ia0 n

F In the-intermediate region, it is known that
et = 2 (41 - @‘)z) '

| = () (1 - G

Therefore the above is zero in the limit, assuring matching.,

Matching W we can write
' :

A - Ya - 2 p:

lwm \ e h%‘y of] - €l \B 1—)%’1 1 ‘@ﬂ)))
e.;,w( Nl % 2 (&) on

Again, making use of the expression for g‘ we obtain match-

T . LI W L e o

ing for W .
Matching P

b (4 BETB- 2 g - e (Y L'

€lo*0
+ (1L - "(zeﬂjg:) - —;(ze,)z%: 77256-4}"- )

Introducing UYe again, we then achieve matching for
=} &

The above matching process has demonstrated the correctness
of the near axis expansion. e now use the more general ex-
pansions, (55.1t0 55.4) to determine the layer thickness and

contact surface pressure distribution near the axis. The

results are -




b e atoR oo el Lok e al i s d el e, oL e o B b T (T— TP

3 = e.’f"(\] (6a:*+ Y (4aq, + nggj) - 4ai)z/B* — €:e1-2a0) (%o (1) ¢)

+B/2)2/6% - €7(5(c- (< 1) ~ (2l + (D) (< - (er-0)%) +
e 1)(cs - (e + (~ep-2a02 (e n (-2 (@r-1)? |
(-‘t’) -) ((c .- ;‘k) i Bj:s))- e(‘% (5 cs(i - 25/2 )< L-{-q@(i z()c‘")g
(za;® - (%@e'; 2, 2a;> = (%;B%-E . F%)z(_&%z(%(cs_@._lfx,) =
(c2- :_)‘/z)) - @ ai*+ 1_) g_@%‘)z(% e3> L (c,_l)%) _ %: (c* -Cer- L)%_)) Szb 2

P= 1+ ciol-tz + 2/ Moy, €00 @2/2-((“%.)?"‘ Lm‘:) G t 2Qt'>z

gf-'-tqcl-r\llfoqit-o-'-#'\ * +da; = H{n *eHay
Y z(ne_ré”)zg(ﬁ)) a;) B \/(%} Ha)

c?* = Haqi*+ h(&\" +‘4a£' L = V;h(go;)z+ Ha: - Ha;*

H%)‘ + Hai

These expressions ( %} and F> ) will then be used in

Appendix (A) to derive matching conditions for the internal
and external layer near the axis of symmetry. From this pro-
cedure, we can extract internal shock and external ,shock ra-

dii of curvature and the positions of the shocks in space.,

This information will be sufficient starting conditions for

an integration across the layer of the away from the axis

equations. By this procedure, the full bow region, from the

axis to the corner region, may be calculated.




DISCUSSIO OF n&SULTS

From the analytical bow region results scaling parameters are
defined which can be used in experimental simulations and in
extensions of calculated results to other conditions. They
can be obtained by examiningz the first order results of the
bow analysis. For the internal flow, we find to the first ap-
proximation that the geometry of +the layer (i.e., shock posi-
tion and layer thickness) depends on the parameters R > €ie
Ocs(Mj,€n, ¥j) anc Rs, (T1,0e, n, X)) . To this list,
we must add external layer parameters €e and Rse . How-
ever, from the matching of contact surface position, it is
determined that R,e is a function of Rs.-,,em,n,e;,, and there-
fore only €e is added, giving as the significant. defining pa-
rameters of the bow region G, N, €o y€e , ngc . These
may be further reduced if we consider very high lMach number
flow for which €¢, and €e reduce to ¥y and ¥e . The geo-
metry of the flow is now independent of stream l'ach number.
For a correct experimental simulation, all of the above para-

meters should be matched between the actual system and the cx-

perimental setup.

Also, for a given system with fixed ambient and exhaust gas

composition (i.e., fixed ¥j, ¥e ) and nozzle conditions (i.e.,

Ya
fixed Ow,N ) the bow geometry will scale with Rs;‘o or TV for

all flight conditions (i.e., altitude, velocity) and system
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thrusts (i.e.,F%;). This last effect is illustrated in figure
L, which compares in a coordinate system which is reduced by
the scale Rs;_o experimentally determined 31792k bow region
geometries obtained at different values of TT . Also shovm

in figure (4) is a comparison between experimental results
carried out at nearly the same TV but with different exter—
nal flow IMach numbers. As can be seen, the agreement in
positions both for varying T and que is very good, indi-
cating that the scaling parameters are correct; and also that
for high Mach numbers the geometry is eflectively independ-

ent of stream lMach numbers.

The correctness of the scaling is further substantiated by ex-
amining figure (6) in Charwat and Faulmann®. In this figure,
many experimental values of axial bow layer thickness divided
by RSCo are plotted versus T . For both Moo¢= 2,75 and 7.1
it is shown that the above ratio becomes constant as TV becomes
large, indicating the correctness of the scaling parameter
FQsio . It should also be mentioned that the value of the
ratio reached for TY»»1 and Mee = 7.1 is in agreement with

the value obtained from figure (4).

Having established that the geometries of the shocks and con-
tact surface are fixed in a reduced coordinate system, we then
note that to first approximation all the nondimensionalized
flow variables will also scale sihce they are only functions

of (P, R/Ra¢o N,Ce, ¥, 8e vthich are fixed quantities for any

{
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given point in the flow if the nozzle conditions and exhaust

anc ambient gas composition are fixed.

SRR R R, @fﬁ%‘gﬁ

Another result of the analytic analysis of the bow region is
that it defines the accuracy of the Newtonian impact approxi-
mation.which was applied by Laurmann6 to this problem., In
his technique, the contact surface position is determined by

the balancing of Newtonian impact pressure along the contact

surface.

This approximation has been shown to yield good results for

surface pressure for the external bow region flow 25.

For the internal bow region layer flow, we must examine our
analytic solution to establish the accuracy of the Newtonian
impact theory in describing the surface pressure. From the
first order results, the layer thickness is a constant. Also,
to first order pressure is constant across the layer. The
actual contact surface pressure will then be determined by the
shock shape, which for constant layer thickness is the same

as the contact surface. Therefore, we vould expect the New-
tonian impact analysis to give reasonably good results for

the internal as well as the external flow contact surface pres-
sure. The contact surface shape in the bow region, as deter-
mined by the matching of the impact pressure across it, should

then be reasonably well predicted by Laurmann's6 analysis.
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To test this hypothesis the contact surface position predict-
ed by Newtonian impact analysis is compared in figure (5) with
the predictions made in this study and in reference (7) for a
characteristic bow interaction. The agreement shown is very
good, indicating the usefulness of this approximation to quick=-
ly obtain bow region geometry. The success of the technique

in this axisymmetric case gives one confidence in exteﬁaing
this simple technique to asymmetric bow region flows where

the angle of attack of the jet to the free stream is not large.
For the transonic corner and supersonic far field regions,
Laurmann's 6 technique must necessarily fail due to the tnick-
ening of the layers and the acceleration of the flow in these

regions.

A number of calculations of the bow region flow have been car-
ried out, utilizing the analyses outlined in the preceding
section and in Appendix A. These calculations have attempted
to: (i) compare predicted bow interactions with results from
an existing numerical technique; (ii) compare predictions
vith an experimental result by Zakkay7; (iii) determine the
variation of bow region geometries and pressure distributions
with variations in e and 8.,' (primary jet flow parameter's);
(iv) give detailed predicted properties for two cases which

are characteristic of "cold" jet and actual jet operation.
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In the comparison of the present predictions with those of
Rudman and Vaglio-Laurin7 identical stream and undisturbed

plume parameters were utilized. Predictions, which included

terms with errors O{€) and O(éci&)were made of flow field f
geometry and pressure, as well as the other variables of in- k

terest. As can be seen from figure (5), the present results it
and those calculated by the numericél téchﬁiqué of reference
(7) do not agree very well in position, although shapes are
similar. Also, the~zbmparison of pressure distributions in

figure (7) do not agree very weld. There are two possible

el i G e e o § i sl i o

Sl bie e 2 Lol i b S

sources of error which could cause the poor agreement shown. E
The first possibility is that the example calculated, with 4
Ec,xj = 1.4 is just too difficult a test for the present the-
ory, which is based on hav'ingg 8e, ¥y =1.0. Since the internal
flew solution proceeds in half powers of €., then for the ex-
ample calculated terms higher than the first are really not

% very small. This causes poor convergence of the solution,

' which is indicated by diminishing oscillations of the vari-
ables about their correct values as higher order terms are
added to the solution. This type of behavior is observed in
figure (7). However, figure (6) does not show this effect; E
and, therefore, this cannot be the total explanation for the

lack of agreement.

