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NOTATION

Damping constant of fluid

Dimensicnal, e.g., 2-D = two dimensional, 3-D = three dimensional
Wave height from crest to trough .

Arbitrary constant

Spring constant of fluid

Half wetted breadth of wedge measured horizontally; see Sketch A at the end of the notation
Wave length

Added mass of fluid

Interacting pressure

Impact pressure

Planing pressure

Rigid body pressure

p, Total pressure (pi + pp)
T, Wave period
v, Horizontal velocity
v, Normal velocity to wave surface
Vs Normal velocity to impact surface of craft
v, Tangential velocity to wave surface
Vi Tangential velocity to impact surface of craft
v, Vertical velocity
Vw Wave celerity
w Deflection of impact surface
w = dw/dt
w = d2w/dr?
¥y Percent of L, from positive Om ax-
. a Buttock angle
B Deadrise angle
. ﬁeh Angle on wave surface measured from forward longitudinal direction to the plane normal to wave

surface and impact surface on hull bottom at a point of concern; see Sketch B



ﬁev Angle on transverse plane normal to wave surface and measured from impact surface on hull
bottom to wave surface; see Sketch B

6 Wave slope
0 rax Maximum wave slope
£ Effective impact angle on plane normal to wave surface and impact surface on hull bottom

measured from wave surface to impact surface of hull bottom; see Sketch B
p Mass density of fluid

T Trim angle

ACTUAL WATER SURFACE
L Vi
IMPACT

SURFACE 2

OF WEDGE P L
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ABSTRACT

A prediction method is being developed at the Naval Ship Research and Development
Center (NSRDC) for determining wave impact loads when a high-performance vehicle ex-
periences slamming while traveling at very high speeds. This method is based on the Wagner
wedge impact theory, the Chuang cone impact theory, and NSRDC drop tests of wedges
and cones. Determination of impact velocity is based on the hypothesis that it is equal to
the relative velocity between the impact surface of the moving body and the wave surface.
As part of the development of this prediction method, slamming tests of three-dimensional
models were conducted in calm water and waves, and the results were recorded during the
time of impact when the model traveled with both horizontal and vertical velocities. The
agreement between experimental and predicted results was remarkably good. The effect of
elasticity on slamming was also investigated during the tests. As expected, results clearly
indicated a reduction in impact pressure due to elasticity effect.

ADMINISTRATIVE INFORMATION

This investigation was carried out at the Naval Ship Research and Development Center (NSRDC) during
fiscal year 1971 as part of a general study on slamming under the Surface Effect Ships Program. The work
was funded by the Surface Effect Project Office (PM 17). Funds for the publication of this report were
provided under Work Unit 4-1700-001.

INTRODUCTION

Developmental studies of a high-performance vehicle have been concerned with the problem of slamming.
While attempting to maintain its high speed (for instance, 50 to 100 knots and more) during heavy weather,
a high-performance vehicle inevitably experiences at its bow or elsewhere the impact force of the surface
wave of the sea. This type of impact force, usually designated as “ship slamming,” can easily damage the
local hull structure or cause the entire hull to vibrate.

In order to determine slamming damage to hull structures, NSRDC has conducted basic impact tests

2 How-

of two-dimensional models in calm water! and seakeeping tests of three-dimensional models in waves.
ever, the information provided by those tests was insufficient to enable predictions of impact pressure in the
slamming area of the high-speed high-performance vehicle; horizontal velocity was low in the seakeeping tests

and was omitted for the two-dimensional models.

1Chuang, S.L., “Investigation of Impact of Rigid and Elastic Bodies with Water,” NSRDC Report 3248 (Feb 1970).

2Ochi, M.D. and-J. Bonilla-Norat, “Pressure-Velocity Relationship in Impact of a Ship Model Dropped onto the Water

" Surface and in Slamming in Waves,” NSRDC Report 3153 (Jun 1970).




Experimental data on the slamming of three-dimensional models were thus required in order to evalu-
ate the accuracy of the method being developed3+# at NSRDC for predicting the three-dimensional slamming
pressure in waves. ‘

The objectives of the present wc;rk are: ‘

1. To complete the development of the method for predicting the slamming loads of high-performance
vehicles traveling at high horizontal velocities in waves.

2. To perform three-dimensional slamming tests for comparison with predicted results.

3. To investigate the effect of deformable impact surface on slamming pressure.

This work is a continuation of NSRDC slamming research and is particularly applicable to the determi-

nation of slamming loads for the design of hulls of high-speed, high-performance vehicles.

