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FOREWORD

This report was prepared for tne Prototype Division of the Air Force
Flight Dynamics Laboratory by the Los Angeles Aircraft Division, Rockwell
International, The work was performed as part of the STOL tactical aircraft
investigation program under USAF contract F33615-71-C-1760, project 643A0020.
Daniel E. Fraga, AFFDL/PTA, was the Air Force program manager, and Garland S.
Oates, Jr., AFFDL/PTA, was the Air Force technical manager. Marshall H. Roe
_ was the program manager for Rockwell,

This investigation was conducted during the period from 10 June 1971
through 9 December 1972. This final report is published in six volumes
and was originally published as Rockwell report NA-72-868, This report
was submitted for approval on 9 December 1972.

This technical report has been reviewed and is approved.

£ Gaeel

E. J. Cross, Jr.
Lt Col, USAF
Chief, Prototype Division
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ABSTRACT

The basic objective of the work reported herein was t¢ provide a broader
technology base to support the development of a medium STOL Transport (MST)
airplane. This work was limited to the application of the externally blown
flap (EBF) powered 1lift concept.

The technology of EBF STOL aircraft has been investigated through
analytical studies, wind tunnel testing, flight simulator testing, and design
trade studies. The results obtained include development of methods for the
estimation of the aerodynamic characteristics of an EBF configuration, STOL
performance estimation methods, safety margins for takeoff and landing, wind
tunnel investigation of the effects of varying EBF system geometry parameters,
configuration definition to meet MST requirements, trade data on performance
and configuration requirement variations, flight control system mechanization
trade data, handling qualities characteristics, piloting procedures, and
effects of applying an air cushion landing system to the MST,

From an overall assessment of study results, it is concluded that the

EBF concept provides a practical means of obtaining STOL performance for an
MST with relatively low risk. Some improvement in EBF performance could be
schieved with further development - primarily wind tunnel testing. Further
work should be done on optimization of flight controls, definition of flying
qualities requirements, and development of piloting procedures., Considerable
wotrk must be dene in the area of structural design criteria relative to the
effects of engine exhaust impingement on the wing and flap structure.

This report is arranged in six volumes:

Volume I - Configuration Definition

Volune II - Design Compendium

Volume III - Performance Methods and Takeoff and landing Rules
Volume IV- - Analysis of ~u . finel Bata

Volume V- Flight Control Technology

Part I - Control System Mechanization Trade Studies
Part II - Simulation Studies/Flight Contvol System Validation

“Part Iil - Stability and Control Derivative Accuracy
Requirements and Effects of Augmentation System Design

Volume VI - Alr Cushion Landing System Trade Study




This supplement to Volume I is generated to provide the aerodynamic
data needed to make a design choice between double and triple slotted
flaps and between a roll control system with BLC or without BLC for the
baseline configuration definition in Volume I. The study in this report
is based on a comparison of minimum speeds at which safety, stability

o R P L S

and controi, and performance criteria are met. Results show that the
minimm speed for triple slotted flaps is limited by the relatively
smaller roll control capability and is about 3 knots higher than the
minimum speed for double slotted flaps. Using BLC can reduce the mini- !
mum speed by approximately S knots for the same engine exhaust thrust.
If the engine thrust is reduced because of bleed air extraction the bene-
fit of BLC becomes less, and its application becomes questionable.
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Section I
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INTRODUCTION

As part of the design refinement of the MST - TAI baseline configura-
tion, a study was needed of the aerodynamic aspects entering into the
choice between double and triple slotted flaps and the use of BLC for
roll control. Triple slotted flaps allow a larger chordwise extension
of the flap and thus a greater L/D ratio. On the other hand, triple
slotted flaps are less suitable for BLC aided roll control. They also
decrease the effectiveness of spoiler roll control systems. To determine
which flap system represents an optimum aerodynamically, minimm speeds are
compared on the basis of a climb criterion, some roll acceleration
criteria, and a lift loss criterion. The geometry that allows the lowest _ ;
speed is considered the optimm in this report; the impact of the geometry {
on aircraft structural weight and complexity i beyond the scope of this
document.