A possible source of error in the technique of reference (7)

is the imposition of a point interaction (i.e., non penetra-

8




tion) for the corner région in the calculations of reference
(7). As will be explained further in the section on the cor-
ner region, the point interaction assumption puts a constraint
on the bow region calculation, which could possibly over-em-—
phasize the corner region flows upstream influence on the bow
layer properties. This could result in the large difference in
internal layer thickness which is observed in figure (6). Tak-
ing the above two effects together, it is possible, within the
bounds of error of the present results, to show agreement bet-

ween geometry and pressure distribution.

It should be mentioned that the results of reference (7) have
been comparea favorably with the experimental results of Zak-
kay 7. However, the comparison is not definitive since the
analytical plume flow model used had an exponent of 2.5, which
has been shown in the section on jet exhaust models to be in

larg: error for the case calculated.

Good agreement between the prediction of bow region geometry
and the experimental results of Zakkay7 is shown in figure
(8). HNo linear scale was given in the experimental schlieren
photograph; and, therefore, it was necessary tq arbitrarily
scale the experimental and predicted results by setting the
jet to internal shock distances equal to each other. The

contact surface pressure distribution for this same case is
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shown in figure (9). Two other calculations were made for
these same conditions with the only difference being that

in the analytic plume model, exponents M = 5.0 and 2.5 were
used instead of the more correct 4.17 value. In figure (10),
these predictions show a marked sensitivity of bow region geo-
metry (i.e., shock and contact surface position) to plume
model exponent. The variation of the bow geometry with plume
exponent is larger than the error bounds of the solution in-
dicating that if accurate predictions of bow region properties
are to be obtained then the plume model used must also be very

accurate.

In noting the good agreement between the predicted and experi-
mental geometry, one is tempted to state that the calculated
flow properties must also be in good agreement with experi-
mental values. However, this is risky in that experience with
co-flowing plumes and the good agreement of the calculated
results of reference (7), using an incorrect plume model, with
experimental results show that the coarse geometry of the
interaction (i.e., shocks and contact surface) can be pre-
dicted relatively easily but in all probability the detailed
experimental flow properties are not so easily matched by cal-

culations.

Figures (11), (12), (13) and (14) show the effect of varying

e 8 . D
e and ©J) on bow geometry and contact surface pressure

distribution.




;;
E
F

From figure (11) it cag be seen that increasing ©Oeo from 125.5
degrees to 185.0 degrees, which could be accomplished by eith-
er increasing Gan or decreasing Pﬂj y results in a definite
increase in layer thickness both for the internal and external
flow. - Since external layer thickness is directly proportion-
al to contact surface radius of curvature, then an increase of
layer thickness indi:ates an increase in radius of curvature.
Consistent with the increase in contact surface radius of cur-
vature, we note from figure (12) an increase in contact sur-
face pressure with an increase in an. In general increases
in ©e with all other parameters fixed give increases in
contact surface radius of curvature, yielding a more blunt bow
region interaction. In figures (13) and (14) we can see the
effect of increasing 33 with all other parameters fixed. In-
creasing ¥j from 1.2 to 1.4 in figure (13) causes a definite
thickening of the internal and external layers. Also, fron
the contact surface pressure curves in figure (14) we note
that increasing Qj results in an increased pressure level.
Both of these effects are primarily the result of an increase
in radius of curvature of the contact surface. 1In conclusion,
an increase in either Owor ¥ for all other parameters fixed
causes an increase in radius of curvature of the contact sur—
face resulting in a more blunt bow interaction. In this case,
pressure, density and temperature within the layers do not

decay as rapidly as in the less blunt interaction case.




In figures (15-18) detailed distributions of flow propertics
for a "cold" jet and actual jet operation are given. The cold

/
jet case, shown in figures (15,16) would be representative of

a wind tunnel simulation where the ratio of jet to freestream
stagnation temperature is 2.0 and air is used as the jet gas.
The actual jet case shown in figures (17,18) is representative
of a real system that is operating at 150,000 ft. altitude,
whose jet gases are composed primarily of H20 and CO2  which
is modeled by setting Xj = 1.24 . The ratio of jet to free-
stream stagnation temperature is .75, which is representative

of the actual system.

As can be seen from figures (15) and (17), the flow geometry,

streamlines and isobars for the two cases are very similar.

However, from figures (16) and (18) we note wide differences
between the two cases. In figure (16) it can be ceen that

the velocity discontinuity between the internzl and external

flow is very small at the contact surface and conseguently,
mixing effects along it will be small. Je also note a mode-—
rate jump in density as we go from the external to internal
flow. Since pressure is equal across this surface, then the
above result indicates that we have a less dense and hotter
external layer flowing past a more dense and cooler internal

layer. 1In figure (18) we note some significant differences

from the "cold" jet case of figure (16). Here, we find that

there is a large velocity discontinuity which leads to strong
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mixing effects. Also, the very large discontinuity in den-
sity indicates that a very hot and low density external layer

is flowing past a much cooler and denser internal layer.

If heat transfer were allowed, there would be a heatinz up of
the cooler internal layer by the hot external layer. It can
be concluded that in the actual case mixing and heat trans-—

fer effects will be much larger than the experimental simula-

+ion case,

78

o




T T L T T L e e T gl e i Ty 7

ANALY3IS OF CORNER REGION

For an exact treatment of this region, the inviscid external

3
:
i
K
;
b
A

and internal layer bow flows, as well as the relativelyv —o0-
tionless core and the viscous mixing region separating the

core and bow flows, must be simultaneously calculated. The

Elh Mt | i i e

reasons for utilizing this coupled approach have been discus-
sed previously in references (2) and (3). Such a complex
treatment is beyond the scope of the present study and sim-
plified analyses are applied. Unlike the bow region and déwn~
stream region analysis (to be discussed), the corner rezion
flow is not amenable to analytic treatment because of its
transonic nature and complicated coupling with the core flow

and the viscous layer separating these regions.

An approach is then taken which will provide an estimate of

some of the flow characteristics within the corner region and
will also assess the significance of the corner region flow
on the bow and downstream region solutions. In brief, this
section will outline: (i) the siznificence of the corner
region flow on the bow region and downstrear flow properties
as calculated by their respective analyses; (ii) an engineer—
ing estimate of the pressure level in the core region; (iii) :
the location of the plume boundary based on this core pres-—
sure; (iv) the qualitative penetration of the intercepting
shock layer mass flow into the internal layer, and the loca- ;

tion of the internal layer sonic line.
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Before establishing thé significance of the corner region flow
to the bow and dovmstream flow solutions, a brief description
of the flow in the corner region will be given. Referring to
figure (19), the jet gases upon exiting the nozzle expand in-
to the  low, nearly constant pressure core flow. An intercept~
ing  shock and shock layer form which are identical to those
fo. a plwie in a quiescent ambient of the same pressure. This
intercepting shock and layer eventually intersect the strong
internal shock, resulting in a triple point shock configuration
similar to that found at the Ilach disc for plumes in a quies~
cent or co-flowing ambient. A complex system of shocks and
expansions are then generated within the internal and inter-
cepting shock layer, which accelerates and turns the flow in
the downstream direction. The viscous layer separating the
core and internal flow reattaches at a downstream location,
recompressing the flow to a pressure greater than that of the
core. All of the above flow processes interact, establish-

ing a unique geometry for the corner region. ‘

Having defined the corner interaction an order of magnitude

assessment of its effect on the bow and downstream flow so-

lutions will now be given.
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Simnificance of the Corner Rerion on the Bow and Downstrean
Solution

Since the bow region layers are thin and bounded by strong
shocks, then the flow properties within the layers are strong-
ly influenced by the local shock conditions and only weakly
influenced oy the conditions in the corner region near the
sonic point. ‘e can therefore conclude that the bow layer
properties can be calculated independently of the corner re-
gion without incurring serious error. Since, as is discus-
sed in the next section, the downstream flow depends on the
balancing of jet and external flow interaction forces along the
contact surface, then the significance of the corner region
flow on the downstream soluticn is assessed by determining the
axial force balance that would occur if the corner region flow

is included or neglected. For the case when it is neglected,

the jet flow is assumed to expand to its vacuum limiting angle,

O .