PREDICTION OF SLAMMING PRESSURE

In determining the slamming of a high-speed craft, the pressure that acts normat to the hull bottom in
the slamming area may be separated into two components:

1. The impact pressure p; due to the velocity component of the craft normal to the wave surface

2. The planing pressure P, due to the velocity component of the craft tangential to the wave surface.

To estimate the maximum impact pressure Max p;, the pressure-velocity relation may be expressed in

the general form of
Maxp, =k pV,2 (1)

where k  is an arbitrary constant,
p  is the mass density of fluid in pounds-second? per feet*,
¥V is the normal velocity to the wave surface in feet per second,

and the impact pressure p; is in pounds per square inch.

( 3Cl;1§a6ngg, S.L., “Impact Pressure Distributions on Wedge-Shaped Hull Bottoms of High-Speed Craft,” NSRDC Report 2953
Aug ). :

4Chuang, S.L., “Design Criteria for Hydrofoil Hull Bottom Plating,” NSRDC Report 3509 (Jan 1971).



The values of k for wedges and cones can be determined from the Wagner wedge impact theory,5 the

7

Chuang cone impact theory,6 and NSRDC drop tests of wedges and cones.” When the impact angles & are

small, the k values determined by these different methods deviate considerably, especially the comparisons
between theoretical and experimental values; see Figure 1. Therefore, it is reasonable to believe that the ex-
perimental values are more realistic. Moreover, since the three-dimensional hull form is within the limits of
wedge-shaped and cone-shaped bodies, the k values for the impact of high-performance vehicles may be
approximated by the dotted line shown in Figure 1. This dotted line can be expressed by equations obtain-

able by the method of curve fitting.8 These equations are:

1. For 0 <£<2.2 deg: )
k = 0.045833 £2 + 0.149167 £ + 0.32

2. For 2.2 <E <11 deg:
k = 2.1820894 — 0.9451815 & + 0.2037541 £
- 0.0233896 £3 + 0.0013578 £4 — 0.00003132 £ L @

3. For 11 <§ <20 deg:
k = 4.748742 — 1.3450284 £ + 0.1576516 22
— 0.0092976 £3 + 0.0002735 £4 — 0.00000319864 £5

4. For 20 deg < & (Modified Wagner Formula):

k=(1 +2.4674/ tan® £) 0.76856471/288

The effective impact angle £ may be calculated from3+4

tan £ = cos §,, tan (1 +a~ 0) +sin §,, tan 3, 3)

with 8, and §, given by

5Wagner, V.H.,, “Ujber Stosz- und Gleitvorgdnge an der Oberfliche von Fliissigkeiten,” Zeitschrift fiir Angewandte
Mathematik und Mechanik, Vol. 12, No. 4, pp. 193215 (Aug 1932).

6Chuang, S.L., “Theoretical Investigations on Slamming of Cone-Shaped Bodies,” Journal of Ship Research, Vol. 13,
No. 4 (Dec 1969).

7Chuang, S.L. and D.T. Milne, “Drop Tests of Cones to Investigate the Three-Dimensional Effects of Slamming,” NSRDC
Report 3543 (Apr 1971).

8Carnalhan, B. et al., “Applied Numerical Methods,” John Wiley & Son, Inc., New York (1969), Chapter 1.




tan
tan =
{?eh sin (7 — 0) + tan @ cos (7 — 0)
( “
tan ‘
tan §,, =
cos (1 — 0) — tan asin (1 — )
The planing pressure acting normal to the hull bottom is*
! 2
Max P, = —2- p V, cos B,, (1/144) %)

The total pressure due to velocity components of the craft both normal and tangent to the wave sur-

face is therefore
P, =p;t o, (6)

In Equations (3) to (6), 7 is the trim angle, a is the buttock angle, 0 is the wave slope, § is the dead-
rise angle, 8, is the effective impact angle in the horizontal longitudinal plane, {3 ,» 1s the effective impact
angle in the vertical transverse plane, V,is the tangential velocity in feet per second, and the total pressure
p, is in pounds per square inch. The unit for the angle measurement can be either in degrees or in radians
as required in the equations. The value of the mass density of fluid p is simply the unit weight of fluid
divided by the gravitational acceleration g, e.g., 62.4/g for fresh water and 64/g for sea water.