The following geametries are considered:

% 1. Full span double slotted flaps, no BLC 3
2. Inboard double slotted flaps, outboard single slotted flaps with
BLC
3. Full span triple slotted flaps, no BLC
4. Inboard triple slotted flaps, outboard single slotted flaps
with BLC,

TSNy bt i R A 1 o Bar® < ATt b

1
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Section I1
SUMMARY

In this document data were analyzed to aid in a selection of the wing
flap system and roll control system for a medium STOL transport study. A
sketch of the transport is sh:'m in Figure 1. Specifically, a comparison
of double and triple slotted fis,c has been made for the purpose to select
an optimum flap system on the basis of the best STOL speed and STOL 1lift-
ing capability. Also; data are given for the selection of associated
roll control systems. In conjunction with this, spoilers and full span
flaps are considered, as well as partial span flaps together with
boundary layer control on deflected single slotted surfaces at the wing
tips. Flap geometries and spoiler geometries used are presented in

Figures 2 through 5.

The comparison is made here based on aerodynamic characteristics
only. The impact of BLC bleed air or gas extraction fru» the engines
on the aircraft weight, as well as the effect of the flap anl control
system selection on the aircraft weight is beyond the scope of this

document .

Various criteria are used for-the selection of the recommended geome-
try. These are:

1. “The minimum speed or the maximum liftine capability at which it
is possible to climb along a 3-degree climb path with the critical
~engine inoperative and with the flap angle such that n can be 1.3
- with all engines operating, and V = 1.1 Vi, with one engine
failed (both out of ground effect).

. The minizum speed at which the roll acceleration requirements
are met with all engines operating (Level 1),

3, The minimum speed at which the roll acceleration yrequivements
are met with the critical engine inoperative {lLevel 3).

4, The minimun speed at which the 1ift loss due to ground effect
together with the lift loss due to the roll vontrol input
associuted with the Level 1 requirement is not greater than
12,5 percent in the landing confinguration with a maximon posi-
“tive 1ift increment from DLC,
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If the lift loss quoted in the last item is maintained during one
second, the aircraft sink speed increases approximately four ft/second.
This implies that, if the aircraft at first descends along a flight path
with six feet/second, full roll control during one second prior to touch-
down will increase the sink rate to 10 feet/second. Full roll control
during one second will change the bank angle approximately 10 degrees.
This is an input expected to be made relatively often near the ground.

The comparison of speeds at which the above four criteria are satis-
fied is given in Figure 6 for the various geometries considered. The
largest speed of each of the criteria should be used within each
of the goometries. These speeds should then be compared with each other
and the geometry giving the lowest of those speeds is aerodynamically the

best.

It is seen that the cambination of the partial span double slotted
flap with a single slotted BLC aileror at the .ip yield. the lowest
specd, i.e., 74 knots for a sample - lue of W/S = 80 and T/W = .55

Second in line is the part span t.iple slotted flan with 77 knots,
having also BLC at the tip. fowever, it should be noted that in case
the roll control power for this triple ilotted flap is somewhat larger
than estimated, or if the flow through a flap sap can be manipulated
together with the roll control spoiler actuation, the speed for this flap
configuration can be reduced to 72 knots. The roll control data with the
tripic slotted flap arc based on only a siwgle wind tunnel test run, and
improvement may he possible,

Botn ot these flap/control geametries make use of aileron BLC. This
BLC i3 not only beneficial from a standpoint of roll contral, but alse
the lift/drag relation in the ¢limbout is banroved. The figure shows
that this results in speed decreases in the order of § knaty if enly the
climbout criterion is considerad. However, the increase in engine weight
te nrovide the energy for BLC mist be considered in addition.

The above listed criterion (1) can also he @*ﬁl?%iﬁd in terms of
the requived T7W ratio, where T 15 the tatal static exhaust thrust used
for external hlowing., At the sample value of W/S = 80, and using V = 80
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knots (EAS), the comparison becomes:

R e e S

iAileron . Flaps |
| BLC Double Triple '
| Slotted Slotted
{ Without BLC T T

+ (Full Span Flaps) W = .550 W= .516 '
[ e - - e D |
i ¢ !
: With BLC iT T ’
. (Partial Span Flaps)W = ,472 W= .452 1

More detailed discussions and the methods used in determining the
speeds and the lifting capabilities are given in the following subsequent

sections:

Section III
Section IV

Section V

Section VI

Comparison of Climb Speeds
Comparison of Roll Acceleration with All Engines

Operating

Comparison of Roll Acceleration with Une lIngine

Inoperative

Comparison of Lift Loss Due to Maximum Roll Control

It should be noted tha’ the above comparisons are made to obtain an

impression of relative magnitudes.