The particular example studied rerein is that given in a revort
by Rudman and Vaglio—Laurin7. "he axial force created by the

jet flow is given by
- (p3 (57 4A -fPﬁ,AA

Applying this to the cases with and without the corner region
and taking their difference divided by the total force of the

jet, we obtain

[ cos %q;snngacospdg) ?cosﬁf cos 'g'% snQ 497
f cos ]Ig_ sinPcosP ACP

(¢}

wa
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where -k < ? <~'1 and O<\P<9Rs
Substituting in the numerical values €= 130.45, Prs = 55 de-
grees, N = A.l?,‘?cw\’: -% we obtain

Jﬁéffk_ = .0425 or 4 percent

F-x total

This error is well below that created by using the approxinate

analytical source flow expression (1) which in some cases can

be in considerable error 15.

Since the details of the corner region flow are nct signifi-
cant to the calculation of bow or downstream properties, then
engineering estimates of core pressure, plume boundary and
penetration will be sufficient to approximate the corner re-

gion flow for this study.

Core Pressure

Qualitatively, the external and internal flows do not bend im—

mediately dovnstrcam after passing the intercepting shock 1a-

er boundary due to the consicerable lateral rnormentun inpart-
Y I

ed to the layers in the bow region. Instead, the external
shock moves continuously outward along with the bulk of the

external and internal layer mass flow, leavinzg behind in its

"wake" a low pressure (with respect to the shock value) flow

adjacent to the core region. On this basis, we would expect

the core pressure to be low and of the same order as ambient

pressure.
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In determining the core pressure, the experimental results of
Finley ? Charwat and Faulmannz, anc Jarvinen and Adams 26 will
be utilized. From figure (7) of Finley, it can be seen that

as TM is increased, the core pressure drops to a nearly con-
stant value. This behavior is also consistent with figure (11)
in Jarvinen and Adans and figure (15) in Charwat and Faulmann.

In our analysis, which is the limitinz case when TUSSL | the

core preseure will then be at a constant level for all values

of TY

These results are for exit llach numbers of 1.0, 2.6, A, BLE,
and 4.3 and freestream !lach numbers of 2.5, 2.75, .6 and 2.0 .

We therefore conclude that this behavior with TT does not de=-

pend on exit or freestream Mach number.

Noting the lack of dependency of the core pressure on ™ ror
TI»L we can now correlate all experimental results to estab-

lish the best value for P core. Fronm figure (20), it is seen

that the most general result, especially for high external

Mach number, would be F>core = 1. This result is reason-

able considering the wide variety of qu.»r1junder which
Elggna has been obtained and also in consideration of the

e
nonuniformity in pressure throughout the core region,
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Plume Boundary

As was mentioned previously, the plume develops in a re, -
of nearly constant pressure and, therefore, it is analogous
to the case of an underexpanded jet into a still ambient. Ta-
rious analytical approaches describing the location of the
boundary ol the pluie have been develoved . (for eg. see re-
ference 27 and reference 23). Ilost of them give reasonable
results near the nozzlc exit but diverge considerably from
the actual boundary avay from the exit. For this study, an
analytical technique gy is used vhich assumes a fixed plune
shape for all nozzles when the coordinates are nondimension-
alized with respect to plume boundary maximum radius and its
axial coordinate. The advantage of this method is that it
gives the correct boundary location not just near the nozzle
exit but far from it as well. The method relies on seting
up monentum and force balances between the exhaust and core
region gases. The shape of the plume when nondimensionalized

is represented well by
: V2 : J
= X /X n -lzn?(xm)
g/ gm = ((/xn) = Yen (2 Y

where 3 = 2.5 gives the "best" fit with numerical data. The

balance of lateral and axial momentum give respectively
Am

Z.Pw-efo %dx = Poj A« §1(Xm/l"-u¢)

PCOPG TrtZXw:-: POJ‘ pﬂ* }\z (Xm/r'*)
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where f; and §; are functions of the nozzle geometry and ex-

haust gas conditions. From the above expressions X/ 13 and
Ym/rx% can be found for any jet exit and ambient condition,
thereby giving the plume boundary. Tﬁis technique was uti-
lized.in locating the plume boundary for the example gziven
in Rudman and Vaglio-Laurin's 7 study. Cood agreement is
found with experimental results as can be seen in figure (53).
Since we are dealing with highly underexpanded plumes (i.e.,
T ) where the intercepting shock layer is thin, then this
boundary location is also assumed to be a good approximation

for the intercepting shock location.

Penetration of the Internal Layer ‘
Referring to figure (19), we can establish a qualitative des-

cription of the corner region flow. The reflected shock ema- ‘
nating from the triple point, at a, crosses the intercepting
shock layer and intersects the plume boundary at c. Since

the boundary must be at constant core pressure, then the shock
must be reversed and reflected as an expansion c-b. Crossing
- the layer, this expansion then intersects the slip stream sur-
face at b, being once again reflected and partially trans-
mitted as an expansion into the slightly supersonic internal
layer flow d. The surface b-a remains nearly straight since
only a small drop to sonic pressure over this region is ex-
pected, which requires very little turning along b-a of the
supersonic flow in region a-b-c. The internal flow sonic

point occurs at b because if it were sonic before this point
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the non divergence of the streamlines in this region would
unrealistically prevent the flow from accelerating further.
Also, the sonic point cannot lie beyond b because the di=-
verging nature of the flow vwould not allow sonic velocity

to be achieved frecm the initial subsonic state.

Within the slightly supersonic flow region, d, the trans-
mitted expansions b-c are reflected off the nearly constant
pressure sonic line surface as compressions. These return

to the intercepting shock layer and are transmitted to the
core region. The continual proc-ss of reflection, trans.is-
sion and interaction of these waves results in the rapic turn-
ing of the flow in the downstream direction as is illustrated
in figure (19). Some idea of the shape of the sonic line and
its 1limiting characteristics can be obtained by applying the

ideas developed by Hayes and Probstein 30 for blunt body flows

vl e

Taking W as the angle that the contact or slip stream sur-
face makes with the sonic line at these respective surfaces,

. i
we can write

v = ‘(_%*Qh,

(%ﬁk)b@
where @%)b,e = "?B,e— %b/ﬁ-b,e

and 4b,e is streamline velocity, %b,e vorticity and € and n
are the coordinates along and pérpendicular to the slip stream

and contact surface. At point b we have nearly a straight

: e L
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slip stream b-a and therefore the second term in (%gé)b is
negligible. Also, the shock is nearly spherical and in the
vicinity of point a the vorticity generated is small. Under
these conditions, (g—&)b: O and therefore w = Wz .t
b. Ap the contact surface, point e , different conditions
prevail. Using the first order expressions derived in the
bow region analysis section and assuming for simplicity that

the internal shock and contact surface are spherical in nat-

ure,then we can write in terms of nondimensionalized variables.

o = Jh - §
e = "(E&)D e = VP 287
Using Rudman's7 example, we can write
- -B T \2 _JyrlIL ) = )
(a'ﬁ\)e = -9 (h(ZB.eo Vn 26eo) '8‘3?
also, we have
= I =
('6955 Vn I5 = L.54
9S Je
The ratio of these expressions gives
tan W = 1,85 which for @ = 55° gives w = 62 degrees