The values for ¥, in Equation (1) and V, in Equation (6) may be determined in the following manner.
Consider that the craft moves with a horizontal velocity Vh and a vertical velocity Vv; at the time of im-
pact, the craft has a trim angle 7 and a buttock angle a. As indicated in Figure 2, both Vy and V, can be
separated into two velocity components, one normal and one tangential to the impact surface of the craft.
Since nonviscous fluid is assumed, no pressure is generated due to the tangential velocity component. In the
actual case, the tangential velocity produces a resistance or drag force. Since this force is parallel to the im-
pact surface, it does not generate a slamming pressure. In other words, only the normal velocity component

will generate the slamming pressure as the craft strikes the wave surface. This normal velocity V. s 18

Vs=V,cos(T+a)+V, sin(r+0) )]

and it is to be further separated into a component normal to the wave surface and a component tangential
to the wave surface. The wave length (in feet) is Lw, the wave height (in feet) is hw, the wave slope is 6,
the wave celerity (in feet per second) is V., and the wave period (in seconds) is T,,. If a harmonic deep-

water wave of finite height is assumed, the surface of the sea can be described mathematically as having the



) v, =226+/L,, (feet per second)

- 27
6=0_, cos —L—- ¥ (radians)
w
2w hw .
O ax = —L—- —2- (radians) ’ 8
w

T, =0.442 \/Lw (seconds)

L,=512T,* (feet)

Since the pulse of the impact pressure lasts around several milliseconds, the event of impact occurs only at
and very near the wave surface of the sea. Therefore, it is reasonable to assume that the impact velocity is
equal to the relative velocity between the impact surface of the moving body and the wave surface. Based
on this hypothesis and with the wave surface moving with the wave celerity Vs the relative normal

velocity of the impact surface to the wave surface is
V,= [Vt V, sin(@+a) cos(r+a-0)

V=V, tV, sin(r+ a)] sin(r+a-0)

Since the ¥, used for estimating the impact pressure by Equation (1) has been referred to V, for
Equations (2) to (4) when the wave slope 8 is zero, it is necessary to divide ¥, by cos? (7 + a) so that
Equations (1) to (4) can be used for the present prediction of craft slamming pressure. Then, the combi-
nation of Equations (9) and (7) becomes

V=V, cos(tta)+(V, +V )sin(T+a)

= 2
V.=V, cos(tta—0)/cos” (1+a) (10
V,=V,sin(r +a-06)

If the slamming occurs during the time when there is no wave and no horizontal velocity of the craft,

then ¥, =0, V,, =0, and 0 = 0; Equation (10) becomes




Vs =V, cos (7 +a)
V,=V, cos? (1 + a)/ cos? (1 + a

=4

v

This means that ¥, becomes identical to ¥, which was used previously for the prediction of the impact

pressure of wedges and cones.}’

TEST METHOD

DESCRIPTION OF MODELS

Three three-dimensional models were tested; one had a flat bottom, one a bottom with a 10-deg
deadrise angle, and one a bottom with deadrise angles varying from O deg at the stern to 20 deg at the bov
These models are shown in Figure 3.

The flat bottom model had a 3/8-in. aluminum bottom plate, with gage locations as shown in the
figure. The other two models were constructed of 3/8-in. aluminum plate on the starboard side and 1/16-i
aluminum sheet on the port side to enable the elastic effect of the bottom to be examined from the

slamming test records.

TEST PROCEDURE

Tests were conducted with Carriage 5 (maximum capability of 55 knots) in the NSRDC high-speed
towing basin. Figure 4 shows details of the test assembly. The releasing mechanism consisted of a solenoi
attached to the cross beam by an adjustable steel rod; this could be raised or lowered for the proper drop
height of the model. The solenoid was equipped with a hook for hanging the model. When the solenoid
was activated, the hook was very quickly released, and the model fell freely in the vertical direction along '
the guide rails. The total drop weight of the drop-gear assembly and the model shown in the figure was
290 1b for each model tested.

The drop heights ranged from 3 to 18 in. and the horizontal velocity from O to 45 knots. Pressures,
accelerations, deflections, vertical displacement, and velocities of the moving model were recorded. In
addition, 16-mm high-speed movies were taken for selected runs at film speeds varying up to approximately

1000 frames/sec.