The actual average level ot the

climbout speeds and 1ift capability may be somewhat different when vthier
safety speed and maneuver margins are considered in aldition to those

taken here.

11

Additional margins may be those related to ground effect.

(The reverse side of this page 1s blank,)
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Section III

COMPARISON OF CLIMB SPEEDS

3.1 TRIMMED LIFT AND SPEED RELATIONSHIP FOR CLIMB

The purpose of this section is to establish the merits of triple
slotted flaps versus double slotted flaps, and to establish the benefits
of aileron BLC on the basis of aerodynamic STOL takeoff climb performance.
Other aerodynamic¢ criteria for selection are discussed in other sections,

The criterion for STOL climb performance used in the present section
is the minimm speed or highest lifting capability existing at which it
is possible to &limb with a three-degree flight path angle with one

- engine inoperative, except as limited by speed and mansuver margins for
flight safety. The maneuver margin used is n = 1.3 with all engines
operating, and a speed margin of 10 percent with one engine inoperative,
both out of ground effect. Other safety margins in temms of speed,
angle of artack, or maneuver capability with all engines operating or
with one engine inoperative in or out of ground effect may at times be
more critical, but are not considered in the present report because .hey
were not adequately fimmed up at the time of this study.

Trimied data for a c.g. location of 25 percent MAC and with all

~engincs operating (AEO) and with the critical engine failed (CEF} on

which the present comparisons are based are presented in figures 7 through

18. These figures show the total aircraft lift L as a function of the

total aircrarft drag D for varisus speed cenditions, each nondimensionalized
(or "normalized") by the engine nozzle exhaust thrist per engine, TpE.

The value of D inciudes the thrust sffects, and if D is negetive a net

forward force exists. The speed condition is expressed in tems of the

inverse of the blowing coefficient 1/Cupp or q/(Tpp/S)in which q is

the dynamic pressure and § is the wing area.

.
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The figures pertain to the following geometries and speed para-
meters:

Figure Tyre of Flap Aileron | Flap

BLC Deflection f%§7s
7 Full Span Doutle Slotted | No | 25°/30° 1.21
8 1] " ! 1] 2’00
9 : " " i 25°/50° 1.21
10 o 1" I " 2.00
11 Full Span Triple Slotted | No ’ 25°/20°/25°| 1.21
1? 1] 11} ; 11 ! 2‘00
13 " " { 25/20/45° ' 1,21
14 1 " L 1 i 2.00
15 Inbd Double Slotted, Yes . 25°/30° | 1.21
16 Tip Single Slotted " oo 2.00
17 Inbd Triple Slotted. i 1 25°/20°%725°] 1.21
18 Tip Single Slotted " i ' 2.00

Each plot shows at the upper line the untrimmed (tail-off) wind tunnel
data with all engines operating (open symbols). The first lower line with
open symbols represents untrimmed data with the outboard engine inopera-
tive. The two lines with solid symbols represent conditions trimmed in
roll (roll trim, RT), yaw (YT), and pitch (PT) for the case that all
engines are operating and the case of engine fajlure. It is primarily
the lowest line with solid symbols that is of interest for the present com-
parison, being the engine failure case.

The detemmination of the various changes in 1lift and drag due to
trimn.ng is discussed in later subsections.

Climb conditions, at which ¥ = +3° is satisfied, are indicated in
these figures, and intersections are plotted versus flap angle in
Figures 19 and 20.

These plots generally show a maximm value of L/T,. at a low flap
angle. This maxiizam is of interest because it represents the maximum
lifting capability of the aircraft under the climb condition with
¥ = +3°. However, at low flap angles not enough ilight safety margin
in terms of speed or maneuver capability may exist. For this reason also
the maximum trimmed lift with all engines operating and with one engine
inoperative needs to be determined so that speed and maneuver merging can
be compared. Conditions at which these margins exist are determined as
foilows,
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- Figure 22 for higher flap angles.

The maximum lifts are shown in Figure 21 for low flap angles, and in
The maximum 1ift with all engines
operating is defined as the lift at oX = 18°.