Now that the sonic line angles are estimated at both bound-
aries, we can then sketch its location throughout the layc -
as shown in figure (19). The initial turning of the scnic :
line in the downstream direction from point b,due to centri-

fugal pressure gradient effects', is typical of the rapid tran-

sonic expansion occurring in ¢ and gives the sonic line its

87




characteristic s shape. The last limiting characteristic
lines which originate in regions d and f are also shown in
figure (19). Having obtained a qualitative estimate of the
penetration of the intercepting shock 1éyer into the internal

layer, we can now make an estimate of the actual penetration

e e il i e e e S il D R o e L T

for the example calculated by Rudman and Vaglio—Laurin7. The
first step is to estimate the intercepting shock layer thick-
ness which can be determired on the basis of mass flow con-

siderations. Subscripting layer properties by £ and utiliz-

ing standard notation for undisturbed plume quantities, we

can write
O
)01 Uy RTTRs sin8yg S,q -'—'ffoo; uoo;, ZTTR:Sth9 Ag’
71}

Substituting in the analytic expressions for Pwi and Uet

which can be derived from the analytical plume flow model,

and, letting
fa = ﬁégu(l + 1/2_) Ug = U (1 + €d/tan I7°)/2
(¥}
we obtain

&
_gﬁ__ = U e, [ cos"IR sng 4@
3
Seo

cos" :g%i_ sme,_(:\. + e,:o/+qn|7°)

For B0 = 130.45° ©a - 55° and €, = %_ we
have .§_&_ = 0627
Rsio

This value is characteristic of plumes where T(>>1 . The se-
cond step involves determining the reflected shock position
from the triple point solution. Using the initial conditions

Mo; = 9.2, B = 86° for the strong shock and 8= 20°
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for the intercepting shock, we obtain the reflected shock po-
31

sitior from D'Attorre”” which is shown in figure (8).

Assuming that the Mach number downstream from the reflected
shock is constant, we can then determine the initial reflected
expansion wave's position and intersection with the slip stream
surface. The position of this wave as shown in figure (8)
det'ines the extent of the penetration into the internal layer.
Unlike the point interaction or zero penetration model pro-
posed by Rudman and Vaglio-Laurin7, we note a considerable pe-
netration of the internal layer by the intercepting shock la-
yer flow. This fact is borne out experimentally in a study 32
on the similar problem of a jet impinging normally and at an
angle to a flat plate. The constraints on the‘numerical s0-

7

lution of Rudman and Vaglio-Laurin imposed by their assump-
tion of a point interaction (i.e., zero penetration) for the
corner region could be a source of considerable error in their

calculation of the bow region.

It should be mentioned that the large penetration indicated in

this study does not necessarily mean that the bow region flow

(¥

is strongly influenced by the corner region penetration. This

is because, in the absence of the corner region flow, the inter-

aal flow streamlines would penetrate the layer much like the
slip stream separating the internal and intercepting shock
layer flows. This can be seen by comparing streamlines ob-
tained from the bow analysis in figure (17) with the slip

stream position shown in figure (8).
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From the results presented a scaling criteria for the corner
region is now outlined. The méjor characteristic to be scaled
is the undisturbed plume boundary, which for a given nozzle
and exhaust gas composition depends on F%j/'Pme For an
exact simulation of the plume boundary, this ratio must be
matched. If, for a given system, it can be shown that the
plume boundary coordinates are proportional to s or TTVZ
then the plume boundary will scale like the bow region. The
29

technique used to locate the plume boundary normalizes the

geometry by Tm and Xw the plume maximum radius and its
axial location. When these are plotted as a function of
F%j/ﬁme it is found that

Va
Cm , Xm ©o¢ (l °j/Peoe)
(™ ik

Since VW is proportional to Poj /PoeMoe  then

2
e, X o TU " Meae
Ty T

Thus, if Mewe is fixed, then the plume boundary will scale

with Rs.‘c + The scaling of the bow region and plume boundary

then requires that X,‘ y Se . eao, n and Mcog be fixed over
the entire flight range. Since Meoe does not vary greatly

over a typical system trajectory, then the above scaling re-

quirements are satisfied for some systems of interest.

, 1 &b
This scaling result is substantiated by some experimenta%’daéa

in which the plume boundary triple point distance away from

the axis, when divided by the scale length Fesa,is nearly con-

stant for values of T from 30 to 627,
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FAR FTELD REGION ANALYSIS

The downstream flow region between the external shock and axis
of symmetry consists of supersoric layers bounded by mixing
regions and crossed by a wake recompression shock as is illus-

trated in schematic (3)

.mixing region

shock

— —

o mixing region
——c T SN\ _ 6 ree

Schematic (3)
This general problem cannot be handled by approximate analy-

tical techniques; therefore, we will seek to solve a reduced
problem within the framework of the assumptiors listed in the
introduction. This problem will involve:

1) the neglect of all mixing regions (wake
and shear surface)

2) the neglect of the recompression shock
Assumpticn 1) will be valid at moderate altitudes and 2) will
be reasonable since the recompression shock is weak compared

to the external shock. A schematic of the flow and notation

used is then: Ve o

ks -

Schematic (4)

o1
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The numerical matching criteria between thg internal and exter-
nal flow requires that static pressure and flow deflection must
be equal at the contact surface. Also, the stagnation pres-
sures will be equal due to the upstream matching condition.
The particular region of interest in this downstrean analysis
will be at a point characterized by the distance L., where

L>> Rs,Res. Tre ratio of Rsto Lo will be a significant
parameter for the downstream problem and we denote it by the
symbol de = RS/L . Once again, as in the bow region, we will
be considering the case when Me;, Med> 1 4 €lo,€0¢c],  4p ap-
proximate analytical method of solution is available for the
external layer flow near the shock surface in region 1. This
method was first applied by Cole 33 and involves taking the

limits in the inviscid flow equations as the perturbation quan-

tities.

ng'-’m, eeﬂ)O) Se '*O

2
Meaoede —» © Mmg c.le.e = O(l) \

The solution found by this procedure is valid to a distance of
0(§e8el-) measured inward from the shock surface. For attached
shocks, this solution would be valid throughout the external
layer. However, if the shock has a blunt nearly normal for-
ward region, the external layer becomes thicker than the above
order of magnitude and the solution breaks down away from the

shock toward the contact surface. This is due to the viola-
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tion in the blunt region of the assumption that the shock
makes small angles with the free stream. As was pointed out
by Cheng and Kirsch 3k in the equivalént unsteady case, a
region of thickness C(SeL) , denoted 2 in schematic (4), is
then foﬁnd near the ccntact surface which requires a differ-
ent expansion in order to develon» a valid solution in this re-
gion. The solution found in this "entropy wake" matches with
the outer layer, and the composite expansions for the entire

external layer will be given.

For the internal layer, we have two conditions imposed by the
external flow at the contact surface, which can be used to es-—
tablish the orders of magnitude of the flow variables within

region 3, the interior layef. They are:

FE&;; = FEE&

G‘%e B (%=

Based on these conditions, we can then prescribe expansions
for the {low variables in terms of perturbation parameters
that will lead to a system of analytical solutions for the

inner layer.