INSTRUMENTATION SYSTEM

The instrumentation system consisted essentially of quartz-crystal transducers, charge amplifiers, d-c
amplifiers, and a tape recorder. The validity of the pressure measurements of the complete recording
system was tested electronically and mechanically; the system was also calibrated by means of an underwater
explosion. The results indicated that the entire recording system had the ability to pick up and record any
high-frequency acoustic pressure that was present during the impact of the falling body with the water sur-
face. A detailed description of the instrumentation has already been published; see Appendix A in Chuang
and Milne.” In addition, a sonic probe was installed at the towing carriage for measuring wave profiles

during the course of model impact in waves.

TEST RESULTS AND DISCUSSION

Test results are presented and discussed in relation to the objectives stated in this report. The results
are presented separately for the three general areas: the impact of the models in calm water, the impact of

the models in waves, and the effect of deformation of impact surface on the impact pressure of the models.

IMPACT IN CALM WATER

Flat-Bottom Model with Zero Trim and Zero
Horizontal Velocity

Test results are shown for the maximum impact pressures (Figure 5a), the maximum impact
accelerations (Figure 5b), the maximum plate deflections (Figure 5c) measured during the impact. The pre-
diction line is also plotted in Figure 5a for comparison with maximum pressures; the measured pressures
were generally less than the predicted values. Reasons for these differences are discussed in the following:

1. Since the impact causes the impact surface of the flat-bottom model to deform in its elastic region
(see Figure 5¢) the measured maximum pressure p, actually consists of two types of pressures: (1) a rigid-
body impact pressure p, caused by the impact (as if the impact surface were held rigid) and (2) a relief |
interacting pressure p, which reduces the total impact pressure p , 50 that it is less than the rigid-body im-
pact pressure p.. The predicted pressure is based on rigid body response. This phenomenon has previously
been established from several tests.!

2. The weight per unit impact area for the present flat-bottom model was only 41.5 psi, which is
comparatively light. Thus, the measured maximum impact pressure would be expected to be lower than

the predicted value.




3. The maximum impact pressure is also related to the maximum impact deceleration. For the same
drop height or impact velocity, the higher the maximum impact deceleration (i.e., acceleration in the pressure
relief direction), the lower the maximum impact pressure that may be expected. This is illustrated in
Figure Sb. As indicated there, the impact of the present flat-bottom model produced the highest impact

acceleration and thus had the lowest impact pressure.

Flat-Bottom Model with 6-Degree Trim (Bow
up) and Zero Horizontal Velocity

Figure 6 gives the test results for the maximum impact pressure. The impact accelerations and plate
deflections were not plotted because they were negligibly small and not readable. Because both acceleration
and deflection readings were negligibly small, the maximum impact pressure can be predicted rather
accurately either from present prediction methods or from cone-impact test results. In this case the line
from cone-test results gives a better fit of the present test results. Both prediction lines are included in

Figure 6.

Flat-Bottom Model with 6-Degree Trim and
Various Forward Velocities

The forward velocities for this case were 5, 10, 15, and 20 knots. The test results (Figure 7) are con-
sidered very good when compared to the predictions. The acceleration and deflection measurements were
again very small. This is the first time that experimental results have been available to compare with the
predictions of three-dimensional slamming including both the horizontal and vertical velocities. Although
these comparisons have been very good, further checks are still needed in order to build up confidence in

the three-dimensional slamming prediction. Other tests were therefore performed to build up this con-

fidence.

Flat-Bottom Model with Zero Trim and Various
Forward Velocities

The objective here was to demonstrate that the impact pressure would not be affected by a change in
forward velocities if the impact surface of the moving body and the direction of forward velocity were
parallel to the calm-water surface. Only forward velocity has its velocity component parallel to the impact
surface of the moving body; its normal velocity component to the impact surface is zero. Thus, a change in

forward velocity will not alter the magnitude of impact pressure if the vertical velocities remain the same.



The results indicated that the maximum impact pressures (Figure 8a), impact accelerations (Figure 8b),
and plate deflection (Figure 8c) caused by impact were not affected by changes in forward horizontal
velocities, The prediction method also indicated the independence of the forward horizontal velocities; see
Figure 8a. The reasons why the measured results were lower than the predictions have been explained

earlier.