This angle is equal to the

e

ER

stall angle with one engine inoperative to avoid large uncontrollable
rolling moments in case an engine fails, The conditions pertain to flight
out of ground effect. Maneuver margins and speed margins can now be
applied as illustrated in Figures 23 and 24, Figures 25 and 26 show
conditions where a speed margin of 10 percent exists with respect to the
CEF condition. Cross plots at given values of Cupp can now be made as
a function of flap angle for conditions with this speed margin and also
with a maneuver margin n = 1.3. This is shown in Figures 27 through 30.
Results can directly be compared in these figures with the conditions
for which ¥ = 3° and which are repeated from previous plots.

It is seen that, generally, the safety margins prevent the use of
the maximum L/Tpg values for ¥ = 3°. A higher flap angle needs to be
taken that lowers L/Tpg slightly. Lift values that meet these safety
margins as well as X = 3° are presented in Figure 31.

This figure is now used to compare the lifting capability and speed
capability for given engine thrusts with one engine inoperative.

Using W/S = 80 1bs/ft? and V = 80 KEAS as sample values, the follow-
ing is obtained according to the method schematically shown in Figure 32:

L/TPE._: L/Tee _W/Tee _W/5_ 80

) Teels  Tpe/5

[ Configuration W/Tpg T/W
' Full Span

Double Sletted Flaps 7.28 . 550
t B T el e L -
| Inboard Double Slotted Flaps ‘
i+ OQutboard Single Slotted Flaps
! with BLC 8.48 472
. Pull Span E !
+  Triple Slotted Flaps 7.75 S16
f S —
| Inboard Triple Slotted Flaps
I+ OQutboard Single Slotted Flaps !
| with BC 3.85 452 |
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It is seen that an engine exhaust thrust saving of about 5 percent
can be realized in going from a double slotted to a triple slotted flap
(i.e., .516/.550 and .452/.472), and about a 13 percent saving in going
from full span flaps without BLC to partial span flaps and tip surfaces
with a total BLC of C(ﬁun= 065 (i.e., .472/.550 and .452/.516).

If, on the other hand, the aircraft weight and the engine static
“exhaust thrust are held constant, the capabilities of the various geometries
can be expressed in a difference in speed. If W/S = 80 and T/W = .55,
the following equations are used to obtain speeds at which it is possible
to climb with & = +3° with one engine inoperative

LW w4
Tee = Tre  T/a — T/w ~ 7.27
. T | % __ % __3
Cupe  Tee/s T, W T /W s5(l\go 1.0
we TS Y (DS SEE

or

=l

where Toe /5 is obtained as illustrated in Figure 33.

Configuration q q \
Tpgr/S KEAS

Full Span Double
Slotted Flaps 1.92 21,10 79.0

Inboard Double Slotted'Flaps
+ Qutboard Single Slotted
Flaps with BLC 1.675 18.44 74.0

Full Span Triple Slotted Flaps 1.81 19.88 76.5

Inboard Triple Slotted Flaps
+ Outhoard Single S'-*ted 7
Flaps with BLC 1.60 17,60 72.0

- -

The speeds are also shown graphically in the bar chart in Figure 34.
It is seen that reductions in climbout speeds in.the order cf 2 knots
(EAS) are cbtained in going {rom double sletted flaps to triple slotted
flaps, and that reductions of approximately § knots (EAS) ore realized
when BLC with a tetal of GMNL= 065 is applied at the wing tips,
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It should be noted that the above comparisons are made to obtain an
impression of relative speeds. The actual climbout speeds may be some-
what different when additional safety margins in tems of speed and
maneuver capability are considered. Also, it should be noted that Tpg
is the static exhaust thrust and no influence of engine bleed air or gas
extraction for BLC on engine weight is considered here, nor a difference
in weight for the various flap geometries.

Furthermore it should be pointed out once more that these conclusions
are drawn only on the basis of the ability to climb 3° and simultaneously
meeting the safety margins. Conclusions drawn in Sections IV, V, and VI
may overshadow those of the present section on the basis of other criteria.
However, before arriving at these, hereafter the data basis and methodology

used in the present section will be described first.