Like the external "entropy wake" the internal layer is of thick-

ness O(SeL) . Utilizing the orders of magnitude found from

the contact surface and upstream bow region conditions, we

o A s S ) ST - R




then develop expansions which will be solved giving expres-

sions for layer thickness and other variables of interest.
Numerically matcaing these expressions with those of the ex-
ternal flow, along the contact surface, we then achieve ana--
lytic solutions in the far downstream region. These results
are found to depend on the upstream bow interaction between
the plume and external stream. Taking results from the bow
region consistent with the accuracy of the downstream region,
we then find the complete solution for the downétream flow.
In the following discussion for v external flow, frequent
reference will be made to the work of Cheng and Kirsch BA.
They solved an unsteady problem that in many ways is anala-
gous to our external layer problem by the application of the
hypersonic equivalence principle. For details of the exter-

nal layer analysis, the Cheng and Xirsch paper should be con-

sulted.
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External Layver - DRegion 1 Analysis

Utilizing the notation illustrated in schematic (h), the fol-
lowing genzral set of equations and boundary conditions for

the downstream problem in terms of von ifises wvariables

are-

2$= =
Xe 56% (1.1) stream- =.
line slope :
Ve  Pale Re :SL%;’Z) continu- fj
'1’}—'5' N };‘E— (1.3) momentun
e normal to 3
streamline 3
24 Ve + 2% = g (Vo) tf
Uer+¥e™% 2T B = gl (1.4) Bernoulli
. integral :
P"/_ch' = S:(We) (1.5) entropy
integral d
Boundary conditions at external shock 5
\
Ae = Poe + 23¢ [roe (Meaesin*he = 1) (1.6) E
se -1 2 = ,'
e= foo/ (B4 + grfrgamss) Pove (1.7) |
Ue = Upe (1 ~ 2(Mwd sintBe = I serMns ) (1.3) 3

Ve = Uwe (2(Mafes B, - 1) cotBefres)Mar  (1:9)

Boundary conditions at contact surface .

Pecs = Ples | (1.10)

dRee, = dRisg (1.11)
dx dx
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' Velocity parallel and normal to the shock are:

' .

’\:\ = uoo. t‘:osﬁe (1°12)

V' = €' lhewe sin Be (1.13) _

; The expanded Rankine-Hugoniot relations lead tc the follow-

ing orders of magnitude for the flow paraneters near the

shock:

:ﬂ

Pe ~ O f c0e \Aooe Ce (2.1) 1

i ﬁe ~ O(Pmc/ée) (2.2)

?f Oe' ~ O (ee e uooe) (2.4) ;

*- é_

| where €e is evaluated at the point where .Bea = T/2 . These i

conditions will be the upper boundary values for the external

1 layer. Trom the orders of the variables near the shock, the 4

dimension normal to the shock can be inferred from continuity ’

considerations.

_‘ Y ~ Of(ecSel) (2.5) |

:'?

; The dimensions of the streamwise coordinate are easily sern to é

be ;
%x ~ o(L)

(2.6) 3




These orders of magnitude, (2.1 to 2.6), are then used to form

asymptotic expansions which are

'Pe = f’weuog; 5czPae ol
fe = Poe Poe/€e t+

Ue = Uwe + Se”* Uace Woe +
Vel = Uwe Oc €c Voe + **°

%e’ z L 8¢ € Yoo + -

Substituting these expansions into the equations of motion,

(1.1 to 1.5), and boundary conditions, (1.6 to 1.13), we can
develop a sequence of equations which can be solved and then
summed to yield the solution to any desired accuracy in terms

Of e!,st) Mme .

The first order system from the above procedure is

BPoe = - 1. Rae

> Ve Rse oXet (3.1)
%ie(Poe/foe> = O (3.2)
%%: = __Poc Rse (3.3)
\/o'e =) B o€ (3011—)

The boundary conditions on the above at the shock surface are:

$°= = @;%)z (4.1)
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"
" Foe = 2 (4.2)
y goe' = 1 (Ll--B)

Integrating (3.1 to 3.4) and applying the boundary conditions

(4.1 to 4.3), we obtain:

-~ 2 AQ'R: Ae -y,
Poe = (d‘cri‘.‘) +ﬁ'_&:§<w Ve (5.1)

2
oe — Poc/ dRse : (5.2) g

Ay
g = R, “res (ARees) >+
N (5.4)

Voe. = e

dXe

Making the substitution
Wer = Reax/2 (5.5)
Pe = R/z2 (5.6)

in the above, we then obtain results identical to those of

33 ‘

p°==(<.5§§es)z i .;%%a (- (%f‘-)z) (6.1)

fPoe = Po://(*i%e:)a (6.2)

Yoo = l/ﬁs.f;:ﬁ’%%&“@ e EZZ;

Cole

v°¢' - a oe
e

As previously mentioned, these results are expected to hold
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near the shock surface; however, their validity near the con-
tact surface has to be examined. From the bow region solution
we know that a blunt interaction occurs. Consequently, as

we follov the shock surface upstream to the vicinity of the bow
region, ve note that the shock nust become nearly normal in
form. Therefore, it invalidates our assumption of small free
stream to shock angle, initially made in our above analysis.
Under these circumstances, one would not expect our expansion
procedure to be valid in such a regionjand this turns out to

be t... case, as was found by Cheng and Kirsch 3k for the un-

steady problem. What we must do is alter our expansion pro-

cedure so as to be consistent with the strong part of the shock

External Layer-Region 2 Analysis

Following Cher~ and Xirsch 3k we assume that initially: due
to the strong bow interaction of the jet and external flow,
the external shock moves out in a blast wave manner. This

requires that the external shocl take the form:

RSQ = AXe 2

as Xe—>» QO where A is a function of the upstream bow inter-
action. A requirement which must be met by the contact sur-

face in the vicinity of the blunt interaction is that:

ot/ Res >0
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This states that initially the contact surface must move out-
ward slower thap the external shock, thus guaranteeing the
dominance of the blast wave result for the upstream interac-
tion. . Up to this point, we have paralleled the unsteady
problem quite closely. The equivalence principle is most ac-

curate near the shock with the streamwise velocity given by:

Ue ~ Uwe + O(um gez)

The error involved in assuming Ue ~ Uwe is seen to be small,
2

of error O(umge) . However, as we approach the contact

surface we have for the streamwise layer velocity, from the

Bernoulli Integral.

u ~ uooe + o(utbc Sef({‘;_}))

The error involved in taking W ~Uewe in order to apply the

equivalence principle is seen to be large for ¥e 2= 1 of
z(lqi,__'l-
0 (Usoe 3¢ ‘>) a

In order to utilize the equivalence principle, we then must

stipuvlate that ¥e cannot equal one but can be near one as
2_()‘;-1)

long as de is small enough so that the term de ¥ does

not become of order one in the downstream region of interest.

If these conditions are met, then we can apply the equival-

3
ence principle and, therefore, make use of Cheng and Xirsch's
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results within the entropy layer.

Assuning this form of initial behavior, we have then speci-
fied the tyve of breakdown of the solution due to the near-

ly normal character of the shock in the vicinity of the nose,
Bl

It was found that the expansion for‘g,based on flow ncar

the shocl for initial blast wave behavior would be of the

form:

g ~ ol Yau) + 0 (efln¥en)?)

which would then become infinite and invalid as an expansion
as Yo,‘-)O y Or as we approach the contact surface. This
form indicates that the expansions cannot be made uniformly
valid by simply altering the scale of'YB* by a power of €e.
In his analysis, it was determined that the scale normal to
the shock should be in terns of‘\2*1x> sone power which is a

function of €e . ‘e can then determine the orders of magni-

\
tude of the other variables by applying entrooy and enersy

conservation principles.

Following Cheng and Xirsch 3k we then establish a new set of
variables, fulfilling all the necessary conditions within the

region adjacent to the contact surface. These are:

Ve = Ucwe 8 Ve + « - (7.41)
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Ue = Uee +- - (7.2
Pe = feo-zug; Se’ P—oe r e (7.3)
Pe = PocRel Fosee v ()
8Q - Se L g.o “+ e (7-5)
% = Re:ee Oézée 2D

sults:

g = . (8.1)
Foe = Foalx,0) = f% (8.2)
Fou = Be/ai, " (8.5

<

e = g;= (8.4)

The carrying out of the integration in (8.1) and

(8.2) gives

e = Ee(x) (9.1)
3“. - ?o:(xﬂ)) = c-o??/-P_oe (9.2)

Matching of the inner to the outer solution is carried out by
determining'the behavior of the solutions in an intermediate

region where they are Loth valid. The results % of this

procedure are:
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Substituting these variables into the equations of motion,

(1.1 to 1.5), we obtain the following set of first order
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Equations (10.1) and (10.2) are nonlincar second order dif-
ferential equations for the pressure distribution and shock
position. If we can obtain an inner layer solution which

gives th;as a function of Pge , then we can comtine these

-y,
results into the above to deternine Rse and Rcs :

Internal Layer - Recion 3 dAnalysis

Referring once again to our flow diagram to establish the
system of coordinates, we ‘have the following set of equations
and boundary conditions for the downstream internal layer

problem in terms of von Ilises variables.