Flat-Bottom Model with Negative Trim of
3 Degrees (Bow Down)

The objective was to investigate whether the theory still applied when the flat-bottom model was
tested bow downward with a negative trim of 3 deg. First the model was dropped with negative trim but
without forward velocity. The test results were compared with both the prediction method and with the
test results from the 3-deg cone. As shown in Figure 9, the comparisons gave reasonably good agreement.
Since the horizontal velocity of the model was zero during the drop, the trim of the model with bow up-
ward or bow downward does not prove that the theory is applicable to impact with the negative trim of the
model, Therefore, the model was dropped again with forward horizontal velocity and had a negative trim of
3 deg. The tests results (Figure 10) showed general agreement with values given by the prediction method.
When the forward speed of the model goes up, as expected, the impact pressure usually decreases. Because
of the yawing unstability developed during the test under negative trim conditions, no speed higher than

10 knots was utilized.

Effect on Slamming Pressure of Additional
Drop Weight

Results showed no apparent effect on slamming pressure from adding 85 Ib to the original 290 b of
drop weight. This was true when the model was dropped without trim and forward speed (Figures 11a—
11c) and when it was dropped without trim but with 10 knots of forward speed (Figures 12a—12c). How-
ever, this finding cannot be considered conclusive because the added 85 1b is only 29 percent of the original

drop weight. Therefore, additional experiments are needed in this area.

Varying Deadrise-Angle Model under Zero
Trim and Zero Horizontal Velocity

The impact bottom of the varying deadrise-angle model has O-deg deadrise at the stern and 20-deg

deadrise angle at the bow. Because of this variation, the buttock angle of this model was not zero but



ranged from zero at the kecl to maximum at the chine of the model. Calculations indicated that the buttock
angle at the gage locations was 1.516 deg. However, at and after the location of the pressure gage at the
stern, the deadrisc angle was zero and so was the buttock angle. At and forward of the stern pressure gage,
the buttock angle was 1.516 deg. Thus the buttock angle can physically be considered to be either zero or
1.516 deg at the location of the stern pressure gage.

Inasmuch as impact pressure is very sensitive to very small deadrise angle of less than 4 deg, a slight
change in deadrise angle would change the impact pressure drastically because of the three-dimensional
effect and the trapped air phenomenon.l Figure 1 clearly indicated the large variation in impact pressures
for impacts of wedges and cones (both experimental and theoretical) in the small deadrise-angle region.
Therefore, large deviations between measured and predicted values are to be expected within the small
deadrisc-angle region, especially when the model buttock angle cannot be determined accurately.

Bottom plating of this mode!l consisted of 3/8-in. aluminum plate on the starboard side and 1/16-in.
aluminum sheet on the port side; see Figure 3. The test results shown in Figure 13 indicate the maximum
impact pressures measured on the 3/8-in. plate side for comparisons with predictions of rigid body impact
pressures. The pressures measured on the 1/16-in. sheet side will be presented later in connection with the
investigation of elasticity effect.

Measured and predicted values of the maximum impact pressures were compared for deadrise angles of
0, 10, and 20 deg. For the O-deg deadrise angle, the calculations were made for buttock angles of 0, 0.758,
and 1.516 deg.

For this particular series of slamming tests, the predictions were in very good agreement with measure-
ments for a deadrise angle of 0 deg when the mean buttock angle of 0.758 deg was used; see Figure 13.
The agreement was also very good for a deadrise angle of 20 deg but predictions were too low for 10 deg.

Predictions made using the Wagner theory worked very well for the 10-deg deadrise angle.

Varying Deadrise-Angle Model under 6-Degree
Trim and Zero Horizontal Velocity

The method of analysis was similar to previous cases. For the zero deadrise angle, the prediction was
better when the mean buttock angle of 0.758 deg was used (Figure 14). Although the predictions were very
good for the 20-deg deadrise angle, the readings were too small to read for great accuracy.

Again, the predicted values were lower than the test results for the 10-deg deadrise angle, but not by

much.



Varying Deadrise-Angle Model with 6-Degree
Trim and Various Horizontal Velocities

The test results are given in Figures 15a and 15b for deadrise angles of 0 and 10 deg, respectively. At
the forward speed of the model, the pressure readings were not recorded at the 20-deg deadrise angle be-
cause the model was not down far enough for that particular gage location to reach the water.

As indicated in Figure 15a for the O-deg deadrise angle, each forward speed consisted of a bandwidth
for the prediction values with limit values for buttock angles of 0 and 1.516 deg. The agreement between
the predictions and the measured results was very good regardless of whether the buttock angle was used for
the predictions.