3.2 METHODOLOGY AND DATA BASIS

3.2.1 EFFECT OF SYMMETRIC AILERON BLC ON LIFT AND DRAG

The basic untrimmed 1ift and drag data in the previous section
include cases with and without aileron BLC. With blown ailerons,
symmetric BLC is needed te obtain the lift for which n = 1.3 and all
engines operating. However, no test data for symmetric BLC were obtained
from the wind tunnel test (GELAC 090), Reference (4), but estimates
are derived here from asymmetric BLC from this test:

LIFT:

bor d, = 30°:  ACs = .04) due to asymetric BLC with
LC‘ = 065 estimated from wind tunnel
ddta (mw 090)

ACL&LC“ACI =(,044)2.74 = 2]

e b o




This is the ACy, on one side with Cq gy = .065 at that side. It
is assumed that with blowing on both sides with half as much Cé‘ BLC Der
side the same total lift is obtained:

ACLBLC: + ,12

or
Alpie _ +
Toe  ~(12) Tee72

The magnitude of this 1ift change is relatively insignificant, though
not negligible.

DRAG:

The drag change due to BLC at the ailerons is estimated on the basis
of Figure 35. The drag change can be treated as an incomplete thrust
recovery of the thrust generated at the BLC nozzles.

If there were 100 percent thrust recovery, one would obtain a forward
force change ,
’ AF x

$s

With loss in recovery it is obtained

=—A0Cp = Cupgy

AF _ 24CD
Téx“ ==ACp= Cupc - ""‘;,“"E;g" Cesie

or ACpu )
ACp = — || —‘a‘é’ﬁt‘j Cc* BLC

Figure 35 yields for JL,= 30°:

ACp =~ (1 - .140)0065) = - 056

ar
AD y 3
g~ = 956) 7

which iy a significant magnitude.
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Figure 35 is based on quasi two dimensional data.

3LC is applied only at the wing outer panels. Wings with BLC in
this study are equipped with single slotted flaps at the outer panels,
regardless whether the inboard flap is double slotted or triple slotted.
The aerodynamic lift and drag data for these flap arrangements before
BLC is applied are estimated and are shown in Figure 36 for a sample
condition. Application of A4 D/Tpg and AL/Tpg from blowing yields then
the basic drag polars with blowing used in the previous paragraph.

A

g

3,2.2 LIFT AND DRAG FROM ENGINE FAILURE, UNTRIMMED

The effect of engine failure on the 1lift, drag, rolling moment,
yawing moment and pitching moment in the wmtrimmed condition must be
known s¢ that the trimmed 1ift and drag with control surface deflection :
can be assessed. In the present subsection the untrimmed lift and drag ;
determination is described.

In general, the effect of engine failure may be known directly from
wind tunnel data only for one or at best a few selected flap angles. At
different flap angles an estimate must be made. In the present study
only test data for the double slotted flap with deflection 25/50° are
available. Estimates for the other deflections of this flap and for the
triple slotted flap are made using the lift ratio:

Aler _(BLpsene _ (Blpaene _ @W3ens
OLp  (Alpaeng (ALP)aENG QLR 4 ENg

where O lp is the increment of lift due to power effects with all engines
operating, and ALH: is the lift change due to engine failure. Figure 37
shows (1111’)3ENC /(tkLp)4 ENG to be approximately .75 on the basis of these
wind tunnel Jdata, so that
Aler
Alp

v - 0%
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Similarly, the following iz used here, by approximation

BDEF |,
NADp

and

AMer
OMp

-.25

The 1ift and drag changes are added onto the lift and drag of the
wind tunnel data for all engines operation {AEQ) and results are shown
in Figures 7 through 18 and indicated as critical engine failed (CEF).
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3.2.3 EEFFECT OF ENGINE-OUT ROLLING MOMENT AND ROLL CONTROL

(a) Engine Failure Moment

The rolling moment due to engine failure must be trimmed out using
roll control or roll trim devices which in turn introduce additional

lift, drag, and pitching moment changes.

The magnitudes of the untrimmed rolling moment coefficient resulting
from the critical outboard engine failure is shown in Figure 38 as a
function of the 1ift increment ACL, thav is obtained fron external :
blowing. ‘The magnitudes are based on a wind tunnel data analysis for :
various flap settings and thrust coefficients, see Figure 39, Angles of T
attick greater than 18° are excluded because these angles are greater
than the cne-engine-out stall angle where the rolling moments are
excesaive as veen in Figure 40.