BEL = .\\%_ (11.1) strean
line slope

B . = 1

355 P RC (11.2) contin-

uity

i Ve + OPL = O
Re dxi WL

(11.3) momentun
normal to stream-

line
Uit Vi +'%—¥"'I'E‘L' = %’(WC) (11.4) Bernoulli
- 5 LY r ; i
1P Integral
. Yo _ )
F‘-/f’t'- - §<\"J°> (11.5) Tntropy
Integral
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Boundary conditions at the internal upstream bow shock are:

A. . ~ . ) N ~, . 2 . .
Pi = Pl + 2k Poor (Mar s8¢ = 1) (11.6)
I\' ~ . l:-_l -

P‘ -Pw‘/( X +a + ®+1)Hao'l‘$m'6,,') (11'7)
o~ -~ - A ’ A
W = U (1 - 2(Md a8 - i) Qo) (11.9)
Vi = Ueo; (2(M&cnwB: - 1)eotB: vy Mot ) (1149

Boundary conditions at the contact surface are:

Fl:cs = Pe cs (11‘10)
dR = dReec (11.11)
5 ‘%I‘

At the axis, Ri=zo y the symmetry conditions are applied.

Also, in the bow region solution, we note the condition that:
P tl-s‘ha,hq'h'oh = Pe s‘\la,md‘(.oh (11.12)

From the external layer results, we can infer the order of
magnitudc of scme inner layer quantities. From the contact
surface condition, (11.10), we have
Ples = Pe = O( fooeuwt Sez)
In addition, from the stagnation point condition, (11.12),
Pmcoumz‘: = © (f’bo:_Uq?é)

where Pooiq is value of density along axis in front of in-
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ternal shock, we find
. ' 2 2
Piee = O (f""fo um,; de ) (12.1)

Since entropy is conserved alons streamlines, we can es-
tablish the order of magnitude of density in the internal

layer near the contact surface from (11.5)
’ x‘ o . K'
P‘/Pi ‘ P‘*/_P;{,L

For Moo£>>1 N sm*B{ = 1 the shock conditions, (11.7)
and (11.6),for the streamline which wets the contact sur-

face become

‘lhere subscript o denotes normal shock location in bow

region. /hen substituted into the entropy eocuation, (11.5),

the result is: !

.Pl'-cs =~ O(Pcoco Se%/x;/é‘:‘J (=2

From the second contact surface condition, (11.11), we find

ciRic. = ARC:S = Me & é‘.e
i e 8 T e o(s)

&t




This also requires that

Vizu: = o(Se) (12.3)

near the contact surface, vhich is an upper bound on this
ratio. Another expression which can be utilized is Bernoulli's
equation, (1l.4), alons a streamline. Substituting (12.1 to
12.3) into this equation and assuming U of the form
Uyg = Uy + uc"

we obtain

Uooi + 2Uooc Ui + o(é‘e‘uoé;. + zé'e‘um,_'u(">

+_§E§:§I_O Q!:'E_‘ foodouooat‘- SQZ-Z/nj) = uoo‘:z'

f’ﬂﬁco
Therefore, we find that

ui = O(&a(%)) (12.4)

Therefore, we can conclude that for Y, to be constant in the
first approximation in the above flow system, it is neces-
sary that ¥¢ # 1 and debe small enough so that the term
Sez‘%c}') €< O0(1) . These are the same conditione which
are necessary for the external layer solution to be valid
near the contact surface; therefore, we assume that this will

be the case in the present problem. This leads to the result

w: = O (Ue:) (12.5)
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From the contact surface condition, (12.3), we find

L < C)(\Jad Oe

“le have now established the orders of magnitude of all inte-

Vv Se) (12.6)

rior variables of interest near the contact surface. ‘e now
postulate expansions for the variables based on these orders
and then substitute them into the equations of motion to yield
a sequence of solutions, which can be summed to give the solu-
tion to any order of accuracy for the internal layer flow.

The expansions are for € ;,=» O o ge_’O 5 Mﬂio - o
Fl = Pod udo?z 'SezPoi + v
P = Peois ge‘fOi./é,;o P
Vi = Ui de Voi +

U, = Lloo[ f= 80

The first order set of equations is

Y - o
2 Roy — .
SO T P Re e

(Po&/ L) = o : (13.3)
%’—" > ) (13.4)
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Integrating, we then have

il = GetTey (14.1)
Rei*= 2, L;‘_:{L (14.2)

Poi = Pbifod*/Poz* (14.3)

Combining (4.1, 14.2 and 14.3), we obtain

a [\Pjv.‘t‘
FRes —2 | Poix dW¥; (14.4)

Fop0) Jy Poi

Now that we have results for the internal and external i dsomrs,
we can combine them to determine the location of the shock
and contact surface, as well as find the values of the pro-

perties across the layers.

From the external flov, we have the results:

-~ \2 = =
- Rse (d *Rse

Poe, = (A_a‘_is_e) + —£=—<.?_£§. (10.2)
~ (10.1)

Poecs ( ng e Rcsa) = &%/2

Also from the internal flow, we have the result
\Pj'et
i (X) = 2 . | Poix dW;

POL Res  Jo Soix ‘ (14.4)

~

. 2 2, Dy . . -
Since fcoe‘uooe = foo..’auoo.; from the stagnation point con

dition, then Poece = Poi x) . e can now combine
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these relations (10.1, 10.2 and 1h4.4) from which property

variables can be determined.

Taking (10.1) and (14.4) we have

~ \V)'g‘,“ d
Po,_.c(sX)O)(Rs: - ..2-.{0 °°":'*qu"> = G /2
o POEcs
’R\ 2 & \PJ'ef' AW. (15; 1)
Poecs Tse = _22- 4+ 2 o%ﬁ L 2

Combining (15.1) with (10.2), we then obtain for the shock

shape a second order non-linear differential equation

A \2 A A\ A Vet
AR AZ > : - l.' (:
&) + BRI 2fRaaw wa

For ®/Rseo >> 1 y which is in the downstream region of

interest, (15.2) admits a solution of the form
~ 1
Ree = C x’? (15.3)

When (15.3) is substituted in (15.2), we find the value of

C to be given by

et 1z
= i oL ch‘) 15,
C‘ (403 (6 '(o%o..%‘ L (15.4)
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Using (15.4) in (10.2) to find P°£(x) (14.4) then be-

comes
X A Wj‘e.t
Lo = 2 f_E_o_‘_'g_ d W (15.5)
8 s: Rc;a' o fb‘:"‘

Combining (15.4) and (15.5), we then obtain the following
expression for the contact surface shape in terms of the shock

shape

s K
Res = &e/(mh + 1.) 2 e

0 foue
-
vWe now have determined the values of f?Se, Fics in terms
‘«PJ"ef' . ,
of the functions O@e and _f) °°b.3; d W « These

expressions are functions of the blunt interaction between
the external and internal layers at the extreme upstream
position in the bow region and are a result of the matchinc

]

of pressures across the upstream contact surface.