The agreement was also good for the 10-deg-deadrise angle (Figure 15b).

Varying Deadrise-Angle Model with 0-Degree
Trim and Various Horizontal Velocities

Again, because of the forward speed, the impact pressure reading at the 20-deg deadrise angle was not
recorded for speeds higher than 5 knots due to the fact that the gages were not able to reach the water. Due
to turning of the model, speeds higher than 15 knots were not attempted.

According to these limited test results, Figure 16, indicates that the predictions were slightly lower

than the test results for 0- and 10-deg deadrise angles.

10-Degree Model with Zero Trim and Zero
Horizontal Velocity

The test results are compared in Figure 17 with the Wagner wedge theory,5 the Chuang cone theory,6
and the wedge-test formula’ and three-dimensional prediction formulas. The Chuang cone theory gave the

best prediction of the test results.

10-Degree Mode! with 6-Degree Tr|m and Zero
Horizontal Velocity

The test results are given in Figure 18 together with three-dimensional and cone theory predictions.
The 3-D prediction was slightly lower than the test results but the cone theory was in good agreement with

the measured values.
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10-Degree Mode!l with 6-Degree Trim and
Various Horizontal Velocities

The combination of 10-deg-deadrise angle and 6-deg trim enabled the model to be tested at very high
forward speeds and this part of the test was run up to 45 knots. Even at such a high horizontal speed, the

agreement between the test results and the predictions were still very good; see Figure 19.

10-Degree Model with Zero Trim and Various
Horizontal Velocities

Because the model showed instability as it speeded up, the horizontal velocity was limited to 15 knots.
As indicated previously, there was no influence on impact pressure by the horizontal velocity. This

phenomenon is shown in Figure 20.

10-Degree Mode! with Negative 3-Degree Trim
(Bow down) and Various Forward Horizontal
Velocities

The model stability was worse than when it was towed with zero trim; therefore it was tested at
speeds no higher than 7 knots. As can be seen from Figure 21, the higher the forward speed, the more
difficult the measurement of impact pressure. The predictions show slightly lower pressures than do the test

results. However, they do show the evidence that the higher the forward speed, the more difficult the pre-

diction of impact pressure,

Summary for Calm Water Impact

The detailed testing of the three models established confidence that the present method gave reasonably

good predictions of the slamming pressures during impact of a three-dimensional hull form in calm water.

IMPACT IN WAVES

The following items were measured, recorded, or calculated during the impact tests of the models in

waves:
Wave height A
w



Wave period T
Forward speed of model V)
Vertical velocity of model V

Vertical displacement of model from hanging position

Acceleration at impact surface (see Figure 3)

Deflection of impact surface where acceleration and pressure are measured (see Figure 3)
Deadrise angle 3

Buttock angle a

Trim angle 7

Location of impact point in wave surface

Wavelength was calculated from the equation L, = 5.12 Tw2 (Chuang4). Other necessary calculations were
mostly based on the formulas given in Chuang.3’4

The information obtained from the tests enabled the impact pressure to be calculated by the pre-
diction method. The comparisons between the calculated and recorded values of the impact pressures are given
in Tables 1 through 3 for the three models. Considering the many variables previously listed, the agreement
is considered very good. Because the wavemeter was located several feet away from the model, there was
some discrepancy between the measured wave profile and the wave profile at the point of impact by the
model.

Calculations were made for the varying-degree model with assumed a values of 0, 0.76, and 1.52 deg
at §= 0. This was done because the gage was located where the buttock angle could be considered to be
any one of these three values. Since the prediction for a small impact angle is very sensitive to changes in
that angle, a slight change in a would change the p, value drastically, for exampie, for Run 142 with
=0,7=0:

Assumed Calculated

a= 0 deg p, = 42.32 psi
a=10.76 deg | p, = 61.85 psi

a=1.52 deg p,= 88.20 psi

However, examination of the test results indicated that the mean value of @ = 0.76 deg usually gave the best
predictions. As indicated in Tables 1—3, the calculated planing pressure p p Was much smaller than the cal-
culated impact pressure p,. This suggests that the planing pressure p, may be omitted without introducing
serious error.

Tables 1—3 also give the calculated k values from the equation

Recorded Max p, ~ Recorded Max p; =k p Vn2 : )
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Figure 22 compares these & values with the prediction line for the three-dimensional slamming. Several
points are worth mentioning,.