The engine failure not only produces g rolling moment, but alse a
yawing moment. When this yawinrg moment {5 trimued out by using rudder,
an additional rolling moment is generated which generally has the saee
sign. The incremental rolling moment and the yawing moment is;

Ll mlﬁCf 5 = Yp -2y
AN = ACns3Sb= Yr -Ly = AD -y
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where Yp is the side force on the tail, and Zy and fy the location of
the tail center of pressure above and behind the airplane c.g. in the
stability axis system. The symbol AD represents the drag change due to
engine failure, located at a lateral distance Y:

AD = (Cg jo1. —=Cp RO)Q.S (25)= A CDP 35 (.23)

Elimination of Y7 yields

aCy _ Y 2y
56Cpp b Iy (:25)

This relation is plotted in Figure 41 as a function of angle of attack
and is used in the determination of the total rolling moment.

(b) Lift Loss Due to Roll Control

This total rolling moment can be trimmed by a number of roll control

devices, such as:

Roll control spoiler actuation
Aileron deflection '
Asymmetric aileron BLC
Differential flap

Of these, the diffcrential flap is not used in the present document.

Actuation of roll control devices generally results in an important
1ift change and drag change of the SIOL aircraft. The lift change due
to spoilers is illustrated in Figure 42 for the double slotted flap.
Herein, the lateral center of pressure location is 73 percent semispan
for the tip spoiler, 47 percent for the mid-span spoilers, and 27 percent
for the inboard spoilers. (The location of the spoilers is seen in
Figure 1).

In order to decreasc the 1ift loss, other devices are added. Adding
ailerons yields a slightly larger roll control for the same tvotal lift
loss, see Figure 43. Using aileron BLC in addition to aileron deflection
improves the characteristics considerably, which is also shown in that
figure.
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Similar lift loss characteristics of spoilers plus ailerons but for
triple slotted flaps are shown in Figure 44. The rolling maments
generated by spoilers of triple slotted flaps are substantially less,
which will be described later. The lateral c.p. locations for the
spoiler forces are the same as those for the double slotted flap., Aileron
BLC is not used in conjunction with full span triple slotted flaps and
is for this reason not shown in this figure.

Use of inboard triple slotted flaps, and single or double slotted
flaps at the tips results in characteristics presented in Figure 45.
Data with and without aileron BLC are shown there.

In the above figures, the effect of BLC is shown for a surface
deflection of 50°. In case the surface deflection is 30° (such as a
lesser aileron deflection with blowing) only 80 percent of the BLC effect

is used.

(c) Drag and Pitching Moment Due to Roll Control

Operation of roll contrel devices affects the drag characteristics of
the aircraft.

Opening the spoilers decrsases not only the 1ift, but also decreases
the drag when the aircraft angle of attack is high. However, a drag
increment is obtained when the angle of attack is low. In the present

study the relation

ACpgp = CCD =~ Cb atwso Ag:SP

is used, based on Figurs 46a.

The effect of aileron deflection on drag change is negligible with
and without aileron BLC.

The tail off pitching moment change is canputed from

AC :
ACmsp a= —E'"é-?- . ACL—&P

where ([%Cm/‘SCL)sp is obtained from Figure 46b. This is also based
on the yxnd tunnel data for angles of attack of interest. The pitching
moment is needed to obtain the proper trimmed 1ift.
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3.2.4 EFFECT OF PITCH TRIM ON LIFT AND DRAG

The tail off pitching moment Cpyr qS€ used in the present study per-
tains to a forward c.g. location of 25 percent MAC. Trimming out this
pitching moment results in 3 lift change of the aircraft amounting to

ACL CMNT = ,285 C'MNT

The coefficient Gmyp includes the pitching moment contribution of the roll
control devices for voll trim in case an engine has failed.

In addition to the 1lift change from the tail, also a trim drag change
is used, because the tail 1ift vector is inclined with respect to the
horizontal by the downwash. The drag correction is approximately

L ]

| £
ACD= ACL_ * '57.3_

Where an average & of 12 degrees was used. In general this temm results
in a reduction of drag because AC] is negative.
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Section IV

COMPARISON wF ROLL ACCELI MATION
WITH} ALL ENGINES OPERATING

4.1 REQUIRED AND AVAILABLE ROLLING MMENTS VS (|,

One criterion for selecting a rell control system of STCL aircraft
is whether it meets specified roll acceleration criteria.