Wle, therefore, must postulate an upstream interaction based
on our solution for the bow region flow which is consistent

with the approximations made in this downstream region,

For the downstream analysis, we require €y,€e->0 Mg, Moe? @ -
These limits must also be applied to our bow region matching
conditions which are the equality of pressure and flow deflec—

tion along the contact surface. Since our bow region internal
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flow is a perturbation of the case where the shock and body

R A et A R
3%

surface are a spherical shell, for &¢ = Q y then we
make the approximation that the upstream interaction region

is spherical in nature. Tor the external flow, it is a well
established fact 35 that the downstream shock surface does not
depend on the details of the pressure distribution along the
contact surface,but only on the total integrated pressure dis-
tribution (i.e., drag) in the axial direction, adding further

validity to the use of the above assumption. Along this sur-

e

face, the pressure induced by the internal flow must match

that of the external flow. To first order, which is the de-
gree of accuracy for the cownstream region, the pressure change {
across the shock layer is zero and, therefore, we can calcu- "

late the pressure on the contact surface by simply finding

)
[¢)
ct

the pressure level behind a spherical shock surrounding the

(v}

flow source. For the case Mco,_'.>> 1 4 58\n B = 1
the expression for pressure behind the shock reduces to
L] - z ’ a
P¢ = Pest ¥ fPeol uﬁi = Poo fOOCoUOOL'
P e
Non-dimensionalized with respect to the external conditions,
this relation becomes

2
cse = L ' '
Pess = Smy, Sataimiy

From the equality of stagnation pressures, this then reduvces to

Pes( = £®u = Pese

_P&Co
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From the source conditions, we have )
= h ;

PCSQ <nsS ng— ]

2 © ki

With the pressure level and contact surface shape determined,

we have satisfied our matching criteriatgnd our next step is
Ve
o W
o foue
Evaluating the integral from the internal layer solution, we

to calculate the functions 0, and

find
\IJJ;{: rqﬂe't %:t
Poix dW¢ = s" nedWl = ‘Y Ve = {
o Poix ¢ ‘)0 e %-m/cos % ¢ o :

B0
fO cos“'ﬂz’_%; sn@ c’?
: In this result, the upper integration limit ren~uires some d-s-
cussion. Strictly speaking, in order to calculate the pres- 1
sure and density distributions over the full range of q7 .
one would Lave to take account of the effect of the plume ' ?
boundary -nd the mass flowirs in the plume boundary layer on
the internal shock. However, for highly underexpanded jets,
there is relatively little mass flowing in this layer and, :
therefore, the integration of the above to the vacuum limit,

? = Ceo creates only a small error in the downstream

analiysis. '

We now seek to determine the value of O . It can be shovn

that for 'i)/F{s(, <<« 1 our postulated initial blast wave be-
36

havior for the shock shape can be written as
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A~ 1/ 1
RSe = R (Q—_gﬁ i X 2
T

ﬂhcre.IL to our degrec of approximation can be written as

I - 6_)5:.- Fe® =1
b H(¥e-1 )(¥et+ 1)

Ta the above CpN is the noco cran ceaflficient of a hynothe-
tical blunt nosed slender bady, which takns on the shane of
the contact surface, C bN ig directly related to “he

blunt interaction and is written as

-t i 2 z
CDN = chsn'ndi/Jz_fmeucae TTR‘.,'.
Since we stipulated that Rcs/§5e 2+ 0O as _’Z/Rsce - O

then equations(10.1) and (10.2) give

&)Z"' Jz§ Eig /R\S: = 03/2 as ;E/RS('o - O

x x* 2

Trom which T = Copn
Lo

Ve now calculate Cpn  buszod on our postuiated upstrcanm in-
teraction. For a spherical shell intcraction with the prec-
sure distribution given by
2 ]
P = fcog_ ume Cos ]I%.
20w®
then

e

no'ﬁx = con @

and d A = 2T RSL'oz SLW? dq)

S il

ooy



O
Con = H [cosn];_g_;smq)* cos Pye d(Pw

.0

As in a previous integration, we use Seo as the upper limit of
integration instead of the exact result. In this case, we are
further cubstantiated in this approximation by the fact that
near6%3~§§the contributions from the above integrand to C N

arc near zcro due to the cos @y factor in the above.

With the previously calculated values, the shock shape can

now be written as

i Seo S Vq’k
R Gy
(C¥e -~ ¥e* —1) <

“H(¥e ‘1X6’c+1)

Also from (15.6) we have

abh Va

= B /[ feos B singecs e dg,
Res = Rse/ Lgia'e—erechl) 7850 -+
4(80.-1.)(&*30[4:05"%%,@5"1%&@*

We are now in a position to calculate layer properties based

on these results. For the cxternal flow w: have

-~ 2 “~ .
= d R e) + A‘ZR 1_ .= r
ReezCx® po = &2(1 + WP
Thie distribution will be valic throushout the external layer.

The density distribution is given by
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The result is not strictly valid since the density is not
zero at the contact surface.

//hen referenced to values at the shock, the results become
F/Pe =

A~

Pe/pe
Te/Te

vz (1 + Y/ Q) o (16.1)
/2 (W*/@Xl + W*/@) (16.2)
= P/ ™ (16.3)

For the internal flow, we have the following results:

Po. = CV/8x (16.4)
Poi = ‘/8x (16.5)
V2 L,
Voo = Vi&/c [, d‘P/zx"z‘ o te, (1:0)
When referenced to values at the °hock, the above become
Pu/Pe = V= (16:7)
Pi/ﬁe = c? Pooiy e (16.8)
8x .R:oeec'o 6
PPN 16.
VifVe = Vi& ¥ Un, o)
(o Ueoe

¥*  Not valid at contact

surface




The first order solution obtained thusfar from the hypersonic
small disturbance form of the Newton-Busemann ‘approxiration,
is adequate to describe layer thicknesses, pressures, and den-
; sities in the far field region near the contact surface. How-
ever, due to the assumption of ¥ei*lthe temperature to the
first approximation is in considerable error for :’E/Rs »l.

This is because the expression for te'nperature, Te ( )
gives the unrealistic result that for all ?VR‘(.Q ,-_E-’.las ¥-+1
This result is acceptable for small -?-(/Rs‘.o, where P/ ps is of

order one, however, for 'X/Rs:.:l %Sis small and even for ¥

near one 1. << 1 .
Ts

To obtain a more accurate value for temperature near the con-
tact surface, the unexpanded forms of the variables in terms

of & will be retained. Referring to Cheng and KirschBl‘, the

/] AL}
unexpanded for ¥ results for the entropy wake are

R - = o/ ple (17,1)
feﬂ' '/tc/c,? (17.2)

The retention of the exponent, ‘/xe, in 17.2),(17.2) is justified

because the relative errors are smaller than any integral po-
wer of €a 3[‘. Applying the same reasoning to the internal la-

yer expressions, (14.3), (14.4), we obtain

pi = <P° /x"ﬁ“k (17.3)
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\VJJ‘./
a ‘( Y
Res' = p'/zn L&P{‘; 4 (17.4)

Matching (17.1) to the near shock layer results (6.1) and

then combining with (17.4) we obtain
/¥
/G(Rse “Rc;> = /2

This is the same form as expression (10.1) with Pe replaced
V, -—
by Pe xe. To the accuracy needed for X/Rs;°>>l it is ade-
quate to use the formal result (10.1) which utilizes P° in-
i/xe

stead of Pe . However, for the distribution of temperaturc,

we use

‘-t
% = (%s)'y (17.5)

for both the external near the contact surface and internal

flow. This expression will give accurate values Qf;¥; for
s

small P/pPs as well as for‘FVPBnear one. To be consistent,

we also use the density expression

&)

instead of P = PsP/ps

Making use of (17.5) and (17.6) and the expression for pres-

(17.6)

sure (16.1) the temperatuire and density distributions near
the contact surface for the external flow and within the in-
ternal layer are

TN ()

P = fs(ex Ps>w
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The above expressions, as well as those previously found, are
used to predict geometry and flow properties in the far field

region for typical systems of interest..
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DISCUSSION OF RESULTS

Examining the far field analytic solution, we find that an
experimental simulation of an actual flow requires matching
Kj, ¥¢ ,80, N and Rsy, , the same scaling parameters used
in the.bow region simulation. If, in addition to the above,
Poj/Pme is matched then the bow, corner and far field ceo-
metry will be simulated. For a given system with fixed am=-
bient and exhaust gas composition (i.e.,&e, X)‘ fixed) and noz- g
zle conditions (i.e.,Be,Nn ) the flow geometry will scale as
does the bow region with ngo or TYV:. If Mdbe is also as-
sumed to be fixed, then the bow, corner and far field regions
will all scale with Rsi . Calculations of far field flow
geometry and properties have been carried out and the results
appear in figures (21) to (24). As in the bow analysis, the
far field geometry is sensitive to the exponent used in the 4
exhaust plume model. From figures (21) and (22) it can be ob-
served that the internal layer occupies a large fraction of the
shock layer flow. This is due to the greater amount of str-
ongly shocked, and hence lower density, gas in the internal ]

flow compared to that in the external flow.