1. The angles of impact € are not necessarily the deadrise angles of the model 8. If § is small, the
differences between § and £ are large; if § is large, their differences become small.

2. Except for - to 2-deg angles of impact £, predictions agree very well with results obtained from
present tests. However, the test results of cones agreed very well with the upper limit of the k values for
1 to 2 deg of &

3. The present test showed that the k values varied considerably for 1 to 2 deg of £. This is attributed
to the fact that the trapped-air phenomenon comes into play for small angles of impact, say 1 to 2 deg.
During the impact of such a small angle, the air may or may not become entrapped. If the air is entrapped,
the k& values will be reduced to very small values. If however the air escapes completely before the impact,
the % values will be very large. As indicated in Figure 22, the k values for 1 to 2 deg of £ ranged from as
low as 0.18 to as high as 1.39.

4. A last point, although obvious, is worth mentioning, namely that the angle of impact £ depends not
only on the deadrise angle § but also on the trim angle 7, the buttock angle a of the model (or ship), and
the wave slope 8. Moreover, the impact velocity depends on the vertical and horizontal velocities of the
model and on the wave velocity. This impact velocity is also influenced by f3, 7, a of the model and 8 of
the wave. Therefore, it is insufficient to make predictions on impact pressures based only on the deadrise

angle (3 and the vertical velocity of the model (or ship).

ELASTICITY EFFECT

Slamming loads originate at the impact surface between the impact body and the water surface. If
the impact surface deforms during the process of impact within the time duration of the impact pressure pulse,
then this pressure pulse will be affected. Usually the impact pressure will be reduced. A general equation

for this process is?

P, =P, *P,

=pr—(mzzi{)+czzviz+kzzw) an

where p, is the total impact pressure generated by the deformable body falling upon the water surface. This
p, can be separated into two types of pressure. The first may be called the rigid body impact pressure D,
generated by the deformable body as if it were held rigid during impact. The second may be called the in-
teracting pressure p, caused by interaction between the surface movement of the deformable body and the

surrounding water, with or without a thin layer of trapped air between the surfaces.



The interacting pressure p, may be divided into pressures due to the effects of the inertial, damping,
and spring forces of both the trapped air and the water. However, the effects of the forces of trapped air
are small compared with those of water and can be neglected. Therefore, Equation (11) applies to the
slamming of rigid or deformable bodies with or without entrapped air. The negative sign is used at the right
side of the equation because the interacting pressure is always acting against the movement of the impact
surface.

For rough estimation of the effect of elasticity, both ¢,, and k,, may be ignored. Equation (11)

then becomes
Py=p, — My, W

where m_ is the added mass of fluid and may be estimated by the classical formula

The accelerations measured for the present flat-bottom model (Figure 5b) were higher than for the
circular and the rectangular plate models; the impact pressures were thus lower. However, the increased
acceleration for the present flat-bottomn model is partly attributed to the rigid-body response of models
with lighter weights than those of the other two models. Since the flat-bottom model was not as rigid as
the other two models, it was possible to record deflection measurements. Therefore, the reduced impact
pressures of the flat-bottom model were also partly caused by the elasticity effect of the model
deflection.

Since rigid-body acceleration was not measured for the present flat-bottom model, it is impossible to
separate the measured acceleration into one measurement due to the rigid body motion and one due to the
elasticity effect. The 10-deg and the varying-deadrise angle models had one side with relatively rigid impact
surfaces and one side with relatively elastic impact surfaces. The reductions in impact pressures of elastic
surfaces over those of the rigid surface are shown in Figure 23 for the varying-deadrise angle model and in
Figure 24 for the 10-deg model.

These figures clearly indicate that the reduction in impact pressure due to the elasticity effect is
some‘where between 10 and 25 percent. At the present state-of-the-art, however, a quasi-static approxi-
mation is sufficient to meet the immediate needs for the practical design of a hull bottom that will be
subjected to slamming. Since the prediction of slamming pressure at the present time can hardly be better

than 25 percent of error, neglecting the elasticity effect might be considered a safety margin of the design.

15



SUMMARY AND CONCLUSIONS

Previous NSRDC studies on slamming have involved drop tests for two-dimensional cases. The
present study covers the three-dimensional aspect; its effects on slamming pressure were studied when both
vertical and the horizontal impact velocities were involved.