The criterion listed in MIL-F-83300 (Reference 1) requiie: a bank angle
of 30 degrees to be reached in 1.8 seconds for Level 1. Reaching this
bank angle depends on the manner or time sequence with which tix pilot
generates the control input. Because this time sequence is not specified
in the above reference, NASA TND-5594 will be used as a guidelin
(Reference 2). This reference uses a lag of 0.1 second before the ~ontrol
surfaces begin to move after pilot initiation. Full control is achueved
through a 0.3 second ramp function. In this analysis, the total control
input time of 0.4 second is assumed to include aerodynamic lag; which is
apropos of the selected rapid response slot .1ip spoiler system. ilsing this
time sequence, as shown in Figure 47, and a typical roll time constant of
Tr = 0.7 for SIOL transports, an initial acceleration capability of

Idex = ¢o"‘ 0.825 rad/sec®
is needed. Herein, & is the rolling moment due to roll control input (in
ft/1bs), and Iy is the rolling moment of inertia {in pounds ft-sec?).

It may be noted that the requirement in AGARD 408 (Reference 3) to
reach a bank angle of 10 degrees in one second results in a very cenpatitle
acceleration vequirement, 1.e., = 0.855, u»ing the same {ise sequence
and time constant. tlowever, the MIL-SPEC value of 0.825 will be used
here.

The requirement <an be rewritten using the following relation:
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Substituting such typical values as W = 122,000 1bs., b = 116 ft, Iy =
1200 ft. lbs.sec?, this yields :

This relationship is plotted as thz requirement in Figures 48 through
51, where it is compared with the available roll control for various
geunetries. These geometries include ailerons in all cases and use
additionally:

L Figure Geometry

48 | Full span douhbie slotted flap. Control with spoilers, no
BLC

49 Inboard double slotted flap,, outboard single slotted
flap, control with spoilers and BILC

50 Full -man triple slotted flap. Cecatrol with spoilers,
no

51 Inboard trinle slotted flap, outboard single slotted
flap. Control with spuilers, and BLC.

Triple and double slotted flaps are ircluded in the comparison because
the roll contrdl spoiler efrectiveness depends on tiie type of flap used.

A comparison of speeds (for a sample wing loading of W/S = 80) where
the Level 1 roll acceleration recuirement is satisfied is presented in
Figure S2. It is seen that it is possible tc provide adequate roll con-
trol for all geometries considered in the STOL speed regime of intervest
(70 to 85 knots), except ror the full span triple slotted flaps.

The available roll control from spoilers is described in the next
subsection, The reason for the inadequate roll performance for that case
is found in the deterioration of the spoiler effectiveness when going
from double to triple slotted flaps, which is also described: in the
next subsection,
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Figure 52, Comparison of Speeds at Which Requires Roll Accleration is Met
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4.2 METIODOLOGY AND DATA BASIS

4.2.1 SPOILER EFFECTIVENESS

The spoiler effectiveness used in the previous section for double
slotted flaps is given here in Figures 53, 54, and 55, except that in the
previous section a trimmed aircraft lift coefficient is used, whereas in
the present section the data are presented in terms of the tail-off 1lift
coefficient (CLyr, NT = no tail), The conversion from the trimmed condi-
tion to the tail-off condition is made using CLtyipy = .88 Cryy, based on
Figures 56 and 57, and a forward c.g. location of 25 percent MAC.

The roll control data given here are based on wind tunnel analysis
plots presented in Figures 58 and 59, which give rolling moment
coefficients for various spoiler panels and various amounts of external
blowing. One figure gives data for 4-engine operation, the other for 3,
but the rolling moments can probably be used from either case since the
spoilers in both cases are operated on the side where no engine has
failed.

An interesting facet of the rolling moment coefficient shown for any
given spoiler configuration is the fact that it is only a function of the
wing .ift coefficient, regardless whether this lift coefficient is varied
with angle of attack or external blowing. In the present analysis this
observation is extended here to also include a variation of 1lift
coefficient with deflections of the flap as well.

The above Figures 58 and 59 are based on double slotted flaps only.
The effectiveness of the spoiier deflection is reduced to approximately
60 percent when triple slotted flaps are used in comparison with double
slotted flaps, see Figure 60. This is based on a single wind tunnel test
—omparison (GELAC 090) of two flaps with approximately equal lifting
capability and should be used with caution., Because of lack of evidence
to the contrary, this reduction is used in the present study for the
appropriate flap panels.

The data in Figures 58 and 59 are given as a function of the tail-
on untrimmed 1ift coefficient. The correction factor to obtain tail off
lift coefficients is given in Figure 61,
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