As shown in figures (21) and (22), increasing ©eo or X_j re-
sults in the moving outward of the shock and contact surfaces.
This behavior is consistent with the results from the bow re—

gion. Also, near the contact surface, temperature, pressure,

and densityfor the internal and external flow increase for

increases in Qe or ¥j
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The effect of the internal layer flow on the external flow
pressure, density, and temperature is to maintain them at a
higher level than that created by just the bow interaction.
This can be seen from expression 15.4 in the far field analy-
sis section where the coefficient for the pressure decay
expression consists of the normal bow interaction term plus

the effect of inner layer thickness.

In figures (23) and (24) the detailed property distributions
across the layersare given for the same '"cold" jet and actual

jet cases that were analyzed in the bow section.

Consistent with the bow region results, we find that the act-
ual jet case shown in figure (24) has a hot, low density ex-
ternal layer, which flows over a cooler and more dense inner
layer. If allowed, considerable heat transfer and mixing bet-
ween the external and internal layers would occur. The "cold"
jet case does not exhibit as sharp a change in flow proper-

ties across the contact surface as that of the actuszl case.

This indicates that '"cold" jet experiments must be interpreted
carefully in light of the greater mixing and heat trans—
fer effects for the actual system versus the "cold" jet simu-

lation.
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CONCLUSIONS

Analytical techniques for predicting flow properties in the bow
and far field regions of an opposed hypersonic plume in a hy-
personic stream have been developed. It has been shown that
they are valicd for a wicde range of altitude and jet thrusts

Lo tyﬁical systems., The influence of the corner region flow
on the bow and far field flow predictions has been shown to be
negligible. Consequently, only a qualitative outline of the

flow processes in this region are given.

Some of the major results of the analyses and calculations
are:

1. Experimental simulation depends on the matching of

¥e, ¥j, 0w, N, Rsia, Poj/ pee

2. For a given system with fixed ambient and exhaust
composition, external Ilach number and nozzle con-
ditions (i.e., fixed Xe,Xj,eau'brqam) the entire flow
geometry will scale with Rs.,‘,or T(vz' .

3. This analysis confirms the good accuracy of,the
Newtonian impact analysis when applied to the axi-
symmetric bow region, and suggests that the extension
of this simple technique to predict asymmetric bow
geometry might be successful.,

L. The bow and far field solutions are sensitive to the
exhaust plume model exponent used and consequently
for accurate predictions of flow properties an accu-

rate plume model must be utilized.
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5. Penetration of the intercepting shock layer flow into
the internal layer is considerable. However, the
influence on the bow and far field properties is
small.

6. Good agrcement is found between a calculated bow re-

gion geometry and an experimental result.
7. Calculations show that mixing and heat transfer ef-

fects betveen the hot external and cooler internal

bl o e b R ek

layers are rore pronounced in the actual case than in
the experimental "cold" jet simulation.
8. Increasing the primary system design parameters Boo

and Xj * with all other parameters fixed results in
a. The thickening of internal and external layers
in the bow and far field regions
b. An increase in radius of curvature of the con-
tact surface and thereby an increase in bluntness
for the bow region

c. An increase in the angle between the far field

external shock and free stream direction
de A higher level of pressure density and tem-—
perature both across and along the internal and

external layer flows.

¥ Bep 15 related to nozzlec exit ..acn auwloer ana angle and
exhaust gas composition. For a fixed composition, increasing :
nozzle exit anzle or decreasing exit ilach number gives in- :
creases in Qe . & is related to cxhaust gas composition
: which in ~eneral will decrease as the degrees ol freedom or
] the complexity of the exhaust molecules increase.
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9. The effect of the internal layer on the far field

region properties is to maintain the pressure, den-

sity, and temperature of the flow at a higher level i

than that which would be created by the bow region

interaction with the far field internal layer flow :
absent. l é
For high Reynolds' number flows the present technique may be ]

extended to treat mixing effects along the contact surface

by the use of boundary layer methods. Also, equilibrium chem-

istry effects may be easily incorporated into the present mo-

del through use of llollier charts.

Further extension of the bow layer technique to include vis-
cous chemically reacting and merged layer effects requires

considerably more effort than the above extensions. In this

regard, an adﬁantage of the present technique over the numer-

ical techaique of reference (7) is that a complete solution of

the bow region requires approximately 13 seconds on an IR
360-65, whereas the numerical technique requires 120 seconds
on the much faster CDC 6600. This economy may prove to be
significant in extending the above techniques to be able to
predict viscous chemically reacting or merged layer bow pro-
perties where an order of magnitude increase in computational
times is expected. This makes the technique of reference {7)
unecononical for use in parametric calculations whereas the

present techniquec would still fall within the practical time

limitation for these calculations.
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Appendix (4)
Bow Tnitializing Scheme

To integrate the bow region equations for points away from
the axis, we must first obtain the initial radii of curva-
tures and positions of the shocks at the axis. Writing equa-
tions (28.1), (28.2), (58.1) and (58.2) in the form

yi = Acai) + B(Gf)@f (1)
Pi = @) + D) Pi* (2)
Yo = A@e) + Blae) @el (3)
Pe = Cae) + Dae) @ez L)

- A' A .
we develop expressions for QN¢@pe and shock radii of curva-
tures Rs.:o/Rs. + The geometry which relates the internal

flow parameters to those of the external flow is illustrated

in schematic (5)

Schematic (5)
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In the above illustration

RL = Rsw (1 + Q;@,_ + A& )4(5@ )@3) (5)
= RS:. CL + ae® e "A(QQ— B(Qa@ ) (6)

Referring to schematic (5) we can write for

Angle matching

C?- = @e + 2(a+ B- ZQL‘A)@‘-/Q*A) +

2(qe + 20e* A — E)?e/(l R)
Pressure illatching

‘\/2
(8)
@e/@u BC\

Je now have two equations with three unknovns @E/@; y Qe, ¢
Consequently, we must relax one of the parameters Q,, Qe
in order to obtain a unique solution. Choosing Q¢ = O the
expressions for A (a!l), B (@), C (Q) and D ( q)) simplify

considerably.

Substituting (8) into (7) we obtain Qe which also rives @e/gﬁ{.
From these results the ratio of shock radii of curvatures at
the axis, R.st'o /Rse, y and the relative position of their cen-
ters must be obtained. Referring once again to schematic (5)
we have from geometry

sin (- @f) = ﬁg_@;_ = Sin (@i ‘Qes)

Re R¢ g/

For small values of the angles we can write

Q. - Ree (1-A +(0«c—§>@e")
% Rsio (1 +~ A + BP;?)
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For the initial point, R“/dea can be obtained.

The distance between their centers is +then given by
-,
3 = Be(2- e )
Rse Se ?"
Having obtained the ratio of the radii of curvatures and
their relative positions at the axis, we then use these quan-

tities as input data to the computer program, which predicts

bow properties for regions away from the axis of symmetry.
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SOURCE MODEL
CgtNTER

Mi =|.0 71 = ym=|.4
—— T =627, M *6.0 (9)
- =—w=333, Mp *6.0 (25)
—X— 7 =300, Mg, =7.1 (2)

FIG.4 EXPERIMENTALLY DETERMINED SHOCK AND
CONTACT SURFACE LOCATIONS REFERRED
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