Tests were conducted on three models which had three-dimensional hull forms; one had a flat bottom,
one had a 10-deg deadrisc-angle bottom, and one had a bottom with deadrise angles that varied from O deg
at the stern to 20 deg at the bow; see Figure 3. These models were tested under different horizontal and
vertical velocities, different trims, and different weights. The objectives of the tests were:

1. To verify experimentally the prediction method given here as part of this study for determining the
slamming pressure of a ship bottom in calm water and waves.
2. To determine experimentally the effects of elasticity on slamming pressure and local response of the hull

bottom.

On the basis of this series of experimental investigations, the following conclusions have been drawn.

IMPACT IN CALM WATER

The given prediction method predicts the slamming pressure reasonably well for the calm-water im-
pact of a three-dimensional hull form, involving both horizontal and vertical velocities of the craft. The
predictions gave slightly lower values than were achieved by the tests for a 10-deg deadrise angle of the
hull bottom. However, the test results agreed very well with the cone impact theory6 for the impact

bottom with 10-deg deadrise angle when the model had no forward horizontal velocity.

IMPACT IN WAVES

Considering the many variables required to determine the slamming pressure in waves, the agreement
between the test results and the predictions is considered very good. The following additional findings
have been verificd experimentally:

1. The value of the impact angle £ is affected not only by the deadrise angle §8, but also by the trim 7,

the buttock angle a, and thé wave slope 0. Therefore, the impact angle £ is not necessarily the deadrise
angle of hull bottom f.

2. Because of the nature of the trapped air phenomenon, the test results for slamming pressures exhibited
considerable scatter for small impact angle £ If impact occurred while air was entrapped, the measured
pressures were small. If impact occurred after the trapped air had escaped, the measured pressures were
large. However, values of measured pressure were still within the range of the impact tests result for cones;

sec Figure 22.
16



ELASTICITY EFFECT

The experiments clearly indicated the reduction of slamming pressure when the impact surface was
deformable. At the present state-of-the-art for metal structure, this elasticity effect can be regarded as a
safety margin by assuming the hull bottom to be a rigid body.* Therefore, the quasi-static approach is
sufficient to meet the immediate needs for the practical design of a hull bottom that will be subjected to
slamming.

In summary, the prediction method developed here is sufficiently accurate to predict the slamming
pressure of a hull bottom during high-speed operation in waves for both rigid and deformable body impacts.
This method is based on the Wagner wedge impact theory, the Chuang cone impact theory, and drop tests
of wedges and cones performed at NSRDC.
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Figure 2 — Velocity Diagram
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MAXIMUM PRESSURE MAX p, (PSI)

MAXIMUM IMPACT ACCELERATION {(g)

Figure § - Calm Water Impact of Three-Dimensional Flat-Bottom
Model with Zero Trim and Zero Horizontal Velocity
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Figure 8 — Calm Water Impact of Three-Dimensional Flat.

Bottom Mode! with Zero Trim and Various Horizontal

Velocities
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Figure 9 — Maximum Impact Pressure during Calm Water Impact of Three-Dimensional
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Figure 11 — Effect of Added Weight on Calm Water Impact of Three-Dimensional
Flat-Bottom Model with Zero Trim and Zero Horizontal Velocity
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Figure 12 — Effect of Added Weight on Calm Water Impact of Three-Dimensional
Flat-Bottom Model with Zero Trim and 10-Knot Horizontal Velocity
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Figure 15 — Maximum Impact Pressure during Calm Water Impact of Three-Dimensional
Varying-Deadrise Angle Model with 6-Degree Trim and Various Horizontal Velocities
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Figure 23c — With 6-Degree Trim and Various
Horizontal Velocities at 3= 0 Degrees
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Figure 23d — With 6-Degree Trim and Various
Horizontal Velocities at 8= 10 Degrees
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Figure 23¢ ~ With Zero Trim and Various
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Figure 24 — Elasticity Effect on Maximum Impact Pressure of the Three-Dimensional 10-Degree Model
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Figure 24a — Zero Trim and Zero

Horizontal Velocity
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" ) Figure 24b — With 6-Degree Trim and Zero
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Tigure 24c — With 6-Degree Trim and Horizontal
Velocities of 5, 10, and 15 Knots
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Figure 24d — With 6-Degree Trim and Horizontal
Velocities from 20~45 Knots
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VERTICAL IMPACT VELOCITY V, (FPS)
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Figure 24f — With —3 Degree Trim and Various Horizontal Velocities
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